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Abstract

Internet of things (IoT) refers to things such as sensors and actuators interacting

with each other to reach common goals. It enables multiple applications in sectors

ranging from agriculture to health. Nowadays, applications and IoT infrastruc-

ture are tightly coupled and this may lead to the deployment of redundant IoT

infrastructures, thus, cost inefficiency.

Cloud computing can help in tackling the problem. It is a paradigm to quickly

provision configured resources (computing, network, memory) on demand for cost

efficiency. It has three layers, the infrastructure as a service (IaaS), the plat-

form as a service (PaaS) and the software as a service (SaaS). Through the IaaS,

configured hardware resources (CPU, storage, etc.) are provisioned on demand.

However, designing and implementing an IoT IaaS architecture for the provisioning

of IoT resource on demand remains very challenging. An example of a challenge is

using an appropriate publishing and discovery mechanism suitable for IoT devices.

Orchestrating a virtualized IoT device over several physical IoT devices is another

challenge that needs to be addressed.

The main contribution of this thesis is twofold. First, a novel IoT IaaS archi-

tecture is proposed where IoT devices can be provisioned as a configured infras-

tructure resource on demand via node virtualization. Second, the architecture is

prototyped and evaluated using real-life sensors that support node virtualization.

Node level virtualization achieves resource efficiency in contrast to middleware so-
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lutions. The essential architectural features, such as publication, discovery, and

orchestration are identified and proposed. Two sets of a high-level interface are

also introduced. A low-level uniform interface is suggested to decouple the IoT

devices from the applications by allowing the applications to access the hetero-

geneous devices in a uniform way. In addition, a cloud management interface is

proposed to expose the IoT IaaS to the cloud consumers (for example - the PaaS,

the application, etc.) and allow them to provision the IoT resources.

By allowing the capability sharing of the IoT devices using the node virtu-

alization, the cost efficiency and energy efficiency are achieved in the proposed

architecture. Addressing other challenges allowed the proposed architecture to ex-

pose the IoT devices to the IaaS in a more abstract manner. Thus allowing the

application to provision the IoT resources on demand as well as handling the IoT

device heterogeneity in the IaaS.
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Chapter 1

Introduction

1.1 Definition

In this section, we define the key terms associated with the thesis. The definition

includes IoT, Cloud Computing, and IaaS. Then, the motivation and the prob-

lem statements are discussed followed by the summary of the thesis contributions

Finally, we conclude this chapter by describing how rest of the thesis is organized.

1.1.1 Internet of Things

Internet of Things (IoT) refers to things such as wireless sensors, robots, Radio Fre-

quency Identification (RFID) etc. able to interact and cooperate to reach common

goals [1]. Generally, IoT devices are small, resource-constrained, battery-operated

devices which are able to sense the environment and/or act on the environment.

In this sense, IoT is a broad domain containing heterogeneous devices with dif-

ferent capabilities. A wireless sensor is a subset of IoT devices as it can sense

the operating environment. On the other hand, a robot is also a subset of IoT

devices as it is able to perform a predefined set of tasks on the environment (e,g -

fire-fighting robots). There are several IoT devices in the market such as, Virtenio
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Preon32, Advanticsys TelosB (SkyMote), Arduino Uno etc. Although Raspberry

Pi (RPi) is a small Personal Computer (PC)1, sometimes, it is also considered as

IoT device as it can be configured to be an IoT device with additional peripherals.

1.1.2 Cloud Computing

Cloud Computing is a paradigm for swiftly provisioning a shared pool of config-

urable resources (network, storage, application, services) on-demand. It allows

provisioning resources with minimal management effort and on a pay-per-use ba-

sis [2]. Since cloud computing allows us to easily access and use virtualized re-

sources, we can adjust provisioned resources dynamically. This means that we can

scale with ease which makes optimum resource utilization feasible [3]. It has three

facades, Software as a Service (SaaS), Platform as a Service (PaaS) and Infras-

tructure as a Service (IaaS). The lowest layer of cloud computing is the IaaS. The

PaaS sits on top of IaaS and provides a rapid development environment to build

and deploy SaaS applications.

1.1.3 IaaS

The capability provided to the consumer (e,g – the application, the PaaS etc.)

is to provision processing, storage, networks, and other fundamental computing

resources where the consumer is able to deploy and run arbitrary software. The

consumer does not manage or control the underlying cloud infrastructure but has

control over some resources such as, storage, the deployed applications and possi-

bly limited control over selective networking components (e.g., host firewalls) [2].

In other words, an IaaS provides the entire computing infrastructure as an on

demand service, applying pay per use policy. Thus, an application can provision

computing, network and other resources as per its requirements without worrying

1https://www.raspberrypi.org/about/
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about how and where these applications will be deployed. Examples of some pop-

ular commercial IaaS are: the Amazon Elastic Compute Cloud (EC2), Microsoft

Azure, DigitalOcen, IBM Cloud.

1.2 Motivation and Problem Statement

The cloud computing makes it easy and convenient for the applications to cope

with the widespread and distributed nature of heterogeneous IoT device deploy-

ment. In early approaches, the applications were generally embedded within the

IoT device itself. This yields high coupling between the applications and the IoT

devices and that can lead to redundant deployment of the IoT infrastructure, in-

curring cost inefficiency. Early cloud-based solutions proposed several middle-ware

based solutions to address the tight coupling issue. However, they did not explore

the possibility of sharing the capabilities of the underlying IoT devices through

node level virtualization. Thus the cost inefficiency problem still remained a chal-

lenge. In order to solve the coupling issue between the applications and the IoT

devices, as well as the cost inefficiency, the IoT devices should be treated just like

any other standard resources within the IaaS. This means that they should support

virtualization. IoT device virtualization enables the execution of several concur-

rent applications on top of a same physical IoT device [4].There are already some

IoT devices which are capable to be virtualized and commercially available(e,g –

Virtenio, Raspberry Pi etc.). However, it is very challenging to design an IoT IaaS

which includes both physical and virtual IoT devices. The main reason is the very

high level of heterogeneity of IoT devices when it comes to their capabilities, how

the capabilities are virtualized, and how the devices communicate with each other

and communicate with applications. A very first challenge is the need of high level

interfaces to access physical and virtual capabilities. The second challenge is how
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to publish and discover the capabilities. The third and last challenge is how to

orchestrate the IoT devices.

1.3 Thesis Contribution

The thesis contributions are as follows:

• An experiment showing the advantages of node level virtualization over mid-

dleware solutions.

• An architecture for IoT IaaS.

• A high-level interface for uniformly accessing the heterogeneous IoTs in the

IaaS.

• A mechanism for orchestrating different virtualized IoT in the IaaS.

• A high-level interface for accessing the IoT IaaS.

• A prototype implementation and performance evaluation.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 discusses the key concepts related to our research domain in detail.

Chapter 3 introduces the motivating scenario and the set of requirements of

the IoT IaaS is derived from the scenario. The state of the art is also evaluated

against the requirements.

Chapter 4 presents the proposed architecture for an IoT IaaS. Architectural

components and the proposed interfaces are discussed.
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Chapter 5 describes the implementation architecture and technologies used for

the proof-of-concept prototype. Then the performance measurements evaluating

the architecture are presented.

Chapter 6 concludes the thesis by providing a summary of the overall contri-

butions and identifying the future research directions.
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Chapter 2

Background

This chapter presents the background concepts relevant to research domain of this

thesis. The following concepts are explained: internet of things, virtualization,

and cloud computing with a specific emphasis on the infrastructure as a service

(IaaS). These concepts are introduced in the upcoming sections.

2.1 Internet Of Things

In this first section, the general definition of the internet of things (IoT) is given.

Then it is followed by a brief description of the IoT communication standards,

finally followed by the description language used in IoT.

2.1.1 General Defintion of IoT

Internet of Things (IoT) refers to things such as wireless sensors, robots, Radio Fre-

quency Identification (RFID) etc. able to interact and cooperate to reach common

goals [1]. It is a very vast, diverse and heterogeneous environment and thus has

many challenges when it comes to interoperability within themselves. Generally,

IoT devices are compact, battery operated, resource constraint device specialized
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for performing some specific task (e,g - sensing). However, recent advancement

in technology allowed a new serious of miniature, battery operated IoT device to

emerge in the market which can support running concurrent applications within

the IoT device. For example, the most popular miniature PC platform, the Rasp-

berry Pi (RPi), can also be configured with additional peripheral to act as an

IoT device and is capable of running several applications concurrently in isolation.

Moreover, it can be configured to run a container-based application as well. Based

on the functionality, an IoT device can be classified into two classes, Sensor devices

(e,g - Sensors) and Actuation devices (e,g – Robots).

Internet of Things (IoT) refers to things such as wireless sensors, robots, Ra-

dio Frequency Identification (RFID) etc. able to interact and cooperate to reach

common goals [1]. It is a very vast, diverse and heterogenous environment and

thus has many challenges when it comes to interoperability within themselves.

Generally, IoT devices are compact, battery operated, resource constraint device

specialized for performing some specifc task (e,g - sensing). However, recent ad-

vancement in technology allowed a new serious of miniature, battery operated IoT

device to emerge in the market which can support running concurrent applications

with in the IoT device. For example, the most popular minature PC platform, the

Raspberry Pi (RPi), can also be configured with additional peripheral to act as an

IoT device and is capable of running several applications concurrently in isolation.

Moreover, it can be configured to run container based application as well. Based

on the functionality, an IoT device can be classified into two classes, Sensor devices

(e,g - Sensors) and Actuation devices (e,g - Robots).

2.1.1.1 Sensors

A Sensor is a device in a wireless network that is capable of performing some pro-

cessing, gathering sensory information and communicating with other connected
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environment the Sensor is acting then it processes the data using the Processing

unit and finally, it distributes the sensed data to another system using Communi-

cation function. While an Actuator, upon receiving a control signal via Communi-

cation function, it processes the signal using Processing mechanism, then performs

the action on the environment using Actuation function. Although the order of

their workflow is different, the Processing and Communication in both Sensors and

Actuators can be thought as a generic functionality. Thus the difference between

a Sensor and an actuator, from a high level is the order of their workflow and the

sensing/actuation functionality.

2.1.2 IoT Communication Standards

IoT communication is generally composed of two types of communication stan-

dards. One is the lower layer communication standard, which is essentially MAC/-

PHY wireless standards. The other one is the higher layer communication stan-

dards, consisting of high-level protocols like COAP, REST, TCP, UDP, 6LoWPAN

etc. We describe each of them in brief in the following subsections.

2.1.2.1 Lower Layer Communication Standards

Because IoT devices contains battery operated systems and resource constraint

devices, generally the lower layer protocols are geared for energy efficiency. There

are several standards which are used by IoT systems. A brief overview on them is

described below.

2.1.2.1.1 IEEE 802.15.4: IEEE 802.15.4 is an IEEE standard which defines

the physical layer and media access control (PHY/MAC) for low-rate wireless

personal area networks (LR-WPANs). IEEE 802.15.4 is suitable for low data rate

wireless connectivity among resource constraint devices that consume minimal
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2.1.2.1.3 802.11.x: IEEE 802.11 (abgni) is a set of media access control

(MAC) and physical layer (PHY) specifications for implementing wireless local

area network (WLAN) computer communication. They operate in the 900 MHz,

2.4, 3.6, 5, and 60 GHz frequency bands. They are the world’s most widely used

wireless computer networking standards. Their throughput is very high and thus

consumes much energy.

2.1.2.1.4 Radio Frequency Identification: Radio-frequency identification

(RFID) uses electromagnetic fields to automatically identify and track tags at-

tached to objects. The tags contain electronically-stored information. There are

two types of tags, passive tags collect energy from a nearby RFID reader’s inter-

rogating radio waves. While, active tags is attached with a power source and may

operate over more than 100 meters. It can operate in ISM band and as well as low

frequency bands, and high frequency bands. However, the data rate is low and the

power consumption is almost negligible. The RFID hardware is one of the most

cheapest hardware in the market.

2.1.2.1.5 LoRa: LoRa is a patented digital wireless data communication IoT

technology developed by Cycleo of Grenoble, France, and acquired by Semtech in

2012. LoRa uses sub-gigahertz ISM bands (169 - 915 MHz). It features low

power operation (around 10 years of battery lifetime), low data rate (27 kbps

- 50 kbps) and long communication range (2-5 km in urban areas and 15 km

in clear line of sight). The networks topology is a star-of-stars topology, where

the gateway nodes acts as a relay between end-devices and a central network

server [6]. The main advantage of LoRa is that it allows the bypassing of mobile

operator’s network, even where other infrastructures are not available (e,g - rural/

underdeveloped/inhabited places).
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2.1.2.1.6 Long Term Evolution: Long Term Evolution or LTE, is a com-

munication standard found in telecommunication section. It leverages the W-

CDMA or WCDMA (Wideband Code Division Multiple Access), which is an air

interface standard found in 3G mobile telecommunications networks. It supports

conventional cellular voice, text and MMS services, but can also carry data at high

speeds, thus providing internet access. It is used in remote IoT device to leverage

the available mobile network. However, it has one of the higher operating cost

compare to other communication standards.

2.1.2.1.7 Z-Wave: Z-Wave is a wireless communications protocol developed

by keeping home automation as primary goal. It is a mesh network using low-

energy radio waves communicating in sub-gigahertz ISM band (915 for North

America), to facilitate the communicate among appliances. It allows wireless con-

trol of residential appliances and other devices, such as lighting control, security

systems, thermostats, windows, locks, swimming pools and garage door openers.

It has a low data rate (typically 100 kbps) with low power consumption.

2.1.2.2 Higher Layer Communication Standards

There are several higher layer communication standards available to be used with

IoT device. Some of them are described briefly below.

2.1.2.2.1 6LoWPAN The 6LoWPAN is an acronym of IPv6 over Lo-Powered

Personal Area Network (LoWPAN). The idea behind 6LoWPAN is that, the In-

ternet Protocol should be applied even to the smallest devices, allowing it to

communicate through Internet Protocol [7]. There are some special characteristics

of the LoWPANs, such as the use of small packet size, low bandwidth (20 - 250

kbps), a large number of devices, unreliable networks, longer sleep period to con-

serve energy etc. All of these characteristics are taken into account while designing
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Figure 3: Classical IP Stack Vs. 6LowPAN Protocol Stack

the 6LowPAN [8], and thus it is one of the widely used protocol alongside of the

802.15.4 hardware. Moreover, it was made to be compatible with Internet Protocol

(IP) so that it can leverage the existing widely deployed IP infrastructure without

any additional effort. The 6LowPAN can also work over classical Bluetooth [9]. In

figure - 3, the similarities between classic IP stack and 6LoWPAN protocol stack

is shown.

