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Abstract

NFV Management and Orchestration in Large-Scale Distributed Systems

Mohammad Abu-Lebdeh, Ph.D.

Concordia University, 2018

Network Functions Virtualization (NFV) radically transforms the way network operators

design and manage network services, promising a lot of potential benefits such as agility,

flexibility, reduction of CAPEX and OPEX. It eliminates the dependency between the net-

work function software and hardware enabling pure-software based network function that

runs on commodity hardware, called Virtualized Network Function (VNF). NFV, along

with other emerging technologies such as Software-Defined Networking (SDN), enables net-

work operators to create dynamic and programmable network services, wherein VNFs are

deployed on-demand, dynamically chained and optimized over time to cope with emerging

business needs. The European Telecommunications Standards Institute (ETSI) developed

the NFV Management and Orchestration (MANO) framework, which consists of Virtualized

Infrastructure Manager (VIM), VNF Manager (VNFM) and NFV Orchestrator (NFVO),

in order to provide network operators with the sophisticated capabilities needed to manage

the dynamic aspects of infrastructure, VNFs and network services.

This thesis elaborates and addresses key architectural and algorithmic research chal-

lenges related to the NFV management and orchestration in distributed and large-scale

systems. We look at orchestration scalability from an architectural perspective and pro-

pose to leverage two-layer hierarchical service orchestration to manage network services over

distributed infrastructure. We also propose an architecture of Virtual Network Platform-

as-a-Service (VNPaaS) that utilizes the hierarchical orchestration to offer next-generation

mobile networks as-a-service. The architecture is illustrated by offering the 3GPP Home

Subscriber Server (HSS) as-a-Service (HSSaaS), in which the HSS is decomposed into VNFs

with a granularity finer than what is known today. On the algorithmic side, a key chal-

lenge is to identify the number and location of the NFVO and VNFM functional blocks

since they have a significant impact on the overall system cost and performance, among

others. In particular, we tackle the online placement of VNFM to enable network oper-

ators to adjust the number and location of VNFMs in response to variation in workload.

There, we assume a fixed location of NFVO and aim at minimizing the operational cost.

Owing to its complexity, we propose a tabu search heuristic and numerically show that it is

iii



faster than the mathematical formulation by many orders of magnitude. We further study

the joint placement of NFVO and VNFM. We first address the problem in the context of

the multi-orchestrator system and seek to minimize the number of NFVOs and VNFMs.

We mathematically formulate the problem and propose a two-step placement heuristic to

solve the problem efficiently. Finally, we investigate the same problem in the context of

single- and multi-orchestrator systems providing a comparative study of the worst-case de-

lay in both scenarios. We also propose a late acceptance hill-climbing heuristic to solve the

problem in a reasonable time frame.
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Chapter 1

Introduction

1.1 Overview

During the past decade, cloud computing has gained significant momentum for delivering

computing resources (e.g., networks, servers and storage) as utility [1]. These resources

are pooled, generally using virtualization technologies, and offered to different users (in-

dividuals and enterprises), who can dynamically provision and release these resources to

accommodate their demand following the pay-as-you-go financial model. Cloud computing

replaces up-front resource provisioning with elastic resource allocation, which stimulates the

emergence of sophisticated cloud automation tools that accelerate innovation through auto-

mated provisioning, governance, and management of the cloud services, enabling enterprises

to provide agile, scalable and cost-efficient cloud services.

The success of cloud computing, as an approach for providing scalable and cost-efficient

services, motived leading telecommunication network operators to initiate an Industry Spec-

ification Group (ISG), within the European Telecommunications Standards Institute (ETSI)

to overcome current network deficiencies by leveraging cloud technologies (e.g., virtual-

ization and automation) [2]. Today, introducing new network services often requires the

deployment of additional proprietary hardware appliances at fixed locations in the infras-

tructure. These appliances are designed to perform particular network functions and cannot

be easily modified to support new operations. This static approach in service management

1



limits the capability of innovation and support for new services. It also leads to low resource

utilization, high capital and operational expenditures [3].

ETSI proposed the notion of Network Functions Virtualization (NFV) to enable net-

work functions to run as cloud applications and allow network services to be provisioned

as cloud services [2]. NFV [4] eliminates the dependency between the network function

software and underlying hardware and implements the network function in software module

called Virtualized Network Function (VNF), which enables consolidation of many network

equipment onto standard high volume servers, switches and storage. By that, NFV, along

with other emerging technologies such as Software-Defined Networking (SDN), enables net-

work operators to create dynamic and programmable network services, wherein VNFs are

deployed on-demand at any point in the infrastructure, dynamically linked and optimized

over time to cope with emerging business cases and needs [5].

Currently, ETSI is leading the way in the standardization of NFV. So far, it has de-

veloped a set of requirements, specifications and architectures that cover various aspects

of NFV technology. Among them is the NFV architectural framework [6] depicted in Fig-

ure 1.1. It describes the building blocks of an NFV system in an administrative domain.

It encompasses VNFs, NFV Infrastructure (NFVI) and NFV Management and Orchestra-

tion (MANO) framework. VNFs are the software implementation of the network functions.

NFVI is the environment in which VNFs are deployed. It is a combination of hardware

and software resources that may span several geographically distributed locations. A single

location, where a network function could be deployed as VNF, is called a Point of Pres-

ence (PoP). Moreover, the MANO framework [7] is responsible for the orchestration and

lifecycle management of network services including all relevant functions, such as deploying

VNFs, optimizing their performance and managing their associated resources. Currently, it

is the most prominent NFV management framework and has been adopted by a majority

of open-source and commercial NFV platforms [8, 9]. The next section sheds more light on

this framework.

2



Figure 1.1: ETSI NFV architectural framework [6]

1.2 NFV Management and Orchestration Framework

The ETSI NFV MANO framework consists of three functional blocks: the Virtualized

Infrastructure Manager (VIM), the VNF Manager (VNFM) and the NFV Orchestrator

(NFVO). These functional blocks form three distinct management layers with different

functional roles as explained next:

1. VIM: The VIM manages and controls the NFVI compute, storage and network re-

sources. For example, it performs resource allocation and de-allocation on behalf of the

NFVO and VNFM. It also collects and reports resource fault and performance information.

The NFVI resources can be managed by one or more of VIMs. Each VIM can manage a

subset of resources within a PoP, all resources within a PoP, or the resources across multiple

PoPs [7].

2. VNFM: The VNFM is responsible for the lifecycle management of one or more VNF

instances. As such, each VNF instance is associated with a VNFM. Lifecycle management

refers to the set of functions required to manage the instantiation, maintenance and termi-

nation of a VNF or network service [10]. In this context, for instance, the VNFM can collect

the virtualized resource performance information from the VIM, and the VNF indicators

3



from the Element Management (EM) or VNF instance. An indicator is application-level

information that provides insight into the VNF behavior [11]. The VNFM uses the collected

information for decision making, such as VNF scaling and healing. Furthermore, the VNFM

can be either generic or VNF-specific [12]. A generic VNFM can manage VNF instances of

different types that might be provided by different VNF providers. A VNF-specific VNFM

has a dependency on the VNFs and can manage VNF instances of defined type(s), usually

provided by the VNF provider [12]. In an administrative domain, one or more VNFMs

can be used to manage the VNF instances. Further, as shown in Figure 1.1, the VNFM

may communicate with Element Management (EM) to manage the VNF instances. EM

is responsible for FCAPS (Fault, Configuration, Accounting, Performance, and Security)

management functionality for one or more of VNF instances. It has overlapping functions

with the VNFM. However, the key difference between them is that the EM manages a

VNF instance through a proprietary reference point, whereas the VNFM uses a standard

reference point [13]. By that, the EM can play the role of proxy by exposing the VNF

management functions to the VNFM through a standard reference point [13].

3. NFVO: Two main tasks are delegated to the NFVO. First, it performs resource

orchestration across multiple VIMs. The role of NFVO involves, but not limited to, resource

request authorization and capacity management. Second, it is in charge of the lifecycle

management of network services which involves coordination with VNFMs in managing the

lifecycle of VNF instances. For example, the NFVO and VNFMs work jointly to ensure

that the VNF instances meet the desired requirements (e.g., performance). The NFVO

can collect the VNF indicators and virtualized resource performance metrics from VNFMs.

It analyzes this information to assure that the network services satisfy their requirements.

Finally, it is worth noting that a single NFVO exists in an administrative domain.

Moreover, the NFV MANO framework includes a set of reference points, as shown in

Figure 1.1, to enable communications among MANO functional blocks as well as the com-

munication with other NFV functional blocks such as EM and VNF. ETSI specifications [11,

14–17] define the interfaces, operations and information model supported by the reference
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points. However, the details of the operations and the communication protocols are not

discussed. We highlight in particular, the following reference points that are relevant to

our work: Or-Vnfm, a reference point between the NFVO and VNFM; Or-Vi, a reference

point between the NFVO and VIM; Vi-Vnfm, a reference point between VNFM and VIM;

Ve-Vnfm, a reference point between VNFM and EM/VNF instance.

1.3 Challenges and Thesis Contributions

The responsibilities associated with MANO functional blocks leave no doubt that their

performance is crucial to network operators. Today, there are many emerging NFV scenarios

where the network services will span large geographical area (e.g., country or continent) and

the number of VNF instances will grow tremendously. For instance, the forthcoming 5G

cellular system, for which NFV is considered an essential enabling technology [18, 19],

is likely to run on a highly distributed NFVI to satisfy the requirement of 1ms round-

trip latency. 5G also requires scalable NFV architecture to deliver the required massive

capacity and connectivity [20]. Another example is the Content Delivery Network (CDN)

which is typically deployed over a large geographical area to deliver contents (e.g., video)

to end-users with low delay. In these scenarios, the distributed nature and scale of NFV

deployments lead to scalability and performance issues:

• Communication delay: The decision making in NFV MANO framework is distributed

among the three functional blocks (i.e., VIM, VNFM and NFVO). These functional

blocks communicate with each other and with other NFV functional blocks (e.g.,

VNFs) in order to fulfill their functionalities. The physical distance between the

functional blocks in NFV system is one of the factors that introduce communication

delay. When the communication delay is high, the execution time of the MANO oper-

ations becomes longer which decreases the scalability and degrades the performance.

According to [8], the communication overhead and delay may prevent the frequent

collection and analysis of monitoring data (e.g., performance information) from the

environment (e.g., VNF instances and VIMs). Another example is the VNF fault
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management [21]. Fast failure notification and recovery are necessary to minimize the

impact of the failure and maintain the reliability of the network services.

• Centralized MANO: Relying on single NFVO in a distributed and large-scale de-

ployment will hinder the scalability of the orchestration process [22]. As the NFV

deployment grows with respect to the infrastructure size and the number of VNFs,

the NFVO will have to cope with more requests and events. Since the system is

bounded by the processing capacity of the NFVO, it can become a bottleneck as the

load grows with the size of the deployment. Besides, if the NFVI has a large diame-

ter, no matter where the NFVO is placed, the communication with other functional

blocks, especially VIM, would encounter a high delay.

• Number of VNFMs: The VNFM functional block is responsible for the lifecycle man-

agement of VNF instances. However, in large-scale deployments, the VNFMs should

manage thousands of VNF instances without compromising the performance of its

management functions. Thus, the number of VNFMs must be adequate to cope with

the number of VNF instances.

These obstacles must be addressed before NFV can advance to reality, especially when

the network services in production deployments are associated with carrier-grade require-

ments. This thesis aims to supplement the undergoing research efforts towards design and

operate NFV MANO platforms. The thesis addresses fundamental architectural and re-

source allocation challenges related to the NFV MANO. These problems are summarized

next.

1.3.1 VNF Manager Placement Problem

As defined by the NFV MANO framework, the VNFM functional block is responsible for

the lifecycle management of the VNFs. However, these VNFs can be instantiated on-

demand when and where needed and elastically scaled to meet the demand variability while

maintaining cost efficiency. Hence, the number of VNF instances, their types (e.g., firewall)

and locations can vary over time. The VNFMs should manage the lifecycle of thousands
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of VNF instances without compromising the performance of its management functions.

At any time, the number of VNFMs should be adapted to the VNF instances deployed

in the system, for optimal performance of the system. Besides, the placement of VNFM

can significantly affect the overall system performance and operational cost. Adapting the

number and placement of VNFMs accordingly can thus result in important savings for

operators.

In this thesis, we introduce and investigate the VNFM Placement Problem (MPP). We

present two versions of the problem: static MPP with permanent placement decisions and

dynamic MPP with placement decisions that change over time. Assuming that we are given

the placement of the NFVO, the dynamic placement configuration of a set of VNF instances

over geographically distributed NFVI, we aim at finding the optimal number and placement

of the VNFMs, at each moment, that minimizes the operational cost. We mathematically

formulate the VNFM placement problem and propose a tabu search metaheuristic to solve

large instances of the problem. We compare our tabu approach against the mathematical

model over various NFVI topologies. Our numerical results show that our tabu search

heuristic yields high-quality solutions in considerably fast runtime. Moreover, we study

the impact of crucial aspects, i.e., NFVO location, VNFM architectural options (generic

and VNF-specific) on the outcome of the problem. We show that they can have a notable

impact on the placement decisions and require adequate tuning according to the operators’

requirements.

1.3.2 A Scalable Architecture for NFV Management and Orchestration

Centralized NFV MANO solutions, which were the common approach in literature until

recently, are prone to scalability and performance issues in large-scale and distributed de-

ployments [8, 22]. These solutions rely on a single NFVO in the system which would hinder

the scalability of the orchestration process [22]. On the one hand, the number of network

services and their constitute VNFs would grow far beyond the processing capacity of an

NFVO. On the other hand, the delay between the NFVO and other functional blocks would

increase with the increase of the size of the covered geographical area. A high network delay
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increases the communication overhead and can negatively impact critical functions.

In this thesis, we propose to employ two-layer hierarchical service orchestration in order

to address these challenges, wherein the NFVI is decomposed into domains (or orchestration

zones) and an NFVO is assigned the resource and service orchestration within a domain. By

that, NFVO can be placed close to hosting infrastructure and the communication overhead

is minimized. Besides, a global service orchestrator performs the end-to-end service or-

chestrations across different domains. We propose an architecture of Platform-as-a-Service,

which utilizes the two-layer hierarchical service orchestration approach, for provisioning

3GPP 4G and beyond core networks as-a-service. We also present a proof-of-concept proto-

type to validate the feasibility of the approach. We use the Home Subscriber Server (HSS)

as-a-Service (HSSaaS) as an illustrative use case. It relies on a novel NFV-based architec-

ture of HSS, in which the HSS is decomposed into VNFs with a granularity finer than what

is known today. The new architecture allows the different diameter interfaces of HSS to

be deployed and scaled independently. It also enables performance isolation between these

interfaces, which is further demonstrated by experimentation.

1.3.3 Joint Placement of NFV Orchestrator and VNF Manager Problem:

The Multi-Orchestrator Case

As mentioned earlier, we propose multi-orchestrator and hierarchical orchestration archi-

tecture to address the NFV MANO scalability and performance challenges for large-scale

and distributed NFV systems, wherein multiple instances of NFVO and VNFM are used

to manage the lifecycle of network services and VNFs. However, there is still the challenge

of finding the optimal number and placement for these functions blocks that provide the

required capacity and performance. Hence, we introduce and study the joint placement of

NFVO and VNFM in the context of the multi-orchestrator system. In particular, given the

NFVI topology, a set of VNF instances, and the location of the global service orchestrator,

we aim at finding the number and placement of NFVOs and VNFMs needed in the system

that minimizes their number, as it is a measure of the cost. We mathematically formulate

the problem, propose a two-step placement heuristic and evaluate it.
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1.3.4 Joint Placement of NFV Orchestrator and VNF Manager Problem:

The Single and Multi-Orchestrator Cases

Since the locations of NFVO and VNFM functional blocks have a significant impact on the

delay experienced in the communication, we revisit the joint placement of NFVO and VNFM

problem aiming at minimizing the total worst-case delay between the various functional

blocks for both single- and multi-orchestrator systems. We also investigate the impact of

the number of NFVOs and VNFMs on the worst-case delay providing a comparative study

of the delay in both scenarios. Moreover, we present mathematical formulations of both

problems and propose a late acceptance hill-climbing heuristic to solve them in a reasonable

time frame.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 presents the requirements of the

NFV MANO related to our work, followed by a thorough review of the state-of-the-art.

Chapter 3 discusses the VNFM placement problem. In chapter 4, we propose a scalable

architecture for NFV management and orchestration. Chapter 5 discusses the joint place-

ment of NFVO and VNFM functional blocks for the multi-orchestrator system. We revisit

the placement of NFVO and VNFM problem in chapter 6 and investigate the problem for

both single- and multi-orchestrator systems. We conclude this manuscript in chapter 7 and

provide future directions for this research.
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Chapter 2

Related Work

In this chapter, we first present the requirements of the NFV MANO related to our work.

After that, in the light of these requirements, we survey the state-of-the-art and review it.

2.1 Requirements

We consider the following requirements to be the most pertinent to NFV MANO:

1. Scalability: NFV MANO functions are important for realizing network services asso-

ciated with the carrier-grade characteristics. The NFV MANO platforms should be

scalable to exploit the benefits of NFV, given that the design aspects of NFV MANO

such as workload and propagation delay among functional blocks can lead to long

response time, affecting the ability to respond rapidly to events and reducing the re-

liability of the system. Addressing such a problem requires a solution with a scalable

architecture. Besides, both the number and location of NFVO and VNFM functional

blocks must be planned to provide the needed scalability and performance.

2. Elasticity: VNFs can be deployed and scaled dynamically to meet demand. This will

lead to workload fluctuation on the NFVO and VNFM functional blocks. Depending

on the level of variation, adding new instances of these functional blocks or removing

existing ones might be necessary to cope with the workload and ensure cost-efficiency.
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This is, in particular, more relevant to the VNFM as it is responsible for VNF lifecycle

management.

2.2 Related Work

In this section, we will discuss the works from the literature that are closely related to each

of the thesis contributions. We first discuss and analyze the works related to the NFV

MANO architecture. After that, we review the works related to the resource allocation for

NFV MANO functional blocks.

2.2.1 NFV Management and Orchestration Architecture

The NFV community has paid particular attention to NFV MANO challenges and designed

platforms that can provision network services over distributed infrastructure. We classify

these solutions into two categories based on whether they follow the centralized or dis-

tributed management approach. We consider the management is centralized when a single

NFVO is in charge of resource and service orchestration in the system. On the other hand,

the management is distributed when the architecture employs multiple NFVOs to perform

the MANO operations (i.e., multi-orchestrator system).

2.2.1.1 Centralized Approach

T-NOVA [23, 24] is a European funded project that designs and implements an NFV man-

agement and orchestration platform for provisioning network functions-as-a-service over a

distributed infrastructure. It provides a VNF marketplace for third-party which allows

VNF developers to describe and publish service offerings. It also enables customers to

browse, select and deploy these services. The proposed solution covers the entire ETSI

NFV MANO framework stack (i.e., VIM, VNFM and NFVO). It encompasses an orchestra-

tor called TeNOR that provides ETSI NFVO and VNFM functionalities and can automate

four phases of the network service lifecycle management, namely: resource discovery, ser-

vice mapping, service deployment and monitoring. SONATA [25] is another European
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project that provides network services development and orchestration functionalities. The

proposed architecture consists of two main components: a software development kit and

a service orchestration platform. The software development kit allows developers to de-

fine complex services consisting of multiple VNFs that can be deployed and managed on

SONATA service platform. SONATA service platform provides a customizable management

and orchestration framework.

Moreover, Sciancalepore et al. [26] study the impact of co-existence of multi-access edge

computing applications and VNFs on the same infrastructure in the context of 5G sys-

tems. The authors propose an extension to the ETSI NFV MANO framework in order to

enable the join orchestration of VNFs and multi-access edge computing applications and

consequently reduce the infrastructure and operational cost. Garcia et al. [27] propose a

platform-as-a-service architecture to enable deployment and provisioning of real-time mul-

timedia communications and media processing services in an NFV environment. The pro-

posed architecture encompasses NFVO and VNFM functional blocks in order to support

lifecycle management of media servers and cloud repository. Vilalta et al. [28] propose

an architecture to manage network services over for multi-domain transport networks and

distributed NFVI. The architecture is illustrated through two use cases: virtual path com-

putation element and virtual SDN controllers.

Furthermore, there are several open-source projects that aim to provide reference im-

plementations of the ETSI NFV MANO framework. For instance, Tacker [29] emerged as

an OpenStack project to provide the functionalities of NFVO and generic VNFM to deploy

and operate VNFs. OpenMANO [30] is an ETSI hosted project that aims to build man-

agement and orchestration stack aligned with ETSI NFV specifications. OpenBaton [31]

is another example which provides an NFV orchestration solution that supports NFVO,

generic VNFM and generic EM capabilities to enable VNF deployment on the top of mul-

tiple cloud infrastructure.

All presented MANO solutions follow the same approach and try to build an NFV plat-

form with centralized management. As discussed earlier, this approach leads to scalability

and performance issues as the NFVO would become a potential bottleneck in the system. In
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addition, the design and operational aspects of NFV MANO, such as number and placement

of MANO functional blocks, are not discussed.

