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ABSTRACT

A task-based message passing framework

Francois Gingras

Over the past decade, it has become clear that parallel and distributed programming

will occupy an increasingly larger proportion of a developer’s work. While numerous

programming languages and libraries have been built to facilitate working with concurrency,

developer work is still difficult and error-prone.

In this thesis, we propose a task-based message passing framework. The proposed

framework combines the actor model with message passing functionality to offer

a useful and efficient way to implement parallel and distributed algorithms. The

framework is intended to be part of a novel C compiler that will offer built-in task

and message features. Perhaps most importantly, the new framework aims to be

intuitive and efficient.

We have used the framework to implement a parallel sample-sort and a client-

server application. Our results demonstrate both strong performance for a parallel

sorting algorithm and scalability that extends to thousands of concurrent messages.

In addition, we have developed a client server app that emphasizes the intuitive nature

of the development cycle for the new model. We conclude that the proposed message

passing framework would be well suited to concurrent development environments and

offers a simple and efficient way to build applications for the new wave of multi-core

hardware platforms.
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Chapter 1

Introduction

Over the course of the past decade, it has become clear that parallel and distributed

systems will play an increasingly significant role in the technology sphere. In addition

to the traditional use of multiple core servers to speed up analysis or simulation, new

domains such as the Internet of Things, cloud computing, and mobile technologies all

require major distributed architectures as well [53] [50].

That said, it is very challenging to successfully implement a concurrent, parallel or

distributed system on a large scale at a reasonable cost. One reason is that the current

tools used to achieve this are complex and notoriously difficult to use in real-world

environments. Though many programming languages offer complete synchronization

libraries, the developer is still fully responsible to properly use them. To avoid the

high cost of starting from scratch, teams usually rely on a principal architecture

library. However, later in the project the lack of control or the complexity of the

library often leads to high additional costs to the project.

For example, OpenMPI is a well-known message passing library that has become

a defacto standard in the field. However, over time, the library has become very

complex, with hundreds of additional functions intended to help developers with

1
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many challenges such as fault-tolerance, guarantee of delivery or high availability.

Other technologies such as CUDA, depend on proprietary hardware.

In any case, developing such applications requires a lot of resources and is time-

consuming, error-prone and very expensive. We address these issues in this thesis by

proposing a simple and efficient task-based message passing framework. The library

is to be intuitive and to work across multiple development environments. In short, it

has to provide everything a programmer needs to implement a concurrent, distributed

or parallel application. The framework will be integrated into a novel C compiler and

will be directly compatible with existing C libraries. This thesis presents the core

features of the framework and describes its design with functional prototypes and

evaluations.

1.1 Overview

The proposed framework will take the form of a library directly ready for language

integration. Using the C language, the framework will allow a developer to easily

implement concurrent, parallel or distributed applications. We will achieve this by

offering a task-based message passing programming style built directly into the lan-

guage compiler. To avoid creating an overly complex framework, we have limited our

functionality to message passing and task abstraction. Our main assumption is that

by efficiently implementing these components, we will outperform or at least match

existing library performance, while significantly minimizing developer work.

The aforementioned compiler is part of a related project. The new compiler is, in

fact, a front-end that will generate additional source code required to support new

task abstraction. The compiler will have access to the rich C ecosystem of tools and
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libraries. Our target platform includes today’s common CPU architectures - general

purpose single and multicore CPUs used for concurrent and parallel algorithms. We

note that the model is not intended for specialized environments such as GPUs and

data-intensive cloud applications. Moreover, the framework is designed to abstract

the communication layer for intra-process, inter-process, and distributed network

communication. That said, the focus of this thesis will be on intra-process and

inter-process. Extensions to support fully distributed communication will be left to

future work.

1.1.1 Message based communication

Message passing is central to this framework. Each task, a primitive executable

actor, will use messages to communicate with other tasks. One key challenge of

implementing a message passing system is how to efficiently store, retrieve and send

messages. The framework explores the use of shared memory to achieve efficiency

and communication transparency between threads and processes. Figure 1.1 shows

an example of a task-based architecture. Notice how task A and B are on the same

process, while task C is on a different process. This simple illustration demonstrates

how the framework is intended to abstract inter-process communication with

inter-thread communication, in order to easily offer developers scalability for their

application.

1.2 Evaluation

The proposed framework will be evaluated using three applications: sample-sort, a

parallel sorting algorithm that serves to illustrate that our framework can achieve
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review task implementation, message implementation, message queues, code genera-

tion, message strategies, shared memory, and task repositories. By the end of this

chapter, the reader should fully understand the core features of the framework.

Chapter 4 presents the evaluation of the task system. Each key feature is mea-

sured and compared with existing equivalents. To evaluate features, three applica-

tions were developed. The parallel sorting algorithm, sample-sort, has been devel-

oped to measure parallel performance. The client-server application measures mes-

sage throughput with our message and task abstractions. Lastly, the weather station

application showcases task discovery and discusses usability and complexity.

Chapter 5 presents the conclusions drawn from the research and proposes targets

for future work.



Chapter 2

Background Material

2.1 Introduction

In early 1985, Microsoft released Windows 1.01, showcasing multitasking capabilities

[29] on a single-core processor. Two programs could be run, but never simultane-

ously. In 2002, IBM released Power 4, the first 1Ghz multi-core processor [65]. Not

long after, in the early 2000s, Intel and AMD were releasing the first general usage

multi-core processors. In a modern computer, core count can vary from 8 to many

more. Moreover, in cloud computing, distributed virtual machines can see core counts

grow into even larger ranges. An important point to emphases is how quickly these

multi-core processors became the norm in modern computers and how programming

languages and libraries have had to keep up with the increasing core counts.

Multiprocessing or multi-processor differs from multi-core CPU where the sys-

tem is composed of two or more CPU. There has been multiprocessing system in

mainframes and supercomputers for nearly 40 years [8].

In fact, multi-core processors opened up a whole new field of computer science.

Before that, even if it was possible to run two processes, they were never actually

executed at the exact same time. With multiple processing units, this was now

6
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even compiler checks to help the developer. For instance, Java offers a rich selection

of classes within its concurrent package [16]. At the same time, many libraries were

developed to allow developers to build complex parallel and distributed applications,

including Akka, OpenMPI, OpenMP, Apache Spark [21] [22] [4] [2].

Even today, it is still quite difficult for developers to use the proper tools or

libraries for their needs. Some libraries are either unnecessarily complex or may not

be well suited to the problems. On the other hand, if a developer decides to do their

own concurrency using primitive programming language features, they are responsible

for creating safe code and must test it extensively for synchronization problems. No

matter what option is used, the process of developing complex concurrent systems is

expensive, in terms of developer resources.

In this chapter, we will explore background materials and existing work related

to this thesis. Section 2.2 will discuss multi-core programming and the challenges of

properly using it. Then, in Section 2.3 and 2.4, we will review concepts relevant to the

actor model and message passing, two core elements of our framework. Lastly, Section

2.5 will discuss existing systems and libraries, their advantages and disadvantages,

and the problems they try to solve. At the conclusion of this chapter, the reader

should understand what problems the proposed framework is trying to solve and why

we have chosen to move forward with the actor model and message passing. The

reader should also have a better sense of where the framework could position itself in

the industry.
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2.2 Multi-core programming

Moore’s law [60] states that the number of transistors doubles every two years. While

this prediction proved accurate for several decades, mono-core processors eventually

reached their limit and multi-core processors took over the market.

In the computer science context, a thread is a basic unit of CPU utilization. It

has its own ID, program counter, and shares the same process code [61]. A thread is

created within a process and is sometimes described as a lightweight process. There

are two forms of threads: kernel threads refer to those created and scheduled by

the operating system, and green threads, which are entirely managed by an external

library. Green thread implementation is usually lighter and offers more control to the

developer, making them a very attractive option for application with complex thread

requirements.

In a multi-core processor, two or more threads can run at the same time permit-

ting, what is called multithreading [52]. Multi-core programming allows code to

run in truly parallel fashion. With this capability, developers can now build appli-

cations that harvest multi-core performance advantages and, therefore, execute more

instructions in a given unit of time.

Manycore processor is a fairly new term that defines a processor built with a

large number of cores [44]. These processors are built for a high degree of parallel

processing and usually rely on specific hardware. Their massive parallel capabilities

come at the expense of single thread process in term of performance and usability,

therefore, these processors are not suited for general usage.
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2.2.1 Protecting shared resources in a multithreading envi-

ronment

Multi-core programming presents many challenges for developers. One of them is

simply how to code, structure and design multithreaded software, a problem explicitly

addressed by the thesis framework described in this document.

Another major challenge is how to handle memory when multiple threads can ac-

cess it. For example, in order to generate a specific output, a process needs to execute

a sequence of operation on a memory location. During this time, another process be-

gins to execute a second sequence of operations on the same location resulting in the

first process producing the incorrect output. this general issue is of what is known

as a race condition [55]. A race condition happens when the application depends on

the sequence or timing of two or more threads.

To avoid this problem, developers have come up with multiple solutions, including:

1. Locking

2. Message passing

3. Transactional memory

Firstly, locking is the act of reserving a memory location for a certain thread

or process. The owner thread is then responsible for locking and releasing it. There

are numerous ways to lock memory, some more efficient in specific scenarios. These

locking mechanisms are called synchronization primitives. One such example is a

semaphore variable used to control access to a shared resource.

Most modern programming languages offer a variety of synchronization primitives

to allow developers to properly lock memory and prevent race conditions. Even with
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free of course, as copying objects can be expensive.