2.1.2.2.2 Constrained Application Protocol The Constrained Application

Protocol (CoAP) is a specialized web transfer protocol designed with a goal to be

used in constrained nodes and constrained (e.g., low-power, lossy) networks. CoAP

provides a request/response interaction model between application endpoints, sup-

ports built-in discovery of services and resources, and includes key concepts of the

Web such as URIs and Internet media types. CoAP is designed to be used in

constrained environments to allow the devices to use HTTP for integration with

the Web [10]. Thus, the CoAP is designed to leverage existing web infrastructure

available on top of the existing IP infrastructure. There are some key features of

CoAP [10] such as, usage of UDP protocol with optional reliability with unicast

and multicast support, support for web protocol (HTTP), asynchronous message

exchanges, low processing overhead, support for URI, provision for security etc.
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2.1.2.2.3 LoRaWAN LoRaWAN defines the communication protocol and sys-

tem architecture for the LoRa powered network. This gives the IoT device to

communicate with each other over a very long range utilizing very low power. The

trade-off is that the data-rate is also very low. Devices in the network transmit

data whenever they have something to send. LoRaWAN architecture dictates how

the device joins a particular network, subscribes to a certain channel topic and

how it can be incorporated with cloud applications [11].

2.1.2.2.4 Message Queue Telemetry Transport The Message Queue Teleme-

try Transport (MQTT) protocol is an application layer protocol designed for

resource-constrained devices, running on top of TCP. Although HTTP also runs

on top the TCP, the MQTT enjoys a less overhead than the HTTP. The reliability

of messages in MQTT is taken care by three Quality of Service (QoS) levels (QoS

0, QoS 1, and QoS 2). While QoS 0 is the best effort delivery, QoS 1 or QoS 2

guarantees the reliable data transfer [12].

2.1.2.2.5 Micro Internet Protocol The Micro Internet Protocol or uIP is

a software stack for connecting with standard TCP/IP stack. It was designed

to be suitable for resource constrained system and thus only implements four of

the basic protocol in the standard TCP/IP protocol suite (ARP, IP, ICMP, TCP).

The code size and RAM requirements of uIP is an order of magnitude smaller than

other generic TCP/IP stacks by leveraging the event-d programming model [13].

Application layer protocols such as HTTP, FTP or SMTP can be implemented as

an application running on top of uIP.
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2.1.3 Standard Description Language

There are a few description language available for IoT devices. They are described

in the following text.

2.1.3.1 Sensor Model Language

Sensor Model Language (SensorML) is an Open Geospatial Consortium standard

[14]. SensorML provides standard models and an XML encoding for describing

sensors and measurement processes. It exposes the sensor as a web resource and

provides the endpoint to execute remote functions on the sensors. Therefore,

SensorML process models are functional models of a sensor system and related

observation data processes [15]. As SensorML can describe work-flows, it can be

used just like BPEL for implementing complex sensor system.

2.1.3.2 Sensor Markup Language

The Sensor Markup Language (SenML) is an open standard [16] for representing

simple sensor measurements and device parameters using JSON. The standard

defines several key attribute for a sensor device. One drawback of SenML is that

it is target mainly for transmission of data, instead of describing the sensor itself

(e,g - capabilities). SenML is lightweight and is designed targeting the limited

capabilities of IoT devices, hence, the devices can easily encode measurements.

Parsing SenML encoded data is very easy as it is implemented using JSON, thus

making it efficient for the constrained devices [17].

2.2 Virtualization

In this section we provide some background on the key enabler technology for the

cloud computing, that is the virtualization. In the following section we start by
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providing general definition, then move to traditional virtualization. We describe

in brief the key concepts behind the traditional virtualization. Then in the fol-

lowing section we focus on the IoT virtualization followed by advantages of it to

finish our brief description on the virtualization technology.

2.2.1 General Definition

Virtualization, is the use of an encapsulating software layer that surrounds or

underlies an operating system and provides the same inputs, outputs, and behavior

that would be expected from physical hardware [18]. The software that performs

this is called a Hypervisor, or Virtual Machine Monitor (VMM). This abstraction

means that an ideal VMM provides an environment to the software that appears

equivalent to the host system, but is decoupled from the hardware state. The major

advantage of virtualization is the efficient usage of hardware resources. Through

virtualization multiple application running on same hardware is isolated from each

other and have the perception of using the hardware exclusively. Thus increasing

the overall resource utilization and cost efficiency. And because of these benefits

it is one of the key enabler technology on which Cloud computing relies on. There

are many types of virtualization available, such as system/node virtualization,

network virtualization, database virtualization, storage virtualization etc. In this

thesis we are interested in node level virtualization. Hence, our focus is only on

system/node virtualization.

2.2.2 Traditional Virtualization

In traditional virtualization the typical resources that are virtualized, in order to

provide infrastructure to the users, are computing (CPU), storage, network, mem-

ory. These virtualized resources are then put together as a virtual machine (VM).

It can also be thought as a logical unit that allows time and resource sharing of
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host machine by partitioning them into dedicated execution environments [19]. So,

typically, a host system (i,e - physical device) contains several VMs. Applications

running within a VM has no knowledge of where the VM is placed within a data

center. Full Virtualization, Para Virtualization and Hardware Assisted Virtualiza-

tion are the three possible virtualization methods [20] used for traditional system

virtualization. They are described briefly below -

2.2.2.1 Full Virtualization

In full virtualization a guest OS is fully decoupled from the underlying hardware by

the virtualization layer. No modification to the guest OS is required in this type

of virtualization and hence can be installed above the hypervisor directly. The

hypervisor provides hardware resources to each guest OS [21]. However, whenever

the guest OS calls a sensitive instruction, the hypervisor traps the instructions and

return the proper result via emulation. Full virtualization provides best isolation

and security for virtual machines and simplifies migration and portability as the

same guest OS instance can run virtualized or on native hardware. Examples of

full virtualization products are VMware’s virtualization products and Microsoft

Virtual Server [20].

2.2.2.2 Para-Virtualization

In Para-Virtualization, the guest OS is modified for the hypervisor. It refers to

communication between the guest OS and the hypervisor to improve performance

and efficiency [20]. In Para Virtualization the guestOS is modified in order to make

hypercalls instead of containing sensitive instructions. Para-Virtualization is much

easier to implement than full virtualization, however it has the worst compatibility

and portability among the virtualization methods. The open source Xen project

is an example of para-virtualization [20].
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2.2.2.3 Hardware Assisted Virtualization

Hardware Assisted Virtualization enables efficient full virtualization by using help

of hardware capabilities, primarily from the host processors. Privileged and sen-

sitive calls are set to automatically trap to the hypervisor, removing the need for

either binary translation or para virtualization. The guest state is stored in Vir-

tual Machine Control Structures (also known as Pages). Processors with these

hardware assist features such as Intel VT and AMD-V, can leverage the hardware

assisted virtualization and bring best of both worlds, that is - guest OS portability,

performance and reduced complexity of hypervisor [20].

2.2.3 IoT Virtualization

IoT virtualization differs from the traditional virtualization. In traditional virtual-

ization, the host system is a general purpose computing system able to run several

different application based on users need. In the context of IoT, IoT devices are

specific computing device, generally geared towards performing specific functions

(e,g - sensing or actuation). Hence, in IoT virtualization of the device means vir-

tualization of its services or capabilities instead of the resources within the IoT

device itself. Concretely, it is the sharing of the underlying device’s capabilities

by allowing execution of multiple concurrent application [22]. The key differences

between traditional virtualization and IoT virtualization are listed below -

• The first difference is that a virtual machine (VM) allows the sharing of its

resources (e.g., computing and storage) of the host machine, on the other

hand, a virtual IoT (vIoT) allows sharing its capabilities (e.g. temperature,

light, humidity, firefighting) by executing multiple application tasks concur-

rently. The key difference is that a VM aims at sharing the host machine

resources, whereas a vIoT aims at sharing the capabilities of the host IoT
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device [22].

• The second difference is that multiple heterogeneous VMs (in terms of oper-

ating systems) can be simultaneously deployed on the same host. However,

vIoTs are tightly coupled with their OS/middle-ware. For example, a sen-

sor cannot support Contiki based vIoT, TinyOS-based vIOT and/or Lego

MindStorm based vIoT at the same time. [22]

• The third difference is that in traditional virtualization the VMs are ad-

dressed by internet protocol (IP) addresses. This is due to the fact that,

IP is dominant connectivity technology in data centers. However, in IoT

domain, due to the nature of heterogeneous connectivity technologies, no

single connectivity technology dominates. Thus, there is no standard for

addressing a vIoT. The general norm is to assign a unique ID to the vIoT

for addressing purpose [22].

• The fourth difference is that for a VM, there are no power/energy-related

issues, whereas a vIoT inherits these issues from the constrained host IoT

device. The always-on/always-available concept is not applicable to the IoT

world [22].

• The fifth difference is that for VMs, there are already many open source and

proprietary solutions (e.g., KVM and VMware) exists. However, very few

such solutions exists in case of vIoT (e,g - JVM based Preon32 ) [22].

• The sixth difference is that for VMs, location is not issue and hence, it is

possible to maximize the resource utilization to the fullest. Where for vIoT

location is important and thus sometimes it may not be possible to maximize

the resource utilization due to the conflicting location requirement from the

application [22].
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In the context of IoT there are two types of virtualization, Network virtualiza-

tion and Node virtualization.

2.2.3.1 Network Virtualization

Virtual IoT network is formed by a subset of IoT nodes of an IoT network, with

the subset dedicated to a certain task or an application at a given time [23]. With

network virtualization, it is possible to create network slices which are owned by

a particular application exclusively and thus provides network isolation. In this

thesis, we do not consider network virtualization.

Typical architectures for network virtualization is shown in figure - 4(b) and

(c).

2.2.3.2 Node virtualization

Node virtualization refers to the concurrent execution of tasks from multiple ap-

plications by the same IoT node [24]. It allows multiple applications to run in

isolation concurrently in a single physical IoT device. Although, virtualization

is common in classical computing node, it is not common in the context of IoT.

In classical setting the virtualized node, also known as virtual machine (VM) is

a general purpose computing resource that can be configured to perform several

tasks. A variety of well known virtualization technique exists which provides the

underlying resources from several vendor in an uniform way. However, in IoT

setting, the physical device performs a specific sets of tasks and the methodology

varies on vendor to vendor. This make it very difficult to virtualize IoT devices.

Although there are some IoT device which can provide such virtualization (e,g -

Preon32 ) out of box. In this thesis, we focuses on the node virtualization as the

key technology to enable sharing of underlying physical IoT resources. General

architecture for Node virtualization is shown in figure - 4(a). It is to be noted
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there are few works done in robot virtualization, [25] is one of such works.

2.2.3.3 Advantage and Disadvantages of Node Virtualization

There are several advantages and disadvantages of node virtualization compare to

middleware solutions. Table - 1 lists these advantages and disadvantages.

Focus Point Node Virtualization Middleware Solution

Resource Utilization Increased resource utilization
possibility of under utilizing the
device by running a single task

Transparency from application’s
point of view

Achieves device transparency. The
application are given to exclusive
virtual IoT device that they can
control or access

Achieves data transparency. The
application is given access to data,
which they can manipulate.

Contextual Information
Easy to attach meta data (i,e con-
textual information)

Some sort of processing is re-
quired, thus is more complex

Less number of Transmission
Virtual IoT device only transmits
when the conditions set by the ap-
plication is met

Device has to transmit at a fixed
interval to allow the middleware
to pickup the data, thus incurring
higher transmission number

Application’s requirement fulfill-
ment

The application requirements are
bounded by the underlying IoT de-
vice’s capabilities

The requirements are bounded by
the middleware’s feature

Coupling with underlying infras-
tructure

High coupling Loose coupling

Applicability Not applicable to all IoT device Applicable to all IoT devices

Table 1: Advantages and disadvantages of Node Virtualization

In comparing resource utilization, node virtualization achieves more than the

middlewares. In node virtualization, multiple application can run on top of a single

device, thus utilizing the IoT device efficiently. Where in the case of middleware,

only a single task is running within an IoT device.

The node virtualization gives the application a virtual IoT device, which be-

haves just like the actual physical device. This gives the application a transparent

device view, which it is able to control or access. On the other hand, middle-

ware solution provides only data to the application, the application has no or very

limited control over the underlying IoT device.

As the virtual IoT device runs within the actual physical IoT device, it has

access to all the meta information related to the physical device. This makes

it more convenient to add many contextual information (such as date, location,

battery level etc.) to the actual data. This annotation is very useful in attaching

context to the data. In case of middleware solution, there is some kind of processing
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required to annotate the data. This processing is rather complex (such as location

information lookup, additional query for battery level etc.) comparing to the node

virtualization case.

As we pointed out earlier, the virtual IoT device has the same behavior as the

physical IoT device, thus it is possible for the application to express its requirement

which will be directly satisfied by the virtual IoT device. For example, having

different sample rate, different reporting time etc. can be met by the virtual IoT

devices. This leads to efficient transmission of data, as the data is transmitted only

when the application’s requirements for it are met. On the other hand, to allow

the middleware to collect data from the device, the device needs to report data at

a fixed interval. And if the application at that given moment is not interested in

such data, these transmissions yields inefficiency.

If the application asks for data, for example, every five (5) seconds. And the

middleware is capturing data from the device, lets say, every thirty (30) seconds,

then middleware cannot satisfy the application requirement. It has to either fail the

request or provide staled data. It does not matter even if the device is able to fulfill

the application requirement, the requirements are bounded by the middleware’s

features. On the other hand, node virtualization gives exactly what the application

wants. And it is bounded by the device’s capability.

For middleware solution, it is easy to add new devices as all it takes is to update

the protocol converter, which captures the data from the new device and normalizes

them before storing to the database. This provides a fairly loose coupling between

the middleware and the IoT device or the infrastructure. However, when using

node virtualization, due to the heterogeneity of the IoT devices, the vendor’s

proprietary control interface should be mapped to the IoT IaaS. This creates high

level of coupling between the IoT device or infrastructure and the IoT IaaS.

For node virtualization, it is generally not applicable to all IoT devices, espe-
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cially to those who operate on ultra low power range (e,g - running on coin cell

battery and expected to run several years). However, as the middleware is mostly

concerned with data, it is applicable to all types of IoT devices.

• Efficient resource utilization: Each of the applications running within the

physical IoT device can perform different task and thus it has no different

from. running several physical IoT devices. This allows the efficient usage

of the IoT device.

• Cost efficiency: Because same physical IoT can be virtualized to provide

several virtualized IoT device on top of it, the need for several IoT device

within a defined environment is reduced, thus leading to cost efficiency.

• Transparency: The virtualized IoT devices are transparent to the IoT ap-

plication deployed within the cloud and appear as the actual physical IoT

device to the application.

• Contextual Information: it is natural to add contextual information to the

data at the time of the data creation [26]. As virtualized applications are

running within the actual IoT device, they have the access to all the infor-

mation available to the actual physical IoT device. This gives an easy way

to annotate data or attach contextual information to the data.

• Less number of Transmission: The virtualized IoT devices executes the appli-

cations as per the IoT applications requirements. Where in the middle-ware

virtualization technique, the data is replicated to the IoT applications de-

ployed in the cloud. In the latter way, the underlying device has to send data

at every fixed interval, leading to possible redundant transmission. Where

in the former way the virtualized application knows when to send the data.