2.2.1.2 Distributed Approach

Recently, several studies have embraced distributed MANO approach in order to address

various orchestration challenges such as multi-technology and multi-administrative domains

orchestration. In these architectures, multiple orchestrators collaborate in performing the

resource and network service orchestration in the system. Each orchestrator performs the

orchestration functions over part of the infrastructure, often referred to as a domain. The

orchestrators coordinate with each other to ensure the delivery of end-to-end network ser-

vice. However, since there is no standard architecture to define the interactions among these

orchestrators, several design choices have emerged in the literature. Broadly speaking, these

approaches can be classified into three models, namely: hierarchical, flat (or peer-to-peer)

and hybrid models.

The hierarchical model organizes the orchestrators into two or more layers. The or-

chestrators in the bottom layer perform resource and service orchestration within their

domains. Meanwhile, the orchestrators in the second layer and upwards are responsible for

the service orchestration across multiple orchestrators in the lower adjacent layer. The top

layer often encompasses a global service orchestrator that maintains a global view of the

entire system and is in charge of end-to-end service orchestration. This model relies on

vertical communications between the orchestrators in adjacent layers. In contrast, the flat

model does not exercise hierarchical control among orchestrators. It is, in fact, adopts hor-

izontal communications and allows individual orchestrators to communicate directly with

other orchestrators. Moreover, the hybrid model is a composition of the hierarchical and flat

models. It organizes the orchestrators into layers with vertical communications between ad-

jacent layers. Nevertheless, it allows horizontal communications between the orchestrators

in the same layer.

The majority of the works available in the state-of-the-art adopted hierarchical orches-

tration. For instance, Garay et al. [22] propose a novel service graph model that can be
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split into subgraphs according to the orchestrator responsible for the assigned resources

and consequently it enables hierarchical orchestration of network services. Further, an

ETSI report [15] presents two-layer hierarchical service orchestration as an architectural

option emerged due to the design flexibility of ETSI NFV MANO framework. The archi-

tecture aims to address the challenge of providing end-to-end network services across two

administrative domains. There, the architecture encompasses two layers of orchestrators.

In the bottom layer, there is an NFVO in each domain that performs resource and network

service orchestration within its domain. The top layer includes an umbrella NFVO that is

responsible for the orchestration of network services across the two domains.

Two-layer hierarchical service orchestration has also been applied by [32, 33]. Katsalis et

al. [32] focus on multi-domain orchestration over multi-technology domains. Open Network

Automation Platform (ONAP) [33] is an open source platform that is derived from AT&T’s

OpenECOMP and Open-O projects. It provides policy-driven orchestration and automa-

tion of physical and virtual network functions. The ONAP Amsterdam release supports

hierarchical service orchestration wherein the service orchestrator component is in charge of

end-to-end service orchestration and virtual function controller component, which provides

ETSI NFV compliant NFVO functions, is responsible for lifecycle management of network

services [34].

Further, Li et al. [35] propose a 5G cross-haul architecture that encompasses three

network segments: access, cross-haul and core networks. Each of the segments has its

dedicated MANO functional blocks, i.e., NFVO, VNFM and VIM. The authors claim that

both hierarchical and flat models are applicable to provide end-to-end network services

across all segments. Besides, the European 5G Exchange (5GEx) project [36] proposes a

platform to enable service orchestration over multiple domains for the same or different

administrations in the context of 5G. The platform supports hybrid orchestration model.

In all above-discussed studies, the NFV MANO scalability challenge has been discussed

only in [22]. However, the study does not include an architecture realizing the idea; rather,

it stays at the conceptual level. The design aspects of NFV MANO are out of the scope

of the remaining works, which aim at addressing other challenges such as orchestration of

14



multi-technology and multi-administrative domains.

2.2.2 Resource Allocation

To the best of our knowledge, there are no previous studies that discuss and target the

placement of NFVO MANO functional blocks. We thus review the works that have been

done on similar problems in the area of NFV and SDN, in particular, the VNF placement

and SDN controller placement problems.

2.2.2.1 VNF Placement

The problem of placing chains of VNF instances has been extensively studied [37]. There,

the idea is to optimize the placement of chains of VNF instances, over commodity servers

in the system, by reserving resources as needed and according to a predefined objective.

A chain of VNF instances is a sequence of VNF instances that together offer a network

service. A variety of objectives has been covered in the literature. Kim et al. [38] propose

VNF placement strategy that seeks to minimize the overall energy consumption while guar-

anteeing the service latency requested by end-users. Bhamare et al. [39] aim at minimizing

inter-cloud traffic and response time over geographically distributed clouds. Cao et al. [40]

investigate the VNF placement for 5G mobile networks in order to achieve lower bandwidth

consumption and lower maximum link utilization. Pham et al. [41] propose a placement

strategy that minimizes energy and traffic cost. Moens et al. [42] focus on minimizing the

number of used nodes. Mechtri et al. [43] aim at enabling efficient resource utilization in

the system. The objective targeted by Hirwe et al. [44] is instead to minimize the length

of paths traversed by flows. Qu et al. [45] and Xia et al. [46] target the minimization of

communication cost. Minimizing the global operational cost, covering setup and network

traffic costs, has been the focus of several works including Ghaznavi et al. [47], Cohen et

al. [48] and Bouet et al. [49]. Mehraghdam et al. [50] push the analysis even further and

study trade-offs among different optimization objectives including maximizing the data rate,

minimizing the number of used nodes and minimizing the delay.

While significant effort has been put to study VNF placement problem in the NFV
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community, the resource allocation for NFV MANO has not received any attention so far.

The resource allocation for NFV MANO differs from the VNF placement problem and needs

to be studied per se. In fact, different functional blocks are implied in each of them. As

per definition, the VNF placement problem implies solely the VNF instances [37], aiming

at serving requests, and disregards NFV MANO functional blocks. Instead, in the resource

allocation for NFV MANO, various functional blocks are involved. These include the placed

VNF instances, EMs, VIMs, VNFMs and the NFVO.

2.2.2.2 SDN Controller Placement

Similar to our problems in the area of SDN is the controller placement problem. The

problem can be stated as selecting the location of one or more SDN controllers and allocating

switches to these controllers to optimize a certain objective [51]. The problem has been

introduced by Heller et al. [52] who showed that random placement of a controller might

yield a solution with five times worse latency than an optimal one. The problem has

gained significant attention over the past few years in the networking community as it

impacts different aspects of SDN networks like performance, cost, and resiliency. The

proposed placement strategies in the literature can be classified into a static approach and

a dynamic approach. The static problem corresponds to a static network design problem

which uses static mapping of switches to controllers. The dynamic placement dynamically

adapts the number of controllers and their locations with changing network conditions.

Different metrics have been considered to find the number and location of the controller(s).

According to Huque et al. [53], the placement strategies can be classified into two categories

depending on the used metrics. The first category uses only the latency between switches

and controllers to identify the number and locations of controllers in the network. The

second category considers the latency and traffic load of switches to find the number and

location of controllers.

A variety of objectives has been targeted in literature. For example, Killi et al. [54]

propose a placement strategy that plans for controller failures and assigns every switch to

more than one controller to ensure reliability; one controller serves as a primary controller
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while the others are backup. The proposed strategy aims to minimize the maximum sum

of the latency from the switch to the closest controller with enough capacity (primary con-

troller) and the latency from the primary controller to its closest controller with enough

capacity (backup controller). Bari et al. [55] consider the dynamic controller placement

problem where the number and location of controllers are adjusted according to network

dynamics. The authors propose a management framework for dynamically deploying mul-

tiple controllers within a Wide Area Network (WAN) in order to minimize the operational

cost while satisfying the demand. Similarly, Huque et al. [53] target the dynamic controller

placement, but in the context of large-scale SDN deployments. The proposed solution seeks

to minimize the latency between switches and controllers.

Moreover, Sallahi and St-Hilaire [56] discuss the challenge of adding new switches to

an existing SDN network. The authors propose an expansion model that allows network

operators to expand their network at minimum costs. Muller et al. [57] propose a controller

placement strategy that maximizes the connectivity between switches and controllers. The

authors present the average number of node-disjoint paths between switches and controllers

as a metric to characterize the connectivity. Lange et al. [58] study the trade-offs that exist

among a variety of metrics including delay, resilience and load balancing.

The controller placement problem has similarity to our problems in the sense that it

selects the best locations for functional blocks (or nodes) in a given network topology.

The controller placement, when network delay is considered, resembles the facility location

problem [51, 52]. However, the joint placement of NFVO and VNFM problem corresponds

to the hierarchical facility location problem since it finds the locations for different facility

types (i.e., NFVO and VNFM) in a multi-level system. On the other hand, the VNFM

placement problem corresponds to the facility location problem. Nevertheless, each of

controller placement and VNFM placement problems has distinct particularities since the

SDN controller and VNFM perform distinct functions in different systems.
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Chapter 3

VNF Manager Placement Problem

3.1 Introduction

Given the roles associated with NFVMANO functional blocks, their placement has a critical

impact on the system scalability and performance, especially in large-scale and distributed

NFV environments. There, communication among these functional blocks takes place over

WAN links and thus it can suffer from high delay that is not tolerable by the management

functions. Moreover, the placement of MANO functional blocks can significantly affect the

overall system operational cost. This is particularly true for VNFMs that can be numerous

in the system. In fact, resources cost, including both compute and bandwidth resources

cost, differ depending on the location and time, due to differences and changes in energy

cost [59] and pricing policies of multiple NFVI as-a-Service [60] providers. Also, network

traffic changes dynamically in the system. Adapting the number and location of VNFMs

accordingly can thus result in important savings for operators.

To this extent, the placement of the MANO functional blocks is indeed an important

problem to address. In this chapter, we tackle in particular the problem of placing VNFMs

dynamically in the context of large-scale and distributed NFV systems. We exclude from our

problem decisions on the placement of VIMs, as they are part of NFVI design options. We

further exclude decisions on the placement of the NFVO to narrow the scope of the problem.

Therefore, assuming that we are given the placement of the NFVO, the dynamic placement
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configuration of a set of VNF instances over geographically distributed PoPs, together

with the corresponding VIMs, we aim at finding the optimal number and placement of the

VNFMs, at each moment, that minimizes the operational cost under delay and capacity

constraints. More precisely, delay limitations over reference points, enabling communication

between a VNFM and other functional blocks in the system, are considered. Moreover,

VNFMs capacity limitation in terms of the number of assigned VNF instances is covered.

Bandwidth capacity limitation over communication links is also considered. We refer to

this problem as the VNFM Placement Problem (MPP). To the best of our knowledge, we

are the first to address this problem.

The MPP has two versions, static MPP, with permanent placement decisions and dy-

namic MPP with placement decisions that change over time. We propose a general Integer

Linear Program (ILP) formulation of the problem. It allows determining the number and

placement of VNFMs at minimum overall management cost for operators, at each moment.

We also propose to employ a tabu search metaheuristic to solve the MPP problem in both

static and dynamic schemes. Tabu search is an efficient neighborhood search method that

uses adaptive memory. We carefully design its steps, in the light of the peculiarities of

our problem. Moreover, we assess the performance of the tabu search metaheuristic over

a realistic dataset. We compare its solution to the optimal one derived based on the ILP

model. We also compare its results to those obtained based on a first-fit greedy approach.

Our small- and large-scale evaluations confirm that the tabu search metaheuristic allows de-

riving high-quality solutions in a very short time. We also study the impact of key aspects,

e.g., NFVO location, VNFM architectural options (generic and VNF-specific) and objective

function weight, on the outcome of the problem. We show that they can have a notable

impact on the placement decisions and require adequate tuning according to the operators

requirements. Finally, we show that dynamic placement decisions, derived according to

dynamic MPP, lead to significant reductions in cost with respect to static MPP.
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3.2 The VNFM Placement Problem

This section is dedicated to the presentation of the problem. We start first by motivating

the VNFM placement problem and stating it in section 3.2.1. We then present the system

model in section 3.2.2 that allows us to formulate the problem in section 3.2.3.

3.2.1 Motivation and Problem Statement

The next generation mobile system (5G) is an anticipated large-scale and distributed NFV

deployment. NFV is foreseen as a key enabling technology for 5G to reduce the overall

cost and to connect a massive number of users and devices [19]. Mobile systems are highly

distributed [18], and 5G is not an exception. In fact, 5G is likely to have a more distributed

architecture to cope with the envisioned ultra-low latency requirement. ITU-R recommen-

dation sets the 5G goal to support a round-trip latency of about 1ms [20]. Further, the

usage patterns of mobile traffic and services encounter significant variations over time and

space [61]. On a typical working day, traffic is concentrated during work hours in business

areas and gets shifted to residential areas later during the evening. Moreover, special events,

such as an occasional football match in a stadium, can cause occasional spikes in traffic over

a limited duration.

In that context, the NFV MANO will manage network services associated with service

level agreement (on performance, availability, etc.) that should be enforced [62]. In NFV,

the network services and VNFs can be instantiated on-demand when and where needed

and elastically scaled to meet the demand variability while maintaining cost efficiency.

Hence, the number of VNF instances, their types (e.g., firewall) and locations can vary

over time. The VNFMs should manage the lifecycle of thousands of VNF instances without

compromising the performance and reliability of its management functions. At any time,

the number of VNFMs should be adapted to the number of VNF instances deployed in the

system so that the system maintains adequate capacity and performance.

As VNF instances would span geographically distributed PoPs, inter-PoP WAN be-

comes an important pillar in the performance and operational cost of the system. A VNFM
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Figure 3.1: ETSI NFV MANO framework [7]

interacts with the VNF instances, VIMs and NFVO over the set of reference points re-

ferred to respectively as Ve-Vnfm, Vi-Vnfm and Or-Vnfm, as shown in Figure 3.1. The

communication between the VNFM on the one hand, and these functional blocks, on the

other hand, may take place over WAN links, depending on their locations in the NFVI.

The VNFM location plays a vital role in determining the delay over the VNFMs reference

points. Consequently, an unplanned placement of VNFMs can lead to intolerable delay,

which negatively affects the performance and reliability of the system. To guarantee the

performance, each reference point can be bound by a delay limit. The latter depends on the

VNF instance, the reference point or other factors. As an example, for one specific VNF

instance, the reference point Or-Vnfm, between the VNFM and the NFVO, can be bound

by a delay limit that differs from that of the reference point Ve-Vnfm.

We illustrate in Figures 3.2(a), (b) and (c) the need for adequate planning of VNFM

placement in the system according to its state. There, we explore different placement

options over an NFVI that consists of 8 PoPs distributed across the USA. In this illustrative

example, we consider a set of 4 VNF instances are deployed over the NFVI and need to be

managed. We consider that the location of the NFVO is already given. We assume a VNFM

can manage 10 VNF instances at a time. We also assume the reference point Ve-Vnfm is
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(a) Violate delay bound over Ve-Vnfm (b) Satisfy constraints with a high resource cost

(c) Satisfy constraints with a low resource cost

Figure 3.2: Illustration of the motivation for the VNFM placement problem

bound by a round-trip delay limit of 35 ms. In each figure, we highlight the round-trip delay

over the communication links, as well as the cost of resources where a VNFM is placed.

In Figure 3.2(a), we cover the case of placing a VNFM over a PoP over the east coast

of the USA. As shown, although this placement satisfies the capacity limit of a VNFM, it

leads to round-trip delay that violates the bound over the reference point Ve-Vnfm (this is

the case for the VNF instances located on the west coast of the USA). This example shows

that VNFM placement is critical from the system performance perspective and needs to be

planned cautiously.

In Figures 3.2(b) and (c), we show instead two scenarios where the VNFM is placed over

a PoP that allows satisfying the delay bound over the Ve-Vnfm reference point. However,

the placement in Figure 3.2(c) implies a lower cost with respect to that in Figure 3.2(b),

due to the differences in resource cost over the corresponding PoPs. Thus, an adequate

placement of VNFMs can further reduce the overall cost in the system.
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The VNFM placement is therefore critical to the performance of the entire NFV system

as well as the cost. We refer to the corresponding optimization problem as the VNFM

Placement Problem (MPP). Formally, we define the problem as follows: given the location

of the VNF instances and a fixed location of the NFVO, the goal is to find (1) the optimal

number of VNFMs required to manage the VNF instances, (2) their types (e.g., generic

VNFM, VNFM for managing VNFs from a specific provider, etc.), (3) the placement of

VNFMs over distributed PoPs, and (4) the associations they hold with VNF instances. We

aim at doing so at a minimum operational cost while satisfying delay (e.g., over communi-

cation links) and capacity constraints (e.g., of VNFMs) in the system. From an operations

research perspective, our problem can be mapped to the Facility Location Problem (FLP).

The FLP has received significant attention in the operations research community [63].

The MPP includes both static and dynamic versions. In the static MPP, the VNFM

placement and association with VNF instances are permanent and do not change with

time. This is applicable in scenarios where the changes in the system (e.g., number of VNF

instances) are insignificant to readjust the VNFM placement. The static MPP can still be

applied even if there are changes in the system. However, this requires an estimation of the

maximum number of VNF instances that can exist in the system and their location, which

can be used to derive the VNFM placement decisions. However, this scenario can lead to

over-provisioning in the number of VNFMs. In contrast, the dynamic MPP seeks to adapt

the VNFM placement to the changes in the system. The number of VNF instances, their

locations and network conditions can vary over time and the dynamic MPP aims to attain

potential gain by readjusting the VNFM placement.

3.2.2 System Model

The design of ETSI NFV framework allows a plurality of implementation and deployment

models to emerge. Therefore, for the purpose of simplification, the following three assump-

tions are made: (1) the NFVO and VNFM are implemented as distinct components, (2)

a VNF instance and its EM are deployed at the same PoP, and (3) a VIM manages the

resources within one PoP.
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Our model operates over a set of snapshots. We define a snapshot t as a representation

of the system state over a fixed time interval. The system state (e.g., number of VNF

instances) may vary from one snapshot to another. Therefore, when the system transits

from one snapshot to the next, our model considers four mechanisms to adapt the system

in response to changes: (1) add new VNFM(s) to cope with the increment of the VNF

instances, (2) remove existing VNFM(s) to reduce the cost, (3) migrate existing VNFM(s)

to new location(s), and (4) reassign VNF instance(s) to another VNFM(s).

In the following, we present our system model covering different entities in the system,

as well as the network traffic. Table 3.1 presents a description of the inputs and decision

variables used in our problem.

1. NFVI: We represent the NFVI using a graph structure G = (P,E). There, P is a

set of nodes, with each node p representing a PoP and E is a set of edges linking them.

An edge (p, q) ∈ E linking a couple of PoPs p and q represents a logical communication

link between them. We employ γp,q(t) and δp,q(t) to represent capacity and delay of edge

(p, q) ∈ E, in snapshot t, respectively. We use ccomp (t) and cnetp,q (t) to denote the cost of

one unit of compute resource at p ∈ P and one unit of network bandwidth over the edge

(p, q) ∈ E, in snapshot t, respectively.

2. NFVO: We assume that the NFVO is deployed at a given PoP. We use hp ∈ {0, 1}

to refer to its location, such that hp is equal to 1 if the NFVO is placed at p ∈ P , and 0

otherwise.

3. VNFM: We define M(t) as the set of VNFMs m that can be used in snapshot t.

We consider that different VNFM types (e.g., generic VNFM, specific VNFM for managing

firewall VNF, etc.) exist and define K as the set of VNFM types. nk denotes the capacity

of a VNFM m of type k ∈ K. It represents the maximum number of VNF instances that

can be managed by a single VNFM. We define Mk(t) ∈M(t) as the set of VNFMs of type

k ∈ K that can be used over snapshot t. M̂k(t) represents the set of VNFMs of type k ∈ K,

selected from Mk(t) to be used over snapshot t, e.g., active VNFMs. Further, we employ

gm,k to refer to the bandwidth consumed in migrating the VNFM m of type k, over the
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edge between the previous PoP and the new one. We also denote the cost of migrating

the VNFM m of type k ∈ K by cmig
m,k(t); it represents the penalty for the service disruption

caused by the migration.

4. VNF: V (t) is the set of VNF instances v to manage over snapshot t. Vk(t) is a subset

of V (t) that includes all VNF instances that require VNFM of type k ∈ K to manage them.

We use lv,p(t) ∈ {0, 1} to identify the location of a VNF instance, such that lv,p(t) is equal

to 1 if the VNF instance v is placed at p ∈ P over snapshot t, otherwise 0. Further, the

communication overhead, introduced in managing the lifecycle of the VNF instance v, is

controlled through two delay limits. The first limit is φv(t) which represents the maximum

permissible delay between the VNF instance v and the VNFM managing it over snapshot t.

Due to the assumptions (2) and (3), φv(t) is also considered the maximum delay between

the VNFM on the one hand, and the VIM and EM on the other, for the VNF instance v

over snapshot t. The second limit, ωv(t), refers to the maximum permissible delay between

the NFVO and the VNFM managing the VNF instance v over snapshot t. We use sv and

ŝv to denote the bandwidth consumed in the reassignment of the VNF instance v between

the NFVO and old VNFM as well as the NFVO and new VNFM, respectively. We also

assume that creav (t) refers to the reassignment cost of the VNF instance v; it represents the

penalty paid for reconfiguring the system to ensure its stability.