In the real world, programmers are fully responsible for properly synchronizing

their programs. This task ends up being error-prone and hard to validate. First, the

developer is responsible for identifying variables at risk and adding protection where

these variables are used. This work is even harder on a large codebase. In addition,

the developer must really understand the timing of his application in order to not

introduce potential deadlocks. The burden of this work falls on the developer with

little help from tools and/or the compiler and typically requires extensive testing to

validate.

One way to avoid locking is to use message passing, where actors communi-

cate using messages. An actor can be a thread, a process or an object representing

an execution flow. They communicate by sending and receiving messages. Many

modern frameworks are based on this technique, allowing them to achieve high con-

currency. Distributed systems also utilize message passing mechanisms, as this can

be an effective way to communicate over a network. Of course, message passing af-

fects performance because messages must be stored and handled, in addition to the

challenges associated with message loss or message corruption.

One major advantage of message passing is the capacity to scale according to the

number of actors. Because each actor can store multiple messages in its queue, or send

many messages at once, it can do more work before having to wait. Similar to locking,

minimizing the number of messages usually improves overall performance. However,

implementing an algorithm using message passing instead of locking is fundamentally

different. The framework presented in this thesis favors message passing over locking

but, as will be seen later, the supporting queue must still use locking internally.
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Lastly, transactional memory tries to solve concurrency problems by allowing

programs to define a set of instructions that must be completed atomically. This

mechanism is strongly influenced by the database transaction model. There are two

forms of transactional memory: software and hardware. Hardware transactional mem-

ory is when supporting hardware detects a conflict and executes a rollback of some

instructions in order to avoid the memory conflict. As the name suggests, hardware

transactional memory requires the participation of additional hardware components.

On the other hand, software transactional memory is provided solely by software and

can be associated with a programming language or an existing library. The biggest

disadvantage of software transactional memory is that high overhead often results in

lower performance relative to classic synchronizations.

2.2.2 Parallel computing

One particular aspect of multi-core computing is parallel programming, where the

goal is to boost performance by splitting execution and running the application on

multiple cores simultaneously. Algorithms must be modified in order to partition

them into multiple simples tasks. Numerous libraries have been developed to make

parallel computing at least somewhat simpler and more accessible [21] [22] [10].

The first challenge in this context is to determine a strategy to split the algorithm

into simple executable tasks. Some libraries, such as CUDA [10], are directly inte-

grated into the compiler by adding new syntax and keywords. Other libraries, such

as Microsoft .NET Task Parallel Library (TPL) [24], rely on objects to abstract the

parallel computation. In both cases, developers have to modify their algorithm in

order to run it in parallel.

The second challenge is memory management. If all executable tasks have to rely
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on a single mutable memory object, then the program will not truly be able to run

in parallel. One solution is to take a copy of the data before running the task. This

solution may work for a small object, but large objects cannot be efficiently copied.

When memory management is poorly done, a parallel algorithm may have high lock

contention, leading to poor overall performance.

A recent approach to achieve good parallel performance is harvesting the power

of graphics processing units (GPU) to execute parallel computation. CUDA [10] is a

framework developed by Nvidia that uses GPUs for general purpose processing. It is

directly integrated with multiple languages such as C, C++, and Fortran. It is then

compiled by a special compiler. CUDA is used in major artificial intelligence libraries

such as Theano [27], Tensorflow [26], and Torch [9] to accelerate model computing,

through this approach only works on proprietary hardware.

2.2.3 Distributed systems

Distributed systems are distinct from multi-core or parallel programming by having

different applications running on different processes and hosts. They need to commu-

nicate in order to do their work and propagate data. Figure 2.3 shows an example of

a distributed system. One key aspect of distributed programming is that it usually

uses messages to communicate over the network or between processes. Such systems

typically require more configuration so that all applications can connect to each other.

Networking also adds significant configuration and debugging overhead.

A major difference related to parallel programming is the use of distributed mem-

ory instead of shared memory. Because each application may run on different hosts,

individual processes do not have access to a large shared pool of memory. Every

piece of memory that needs to be communicated has to be written inside a message
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Another implementation detail is how the messaging service will be implemented.

The model defines the mailbox, a queue where each message is stored before retrieval,

but does not define any storage order. Different actor model implementations usually

have different ways of implementing the message queue. The queue could be first-

in-first-out or a priority queue, allowing the receiver to skip through it and prioritize

certain messages over others. A priority queue is a very appealing method of ensuring

that the actor reads messages in the proper order and ensures the correct flow of the

algorithm.

Issues such as the order of message arrival or loss of messages are not directly

defined in the model. In practice, an actor can be a kernel thread, a user thread or

any object that can process instructions in its own memory. The scheduling is not

defined in the model and, therefore, is decided at the implementation level. All of

these decisions will affect the cost of developing an actor-based library.

Akka [2] and Erlang [32] are two examples of actor model implementations. They

both offer actor abstraction and their own scheduling. Similar to an actor-based

approach, our framework will use a task-based paradigm. We will utilize the general

concept of actors, but the final implementation may not perfectly fit the model, as

this is not the intention. For example, one example the divergence is the need for

shared references between actors for large data structures.

2.4 Message passing

Message passing is not only for actor-based models, but is a very generic way to

communicate. Message passing can be used to communicate over a network, between

processes, between threads or even to execute a remote procedure call. A simple
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web-service works using messages. A client sends a request (a HTTP message) over

the network, and gets a response message back. All data needed for the request must

be written in the message.

One important aspect of message passing systems is whether communication is

done synchronously or asynchronously. Similar to a function call, synchronous mes-

sage passing is when the caller waits for the operation to complete before doing

anything else. It is significantly less complex to implement, but does not offer the

capability to continue computing while the message is being processed. By contrast,

asynchronous message passing is non-blocking and the process can continue comput-

ing while messages are being executed. Asynchronous messaging is more complex to

implement because it requires a supporting system to queue and deliver messages.

Message communication does not come without performance overhead, especially

for asynchronous messaging. Each message has to be created, the data has to be

written into it and finally, the message has to be sent to an appropriate destination.

This process is repeated at the destination where the message has to be received,

read and the action has to be performed. When communicating over the network,

the overhead of network communication is so large that the cost of packaging messages

is typically not very relevant. However, using messages between threads and processes

is a lot more expensive in a relative sense, as a simple function call or a simple lock

acquisition is a very cheap instruction to perform.

Asynchronous message storing is usually done in a first-in-first-out queue or a

prioritized queue. The data structure has to be properly synchronized using locking

primitives. This can lead to scaling problems such as high locking contention. One

way to avoid this is to use a lock-free instruction offered by the operating system. A
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lock-free instruction is, in fact, an atomic operation. A normal lock is built around

these atomic operations, but if we only use the atomic part of the lock to manipulate

the data structure, we get a lock-free data structure. Compare-and-swap or a fetch-

and-add are two common lock-free instructions [45]. One recent article proposes a

queue that uses the fetch-and-add instruction [66]. Such a queue could in fact be

suited to our own framework.

Despite these complications, it is likely that we will eventually see an increasing

number of libraries using messages instead of classic synchronization or function calls.

One key reason for this is the increasing need for scalable abstractions in parallel,

distributed and cloud systems. In fact, message passing is fundamental in certain

concurrency models. For example, a new advancement is on-chip message passing

that proposes hardware support for message passing between processor cores [51]. By

adding message passing hardware capabilities, it is possible to open up a vast field of

research in which message-based frameworks and algorithms could execute and scale

faster with these augmented CPU’s.

2.5 Previous Work

2.5.1 OpenMPI

OpenMPI stands for the Open Message Passing Interface project. MPI is a stan-

dardized and portable message passing standard [18], developed by researchers from

academia and industry. The first committee effort was carried out in 1991 and the

MPI 1 standard was released in November 1992. Since then, numerous development

iterations of the standard have been released and many implementations developed.

The current standard is MPI 3.1 [38], while MPI 4.0 is the development effort and aims
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to focus on support for hybrid programming models, fault tolerant MPI applications,

persistent collections and one-sided communication [17]. In this context, hybrid pro-

gramming refers to combining shared-memory and distributed-memory programming

models [54].

One major MPI implementation is OpenMPI, an open source implementation built

by researchers from academia and industry that combine severals existing projects

[21]. The project was born as a merge of three MPI implementations: FT-MPI

from the University of Tennessee, LA-MPI from Los Almos National Laboratory and

LAM/MPI from Indiana University [40]. OpenMPI focus is generic high-performance

computing using the message passing standard. Following the merge, the project

evolved in sync with the MPI standard. The latest version (3.0.0) was released in

September 2017. The project supports the latest standard and offers numerous lan-

guage bindings and extra tools to support a wide variety of project development

targets.

In 2004, OpenMPI developers published a paper defining the goals, concepts, and

design of the implementation [39]. Other than a good MPI implementation, their

primary objective was to offer a production quality library that supports a wide

range of parallel machines, high-performance clusters and other technologies such as

TCP/IP, shared memory, Myrinet [34], and Infiniband [57]. Before OpenMPI, it was

necessary to choose the appropriate implementation depending on what system was

to be used to build the application. OpenMPI merged all these technologies into one

general implementation. As OpenMPI is used in complex applications, it also offers

optional features to check data integrity and monitor network transmission errors and

faulty applications.
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Supporting all these technologies for such a long time is difficult. The current im-

plementation is very complex and contains hundreds of functions and configurations.

That being said, the goal of the designers was to support a large array of technologies

targeted for generic high-performance computation. The library is still in continuous

development.