This leads to less number of transmission overall [26].
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Figure 4: General architecture used for IoT virtualization [4]

• Energy efficiency: Later, it will be shown that Node Level Virtualization in

fact also achieves energy efficiency in contrast to running several physical

IoT devices.

2.3 Cloud Computing

In this section, we present a general overview of Cloud Computing. We start with

its definition followed by a specific focus on the Infrastructure as a Service (IaaS).

The IaaS is discussed further in brief. Finally, the description is concluded giving

the types of cloud and the advantages of using it.

2.3.1 Definition

Cloud computing has been defined in several ways. NIST (US National Insti-

tute of Standards and Technology) defines it as “model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable comput-

ing resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service

provider interaction” [2]. Another way of thinking cloud computing as a “large

pool of easily usable and accessible virtualized resources that can be dynamically

reconfigured to adjust to a variable load (scale), allowing for an optimum resource
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utilization. This pool of resources is typically exploited by a pay-per-use model

in which guarantees are offered by the infrastructure provider by means of cus-

tomized SLAs” [3]. The definition provided by the NIST [2] covers all essential

characteristics of Cloud Computing and hence widely accepted as the definition of

Cloud Computing.

There are three layers in Cloud computing, namely SaaS, PaaS, and the IaaS.

Software as a Service (SaaS) is the highest layer in the cloud. In this layer,

a software vendor can offer a hosted set of software (running on a platform and

infrastructure) that the user does not have to own but rather pay for some element

of utilization [27]. Examples of SaaS are Google Docs, Salesforce etc.

The PaaS is defined as an enabler for the service providers to develop and deploy

their services onto the cloud without worrying about underlying infrastructure [2].

It also acts as an abstraction level on top of virtualized infrastructure, provisioning

resources on demand during execution of running services [3]. Examples of PaaS

are Microsoft Azure, Cloud Foundry etc.

Infrastructure as a Service (IaaS) is described in details in the following sec-

tions.

2.3.2 IaaS

In this section, we provide a definition of IaaS, then we discuss the layers within

an IaaS briefly. Finally, we conclude the description on IaaS by providing some

examples of IaaS.

2.3.2.1 Definition

The capability provided to the consumer is to provision processing, storage, net-

works, and other fundamental computing resources where the consumer is able

to deploy and run arbitrary software, which can include operating systems and
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applications [2]. The consumer does not manage or control the underlying cloud

infrastructure but has control over operating systems, storage, and deployed ap-

plications; and possibly limited control of select networking components (e.g., host

firewalls).

2.3.2.2 Layers within an IaaS

The general architecture for an IaaS can be shown in figure - 5 [28]. It shows the

different layers within a typical classical IaaS. The IaaS layers are described in

brief in the following sections.

2.3.2.2.1 Physical Layer: Although not shown in figure - 5, it is the lowest

layer in an IaaS. It contains the actual physical devices. In a traditional IaaS,

this layer consists the blade server racks, storage racks, network switch racks etc.

within the data centers.

2.3.2.2.2 Virtual Machine Managers: The Virtual Machine Manager (VMM)

is also widely known as the Hypervisor. Different hypervisors, installed in the

physical devices, are contained within this layer (figure - 5(d)). The hypervisors

provides vendor-specific simple substrate, such as create, delete, suspend to ma-

nipulate VMs in a single physical device. However, as the hypervisor differs, so

does the syntax of their substrate and thus arise the need for an uniform interface

to hide the vendor specific interface. Some example of hypervisors are VMware,

Xen, KVM etc.

2.3.2.2.3 Virtual Infrastructure Management: The underlying infras-

tructure consists several VM managers in the lower layer. So, to manage the

infrastructure, the virtual infrastructure management layer provides primitives to

schedule and manage VMs across several host. As shown in figure - 5 (c), an IaaS
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might not have VI management layer and instead can provide the functionality

from the cloud management layer directly. There are some proprietary and open

source VI Manager available. For example, VMWare VSphere can only manage

and provide virtual infrastructure made up with VMWare hypervisors. While,

OpenNebula is capable of managing different hypervisors through Adapters (i,e -

an uniform interface).

2.3.2.2.4 Cloud Management: Cloud management provides the mecha-

nism to the user to create, control, and monitor virtualized resources in the IaaS.

In order to do so, a cloud interface is required (shown as the orange box in figure

- 5(b)). Additional to managing the virtualized resources, it can also some time

provide the functionality required at the Virtual Infrastructure Management layer.

Meaning, it can directly provide the primitives to schedule and manage VMs across

several hosts, and thus provide the virtual infrastructure management capabilities.

2.3.2.2.5 Cloud Consumers: The cloud users situated in this layer. They

use the cloud interface provided by the layer below and provision virtualized re-

source on demand. The typical IaaS users can be - individual users, the application

itself, other IaaS providers, and other PaaS.

2.3.2.3 Examples of IaaS

Some examples of IaaS are Amazon Elastic Compute Cloud (EC2), Microsoft

Azure, IBM Cloud, Rackspace, Google Compute Engine etc.

2.3.3 Types of Cloud

Based on who owns and uses the cloud, it can be classified as private cloud, public

cloud, and hybrid cloud [29] [30]. These are described in brief in the following
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Figure 5: A typical architecture for IaaS [28]

sections.

2.3.3.1 Private Cloud

A private cloud is generally own and used by a specific organization. It is not open

for public usage. It allows the employees with the organization to interact with

the local data centers while having the same advantages of the cloud. This type

of clouds provides performance, reliability and security [29].

2.3.3.2 Public Cloud

The clouds that is available for the general users as pay-per-use manner, typically

expressed in hours, months, year, or a long contract. It is usually owned by big

corporations such as Amazon, Google, or Microsoft. This type of clouds lacks some

control over data, network and security settings, however has full control over the

deployed application itself [29].

2.3.3.3 Hybrid Cloud

A hybrid cloud is combination of public, and private cloud, thus, combining the

advantages of both of the world. It also allows cloud bursting to take place,
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which means a private cloud can burst-out to a public cloud when it requires more

resources [30]. The main benefit of hybrid clouds is that it provides more flexibility

than both public and private clouds [29].

2.3.4 Benefits of Cloud Computing

Cloud Computing offers several important benefits. They are:

• Scalability: Virtually unlimited scalability is possible because of the massive

capacity offered by the cloud providers [31]. Services hosted on the cloud

can be easily scaled which is very useful in the event of rapid service demand

change. Typically the IaaS can support both vertical and horizontal scaling.

For example, if a service deployed on the IaaS requires more memory, it can

perform vertical scaling by providing additional memory to already deployed

instance. However, if a service needs more memory due to excessive traffic

load and thus it is better to load balance the traffic, horizontal scaling can

be also done by deploying additional instances of the service.

• Elasticity: It refers to a system’s capability of adapting to variable workload

by provisioning and de-provisioning resources in an autonomic manner [32].

The IaaS, depending on the provider, can provide elasticity to a service. On

the event on high work-load, it can automatically allocate more resource,

in order to allow the service to execute as expected even under high work-

load. On the other hand, once this sudden work-load is gone, the additional

resource that was allocated can be de-provisioned to save cost.

• Reliability: Services running on the cloud should meet several desired re-

quirements such as Quality of Service (QoS), availability, performance, fault

tolerance, etc. These requirements are regulated under the framework of

Service Level Agreement (SLA) between cloud service providers and cus-
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tomers. SLAs contain the details of the service as well as the penalty for

violations [31].

• Multi-tenancy: Cloud providers can serve multiple customers by assigning

and reassigning the virtualized and physical resources dynamically according

to demand. It facilitates resource sharing resulting in optimum resource

utilization and cost.

• On-demand self-service: Customers can provision cloud resources any time

without human interaction with the cloud service providers [30]. This is

enabled by exposing the IaaS to the Web in two folds. The first one is the

exposing the IaaS as a programmable interface (also known as Application

Programming Interface - API). The next one is to develop web interface

utilizing the programmable web interface. A concrete example is the Amazon

Web Services. It is backed by REST API endpoints (termed as AWS CLI),

a programmable interface. Leveraging the programmable interface, a web

GUI is also available.

• Pay-per-use Model: Customers are charged only for the amount of resources

they consumed. This measurement parameter can vary based on the services

offered. For instance, usage of a virtual machine (of a particular configura-

tion) per hour, number of users consuming a service, etc. [29].

• Easy access: Customers can easily access provisioned resources over network

through various types of devices.

2.4 Conclusion

In this chapter, we focused on the major technologies and concepts that are relevant

to this thesis. The chapter was started by focusing on the Internet of Things (IoT).
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A brief discussion on the IoT covering the definition, the communication standards,

and the description language was given. Then we focused on the Virtualization

covering the definition, the traditional virtualization, and the IoT virtualization.

A brief overview of the cloud computing with its definition and the IaaS was given

following the virtualization section. A general overview of the IaaS architecture was

given. The types of cloud and its advantages described in brief before concluding

the chapter.

In the next chapter, we present a motivating use case and derive the require-

ment from it. The state of the arts is then, evaluated against the derived require-

ment to see how well they fulfill the requirements.
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Chapter 3

Use case and State of the art

In order to capture the requirements of an IoT IaaS, a motivating use case is

first presented, then the requirements are derived from it. Finally, we evaluate

and summarize the current state of the arts against the requirements and draw

conclusion.

3.1 Use Case

Consider a “fire detection and notification” application (Anti-Fire) and a “smart

heating ventilation and air conditioning” (Smart HVAC) application running in a

smart home environment. The goal of the Anti-Fire application is to detect fire by

sensing environment temperature and notify the inhabitants, whereas the goal of

the Smart HVAC application is to provide a comfortable living atmosphere while

maintaining the energy-consumption as low as possible. For the Anti-Fire applica-

tion only one sensing capability is required, the temperature of the environment.

On the other hand, for the Smart HVAC application, two sensing capabilities

and two actuation capabilities are needed. By monitoring the environment’s rela-

tive humidity and temperature, the Smart HVAC application can make a decision

whether to start AC or to start heating, and thus optimize the energy savings.
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The traditional way of deploying of the Anti-Fire application is to have one

physical sensor deployed in the operating environment and the sensed data is

pushed to the application. On the other hand, to deploy the Smart HVAC applica-

tion, one physical sensor with two capabilities (temperature and humidity sensing)

and one actuator with two capabilities (AC and Heating) would be required. In the

traditional setting, thus we would require in total of two physical sensor and one

actuator (considering it provides both heating and cooling capabilities). However,

this is not an efficient approach because it will require a redundant deployment

of temperature sensing capability. A shared sensing is a more efficient approach

where the sensed data or capability is shared among the applications. This can be

approached in two ways, one by using middle-ware solution within an IaaS. In this

way, we essentially allow the sharing of sensed data among multiple applications.

Most of the middle-ware based solution focuses on this “data- centric view of the

IoT devices”. On the other hand, using node level virtualization, the physical IoT

device’s sensing capabilities are shared among the applications. In the middle-

ware based solution, the data is captured from a sensor and then replicated back

to both of the application. There is some drawback of using middle-ware based

solutions. First, they do not ensure efficient usage of the IoT device. Second, they

fail to provide resources if the requirements can not be met by middle-ware but

can be satisfied by the IoT device (e,g - two application having different sampling

rate for a given sensor). In order to overcome the second issue, many middle-ware

based solutions (e,g - [33] etc.) proposes data routing algorithms where a task

within the IoT IaaS is responsible for dispatching the data to the application and

thus can be viewed as a virtual sensor. However, if the underlying physical IoT

device is deployed with certain parameters, the middle-ware based solution must

rely on them and have to supply the staled data to the requesting application us-

ing the data routing algorithm. A concrete example is, if the physical IoT sensor
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has been programmed to send data every five (5) seconds to the middle-ware and

the requirement of the application is to monitor the data every two (2) seconds,

which is basically an arbitrary value less than the original sampling rate, the data

routing algorithm has to provide the staled data to the application. The third

issue with such solutions is the data normalization. As the middle-ware is tightly

coupled with heterogeneous IoT devices, it has to normalize the data acquired

from different vendor’s IoT device. The fourth issue is that they will be energy

inefficient. All of the middle-ware based solution relies on the fact that the un-

derlying IoT device will be sending data at a fixed interval, even though, the data

might be of no interest to the application. It will be filtered at the “virtual sensor”

component within the IoT IaaS. Finally, even if one application does not require

all of the sensing capabilities of the underlying IoT device, the IoT device must

be programmed to send all the sensed capabilities to the middle-ware. This is

because, even if one capability is not programmed to report to middle-ware, then

there will be no way to active it later without performing sensor reprogramming,

which can lead to downtime of currently deployed applications.

In the light of the above discussion, it is clear that IoT device level virtualization

is indeed more efficient in terms of resource utilization [4]. This thesis focuses on

the latter.

3.2 Requirements

For the Anti-Fire, the cloud IoT application requires an IoT device in the smart

home environment to sense the temperature of the environment and report it

back to the cloud IoT application. And for the smart HVAC cloud application, it

requires an IoT device capable of sensing the temperature, and humidity as well

as control the temperature of the environment by heating or cooling. An efficient

34



approach for provisioning the IoT application in the physical IoT device is to

have two concurrent application deployed within the physical IoT device. This is

because both applications have a subset of overlapping capabilities requirements

and thus it is more efficient to use node level virtualization to create two virtual

IoT device on top of the physical IoT device.

Hence, our first requirement is the sharing of sensing capabilities

via node virtualization due to its efficiency in resource utilization.

Now considering that we have node level virtualization to create virtual IoT

devices, we still need to know if there is a physical IoT device within the IoT

IaaS which can fulfill the cloud applications requirements. In order to solve this

issue, the information regarding the physical IoT device must be available to the

IoT IaaS. Publication is a popular mechanism to allow such information to be

published and stored in a database (commonly termed as a repository). Another

mechanism, the discovery, is required to match the supplied requirements against

the supported capabilities and parameters to find out the physical IoT device which

can fulfill the cloud IoT application’s requirements and virtualize it.

So, our second requirement is the need of mechanisms for the pub-

lication and discovery of the capabilities offered by IoT devices.

Now for the two application, the smart HVAC application may be difficult

to deploy as a single IoT device. This is because it consists both sensing and

actuation task and the underlying IoT device may be of one type. For example,

within the IoT IaaS, there may be a sensing device and an AC, and a heater. In

order to provision such application, all of the IoT devices must be virtualized and

orchestrated to make such application possible to deploy over the IoT IaaS.

Based on the above discussion, our the third requirement is an

orchestration mechanism.

In order to address the heterogeneous devices at the physical layer, a common
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technique is to use adapters. The Adapter is a component which maps the pro-

prietary interface with a common unified interface and thus solves the issue of

handling heterogeneous. However, we still need to define a high-level interface for

the Adapter component, such that it can support the primitives (create, delete)

and maps that on to the proprietary interface of the vendor hardware.