5. Network Traffic: NFV MANO functional blocks interact with each other and with

other non-MANO functional blocks (e.g., EM) to manage the lifecycle of the VNF instances.

Herein, for the VNF instance v, we assume that uO,M
v (t), uO,I

v (t), uM,I
v (t), uM,V

v (t) represent

the units of bandwidth consumed during communications between the NFVO and VNFM,

NFVO and VIM, VNFM and VIM, VNFM and VNF instance v over reference points Or-

Vnfm, Or-Vi, Vi-Vnfm and Ve-Vnfm, respectively, over snapshot t.

3.2.3 Problem Formulation

We formulate the MPP as an ILP problem, where we aim at deriving decisions over individ-

ual snapshots. For the static MPP, we operate only over a single snapshot t, representing
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Table 3.1: Notations Description

Inputs

G(P,E) NFVI G with PoPs P and edges linking them E

E The set of edges (i.e., logical communication links) in the network,

E = {(p, q) | p ∈ P, q ∈ P, p ̸= q}
γp,q(t) Capacity of edge (p, q) ∈ E in snapshot t

δp,q(t) Delay of edge (p, q) ∈ E in snapshot t

ccomp (t) Cost of compute resource at p ∈ P in snapshot t

cnetp,q (t) Cost of network bandwidth over the edge (p, q) ∈ E in snapshot t

hp ∈ {0, 1} hp = 1 if NVFO is placed at p ∈ P

K Set of VNFM types

M(t) Set of VNFMs in snapshot t

Mk(t) Set of VNFMs of type k ∈ K in snapshot t

M̂k(t) Set of active VNFMs of type k ∈ K in snapshot t

gm,k Bandwidth consumed in migrating the VNFM m of type k ∈ K

cmig
m,k(t) Penalty for the migration of VNFM m of type k ∈ K in snapshot t

nk Capacity of a VNFM of type k

V (t) Set of VNF instances in snapshot t

Vk(t) Set of VNF instances that require VNFM of type k ∈ K in snapshot t

lv,p(t) ∈ {0, 1} lv,p(t) = 1 if VNF instance v is placed at p ∈ P in snapshot t

φv(t) Maximum delay between VNF instance v and VNFM over snapshot t

ωv(t) Maximum delay between NFVO and VNFM managing

VNF instance v over snapshot t

sv, ŝv Bandwidth used in the reassignment of VNF instance v between

NFVO and old VNFM, NFVO and new VNFM

creav (t) Reassignment cost for VNF instance v in snapshot t

uO,M
v (t) Bandwidth used between NFVO and VNFM regarding VNF v in snapshot t

uO,I
v (t) Bandwidth used between NFVO and VIM regarding VNF v in snapshot t

uM,I
v (t) Bandwidth used between VNFM and VIM regarding VNF v in snapshot t

uM,V
v (t) Bandwidth used between VNFM and VNF v in snapshot t

Decision Variables

xm,k,p(t) ∈ {0, 1} xm,k,p(t) = 1 f m ∈Mk(t) is placed at p ∈ P in snapshot t

yv,m,k,p(t) ∈ {0, 1} yv,m,k,p(t) = 1 if v ∈ Vk(t) is assigned to m ∈Mk(t) that is placed at p ∈ P
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the permanent state of the system. We derive over it the permanent configurations of the

system. For the dynamic MPP, we operate over each couple of consecutive snapshots in

the system (t − 1) and t. More precisely, given snapshots (t − 1) and t, at the end of the

snapshot (t − 1), we solve the problem to decide the VNFM placement along with the as-

sociations they hold with VNF instances over snapshot t. The placement decisions made

for all VNFMs in M(t) allow determining whether to add new VNFMs, as well as to keep,

remove, or migrate existing VNFMs. We define M(t) as follows.

Mk(t) = Fk(t) ∪ M̂k(t− 1) (3.1)

where Fk(t) is the set of new VNFMs m of type k that can be added to the system to

manage the VNF instances over snapshot t, such that:

|Fk(t)| =
∑
p∈P

⌈∑
v∈Vk(t)

lv,p(t)

nk

⌉
(3.2)

By that, |Fk(t)| represents an upper bound on the number of VNFMs m of type k that can

be added to the system over snapshot t. M̂k(t − 1) is the set of active VNFMs of type k

used to manage the VNF instances over snapshot (t− 1).

Our decision variables are the following.

xm,k,p(t) =

⎧⎪⎪⎨⎪⎪⎩
1, if m ∈Mk(t) is placed at p ∈ P ,

0, otherwise.

yv,m,k,p(t) =

⎧⎪⎪⎨⎪⎪⎩
1, if v ∈ Vk(t) is assigned to m ∈Mk(t) that is placed at p ∈ P ,

0, otherwise.

Operational Cost: Four different cost components contribute to our definition of the

operational cost, defined as follows.

1. Lifecycle Management Cost (C lif (t)): The lifecycle management cost represents the

cost of the network bandwidth consumed in the communication performed through the
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lifecycle management of all VNF instances in the system over snapshot t.

C lif (t) =
∑

(p,q)∈E

Blif (p, q) cnetp,q (t) (3.3)

where

Blif (p, q) =
∑
k∈K

∑
v∈Vk(t)

∑
m∈Mk(t)

{
yv,m,k,p(t)hq u

O,M
v (t)

+ yv,m,k,p(t) lv,q(t)
(
uM,V
v (t) + uM,I

v (t)
)
+ lv,p(t)hq u

O,I
v (t)

}

2. Compute Resources Cost (Ccom(t)): The compute resources cost represents the cost

of compute resources assigned to VNFMs over snapshot t.

Ccom(t) =
∑
k∈K

∑
m∈Mk(t)

∑
p∈P

xm,k,p(t) c
com
p (t) (3.4)

With that, we assume that a VNFM requires a single unit of compute resource. This

assumption is due to the lack of available data on resource allocation for NFV MANO

functional blocks.

3. Migration Cost (Cmig(t)): It represents the cost implied by migrating a VNFM from

one PoP to another while switching from snapshot (t − 1) to snapshot t. It concerns only

the VNFMs that were placed over snapshot (t− 1), e.g., in M̂k(t− 1).

Cmig(t) =
∑
k∈K

∑
m∈M̂k(t−1)

∑
(p,q)∈E

xm,k,p(t)xm,k,q(t− 1) cmig
m,k(t) (3.5)

4. Reassignment Cost (Crea(t)): While switching from snapshot (t − 1) to snapshot t,

VNF instances that remain in the system may be reassigned to new VNFMs. We compute

the cost of reassigning these VNF instances as follows.

Crea(t) =
∑
k∈K

∑
v∈Vk(t)∩Vk(t−1)

∑
m∈Mk(t)

∑
p∈P

yv,m,k,p(t)
(
1−

∑
q∈P

zv,m,k,q(t)
)
creav (t) (3.6)
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where

zv,m,k,p(t) =

⎧⎪⎪⎨⎪⎪⎩
yv,m,k,p(t− 1), if v ∈ Vk(t) ∩ Vk(t− 1) and m ∈ M̂k(t− 1),

0, otherwise.

The objective of our optimization problem is to minimize the weighted sum of the

aforementioned four costs and can be expressed as follows.

Minimize εC lif (t) + θ Ccom(t) + µCrea(t) + ρCmig(t) (3.7)

We note that in the case of static MPP, as we operate only over a single snapshot t, the

objective function in equation (3.7) does not include the terms Crea(t) and Cmig(t).

Constraints: Each VNF instance should be assigned to one VNFM, as indicated in con-

straint (3.8).

∑
m∈Mk(t)

∑
p∈P

yv,m,k,p(t) = 1 ∀k ∈ K, v ∈ Vk(t) (3.8)

Equation (3.9) stipulates that a VNF instance cannot be assigned to a VNFM at PoP

p unless that VNFM is placed at that location.

yv,m,k,p(t) ≤ xm,k,p(t) ∀k ∈ K, v ∈ Vk(t),m ∈Mk(t), p ∈ P (3.9)

In constraint (3.10), we ensure that the number of VNF instances assigned to each

VNFM does not exceed its capacity.

∑
v∈Vk(t)

yv,m,k,p(t) ≤ nk ∀k ∈ K,m ∈Mk(t), p ∈ P (3.10)

A VNFM can be located only at one PoP. This constraint is defined by (3.11).

∑
p∈P

xm,k,p(t) ≤ 1 ∀k ∈ K,m ∈Mk(t) (3.11)
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Equation (3.12) ensures that a VNFM is active only when it manages at least one VNF

instance.

xm,k,p(t) ≤
∑

v∈Vk(t)

yv,m,k,p(t) ∀k ∈ K,m ∈Mk(t), p ∈ P (3.12)

Each VNF instance has two delay limits to control the delay over the reference points

of its assigned VNFM. We enforce these constraints by (3.13) and (3.14).

yv,m,k,p(t) lv,q δp,q(t) ≤ φv(t) ∀k ∈ K, v ∈ Vk(t),m ∈Mk(t), (p, q) ∈ E (3.13)

yv,m,k,p(t)hq δp,q(t) ≤ ωv(t) ∀k ∈ K, v ∈ Vk(t),m ∈Mk(t), (p, q) ∈ E (3.14)

Constraint (3.15) guarantees that the utilized bandwidth on each edge does not exceed

its capacity.

Blif (p, q) +Bmig(p, q) +Brea(p, q) ≤ γp,q(t) ∀(p, q) ∈ E (3.15)

where

Bmig(p, q) =
∑
k∈K

∑
m∈M̂k(t−1)

xm,k,p(t)xm,k,q(t− 1) gm,k

Brea(p, q) =
∑
k∈K

∑
v∈Vk(t)∩Vk(t−1)

∑
m∈Mk(t){

zv,m,k,p(t)hq

(
1−

∑
ṕ∈P

yv,m,k,ṕ(t)
)
ŝv + yv,m,k,p(t)hq

(
1−

∑
ṕ∈P

zv,m,k,ṕ(t)
)
sv

}

We note that in the case of static MPP, as we operate only over a single snapshot t,

constraint (3.15) does not include the terms Bmig and Brea.

3.3 Resolution Approach

This section presents the approach that we propose to solve the MPP over each snapshot.

We recall that MPP can be mapped to FLP [63]. Exact, approximation and heuristic

algorithms have been employed to solve FLP. However, FLP is known to be NP-hard. As

a result, in large-scale scenarios, deriving optimal solutions becomes unfeasible and mainly
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Algorithm 3.1: Tabu Search Heuristic

1 S0(t)←− GreedyInitialSolution
2 Scurrent(t)←− S0(t), Sbest(t)←− S0(t), j ←− 0
3 repeat
4 moves-list ←− create candidate moves list
5 best-move ←− choose from moves-list the move that generates the best solution
6 apply best-move on Scurrent(t) solution
7 add best-move to tabu list for itabu iterations
8 j ←− j + 1
9 if f(Scurrent(t)) < f(Sbest(t)) then

10 Sbest(t)←− Scurrent(t)
11 j ←− 0

12 end

13 until j = istop
14 return Sbest(t)

heuristic and metaheuristic algorithms have been designed. While heuristics are typically

tightly linked to the specific problem context, metaheuristics rely on general techniques that

can be employed in different scenarios. There, a variety of techniques has been covered [64,

65], including simulated annealing, genetic algorithm and tabu search algorithm. In [64], the

performance of the various metaheuristic techniques has been assessed for several instances

of the FLP problem. The results underline the fact that genetic algorithms and tabu search

techniques provide superior results with respect to other techniques. Therefore, we rely on

tabu search [66] to solve our MPP problem.

Tabu search [66] is a metaheuristic designed for guiding a local search procedure to

find a near optimal solution of combinatorial optimization problems. It starts exploring

the search space from an initial solution and iteratively performs moves to transit from

the current solution to another one in its neighborhood until the termination criterion is

satisfied. Next, we present the different components of the proposed tabu search heuristic,

outlined in Algorithm 3.1.

3.3.1 Initial Solution

We employ a simple greedy heuristic to obtain the initial solution S0(t) for snapshot t.

The heuristic has two main steps, outlined in Algorithm 3.2. The first step is executed

from the second snapshot in the system onwards, e.g., when there is a snapshot (t − 1).

In this step, the heuristic implements the decisions made in the snapshot (t − 1). Hence,
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Algorithm 3.2: Greedy Initial Solution Heuristic

1 ∀k ∈ K: M̂k(t)←− ∅
/* Step One */

2 if M̂(t− 1) ̸= ∅ then
3 foreach k ∈ K,m ∈ M̂k(t− 1), p ∈ P do
4 xm,k,p(t)←− xm,k,p(t− 1)
5 if xm,k,p(t) = 1 then

6 M̂k(t) = M̂k(t) ∪ {m}
7 end

8 end

9 foreach k ∈ K, v ∈ Vk(t) ∩ Vk(t− 1),m ∈ M̂k(t− 1), p ∈ P do
10 yv,m,k,p(t)←− yv,m,k,p(t− 1)
11 end

12 end
/* Step Two */

13 foreach k ∈ K, v ∈ Vk(t) \ Vk(t− 1) do
14 q ←− p ∈ P | lv,p = 1

15 if ∃ m ∈ M̂k(t) | xm,k,q(t) = 1 and m has capacity then
16 yv,m,k,q(t)←− 1
17 end
18 else

19 choose first VNFM m from Mk(t) \ M̂k(t)

20 M̂k(t)←− M̂k(t) ∪ {m}
21 xm,k,q(t)←− 1, yv,m,k,q(t)←− 1

22 end

23 end
24 return {xm,k,p(t), yv,m,k,p(t)}

it places each active VNFM m ∈ M̂k(t − 1), ∀k ∈ K, at the same PoP and assigns each

v ∈ Vk(t) ∩ Vk(t − 1), ∀k ∈ K, to the same VNFM. It is very challenging to determine the

best mechanism (e.g., VNFM migration and VNF reassignment) to readjust the current

system configurations. Thus, the goal of this step is to maintain current configurations in

the initial solution and delegate the decision-making responsibility to tabu search heuristic,

which can evaluate all possible alternatives and make the decisions.

In the second step, the heuristic starts assigning every new VNF instance v ∈ Vk(t) \

Vk(t − 1), ∀k ∈ K, to an active VNFM that has enough capacity and is located at the

same PoP as the VNF instance. We use the total delay between the VNFMs and their

corresponding VNF instances in our objective function, as will be discussed in section 3.3.4.

Therefore, the condition of having the VNFM and its assigned VNF instance at the same

location is imposed to minimize the total delay in the initial solution and subsequently

minimize the tabu search iterations. If none of the active VNFMs meets the aforementioned
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conditions, a new VNFM m ∈Mk(t) \ M̂k(t) is activated and placed at the PoP where the

VNF instance is located. Then, the VNF instance is assigned to the that VNFM.

Further, every VNFM m ∈ Mk(t) \ M̂k(t), ∀k ∈ K, does not have any assigned VNF

instance in the initial solution, is considered as an inactive VNFM that can be activated

later by the tabu search heuristic. The generated initial solution ensures that all constraints

are satisfied, except (3.14) and (3.15), which may be violated. The proposed tabu search

heuristic would substantially improve the solution quality and ensure satisfying any of the

violated constraints.

3.3.2 Neighborhood Structure

Our tabu search heuristic employs four move types to generate a neighborhood solution,

defined as follows.

1. VNF Reassignment: A VNF instance is selected randomly and reassigned to another

VNFM. The new VNFMmay be active or inactive. If it is the latter, the VNFM is activated.

The old VNFM is deactivated if it has no more VNF instances associated with it.

2. VNFM Relocation: An active VNFM is selected randomly and moved to another PoP.

The new location is chosen such that the delay constraints for all assigned VNF instances

are not violated.

3. Bulk VNF Reassignment: It is a composite move that consists of a finite number of

“VNF reassignment” moves. To that extent, an active VNFM is drawn randomly. Then, if

the remaining active VNFMs have enough capacity to manage its assigned VNF instances

while satisfying their delay constraints, the VNF instances are reassigned, and the chosen

VNFM is deactivated.

4. VNFM Deactivation: This is another composite move that includes a finite number of

“VNF reassignment” and “VNFM relocation” moves. Let Pm(t) ⊆ P encompass all PoPs,

where an active VNFM m ∈ M̂(t) can be placed while satisfying the delay constraints of

its corresponding VNF instances. Then, two VNFMs m and m̂ have overlapping coverage
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if {Pm,m̂(t) = Pm(t) ∩ Pm̂(t)} ≠ ∅. To that extent, two VNFMs m and m̂ are selected

randomly and overlapping coverage is assessed. If the condition holds and the VNFM m

has the enough capacity to serve the VNF instances assigned to m̂, then these VNF instances

are reassigned to m and the VNFM m̂ is deactivated. If the VNFM m is not already placed

at p ∈ Pm,m̂(t), then it is relocated to a PoP that belongs to that set, e.g., Pm,m̂(t).

3.3.3 Tabu List and Aspiration Criterion

Tabu search uses memory structure, called tabu list, to record information about the recent

history of the search. The search uses this information to avoid the local optimums and

prevent the cycling to previously visited solutions. In our heuristic, tabu list records the

moves that have been made in the recent past and forbids them as long as they are on

the list. These moves are known as tabu moves. They stay on the tabu list for a certain

number of iterations (itabu). We set this number to a constant value that is equal to 300.

The number is small compared to the number of VNF instances (e.g., |V (t)|) in large-scale

deployments. However, it is big enough to prevent the cycling problem. Further, a tabu

move can be selected and implemented if it meets a condition known as the aspiration

criterion. We define it as releasing a move from its tabu status and accepting it if that

move produces a solution better than the best solution found so far.

3.3.4 Acceptance Criterion

In each iteration, the tabu search heuristic evaluates a set of candidate moves and selects

the best move, e.g., the move that generates the best neighbor solution. The heuristic uses

a hierarchical objective function (f) to evaluate the neighbor solutions, where the primary

objective is minimized first and then, for the same primary objective value, the secondary

objective is minimized. The primary objective is defined as the sum of the model objective

function defined by (3.7) and the total penalty associated with the solution. The proposed

heuristic penalizes the violation of the constraints (3.10), (3.13), (3.14) and (3.15). The

solution is assigned a penalty proportional to the level of the violation. The secondary

objective is the sum of the delay between the active VNFMs and their associated VNF
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instances. The rationale for that is to reward the move that reassigns a VNF instance to

a closer VNFM. The ultimate goal is to maximize Pm(t) for all active VNFMs, then detect

and eliminate any overlapping coverage (if possible).

3.3.5 Termination Criterion

The heuristic stops when the best solution found does not improve for a certain number of

consecutive iterations (istop). This number is defined as 25
√
|V (t)|+ |M(t)|. This formula

is designed to allow the number to grow with respect to V (t) and M(t), but to a lesser

degree than a linear function of V (t) in the large-scale deployments. The multiplier 25 is

adjusted experimentally to make the trade-off between the execution time and the final

solution quality.

3.4 Evaluation Scenarios

We perform several experiments considering both static and dynamic MPP. The experiments

of static MPP are designed to (1) evaluate the proposed tabu search heuristic in terms of

the solution quality and execution time, (2) study the impact of the optimization objective

weight, and (3) investigate the effect of NFVO location and the architectural options related

to VNFM (generic vs. VNF-specific). On the other hand, the experiments related to the

dynamic MPP aim to study the gain that could potentially be achieved by reconfiguring

the system. Next, we first present the simulation setup, followed by the description of the

experiments for the static and dynamic MPP.

3.4.1 Simulation Setup

1. NFVI: We use the network of WonderNetwork [67] to build the NFVI used in our

experiments. WonderNetwork is a networking solution provider that operates a network of

servers distributed over the globe. It provides real-time hourly delay information between

each pair of locations. We consider each location in this network as a potential PoP. The

hourly cost of the compute resource at each PoP (ccomp (t)) is set to the electricity price for
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its location. The price ranges within (0.0833 to 0.1776) $. In addition, the average delay is

used as edge delay (δp,q(t)) between each pair of PoPs. The bandwidth cost associated with

all edges (cnetp,q (t)) is linear with the traffic volume and equals to $0.155/GB. The capacity

of all edges (γp,q(t)) is set to 10Gb/s.

2. VNFM: The live migration of a Virtual Machine (VM) involves transferring the VM

running state (e.g., memory) and the virtual disk [68]. We assume that the VM hosting

a VNFM is a medium size with 2 CPUs, 40GB disk and 4GB memory. Then, for m ∈

Mk(t), ∀k ∈ K, the bandwidth consumed in migrating the VNFM (gm,k) is set to the sum

of the disk size and memory size, e.g., 44GB. The migration cost (cmig
m,k(t)) is computed as

the cost of the bandwidth consumed in the migration which is equal to 44 × $0.155. The

VNFM capacity (nk) is set to 80.