One recent challenge for the industry is to process very large data sets. New

technologies such as Spark [4], Hadoop [28] and Google cloud platform [14] have

been developed to solve these issues. A recent experiment aimed to compare these

technologies with two supervised machine learning algorithms [59]. The results show

that OpenMPI outperformed Spark by more than one order of magnitude while, at

the same time, stating that Spark offers better data management infrastructure and

is better when dealing with errors. The authors concluded that Spark and Hadoop

may be preferred due to their greater usability.

2.5.2 MVAPICH

MVAPICH is another MPI implementation similar to OpenMPI, but with a different

purpose. The implementation is developed by a group of researchers from Ohio State

University. The project is sponsored by numerous groups and is used to power several

top 500 supercomputers. The latest software family, MVAPICH2, is based on the MPI

3.1 standard and supports InfiniBand, Ethernet/iWARP and RoCE networking tech-

nologies [20]. Others MPI implementation are GridMPI [15] and MPICH-Madeleine

[19].

In contrast to OpenMPI, MVAPICH aims to support many different discrete tech-

nologies. They offer six software families where each aims to support a very specific

array of technologies. For instance, MVAPICH2-Virt is built to support scalable MPI
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Family Supported technologies

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/i-
WARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS
(OpenSHMEM, UPC, UPC++, and CAF), and
MPI+PGAS programming models with unified
communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs
MVAPICH2-Virt High-performance and scalable MPI for hypervisor

and container based HPC cloud
MVAPICH2-EA Energy aware and High-performance MPI
MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Table 2.1: MVAPICH software families.

for hypervisors and containers, based on a high-performance computing cloud. Table

2.1 summarizes each family and their targeted technologies.

While OpenMPI aims to be a more general-purpose message passing library and

MVAPICH is intended for specific technologies, they should both have similar per-

formance results in similar environments. A study done by researchers from Ecole

Normale Superieure compared four different MPI implementations [42]. They mea-

sured each implementation’s performance when used over a long distance network

and in a heterogeneous system. They concluded that after proper configuration, each

MPI implementations had very similar performance characteristics.

Due to its nature, MVAPICH is likely to be more expensive to implement. It

has a more open, research-oriented structure and, as a result is very complex to use.

They have an extensive performance section on their website and a list of recent

publications. On the other hand, OpenMPI is more adapted to industry. They

provide a generic and complete MPI library.
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2.5.3 Erlang

Erlang is a general purpose functional programming language designed to build mas-

sively scalable real-time systems and distributed fault-tolerant systems [13]. The first

release was in 1986 and it was part of a development effort by the Ericsson company.

The language was built to improve the development of telephony applications.

In this thesis, we are particularly interested in the concurrency model of Erlang.

As Erlang is a functional language and does not rely on mutable state, it doesn’t suffer

from race conditions. The language is based on the actor model, where each running

object is an Erlang process [32], and offers built-in asynchronous message passing

between actors. Erlang uses green threads and implements its own scheduling and

memory management. The language can then be used to build highly scalable real-

time applications with high availability. What makes the Erlang model so flexible is

that it uses asynchronous message passing so that threads do not block when sending

messages.

At any time in the execution of a process, the user can create a new process by

calling the spawn function. This function starts a new process with a programmer

defined function as an entry point. The spawn function also takes optional arguments

and returns a unique process identifier. The exclamation mark symbol ! is used to

send a message. The receive keyword delimits a block in which Erlang will retrieve

a message. In this block, it is possible to use pattern matching to filter messages in

the queue. Code Sample 2.1 shows how to use spawn at line 29 and ! at line 7, 11,

and 24. Using these functions, it is possible to implement very complex distributed

message models [12] with minimal code.

1

2 -module(tut15 ).
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3

4 -export([start/0, ping/2, pong/0]).

5

6 ping(0, Pong_PID) ->

7 Pong_PID ! finished ,

8 io:format("ping finished~n", []);

9

10 ping(N, Pong_PID) ->

11 Pong_PID ! {ping , self()},

12 receive

13 pong ->

14 io:format("Ping received pong~n", [])

15 end ,

16 ping(N - 1, Pong_PID ).

17

18 pong() ->

19 receive

20 finished ->

21 io:format("Pong finished~n", []);

22 {ping , Ping_PID} ->

23 io:format("Pong received ping~n", []),

24 Ping_PID ! pong ,

25 pong()

26 end.

27

28 start () ->

29 Pong_PID = spawn(tut15 , pong , []),

30 spawn(tut15 , ping , [3, Pong_PID]).

Listing 2.1: Erlang ping pong sample [11]

Erlang also offers a repository function to retrieve a process identifier associated

with a given name. Using the register function, a process can map a process name

to a given process identifier. One interesting use of this function is that it can be used

to redirect a message to a new process in case of failure or migration. This is key

to implementing fault-tolerance and high availability. Process identifier resolution is

done automatically when using the ! symbol.

Finally, Erlang is also natively distributed, which is uncommon for a programming
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language. When two processes are on different hosts, they can communicate using a

configuration cookie that contains the name of the Erlang node and basic authenti-

cation information. When sending a message the developer simply needs to provide

the Erlang node name. Each Erlang node is fully independent; therefore, each node

has its own registry. To help with this, registry functions can be used on a given

node. Because Erlang nodes are decentralized, developers need to understand the

topology of the network in order to properly use it. Specifically, because Erlang does

not offer an automatic distributed topology function, developers need to be aware of

each Erlang node and functions they expose.

Erlang is a complete general purpose actor-based programming language and

strongly influences our framework. One drawback is that the language’s function-

ality is built over a virtual machine that adds computational overhead and reduces

efficiency. Erlang will never outperform C/C++. Instead, Erlang is built for high

throughput computing, making the language not perfectly suited for big data prob-

lems.

Another issue with Erlang is the fact that the language simply isn’t very popular

among developers. In 2017, it ranked 38th in the TIOBE index [25]. In general,

functional languages are less frequently used as imperative languages because of fun-

damental differences with the more common imperative programming style. As a

final point, Erlang lacks the object-oriented mechanisms typically favored in modern

software engineering.

2.5.4 Rust

Rust [23] is a fairly new language. First released in 2010, it is designed to be a safe,

concurrent and practical language. Rust’s developers clearly state that concurrency
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is becoming very important in modern computing and that software developers do

not always have the right tools to do their work properly [7].

Rust offers many modern facilities to support good concurrency. Rust has a

powerful ownership system that binds variables to an owner. At compilation, Rust

will make sure that only one owner is bound to a mutable state. Using this system,

Rust can detect a potential race condition at compilation. The system makes use

of two traits : send and sync. Send indicates that an object of this type can have

its ownership transferred safely between threads. Sync indicates that the object

implementation is memory safe. This implies that the object is immutable and can

be used by multiple concurrent threads at the same time.

1

2 use std:: thread;

3 use std::time:: Duration;

4

5 fn main() {

6 let mut data = vec![1, 2, 3];

7

8 for i in 0..3 {

9 thread ::spawn(move || {

10 data [0] += i;

11 });

12 }

13

14 thread :: sleep(Duration :: from_millis (50));

15 }

Listing 2.2: Rust thread spawn and mutable states.

In code sample 2.2, the program will not compile because the reference is owned by

all three threads. In Rust, references are immutable, hence the compiler error. One

way to make this code work properly is to copy the data. In Rust, every standard

library data structure is provided with extensive concurrency features such as cloning

and immutability. By taking a copy of the object, the thread has only one reference
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and can now be the owner of the object and, hence, modify it.

Rust offers inter-thread message communication using Channels. These are used

to send signals and optional data. Channels allows one thread to wait on other

threads that may include response data. Finally, Rust offers an array of classical

synchronization primitives such as mutex, atomic and barrier.

Rust is a fairly new language trying to take its place in the vast ecosystem of pro-

gramming languages. It offers good concurrency solutions, but lacks comprehensive

choices. Their message framework offers too little to build either distributed or com-

plex message-based applications. In addition, the language does not offer an actor

abstraction and still relies on the developer to carry out the synchronization.

2.5.5 Charm++

Charm++ is an object oriented parallel programming language based on C++ [49]. It

uses actors and message-passing to abstract parallel execution through shared objects.

The language was proposed in 1993 and is still maintained as of today [5].

At the root of the programming language we can find the charmc compiler that

will combine augmented c++ files, headers and interface definitions into a portable

executable. The compiler is not natively compatible with C++ and cannot inter-

face with standard C++ libraries. The interface file defines which functions can be

remotely invoked. Listing 2.3 shows a simple interface example.

1 module hello {

2

3 array [1D] Hello {

4 entry Hello ();

5 entry void sayHi(int);

6 };

7
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8 };

Listing 2.3: Charm++ interface definition example

Charm++ is intended to run in a multi-processor cluster or supercomputer. Through

its runtime, the program will be distributed across all processors, with remote execu-

tion transparent to the developer. The runtime performs scheduling, load balancing

and fault-tolerance operations. In general, the language is intended to simplify de-

veloper work when implementing parallel algorithms.

The biggest issue with this language is the fact that it is not natively compatible

with others C++ libraries. To compensate, Charm++ team offers tools to bridge

with CUDA, OpenMP and MPI [6]. The language is mainly used by research teams

to implement complex parallel.

2.5.6 OpenMP

OpenMP [22] is a programming library used for parallel execution. It takes the

form of compiler directives, libraries, and configuration options to execute code on

multiple processors and cores. The library offers bindings to numerous programming

languages and operating systems. OpenMP is developed by a non-profit organization

and is sponsored by industry [37].