Finally, in order to access and provision a virtual IoT device, the cloud user

must be provided with a high-level interface. This interface is required to expose

the IoT IaaS to the users (e,g - application, the PaaS). This interface must be

designed so that it can support the creation, deletion and orchestration mechanism

transparently within the IoT IaaS.

Finally, the fourth and last requirement is the need for two sets

of high-level interfaces. One set of high-level interfaces are required

for accessing and managing the heterogeneous IoT nodes in a uni-

form manner and another set of a high-level interface is required for

interacting with the IoT IaaS users (e.g. PaaS).

It is to be noted that, although security is a major concern in IoT domain,

this thesis does not cover the security aspect. However, there are several lay-

ers of security available ranging from symmetric key cryptography (PHY/MAC)

to asymmetric key cryptography (application protocols) based on key exchange

protocols [34].

3.3 State of the Art

In the subsequent sections, we first evaluate the current state of arts and draw

summary from it focusing on full-fledged IoT IaaS that were proposed in the state

of art. Then, we evaluate and summarize the proposed IoT frameworks in the

current state of art. It is to be noted that, some of the requirements were not
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covered by any of the proposed IoT IaaS so far. Hence, these requirements are

discussed in a section of its own.

3.3.1 State of the Art of the Proposed IoT IaaS

There are a few full-fledged IoT IaaS, that was proposed in the state of the art. The

IoT IaaS are the SenIaaS [35], the Cloud4Sens [36], and the Early Architecture for

WSN Virtualization [22]. We evaluate each of the full-fledged IoT IaaS focusing

on the derived requirement in the following sections.

3.3.1.1 SenIaaS

In [35], which is an extension to [37] and [33], the authors presented an IoT IaaS

architecture which relies on virtualization technologies according to their claim.

The novelty of the proposed architecture is the presentation of a software com-

ponent which exposes the remote sensor as a native resource within a VM. The

VM is deployed within the IaaS, just like traditional IaaS. Hence, the architec-

ture proposes an IoT IaaS extending upon the traditional IaaS. In order to extend

the IaaS, the architecture proposes a modified Compute Node architecture that

includes additional component to allow the exposure of the remote sensor as a

software component within the VM. Also, they claimed that they use a novel

routing algorithm to route the remote sensor data from the sensor to appropriate

software component to achieve efficiency. As several Compute Node can request

the data from different remote sensor, thus the algorithm routes the data to the

appropriate remote sensor accordingly. In the proposed architecture, the remote

sensor device is sending the sensed data to a component named Listener Broker.

The main functionality of the Listener Broker is to route the sensed data to appro-

priate Listener component. Each of the Listener component is receives data from

a remote sensor. Hence the mapping between the Listener and the remote sensor
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is 1:1. However, each remote sensor can provide data to several Listener com-

ponents. Thus making it a 1:m mapping with remote sensor and Listener. Each

of the Compute Node has its exclusive virtualized Listener component. Hence,

the author identified the Listener component as primary point of virtualization

(PPoV), as it is the logical representation of remote physical sensor within the

IaaS. Within a classical VM the remote sensor representation (i,e - the Listener

component) is exposed as a local resource by the means of a software compo-

nent. This software component is identified as point of virtualization (PoV) by

the authors. There is a 1:1 mapping with PPoV and PoV by the means of a com-

ponent named Jumper. The Jumper essentially routes the data from the Listener

component to the software component within the deployed VM. The application

deployed within the VM can use the exposed software component within the VM

to read the remote sensor just like local resource within the VM. The SenIaaS uses

POSIX I/O standard interfaces for communicating with the remote sensors, which

author claimed as virtual sensors. The authors uses POSIX read(), write() API to

access the software component within the VM which represents the PPoV within

the VM. A read() operation on the software component within the VM triggers

a read operation on the Listener component which is bridged with the software

component via the Jumper. The read operation on the Listener allows it to push

the data to software component with the help of Jumper.

In the following sub sections, we evaluate the SenIaaS IoT IaaS in contrast to

the derived requirements.

3.3.1.1.1 Sharing Sensing Capabilities via Node Virtualization Although

the authors claimed that they have proposed their architecture utilizes node level

virtualization, we argue that, it is still a middle-ware based solution. From the

previous discussion of SenIaaS, it is clear that, the proposed architecture uses a
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middle-ware software component to present a “virtual sensor” within the IaaS.

The Listener, the Jumper and the software component within the VM contributes

all together to provide a notion of “virtual sensor”. It is clear that the remote sen-

sors are not virtualized at all, rather the data received from them are duplicated

and routed to the appropriate VM with the help of the aforementioned software

components. The proposed architecture does not use node level virtualization.

Thus, it does not yields cost efficiency at the IaaS level as well as it does not meet

our first requirement.

3.3.1.1.2 Publication and Discovery of IoT Capabilities The proposed

SenIaaS do not tackle the issue of publication and discovery. Also, it does not

describe what and how the description language are used. So, we conclude that,

it does not met our second requirement.

3.3.1.1.3 Interface for Accessing and Managing the Heterogeneous IoT

Nodes in a Uniform Manner The proposed architecture utilizes POSIX I/O

standard API for accessing the “virtual sensors”. However, POSIX I/O is a pure

data acquisition interface which does not cover the control part. Moreover, the

inherent meaning of the data interface depends on the application itself as no stan-

dard is enforced on the content of the POSIX data API. Finally, the authors do

not describe how the primitives such as create, delete virtual sensor, will work on

the proposed architecture. Hence, we conclude that it does not provide the inter-

face for accessing and/or managing the underlying physical IoT devices. Finally,

in SenIaaS no cloud access interface is proposed.

It is clear that it does not describe how the uniform interface is provided by

the SenIaaS architecture.
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3.3.1.2 Cloud4Sens

In [36], the authors proposed a cloud architecture, the Cloud4Sens, with a goal

to leverage both the data centric view of the IoT device and as well as the device

centric view of the device. By the data centric view, the authors meant the middle-

ware based solution where instead of virtualizing the underlying device itself, the

data produced by it is replicated and distributed. In this view, the application

do not have any knowledge of how the data was originally produced or by whom.

The application generally does not have any control over the underlying IoT in-

frastructure. On the other hand, it also tries to leverage the device centric view

of the IoT device. In this view, the authors meant the usage of virtualized sen-

sor. The advantage of this view is the application can exert exclusive control over

the virtualized IoT device and have full control over it, just like using any other

physical IoT device. The proposed architecture contains a software component,

the Adapter, which captures the data from remote sensing infrastructure. It is a

common technique to use the Adapter to provide uniform interface for accessing

heterogeneous devices. However, in this case, it acts as a protocol converter. The

Adapter component receives the data in different format from different sensing

infrastructure and normalize them to a common format. This normalized data is

then stored in a database, so that the data can be later transfer to the application,

if requested by the application. The proposed architecture uses Sensor Web En-

ablement (SWE) abstraction layer to expose the virtualized infrastructure. The

SWE abstraction layer (SAL) is compliant with the OGC-SWE standard, and in-

cludes a set of XML-based languages and Web service interface specifications to

facilitate the discovery, exchanging, and processing of sensor observations. The

SWE standard is based on WSDL and thus follows a SOA architectural style. The

SWE abstraction layer (SAL) provides a consistent interface for accessing the data

from the underlying sensing infrastructure to the IaaS or the PaaS. It is used in
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conjunction with XMPP to provide an interface to the application, and/or the

user. XMPP is a protocol suitable for event dissemination and presence detection.

The Cloud4Sens is able to act as a middle-ware based solution (or the data centric

view of IoT device) by using a database to store the data and distribute it later.

By using the Adapter, the author claims that their architecture uses the virtual-

ization techniques (i,e - node level virtualization) to virtualize the whole sensing

infrastructure to the application. This way, the author claims that the Cloud4Sens

supports the device centric view.

In the following sections, we evaluate the Cloud4Sens against the derived re-

quirements.

3.3.1.2.1 Sharing Sensing Capabilities via Node Virtualization In the

device centric view of the Cloud4Sens, the authors proposed a way to virtualize

the whole IoT infrastructure using Sensor Web Enablement (SWE) abstraction

layer. This SWE abstraction layer (SAL) is a software component based solution

within the IaaS.

Thus, this proposed work does not meet our first requirement, as it does not

use node level virtualization.

3.3.1.2.2 Publication and Discovery of IoT Capabilities In the proposed

architecture the SAL relies on XML-based language and WSDL to expose the

functionality of the underlying IoT infrastructure. It follows a SOA architectural

style. While this is acceptable for the proposed architecture as they are performing

the publication and discovery from the middle-ware. But, this methodology is not

efficient for resource constrained devices. Moreover, the author does not describe

any concrete discovery mechanism. Hence, although the proposed architecture do

contains intention in the right direction, it fails to fulfill our second requirement.
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Figure 6: An architecture for providing virtualized IoT infrastructure

3.3.1.2.3 Interface for Accessing and Managing the Heterogeneous IoT

Nodes in a Uniform Manner Although the Cloud4Sens uses XMPP for event

handling and presence management, it is not clear how the virtualized IoT de-

vices are managed or accessed from the user or the application. The proposed

architecture does not tackle this issue at all.

Hence, it does not met our fourth requirement as well.

From the above discussion it is clear that the proposed Cloud4Sens do not met

any of our derived requirements completely.

3.3.2 An Early Architecture for WSN Virtualization

The proposed architecture in [4] provides a means to provide virtualized WSN

to the application. The architecture follows the same architectural layering as in

the traditional IaaS, as pointed out by [28]. The proposed architecture is consists
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of four layers - the Physical Layer, the Virtual Sensor Layer, the Virtual Sensor

Access Layer, and the Overlay Layer. The author categorized the underlying IoT

devices based on three roles, namely, Type A sensors, Type B sensors, and the

Gateway To Overlay (GTO) node. The Type A sensors are resource constrained

IoT device and not capable of performing the function of GTO. The Type A devices

are also not capable of performing node level virtualization. The Type B sensors

are more capable sensors which can perform the GTO translation by themselves.

The GTO is a function which provides a translation mechanism, so that the less

capable IoT device can be exposed to the application overlay. This function is only

available on a capable IoT device (i,e - Type B devices) and used by less capable

IoT devices (i,e - Type A devices). The Type A, and the Type B devices reside in

the Physical Layer. Various information regarding the physical devices are stored

in the repository. So, that it can be matched later with the application’s require-

ments. The authors express that somehow, the out of band communication (OOB)

with the underlying physical sensor and the repository, allow the sensor devices

to publish these information to the repository. The author uses SenML combined

with JSON as the description language. The proposed architecture use node level

virtualization on the capable IoT device. The virtualized IoT devices are logically

presented in the Virtual Sensor Layer. The Virtual Sensor Access Layer only con-

tains the Sensor Agent component. It exposes the virtualized and non virtualized

IoT device situated within the Physical Layer and the Virtual Sensor Layer to the

upper layer, the Overlay Layer. The main goal of this Sensor Agent is to map a set

of uniform data interface Di to the underlying proprietary interface PDi and map

another set of uniform control interface Ci to the underlying proprietary control

interface PCi. Hence, the sensor agent is responsible for exposing the underlying

devices to the application using two sets of interfaces. Finally, the Overlay Layer

consists of the independent application overlay. This layer is able to serve the
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requesting application a dedicated application overlay for accessing the underlying

IoT device. The application can provision a new overlay network and thus achieve

virtualized WSN. The WSN virtualization is created with the virtual sensors from

the Virtual Sensor Layer via the Sensor Agent.

In the following subsequent section, we evaluate the architecture against the

requirements.

3.3.2.0.1 Sharing Sensing Capabilities via Node Virtualization [4] is

one of the few examples that meet our first requirement. In this proposed archi-

tecture, the node level virtualization was achieved by reprogramming the wireless

sensor network and thus reconfigure them to run concurrent applications.

3.3.2.0.2 Publication and Discovery of IoT Capabilities In the proposed

architecture, the authors used OOB communication for facilitating the publishing

of information regarding the physical device. Although this is very close to meeting

our requirement, the authors did not go into details how the publication will work

within the IoT IaaS and assumes that the publication of IoT devices will be already

completed when they are deployed in the IoT IaaS. Hence, we conclude that it does

not meet with our second requirement completely.

The author uses SenML combined with JSON by [4], which meets our goal

for using lightweight description language for IoT devices. Hence, it did meet the

requirement for using description language suitable for IoT device.

3.3.2.0.3 Interface for Accessing and Managing the Heterogeneous IoT

Nodes in a Uniform Manner In the proposed architecture, two sets of uniform

interface is proposed for hiding the underlying heterogeneous nature of IoT devices.

One set is for accessing the data and another set is for managing the device itself.

Although this work is the most well defined and complete in terms of defining a
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uniform interface for the physical IoT device compared to other works, it does

not define the primitives [28], that is, the minimal set of operations required for

creating, and deleting virtual IoT nodes. Moreover, how the virtual IoT device is

created is not defined in the proposed architecture. Hence, we conclude that, it

also did not meet our fourth requirement.

3.3.3 Summary of the State of the Art of the Proposed

IoT IaaS

Table - 2 shows the summary of meeting the requirements against the proposed

architecture. A “✓” means that the corresponding requirement was meet by the

proposed architecture. A “*” means that the proposed architecture did not meet

the requirement at all.

Requirements
State of the Arts

SenIaaS Cloud4Sens

WSN Vir-
tualization
Architec-
ture

[35] [37] [33] [36] [22] [4]
Node Level Virtualization * * * * ✓ ✓

Publishing Mechanism * * * * * *
Discovery Mechanism * * * * * ✓

Description Language * * * * * ✓

Orchestration Mechanism * * * * * *
Minimum Uniform Interface * * * * * *

Cloud Access Interface * * * * * *

Table 2: Current State of the arts of the proposed IoT IaaS fulfilling the derived
requirements
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3.3.4 State of the Art of the Framework that can be used

in IoT IaaS

Many works on IoT focuses on the framework which provides a specific solution

to a problem. Some of these frameworks are designed with IoT IaaS in focus

and aligned with our requirements. We evaluated two such frameworks. One is

the “Framework for increasing dependability of IoT device using virtualization”

proposed in [38]. And the other framework focuses solely on how the publication

and discovery of the IoT devices can be facilitated in an “A RESTful Framework

for Web of Things” proposed in [39].

We evaluate each of the IoT frameworks focusing on the derived requirement

in the following sections. It is to be noted that the frameworks are not evaluated

against the node level virtualization as they are proposed as a framework and not

a full-fledged IoT IaaS. The framework may be able to use within an IoT IaaS.