3. VNF: We assume that the VNF instances managed by the MANO fall into two classes:

class one (C1) and class two (C2). Class one contains complex and high-throughput trans-

actional VNFs such as the Serving Call Session Control Function (S-CSCF) and the Policy

and Charging Rules Function (PCRF). These VNFs have stringent reliability and perfor-

mance requirements since the performance anomaly (e.g., VNF failure and performance

degradation) has a significant impact on thousands of users. On the other hand, class two

includes simple VNFs such as the firewall that may be used in a residential virtual Customer

Premises Equipment (vCPE). In this case, VNF performance anomaly affects small group of

users. Hence, these VNFs have relaxed requirements compared to C1. In accordance with

that, we set the delay limits on the links, e.g., φv(t) and ωv(t), to be smaller in the case of

C1 compared to C2. However, for both C1 and C2, φv(t) is set smaller than ωv(t) to place

the VNFM close to the VNF instance. Table 3.2 shows the selected delay limits. Moreover,

and for simplicity, sv and ŝv (bandwidth consumed in VNF instance reassignment) are as-

sumed equal and are set to 2MB. The VNF reassignment cost creav (t) is considered the cost

of the bandwidth consumed in the reassignment and computed as (2+2)×$0.155
1024 .
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Table 3.2: Experiment Parameters

Parameter VNF C1 VNF C2

Number of VNF indicators 30 15

Number of resource performance metrics 60 20

Maximum delay between VNFM and VNF instance,
EM, VIM (φv(t))

35ms 60ms

Maximum delay between NFVO and VNFM (ωv(t)) 70ms 100ms

VNFM data collection period 30 s 60 s

NFVO data collection period 180 s 360 s

Bandwidth used between NFVO and VNFM
(uO,M

v (t))
0.51MB/h 0.11MB/h

Bandwidth used between NFVO and VIM (uO,I
v (t)) 0MB/h 0MB/h

Bandwidth used between VNFM and VIM (uM,I
v (t)) 1.26MB/h 0.33MB/h

Bandwidth used between VNFM and VNF/EM
(uM,V

v (t))
1.77MB/h 0.31MB/h

4. Network Traffic: Traffic between different functional blocks in NFV architectural

framework vary widely depending on many factors including, but not limited to, commu-

nication protocols, VNFs, implementation, and configurations. ETSI specifications [11,

14–17] define the interfaces, operations and information model supported by the reference

points. However, the details of the operations and the communication protocols are not

discussed. Herein, we assume that the various functional blocks communicate through

RESTful HTTP interfaces. The data exchange format is JSON and the total header size

for an HTTP request-response is set to 500 bytes. Besides, we use network traffic produced

by monitoring of VNF instances in our evaluation experiments. Monitoring is an essen-

tial function in the lifecycle management that involves collecting data related to the VNF

instances to analyze it and ensure they meet the desired requirements. In this context,

we assume that the VNFM periodically collects the performance metrics of VNF resources

from VIM [16] and the VNF indicators information from the VNF instance or EM [11]. An

indicator is application-level information that provides insight into the VNF behavior [11].

We further consider that the NFVO periodically collects this information from the VNFM

37



to analyze it. Nevertheless, we assume that the collection period, which specifies the peri-

odicity at which data is collected [11, 16], is shorter for the VNFM compared to the NFVO.

Because of C1 VNFs requirements, we consider that the NFVO and VNFM collection pe-

riods are shorter for C1 compared to C2. We also assume that a VNF in C1 has more

resource performance metrics and VNF indicators compared to C2. Further, based on the

ETSI information model in [11, 16], we estimate the data size of one performance metric

and one VNF indicator in JSON format to be 350 and 250 bytes, respectively. Table 3.2

presents the data collection periods and the network traffic information between different

functional blocks.

3.4.2 Static MPP Experiments

In all experiments, the snapshot duration is set to one hour. Both small-scale and large-scale

deployments are covered. Three different sizes of NFVI are considered in the small-scale

deployments: 8, 16 and 24 PoPs. In the large-scale deployments, the NFVI is made of 64

PoPs. All PoPs in both cases are distributed across the USA, as shown in Figure 3.3. Two

different PoPs are used to host the NFVO (i.e., hp). One PoP is located in Dallas with

a central location in the NFVI structure while the other is located in San Jose; which is

considered an edge PoP in the NFVI structure. Moreover, two architectural options related

to VNFM are considered. The first is to use VNF-specific VNFM in the system so that a

distinct VNFM type manages each VNF class. The other option considers that a generic

VNFM can manage both classes. The number of the VNF instances ranges from 100 to

500 in the small-scale deployments, and from 1000 to 5000 in the large-scale ones. Each

VNF instance is chosen uniformly at random from the two VNF classes and placed at a

PoP selected uniformly at random.

3.4.3 Dynamic MPP Experiments

In the dynamic MPP experiments, we assume that the demand is temporally distributed

in three equal time slot periods during the day: morning, afternoon and night. Each time

slot period represents a system snapshot of 8 hours long. We note that the choice of
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Figure 3.3: 64 PoPs distributed across the USA

the snapshot’s duration has an impact on the placement decisions and the overall cost in

the system over time. However, we select the period of 8 hours to capture major human

dynamics. In the morning time slot, there is a total of 300 VNF instances (225 instances

of C1 class and 75 instances of C2 class). At the beginning of the afternoon time slot, the

VNF instances of class C1 are scaled in to 75 instances, and VNF instances of class C2 are

scaled out to 225 instances. Lastly, the demand falls at the beginning of night time slot, so

the system scales in the VNF instances of C1 and C2 classes to 50, i.e., total of 100 VNF

instances. Further, the NFVI consists of 16 PoPs located on the east coast of the USA (e.g.,

same time zone). VNF instances are placed randomly at the PoPs.

3.5 Numerical Results

In this section, we evaluate the performance of the tabu search heuristic, by covering various

aspects, as discussed in section 3.4. We compare the obtained results to those derived

based on exact and first-fit greedy heuristic. The tabu search heuristic is implemented in

JAVA. The ILP model in section 3.2 is implemented and solved in CPLEX 12.6.3 [69]. We

exploit the first-fit greedy heuristic to assess the impact of simple VNFM placement on the

operational cost. We also use it as a baseline to evaluate the performance of tabu search
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heuristic when the optimal solution cannot be obtained, e.g., for the large-scale scenario.

Herein, the first-fit greedy heuristic iterates over the set of VNF instances. At a specific

iteration, it assigns the VNF instance to the first VNFM with adequate available capacity.

Otherwise, a new VNFM is placed at the first PoP that satisfies the MPP constraints.

Then, the VNF instance is assigned to that VNFM. Moreover, in all experiments, unless

mentioned otherwise, all cost weights are set to 1 and a distinct VNFM type is used for

each of the C1 and C2 VNF classes, e.g., VNF-specific VNFM.

3.5.1 Heuristic Performance Evaluation

We start by assessing the performance of the tabu search heuristic by evaluating the quality

of the derived solution against the optimal solution obtained based on CPLEX and the

greedy first-fit approach. We plot in Figure 3.4 the overall operational cost corresponding

to the optimal solution, the greedy first-fit solution, as well as the average of 10 runs of the

tabu search heuristic. The results are derived with respect to a varying number of VNF

instances in the system for 8, 16 and 24 PoPs. The average gap between the tabu search

and greedy heuristic with respect to the optimal cost are also portrayed in the figure. We

observe that the tabu search heuristic leads to very high-quality solutions in most cases, and

reaches optimality in many of them. In particular, we notice that the average gap remains

smaller than 9% for the 8, 16 and 24 PoPs. Instead, the gap for the greedy heuristic can

reach very high values that can overpass 100%.

Similarly, we show in Figure 3.5 the overall operational cost for the optimal, greedy

first-fit and average tabu search solution, for 8, 16 and 24 PoPs, with a varying number of

VNF instances in the case of ε = 20. There also, the results are obtained by assuming that

the NFVO is located in Dallas. We observe that the tabu search heuristic again significantly

outperforms the greedy heuristic, with results that are very close to optimality, with average

gaps smaller than 8%. We derive the same results by assuming the NFVO is located in

San Jose. The obtained results confirm as well the high-quality solutions that are derived

based on the tabu search heuristic. We show those that correspond to ε = 1 and ε = 20 in

Figure 3.6 and Figure 3.7, respectively.
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Figure 3.4: Total cost for optimal, tabu and greedy solutions, together with the gap from
optimality for the tabu and greedy heuristics with ε = 1. The results are derived by
assuming the NFVO is located in Dallas
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Figure 3.5: Total cost for optimal, tabu and greedy solutions, together with the gap from
optimality for the tabu and greedy heuristics with ε = 20. The results are derived by
assuming the NFVO is located in Dallas
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Figure 3.6: Total cost for optimal, tabu and greedy solutions, together with the gap from
optimality for the tabu and greedy heuristics with ε = 1. The results are derived by
assuming the NFVO is located in San Jose
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Figure 3.7: Total cost for optimal, tabu and greedy solutions, together with the gap from
optimality for the tabu and greedy heuristics with ε = 20. The results are derived by
assuming the NFVO is located in San Jose

44



Table 3.3: Average Execution Time

Experiment Parameters Execution Time (s)

#PoPs #VNFs ε CPLEX Tabu Search

8 100 1 0.24 0.41

8 100 20 0.23 0.33

8 200 1 3.19 0.83

8 200 20 4.20 0.55

8 500 1 462.80 1.80

8 500 20 68.60 1.67

16 500 1 45 398 2.40

16 500 20 5574 1.67

24 500 1 ∞ 1.98

24 500 20 ∞ 1.42

64 1000 1 ∞ 5.03

64 5000 1 ∞ 29.80

Table 3.3 shows the average execution time of the tabu search heuristic compared to

CPLEX. They were run on a server with 2×12-Core 2.20 GHz Intel Xeon E5-2650v4 CPUs

and 128GB memory. The results are for a subset of the experiments in which the NFVO

is placed in Dallas. The results show that CPLEX is slightly faster for a few of the very

small scale problems in which the execution time is less than one second. However, in all

other cases, our heuristic significantly outperforms CPLEX by many orders of magnitude.

3.5.2 Optimization Objective Weight

Focusing on our objective function, we note that ε comes balancing two metrics: on the one

hand, the compute resource cost and on the other hand the lifecycle management cost (e.g.,

bandwidth consumed in the life cycle management). The bigger the value of ε, the more we

favor placement in the light of minimizing the lifecycle management cost. With our uniform

bandwidth cost over communication links between each couple of PoPs, this translates into

favoring the placement of additional VNFMs over the same PoPs of the VNF instances they

are managing. Such a placement clearly results in less traffic over the communication links

among PoPs, as the lifecycle management traffic would be circulating inside the same PoP,
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at no cost. We investigate in Figure 3.8 the number of VNFMs placed in the system, with

respect to the number of VNF instances, for 8, 16 and 24 PoPs, with the NFVO placed

in Dallas, considering ε = 1 and ε = 20. There, we notice a clear jump in the number of

VNFMs in the case of ε = 20 compared to ε = 1. Interestingly, deeper investigations allow

us to observe that the additional VNFMs are all of the C1 type. That is due to the fact

that the management of C1 VNF instances consumes more bandwidth, compared to C2

VNF instances, in our evaluation scenarios.

3.5.3 Impact of NFVO Location

We now investigate how the NFVO location affects the results of the VNFM placement.

We thus compare the total cost of the optimal solutions when the NFVO is placed in Dallas

to the case when the NFVO is placed in San Jose. The results are plotted in Figure 3.9

and Figure 3.10 for ε = 1 and ε = 20 respectively. They are derived for 8, 16 and 24 PoPs.

In both figures, we notice that when the NFVO is placed in San Jose, the total cost can

record slightly higher values, with respect to the case of placing it in Dallas. Going back

to the geographical distribution of PoPs over the USA in Figure 3.3, we notice that San

Jose is far from many of the PoPs. This translates into less flexibility in the system, due to

the imposed delay over the communication link between the VNFM and the NFVO. As a

result, VNFMs are constrained to a smaller set of PoPs, preventing additional cost gains.

3.5.4 Architectural Options Related to VNFM

Figure 3.11 and Figure 3.12 depict the total operational cost for the optimal and tabu

search solutions, considering the generic and VNF-specific options, for ε = 1 and ε = 20

respectively. Cost reductions of up to 34.8% are obtained when the generic VNFM is used

instead of the VNF-specific. The VNF-specific VNFM can handle one VNF class within

the evaluation scenarios. Therefore, in this case, the system has to place two distinct set

of VNFMs to manage the C1 and C2 classes. This leaves many VNFMs with unutilized

capacity since the number of VNF instances per class is relatively small. However, when
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Figure 3.9: Total cost for optimal solutions with ε = 1 for the NFVO placed in Dallas and
NFVO placed in San Jose
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Figure 3.10: Total cost for optimal solutions with ε = 20 for the NFVO placed in Dallas
and NFVO placed in San Jose
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Figure 3.11: Total cost for optimal and tabu solutions with ε = 1 for the VNFM architec-
tural options: generic and VNF-specific. The results are derived by assuming the NFVO is
located in Dallas.
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Figure 3.12: Total cost for optimal and tabu solutions with ε = 20 for the VNFM architec-
tural options: generic and VNF-specific. The results are derived by assuming the NFVO is
located in Dallas
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Figure 3.13: Total cost for tabu and greedy solutions in large-scale deployments. The results
are derived by assuming the NFVO is located in Dallas

the generic VNFM is adopted, one set of VNFMs manages all VNF instances. The sys-

tem maximizes the capacity utilization of the VNFMs, resulting in the placement of fewer

VNFMs.

3.5.5 Large-Scale Deployment

We report the solutions obtained by tabu search and first-fit heuristics for large-scale de-

ployments in Figure 3.13. The results are reported for ε = 1 and ε = 20 and considering the

NFVO is placed in Dallas. As shown, the tabu search outperforms the first-fit and yields

up to 49.8% reduction in the operational cost. We further compare the operational cost

with respect to the NFVO location in Figure 3.14. We observe that the results are similar

to those obtained in the small-scale deployments. More precisely, when ε = 20 and the

NFVO is in San Jose, a higher operational cost is obtained, with respect to the case when

the NFVO is in Dallas. The difference in the cost between the two scenarios is proportional

to the deployment size, e.g., the number of VNF instances in the system.

3.5.6 Dynamic Placement Evaluation

Figure 3.15 shows the operational cost for managing the VNF instances described in sec-

tion 3.4.3, with respect to the snapshots. The results are derived using the static and
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Figure 3.14: Total cost for tabu solutions in large-scale deployments for the NFVO placed
in Dallas and NFVO placed in San Jose
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Figure 3.15: Total cost for optimal and tabu solutions of the dynamic MPP and for optimal
solution of the static MPP

dynamic versions of MPP. Considering the static MPP, the system manages the VNF in-

stances through over-provisioning of VNFMs. The problem is solved with respect to the

maximum number of VNF instances in the system, e.g., 225 VNF instances for each VNF

class. The depicted operational cost of static MPP is the sum of VNFM compute resource

cost (Ccom(t)) and lifecycle management cost (C lif (t)) per snapshot. Ccom(t) is fixed for

all snapshots whereas C lif (t) is incurred for a VNF instance only during its lifetime in the

system. Further, the figure reports the operational cost of dynamic MPP corresponding to

the optimal and tabu search-based solutions. The numerical results confirm the quality of

the obtained tabu search solution in the dynamic MPP. They also show that operational

53



cost of the static MPP is significantly higher by 38.8% to 168.3% compared to the dynamic

MPP over all snapshots. The superiority of the dynamic MPP emerges from its ability to

adapt the system to the variation in VNFs workload. It can scale out and scale in number

of VNFMs, change the VNFMs locations and change the associations between the VNFMs

with VNF instances.

3.6 Conclusion

In this chapter, we introduced and studied the VNFM Placement Problem (MPP). We

covered two versions of the problem: static and dynamic. We mathematically formulated

the problem and proposed tabu search heuristic to solve its large instances. Our numerical

results show that the tabu search heuristic leads to high-quality solutions, within an average

gap of 9% from optimality. We further investigated the impact of key aspects (NFVO loca-

tion, VNFM architectural options and objectives) on the placement decisions and showed

that they affect the overall operational cost. Finally, we examined the dynamic MPP and

showed that it enables adapting the decisions to the changes in the system, leading to

significant reductions in cost with respect to static MPP.
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Chapter 4

A Scalable Architecture for NFV

Management and Orchestration

4.1 Introduction

The centralized NFV MANO poses scalability concerns, since despite the NFVO capacity,

a single NFVO does not scale as the deployment size grows (e.g., VNF instances, PoPs,

covered geographical area, etc.) and will fail to efficiently handle all requests and events

while providing the anticipated performance. Additionally, regardless of NFVO location,

when the infrastructure has a large Diameter, the communication between NFVO and other

functional blocks will experience a high delay, decreasing the scalability and degrading the

performance.

This chapter presents a scalable and multi-orchestrator NFV management and orches-

tration architecture in the specific context of Virtual Network Platform-as-a-Service (VN-

PaaS) for 3GPP 4G and beyond. VNPaaS is analogous to the Platform-as-a-Service (PaaS)

model of cloud computing, but targeting the network domain instead. In this regard, the

VNPaaS service provider will provide a toolkit for the customers to provision (e.g., develop,

deploy, manage and terminate) their virtual network services according to the pay-as-you-go

model. These services can range from simple services, such as the Home Subscriber Server

(HSS) service, to more complex services, such as IP Multimedia Subsystem (IMS) and even
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Evolved Packet Core (EPC). Although VNPaaS is a PaaS for provisioning network services,

it needs to include functionalities that differ from those covered in a typical PaaS, due to the

differences in the requirements of network services and IT applications. For instance, PaaS

encompasses centralized applications management. However, the proposed architecture em-

ploys two-layer hierarchical service orchestration in order to cope with the distributed nature

of NFV scenarios. There, the PoPs are grouped into domains (or orchestration zones) and a

domain orchestrator is assigned the responsibilities of the resource orchestration and service

lifecycle management in a domain. A global service orchestrator maintains a global view of

the entire system and performs end-to-end service orchestration across different domains.

The number of the domain orchestrators can be adjusted to satisfy system capacity and

performance requirements. Moreover, we present a proof-of-concept prototype to validate

the feasibility of the approach. We also use the Home Subscriber Server, a functional entity

used in IMS and EPC networks, as an illustrative use case. We redesign HSS for the cloud

environment, in which the HSS is decomposed into VNFs with a granularity finer than what

is known today. The new architecture allows the different Diameter interfaces of HSS to

be deployed and scaled independently. It also enables performance isolation between these

interfaces, which is further demonstrated by experimentation.

4.2 4G Mobile System Architecture: Overview and Chal-

lenges

The Evolved Packet System (EPS), which is also known as 4G, was defined by the 3rd

Generation Partnership Project (3GPP) in Release 8 as the first pure IP-based mobile

system. It consists of (1) the Long Term Evolution (LTE) as the radio access network, and

(2) the Evolved Packet Core (EPC) as the core network of the system. The IP Multimedia

Subsystem (IMS) is the 3GPP service network which was used for providing multimedia

services for 3G systems and then continued to be used at the inception of 4G. Figure 4.1

shows a simplified EPS architecture.
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Figure 4.1: Simplified EPS architecture

1. Evolved Packet Core: The EPC [70, 71] is a flat IP-based core network for the LTE

family of wireless access technologies. It can also accommodate other 3GPP access networks,

such as GPRS and UTRAN, and even non-3GPP access networks, such as WiMAX and Wi-

Fi. The EPC architecture enhances network performance by separating data and control

planes.

In the data plane, the Serving Gateway (S-GW) and evolved Packet Data Gateway

(ePDG) act as the access gateways for LTE technologies and the untrusted non-3GPP

access networks respectively while the Packet Data Network Gateway (PDN-GW) provides

the connectivity to the external networks and nodes. In the control plane, the Policy and

Charging Rule Function (PCRF) is the decision maker in the Policy and Charging Control

(PCC) system. The PCRF enables EPC to support flow-based policy control and charging.

It has interfaces with data plane gateways to control the policy enforcement. It is also

connected to the Subscription Profile Repository (SPR) which contains the subscription

information, such as user policies.

The Mobility Management Entity (MME) handles key control functions such as mo-

bility for LTE technologies and the selection of S-GW as well as PDN-GW. The Home

Subscriber Server (HSS) is the central database of the mobile network that contains user-

related information, such as subscription, location, and identification information. It has

several Diameter interfaces to communicate with other functional entities in the system.
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For instance, S6a and Cx interfaces are used for the interaction with MME and IMS, re-

spectively.

In Release 9, 3GPP introduced the User Data Convergence (UDC) concept [72] which

separates the application logic of the 3GPP network functional entities (e.g., HSS), the so-

called Front-Ends (FEs), and the user data which is moved into a logically unique repository,

referred to as User Data Repository (UDR). The FEs access the UDR via the Ud standard

interface. Considering the HSS, the data, which is usually stored in HSS, will be moved

to UDR whereas the logic of HSS will be implemented in a functional entity called HSS

Front-End (HSS-FE).