1 int main (int argc , char *argv [])

2 {

3 int nthreads , tid;

4

5 /* Fork a team of threads giving them their own copies of variables */

6 #pragma omp parallel private(nthreads , tid)

7 {

8

9 /* Obtain thread number */

10 tid = omp_get_thread_num ();

11 printf("Hello World from thread = %d\n", tid);

12
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13 /* Only master thread does this */

14 if (tid == 0)

15 {

16 nthreads = omp_get_num_threads ();

17 printf("Number of threads = %d\n", nthreads );

18 }

19

20 } /* All threads join master thread and disband */

21

22 }

Listing 2.4: OpenMP hello world

The library uses a fork and join model [56] to split compatible code blocks and

distribute the execution over multiple cores. The developer is responsible for targeting

code that can be forked, as seen in code sample 2.4. The library can be used on multi-

core processors or within a supercomputer with multiple processors.

OpenMP works on shared memory and relies on locking and copying to resolve

shared states. It can suffer from lock contention if the implementation is not optimized

for parallel execution. It is recommended to use good programming practices and

avoid shared data structures. OpenMP also suffers from scalability problems when

there is an large number of threads. It has been shown that the overhead growth is

linear or super-linear with the number of threads and cores [48].

Modern architectures are turning towards hybrid models in which OpenMP can

be used with MPI. Typically, OpenMP is used for parallel execution within a node,

while MPI is for communication between nodes. One article published in 2009 [58]

compared hybrid, OpenMP-only and MPI-only architectures on a common set of

problems. They concluded that a hybrid model can help scalability greatly, but

pointed out that it is hard to find the right balance between parallel execution and

inter-node communication cost. They propose fully optimizing for parallel execution
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before adding nodes and network communication. They also pointed out that the lack

of standardization between the different systems and network architectures prevents

full optimization of the code.

OpenMP is not the only library for parallel execution. CUDA [10] is developed

by Nvidia to run parallel code on GPUs. CUDA is extensively used in machine

learning to compute models using the GPU’s parallelization capabilities. Both CUDA

and OpenMP provides additional languages instructions to parallelize execution, and

neither provides message passing capabilities.

2.5.7 Transactional memory on many-cores with network-on-

chip

Transactional memory [43] aims to simplify concurrent programming by grouping

memory accesses in a transaction. The concept is very similar to a database transac-

tion system. Transactional memory can be implemented for memory that is shared

between threads and processes. It works on an optimistic concurrency control, in

which each thread can enter a critical section but may need to abort in the case of

a conflict. Transactional memory can be implemented by software or by hardware.

Software implementations tends to add a significant overhead by monitoring each

shared state and transaction [35]. Hardware transactional memory tries to solve this

by having dedicated hardware that detects conflict and executes rollback on shared

states.

One interesting project is TM2C [41], a transactional memory protocol for many-

core systems. TM2C explores the use of network-on-chip for low communication

latency between cores. Their library comes with FairCM, a distributed contention

manager that ensures transaction termination and fair use of the transactions for each
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core. Their experiments scale well on many-core processors for hash and map-reduce

operations.

Transactional memory is still in early development. It faces numerous challenges

before it can be considered to be an equivalent model to classic methods such as

locking and message passing. Most software transactional memory is less efficient

than other models due to the computation overhead.

2.6 Conclusions

In this chapter, we introduced concurrent programming and described its relevance

to this thesis. We defined the actor model and message passing, two core concepts of

our proposal. We note that many existing libraries focus either on a single problem,

or specifically on parallel execution or distributed systems. Our framework intends

to support both parallel and distributed capabilities.

Many existing libraries suffer from high complexity and low usability, in part be-

cause of how quickly the market has evolved around massive parallel architectures

and high scalability. Using Erlang and Rust as motivation, we will explore the idea of

integrating message-based concurrency with a broadly use high performance program-

ming language. The major challenge will be to offer robust task and message passing

functionality without suffering from performance loss and development complexity.



Chapter 3

Task-based message passing

framework

3.1 Introduction

We propose a task-based message passing framework to support rapid development of

reliable, scalable applications for parallel and distributed systems. The framework is

an intuitive and unified system that can support parallel, concurrent and distributed

execution. To achieve these goals, we built a lightweight messaging framework that

provides central message passing communication. This chapter will present the details

of each major feature of that framework.

First, we will discuss the general design of the framework. This section gives

a general overview of the library from a programmer’s perspective. We will then

describe how the tasks and messages are implemented and how to use them effectively.

These two sections are important because they expose the developer interface to the

framework.

The remaining section will review the internal implementation. We will cover how

we use shared memory to store message queues and abstract inter-process communi-

cation. Because the framework is intended to be integrated into a novel C compiler,

32
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we next explore the use of generated code to provide an object-oriented paradigm.

We then describe how the developer can use message strategies to optimize the flow

of application content. We complete the chapter with a discussion of the process

repository.

We emphasize that the central goal of this framework is to provide simple and effi-

cient task and message abstractions. Each component was created with this objective

in mind. As much as possible we will highlight the developer’s expected contributions

relative to the library functionality.

3.2 The framework

Multi-core programming has been accessible to developers for quite some time. For

example, programming languages usually offer threads and locking primitives. At

the same time many developers rely on external libraries to build complex parallel or

distributed application.

In either case, an application will at some point have to share resource between

different threads or processes. As noted, one solution is to lock that resource, use it,

and then release the lock. Another approach however, is to use message passing.

The task-based message passing framework proposed in this thesis will use the C

language, augmented with a extended syntax. The augmented backend C code will

be compiled by a novel compiler and then fed to a standard C compiler. Figure 3.1

summarizes this process.

The C programming language is well suited for our project for a number of reasons,

including:

• The generated C code will be compiled by a state of the art C compiler that will
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it would represent the special C syntax that will be fed to the novel compiler.

Generated code. The generated code is the result of the initial compilation. It

is standards compliant C code and will be fed to a standard C compiler.

Shared memory. Shared memory represents blocks of memory that multiple

processes have access to at the same time. We use it to store messages and system

memory. From the process view, it is no different than regular memory.

3.3 General design

The system is the central library module of the framework. It contains functions to

create and destroy message queues, send and receive messages, and provide message

flow strategies and repository functions. The root application process has the respon-

sibility of initializing the system. We will see later how the system is initialized when

two or more processes are used.

After the system is initialized, a task can be created. Similar to object-oriented

programming, tasks and messages are instantiated through a create function. The

system will generate the message queue and assign a unique identifier to the task.

A task can be divided into two logical sections: the user code, and the generated

code. The generated code is transparently produced by the supporting compiler.

The generated code defines the interface used to send messages, employ message

strategies, and handle message types and repository functions.

In contrast, the task’s user code is where the developer will implement the busi-

ness logic, as well as the message management logic. In the task implementation

Section 3.4, we will review two different approaches for receiving messages. A full

task implementation can be found in Appendix A.
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Function Description

System create Creates the system and initializes the shared seg-
ment

System acquire Acquires an existing shared segment
send Sends a message to a given task
receive Receives a message from a given task queue
dropMsg Drops a message from a given task queue
getMsgTag Gets message tag from a given task queue
createMsgQ Creates message queue for a given task
destroy Destroys the system and deletes the shared seg-

ment
message notify Puts a task to sleep if there is no message in the

queue
message wait Yields the CPU
message immediate Returns true if the message queue is empty for a

given task
repository set name Sets a repository name for a given task
repository get id Gets a task identifier associated to a given name

Table 3.1: System functions.

Once the task has been instantiated, the next logical step is to start sending

and receiving messages. In fact, messages are also defined with a generated and a

user part. The generated component does the heavy lifting and manages creation,

cloning, rebinding, and defines the underlying data structure. Section 3.5 on message

implementation contains details about the internal structure and rebind function. The

only work that remains for the developer at this point is handling state by providing

the desired data accessors.

The system functionality, as well as each task message queue, is stored on shared

memory segments. This allows multiple processes to access the same system and

perform inter-process communication. This is a key design feature of the framework.

The message queue is implemented as a fixed-size circular array. Each message’s data
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3.4 Task implementation

Similar to the actor model, a task is an executable unit. It has local memory and

functions to communicate with other tasks. In our framework, a task is a running

kernel thread and it is separated into two parts - the generated code and the user

code. The code sample 3.1 provides an example of what the developer would write

in the file to define a task and base functions.

1 // Include message type to use

2 #include "IntMessage.h"

3 #include "StringMessage.h"

4

5 task TaskA {

6 // Define tags

7 tag tag_a = 0;

8 tag tag_b = 1;

9

10 // States

11 int my_int_state = 0;

12 char my_char_state = ’b’;

13 };

14

15 // Required functions

16 static void start(TaskA this) { /* code */ }

17 static void receive(TaskA this) { /* code */ }

18

19 // Message handling functions

20 static void handle_tag_a_msg(TaskA this , IntMessage message) { /* code

21 static void handle_tag_b_msg(TaskA this , StringMessage message) { /* co

22

23 // Task related function

24 int myFunction(TaskA this , int a, int b) { /* code */ }

Listing 3.1: Task syntax example
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Function Description

send Interface to system send function
receive Task receive function
TaskName create Creates the task
start Task start function
run Thread entry point
handle *Msg Task messages handling function. Each message

type has its own generated function.
message notify Puts the task to sleep if there is no message in the

queue
message wait Yields the CPU
message immediate Returns true if the message queue is empty for the

task
repository set name Sets a repository name for the task
repository get id Gets a task identifier associated to a given name

Table 3.2: Task functions.