3.3.4.1 Framework for Increasing Dependability using Virtualization

In [38], the author proposes a framework for the sensor to increase the depend-

ability of the IoT application. First, it is assumed by the framework that the

dependencies of the IoT application are known at before deploying the IoT ap-

plication. This way, it is possible for the framework to map the dependencies of

the application to a redundancy model. A redundancy model dictates how the

redundancy of underlying IoT device is handled. Taking all of these into account,

the proposed framework uses the redundancy model and replaces a failed Virtual

Service with another suitable Virtual Service. The novelty of the work is that it

can sustain up to a certain level of failure of IoT device within the IaaS efficiently

by utilizing virtualization. It is assumed by the framework that the capabilities

of IoT device will be somehow present within a database. The redundancy model
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knows which are the compatible underlying IoT device and hence can switch from

a Virtual Service to another one if the current IoT node fails. The overall mech-

anism is controlled by the Virtual Service Manager within the framework. The

framework can sustain 40% physical node failure with more than 90% recoverabil-

ity. However, after 40% the framework cannot successfully recover and hence the

recoverability goes down as the shortage of underlying operational physical IoT

device is slowly approached.

In the upcoming sections, we evaluate the framework against the requirements.

3.3.4.1.1 Publication and Discovery of IoT capabilities In the frame-

work, it is assumed that the capabilities of IoT device will be somehow present

within a database. And the redundancy model somehow knows which are the un-

derlying physical devices that can replace each other by fulfilling the application’s

requirement. Hence, the framework does not focus on the publication and discov-

ery mechanism. Thus, we conclude that the framework does not meet the second

requirement.

3.3.4.1.2 Interface for Accessing and Managing the Heterogeneous IoT

Nodes in a Uniform Manner The framework increases dependability of IoT

applicable by switching to new virtualized node when one node fails. But it does

not describe how this switch is made or how the new virtualized nodes are created

or accessed. Hence, we conclude this does not met our fourth requirement as well.

3.3.4.2 A RESTful Framework for Web of Things

In [39] the authors focus on the issue of exposing IoT node as a web service. The

work focuses on the exposing of a Virtual Sensor properties using URI resources,

and mapping them in a RESTful framework. This involves modeling of a Virtual

Sensor as a connected graph of properties. This graph contains all the unique
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resource identifier (URI) relative to the actual virtual sensor itself. This gives a

very good way to model a virtual sensor in RESTful paradigm. For discovering a

resource using URI, the framework leverages regex, a well-known pattern matching

technique, to match a set of URI or sub URI. Hence, the novelty of this work is it

applies a systematic way with the help of the regex and the RESTful paradigm to

access the underlying Virtual Sensor. Several separate tools were developed by the

authors (Javascript and java libraries) to access the Virtual Sensor. These tools

provides the application programming interface (API) to the application. The

APIs provides a way to access the Virtual Sensor properties in a transparent and

easy way from the application by leveraging the framework. The work assumes

the Virtual Sensor is a middle-ware component within IaaS.

3.3.4.2.1 Publication and Discovery of IoT capabilities The modeling

of the resources exposed by the virtual sensor using the RESTful paradigm is well

done. However, instead of addressing how the publication and discovery of such in-

formation will take place, the author resorts to developing separate libraries in Java

and Javascript programming language. This leads to “do-it-yourself” RESTful ap-

proach with no provision for interoperability [40], as the mechanism for publishing

and discovery not defined but the resource endpoint is well defined. Hence, we

conclude it does not fully met our second requirement.

3.3.5 Summary of the State of the Art of the Frameworks

that can be used in IoT IaaS

Table - 3 shows the summary of meeting the requirements against the proposed

frameworks. A “✓” means that the corresponding requirement was met by the pro-

posed framework. A “*” means that the framework failed to met the requirement

at all.
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Requirements
State of the Arts

Framework For
Increasing De-
pendability using
Virtualization

A RESTful Frame-
work for Web of
Things

[38] [40]
Publishing Mechanism * *
Discovery Mechanism * *
Description Language * *

Orchestration Mechanism * *
Minimum Uniform Interface * *

Cloud Access Interface * *

Table 3: Current State of the arts of the proposed framework against the derived
requirements

3.4 On the issue of “Interface for accessing IoT

IaaS from end user”

To our best of knowledge, there is almost no literature focuses on the high-level

interface for exposing the IoT IaaS to the end user (e,g - application and PaaS).

This is partly because most of the proposed IoT IaaS focuses on how the data

should be disseminated to the application. And thus automatically assumes that

the underlying infrastructure will somehow be already deployed for the application.

However, in reality, there should be a cloud interface as pointed in the general

architecture of a classical IaaS (figure - 5. Which can be used by different cloud

users to provision the infrastructure on demand. Moreover, the interface should

be flexible enough to allow the user to define virtual IoT device spanning over

several physical IoT device transparently. For example, if the user’s application

requirements can only be met by combining services from two or more physical

IoT device, they will be virtualized and orchestrated to complete the virtual IoT

device. While, if they can be met by single physical IoT device, only it will be

virtualized and no orchestration will be required. However, from the application’s
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point of view, there will be no difference between the physical and virtual IoT

device, and it will be as transparent as like accessing a physical IoT device with

the given capabilities.

We emphasize the fact that, there is a gap in the literature focusing on this

particular requirement.

3.5 On the issue of “Orchestration”

There is significant work done for the event-driven orchestration in classical com-

putation. But the challenge becomes hard to tackle with the existing model-driven

orchestration techniques due to the fact that IoT devices are resource constrained.

Most of them (e,g - [41] and [42]) leverage technologies such as simple object

access protocol (SOAP), web services description language (WSDL), enterprise

service bus (ESB) which are not lightweight. And thus, not practical for resource-

constrained IoT device.

Moreover, the existing business process aware orchestration mechanisms are

not geared toward supporting IoT applications as pinpointed in [43]. The popu-

lar orchestration mechanism used in traditional clouds are Software Containeriza-

tion, Reverse Local Proxy and Resource Offering [44]. Software Containerization

is similar to container technology. In this methodology, all of the orchestration

component are bundled within a single package and then deployed on the cloud.

However, as pointed out earlier in the motivating use case, it may be the case

that the application is not possible to deploy in a single IoT device, hence, this

technique is not suitable for IoT IaaS. In the Reverse Local Proxy, exposes an

endpoint so the interested party can connect to that endpoint. And that endpoint

may be reverse proxied to actual service. To make reverse local proxy to work, the

endpoint must be available to all server. Given that information, it is very complex
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and hard to incorporate reverse local proxy in an IoT context as the capabilities

are not exposed as listening service, instead they are serving service. Finally, the

resource offering technique is used for scaling the VM in traditional IaaS. This is

not applicable for IoT IaaS. Generally speaking, none of the Orchestration pat-

terns like Software Containerization, Reverse Local Proxy and Resource Offering

has been designed with key functionality like IoT event management/handling in

mind, thus they fails to fulfill the requirement.

Hence, to our best of knowledge, this is one of the under-looked research topics

in the domain of IoT.

3.6 Conclusion

In this section, we first presented a motivating use case. Using that use-case we

derived the requirements for the IoT IaaS. We then reviewed the current state of

art against these derived requirements. None of the state of art was able to fulfill

all of the requirements. To our surprise, we were unable to find literature which

focuses on the issue of orchestration and cloud interfaces. Finally, we presented

two summary tables showing which of the requirements were fulfilled by which

state of the art.

In the next chapter, we present our proposed architecture, describe the associ-

ated components, and their functionality in details.
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Chapter 4

An IaaS Architecture for the IoT

In this chapter, we focus on our proposed IoT IaaS architecture. First, we provide

a general description of our proposed architecture. We then focus on a layer by

layer taking a bottom-up approach. First, we cover the Physical IoT Layer, then

slowing moving up we finish by covering the Repository. The two sets of the

interface are also discussed along the way. The lower layer uniform interface and

the cloud access interface are discussed according to the order they appear in the

architecture diagram. The interaction between various components within the IoT

IaaS is shown in brief focusing the motivating use-case presented in chapter - 3.

We conclude the chapter by showing how the proposed architecture meets the

requirements.

4.1 General Overview

The proposed architecture is shown in figure - 7. In the proposed architecture,

the Physical IoT Layer is the lowest layer. It consists of all the physical IoT

devices. On top of this layer is the Virtual IoT Layer. This layer contains the

logical representation of the virtualized IoT devices. The Physical and Virtual IoT

Management Layer provides the necessary abstraction for accessing and managing
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4.2 Physical IoT Layer

This layer contains the all physical IoT devices within the IoT IaaS. The IoT

device may have sensing and/or actuation capabilities. If real-time application

provisioning is required without virtualization, this layer provides direct access

to non-virtualized IoT devices. In real life scenario, the physical devices are dis-

tributed throughout several sets of defined geographic areas. And perform sensing

and/or actuation on that predefined environment.

4.3 Virtual IoT Layer

In this layer, all of the virtual IoT devices reside. This is more of a logical layer.

This layer provides a transparent view of the IoT device to the application as

each of the application has the exclusive control over the virtual IoT device. The

applications can access the virtual IoT device residing in this layer which was

provisioned by or for them. It is to be noted once virtualized there is no difference

between the virtual IoT device and the underlying physical IoT device from the

application’s point of view.

4.4 Physical and Virtual IoT Management Layer

This layer contains four component, Adapter, Publisher, Event Dispatcher, and a

Repository Access Engine. Each of the components is described in detail below -

4.4.1 Adapter

This component maps the uniform interface for accessing and managing the un-

derlying physical and/or virtual device to the proprietary interface of the physical

IoT device, and vice verse. For example, if a primitive (e,g - create) is called to
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virtualize a physical device, the Adapter will translate that command to appropri-

ate proprietary function and invoke them. Once the physical device is virtualized,

it will then return the result in a uniform manner.

4.4.2 Publisher

This component is responsible for publishing the Physical and/or Virtual IoT

device’s meta information to a repository. The functionality of this component can

be divided into two parts. One functionality is to normalize the properties exposed

by different vendor IoT device to a common property. Another functionality is to

decouple the location of the repository from the underlying IoT device using the

Repository Access Engine.

In order to capture the meta information regarding the physical and virtual

IoT device, a modeling of the information is required. We propose two terms for

modeling such information. One we call the Global Contextual information and

other is called Local Contextual Information. These are discussed briefly in the

following subsections.

4.4.2.1 Global Contextual Information

Some information within the physical IoT device remains same for all of the de-

ployed virtual IoT device on top of it. For example, the location, the battery level,

the hardware address of the device, remains the for all of the virtual IoT devices

which sits on top of the physical device. There is some other information which is

exclusive to the physical device only. For example, support for the virtualization

capability, the number of maximum virtual IoT device that can be deployed on top

of it and the number of currently deployed virtual IoT device on top of it. Hence,

the Global Contextual Information can be attached with either read or read/write

permission.
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Table - 4 lists a non-exhaustive list of Global Contextual Informations.

Information Type Read Only Read Write

Shared Among Virtual IoT De-
vices

Location, Battery Level, Hard-
ware Address, Manufacturer,
Type

Exclusive To Physical IoT Devices
Capabilities (e,g-Temperature),
Maximum No of Virtual IoT
(vIoT) device supported

Virtualization Capabilities, Num-
ber of currently deployed vIoTs

Table 4: Non exhaustive list of Global Contextual Information

4.4.2.2 Local Contextual Information

As discussed in the previous section, that some information regarding physical IoT

device is shared across all the virtual IoT devices running on top of it. Similarly,

there is some information which is exclusive to individual virtual IoT devices run-

ning on same physical IoT device. We termed this information as the Local Con-

textual Information. For example, sample rate, data-mode, data type, and type

of the capabilities are different for different virtual IoTs within the same physical

IoT device. Just like the Global Contextual Information, the Local Contextual

Information is also associated with read and/or write permission with it.

As discussed in the previous section, that some information regarding physi-

cal IoT device is shared across all the virtual IoT devices running on top of it.

Similarly, there are some information which are exclusive to individual virtual IoT

devices running on same physical IoT device. We termed these information as

Local Contextual Information. For example, sample rate, data mode, data type,

type of the capabilities are different for different virtual IoTs within the same

physical IoT device. Just like Global Contextual Information, Local Contextual

Information are also associated with read and/or write permission with it. Table

- 5 lists a non-exhaustive list of Local Contextual Informations.
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Information Type Read Only Read Write

Shared Among Virtual IoT De-
vices

Location, Battery Level, Hard-
ware Address, Manufacturer,
Type

Exclusive To Virtual IoT Devices
Deployed Capabilities (e,g-
Temperature),

Sampling Rate, Data Mode, Data
Type, Events

Table 5: Non exhaustive list of Local Contextual Information

4.4.3 Event Dispatcher

The Event Dispatcher component is responsible for dispatching the event to the

Event Bus component within the Virtual IoT Infrastructure Management Layer.

This component fires the pre-defined event whenever the conditions are met within

a virtual of physical IoT device and pushes the event to the Event Bus for further

processing. As there will be a routing decision to make, it is much more efficient to

leave such decision to the higher layer, in this case, the Virtual IoT Management

Layer, due to the fact that the global view of the overall IoT network may not be

available in a single node.

4.4.4 Repository Access Engine

The Repository Access Engine component provides the access to appropriate repos-

itories to the Publisher component. This decouples the knowledge of knowing

appropriate repositories from the underlying physical IoT device. The Repository

Access Engine publishes the Global Contextual Information to the Physical IoT

Device Repository and the Local Contextual Information to the Virtual IoT Device

Repository.
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4.5 Uniform Interface For Accessing Underlying

IoT Devices

There is a need for some uniform primitives, such as create, delete etc., to access,

and manage (e,g - virtualize) the underlying virtual and/or physical IoT device.

The obvious primitives are create, delete and update [28]. As we are not consid-

ering IoT device migration hence, we do not cover the update primitive for the

uniform interface. Next, in order to identify other primitives we followed a sys-

tematic approach to identify the primitives. The overall systematic approach is

given below [45]-

1. identify the dataset

2. split the dataset into resources

3. for each resources -

(a) Name the resource using a URI

(b) identify the subset of the uniform interface exposed by the resource

(c) Design the representation of the resources as received as a response or

sent as a request to the IoT device

(d) Finally, by exploring how the new service behave and what happens on

successful execution, if require define new events and/or interfaces.

In the next subsections, we apply the process described above. It is to be noted

that we used JSON as our description language.

4.5.1 Identifying the Dataset

As the goal is to perform operation on the underlying IoT devices, the dataset con-

sists all the underlying physical and virtual IoT device. As, we can either perform
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a Control operation on the IoT devices (e,g - virtualize) or a Data operation on

the IoT device (e,g - read the current measurements); hence, the dataset consist

of two types of operations - Control and Data Plane operations.

4.5.2 Split into Resources

Next we want to split the dataset into resources. The overall identified resources

are of two type, one is the physical IoT devices and another is the virtual IoT

devices.

4.5.3 Identify Operations and URIs

In this section first we identify the URI for the resources. Then we identify the

required operation on the control plane and data plane respectively. These are

discussed in the following sections.

Identifying the URI

First, we define a base URI with a placeholder <BASE URI> to denote the base

URI of every other URI we are going to identify. This placeholder can be replaced

with any host-name, for example, iot-iaas-internal.com is one such replacement.