2. IP Multimedia Subsystem: The 3GPP IMS [73] is a service network on top of

an IP transport layer required for the seamless and robust provisioning of IP multimedia

services to end-users. It uses the Session Initiation Protocol (SIP) to control multimedia

functions. It is made up of data plane and control plane. The data plane consists of SIP

Application Servers (SIP-ASs) that implement the logic of IMS services such as a presence

service. The SIP-AS interacts with HSS to access the users information via the Sh reference

point.

The key functional entity of the control plane is the Call State Control Function (CSCF).

There are three types of CSCF: Proxy-CSCF (P-CSCF), Interrogating-CSCF (I-CSCF) and

Serving-CSCF (S-CSCF). P-CSCF is the first point of contact for the IMS User Equipment

(UE) within an IMS network. It acts as a stateful SIP proxy when routing SIP signaling

messages going to and from an IMS UE. It is allocated to the IMS UE and does not

change for the duration of the registration. I-CSCF is the first contact point for external

IMS networks. It is a stateless SIP proxy that selects an S-CSCF for IMS UE and routes

incoming SIP signaling messages to the selected S-CSCF. Serving-CSCF (S-CSCF) is the

central node of the control plane of an IMS network. It acts as a stateful SIP registrar

and proxy in an IMS network. As a SIP registrar, it registers IMS users and maintains

the binding between the public user identity and the user profile. It also interacts with the

HSS via the Cx reference point to obtain users profiles. As a SIP proxy, S-CSCF forwards
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specific types of SIP messages to the appropriate SIP-AS.

4.2.1 Challenges for Mobile Network Cloudification

Mobile network operators have stringent performance, scalability and fault tolerance re-

quirements on their services [74]. Today, these services are provided by manually deployed

and highly reliable network function appliances that are provisioned for peak traffic. How-

ever, to deliver these network services as cloud services, the software modules of the network

functions must be rebuilt as cloud applications, not just adapted for the cloud, in order to

achieve operational efficiency, resource efficiency while providing the same performance and

reliability. Cloud applications are designed in a way that supports automated scalability

and resilient services on non-reliable hardware.

Typically, a traditional 4G functional entity contains a set of functions as one deployable

and scalable unit. However, since cloud resources are provisioned and de-provisioned on-

demand, the current architecture might lead to inefficiency in resource usage. Besides, 4G

functional entities are often stateful which hinders elastic scalability and resiliency.

A key challenge in migrating these entities to the cloud is to redesign them as smaller and

lighter functions. In other words, a good starting point is to consider the current granularity

and decompose the logic of a functional entity into smaller functions. This design gives finer

control over the distinct functions allowing to deploy and scale them independently, when

and where needed. However, if the new functions interact with each other, then there is a

need to design new interfaces. These interfaces should be very lightweight to minimize the

extra cost induced by the communication. On the other hand, they also need to be reliable

and scalable.

Another challenge to identify the optimal granularity of these small functions that can

achieve the intended benefits. Indeed, refining that level of granularity through the split-

ting of the functional entities will usually lead to an additional cost (e.g., inter-function

communication). These costs may (or may not) offset the gains expected from the refining.

Optimal splitting, therefore, becomes key.

59



4.3 VNPaaS Architecture

4.3.1 Business Model

The proposed architecture relies on a business model that involves a variety of actors. Each

actor might play several business roles. The key roles are NFVI-as-a-Service (NFVIaaS)

provider, VNPaaS provider, VNF-as-a-Service (VNFaaS) provider, Virtual Network-as-a-

Service (VNaaS) provider and Mobile Virtual Network Operator (MVNO).

The NFVIaaS provider offers VNPaaS provider the NFVI (i.e., resources) required to

deploy and run VNFs and VNPaaS components. The NFVI consists of several geographi-

cally distributed PoPs, as well as the WAN connectivity between them. These PoPs might

belong to one or multiple providers. They might also have different capabilities. Some of

them can offer both physical (i.e., bare-metal) and virtual resources while others can offer

only virtual resources.

The VNPaaS provider provides toolkits and Application Programming Interfaces (APIs)

for provisioning the network services. It also provides the network service and VNF catalogs

that allow VNFaaS and VNaaS providers to offer their VNFs and network services respec-

tively, for on-demand usage. The VNFaaS provider implements network functions as VNFs

and adds them to VNF catalog. This would make these VNFs available to VNaaS provider

to use them on-demand. These VNFs might have the same granularity of network functions

as known today. They might also have a finer granularity (i.e., decomposition) or even a

coarser one (i.e., aggregation). Varying granularity would be aspired to meet particular re-

quirements such as response time. The VNaaS provider, in turn, uses VNPaaS capabilities

to provision its network services. It might use its VNFs or reuse VNFs offered in the VNF

catalog. The VNaaS provider can offer its network services directly to MVNO. It can also

add its network services to the network service catalog to indirectly offer them (i.e., via

VNPaaS) to other VNaaS providers so that they can be used to build end-to-end network

services. MVNO uses network services to provide mobile network services to end-users.
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Figure 4.2: VNPaaS high-level architecture

4.3.2 Layers and Functional Components

Figure 4.2 depicts the proposed architecture of VNPaaS. It shows the key components of

the architecture. Other components (e.g., logging management) that exist in regular IT

PaaS are an integral part of the proposed architecture. However, we do not detail them to

focus on the components related to the novel contribution. The architectural layers are:

1. Core Services: This layer contains the services hosted and managed by the VN-

PaaS. The container provisioning service is responsible for provisioning and scheduling the

VNFs packaged as containers. Diameter and SIP are essential signaling protocols in 3GPP

mobile systems. Therefore, many of the prospective VNFs will support Diameter and/or

SIP interfaces. Thus, the VNPaaS includes Diameter routing and SIP routing services to

manage Diameter and SIP signaling, respectively. These services can distribute signaling

traffic across multiple VNF instances to enable horizontal scalability.

2. Management and Orchestration: This layer provides scalable and multi-orchestrator

NFV management and orchestration. This is attained by decomposing the NFVI, which

consists of multiple geographically distributed and interconnected PoPs, into logical parti-

tions called domains (or orchestration zones) as shown in Figure 4.3. Each domain composes

61



Figure 4.3: Two-layer hierarchical service orchestration

of one or more PoPs and contains a domain orchestrator that is responsible for resource

orchestration and network service lifecycle management within the domain boundaries.

This approach improves NFV MANO scalability for two main reasons. First, it distributes

the NFV management and orchestration responsibilities among several orchestrators that

provide higher processing capacity compared to the centralized MANO. Second, a single

domain orchestrator would cover smaller geographical area compared to the orchestrator in

centralized MANO which leads to lower communication delay and better scalability.

The number of domains, and consequently the domain orchestrators, would depend on

the capacity and maximum tolerable network delay in the system. Thus, their number can

be adjusted to meet the scalability and performance requirements in different deployment

scenarios. In this architecture, the domain orchestrator provides the same functionality

of NFVO and generic VNFM as defined in ETSI NFV MANO framework. Moreover,

the Global Service Orchestrator (GSO) is responsible for the end-to-end network service

orchestration across multiple domains. It is also in charge of domains management, as we

will elaborate upon later in this chapter.

Our architecture uses model-driven orchestration to orchestrate and automate the end-

to-end service lifecycle management. The model is based on the Topology and Orchestration
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Specification for Cloud Applications (TOSCA). TOSCA [75] is an OASIS standard to de-

scribe cloud applications by means of service templates and management plans. The service

template describes the structure of the service (or application) using topology that defines

its components, relationships, dependencies and requirements. Further, the management

plan captures the lifecycle management tasks (e.g., instantiation, configuration and scaling)

as workflows, which allows the orchestrator to automate the lifecycle management. In this

regard, for instance, the domain orchestrator can deploy and manage the network services

and VNFs described by TOSCA service templates, under the instruction of the GSO.

Moreover, the VNF discovery engine plays a key role in composing network services

from VNFs managed by different domain orchestrators (i.e., deployed in different domains).

It is responsible for centralizing the information of VNF instances used across domains

into a common registry and providing easy publish/discovery functionality. In the publish

operation, the domain orchestrators would publish the information of their VNF instances

accessed from other domains. This information includes, but is not limited to, VNF type

and metadata of the connection points (e.g., IP and port). In the discovery operation,

the domain orchestrators query the VNF discovery engine to get the information of VNF

instances which their locally managed VNF instances will communicate with (if any). Then,

they make this information available for lifecycle operations such as configuration.

The GSO and domain orchestrators use four categories of repositories to support their

functions as depicted in Figure 4.2. The network service & VNF catalogs hold information

(e.g., description) about network services and VNFs. The network service & VNF instances

describe the network service instances and VNF instances. The VNPaaS and NFVI re-

sources repository holds the information (e.g., description and location) about reserved

and available resources. The dependency graph repository contains a graph structure that

represents the relations among the main architectures components (e.g., VIMs, domain or-

chestrators, network service instances and VNF instances). Such a graph structure allows

to easily handle large-scale dependencies between components in order to keep track of the

system evolution.
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3. Tool and API: This layer includes different tools and APIs to access the VNPaaS

capabilities and functions.

4. VNPaaS Management: This layer interacts simultaneously with the three previ-

ous layers. It includes the components responsible for the management functions related to

the VNPaaS. An example of such components is the monitoring, which is responsible for

monitoring the resource consumptions, health and Key Performance Indicators (KPIs) of

VNPaaS components.

4.3.3 Operational Procedures

The GSO supports multiple procedures in order to support the proposed NFV management

approach. Next, we discuses the main procedures.

4.3.3.1 Network Service Deployment

In the proposed architecture, many network services might include VNFs deployed in dif-

ferent domains. To deploy such a network service, the GSO decomposes it into smaller

subservices according to the domains where the VNFs would be deployed; each subservice

is described by a service template. Then, it extends these templates by adding VNFs pub-

lish/discovery operations as required. The GSO also configures the VNF discovery engine

to control the publish/discovery operations so that the composition leads to the desired

network service. Lastly, the GSO would instruct the domain orchestrators responsible for

the domains to deploy the subservices and compose them into the desired network service.

4.3.3.2 Domains Management

The GSO would maintain a global view of the entire system state including resources,

network services and domains. It would use predefined policies and KPIs to decompose

the NFVI into domains. An example of such a KPI would be an upper bound limit on

the network delay between the domain orchestrators and VIMs (i.e., NFVI). Furthermore,

the GSO would use the KPIs to scale out/in domains (including domain orchestrators) and
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reshape them dynamically with respect to the evolving features of the VNPaaS environment

(e.g., system workload). To that end, it might use, for example, the execution time of the

key management operations (e.g., monitor VNF) performed by the domain orchestrators.

4.4 Illustrative Use Case: HSS-as-a-Service

4.4.1 NFV-based HSS

To provision HSSaaS using the proposed VNPaaS, the network functions of HSS should

be implemented as VNFs. Considering the current granularity in HSS, each of HSS-FE

and UDR would be implemented as a VNF. These VNFs can be provided by one or more

VNFaaS providers. VNaaS provider will use VNPaaS to provision HSSaaS made from

the composition of these VNFs. HSS-FE VNF includes all supported Diameter interfaces.

These interfaces would be deployed and scaled together. However, there is no functional

requirement to keep these interfaces together in one entity. In fact, they do not have direct

interaction with each other. Therefore, we propose to decompose HSS-FE functions and

implement them as smaller and independent VNFs according to the Diameter interfaces so

that each interface is implemented as a separate VNF. These VNFs can be provided by one

or more VNFaaS providers.

This proposed decomposition of HSS-FE does not introduce additional communication

overhead. Meanwhile, it would bring two main benefits. First, it isolates the performance

so that the traffic on different interfaces does not affect each other. This isolation becomes

more important when there is a sudden surge in signaling traffic on a particular interface.

The signaling storm [76] is an example of a surge in signaling traffic in mobile networks.

It generates traffic on S6a of HSS-FE and does not affect other interfaces. Second, it pro-

motes flexibility, which enables deployment optimization by allowing different management

policies on different interfaces. This would help in meeting different requirements. For ex-

ample, considering the response time, the decomposition offers the ability to place different

interfaces at different PoPs to gain performance improvement.
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(a) HSSaaS (b) HSSaaS subservices

Figure 4.4: High-level TOSCA topology templates

4.4.2 Illustrative Scenario

In this scenario, we assume that the HSSaaS supports S6a and Cx interfaces. Figure 4.4(a)

shows its associated high-level topology template. It consists of three VNFs: S6a, Cx and

UDR. We also assume that VNPaaS has two domains. Each domain has its container

provisioning service. The S6a and UDR will be deployed in domain-1 whereas Cx will be

deployed in domain-2. Yet, as another assumption, the UDR VNF will be deployed on a

VM whereas S6a and Cx VNFs are packaged as containers.

Figure 4.5 shows a high-level sequence diagram for deploying the described HSSaaS.

First, the GSO decomposes it according to the domains into two subservices. After that, it

adds publish/discovery operations to the service templates (steps 1 and 2). The resulting

subservices are depicted in Figure 4.4(b). Subservice-1 includes S6a and UDR VNFs (i.e.,

VNFs deployed in domain-1). The UDR VNF is connected to a TOSCA node, the so-

called “VNF Record” via a special TOSCA connect-to relationship. The implementation

of this node and relationship would ensure that the domain orchestrator-1 will publish the

information of the UDR VNF instances by creating a record for each instance in the VNF

discovery engine. In the subservice-2 template, the Cx VNF is connected to a new TOSCA

node, the so-called “Discoverable VNF”. This node provides an abstract view of the UDR

VNF instances deployed in domain-1. The implementation of this node would ensure that

the domain orchestrator-2 will query the VNF discovery engine to get the details of this

service. All these new TOSCA nodes and relationship are implemented by the VNPaaS

itself and do not require any changes in the VNFs.

66



Figure 4.5: Illustrative HSSaaS deployment scenario
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The GSO configures the VNF discovery engine to control the publish/discovery opera-

tions (step 3). Then, it sends to the domain orchestrators to deploy the subservices (steps

4 and 5). The domain orchestrators start to invoke the lifecycle operations of the TOSCA

nodes and relationships defined in the service templates in the right order, based on their

dependencies. The domain orchestrator-1 starts to deploy subservice-1 by sending a request

to VIM-1 to create a VM to host UDR VNF (step 6). Simultaneously in subservice-2, since

the Cx VNF is connected to “Discoverable VNF”, the domain orchestrator-2 queries VNF

discovery engine to get UDR VNF instance information (step 7). However, the VNF dis-

covery engine blocks the request until the information becomes available (the request has

a timeout). The domain orchestrator-1 invokes the lifecycle operation of the UDR VNF

(step 8). After that, the domain orchestrator-1 publishes the information by creating a

VNF record in the VNF discovery engine (step 9). As a result, the information required by

the discovery operation becomes available. Therefore, the discovery operation initiated by

domain orchestrator-1 returns the UDR VNF instance information (step 10). Lastly, the

domain orchestrators create S6a and Cx VNF containers and configure them to connect to

UDR VNF instance (steps 11 and 12).

4.5 Prototype Implementation

In order to demonstrate the feasibility of the proposed approach, the scenario presented

in section 4.4.2 is implemented. The decomposition of HSSaaS into two subservices, as

well as adding the publish/discovery operations are done manually in this prototype. The

prototype covers the implementation of a simplified version of VNPaaS architecture and

HSSaaS. More details are provided in what follows.

4.5.1 VNPaaS

Figure 4.6 shows the architecture of the VNPaaS prototype. It is deployed on OpenStack [77]

as NFVI. Kubernetes [78] is used as a container provisioning service. It is an open source

project for scheduling, managing and orchestrating Docker [79] containers. Furthermore, a
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Figure 4.6: VNPaaS Prototype architecture

Diameter proxy is implemented in JAVA to offer Diameter routing service in the prototype.

It supports Diameter message routing based on the Diameter application. It also supports

load balancing between Diameter servers in a round-robin fashion. An extended version of

Cloudify [80] plays the role of domain orchestrator. Cloudify is an open source orchestra-

tion engine to deploy and manage the applications described in TOSCA. Two plugins are

implemented for Cloudify v3.1. One is used for the interaction with Kubernetes to deploy

and manage the Docker containers. The other is used for the communication with etcd [81],

playing the role of VNF discovery engine. etcd is a highly available key-value storage for

shared configuration and service discovery.

A simple GSO is implemented as a JAVA tool. It exposes its capabilities via REST

API. Neo4j [82] is a graph database that is used to hold the graph structure that mod-

els dependencies between different components in the architecture. Elasticsearch [83] is a

distributed document-oriented database used to store the information of network service

and VNF instances. InfluxDB [84] is a time series database that plays the role of metrics

repository.
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4.5.2 HSSaaS

The CHeSS distribution of HSS is used in the prototype. It is part of the OpenEPC Release

2 testbed [85]. It is implemented using the C language and uses a MySQL database to store

its data. It supports the S6a, Cx and Sh interfaces. Moreover, CHeSS HSS is extended to

export performance metrics (e.g., response time) through the log file. A simple monitoring

agent is implemented as a JAVA tool. It can parse the log and aggregate the metrics for

each request. Then, it pushes the metrics to the responsible domain orchestrator.

The CheSS HSS is decomposed based on the Diameter interface. Each interface is

packaged with a monitoring agent into a Docker image so that each of them can be deployed,

scaled and monitored independently. Lastly, HSSaaS is modeled using TOSCA so it can be

deployed and managed by VNPaaS.

4.6 Performance Evaluation

We conduct a set of experiments to validate and evaluate the prototype, in particular,

the impact of splitting the HSS-FE on the response time and resource usage. We use

two of Ericsson’s proprietary traffic generators, referred to as EPC and IMS generators,

to generate Diameter traffic workload. The EPC generator generates S6a traffic whereas

the IMS generator generates Cx and Sh traffic. These traffic generators simulate several

scenarios for the interaction with the HSS in real-world mobile networks. Each of these

scenarios is associated with a specific probability and includes one or more Diameter request

messages, as reported in Table 4.1.

To that end, the response time and resource usage of S6a and Cx in the full (i.e., non-split

HSS-FE) and split architectures of HSS-FE are evaluated. Sh interface is excluded from

the study as it constitutes a very small percentage (about 2%) of the generated traffic.

In our experiments, we over-provision the resources allocated to MySQL (representing the

UDR in the HSS architecture), Diameter proxy and Diameter traffic generator tools to

avoid becoming a performance bottleneck. MySQL is deployed on a VM with 16 CPUs and

32GB memory. The Diameter proxy is deployed as a Docker container with 16 CPUs and
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Table 4.1: Diameter Traffic Details

Interface Diameter Command Name Percentage

S6a

Authentication Information Request (AIR) 40%

Purge UE Request (PUR) 30%

Update Location Request (ULR) 30%

Cx

Location Info Request (LIR) 43%

Multimedia Authentication Request (MAR) 2%

Server Assignment Request (SAR) 8%

User Authorization Request (UAR) 47%

16GB. In the split HSS-FE case, each of S6a and Cx is deployed in a Docker container

with 1 CPU and 1GB memory. The Diameter proxy routes the Diameter traffic to S6a

and Cx containers based on the Diameter application. In the full HSS-FE case, S6a and

Cx interfaces are packaged in the same Docker image (single deployable and scalable unit).

Two instances are deployed; each one is assigned 1 CPU and 1GB memory. The Diameter

proxy distributes the traffic between the two containers in a round-robin fashion.

Next, the response time experiments are presented first, followed by the resource usage

experiments.

4.6.1 Response Time

In this part, the response time of S6a and Cx in the full (i.e., non-split HSS-FE) and

split architectures of HSS-FE are evaluated, when the traffic workload on each interface

approximately utilizes the same CPU time. Four CPU utilization rates (R) are considered

during these experiments: 25%, 50%, 70% and 90%. Trial-and-error procedure is used to

determine the configurations of the Diameter traffic generator tools required to generate

the traffic workloads that lead to the CPU utilization rates mentioned above. For each of

the CPU utilization rates, we repeat the experiment three times. The duration of each run

is seven minutes. Table 4.2 shows the details of the generated Diameter traffic.

Next, we start our analysis by considering the overall performance of the HSS-FE.
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Table 4.2: Number of Diameter Messages

Interface CPU Utilization

25% 50% 70% 90%

S6a 19067 40749 59366 76783

Cx 21234 45102 64098 84131
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Figure 4.7: Response time CDF obtained when aggregating all samples for each experiment

Then, we investigate the performance at the level of interfaces. Finally, we evaluate the

performance at the finest granularity of a message.

HSS-level Analysis: We plot the Cumulative Distribution Function (CDF) of the response

time for each experiment of full and split HSS-FE cases, in Figure 4.7(a) and Figure 4.7(b)

respectively, for different R. By comparing the two figures, we notice that the results for

low values of R are similar. However, significant differences can be noted for high values

of R, with response time mainly concentrated around small values in the split case. This

indicates a major shift in the performance when switching from the full HSS-FE to the split

one, for high load scenarios. In the rest of the section, we focus on the R= 90%, representing

the worst-case scenario.