3.4.1 Generated functions

The compiler will examine user-defined tasks in order to generate supporting func-

tions. Table 3.2 contains the list of functions available when working on a task. Most

of these functions are incorporated into the generated code. We will discuss how the

code can be generated in Section 3.8.

3.4.2 User functions

The developer is required to implement two functions: start and receive. As

shown in Listing 3.2, the start function is the entry point of the task and it is where

most business logic will be or at least called from this function. From this point,

the developer can now send and receive messages. The receive functions will handle

message retrieval, but it is up to the developer to choose the actual technique.
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1 static void start(SampleTask this){

2 // ..do something

3

4 // Check for first message

5 receive(this);

6

7 //... do something else

8

9 // check for second message

10 receive(this);

11 }

Listing 3.2: Start function code sample.

We identify two simple approaches: direct receive and loop receive. The direct

receive will not loop until a message has arrived and will directly return control if no

message is present. The looping receive will loop until a message has arrived before

returning control. In general the looping method is the most flexible and we used it

in all of our examples. Listing 3.3 provides a code sample of the receive function for

our weather application. Later in the message strategies section, we will introduce

the message immediate function, a mechanism that allows the programmer to check

whether any message is available at any moment. Mixing the looping receive method

with the message immediate function allows the highest level of versatility while

keeping the complexity low.
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1 static void receive(WeatherClientTask this){

2 int tag = Comm ->getMsgTag(Comm , this ->taskID );

3

4 // Looping until a message is present

5 while (tag < 0) {

6 tag = Comm ->getMsgTag(Comm , this ->taskID );

7 }

8

9 Message msg;

10

11 // match the message to the right message "handler"

12 switch (tag) {

13 case WEATHER_STATION_NAME_MSG:

14 msg = Comm ->receive(Comm , this ->taskID );

15 handle_WeatherStationNameMsg(this , (TextMsg)msg);

16 break;

17 default:

18 Comm ->dropMsg(Comm , this ->taskID );

19 }

20 }

Listing 3.3: Looping receive code sample.

In the receive method, the message tag is used to call the appropriate handling

function. The message tag is different from the message type in that it is defined in

the task. The message type refers to the concrete code that is used to implement the

message, while the message tag is a simple integer used to identify the message from

the application or programmer perspective.

Handler functions are associated with tags defined in the task. They are declared

in the generated code, but the implementation must be done by the developer in the

user code, as illustrated in Listing 3.4. It is similar to the concept of an abstract

interface, where each function must be defined, in order to avoid a compiler error.

Each tag is associated with one message type, but multiple tags may use the same

type. The relevant handling method is called in the receive function.
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with the task in mind. That said, the developer’s work will simply consist of defining

tasks and implementing business logic through message communication.

3.5 Message implementation

Following the task, the message is the second core concept of the framework. Messages

are sent between tasks and stored in a queue. Implementation is similar but requires

some additional work by the developer. We note that an object-oriented paradigm in

which messages are instantiated (with some limitations) can be used with polymorphic

rules. The implementation is again separated into two parts - the generated code and

the user code. Code sample 3.5 provides an example of what the developer might

write to define a sample message. A full message implementation can be found in

Appendix A.

1

2 message IntArrayMessage {

3 // Data structure

4 int size = 0;

5 int* values;

6

7 // Functions

8 int getValue(int pIndex );

9 int getSize ();

10 void setValues(int pCount , int* pValues );

11 };

Listing 3.5: Message syntax example.

Each time a message is sent, its payload will be cloned inside the message queue

and when received, the message will be cloned again into the process memory space.

By doing this, the original data is safe from race condition. Note that data copying is

a fundamental element in virtually all message passing system. When a task receives
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a message, because it is a copy, it can modify the data without any risk of synchro-

nization problems. The message should do a deep copy of the data but, as discussed

later, we leave the developer the possibility to pass references to avoid copying large

objects. In our parallel sorting implementation, for example, we use a message to pass

the reference to an array of different tasks. Passing pointers will not work outside the

process space, and therefore cannot be used in inter-process tasks.

3.5.1 Message data structure

The underlying data structure of a message is a simple C struct with message data

configured using user-declared functions. Each user-defined message has a common

structure, similar to a parent class in object-oriented programming. The UML di-

agram, shown in Figure 3.5, depicts the object-oriented message model used within

the framework. Of course, the C language does not provide objects natively. Instead,

the base message structures are produced by the code generator. The developer is

only responsible for implementing functions from the message sub-class.

When defining message data, it is important to note that the message has to keep

track of its total size. Listing 3.6 shows a function example from a message that keeps

track of its size by setting the msg size variable from the base message structure.

We need this value so we know how large the message will be in the queue.
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Function Description

MessageName create Creates the message
MessageName rebind Rebinds functions and pointers to the local process

space
clone Performs a copy of the message
writeAt Linearizes the message to a given position
getTag Returns message tag
getSize Returns total message size

Table 3.3: Message functions.

1

2 static void setValues(IntArrayMsg this , int count , int val []) {

3 this ->size = count;

4 this ->values = malloc(this ->size * sizeof(int ));

5 for (int i = 0; i < count; i++) {

6 this ->values[i] = val[i];

7 }

8

9 // Size tracking

10 this ->msg_size = sizeof(struct IntArrayMsg) + (count * sizeof(i

11 }

Listing 3.6: Keeping track of size

3.5.2 Generated functions

The relevant generated functions are create and rebind. The create function is

straightforward and consists of allocating memory for the underlying data structure

and associating function pointers to the process space.

Because messages may be sent by another process, the rebind function has to

associate function pointers with process space addresses. The rebind function should

be called just after recovering the message from the message queue. However, when

recovering a message from the message queue, it is not possible to know what its

concrete type is. To address this constraint we implement a mapping between a
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unique message type identifier (tid) and a rebind functions array. The mapping is

generated at compilation and is detailed in Section 3.8.

3.5.3 User functions

On the user side, the developer has a number of functions to implement. First,

the writeAt function is used when copying a message to the shared segment of the

message queue. The role of this function is to store the entire message inside the

queue, including additional dynamic data. Previously, we stated that the message

must keep track of its size while updating data. The writeAt function will be called on

a position where there is enough space for the message, given its size. Fortunately, the

front-end compiler will eventually feature a component that automatically linearizes

and tracks the size of framework objects.

Second, the clone method will do a deep copy of the message in process memory.

This function is used when retrieving a message from the message queue, just after

the mapping. The message is copied to the local space and the associate data in the

message queue is deleted.

Implementing a new message is a little more work than creating a task, but we

support the programmer by using an object-oriented approach and embracing code

reusability. So while implementing a new message type is probably the most complex

effort, when it is done message types can be reused in other modules or projects. To

summarize, message and task implementation represent the developer’s primary work

in the framework. The remaining sections in this chapter cover the more complex

components that are managed by the library.
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at the time of task instantiation. The name of the segment is constructed from the

task’s unique identifier and the size is established. Note that a task segment may have

been created by a process other than the sending process. In this case, the sender

will acquire the task segment at the time of the first send.

For the system, the root process must call system create in order to create

a shared segment. The size is calculated from the size of the system’s underlying

structure. Because it is difficult to have a dynamic data structure within a shared

segment, the system has a fixed maximum task count that determines the size of the

structure. Inside the system shared segment, we store the current task count, the

wait and signal thread variables, the condition variables used to put the task to sleep,

and the task repository.

The second issue with a shared segment is when to delete it. If we delete them too

early, one process may write to a deleted address location, causing a memory access

violation. A task could conceivably provide a status to the system before shutting

down, but this approach would be prone to race conditions. To solve this issue,

we delete all shared segments upon destruction of the system. Note that in a later

section, we will cover error handling and task crashes.

The system library is centralized and the developer never directly uses the shared

memory. By abstracting the communication fabric in this way, we make the system

much less complex. The cost of creating and using shared memory is very low. After

acquiring it, the cost to access a shared memory location is the same as any other

memory location from the local space of the process.
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Function Description

CreateQueue Creates and initializes a queue in a shared segment
AcquireQueue Acquires an existing queue shared segment
DeleteQueue Deletes a queue shared segment
Peek Gets the message at the head of the queue without

removing it
IsEmpty Checks if a queue is empty
Enqueue Enqueues a message at the tail of the queue
Dequeue Dequeues the message at the head of the queue

Table 3.4: Queue functions.

tail position and then write the message at this location. Similarly, Algorithm 2

describes how to retrieve a message from the shared segment. Again, the algorithm

identify the read position and then retrieves the first part of the message, including

the size. From the size, it can then update the head position to point to the end of

the retrieved message. It then uses a mapping to call the rebind function associated

with the retrieved message type. The mapping is explained in Section 3.6. This is

an important step for any IPC based task model because it will reset the function

pointer to process address space.

Because the message queue is a shared segment, it must be created or acquired.

The queue is created when the task is instantiated and may be acquired at the first

send of a given task. Each process has one or more tasks and keeps a list of pointers

to each queue of shared segments. The acquire logic is visualized in Figure 3.8. If a

task is created in another process, then the pointer is still not initialized in the other

processes. As such, the pointer must be acquired by the sending process in order to

store the message inside the shared segment. To avoid having all processes acquiring

all message queues, we only acquire the queue pointer at the first send. This adds a

small overhead to the first send, but avoids excessive queue acquisition.
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Algorithm 1 Enqueue function

Input: A message structure with a reference to the write at function
Output: Error code or success code

{Prepare writing position}
1: Compute future tail position from message size
2: if Queue is not rolled over then
3: if Future tail will roll over then
4: Update future tail at the beginning of the shared segment
5: Set queue rollover position to current tail position
6: end if

7: if Data will be overwritten then

8: return Queue full code
9: end if

10: else

11: if Data will be overwritten then

12: return Queue full code
13: end if

14: end if

15:

16: {Write the message into the shared segment}
17: Call write at function (message, future tail)
18: Update queue tail position to future tail
19: if Rollover position > 0 then

20: Set queue roll over flag
21: end if

22: Increment queue size by 1
23:

24: return Success code
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The message queue is currently limited to a fixed size. If the queue is full, the

send method will return an error code that must be handled by the developer. Lastly,

the shared segment is deleted at the time of system shutdown, not task deletion. This

prevents segmentation faults from an unwanted write to a deleted shared segment.