Moving next, We identify any physical IoT device or any virtual IoT device with

an Universally Unique Identifier (UUID). Hence, our URI for any physical IoT or

virtual IoT device looks like below -

<BASE URI>/<UUID>

Identifying the Operation on Control Plane The control plane is mostly

associated with the underlying Physical IoT device. This is because, the basic

primitives, such as create, delete operates on the physical IoT device and either
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virtualize or removes a previously virtualized IoT device (e,g - create-viot, delete-

viot. Apart from the create and delete, there is need an interface for publishing the

capabilities (e,g - publish-capabilities) . Finally, we need an interface for querying

the IoT device (e,g - context) and another interface for letting the IoT device push

it’s state to the upper layer or the repository (e,g - notify-update). Therefore,

the identified operations are - create-viot, delete-viot, publish-capabilities, context,

notify-update.

Identify Operations on Data Plane

The data plane is mostly associated with virtual IoT device. Hence, the support

for getting the measurement data is required (e,g - data), similarly for sensing class

IoT devices, an interface for notifying the event is needed (e,g - notify-event), while,

for the actuation class IoT devices, an interface for handling an event is required

(e,g - handle-event). The interface to data measurement data is mostly to support

pull style query of virtual IoT device. Thus the overall identified operations in the

data plane are - data, notify-event, handle-event. A brief summary of the Control

and Data Plane operations with examples are given in table - 6

Plane Operation Explanation Focus Point Example Values

Control

create-

viot

Create virtual IoT with

given parameters

Method Post

Parameters {service-type, location,

sampling-rate, data-mode}

Success 200 OK <UUID>

Failure 422 Unprocessable Entity on

Syntax Error

delete-

viot

Delete the virtual IoT

identified by the supplied

<UUID>

Method Post

Parameters {service-type, location,

sampling-rate, data-mode}

Success 200 OK <UUID>

Failure 422 Unprocessable Entity on

Syntax Error

publish-

capabilities

List the capabilities and

properties of a given

physical IoT device

<UUID>

Method Post

Parameters {service-type, location,

sampling-rate, data-mode}

Success 200 OK <UUID>
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(continued)

Plane Operation Explanation Focus Point Example Values

Failure 422 Unprocessable Entity on

Syntax Error

context

Returns the global context

associated with the physical

sensor

Method Post

Parameters {service-type, location,

sampling-rate, data-mode}

Success 200 OK <UUID>

Failure 422 Unprocessable Entity on

Syntax Error

notify-

update

Notifies the upper layer

regarding self state change

Method Post

Parameters {service-type, location,

sampling-rate, data-mode}

Success 200 OK <UUID>

Failure 422 Unprocessable Entity on

Syntax Error

Data

get
Gets the data from the

virtual IoT device

Method GET

Parameters

Success 200 OK

Failure Error message/code (e,g – 404

Not Found on giving uuid that

does not exist, 403 Forbidden on

inadequate permission, 422 Un-

processable Entity on wrong pa-

rameter values)

notify-

event
Notify an event

Method Post

Parameters {callback-url, event, data}

Success 200 OK

Failure Error message/code (e,g – 404

Not Found on giving uuid that

does not exist, 403 Forbidden on

inadequate permission, 422 Un-

processable Entity on wrong pa-

rameter values)

handle-

event
Handles an event

Method Post

Parameters {event-data}

Success 200 OK

Failure Error message/code (e,g – 404

Not Found on giving uuid that

does not exist, 403 Forbidden on

inadequate permission, 422 Un-

processable Entity on wrong pa-

rameter values)

Table 6: Summary of Uniform Interface for Accessing and Managing IoT de-

vices
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4.6 Virtual IoT Infrastructure Management Layer

This layer manages the underlying Virtual IoT Infrastructure and provides an

external interface (i,e - high-level interface) to the IoT IaaS users (e,g - the PaaS).

There are several key components in this layer. These components are Virtual

Things Manager (VT Manager), Event bus, Publisher, Repository Access Engine,

Orchestrator, Orchestration Instances, Request Processor, and Discover Engine.

All of these components are discussed in details in the following sections.

4.6.1 Virtual Thing Manager

This component is the primary component responsible for managing the underlying

IoTs, through the uniform interface. For example, to create a virtual IoT device,

this component will send “create-viot” primitive with appropriate parameters to

the designated physical IoT device. Once the virtual IoT device has been created,

it will store the information of the virtual IoT device in the Virtual IoT Repository

using the Repository Access Engine.

4.6.2 Event Bus

The Event Bus works in conjunction with the Event Dispatcher situated in the

lower layer through the uniform interface. The primary task of the Event Bus is

to route the incoming event to all of the registered event handlers for that event.

It has the global view of the underlying IoT IaaS network and thus knows how

to route the event to appropriate event handler. There are two places where the

event will be routed. One is another underlying IoT device and another one is the

orchestration instances. The orchestration instances can route the event back to

the application if the application itself is a registered event handler for the received

event in the Event Bus.
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4.6.3 Publisher

The Publisher component publishes the new or updated state of the virtual IoT

device to the Virtual IoT Device Repository. It is used by the VT Manager which

provides the new updated local contextual information to the Publisher component

to publish it to the Virtual IoT Device Repository.

4.6.4 Orchestrator

In case, if an orchestration is required to fulfill the requirements of the applica-

tion, then the Orchestrator will orchestrate the virtual IoT devices in a composite

way such that it will be a collection of underlying virtual IoT device. For, this to

orchestration to be done, an orchestration plan is required which gives the steps

to be needed in order fulfill the given application requirements. The orchestration

plans are resided in the Orchestration Repository and is accessed by the Orches-

trator via Repository Access Engine. The Orchestrator then uses the VT Manager

to provision the underlying virtual infrastructure to the request application or the

user.

4.6.5 Orchestration Instances

Once the Orchestrator is finished with provisioning the underlying virtual IoT

infrastructure, an Orchestration Instance is created. The general interaction of

the orchestration is shown in figure - 8. From a high level view, there are mainly

three types of task which is associated with an orchestration instances. These are

the Sensing Task, the Actuation Task, and the Application Task. The Sensing Task

generates events and push the event to the Orchestration Instance via Event Bus.

On the other hand, the Actuation Task consumes the generated events as control

signal to initiate the desired actuation on the operating environment. Finally, the
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Figure 8: General Orchestration Interaction

Application Task can also consume the generated events in order to notify the

application user, if the user intervention or attention is required.

4.6.6 Request Processor

This component provides two functionality. First, it acts like an Adapter which

maps the IoT IaaS access interface to the appropriate internal interface. Second,

it routes the request based on the application’s requirements. If an application

requirements do not need orchestration, it will direct the VT Manager to provide

the virtual IoT infrastructure. If the application requires orchestration, it will

direct the Orchestrator to provide the virtual IoT infrastructure.

4.7 Interface for accessing IoT IaaS

As there is very less work focused covering this interface, we again take the system-

atic approach to identify the required interface for accessing the IoT IaaS. First,

we will provide a short introduction of the model we are using for representing a

IoT device from the point of view of the Virtual IoT Infrastructure Management

Layer. Then, just like we derived the uniform interface, we will identify the overall
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dataset, then split the dataset into resources and finally identify the operation

and representation for each of the resources. At the end, we will summaries the

interfaces together.

4.7.1 Modeling of Sensor Representation

We use Universally Unique Identifier (UUID) to uniquely denote a physical IoT

device or a virtual IoT device. More concretely, we use UUID to uniquely dis-

tinguish a resource, whether it is a composite IoT device, a virtual IoT device

or a physical IoT device. As a composite IoT device can contain one or more

IoT devices thus, essentially, the composite IoT device’s UUID is associated with

all of the IoT device’s UUID which made up the composite IoT device. If this

relationship is represented as graph, it will be a N-ary tree with depth of one (1).

Next, each of the event are associated with its source and the destination of the

event handler can be either in the same IoT device, or in a different IoT device, or

the application itself. Hence, the events can be represented again as a N-ary tree

with single depth. Similarly, actions can be represented as N-ary tree with single

depth. Thus the overall representation look like figure - 9.

4.7.2 Identify the Dataset

From the high-level, the user wants to provision, access, and control a thing. A

thing can be made up of sensors, actuators, or a combination of both. Hence, the

overall dataset is all the underlying things.

4.7.3 Split the Dataset into resources

As per the previous discussion, it is evident that two immediate resources which

can be identified are the Sensor and the Actuator. Hence, we need a way to
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is a need to add, delete, and view them in order to both define them at the time

of provisioning and/or manage them later. The add, delete, and view operation

can be satisfied by the HTTP POST, DELETE, and GET method respectively.

Hence, the set of implicit resources for a particular thing are listed below.

3. URI for events in things :

<IOT IAAS>/things/<UUID>/events

4. URI for event-handlers in things :

<IOT IAAS>/things/<UUID>/events/<event-index>/callbacks

5. URI for actions in things :

<IOT IAAS>/things/<UUID>/actions

In the next subsection we will define the representation associated with the

URI.

4.7.4 Representation

In order to define a thing, we first need to specify how many capabilities are

required. Along with that, we also need to define the parameters and what are the

criteria (i,e - requirement) that has to be fulfilled for each of the capabilities within

the thing. The parameters of a capabilities is dependent on the “type” of the thing

(either - sensing or actuation). Table - 7 and Table - 8 shows a non-exhaustive

parameter list for sensing and actuation type capabilities respectively.
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Name Type Example

index integer 0, 1, ...

service-type string humidity, temperature

data-mode string push, pull

data-format string degree Celsius, relative humidity

sampling-rate integer 500, 1000, 60000

event array of objects

Table 7: Example Key values for Sensing type services

Name Type Example

index integer 0, 1, ...

service-type string cooling, heating, firefighting

actions array of objects

Table 8: Example Key values for Actuation type services

Similarly, the keys for matching criteria can be from table - 9.

Name Type Example

location string / latitude-longitude “tselab”, “montreal old port”

battery string

“good” (assuming good means

more than 80% capacity remain-

ing)

vendor string “raspberry pi”

required-peripheral array of strings “wifi”, “bluetooth” etc

Table 9: Example Key values for defining criteria

None of the table - 7, 8, and 9 are exhaustive listing.

As shown in table - 7, the “event” has a type of array objects as a value. This

means that one can define several events as objects and provide them as an array

of objects as the value corresponding to the “event” key. Table - 10 shows the

possible keys to construct the event objects. Similarly, some of the possible key

values for the “callbacks” in the actuation type of service are shown in the table -

11.

Name Type Example

index integer 0, 1, ...

name string “highTempEvent01”
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function-name string “threshold”

function-data string “$data >= 27”

callbacks array of objects
“{“index” : 0, “target” : 1, “uri”:

“dev-$1/action-$0”}”

Table 10: Example Key values for defining events

Name Type Example

index integer 0, 1, ...

name string “AC01”

endpoint string “/turn-on-ac”

Table 11: Example Key values for defining actions

The final missing piece is the association description between event and call-

backs. To define the association, we again use a placeholder. This is because, at

the time of provisioning the real UUID is not known, and it can only be known

after the provision is completed. At the run-time, this placeholder value is re-

placed with actual UUID by the Event Bus, or the Orchestrator to resolve the

final version of the callback. For example, the placeholder $dev-1/action-$0 will

be replaced by the UUID of the service with an “index” value of 1, then within

that service, the action with an “index” value of 0 will be invoked.

4.7.5 Summary

The table - 12 shows a non exhaustive list of the interfaces that are used to access

the IoT IaaS.

Operation Parameters Explanation HTTP

Method

URI

create

index Unique index of the sen-

sor or actuator
POST <IOT IAAS>/things/

type Type specifying the re-

source category

params Defines the parameter

related to the resource

category

criteria Criteria to be used for

selecting underlying re-

source
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delete uuid Universally Unique

Identifier (UUID) to

denote which thing to

delete

DELETE <IOT IAAS>/things/

list all N/A N/A GET <IOT IAAS>/things/

list single N/A N/A GET <IOT IAAS>/things/<UUID>

list events N/A N/A GET <IOT IAAS>/things/<UUID>

/events

add

event

index A unique index of the

event

POST
<IOT IAAS>/things/<UUID>

/events

dev source device

name human readable name

function-type Type of the event trigger

function

function-data Additional data associ-

ated with trigger func-

tion

callback Callback to be notified

on trigger

delete

event

index A unique index associate

with the event
DELETE

<IOT IAAS>/things/<UUID>

/events

dev Device index where the

event resieds

list call-

backs

N/A N/A GET <IOT IAAS>/things/<UUID>

/events/<dev-idx>/<event-

idx> /callbacks

add callback N/A N/A POST <IOT IAAS>/things/<UUID>

/events/<dev-idx>/<event-

idx> /callbacks

delete call-

back

N/A N/A DELETE <IOT IAAS>/things/<UUID>

/events/<dev-idx>/<event-

idx> /callbacks/<callback-

order>

list actions N/A N/A GET <IOT IAAS>/things/<UUID>

/actions

add

action

index A unique index of the ac-

tion

POST
<IOT IAAS>/things/<UUID>

/actions
dev source device

name human readable name

endpoint trigger endpoint to acti-

vate the action

endpoint-data Additional data associ-

ated with trigger action

delete

action

index A unique index associate

with the action
DELETE

<IOT IAAS>/things/<UUID>

/actions

dev Device index where the

action resieds

Table 12: Non exhaustive list of interface for accessing IoT IaaS
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4.8 Repository

There are overall three repositories required, one for storing the orchestration

plan, another one for the virtual IoT device information (e,g - local contextual

information) and finally, the last one for storing physical IoT device information

(i,e - global contextual information). These three are described in the following

section.

4.8.1 Orchestration Plan Repository

This repository stores the orchestration plan and provide the plan if requested via

the Repository Access Engine. An orchestration plan generally contains the steps

to orchestrate the resources based on the requirements.

4.8.2 Virtual IoT Device Repository

The Virtual IoT Device Repository contains the information regarding the pro-

visioned virtual IoT device. This is generally a tuple of tuples where UUID is

the unique value within the tuples. The tuple contains the key-value attribute

pair tuples with permission and thus act as the local contextual information. On

the other hand, once provisioned the first entry is provided by the VT Manager.

While, later on the Virtual IoT device itself can update the information base on

its state.

4.8.3 Physical IoT Device Repository

The Physical IoT Device Repository contains the information regarding the un-

derlying physical IoT device. This is also a tuple of tuples where UUID is the

unique value within the tuples. Just like Virtual IoT Device Repository, it con-

tains the key-value attribute pair tuples with permission and thus act as the global
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contextual information. Generally when an IoT device’s state is changed, it will

notify the change to the VT Manager or it can publish the updated data to the

repository by itself.

4.9 Interaction Between IoT IaaS components

In order to give a mental picture of how the different components within the IaaS

interact together, we use the motivating use-case as the scenario on which the

interaction between the different components is shown. Considering the motivating

use-case, we focus on the subset of the use-case where we assume the smart HVAC

application requires orchestration. We first discuss how the overall provisioning

will work and how the different component will work together to orchestrate the

required virtual IoT device. Then we discuss how the virtual IoT devices are

created within the IaaS, finally we show how the orchestration instance will work

once the virtual IoT device in operation. These are discussed in the subsequent

sections below. In the end we summarize the section by focusing on some of

the details that were left out of the interaction figure due to figure space and

complexity.