Interface-level Analysis: Figure 4.8(a) and Figure 4.8(b) show the response time CDF

when aggregating messages over the Cx and S6a interfaces separately, for the full and split

HSS-FE cases, respectively. Over the Cx interface, we notice a massive shift of response time

in the split HSS-FE setup towards very small values, indicating a significant improvement
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Figure 4.8: Response time CDF of all samples over the S6a and Cx interfaces, for R = 90%
experiments

in the performance. As for the S6a interface, we notice that the portion of messages with

low response time drops slightly, indicating a small decrease in performance. This lets us

draw the following observation: in the case of high loads, splitting the HSS leads to a

major improvement of the performance over the Cx interface that comes at the cost of a

slight decrease in performance over the S6a interface. This behavior is due to performance

isolation enabled through splitting the interfaces and, as a result, completely separating the

corresponding traffics that present different characteristics, as we clarify next.

Message-level Analysis: In this part, we derive response time distributions, by consider-

ing for an experiment, all records for each type of message separately. We plot the results

in Figure 4.9, using a candlestick representation. The candlestick shows the minimum, first

quartile, average, third quartile, and maximum values. We notice the performance is better

in the split case for various messages, except for AIR and PUR. This is due to the difference

in the processing time of each message. In fact, ULR messages require exceptionally long

processing time, greater than 100 ms, while all others require only a few ms. This is due to

the implementation of ULR message which has much higher interactions with the database,

compared to other messages. As a result, in the split setup, by isolating the Cx messages

from ULR messages, we significantly reduce the time they spend in the queue. Over the

S6a interface, this implies a slight increase in queuing time for AIR and PUR messages,
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translating into a minor increase in the response time. Concerning the behavior of ULR

messages, we record an unexpected improvement in their response time in the split case,

due to the lower load they induce over the database compared to the full HSS-FE setup.

More precisely, in the split HSS-FE setup, we have one VNF supporting the S6a interface,

compared to two VNFs in the full HSS-FE setup. This is translated to a decrement in the

number of ULR messages being processed in parallel, implying a lower load on the database

and leading to a decrease in the response time.

4.6.2 Resource Usage

In this part, the resource usage of S6a and Cx in the full and split architectures of HSS-FE

are evaluated under different workloads. Here, the workload represents the number of EPC

and IMS scenarios executed by traffic generators in one second. Four workloads are consid-

ered (1) 100 IMS (i.e., 100 IMS scenario/second) / 50 EPC (i.e., 50 EPC scenario/second)

(2) 200 IMS / 100 EPC, (3) 300 IMS / 150 EPC, and (4) 400 IMS / 200 EPC.

In these experiments, the traffic workload on HSS-FE is gradually increased until it

reaches the desired level. When the average CPU utilization of HSS-FE violates a predefined

threshold, the HSS-FE is scaled out by deploying a new container and registering it in the

Diameter proxy. There is a minimum period of one minute between two consecutive scaling
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Table 4.3: HSS-FE Scaling Policies

Scaling Policy CPU Utilization

Cx S6a

Full (F) HSS-FE

F 60% 60%

Split (S) HSS-FE

S 60% 60%

S2 80% 60%

S3 60% 80%

operations. Four scaling policies are used as shown in Table 4.3. These policies cover

two scenarios. The first scenario assumes that the S6a and Cx interfaces require the same

scaling policy. For both full and split HSS-FE setups, a scaling action is triggered when

the average CPU exceeds 60% (“F” and “S” in Table 4.3). In the second scenario, the S6a

and Cx interfaces require different CPU utilization thresholds for the scaling operation. In

full HSS-FE, S6a and Cx interfaces are deployed and scaled as one unit. Hence, there is

no way to apply different scaling policies on each interface. On the other hand, the split

HSS-FE has higher flexibility, and different CPU thresholds can be applied to scale the

interfaces. Thus, additional two scaling policies are considered for the split HSS-FE. In

the first policy (“S2”), 80% and 60% average CPU are used to scale out the S6a and Cx

interfaces, respectively. The second policy (“S3”) considers 60% and 80% thresholds to

scale out the S6a and Cx interfaces, respectively.

We plot the obtained results in Figure 4.10. The x-axis represents the scaling policies

and workloads used in the experiments. Every four consecutive bars are the results for a

particular workload, and each bar represents the number of containers used in the exper-

iment for a certain scaling policy. The result shows that when the same CPU utilization

threshold is used to scale out the S6a and Cx interfaces (‘F” and “S”), the same number of

containers is allocated to both full and split HSS-FE cases for three workloads whereas the

full HSS-FE performs better in one case in which the split HSS-FE uses one more container

(policy“S” for workload “300 IMS / 150 EPC”). We can also notice that for all workloads,
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when the scaling policies employ different CPU utilization rates to trigger the scaling oper-

ation, the split HSS-FE uses fewer containers than the full HSS-FE. The results allow us to

draw the following observation. The performance isolation and flexibility obtained in the

split HSS-FE may not be priceless when the same scaling policy is applied in the system

as split HSS-FE may lead to allocating more resources compared to full HSS-FE. However,

when different scaling policies are possible, the split HSS-FE architecture uses less resources

than the full HSS-FE.

4.7 Conclusion

We proposed a novel VNPaaS architecture for provisioning 3GPP 4G and beyond network

services. The architecture supports scalable and multi-orchestrator NFV MANO that em-

ploys two-layer hierarchical service orchestration approach. We also presented a realistic

use case implementing HSSaaS with NFV-based architecture to validate the feasibility of

MANO approach. We decomposed the HSS-FE into smaller VNFs according to the Di-

ameter interfaces, enabling deployment optimization and performance isolation of these

interfaces. Our experiments underlined the criticality of performance isolation. The numer-

ical results showed that the traffic on S6a interface significantly degraded the performance

of Cx interface at a high CPU utilization rate in the full HSS-FE architecture whereas it is

not the case for the split HSS-FE.
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Chapter 5

Joint Placement of NFV

Orchestrator and VNF Manager:

The Multi-Orchestrator Case

5.1 Introduction

Chapter 4 presented multi-orchestrator NFV management and orchestration architecture

to address the scalability and performance challenges. There, the PoPs are grouped into

domains and a domain orchestrator is placed in each domain to perform the resource orches-

tration and network service lifecycle management. We recall that the domain orchestrator

supports the functions of NFVO and VNFM as defined in ETSI MANO framework. A

GSO is used to deliver end-to-end network services across multiple domains. Moreover, the

number of domains and domain orchestrators can be adjusted to meet the capacity and

performance requirements of different deployment scenarios. However, it is crucial to find

the structure of these domains as well as the number and placement of the orchestrators

that provide the required capacity and performance.

In this chapter, we refine the system architecture and decompose the domain orchestra-

tor into NFVO and VNFM functional blocks as it allows to scale the NFVO and VNFM
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Figure 5.1: High-level system architecture

functions independently. Then, we introduce and study the joint placement of NFVO and

VNFM. In particular, given the NFVI topology, a set of VNF instances, and the location

of the GSO, we aim at finding the number and location of NFVOs and VNFMs needed in

the system that minimizes their number, as it is a measure of the cost. We propose an ILP

formulation of the problem. The formulation accounts for the capacity (e.g., NFVO and

VNFM) and delays between various functional blocks to satisfy the scalability and perfor-

mance requirements of the system. Besides, we propose two-step placement heuristic and

evaluate it.

5.2 The Joint Placement of NFVO and VNFO

As shown in Figure 5.1, we consider a distributed NFVI consisting of multiple PoPs located

in different regions. The NFVI is decomposed into a set of domains such that each domain

consists of one or more PoPs. Then, in each domain, there are a domain NFVO and

one or more VNFMs that perform the standard functions defined by ETSI NFV MANO

framework. Besides, there is a single GSO responsible for end-to-end service orchestration

across multiple domains.

78



The architecture allows adjusting the number of NFVOs and VNFMs to meet the scala-

bility and performance requirements of different scenarios. However, there is still a challenge

of determining their number and placement. We refer to this problem as the joint placement

of NFVO and VNFM. It consists of finding (1) the optimal number and location of NFVOs

needed in the system, (2) the PoPs assigned to each NFVO, i.e., PoPs in each domain, (3)

the number and placement of VNFMs in each domain, and (4) the VNF instances assigned

to each VNFM. Our objective is to minimize the number of NFVOs and VNFMs while

fulfilling the capacity (e.g., NFVO and VNFM) and delay constraints.

Furthermore, for the sake of simplicity, we make the following assumptions: (1) a VNF

instance and its EM are deployed at the same PoP, (2) a VIM manages resources for one

PoP, and it is placed at that PoP.

5.2.1 System Model

Consider the NFVI modeled as a graph G = (P,E) where P is the set of PoP nodes and

E is the set of edges linking them, such that E = {(p, q) | p ∈ P, q ∈ P, p ̸= q}. We use

δp,q to represent the network delay of an edge (p, q) ∈ E. Let V represent the set of VNF

instances in the system. The location of a VNF instance v ∈ V is defined by lv,p ∈ {0, 1}

such that lv,p equals to 1 only when v is placed at p ∈ P . We define M to represent the

set of VNFMs that can be used to manage the VNF instances. We also use φ to denote

the capacity of a VNFM. It represents the maximum number of VNF instances that can

be managed by a VNFM. We consider that an NFVO has capacity defined in terms of the

maximum number of VNF instances in its domain. We employ Φ to refer to this capacity.

Moreover, we assume that the GSO is deployed at a given PoP. We define wp ∈ {0, 1} to

indicate the GSO location, such that wp is equal to 1 only if the GSO is placed at p ∈ P .

We consider that there is an upper bound on the acceptable network delay between

various functional blocks to ensure predictable system performance. We use ψ and Ψ

to denote the maximum acceptable delay between an NFVO on the one hand, the GSO

and the VIM on the other hand. Moreover, the same VNFM can manage different VNF

types (e.g., firewall) which can impose different requirements on the network delay over the
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Table 5.1: Summary of Key Notations

Inputs

G(P,E) NFVI G with PoPs P and edges linking them E

E The set of edges (i.e., logical communication links) in the network,

E = {(p, q) | p ∈ P, q ∈ P, p ̸= q}
δp,q Delay of edge (p, q) ∈ E

V Set of VNF instances

lv,p ∈ {0, 1} lv,p = 1 if VNF instance v is placed at p ∈ P

M Set of VNFMs that can exist in the system

φ Capacity of a VNFM

Φ Capacity of an NFVO

wp ∈ {0, 1} wp = 1 if the GSO is placed at p ∈ P

ψ Maximum acceptable delay between GSO and domain NFVO

Ψ Maximum acceptable delay between domain NFVO and VIM

Ωv Maximum acceptable delay between NFVO and VNFM

managing the VNF instance v

ωv Maximum acceptable delay between VNF instance v and its

designated VNFM

Decision Variables

xp ∈ {0, 1} xp = 1 if there is an NFVO placed at PoP p ∈ P

rq,p ∈ {0, 1} rq,p = 1 if PoP q ∈ P is assigned to an NFVO placed at p ∈ P

xm,p ∈ {0, 1} xm,p = 1 if VNFM m ∈M is placed at PoP p ∈ P

yv,m,p ∈ {0, 1} yv,m,p = 1 if VNF v ∈ V is assigned to VNFM m ∈M placed at p ∈ P

VNFM reference points. Thus, we define the upper bound on network delay between the

VNFM and other functional blocks per VNF instance. We use Ωv to indicate the maximum

acceptable delay between the NFVO and the VNFM assigned to VNF instance v. We also

employ ωv to denote the upper bound on the delay between the VNF instance v and its

designated VNFM. Due to the assumption (2), ωv also represents the maximum acceptable

delay between the VNFM and the VIM of PoP where v is located. Table 5.1 lists the key

notations used in this chapter.
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5.2.2 Problem Formulation

We formally define the joint placement of NFVO and VNFM problem as follows.

Problem Definition: Given an NFVI G, a set of VNF instances V , a set of VNFMs

M , and a fixed location of GSO; find the optimal number and location of NFVOs, the

PoPs belong to each domain, the number and location of VNFMs in each domain, and the

assignment of VNF instances to VNFMs such that the number of NFVOs and VNFMs is

minimized, and without violating the capacity and delay constraints.

We mathematically formulate the problem as an ILP model. We define the decision

variable hp to represent the placement of the NFVOs.

hp =

⎧⎪⎪⎨⎪⎪⎩
1, if there is an NFVO placed at PoP p ∈ P ,

0, otherwise.

We also define the decision variable rq,p to map the PoPs to NFVOs and determine the

structure of the domains.

rq,p =

⎧⎪⎪⎨⎪⎪⎩
1, if PoP q ∈ P is assigned to an NFVO placed at p ∈ P ,

0, otherwise.

We further let xm,p to denote the location of the VNFM m ∈M .

xm,p =

⎧⎪⎪⎨⎪⎪⎩
1, if VNFM m ∈M is placed at PoP p ∈ P ,

0, otherwise.

Finally, we denote the assignment of VNF instances to VNFMs by the decision variable

define yv,m,p.

yv,m,p =

⎧⎪⎪⎨⎪⎪⎩
1, if VNF v ∈ V is assigned to VNFM m ∈M placed at p ∈ P ,

0, otherwise.

The objective function minimizes the number of NFVOs and VNFMs as defined in
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equation (5.1), as it represents a measure of the operational cost of the NFV management

and orchestration in the system.

Minimize
∑
p∈P

hp +
∑
m∈M

∑
p∈P

xm,p (5.1)

Now, we need to ensure that only one NFVO is in charge of resource orchestration of a

PoP (i.e., a PoP belongs exactly to one domain). We represent this constraint as follows.

∑
p∈P

rq,p = 1 ∀q ∈ P (5.2)

We also should ensure that the PoP q can be assigned to the NFVO at PoP p only if

there exists an active NFVO at p.

rq,p ≤ hp ∀q, p ∈ P (5.3)

Constraint (5.4) indicates that an NFVO should be placed within its domain boundaries.

rp,p = hp ∀p ∈ P (5.4)

A VNFM can be placed only at one PoP. This constraint is expressed as follows.

∑
p∈P

xm,p ≤ 1 ∀m ∈M (5.5)

In constraint (5.6), we guarantee that each VNF instance is assigned to one VNFM.

∑
m∈M

∑
p∈P

yv,m,p = 1 ∀v ∈ V (5.6)

Constraint (5.7) stipulates that a VNF instance can be assigned to VNFM m placed at

PoP p only when m is located at p.

yv,m,p ≤ xm,p ∀v ∈ V,m ∈M,p ∈ P (5.7)
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Next, we ensure that both a VNF instance and its designated VNFM exist in the same

domain.

lv,q yv,m,ṕ rṕ,p ≤ rq,p ∀v ∈ V,m ∈M, q, ṕ, p ∈ P (5.8)

We enforce the capacity constraints of NFVO and VNFM by (5.9) and (5.10).

∑
v∈V

∑
m∈M

∑
q∈P

yv,m,q rq,p ≤ Φhp ∀p ∈ P (5.9)

∑
v∈V

yv,m,p ≤ φxm,p ∀m ∈M,p ∈ P (5.10)

Constraint (5.11) ensures that a VNFM is active only if it manages at least one VNF

instance.

xm,p ≤
∑
v∈V

yv,m,p ∀m ∈M,p ∈ P (5.11)

Constraints (5.12)-(5.15) enforce the delay limits in the system.

wp hq δp,q ≤ ψ ∀(p, q) ∈ E (5.12)

rq,p δp,q ≤ Ψ ∀(p, q) ∈ E (5.13)

lv,p yv,m,q δp,q ≤ ωv ∀v ∈ V,m ∈M, (p, q) ∈ E (5.14)

yv,m,q rq,p δp,q ≤ Ωv ∀v ∈ V,m ∈M, (p, q) ∈ E (5.15)

Note that the constraints (5.8), (5.9) and (5.15) are non-linear constraints and can be

linearized by replacing them with linear constraints (5.16)-(5.21) as follows.

lv,q zv,m,ṕ,p ≤ rq,p ∀v ∈ V,m ∈M, q, ṕ, p ∈ P (5.16)

∑
v∈V

∑
m∈M

∑
q∈P

zv,m,q,p ≤ Φhp ∀p ∈ P (5.17)

zv,m,q,p δp,q ≤ Ωv ∀v ∈ V,m ∈M, (p, q) ∈ E (5.18)

zv,m,q,p ≤ yv,m,q ∀v ∈ V,m ∈M, (p, q) ∈ E (5.19)
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zv,m,q,p ≤ rq,p ∀v ∈ V,m ∈M, (p, q) ∈ E (5.20)

zv,m,q,p ≥ yv,m,q + rq,p − 1 ∀v ∈ V,m ∈M, (p, q) ∈ E (5.21)

5.3 Two-Step Placement Heuristic

We propose Two-Step Placement (TSP) heuristic to solve the overall problem, as illustrated

in Algorithm 5.1. It begins by first decomposing the NFVI into one or more domains and

placing a single NFVO in each domain. This step is performed through a tabu search

heuristic which will be discussed later in section 5.3.1. However, in general, the heuristic

aims to minimize the number of NFVOs in the system. It gives the solution of decision

variables hp and rq,p that satisfies the model constraints (5.2)–(5.4), (5.9), (5.12) and (5.13).

Besides, this step disregards the placement of the VNFMs themselves. However, we assure

that the solution would give the possibility for future VNFM placement to satisfy the

VNFM delay constraints, i.e., constraints (5.14) and (5.15). To do so, we impose additional

constraints on the solution to ensure that ∀v ∈ V,∃ṕ ∈ P such that:

lv,q rq,p rṕ,p δq,ṕ ≤ ωv ∀q, p ∈ P (5.22)

lv,q rq,p rṕ,p δṕ,p ≤ Ωv ∀q, p ∈ P (5.23)

The constraints (5.22) and (5.23) guarantee that for every VNF instance v, there exists

a PoP ṕ in the same domain where a VNFM can be placed to manage v while fulfilling

the delay constraints. After that in the second step, for each domain, we place the needed

VNFMs and map the VNF instances onto the VNFMs. We do that by utilizing the VNFM

placement heuristic presented in chapter 3. This step provides the solution of decision

variables xm,p and yv,m,p. The obtained solution satisfies the model constraints (5.5)–(5.8),

(5.10), (5.11), (5.14) and (5.15).
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Algorithm 5.1: Two-Step Placement Heuristic

/* Step One */

1 hp, rq,p ←− call NFVO Placement()
/* Step Two */

2 foreach p ∈ P do
3 if hp = 1 then
4 compute VNFM placement inputs for this domain
5 S ←− call VNFM Placement()
6 xm,p, yv,m,p ←− extract decision variables from solution S

7 end

8 end
9 return (hp, rq,p, xm,p, yv,m,p)

5.3.1 NFVO Placement

We propose a tabu search heuristic to place the NFVOs and define the boundaries of their

domains. In what follows, we present the key components of the proposed tabu search

heuristic.

1. Initial solution: The heuristic starts with a simple initial solution where an NFVO

is placed at each PoP in the system. The resulting solution may be infeasible, violating

the delay constraint between GSO and NFVO. However, it provides a good enough starting

solution that tabu search can improve gradually.

2. Neighborhood structure: We define two movements to transit from the current solu-

tion to a neighbor solution. The first one is to select an NFVO randomly and then invert

its state, i.e., change from active to inactive and vice versa. The second movement is to

draw a PoP randomly and reassign it to another NFVO chosen at random.

3. Tabu list: We use a tabu list of a fixed length to store the most recent moves made.

A move in this list is called tabu move. The heuristic forbids tabu moves and does not

select them while they are on the list unless certain criteria, known as aspiration criteria,

are satisfied. In our work, we release a tabu move and accept it when the move leads to a

solution better than the best-known solution.

4. Acceptance criteria: We relax the constraints (5.2)–(5.4), (5.9), (5.12), (5.13), (5.22)

and (5.23) to allow the tabu search to explore the infeasible boundary. However, we assign
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Table 5.2: Simulation Parameters

Parameter Value

Number of PoPs (|P |) 8, 16

GSO location (wp) Central PoP

NFVO capacity (Φ) 20

VNFM capacity (φ) 10

Number of VNF instances (|V |) 10–60

Acceptable delay between GSO and NFVO (ψ) 80ms

Acceptable delay between NFVO and VIM (Ψ) 60ms

Acceptable delay between NFVO and VNFM

managing VNF instances v (ωv) 45ms

Acceptable delay between VNFM and VNF instance v (Ωv) 30ms

a penalty for each solution to lead the heuristic to satisfy those constraints through the

search process. We use two objectives in scoring a solution: solution penalty and number of

NFVOs in the system. The heuristic aims first to minimize the solution penalty, then the

number of NFVOs. We also employ a simple oscillation strategy in the solution evaluation.

In each iteration, if there is a neighbor solution that has a better score than the best-found

solution, then we choose it. Otherwise, we select a solution that minimizes the number of

NFVOs, although it may not have the lowest penalty. Our goal is to drive the search to

explore the infeasible solutions and thus induce diversification.