Not giving access directly to queues was intended to minimize development com-

plexity. In exchange, messages currently have to track size and linearize themselves.

Eventually, this will be done by the frontend compiler. Since performance is critical,

both enqueue and dequeue functions should theoretically run in O(1) complexity be-

cause they do not rely on a linear scan of the queue. Our queue uses classic locking

to prevent a race condition when two processes send messages to the same task at

the same time.

3.8 Generated code

The framework uses extensive code generation to reduce the work of the developers.

This generated code is created during compilation by a new compiler frontend that

ultimately feeds code to a standard backend C compiler. Because the final version of

the frontend compiler is not yet available, a particular effort was made in this research

project to validate the feasibility of the generated code.

Recall that we use generated code for three distinct components:

• Task

• Message

• System mapping

The developer providesmessage and task definitions using a special, C-compatible
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to a receiving process. The figure also illustrate that pointers will change if the

message is sent between two distinct processes. First, the sender’s message stores a

pointer to the array location (here it is 1050.) The message is then linearized into the

message queue and includes any dynamic data structures that were created by the

programmer. While in the message queue, both array and clone pointers still have

the same value from the sending process address space. When the receiving process

dequeues the message, the array gets a new memory location. Since the pointer still

points to the original address 1050, the pointer must now be rebound to the new

address 2250. This is why we need a map that associate message type with concrete

rebind functions. This map is generated by the compiler and available in each running

process.

The mapping is prepared during code generation and Figure 3.10 illustrates the

retrieval process using the system mapping in order to fix pointers to the receiver’s

address space. At compilation, the compiler assigns a unique type identifier to each

message type. Later, using the list of message type identifiers, it generates a map of

identifier/rebind functions. This map is used to call the appropriate rebind function

when retrieving a message from a task message queue.

Note that the generated code is not intended to be accessible to the developer.

We want to avoid situations where changes are made inside generated functions and

new compilation would subsequently erase them.
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3.9 Message strategies

Depending on the application, the time between individual messages can be very long

or very short, possibly leading to unwanted waiting periods. If the time between mes-

sages is very short, the system has to provide the fastest possible message throughput.

On the other hand, if the time between messages is very long, a task could “busy

loop” and waste considerable CPU time waiting for a new message.

To solve these issues, we provide three message strategies to optimize the message

flow of the application. The strategies include message wait, message notify and

message immediate.

To avoid busy looping, the message notify function puts, a task to sleep if there

is no message in the message queue. In general, a task will wait for a message by

busy looping but message-notify offers the possibility of putting the task to sleep and

then notifying it of message arrival. In theory, we could notify a sleeping task when

sending a message, but that may fail if the notify is called before the task is put to

sleep. Missing the notify would therefore cause the task to sleep indefinitely. To avoid

this problem, when the system is created, we start a background thread with the sole

goal of notifying tasks when at least one message is in the queue. We call this thread

the “wait and signal loop”. This loop takes a small amount of CPU time but solves

the missing notify problem. In practice, this solution turned out to be an important

optimization. The message notify solution can be used when a task is expected to

wait for a long time between two messages. This messaging strategy should be called

just before receiving and will not put the thread to sleep if there is a message in the

queue. Using this technique, the worst-case scenario would be if the task just misses

the notify and would have to wait for a full loop to occur before receiving it. We used
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this strategy in our parallel sorting implementation to put to sleep any tasks that are

not currently computing and thus wasting CPU time.

The next strategy is message wait and is intended to provide high message

throughput by simply yielding the CPU. This strategy can be used when a task

will have to wait for a response right after sending a message, but for a very short

delay. The task has no computation to do and expects the next message to come

shortly. This strategy is particularly useful in a request-response scenario. We used

this strategy in our client-server application.

The last strategy is message immediate, which will return true if there is no

message in the message queue. This strategy is generally used to provide a higher level

of concurrency. It can be employed to look at the message queue and do additional

work if there are no available messages. It can also be used to process a message that

acts as an interruption to the normal process. For example, if the application can

receive client subscriptions at any time, message-immediate can be used to look at

the message queue for new subscriptions and then continue normal processing. We

used this strategy in our weather station application, where a client will register with

a station in order to receive weather data.

These three strategies are offered to optimize the message flow of the application.

That being said, we recommend to not begin the implementation with an explicit

strategy and instead wait until the prototype application is complete then find possible

bottlenecks and apply the appropriate strategy at that point. When working with

the framework, the first goal should always be to solve the fundamental problem with

simple messages and tasks.
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3.10 Repository

Currently, the unique identifier of a task is generated when the task is created. A

task can both receive an existing identifier or create a new task but in both cases, the

parent task will have access to the identifier. The repository is used when the current

task communicates with an existing task, but it is not possible to directly receive

its identifier. In short, the repository maps programmer defined names to identifiers,

with this data stored on the system shared segment. To use the repository, a task

can assign a name to itself by calling repository set name and can get an identifier

by calling repository get id. Both of these functions are present in the task’s

generated code and can be used directly by the developer.

The name has a fixed maximum size because it will be stored in the system shared

segment. A repository look-up currently works in O(n) time because it has to perform

a linear search. This could of course, be improved to O(1) by implementing a hashmap

that works on shared memory.

The repository is optional and tasks do not require a name. The functionality

is typically used to communicate with a public task. There are numerous cases in

which this is necessary. For instance, if one task acts as a server while others function

are clients, the server can register itself with the repository and then be accessed by

clients using that name. Figure 3.11 represent this example.

3.11 Summary

In this chapter, we discussed the design and implementation of a task-based message

passing framework. The framework offers a simple and efficient way to use tasks

and messages for a C application. We exploited shared memory facilities to abstract
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communication between processes. Within these shared segments, we use a dynamic

messages queue to store each message.

We employ an object paradigm for our tasks and messages, though C is not

natively an object-oriented language. To achieve this, we explored the use of generated

code and presented a special syntax that will be fed to a novel frontend compiler.

The combined user and generated code will then be fed into a standard C backend

compiler. Given its implementation in C, the message passing code is compatible

with any existing C libraries.

We concluded the chapter by presenting our message strategies, used to optimize

the message flow of the application, and the name repository, a component that pro-

vides name and ID look-ups. In the next chapter, we will evaluate this framework on

three applications we built and each will be compared to an equivalent implementa-

tion.



Chapter 4

Evaluation

4.1 Introduction

Now that we understand how the framework works, it is time to evaluate it. Our

evaluation will aim to measure efficiency and complexity using a set of applications

representing common use cases.

We will start by evaluating possibilities for parallel computation using an imple-

mentation of a parallel sample-sort algorithm. We compare the result with a standard

quick-sort algorithm [47].

Next we look at message throughput. In this case, we built a client-server ap-

plication that simulates a simple database. We use this application to measure the

message throughput of the task system and compare achieved speed with an equiva-

lent application that uses Unix domain sockets [62]. To complete message throughput

evaluation we will assess our choice to use shared memory for inter-process commu-

nication.

Finally, we built a weather station application in order to demonstrate the use of

the tasks repository. That application will also open discussion on complexity and

usability of the framework.

64
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Model vCPU Memory
(Gb)

m4.large 2 8
m4.xlarge 4 16
m4.2xlarge 8 32
m4.4xlarge 16 64

Table 4.1: Amazon EC2 M4 instance type specification [3].

4.2 The Test Environment

Experiments were executed on Amazon Web Service EC2 virtual machines. Each

virtual machine runs on Linux Ubuntu. Amazon EC2 virtual machines offer various

types of compute instances. We used a general purpose M4 type that offers a good

balance between computation power, memory, and network speed. The specifications

of each M4 instance type we used are provided in Table 4.1.

Each virtual machine offers a variable number of vCPUs. As per the Amazon

documentation, a vCPU of an M4 instance type is equal to one core of a 2.4 GHz Intel

Xeon E5-2676 v3 processor. Each virtual machine is configured with the following

software:

• Ubuntu 16.04.1 LTS (GNI/LINUX 4.4.0-66-generic x86 64)

• CMake 3.5.1

• Gcc 5.4.0

• Python 3.5.2

Each experiment is done using the command line without any graphical compo-

nents running. Measures are automatically gathered using multiple python scripts.
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Each script outputs results in a CSV file that is then used to generate charts. Time

measurement is instrumented inside the code using the clock gettime function. To

scale the number of processors, we restart each machine using a higher Amazon in-

stance type.

4.3 Test Results

The messaging framework is intended to work for concurrent, parallel and distributed

applications. It should be easy to use and provide fast message communication. To

evaluate the implementation, we developed three applications with the aim to test

major features. First, a parallel sorting algorithm, sample-sort, will show the capa-

bility of carrying out efficient parallel execution. Second, a client-server application

is used to measure message throughput and evaluate message strategies. Third, a

weather station application demonstrates how the framework handles life-cycle, error

handling and the repository. The last application will also highlight issues related to

complexity and usability.