4.9.1 Overall Interaction between IaaS components : Smart

HVAC

Figure - 10 shows the overall interaction between different components when the

smart HVAC application wants to provision a virtual IoT device for measure tem-

perature, humidity and also wanted to control the temperature via actuation ser-

vice. In the following sections we show the layer to layer interaction. It is to

be noted that, the sequence diagram does not cover all the possibilities due to

reducing the complexity of diagram. This is specially true for negative results, the

72



sequence diagram assumes that all of the operation execution will be successful.

4.9.1.1 Application Requesting to the IoT IaaS

The HVAC application request for a virtual IoT device having two sensing capa-

bilities (temperature and humidity) and one actuation capability (cooling). We

defined the application is also wanting to know when the temperature gets higher

than a certain threshold (e,g - 27-degree Celsius) and the relative humidity gets

above another threshold (e,g - 50% relative humidity). In that case, the applica-

tion wants the AC to be turned on. The application also wants to get notified

once this conditions are met. The heating is excluded for the sake of reducing dia-

gram complexity, however, it is trivial and follows the same path as the requested

actuation capability. This request is send to the Interface for accessing the IoT

IaaS.

4.9.1.2 Within the Virtual IoT Infrastructure Management Layer

The received request from the application is forwarded to the Request Processor.

This is the entry/exit point for most of the requests/responses. The Request Pro-

cessor determines that this requires orchestration, and it forwards the request to

the Orchestrator. The Orchestrator upon receiving the request, uses the Reposi-

tory Access Engine to find a suitable orchestration plan for the orchestration to

take place. Once it finds such plan, it then uses the Discovery Engine to find a set

of suitable underlying physical IoT devices which can meet the requested require-

ment from the application. Then the Orchestrator executes the orchestration plan

using the VT Manager and gets the list of virtualized IoT devices. This virtualiza-

tion of underlying physical IoT device is not shown in figure - 10, and it is covered

in the later section. Finally, the Orchestrator creates an Orchestration Instance.

Once the Orchestration Instance is created, the Orchestrator returns the success
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abstracts their interaction with other components. This was done to reduce the

both size and interaction complexity of the figure. The Event Bus was left out of

the figure for the same reason.

The discussion in the previous sections on the interaction between the compo-

nents within the different layers of the IoT IaaS gives a good mental image of how

the IoT IaaS works when an application is requesting provisioning, as well as when

the application is executing. Hence, covering both manage and access operation

from the point of view of the users of the IoT IaaS.

4.10 Evaluation of proposed architecture against

the requirements

The requirements derived from the motivating use-case must need to be satisfied

by the proposed architecture. In fact, the proposed architecture satisfied them

well.

The proposed architecture relies on the node level virtualization for

efficient resource utilization. Thus, the first requirement is met by the

proposed architecture

The architecture contains the appropriate components (Publisher) to publish

the information to the repository. Moreover, we provide a loosely coupled modeling

of the properties of the IoT device, which gives us the ability to store the informa-

tion in a generic manner. Next, the Discovery component allows the architecture

to find the published information from the repository.

Hence, the proposed architecture incorporates the publishing and

discovery mechanism which is suitable for IoT device. This fulfills

the second requirement.

To support the orchestration, the Orchestrator, the Orchestration Instance, and
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the Orchestrator Repository are provided with the architecture. A model of how

the orchestration should work is also explained.

The means to orchestrate complex services are provided with the

architecture, therefore, the third requirement is met by the proposed

architecture.

Finally, a brief discussion of how the underlying IoT device should be accessed

uniformly through the Adapter component and what will be the substrate of the

uniform interface was provided. Another short discussion on how the cloud users

can access the IoT IaaS transparently using a high-level interface was provided. A

systematic way was used to derive the interface. Basic parameters and methods

were explained.

Finally, the two set of interfaces were provided and a brief discus-

sion of them was made. This meets the fourth and final requirement

that was derived from the motivating use-case.

4.11 Conclusion

In this chapter, we presented our proposed architecture, explained the component’s

functionality in each layer. We also systematically approached the derivation of

the high-level interfaces. In the end, we justified how the proposed architecture

was able to meet the previously derived requirements from the motivating use-case.

In the next chapter, we will discuss regarding an implemented prototype of the

proposed architecture, along with an extension for accessing the prototype from

the PaaS and a SaaS application. We will discuss regarding the result obtained

and draw the conclusion from it.
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Chapter 5

Validation of the Architecture

In this chapter, we start by presenting an experiment on showing how node-level

virtualization achieves energy efficiency. We describe the experimental setup, the

methodology and the result in brief in the subsequent sections. Then we moved

over to the prototype architecture by providing a brief description of it. We de-

scribe in details on the prototype architecture in later sections. Finally, we discuss

results of various experiments and analyze them accordingly. We conclude the

chapter by summarizing it.

5.1 Experiment: Energy Efficiency by Node Vir-

tualization

In this section, we describe a setup for conducting an experiment to show that

how node level virtualization achieves energy efficiency. Following the experimen-

tal setup, the methodology is described. In next sections, the results are shown

and analyzed. Finally, a summary is drawn to conclude the discussion on the

experiment.
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5.1.2 Experimentation Methodology

We first focus on the scenario which was taken into consideration for each of the

DUT. Next, we focus on the process of collecting the data. These are described in

the following sections.

5.1.2.1 Experiment Scenario

We defined an aggressive task which is sending (i,e - pushing) the data to its gate-

way every second. The justification for not selecting more aggressive task (i,e -

sending multiple data in every second) is, doing so, the accuracy of the captured

reading is reduced. This is because, then in order to avoid hardware bottleneck

of the raspberry pi, we have to collect a low amount of samples. Again the jus-

tification of not selecting more relaxed task (i,e - sending data in between larger

time intervals) is that they somehow draw the similar conclusion as the aggressive

task. The only difference is that the convergence is slow. We first ran four physical

devices with the task we mentioned and collected the data for 10 minutes with

50 samples/seconds. Then we ran with four virtual devices with the same task

deployed on a single device. The justification of selecting 50 sample/seconds is

that we found this number by trial and error which does not bottleneck a 3rd gen-

eration of raspberry pi, which is the latest, fastest among the raspberry pi at the

time of writing this thesis. With 50 sample/seconds, we can measure the power

consumption pretty accurately. This was tested using a multimeter to determine if

the sample rate chosen was good enough or not. Running the task for 10 minutes

gave us the insight to draw a conclusion, as long run did not change anything. The

number four for a task is selected based on an earlier experiment which revealed

that TelosB can handle a maximum of four virtual devices before running out of

memory.
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5.1.2.2 Data Collection

When the first task is running the cumulative data is stored in the raspberry

pi. Using discrete power consumption equation we determine the discrete power

consumption on each second for the first scenario. The result is the cumulative

power consumption of four physical devices. In the second scenario, the single

data of the physical device is stored in the raspberry pi. Again using the discrete

power consumption equation we determine power consumption for each second for

the second scenario. Hence, the result is the power consumption of the physical

device with four deployed virtual device on top of it. The general equation for

power is -

P = V × I

And the discrete power consumption equation is given by -

E =
∑

(P × S)

where S is the interval in seconds. Thus giving the units to be milliwatts-seconds

(mW-s) as the power (P) measured in milliwatts. Finally, we plotted the energy

consumption in Y-axis and duration in X-axis and analyze the power consumption

per seconds.

5.1.3 Results and Analysis

Figure - 14 shows the result we obtained for the scenario discussed in the earlier

subsection. The blue line denotes the cumulative energy consumption by four

physical devices. While the orange line denotes the energy consumed by a single

device hosting four virtual devices concurrently. The maximum power consumed

by the four devices cumulatively were 56.63308 mWatt-Seconds, which was 165%
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higher than the single device hosting four virtual devices (34.29838259 mWatt-

Seconds). On the other hand, the lowest power consumption for the four devices

cumulative were 34.91550037 mWatt-Seconds, which was 467% higher than the

virtualized DUT (7.467722927 mWaat-Seconds). The average consumption was

42.42325955 mWatt-Seconds with a standard deviation of 2.868032853 for the case

of four DUTs. Where, for the virtualized DUT, the average was 15.89496789 with

a standard deviation of 7.230499442.

The results were as expected. It is because some inherent power consumption is

required to power up all the peripherals within the IoT device. Therefore, the four

physical devices would require higher power to keep its peripherals running even

without carrying out any useful task. On the other hand, the single device with

four virtual devices would require less power to keep its peripherals active. The idle

mode CPU current draw for the TelosB was 0.8 - 2 mA, which was cumulated for

four physical devices, raising the current draw to about 10 mA in combined. This

is true for other peripherals as well. For example, the scenario was actively using

the temperature sensor, hence some power was needed to drive the temperature

sensor itself. As expected, and also supported by the TelosB datasheet1, the major

current draw occurs in transmitting the sensed data to the gateway ( 18-23 mA).

Single DUT which was not virtualized was sending data one time per second,

where the virtualized DUT was sending data four times per second. However, the

transmission power consumption was the same as four non virtualized devices were

sending the data. Hence, cumulatively they were equal for both test cases. It is to

be noted that, there was no network optimization technique applied which would

further improve the energy efficiency in the virtualized DUT. Network coding and

aggregation can provide substantial increase in energy efficiency.

In the case of the virtualized DUT, the standard deviation was higher than

1http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb datasheet.pdf
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5.2.1 Implemented Scenario

The implemented scenario is a subset of our motivating use-case. We implemented

the Anti-Fire and the Smart HVAC applications from the motivating use-case. For

Smart HVAC application the implementation considered only the sensing capabil-

ities (i,e - temperature and humidity). The actuation capabilities were not covered

in the implementation. Therefore, the scenario contains two applications, an Anti-

Fire application, and a Smart HVAC application, deployed as a SaaS application

on top of a PaaS that utilizes the virtualized IoT infrastructure provided by the

prototyped IoT IaaS. We used two different sensor vendor, one is Advanticsys

(TelosB ) and another one is Virtenio (Preon32 ). The goal of the Anti-Fire is to

detect fire and notify the user as fast as possible. As the Anti-Fire application has

a higher priority than the Smart HVAC application, the requirements are more

aggressive than the Smart HVAC application. For this reason, we assumed that

Anti-Fire application requires a faster sensing rate (a sample-rate of 1 sample/sec-

ond) while the Smart HVAC application has a more relaxed sensing requirements.

For Smart HVAC, the requirement is to notify the application whenever the tem-

perature and humidity of the environment exceeds a predefined threshold. In this

case, it is 27 degree Celsius and 50% relative humidity respectively. The underly-

ing IoT infrastructure should notify the application if these predefined thresholds

are exceeded.

the discussion of the implemented scenario, the Anti-Fire application can be

deployed without any orchestration, while the Smart HVAC application can be

deployed through orchestration.
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5.2.2 Description of Implemented Prototype

The application programming interface (API) for accessing the IoT IaaS from the

user is a set of REST API. This facilitates a programming interface suitable for

the machine to machine communication. We developed a Graphical User Inter-

face (GUI) which utilizes this programmable interface and simplifies the operation

through the GUI. Figure - 15 shows the GUI for requesting the provisioning of the

underlying IoT device. The applications are deployed on top of an open source

PaaS, namely the Cloud Foundry. It utilizes traditional IaaS to provide infrastruc-

ture for the application (e,g - VMs). An extension of the PaaS captures the request

from the GUI and forwards it to the prototype IoT IaaS. IoT IaaS then proceeds

with the virtualization of underlying IoT infrastructure. Upon completion, the IoT

IaaS returns the results with appropriate URIs to access the underlying virtualized

resources, that is the virtual temperature IoT device, virtual humidity IoT device,

and the composite IoT device.

In terms of matching the application requirements with the published IoT

device Global Contextual Information, we used only predefined location. And this

location is exposed to the GUI using a REST API. It is to be noted that, this API

was added for the convenience of developing the GUI and does not fall under the

API for communicating with the IoT IaaS.

We used a total of four devices in four combinations from two vendors (TelosB and

Preon32 ) to validate the prototype. First, we used two TelosB only. Then we

used two Preon32 only, moving next we mixed one TelosB with one Preon32 and

finally, we limit the capabilities of the devices to a single exclusive capability to

validate orchestration in different cases. We also validated the prototype by pro-

viding not satisfiable requirements. For example, providing non-exclusive single

capabilities (i,e - either only temperature or only humidity), asking for a virtual

IoT device that has two different capabilities (i,e - temperature and humidity).
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Figure 15: GUI for easily provisioning the underlying IoT device

5.2.3 Softwares and Hardwares Used

In this section, we describe the software and hardware used for implementing the

prototype IoT IaaS.

5.2.3.1 Cloud Foundry

Cloud Foundry is an open source PaaS. The Cloud Foundry Runtime runs appli-

cations in packages called “droplets” in DEAs (Droplet Execution Agents). DEAs

are managed by the Cloud Controller and monitored by the Health Manager, while

Routers manage application traffic, do load balancing, and combine logs. In turn,

DEAs call on service broker nodes, which communicate over a message bus. The

Cloud Controller has access to a blob store and a database of application meta-

data and service credentials [46]. One of the key features of the Cloud Foundry

is that it allows the installation into an off-premise site without the need for an

existing commercial IaaS provider. Hence, we deployed the Cloud Foundry in a

local machine.
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5.2.3.2 Restbed

Restbed2 is a framework for writing RESTful applications in C++ programming

language. It is based on C++11 and uses STL exclusively. It does not have any

other dependencies and very fast in routing and execution. At the time of writing

the thesis, it is an open source project, contains several features and fully compliant

with HTTP 1.0/1.1+. It supports all the HTTP methods. As we developed our

prototype IoT IaaS in C++ programming language, we used restbed to expose the

functionality of the IoT IaaS to the Cloud Foundry, (i,e - the PaaS).

5.2.3.3 JSON for Modern C++

JSON for Modern C++3 is an open source library for C++11 to generate and parse

JSON data representation as a first class data type within C++ application. We

used it for parsing and generating JSON to and from IoT device and the provision

GUI.

5.2.3.4 Advanticsys TelosB (SkyMote)

The TelosB , showed in figure - 16, is a constrained IoT device with minimal pro-

cessing power and memory. It utilizes IEEE 802.15.4 2.4Ghz wireless MAC/PHY

as the wireless communication mechanism. It has total three capabilities off the

shelf - temperature sensing, humidity sensing, and light intensity sensing. We only

used the temperature and humidity sensing for our prototype implementation. The

capabilities of the TelosB can be expanded by adding daughter boards on top of

it. It also has three led for status operation and two user switches (reset and

user programmable). It has a USB to UART SPI (Serial Programming Interface)

to program the device. The programming language of TelosB is C like, but not

2https://github.com/Corvusoft/restbed
3https://github.com/nlohmann/json
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ANSI-C. For battery operation, TelosB has power terminal for attaching battery

case, it requires 3.3V DC to operate.