5. Stop criteria: The heuristic stops after (4 × |P |) consecutive iterations without an

improvement in the solution. The formula allows the number of iterations to grow with

respect to the number of PoPs. The multiplier 4 is adjusted experimentally.

5.4 Evaluation

In this section, we compare the performance of the TSP heuristic with the optimal solution

obtained by solving the ILP model with CPLEX. In the following, we first describe the

simulation setup, followed by numerical results. The simulation parameters are listed for

convenience in Table 5.2.
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5.4.1 Simulation Setup

We simulate two different NFVIs with 8 and 16 PoPs. Each PoP represents an AT&T data

center located in North America [86]. The inter-POP delays are the round-trip delay of

ping packets between each pair of PoPs and obtained from public ping statistics [87]. The

GSO is placed at a PoP with a central location in the NFVI structure. We also consider

that the capacity of an NFVO and a VNFM are 20 and 10 VNF instances, respectively. In

our experiments, the VNF instances are placed uniformly at random over PoPs, and their

number varies from 10 to 60. Further, we assume that communication between the GSO

and NFVO tolerates higher network delay compared to the communication between the

functional blocks inside a domain. We further consider that the communication between

the VNF instance and its designated VNFM is more sensitive to delay compared to the

communication between other functional blocks inside a domain. Table 5.2 presents the

maximum acceptable delay between various functional used in our simulation.

5.4.2 Numerical Results

Figure 5.2 portrays the objective function value, i.e., the total number of NFVOs and

VNFMs, of the optimal and TSP solutions for 8 and 16 PoPs. The TSP results are the

average of 20 runs of each experiment. In Figure 5.2(a), we observe that TSP provides

solutions that are very close to the optimal solution and attains the optimality in most

cases. However, Figure 5.2(b) shows that TSP gives solutions that are within 1.4 times of

the optimal solutions. Further, the results indicate that the number of NFVOs and VNFMs

increases gradually with the increase of the number of VNF instances in the system.

For a better interpretation of the results, we provide the detailed number of NFVOs and

VNFMs in Figure 5.3 and Figure 5.4 respectively. We can easily notice that the number

of VNFMs grows at a higher rate compared to the number of NFVOs. The main reason

is that an NFVO can accommodate more VNF instances than a VNFM as it has higher

capacity. In general, the results point out that the NFV MANO capacity is adjusted to

accommodate the number VNF instances in the system.
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Figure 5.3: Number of NFVOs

Moreover, although a single NFVO has adequate capacity to accommodate 10 VNF

instances in our experiments, interestingly Figure 5.3(a) reports that two NFVOs are needed

when the NFVI consists of 8 PoPs, whereas Figure 5.3(b) tells that single NFVO is sufficient

for 10 VNF instances over 16 PoPs. This difference in the results is attributed to the number

and location of PoPs. The system with 8 PoPs is constrained to a small number of PoPs

which imposes the need of additional NFVO to satisfy the delay constraints in the system,

whereas the NFVI of 16 PoPs provides the system with a higher degree of flexibility and

allows fulfilling the delay constraints using one NFVO. Considering Figure 5.4, we notice

that the system needs 2 and 3 VNFMs to manage 10 VNF instances over 8 and 16 PoPs

respectively. We can thus conclude that number of PoPs and their location impact the
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Figure 5.4: Number of VNFMs

number of NFVOs and VNFMs needed in the system.

5.5 Conclusion

The number and location of NFVOs and VNFMs are vital to the scalability and performance

of the NFV MANO. Thus, this chapter discussed the joint placement of NFVO and VNFM

functional blocks in multi-orchestrator NFVMANO system. The problem consists of finding

the number and placement of NFVOs, the structure of the domains, the number and location

of VNFMs in each domain, and finally the assignment of the VNF instances to VNFMs.

We aimed at minimizing the number of NFVOs and VNFMs as it represents a measure of

the cost. We formulated the problem as ILP and proposed two-step placement heuristic.

Our numerical results indicated that the number and geographical location of PoPs have

an impact on the required number of NFVOs and VNFMs in the system.
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Chapter 6

Joint Placement of NFV

Orchestrator and VNF Manager:

The Single and Multi-Orchestrator

Cases

6.1 Introduction

The NFVO and VNFM communicate with each other, and with other functional blocks in

ETSI NFV architectural framework (e.g., VIM, VNF and EM) to perform their functions

such as network service instantiation, VNF instantiation, monitoring and fault management.

Their location in the infrastructure impacts the delay experienced in their communications.

A high delay increases the execution time of the MANO operations which decreases the

scalability and degrades the performance. Hence, network operators are advised to plan

their placement to minimize the communication overhead.

To address the above challenges, we revisit the joint placement of NFVO and VNFM
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problem. We consider two cases. The first one is the centralized NFV MANO that em-

ploys one NFVO over an infrastructure of a single domain. The second case is the multi-

orchestrator NFV MANO system, which is presented in this thesis, where the infrastructure

is decomposed into domains and an NFVO is placed in each one. We call these problems the

NFVO and VNFM functional blocks Placement in Single- and Multi-Domain environments.

We refer to them by OMP-SO and OMP-MO, respectively. Our objective is to jointly op-

timize NFVO and VNFM placement to efficiently manage a given set of VNF instances by

minimizing the total worst-case delay between various functional blocks. Precisely, given a

certain NFVI and a set of VNF instances, then OMP-SO finds the optimal locations for a

single NFVO and one or more VNFMs that minimize the total worst-case delay between

the NFV functional blocks. On the other hand, OMP-MO seeks to select the best locations

for a certain number of NFVOs and VNFMs so that total worst-case delay in the system is

minimized.

The problems are formulated as Mixed Integer Linear Program (MILP) and implemented

in CPLEX to find the optimal solutions. Given their complexity, we propose a multiple-

walk Late Acceptance Hill-Climbing (LAHC) heuristic to solve the problems in reasonable

time. LAHC is a local search metaheuristic that has been proposed recently [88]. The

heuristic is hybridized with a strategic oscillation scheme to enable the diversification of

search paths and go beyond the local optimum. Strategic oscillation is a diversification

approach that is used in tabu search metaheuristic. Furthermore, we perform extensive

simulation experiments to evaluate the proposed heuristic against the MILP implementation

in terms of solution quality and execution time. We further investigate a possible impact

for the number of NFVOs and VNFMs on the worst-case delay in the system.

6.2 The NFVO and VNFM Placement Problem

As depicted in Figure 6.1, we consider an NFVI that consists of several PoPs distributed in

various geographical locations to provide the performance expected by different use cases.

We assume that a local VIM manages the resources in each PoP. We represent the NFVI
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Figure 6.1: System model

as graph G(N,L), where N is the set of PoP nodes and L is the set of links between them.

We denote D(n, n̄) as the delay of the shortest path between n and n̄, for n, n̄ ∈ N . We

use V to denote the set of VNF instances in the system. We also let gv,n ∈ {0, 1} be the

location of the VNF instance v ∈ V .

gv,n =

⎧⎪⎪⎨⎪⎪⎩
1, if VNF instance v ∈ V is located at PoP n ∈ N ,

0, otherwise.

For the sake of simplicity, we assume that a VNF and its EM are deployed at the same

PoP, as illustrated in Figure 6.1. Moreover, NFVO and VNFM functional blocks usually

have limited resources and hence they have limited processing capacity. We consider that

the capacity of an NFVO is defined in terms of the maximum number of VNF instances in

its domain. We employ Φ to refer to this capacity. We further use φ to refer to the capacity

of a VNFM. It represents the maximum number of VNFs that can be assigned to a VNFM.

Table 6.1 summarizes the key notation used in this chapter.

6.2.1 The Single-Orchestrator Case

In the centralized NFV MANO architecture, a single NFVO and one or more VNFMs are

responsible for the lifecycle management of the network services and their constituent VNFs

92



Table 6.1: Summary of Key Notations

Inputs

G(N,L) NFVI G with PoPs N and links connecting them L

L The set of links in the network, L = {(n, n̄) | n ∈ N, n̄ ∈ N,n ̸= n̄}
D(n, n̄) Delay of link (n, n̄) ∈ L

V Set of VNF instances

gv,n ∈ {0, 1} gv,n = 1 if VNF instance v ∈ V is placed at n ∈ N

φ Capacity of a VNFM

Φ Capacity of an NFVO

wn ∈ {0, 1} wn = 1 if the GSO is placed at n ∈ N

P Number of NFVOs in multi-orchestrator case

Q Number of VNFMs

M A big enough positive constant

α, β, γ, δ Weighting factors to adjust relative importance of delay components

Decision Variables

hn ∈ {0, 1} hn = 1 if there is an NFVO placed at PoP n ∈ N

xn ∈ {0, 1} xn = 1 if there is any VNFM placed at n ∈ N

yv,n ∈ {0, 1} yv,n = 1 if VNF v ∈ V is assigned to a VNFM placed at n ∈ N

rn,n̄ ∈ {0, 1} rn,n̄ = 1 if PoP n ∈ N is assigned to an NFVO placed at PoP n̄ ∈ N

mn ∈ N0 Number of VNFMs placed at PoP n ∈ N

d1 ∈ R+
0 Worst-case delay between NFVO and VIM

d2 ∈ R+
0 Worst-case delay between NFVO and VNFM

d3 ∈ R+
0 Worst-case delay between VNFM and VNF instance

d4 ∈ R+
0 Worst-case delay between GSO and NFVO

in an administrative domain, as shown in Figure 6.2. To manage a set of VNF instances

efficiently, the OMP-SO problem seeks to select the optimal locations for an NFVO and

a certain number of VNFMs as well as the assignment of VNF instances to VNFMs that

minimize the total worst-case delay between the various functional blocks in the system.

Three intra-domain delay components contribute to the objective: the delay between NFVO

and VIM, NFVO and VNFM, and between VNFM and VNF instance.

We let Q be the number of VNFMs to be deployed in the system. Then, the OMP-SO

can be formally defined as follows.

Problem Definition: Given an NFVI G, a set of VNF instances V , and number of VNFMs
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Figure 6.2: Single-orchestrator system architecture

Q; find the optimal locations for an NFVO and Q VNFMs, and the assignment of VNF

instances to VNFMs such that the total worst-case delay between various functional blocks

is minimized, and without violating the capacity constraint of VNFM.

We formulate the OMP-SO problem as MILP. We define the decision variable hn to

represent the location of the NFVOs in the infrastructure.

hn =

⎧⎪⎪⎨⎪⎪⎩
1, if the NFVO is placed at n ∈ N ,

0, otherwise.

We further let the decision variable xn to denote the location of the VNFMs.

xn =

⎧⎪⎪⎨⎪⎪⎩
1, if there is any VNFM placed at n ∈ N ,

0, otherwise.

We denote the number of VNFMs placed at PoP n ∈ N by the decision variablemn ∈ N0.

We also define another variable yv,n to represent the assignment of the VNF instances to
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the VNFMs.

yv,n =

⎧⎪⎪⎨⎪⎪⎩
1, if VNF instance v ∈ V is assigned to a VNFM placed at n ∈ N ,

0, otherwise.

Finally, we define the decision variables d1, d2, d3 ∈ R+
0 to represent the worst-case delay

between NFVO and VIM, NFVO and VNFM, and between VNFM and VNF instance,

respectively.

The objective of the OMP-SO problem is to minimize the weighted sum of the afore-

mentioned delay components and can be expressed as follows, where α, β, γ are constants

to adjust the relative significance of the different delay components.

Minimize αd1 + β d2 + γ d3 (6.1)

Now, we need to guarantee that exactly one NFVO and Q of VNFMs are placed in the

system. We represent these constraints as follows.

∑
n∈N

hn = 1 (6.2)

∑
n∈N

mn = Q (6.3)

ETSI NFV MANO framework requires that every VNF instance is associated with a

VNFM to manage its lifecycle. This constraint is expressed as follows.

∑
n∈N

yv,n = 1 ∀v ∈ V (6.4)

Next, we ensure that a VNF instance is assigned to a VNFM at PoP n ∈ N only if there

exists one at that PoP.

yv,n ≤ xn ∀v ∈ V, n ∈ N (6.5)

We also need to make sure that VNFMs are placed at PoP n ∈ N only when there are
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VNF instances assigned to that PoP.

xn ≤
∑
v∈V

yv,n ∀n ∈ N (6.6)

mn ≤ Mxn ∀n ∈ N (6.7)

Constraint (6.8) ensures that the VNFMs at a particular PoP have enough capacity to

manage the assigned VNF instances.

∑
v∈V

yv,n ≤ φmn ∀n ∈ N (6.8)

Finally, we present the delay constraints that measure the worst-case delay components,

which are induced by the NFVO and VNFMs placement.

d1 ≥ hnD(n, n̄) ∀(n, n̄) ∈ L (6.9)

d2 ≥ hn xn̄D(n, n̄) ∀(n, n̄) ∈ L (6.10)

d3 ≥ gv,n yv,n̄D(n, n̄) ∀v ∈ V, (n, n̄) ∈ L (6.11)

We note that the constraint (6.10) is a non-linear constraint and can be linearized by

replacing it with the following linear constraints.

d2 ≥ zn,n̄D(n, n̄) ∀(n, n̄) ∈ L

zn,n̄ ≤ hn ∀(n, n̄) ∈ L (6.12)

zn,n̄ ≤ xn̄ ∀(n, n̄) ∈ L (6.13)

zn,n̄ ≥ hn + xn̄ − 1 ∀(n, n̄) ∈ L (6.14)
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Figure 6.3: Multi-orchestrator system architecture

6.2.2 The Multi-Orchestrator Case

The multi-orchestrator case relies on the system architecture discussed in chapters 4 and

5. As shown in Figure 6.3, the infrastructure encompasses a set of domains; each domain

consists of one or more PoPs and includes a single NFVO and one or more VNFMs. The

GSO allows providing end-to-end service across multiple domains. We assume that the

location of GSO is known and denoted by wn ∈ {0, 1}.

wn =

⎧⎪⎪⎨⎪⎪⎩
1, if the GSO is placed at n ∈ N ,

0, otherwise.

The OMP-MO problem consists of finding the optimal structure for the domains (i.e.,

the PoPs belong to each domain) and selecting the locations for an NFVO and one or

more VNFMs inside each domain so that the total-worst delay is minimized. The objective

comprises four delay components: inter-domain delay between the GSO and NFVO of each

domain, and the three intra-domain delay components considered by the OMP-SO problem,

namely: delay between NFVO and VIM, NFVO and VNFM, and VNFM and VNF. We

use P to denote the number of NFVOs, which also represents the number of domains in
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the system since there is one NFVO in each domain. Further, it worth noting that in the

multi-orchestrator environment, the number of VNFMs should be greater or equal to the

number of NFVOs (i.e., Q ≥ P).

The OMP-MO problem can be defined as follows.

Problem Definition: Given an NFVI G, a set of VNF instances V , location of GSO wn,

number of NFVOs P, and number of VNFMs Q; then decompose NFVI into P domains

and find the PoPs belonging to each domain, the locations for P NFVOs and Q VNFMs,

and assign VNF instances to VNFMs; such that the total worst-case delay between various

functional blocks is minimized, while satisfying the capacity constraints of the NFVO and

VNFM.

Before presenting our formulation, we introduce the decision variables. We define rn,n̄

to determine the structure of the domains by mapping the PoPs to NFVOs.

rn,n̄ =

⎧⎪⎪⎨⎪⎪⎩
1, if PoP n ∈ N is assigned to an NFVO placed at n̄ ∈ N ,

0, otherwise.

We also define d4 ∈ R+
0 to denote the worst-case delay between GSO and NFVO.

Moreover, the objective can be stated as follows, where δ is a weighting factor to adjust the

importance of the delay between GSO and NFVO.

Minimize αd1 + β d2 + γ d3 + δ d4 (6.15)

The OMP-MO problem is subject to the constraints (6.3)–(6.8) defined in section 6.2.1

as well as the constraints (6.16)–(6.25) that will be presented in what follows.

The constraint (6.16) ensures that the number of NFVOs (and consequently the do-

mains) is equal to P. ∑
n∈N

hn = P (6.16)

Next, we ensure that every PoP n ∈ N belongs to one domain. In other words, only

one NFVO is responsible for the resource orchestration of a particular PoP. We represent
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this constraint as follows. ∑
n̄∈N

rn,n̄ = 1 ∀n ∈ N (6.17)

The constraint (6.18) ensures that every PoP n ∈ N is assigned to the NFVO at PoP

n̄ ∈ N only when there exists one at n̄.

rn,n̄ ≤ hn̄ ∀n, n̄ ∈ N (6.18)

Further, we need to ensure that an NFVO is placed within its domain boundaries.

rn,n = hn ∀n ∈ N (6.19)

We also need to guarantee that a VNF and its designated VNFM exist in the same

domain.

gv,n1 yv,n2 rn2,n3 ≤ rn1,n3 ∀v ∈ V,∀n1, n2, n3 ∈ N (6.20)

The number of VNFs in each domain should not exceed the NFVO capacity. We express

this constraint as follows.

∑
v∈V

∑
n∈N

yv,n rn,n̄ ≤ Φhn̄ ∀n̄ ∈ N (6.21)

Lastly, the constraints (6.22)-(6.25) compute the worst-case delay components that con-

tribute to the objective.

d1 ≥ rn,n̄D(n, n̄) ∀(n, n̄) ∈ L (6.22)

d2 ≥ rn,n̄ xnD(n, n̄) ∀(n, n̄) ∈ L (6.23)

d3 ≥ gv,n yv,n̄D(n, n̄) ∀v ∈ V, (n, n̄) ∈ L (6.24)
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d4 ≥ wn hn̄D(n, n̄) ∀(n, n̄) ∈ L (6.25)

Note that the constraints (6.20), (6.21) and (6.23) are non-linear and can be linearized

as follows.

gv,n1 tv,n2,n3 ≤ rn1,n3 ∀v ∈ V,∀n1, n2, n3 ∈ N (6.26)

∑
v∈V

∑
n∈N

tv,n,n̄ ≤ Φhn̄ ∀n̄ ∈ N (6.27)

d2 ≥ kn,n̄D(n, n̄) ∀(n, n̄) ∈ L (6.28)

tv,n,n̄ ≤ yv,n ∀v ∈ V, (n, n̄) ∈ L (6.29)

tv,n,n̄ ≤ rn,n̄ ∀v ∈ V, (n, n̄) ∈ L (6.30)

tv,n,n̄ ≥ yv,n + rn,n̄ − 1 ∀v ∈ V, (n, n̄) ∈ L (6.31)

kn,n̄ ≤ rn,n̄ ∀(n, n̄) ∈ L (6.32)

kn,n̄ ≤ xn ∀(n, n̄) ∈ L (6.33)

kn,n̄ ≥ rn,n̄ + xn − 1 ∀(n, n̄) ∈ L (6.34)

6.3 Proposed Heuristic

The problems of our interest correspond to the hierarchical facility location problem which

is a generalization of uncapacitated facility location problem whose hardness is shown [89].

We propose a multiple-walk LAHC heuristic for finding a solution in a reasonable time

frame. The multiple-walk is a metaheuristic parallelism approach that allows independent

and concurrent explorations of the search space to improve heuristic robustness. Next,

we present the LAHC heuristic in section 6.3.1, followed by the description of our parallel

implementation in section 6.3.2.
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6.3.1 Late Acceptance Hill-Climbing

LAHC is a new trajectory-based local search procedure that was recently proposed in [88]. It

starts with a given initial solution (s0) and iteratively modifies it to move from one solution

to another in the search space. At each iteration, it identifies a candidate solution (s∗)

in the neighborhood of the current solution (sc) and evaluates it by an objective function

(U) that measures the solution quality. If the objective function value meets the acceptance

criteria, the candidate solution is accepted and replaces the current one. The search process

stops when the termination criteria are met and returns the best solution found (sb).

LAHC is similar to the hill-climbing algorithm but utilizes a new acceptance criterion

to accept or reject a candidate solution, called late acceptance rule. This rule endeavors to

escape a local optimum in the hope of finding a global one by allowing worsening moves, i.e.,

moves which worsen the objective function value, when a candidate solution is better than

it was a number of iterations before. More precisely, LAHC tracks the search history by

recording the objective function values of the previous current solutions in a fixed-length list,

known as fitness array. Let Fi = {f0, f1, ..., fl−1} denote a fitness array of length l, where

fi is the objective function value of the current solution before i iteration. Then, at each

iteration, LAHC compares the objective function value of candidate solution with the last

element in the list (i.e., fl−1) and accepts it if it is better. Each time a solution is accepted,

the objective function value of the accepted solution is added to the beginning of the list,

and the last element is removed from the end of the list. To avoid shifting all elements in

the list, Burke et al. [90] propose a FIFO mechanism to maintain the list, wherein a virtual

beginning of the list v̄ at iteration i is computed by v̄ = i mod l. Thereafter, the candidate

solution is compared to the objective function value fv̄ and if accepted the value of the

candidate solution is assigned to fv̄.

Moreover, an improved variant of LAHC combines the late acceptance rule with a greedy

rule that accepts a candidate solution that is similar or better than the current solution [90].