4.4 Sample-sort

The sample-sort is a divide and conquer comparison-based sorting algorithm well-

suited for parallel execution [33]. Starting with an unsorted array, the algorithm

begins by partitioning the array into sub-arrays called buckets. Each bucket then

selects a set of samples. Using all collected samples, the algorithm builds a list of

splitters that defines which values go in which buckets. Finally, each source bucket

sends values to the appropriate destination bucket based on the splitters. Figure 4.1

shows an example starting from an unsorted array of 24 values and 3 buckets.
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Read time Wait time Bucket 1 propagation time Bucket 1 sort time

13.417s 9.138s 1.43s 6.98s

Table 4.2: Result example for k=4 and N=100000000

Read time Wait time

13.676s 8.952s
13.341s 9.189s
13.341s 8.977s
13.344s 9.356s
13.382s 9.218s

Table 4.3: Five examples of measurement for sorting 100 million elements on 4 buck-
ets/cores.

appropriate buckets. Finally, after receiving data from all other buckets, each bucket

performs a final quick-sort. When complete, each bucket only contains values that are

found between its assigned splitters. Depending on the initial array and the chosen

splitters, final buckets may not have an equal number of values.

We instrumented the code with multiple metrics, allowing us to gather time mea-

surements for each part of the algorithm. We gathered 5 samples per test and we

averaged the final result. Table 4.2 shows the important metrics from an execution of

100 million values. We provide more exhaustive result tables in Appendix B. Table

4.3 shows an example for samples gathered for the same tests and demonstrates the

stability of the test environment. In this context, the wait time is the most impor-

tant metric and represents the amount of time the sample-sort task waited on buckets

before being able to process final results. In short, this is equal to the sorting time.

The reading time is the amount of time it took to read the initial values and for each

bucket, we also have propagation and sort times. Propagation is the time it took to

send values to other buckets, while sort time is the last quick-sort time. The overhead
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Figure 4.3: Variable array size.

of our implementation is the communication and orchestration with buckets.

We note that sorted results were validated by a script to make sure that the results

were correct and no values were lost. The data input is randomly generated and was

validated to avoid falling into a scenario where one bucket gets too many values. In

real life, this would not be possible, but it wasn’t the purpose of our measurement,

as this is a generated issue with Sample sort.

We also measured the application on two variables, the number of cores and the

array size. We used a standard quick-sort as a baseline reference to compare our

result and our speed gain. In Figure 4.3, we vary the initial array size up to 500

million elements and compare the time to a simple quick-sort. In Figure 4.4, we scale

the number of buckets and cores to see how the implementation scales with an initial

array size of 100 million values. Figure 4.5 is the speed gain when scaling the number

of cores compared to the quick-sort reference.
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4.4.1 Discussion

The goal of the application is to display true parallelism, with adequate performance

for a parallel implementation. Figure 4.3 shows that the sort time remains stable

when increasing the number of data values. In theory, the time complexity of the

reference and the sample-sort is O(nlogn), but the data set in this case isn’t really

large enough to illustrate this directly. However, these results and the comparison

with the reference indicates that the implementation does not suffer from additional

overhead when processing a larger initial set. Note here that because we use reference

messages our messages size stays relatively stable.

In order to refine our measurement, we evaluated how the framework behaved

when increasing the number of cores and buckets. In Figure 4.4, we see that as we

scale the number of cores, the sort time goes down proportionally. To evaluate the

overhead of having more tasks, we calculated the speed gain displayed in Figure 4.5.

The speed gain represents how much faster the implementation is compared to the

reference. The reference is single-threaded and does not scale with an increasing

number of cores. As we increase the core count, the speed gain stays proportionate

relative to cores and buckets. This indicate the as we add new cores, the sort time is

better in a relative sense. Also, we can assume that no significant overhead is added

as we grow the number of cores given that the performance curve stays relatively

straight. This indicates that our framework has minimal overhead with increased

tasks and communication.

We went through multiple iterations to implement the sample-sort algorithm. In

the first iteration, values were copied multiple times. This implementation was slow

and used too much memory. The reference message was added at this stage so that
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Nb client Request
count

Average time to complete

3 500000 14.700s
7 500000 92.863s

Table 4.4: Result example for 3 and 7 clients

test multiple time but the result would be very similar.

Table 4.4 shows an example of the gathered results. For 7 clients, each took an

average of 92.863 seconds before completing their 500000 requests order. By dividing

the number of requests by the total time, we compute the request per second each

client was able to satisfy during the test. For example, with 7 clients in parallel,

clients were able to complete an average of 5385 requests per second.

Figure 4.7 shows how many requests per client our system handles with a variable

number of parallel clients. This measurement was done on a 4-core virtual machine.

As expected, the task system can support very high message throughput, especially

when the CPU is not fully loaded with tasks. We note, however, that performance

does decrease as we load the CPU with more tasks than available cores. In this

setting, the Unix Domain Socket reference shows very stable progress. We have

multiple explanations for the difference.

• Our implementation uses mutual-exclusion to protect the message queue. As

the server is retrieving more messages, it forces more clients to wait before

adding the new message. The server is the main bottleneck, not the messaging

model per se.

• The Unix Domain Socket is a mature technology with many years of develop-

ment and has utilizes the state of the art message queue and locking mechanism
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to optimize the flow. Our prototypes could not be extended to provide the same

type of maturity.

• Our application simulates a database while the reference is simply sending and

receiving messages.

• The message size in the reference is smaller.

Reworking the shared memory message queue and/or using a lock-free algorithm

should improve our results comfortably. We could also adjust the reference to simulate

a database load with similar message size. That being said, even this initial framework

comfortably handles message throughput in the thousands per second.

With the database application, we also wanted to measure the effect of message

strategies. In the application, we used a message wait right after a client sends a

message. This strategy yields the CPU, an approach that makes sense because we

know that in order to get a response, the database task has to read the message. The

likelihood that the server will process the request instantly is very low, so yielding

the CPU should help. In Figure 4.8, we show the differences in terms of requests per

second when using the wait strategy versus no strategy. When yielding the CPU, we

get a small performance boost when the CPU is not fully loaded with tasks. After

four tasks, the CPU is loaded and the tasks have a higher chance of busy-looping

after regaining the CPU.

As noted earlier, we recommend implementing the application without using any

messaging strategy first. Every strategy has a specific optimization purpose. In the

database, we used a CPU yield because we knew that we wouldn’t have the response

message instantly. The sample-sort implementation used a message notify strategy
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to put long waiting tasks to sleep while waiting for buckets to finish. The effect of

the strategy in the sample-sort was more visible because of the longer busy-looping

time. In the database application, responses from the server are not slow enough to

generate a gain by putting a task to sleep, but not fast enough to not busy looping

when receiving, especially when the CPU is loaded. That being said, the goal of this

application was to prove that our framework can handle a high volume of messages.

4.5.1 IPC methods evaluation

Early in the project, we decided to use shared memory for inter-process communica-

tion. In this section, we compare shared memory with nanomsg [1], an open-source

library, and Unix domain sockets, a data communication link to exchange data be-

tween processes. The original assumption was that the shared memory would be faster

and more versatile than other solutions. Of course, working with shared memory is

not easy, but that is not a criterion for the system library.

We built a simple application where we have multiple clients each concurrently

updating a single shared variable. For the shared memory, the variable is in the shared

segment and we implemented an n-producer, one-consumer application to simulate

a client-server architecture. Both nanomsg and domain sockets work using message

passing. For each, we built a server that is responsible to store the shared variable,

and clients that will request a value change by message. We calculated the total time

it took for all clients to finish updating the value multiple times. Tests were carried

out on the m4.xlarge virtual machine instance type.

In Figure 4.9, we measure how each technology behaves with an increasing number

of parallel threads that concurrently update the shared variable. As expected, shared

memory scales better than Nanomsg and Unix domain socket. The major difference
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Figure 4.9: Variable number of threads.

is that domain sockets and nanomsg require message passing for each simple update,

and therefore suffer from the overhead for packaging, sending and receiving messages.

In Figure 4.10, we measured how well the technology scales with an increasing

number of updates and a fixed set of four clients. This time, shared memory is the

least effective solution. The main bottle-neck here is likely in the producer-consumer

implementation that uses two pthread mutexes, causing a slowdown by locking and

unlocking constantly.

We note that our framework prioritizes a large number of threads over speed of

message sending. That being said, our choice to use shared memory remains appro-

priate. Versatility is one of our main aims, and we will be able to use shared memory

for both inter-thread and inter-process communication. By contrast, Nanomsg is a

library that offers complex communication patterns between threads, processes, and

networks. Unfortunately, the framework adds a significant overhead and requires
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Figure 4.10: Variable number of writes.

more configuration.

4.6 Weather system

The weather station was the third and final application developed in order to evaluate

the framework. The main goal of this application was to showcase the use of the task

repository. We also wanted to evaluate the expected work of the developer when

designing a more complex distributed application. The weather application consists

of weather services and clients that can subscribe to receive weather broadcasts. The

application is represented in Figure 4.11.

At start-up, the first task is required to create the system, while subsequent ser-

vices only need to acquire it. Implementing an automatic switch for acquiring or

creating the system would be feasible using a lock provided by the operating system.