Figure 16: TelosB (©AdvanticsysTM)

5.2.3.5 Virtenio Preon32

The Preon32 , showed in figure - 17, is much capable than TelosB but battery oper-

ated resource-constrained device. It also uses IEEE 802.15.4 2.4 GHz MAC/PHY

for its wireless communication. It does not contain any capabilities off the shelf.

However, an expansion (i,e - daughter) board is given with the motherboard to be

added for gaining sensing capabilities. The expansion kit contains six capabilities

off the shelf - temperature, humidity, light intensity, magnetometer, accelerometer

and gyroscope sensing capabilities. However, for the prototype implementation,

we only used temperature and humidity sensing capabilities. It also has a USB to

UART SPI (Serial Programming Interface) to program the device. The program-

ming language is Java and it has a modified JVM inside the device. The libraries

are completely different and do not support most of the Java standard libraries.

The modified Java Runtime’s API is provided as a documentation. For battery

operation, the Preon32 has an enclosing connector and requires 9V DC to operate.
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Figure 17: Preon32 Components (©VirtenioTM)

5.2.4 Programming Language and IDE Used

For the application and the GUI, we used PHP as the server-side programming

language, HTML5, CSS3 and Javascript as the client side markup/scripting lan-

guage.

For developing the prototype, C++11 programming language standard was

used. Eclipse-CDT was used as the editor and GNU-GCC tool-chain was used as

the compiler and linker.

5.3 Prototype Architecture

The prototype architecture is shown in figure - 18. In the prototype architecture,

the Anti-Fire, and the Smart HVAC application is deployed as SaaS applications

on top of the Cloud Foundry. The Cloud Foundry is backed by the traditional

IaaS. An OpenStack instance deployed over a VirtualBox instance was used to

provide the traditional IaaS provisioning capabilities. The PaaS relied on the

provided traditional IaaS and provisioned separate containers for the Anti-Fire

and the Smart HVAC application. It is to be noted that at the time of writing

this thesis, even though the overall architecture of the Cloud Foundry remained

the same, it has made switch to the container based deployment of an application.
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5.3.1 Prototyped IoT IaaS

In this section, we will take the bottom up approach and cover from the Physical

IoT Device Layer upto the Interface For Accessing IoT IaaS. The two sets of

interfaces are also covered. We will briefly describe to what extent the functionality

was covered, how we implemented it, and what was excluded. These are described

below in subsequent subsections.

5.3.1.1 Physical IoT Device Layer

For our prototype implementation, we excluded the IoT device with actuation

capabilities. We only focused on the IoT devices consisting of sensing capabilities.

In our prototype implementation, this layer consisted only of two vendor’s devices,

TelosB and Preon32 .

5.3.1.2 Virtual IoT Device Layer

As in the prototype implementation we only considered two types of sensing ca-

pabilities, namely, temperature sensing and humidity sensing, this layer consists

the Virtual Temperature IoT Device and the Virtual Humidity IoT Device.

5.3.1.3 Physical and Virtual IoT Management Layer

In our prototype scenario, we assumed that the Global Contextual Information of

the device was already published in the Physical IoT Device Repository. This is

because, the underlying IoT devices did not have any GPS module, and even so,

GPS module would not work in a lab environment, without a clear view of the sky.

Hence, although the IoT IaaS can detect the devices automatically and probe them,

the devices themselves do not publish the location information to the repository.

As discussed earlier, the location information is used as the criteria for the Anti-

Fire and Smart HVAC application. For the above reasoning, the Repository Access
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Engine and the Publisher were excluded from the implementation as well.

The Adapter and the Event Dispatcher was implemented.

5.3.1.4 Uniform Interface For Accessing Underlying IoT Devices

For this interface, there are two types of operation - Control and Data plane

operations.

In the Control Plane - “create-viot” and “delete-viot” were implemented. The

“publish-capabilities”, “context”, and “notify-update” were excluded. As the Global

Contextual Information is already published within the Physical IoT Device Repos-

itory, we excluded the interfaces that supported the automation of the publication

of such information.

In the Data Plane - “data” and “notify-event” were implemented. The The

“handle-event” was left out as our assumption did not consider the IoT devices

with actuation capabilities.

5.3.1.5 Virtual IoT Infrastructure Management Layer

We implemented a simple Request Processor. It takes the request from the appli-

cation via the Interface For Accessing the IoT IaaS. The Request Processor is then

either forward the request to Orchestrator or the VT Manager. The Orchestrator

was implemented using a simple queue. The sequence within the orchestration

plan dictates how the orchestration will be carried out. The sequence is executed

in a FIFO (First In First Out) order. While executing the sequence, if any of

the previous operations fails, the whole orchestration fails. The Discovery Engine

provides the list of suitable physical IoT device as a list of UUIDs. It uses the

Repository Access Engine to access the Physical IoT Device Repository. The VT

Manager is one of the complex and large components within this layer. It sends

the primitives to the underlying IoT device and virtualizes them with given pa-
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rameters. Once virtualized, the IoT IaaS layer stores the UUID of the virtual IoT

device in the Virtual IoT Device Repository. The events and the callbacks are also

kept in a database within the IaaS. This simulates the behavior of having a global

view of the underlying IoT device network. The Event Bus uses this information

to route the event to all of the registered event handlers. All of the repositories

were implemented as an in-memory database.

5.3.1.6 Interface For Accessing The IoT IaaS

The cloud access interfaces that are required for the scenario were implemented

others were excluded. Hence the covered interfaces were - create, delete, list single,

add event, delete event, add callback, and delete callback were implemented. Rest

were excluded.

5.3.1.7 The Anti-Fire Application

The Anti-Fire application deployed on top of the PaaS has a requirement of 1 sam-

ple per seconds (i,e - a sample rate of 1000 ms). It does not define any predefined

threshold and it uses pull style data acquisition. That is the Anti-Fire application

requests the data every seconds, even though the underlying virtual IoT device can

send the data. It then plots a running graph of the data to help user visualize the

data. The requirement for the Anti-Fire application is the temperature capability

and the location. The location was a predefined value and we set it to “TSELab”.

5.3.1.8 The Smart HVAC Application

The Smart HVAC application uses events and notifications and has more relaxed

requirements for sampling rate. It defines a threshold for the temperature at 27

degree Celsius and the relative humidity at 50%. Hence, it requires two capabilities.

The location is chosen as the “TSE-Lab”. The application task contained the
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event handler. This way the application can show the temperature of humidity

data once the threshold is crossed. The application task was developed using the

HTTP event delivery mechanism [47].

5.3.1.9 Summary

The prototype applications were able to provision both simple virtual IoT devices

and composite virtual IoT device. The underlying virtualized IoT devices were

made possible through the usage of Node Level Virtualization. The provisioning of

composite virtual IoT device validates theOrchestration mechanism. Two different

vendor devices were used to validate the Uniform Interface For Accessing Under-

lying IoT Devices. We simulating the publication of information to the repository

by pushing a predefined location value whenever the IoT device was connected to

the IoT IaaS. The discovery mechanism was able to pick the published information

automatically and use it accordingly. This validates the Publication and Discovery

mechanism for matching the requirements against the properties of the underly-

ing IoT device. Finally, The Cloud Foundry was extended to use the Interface

for accessing IoT IaaS to manage, and access IoT devices. Thus, completing the

interface validation. Therefore, we conclude that the prototype implementation

validated the proposed IoT IaaS architecture.

5.4 Performance Measurement

In this section we first describe the performance metric, then the setup for eval-

uating the performance metric, finally, we conclude the section by presenting the

result obtained and analyzing them.
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5.4.1 Performance Metric

Two performance metric was selected for measurement.

One is the end to end provisioning delay. Our goal was to observe the end to

end provisioning delay when the underlying physical IoT device slowly approaches

its capacity. This means the number of virtual IoT devices provision on top a

single physical IoT device was slowly increased and the end to end provisioning

delay was observed. This performance metric would give us the impact of node

level virtualization on the underlying IoT device.

The second performance metric selected was the end to end orchestration delay.

This metric will help us to decide if the orchestration delay is suitable for different

types of deployment. Our goal was to investigate the real-time deployment and

the non-real time deployment and figure out if the end to end delay is acceptable

or not.

5.4.2 Experiment Setup

To evaluate the first performance metric, we first virtualize each of the TelosB and

Preon32 , and slowly increased the number of guest virtual IoT device running on

top of them, to a maximum of four. The number four (4) was chosen through

experiment, which led to conclude that it is the highest number of virtual IoT

device that a TelosB can handle without running out of memory. We repeated

the test ten (10) times to reduce the fluctuation of the delay and took an average

of it. The ten (10) test number is arbitrarily taken and increasing the test run

did not give us any different insights. We also ran the non-virtualized TelosB and

Preon32 and compare the results with the virtualized one.

The second performance metric was evaluated by issuing orchestration over

different physical IoT device. In this case, we limited the capabilities of the un-
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derlying IoT to single exclusive capability in two different physical IoT device.

Then the smart HVAC application can only be orchestrated over this two physical

device. We ran the test twenty (20) iterations. The twenty was chosen arbitrarily

as increasing the number (for example - 25, 30) or reducing the number a little bit

(for example - 15, 10) did not give us new insights on the obtained results.

5.4.3 Results and Analysis

For the first performance metric evaluation, the results are shown in figure - 19. As

expected, the overhead for creating virtual IoT devices was significant. In case of

TelosB for instance, the highest and lowest overhead (compared to the case where

physical sensors are used) is 252.5% (69.8ms vs 19.8ms) and 152.02% (49.9ms vs

19.8ms) respectively. For the Preon32 , it is approximately 496.5% (156.3ms vs

26.2ms) and 417.9% (135.7ms vs 26.2ms).

Although Preon32 is more capable than TelosB , our suspicion is that the JVM

overhead within the Preon32 contributes to overall delay. This is because the JVM

manages the virtualized IoT device within the device. Hence, context switching

may induce additional overhead. For TelosB , as it uses C language, it is more

“close to the metal” hence less overhead.

One key note to be taken from the results is that the although the virtualization

overhead is high percentile wise, they are not high as an absolute number. And it

occurs only once (at the time of virtualization). Hence, it may be well worth to

trade this overhead for efficiency (both cost and energy), as once deployed there

is no difference between a physical IoT device and a virtual IoT device from the

application’s point of view.

The result of the second experiment is shown in figure - 20. The bar repre-

sents the delay when the Smart HVAC application is orchestrated over two virtual

sensors running in different physical sensors. The experienced delay for overall
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Chapter 6

Conclusion

In this chapter, we will first highlight the contributions of this thesis and then

focus on the possible future research direction.

6.1 Contributions Summary

Internet of Things brings up a vast amount of applications in all sorts of different

domains. However, provisioning the IoT devices through the cloud to achieve

cost efficiency is a challenge. In the early days of IoT, the cloud was used to

manage the wide spear deployment of the IoT devices and IoT device was facing

high coupling with the application deployed on it. Then many solutions emerged

to solve coupling issue with the IoT device and the applications. But the cost

efficiency challenge was not addressed. This problem is hard to tackle due to several

issues imposed by the inherent nature of the IoT devices. Due to the heterogeneous

nature of the IoT environment, it becomes a challenge to provide a means to share

the underlying capabilities of the IoT devices with several applications. An IoT

IaaS that can provide capabilities sharing can achieve cost efficiency at the IoT

device level.

In order to understand the requirements, we presented a motivating use-case in
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a smart home environment. The use-case had two applications with overlapping

capability requirements. We determined several requirements for an IoT IaaS in

order to allow the sharing of capabilities with several applications. Node level

virtualization is one such key requirements. However, along with it, additional

requirements were identified to realize and share the capabilities in a uniform way.

The publishing and discovery mechanism, along with the orchestration mechanism

plays an essential role in realizing the IoT IaaS. Finally, we identified that in order

to handle the heterogeneity at the physical IoT device level and to allow the users

to provision and access the IoT devices through the IoT IaaS, two sets of a high-

level interface is required. Based on the requirements we evaluated the existing

full blown IoT IaaS architecture and the frameworks that can be used within an

IoT IaaS. None of the state-of-the-art was able to fulfill all the requirements.

We then proceeded to propose an IoT IaaS architecture that can fulfill the de-

rived requirements. The proposed architecture leveraged node level virtualization

as a feature within the IoT device to provide virtual IoT devices. The hetero-

geneity issue was solved by providing the Adapter components in the Virtual and

Physical IoT device layer in the proposed architecture and by introducing the uni-

form interface for accessing the IoT device. This provided a uniform data and

control plane to the Virtual IoT Infrastructure management layer in the proposed

architecture, regardless of the underlying IoT device’s proprietary interface. Pub-

lishing and discovery were normalized through modeling, stored in a database and

matched against requirements. We showed an orchestration modeling that focuses

on how orchestration on an IoT IaaS should be facilitated. Finally, a mean to

expose the functionality of the IoT IaaS was exposed to the user. For all the in-

terface, we used REST paradigm and used IoT friendly description model. In the

end, we show how the different components within the IoT IaaS interact with each

other both at provision time and at runtime.
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We first showed how node level virtualization achieves energy efficiency by

conduction an experiment. We described the experimental settings, methodology,

results and analysis. Then, a prototype for validating the IoT IaaS was imple-

mented using the subset of the motivating use-case. A subset of the proposed

architecture was implemented and a subset of the two applications (Anti-Fire and

the Smart HVAC) was developed and deployed as a SaaS on top of the Cloud

Foundry, a PaaS. An extension of the PaaS was made to communicate to the IoT

IaaS by leveraging the interface for accessing the IoT IaaS.

Finally, two performance metric was defined, and experimental setup was de-

fined. The results from the experiment was shown and analyzed. From the result

and analysis, it was apparent that even the virtualization overhead seems high

relative to physical device deployment, it will be worth trade-off if the device is

provisioned for a longer time as the absolute value is not very high. For the end

to end orchestration, it was apparent that the orchestration mechanism proposed

would not be able to satisfy the hard provisioning deadline of less than one sec-

ond for real-time applications. However, it is still a good choice for non real-time

applications.

6.2 Future Research Direction

In this work, we did not include network-level virtualization. In future work,

network-level virtualization can be incorporate to provide both node and network

virtualization for applications. Some of the key aspects of an IaaS were omitted

in the proposed IoT IaaS. Security is one of such. A automated asymmetric pub-

lic/private key exchange protocol and mechanism can be incorporate to secure the

IoT devices. A user authentication mechanism can also be attached to the security

mechanism to allow end to end (i,e - application to IoT device) security. A image
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service for underlying IoT device can be introduce to allow reprogramming of the

IoT device, this can allow the provisioning of real-time applications and switch-

ing back to virtualized provisioning when the real-time application are no longer

needed. Virtual IoT device migration is still an underlooked research domain. The

feasibility and requirement can be investigate further to reach to a decision about

its impact to the IoT applications.
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