Our heuristic employs both acceptance rules and further incorporates a strategic oscillation

mechanism, as we elaborate upon later. In what follows, we present the different components
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Algorithm 6.1: Late Acceptance Hill-Climbing Heuristic
Input: Initial Solution so
Output: Best solution found sb

1 sc ← s0, sb ← s0
2 ∀q ∈ {0, ..., l − 1}: fq ← U(s0)
3 imax ← |N |+ |V |+ P +Q+ 800
4 iidle ← 0, i← 0
5 repeat
6 S ← ∅
7 v̄ ← i mod l
8 repeat
9 construct a candidate solution s∗

10 calculate a candidate objective function solution U(s∗)
11 if U(s∗) < fv̄ or U(s∗) <= U(sc) then
12 S ← S ∪ {s∗}
13 end
14 else if R(s∗) < R(sc) or A(s∗) < A(sc) then
15 S ← S ∪ {s∗}
16 end

17 until |S| = η
18 sc ← select the best solution from S
19 fv̄ ← U(sc)
20 if U(sc) < U(sb) then
21 sb ← sc
22 iidle ← 0

23 end
24 else
25 iidle ← iidle + 1
26 end
27 i← i+ 1

28 until iidle = imax

29 return sb

of the proposed LAHC heuristic, which is also outlined in Algorithm 6.1.

1. Initial Solution: We use a greedy heuristic to generate a random initial solution (s0).

The heuristic starts by randomly placing single NFVO in the OMP-SO problem or P of

NFVOs in the OMP-MO problem. After that, it forms the domains by assigning every

PoP n ∈ N to the closest NFVO. From there, the heuristic selects the locations for Q of

VNFMs randomly but ensures that there is at least one VNFM in each domain. Lastly, it

assigns every VNF instance v ∈ V to the nearest VNFM inside same domain. The heuristic

provides a solution that may be infeasible, violating NFVO and VNFM capacity constraints.

However, it is a good enough starting solution that LAHC can improve gradually.

2. Neighborhood Structure: Our LAHC heuristic randomly selects a move among the
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following types to modify the current solution and generate a candidate solution:

• Relocate NFVO: Select an NFVO randomly and move it to different PoP chosen at

random.

• Relocate VNFM: Select a random VNFM and move it to different PoP chosen

randomly.

• Reassign PoP: Randomly select a PoP and reassign it to different NFVO that is

chosen at random.

• Reassign VNF: Choose a VNF instance at random and reassign it to different VNFM

that is selected randomly.

3. Late Acceptance List: LAHC records the score of last accepted solutions in a list of

fixed length l. In our heuristic, we set l to 10000. Further, since there is no search history

at the beginning, the heuristic assigns the score of the initial solution to every element in

the list.

4. Objective Function: The proposed heuristic seeks to minimize the objective func-

tion (U) that consists of three hierarchically (or lexicographically) structured objectives:

penalty, primary objective, and auxiliary objective, as indicated by equation (6.35). We

relax the constraints (6.8), (6.18), (6.19), (6.20) and (6.21) to allow the heuristic to explore

a larger search space. However, the penalty function P (s) penalizes the constraint viola-

tions and assigns a penalty to the solution proportional to the level of violations to drive

the heuristic to satisfy the constraints during the search process. The primary objective

function R(s) corresponds to the model objective functions indicated by equations (6.1) and

(6.15). Moreover, since many neighbor solutions score equally with respect to the primary

objective, we define the auxiliary objective A(s) to effectively drive the search to more in-

teresting areas. It is defined as the total delay between every PoP n ∈ N and the domain

NFVO, and every VNF instance v ∈ V and its designated VNFM.

Minimize lix

(
P (s), R(s), A(s)

)
(6.35)
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5. Acceptance Criteria: At each iteration, LAHC, as proposed in the literature [88, 90],

identifies and evaluates one candidate solution. The solution is admitted and replaces the

current solution when it satisfies the acceptance criteria. However, instead of replacing the

current solution with the first admitted solution, our heuristic generates a small number

(η) of admissible candidate solutions (i.e., solutions that meet acceptance criteria) and

selects the best one to replace the current solution. The goal is to improve the quality of

final solution by replacing current solution with a good-quality solution at each iteration.

Furthermore, a candidate solution is accepted if it meets either the greedy rule or the late

acceptance rule. In other words, the heuristic accepts a candidate solution if it is similar or

better than the current solution (i.e., U(s∗) ≤ U(sc)) or if it is better than it was a number

of iterations before (i.e., U(s∗) < fv̄). We also incorporate a simple strategic oscillation

mechanism into the LAHC heuristic, which allows the search to cross the boundary between

the feasible and the infeasible space and thus induce diversification. A candidate solution,

which does not satisfy the greedy and late acceptance rules, is admitted if it improves the

primary objective function or the auxiliary objective function, compared to the current

solution (i.e., R(s∗) < R(sc) or A(s
∗) < A(sc)).

6. Termination Criteria: The search terminates when no further improvement can be

made. Let iidle denote the number of non-improving iterations, i.e., the number of iterations

since the last obtained best solution. Then, our heuristic stops when iidle reaches (|N |+|V |+

P +Q+800) iterations. The formula allows iidle to grow with respect to the infrastructure

size and number of functional blocks in the system. The constant 800 is used to avoid the

early termination of the heuristic.

6.3.2 Parallelization Approach

Parallel metaheuristics are increasingly being used to take advantage of the advancement in

parallel computing and improve the performance, solution quality and robustness of heuris-

tics without expensive effort in parameter tuning [91, 92]. Metaheuristic parallelization

strategies are classified into two broad categories: single-walk and multiple-walk [91]. In a

104



Algorithm 6.2: Independent Multiple-Walk LAHC Heuristic
Input: A problem instance I, Number of search threads θ
Output: Best solution found sb for I

1 for j ← 1 to θ do
2 s0 ← InitialSolution(I)
3 create a search thread of LAHC(s0)

4 end
5 run all search threads
6 wait search threads till they stop
7 sb ← choose best solution found
8 return sb

single-walk parallelization, the search procedure traverses a unique trajectory in the neigh-

borhood graph. The search for the best neighbor at each iteration is performed in parallel,

either by the parallelization of the neighborhood evaluation (i.e., objective function evalu-

ation) or construction. This strategy seeks to accelerate the exploration of the search and

reduce the running time. A multiple-walk parallelization simultaneously explores multiple

trajectories, each of them by a search thread. These threads can be either independent

or cooperative. In the case of independent multiple-walk, no communication takes place

between the search threads whereas in the cooperative multi-walk the information collected

along each trajectory is disseminated and used by other threads. This approach can improve

the performance and solution quality.

Since our goal is to improve the solution quality, we adopt independent multiple-walk

parallelization. We favor the independent approach due to its implementation simplicity.

Algorithm 6.2 outlines the proposed multiple-walk LAHC heuristic. It launches multiple

threads of the sequential LAHC (Algorithm 6.1). Each search thread starts with a different

initial solution. Once all threads have stopped, the best overall solution is identified.

6.4 Numerical Results

We perform an extensive set of experiments to study how the number of NFVOs and VNFMs

affect the worst-case delay in the system, and to evaluate the performance of multiple-

walk LAHC heuristic against the MILP models presented in section 6.2. The heuristic

is implemented in JAVA while the MILP models are implemented and solved in CPLEX
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12.6.3. The experiments are executed on a server with 2×12-Core 2.20 GHz Intel Xeon

E5-2650v4 CPUs and 128GB memory. The heuristic and CPLEX are configured to use 32

threads. We run the heuristic 20 times for each experiment and report the average value.

Moreover, in all experiments, unless stated differently, the weighting factors (α, β, γ, δ) are

set to 1. Next, we first present our simulation setup, followed by the results.

6.4.1 Simulation Setup

1. NFVI: Two NFVI topologies are designed using the public information available

about the data centers of the AT&T and CDN77 providers. The AT&T NFVI topology

consists of 26 PoPs located in North America [86] while the CDN77 topology encompasses

32 PoPs distributed among different locations around the globe [93]. Each PoP in our

NFVIs represents a data center for the providers mentioned above. We use the latitude and

longitude information of the cities in which the data centers are located to calculate the

distance between the PoPs. The propagation delay over each link is calculated by dividing

the distance between the PoPs by the speed of light over optical fiber (200,000 km/s).

2. NFV Functional Blocks: To assess the impact of the number of NFVOs (P) on worst-

case delay, we vary P from 2 to 5 in the multi-orchestrator problem. We also vary the number

of VNFMs (Q) to evaluate its effect on delay in both single- and multi-orchestrator problems.

In the single-orchestrator case, Q is varied from 1 to 8 whereas in multi-orchestrator it is

varied from P to 8. Recall that Q must be greater than or equal P in the multi-orchestrator

environment. In all experiments, we fix the number of VNF instances (|V |) to be equal to

the number of PoPs. Unlike the number of NFVOs and VNFMs, considering a larger

number of VNF instances would not change the results of our experiments since it does not

affect the objective function. It is also worth mentioning that these configurations are the

largest that we could run the implementation of the MILP models in a manageable time.

The execution time of the models in each experiment ranges from few seconds to 37 hours.

Further, the GSO is placed at a PoP with a central location in the NFVI structure. The

capacities of NFVO and VNFM are set to 200 and 50, respectively.
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6.4.2 Impact of Number of NFVOs

We start our analysis by evaluating the effect of the number of NFVOs on the worst-

case delay. Figure 6.4 shows the worst-case delay (propagation delay) between the NFVO

and VIM in the single- and multi-orchestrator problems for AT&T and CDN77 topologies.

The results are illustrated with respect to the number of NFVOs considering δ = 1 and

δ = 0. We observe that the worst-case delay is significantly higher in the single-orchestrator

environment compared to multi-orchestrator, which is expected since the NFVI in the latter

case is decomposed into smaller domains allowing the placement of NFVO closer to the

PoPs. Moreover, when δ = 1, Figure 6.4(a) indicates that two NFVOs are sufficient to

yield the minimum worst-case delay and no improvement made after that. As for CDN77

topology, we notice in Figure 6.4(b) that the delay decreases gradually with increasing of

number of NFVOs in the system. The reason why the worst-case delay does not improve

after two NFVOs in AT&T topology is that the NFVO placement in the multi-orchestrator

case is constrained by two delay components that contribute to the objective function:

one with GSO and the other with VIM. The placement that minimizes one of these delay

components can inversely affect the other. Consequently, and keeping in mind that the

objective is to minimize the total worst-case delay, adding additional NFVOs in the system

does not necessarily mean a lower delay between NFVO and VIM when δ = 1. To give a

more comprehensive comparison, we conduct the same set of experiments with δ = 0, so

that delay between GSO and NFVO does not contribute to the objective function. Now,

we observe the worst-case delay continues to improve with increasing of number of NFVOs.

Furthermore, minimizing the worst-case delay between the NFVO and VIM is manifested

as a lower intra-domain delay, i.e., lower worst-case delay between other functional blocks

in the domain. For instance, Figure 6.5 presents a comparison of worst-case delay between

NFVO and VIM, and between VNFM and VNF, with respect to the number of NFVOs.

We observe that the improvement in the delay between NFVO and VIM is translated into

improvement of delay between VNFM and VNF. In fact, the results demonstrate that

worst-case delay between VNFM and VNF is equal to the one between NFVO and VIM.
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Figure 6.4: Worst-case delay between NFVO and VIM
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Figure 6.5: A comparison of worst-case delay between NFVO and VIM, and between VNFM
and VNF

The rationale is that when γ = 1, our models tend to place NFVO and VNFM functional

blocks at the same PoP to minimize the objective function, which we elaborate on later.

6.4.3 Impact of Number of VNFMs

Next, we look at how the number of VNFMs impacts the worst-case delay between the

NFVO and VNFM, and between VNFM and VNF instance. As mentioned earlier, when

γ = 1, the models always place the NFVO and VNFM at the same PoP in order to minimize

the objective function, which means that the worst-case delay between NFVO and VNFM is
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Figure 6.6: Worst-case delay between VNFM and VNF functional blocks. The results are
derived with γ = 4 and two NFVOs in the multi-orchestrator case

 0

 3

 6

 9

 12

 15

 1  2  3  4  5  6  7  8

D
e

la
y
(m

s
)

No. of VNFMs

single-orchestrator
multi-orchestrator

(a) AT&T

 0

 15

 30

 45

 60

 75

 1  2  3  4  5  6  7  8

D
e

la
y
(m

s
)

No. of VNFMs

(b) CDN77

Figure 6.7: Worst-case delay between NFVO and VNFM

always 0, no matter how many VNFMs are deployed, and the worst-case delay between the

VNFM and VNF is equal to the delay between NFVO and VIM.We thus perform another set

of experiments in which we vary the number of VNFMs and set γ = 4, which is a big enough

coefficient to prioritize the minimization of the delay between the VNFM and VNF instance.

We plot the worst-case delay between NFVO and VNFM, and between VNFM and VNF in

Figure 6.6 and Figure 6.7, respectively. The results of the multi-orchestrator experiments

are obtained by considering two NFVOs in the system. In Figure 6.6, we notice that

the worst-case delay decreases gradually with increasing number of VNFMs. We can also
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observe that the results of single-orchestrator and multi-orchestrator experiments are equal

in the majority of the experiments, which indicates that the number of NFVOs does not

have a significant effect on the delay between VNFM and VNF under these configurations.

However, considering Figure 6.7, the results show that the delay between NFVO and VNFM

is always smaller in a multi-orchestrator compared to a single-orchestrator, which is due to

the fact that the intra-domain delay is lower in the multi-orchestrator environment. The

results also point out that worst-case delay increases with the increase of number VNFMs.

The reason is the inverse relation between the delay between NFVO and VNFM, on the

one hand, and the delay between VNFM and VNF, on the other hand.

6.4.4 Heuristic Performance

Finally, we evaluate the performance of the multiple-walk LAHC heuristic in terms of so-

lution quality and execution time under different settings. Figures 6.8 and 6.9 depict the

objective function values of the heuristic and optimal solutions for AT&T and CDN77

topologies in the single-orchestrator problem. The figures also show the average gap be-

tween the heuristic and optimal solutions. The results are derived with respect to a varying

number of VNFMs for γ = 1 and γ = 4. We observe that LAHC yields high-quality so-

lutions and reaches optimality in many experiments. In Figure 6.8, we notice that the

average gap remains smaller than 4.3%. Figure 6.9 shows that the heuristic also produces

high-quality solutions and the average gap is smaller than 17.2%. Further, Figures 6.10

and 6.11 present the objective function values in the multi-orchestrator case. The results

are illustrated for a varying number of NFVOs and 8 of VNFMs. The results show that the

heuristic produces solutions with an optimality gap of at most 14%.

Now, we look at the execution time of the heuristic. Table 6.2 compares the average

execution time of the heuristic and CPLEX for the CDN77 topology in multi-orchestrator

case. The results are obtained considering three NFVOs in the system. We notice that the

heuristic outperforms CPLEX by many orders of magnitude. From these results, we can

see that the heuristic provides solutions within 82.8–100% of optimality in several orders

of magnitude faster than the models.
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Figure 6.8: Objective function value for AT&T topology in single-orchestrator case
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Figure 6.9: Objective function value for CDN77 in single-orchestrator case
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Figure 6.10: Objective function value for AT&T topology in multi-orchestrator case
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Figure 6.11: Objective function value for CDN77 topology in multi-orchestrator case
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Table 6.2: Execution Time (s) for multi-orchestrator case

No. of VNFMs CPLEX LAHC

3 16 246.4 1.3

4 8214.2 1.5

5 3499.3 1.9

6 10 718.1 2.1

7 8975.7 2.1

8 3978.8 2.2

6.5 Conclusion

This chapter discussed the problem of NFVO and VNFM placement for single- and multi-

orchestrator cases. Our objective was to minimize the total-worst case delay between NFV

functional blocks by selecting the best locations for NFVO and VNFM over a distributed

NFVI. We mathematically formulated the problems and proposed multiple-walk LAHC

heuristic to solve it in a reasonable time. The LAHC heuristic was hybridized with strate-

gic oscillation mechanism to diversify the search paths and improve solution quality. We

conducted extensive simulation experiments to evaluate the proposed heuristic and eval-

uate the impact of the number of NFVOs and VNFMs on the worst-case delay in the

system. Overall, the numerical results showed that our heuristic provided solutions within

82.8–100% of optimality in many orders of magnitude faster than models. The results

also indicated that the worst-case delay in the multi-orchestrator case is lower than in the

single-orchestrator case.
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Chapter 7

Conclusion and Future work

This thesis addressed multiple challenges associated with NFV MANO in distributed and

large-scale deployments. Design aspects such as workload and network delay lead to scala-

bility and performance issues that are important to consider in designing and operating NFV

MANO platforms. We approached these challenges in two complementary ways. First, two

placement problems are introduced targeting the NFVO and VNFM; the functional blocks

responsible for the lifecycle management of network services and VNFs. The placement of

these functional blocks is selected to guarantee that they have enough capacity to handle the

workload and the network delay between the functional blocks in NFV system is tolerable.

Second, an architecture was proposed for scalable and multi-orchestrator NFV management

and orchestration system.

Chapter 3 of this thesis presented the VNFM placement problem that seeks to find the

number and placement of the VNFMs, at each moment, that are required to manage a set of

VNF instances. We presented a mathematical model with the objective of minimizing the

operational cost. We also proposed tabu search heuristic to solve the problem. Through

numerical analysis, we showed that the dynamic VNFM placement yields significant re-

ductions in cost compared to the static placement. Moreover, we examined the impact of

VNFM architectural option and NFVO location on the operational cost. The results indi-

cated that the usage of generic-VNFM results in lower operational cost compared to the

specific-VNFM approach. The results also showed that the location of NFVO might have
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a notable impact on operational cost and thus it requires adequate tuning.

The centralized MANO is prone to suffer from scalability issue due to the fact of cen-

tralizing the resource and network service orchestration at a single NFVO. Motived by that,

chapter 4 presented a scalable and multi-orchestrator NFV MANO architecture. There, the

PoPs are grouped into domains based on predefined policy. A domain orchestrator is placed

in each domain to be in charge of resource and service orchestration inside the domain. A

global service orchestrator ensures the delivery of end-to-end network services across mul-

tiple domains. We presented a proof-of-concept prototype to validate the feasibility of the

approach. The architecture was illustrated through HSS use case. However, the HSS, simi-

lar to other mobile network functional entities, are not designed for the cloud environment.

We thus redesigned the HSS by decomposing it into smaller functional blocks. The new

architecture was implemented and evaluated. The experiments demonstrated that the new

architecture enables the performance isolation between the HSS diameter interfaces.

In the multi-orchestrator system, the number of orchestrators and their location must

be tuned to provide the capacity and performance needed in the system. Thus, chapter

5 addressed the joint placement of NFVO and VNFVM in the multi-orchestrator system.

There, we aimed at finding the number and location of NFVOs and VNFMs that minimize

their number, as it is a measure of the cost. We presented a two-step placement heuristic

and evaluated it. The numerical results showed that number and location of PoPs have an

impact on the required number of NFVOs and VNFMs in the system.

Chapter 6 revisited the joint placement of NFVO and VNFM considering both single-

and multi-orchestrator MANO systems. However, this time, we aimed at minimizing the

total worst-case delay between the various functional blocks in the system. A mathematical

model was established and a late acceptance hill-climbing heuristic was proposed to solve

the problem. Moreover, we showed that worst-case delay is lower in the multi-orchestrator

system compared to the single-orchestrator. We also showed that increasing number of

VNFMs does not necessarily lead to a lower delay between the VNFM and other functional

blocks.
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7.1 Future Work

This thesis presented significant contributions in the area of resource management for NFV

management and orchestration. Yet, there exist several research directions for the future.

7.1.1 Distributed NFV Infrastructure Design

Through the thesis, we assumed that the resources of each PoP are managed by a local

VIM, which is the common approach for deploying large-centralized data centers. However,

NFV use cases, such as 5G, drive the efforts to move from large-centralized data centers

to smaller ones massively distributed at the edge of the network. This raises the challenge

of managing the resources distributed over a large number of PoPs, since having a local

VIM per PoP may not be effective as it increases the complexity of NFV management and

orchestration. It would be interesting to investigate the number and the placement of VIMs

needed to manage the whole infrastructure.

7.1.2 NFVO and VNFM Placement

Chapters 5 and 6 presented static (offline) placement strategies for NFVO and VNFM.

However, one issue network operators will have to face is that the NFV infrastructure will

eventually be updated to include more PoPs. Besides, the number of VNF instances would

grow to meet the growing demand. Thus, another important study can be to consider the

online placement of NFVO and VNFM that supports infrastructure expansion and demand

variation.

7.1.3 Resilience of NFV Management and Orchestration

Given the criticality of NFV MANO, resilience is a key aspect to consider in designing

NFV MANO platform. It is important that the system is designed to tolerate failures

in network links and MANO functional blocks. The presented placement problems can be

extended to improve resilience. Since the general approach to building fault-tolerant systems

is redundancy, the placement can be selected to maximize network links redundancy and
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minimize the effect of a link failure. The placement problem can also be used to ensure that

a primary and backup NFVOs are assigned to each domain.
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