At the start of each weather service task, each task records their name in the
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While the main goal of this application was to showcase the task repository, we

found that developing a more complex distributed software was quite easy and re-

quired minimal coding. However, we identified two points that would require im-

provement, especially in a distributed context:

• Acquiring or creating the system should be automatic

• Implement a clean shutdown procedure

4.7 Conclusions

This chapter was dedicated to the evaluation of the task system. We developed three

applications to evaluate different aspects of the framework. The first was a sample-

sort implementation to display parallel execution capabilities. We have shown that

the framework is capable of providing good results for a parallel algorithm imple-

mentation. The second application was the client-server database. The goal of this

application was to measure maximum message throughput and the effect of message

strategies. It was also the first application to use inter-process communication be-

tween tasks. The last application was the weather station, showcasing repository

functions. The weather application was a more complex distributed application that

promoted a discussion about important design choices regarding system creation and

task failure.

We believe these three applications were able to provide a good overview of the

performance and capabilities one can expect from the framework, once the current

implementation is integrated with the the compiler. In short, the framework provides

appropriate tools to develop concurrent, parallel or distributed applications with min-

imal code and configuration. It can handle message throughput in the thousands, as
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well as parallel execution, abstract inter-process and inter-thread communication.



Chapter 5

Conclusions

5.1 Summary

With the growing need for concurrency, new technologies are emerging to solve com-

plex challenges such as core scalability, distributed architectures and massive data

sizes. These systems usually rely on strong distributed or parallel libraries to acheive

their goals. Numerous technologies currently exist to build these systems; however,

they are largely aimed at only one type of architecture and are typically complex to

use. Programming languages usually offer a basic set of features to create threads

and synchronize memory access. Some languages, such as Erlang, go further and are

built over the actor model with built-in message passing. Unfortunately, small and

unique languages do not have access to large language ecosystems and libraries.

In this thesis, we proposed a task-based message passing framework written in

C. The framework aims to be easy to use and to provide an efficient way to create

parallel or distributed applications over an actor model. We explored the use of

generated code, allowing the framework to exploit the large C ecosystem, as well

as exposing an object-oriented programming style. We also used shared memory to

abstract communication between threads and processes.
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Using our framework, a developer should be able to implement a wide variety of

parallel or distributed application simply by using tasks and message passing. We

evaluated our framework to make sure we provided good parallel performance and

high message throughput. We also covered design choices that the developer should

make in order to create a robust application.

5.2 Future Work

Even thought the current implementation offers enough functionality to build a real

application, more work must be done to improve various parts of the framework.

Possible future work includes:

• Green threads. The current implementation is base on the pthread library

that provides access to kernel threads that can sometime be too heavy for our

needs. Similar to Erlang, we could implement a green thread model for massive

concurrency with optimized scheduling and memory management that might

sometimes be more appropriate than full kernel threads that rely on operating

system scheduling.

• Fully distributed system. The current messaging implementation is limited to a

single host. Network distribution would be a real challenge. It could be based on

the Erlang model where intra-node communication is done using node naming

and global network configuration. This solution is not automatic, however and

highly reliant on the developer. A transparent network-capable distributed

system would be an even bigger challenge for performance and usability.

• Lock-free message queue. The current message queue is the main bottleneck in
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terms of maximum message throughput. It uses classic synchronization primi-

tives and will suffer from locking contention with a high number of threads.

Implementing a lock-free queue would be a big step in improving message

throughput and faster inter-process communication. Back in Chapter 2, we

introduced a fetch-and-add based lock-free queue that could be implemented in

our framework [66].

• Improved central system. The current shared memory approach is limited in

terms of space. It is not possible to have more than one system at a time

and each shared segment has a fixed size. With multiple systems or variable

shared segment sizes, it would be easier to work with a massive number of tasks.

Reworking the system to improve how it manages tasks would improve IPC and

scalability.
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Appendix A

Simple task sample

Code sample for the developed framework. This code sample represents all the work

the developer has to do to create the system, implement a message type and create a

task to use it. It do not include generated code.

main.c

1

2 /**

3 * Start a simple task main example

4 */

5 int main(int argc , char *argv []) {

6 // Create the system

7 Comm = System_create ();

8 printf("System addr %p\n", Comm);

9 printf("System shared data addr %p\n", Comm ->data);

10

11 unsigned int simple_task = SimpleTask_create ();

12 printf("Simple task id = %d\n", simple_task );

13

14 return EXIT_SUCCESS;

15 }

Listing A.1: Main for simple task sample

SimpleTask.c

1

2 #include "TaskSystem/Tasks/SimpleTask/SimpleTask.h"

3

4 #include "TaskSystem/System.h"

95



96

5 #include "TaskSystem/fatal.h"

6

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <unistd.h>

11

12 // this file contains code that the language compiler/runtime

13 // would generated automatically

14 #include "TaskSystem/Tasks/SimpleTask/generated.h"

15

16 /* *****************************

17 * Programmer Code

18 **************************** */

19

20 enum {A_MESSAGE_TAG };

21

22 /*

23 * This is the "main" method for the thread

24 */

25 static void start(SimpleTask this){

26

27 int important_int = 1000;

28

29 // Repository usage

30 unsigned int destination_id = repository_get_id(this ,

31 "destination_task_name");

32

33 // Send a int message to a destination

34 IntMsg int_to_send = IntMsg_create(A_MESSAGE_TAG );

35 int_to_send ->setValue(int_to_send , important_int );

36 send(this , (Message)int_to_send , destination_id );

37 int_to_send ->destroy(int_to_send );

38

39 // Message strategy : yield cpu

40 message_wait(this);

41

42 // Receive a message

43 receive(this);

44 }

45

46 static void receive(SimpleTask this){

47 int tag = Comm ->getMsgTag(Comm , this ->taskID );
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48 while (tag < 0) {

49 tag = Comm ->getMsgTag(Comm , this ->taskID );

50 }

51

52 Message msg;

53

54 // match the message to the right message "handler"

55 switch (tag) {

56 case A_MESSAGE_TAG:

57 msg = Comm ->receive(Comm , this ->taskID );

58 handle_AMessageTag(this , (IntMsg)msg);

59 break;

60 default:

61 printf("\nTask %d No Handler for tag = %d,

62                         dropping message! \n", this ->taskID , tag);

63 Comm ->dropMsg(Comm , this ->taskID );

64 }

65 }

66

67 static void handle_AMessageTag(SimpleTask this , IntMsg intMsg) {

68 printf("Task received a message : %d\n", intMsg ->value);

69 }

Listing A.2: SimpleTask implementation

IntMesage.c

1 #include "TaskSystem/Messages/IntMsg/IntMsg.h"

2 #include "TaskSystem/fatal.h"

3

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <string.h>

7

8 // this file contains code that the language compiler/runtime

9 // would generated automatically

10 #include "TaskSystem/Messages/IntMsg/generated.h"

11

12 /* *****************************

13 * Programmer Code

14 **************************** */

15

16

17 static int getTag(IntMesage this){
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18 return this ->tag;

19 }

20

21 static BarMsg clone(IntMesage this){

22 IntMesage tmp = IntMesage_create (0);

23 tmp ->tag = this ->tag;

24 tmp ->tid = this ->tid;

25 tmp ->msg_size = this ->msg_size;

26

27 tmp ->value = this ->value;

28

29 return tmp;

30 }

31

32 static void destroy(IntMesage this){

33 free(this);

34 }

35

36 static int writeAt(IntMesage this , void* addr) {

37 IntMesage tmp = (IntMesage)addr;

38 tmp ->tag = this ->tag;

39 tmp ->tid = this ->tid;

40 tmp ->msg_size = this ->msg_size;

41

42 tmp ->value = this ->value;

43

44 return this ->msg_size;

45 }

46

47

48 static int getValue(IntMesage this){

49 return this ->value;

50 }

51

52

53 static void setValue(IntMesage this , int value){

54 this ->value = value;

55 }

Listing A.3: IntMessage implementation



Appendix B

Sample-sort result tables for

variable array size experiment

Sample-sort result tables for variable array size. Each line represents the averaged

results of the test at N values. This experiment was done with 4 buckets on a 4-core

virtual machine. Values of 0 mean the time it took to complete the task is virtually

instantaneous.

N File read time Spawning buckets Generate splitters Wait time
50000000 6.717s 0s 0s 4.574s
100000000 13.4168s 0s 0s 9.1378s
500000000 67.4654s 0s 0s 47.7774s

Table B.1: Sample-sort task result table.
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N Get sample Get splitters Propagation Rebuild Sort Value count
50000000 0s 0s 0.717s 0.1048s 3.5384s 12638275
100000000 0s 0s 1.4268s 0.2132s 7.442s 26187202
500000000 0s 0s 7.2124s 1.0342s 38.016s 126963778

Table B.2: Bucket 1 task result table.

N Get sample Get splitters Propagation Rebuild Sort Value count
50000000 0s 0s 0.7184s 0.1092s 3.6948s 13369761
100000000 0s 0s 1.4284s 0.2s 7.0344s 24326091
500000000 0s 0s 7.3478s 1.0082s 37.273s 123614756

Table B.3: Bucket 2 task result table.

N Get sample Get splitters Propagation Rebuild Sort Value count
50000000 0s 0s 0.7178s 0.0998s 3.326s 11633328
100000000 0s 0s 1.4408s 0.2066s 7.2216s 25008899
500000000 0s 0s 7.2088s 1.0112s 37.5374s 123275160

Table B.4: Bucket 3 task result table.

N Get sample Get splitters Propagation Rebuild Sort Value count
50000000 0s 0s 0.7182s 0.1016s 3.4884s 12358634
100000000 0s 0s 1.4358s 0.1984s 7.0392s 24477806
500000000 0s 0s 7.128s 1.044s 38.1188s 126146304

Table B.5: Bucket 4 task result table.


