

A Framework for Requirements Decomposition, SLA Management and

Dynamic System Reconfiguration

 Mahin Abbasipour

A Thesis

In the Department

of

Electrical & Computer Engineering

Presented in Partial Fulfilment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical & Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

August 2018

© Mahin Abbasipour, 2018

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Mahin Abbasipour

 Entitled: A Framework for Requirements Decomposition, SLA

Management and Dynamic System Reconfiguration

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical & Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect

to originality and quality.

Signed by the final examining committee:

 Ch a ir

 Dr . S. Sa m u e l Li

 Ext e r n a l Exa m in e r

 Dr . Mich e l Da gen a is

 Ext e r n a l t o Pr o gr a m

 Dr . Ro ch Glit h o

 Exa m in e r

 Dr . Ab d e lwa h a b Ha m o u -Lh a d j

 Exa m in e r

 Dr . Ya n Liu

 Th esis Co -Su p e r viso r

 Dr . Fe r h a t Kh en d ek

 Th esis Co -Su p e r viso r

 Dr . Ma r ia To e r o e

Ap p r o ved b y

 Dr . We i-Pin g Zh u , Gr a d u a t e Pr o gr a m Dir ect o r

 Tu esd a y , Ju ly 1 0 , 2 0 1 8

 Dr . Am ir Asif, Dea n

 Fa cu lt y o f En gin ee r in g a n d Co m p u t e r Scien ce

iii

ABSTRACT

A Framework for Requirements Decomposition, SLA Management

and Dynamic System Reconfiguration

Mahin Abbasipour, Ph.D.

Concordia University, 2018

To meet user requirements, systems can be built from Commercial-Off-The-Shelf (COTS)

components, potentially from different vendors. However, the gap between the requirements

referring to the overall system and the components to build the system from can be large. To

close the gap, it is required to decompose the requirements to a level where they can be

mapped to components.

When the designed system is deployed and ready for operations, its services are sold and pro-

vided to customers. One important goal for service providers is to optimize system resource

utilization while ensuring the quality of service expressed in the Service Level Agreements

(SLAs). For this purpose, the system can be reconfigured dynamically according to the cur-

rent workload to satisfy the SLAs while using only necessary resources. To manage the re-

configuration of the system at runtime, a set of previously defined patterns called elasticity

rules can be used. In elasticity rules, the actions that need to be taken to reconfigure the sys-

tem are specified. An elasticity rule is generally invoked by a trigger, which is generated in

reaction to a monitoring event.

In this thesis, we propose a model-driven management framework which aims at user re-

quirements satisfaction, SLA compliance management and enabling dynamic reconfiguration

by reusing the design information at runtime.

iv

An approach has been developed to derive automatically a valid configuration starting from

low level requirements called service configurations. However, the service configurations are

far from requirements a user would express. To generate a system configuration from user

requirements and alleviate the work of designer, we generate service configurations by de-

composing functional user requirements to the level where components can be selected and

put together to satisfy the user requirements. We integrated our service configurations gen-

erator with the previous configuration generator.

In our framework, we reuse the information acquired from system configuration and dimen-

sioning to generate elasticity rules offline. We propose a model driven approach to check the

compliance of SLAs and generate triggers for invoking applicable elasticity rules when sys-

tem reconfiguration is required. For handling multiple triggers generated at the same time, we

propose a solution to automatically correlate the actions of invoked elasticity rules, when re-

quired. The framework consists of a number of metamodels and a set of model transfor-

mations. We use the Unified Modeling Language (UML) and its profiling mechanism to de-

scribe all the artifacts in the proposed framework. We implement the profiles using Eclipse

Modeling Framework (EMF) and Papyrus. To implement the processes, we use the Atlas

Transformation Language (ATL). We also use the APIs of the Object Constraint Language

(OCL) in the Eclipse environment to develop a tool for checking constraints and generating

triggers.

v

Acknowledgments

I would like to express my sincere thanks and appreciation to those who made this thesis

possible through their wisdom and mentorship, my supervisors Dr. Ferhat Khendek and Dr.

Maria Toeroe. All these years, they were very supportive. They taught me to be curious and

no challenge is insurmountable. Their advice as a mentor in both life and academic will have

a lasting impact.

I would like to extend my thanks to the examining committee for their advice and valuable

inputs during the various stages of my PhD.

I also would like to thank my friends Azadeh Jahanbanifar, Atena Roshanfekr and Fatemeh

Saraylou for their support and friendships as well as my colleagues in the MAGIC group. The

atmosphere of collaboration and discussion in our group was invaluable.

This work has been partially supported by Natural Sciences and Engineering Research

Council of Canada (NSERC), Ericsson and Concordia University. I would like to thank them

for their financial support and providing me the opportunity to learn and grow.

I could not have come this far without the love and support of my parents; my sisters

Maryam, Marjan and Mina Abbasipour; my brother Jalil Fallah and my little angel Parmiss

Fallah. They taught me to be open-minded and appreciate different views. Their unwavering

love will never be forgotten.

vi

Dedication

This work is dedicated to my parents, Tayebeh Zandieh and Aliasghar

Abbasipour. Their endless love, perseverance and self-sacrifice made

my achievements possible. I love you mum and dad; you are the

treasure of my life.

vii

Table of Contents

List of Figures ... x

List of Tables .. xii

List of Acronyms ... xiii

Chapter 1 Introduction .. 1

1.1 Thesis Motivation ... 1

1.2 Contributions of this Thesis .. 3

1.3 Thesis Organization .. 7

Chapter 2 Background .. 9

2.1 Model Driven Development (MDD) ... 9

 Modeling ... 10 2.1.1

 Domain Specific Modeling Languages and UML Profiles ... 10 2.1.2

 Model Transformation .. 10 2.1.1

 Traceability ... 11 2.1.2

2.2 The Service Availability Forum (SA Forum) Middleware ... 11

 Service Availability... 11 2.2.1

 The Service Availability Forum .. 12 2.2.2

 The Availability Management Framework (AMF) ... 12 2.2.3

 Entity Types File (ETF) .. 14 2.2.4

Chapter 3 Related Work .. 15

3.1. Functional User Requirement Decomposition .. 15

3.2. Elasticity Rules Generation ... 19

3.3. SLA Compliance Management ... 21

3.4. Trigger Correlation ... 23

3.5. Dynamic System Reconfiguration .. 24

Chapter 4 Ontology-Based User Requirements Decomposition and COTS Component Selection 26

4.1 Introduction ... 26

4.2 Modeling of User Requirements, Service Ontology and COTS components 29

 User Requirements Metamodel ... 29 4.2.1

 Extended ETF Metamodel .. 33 4.2.2

viii

 Service Ontology Metamodel ... 35 4.2.3

4.3 User Requirements Satisfaction and COTS Components Selection 37

 Solution Map (SM) Metamodel .. 38 4.3.1

 Decomposition of Functional Requirements by Service Ontology 40 4.3.2

 Infeasible Decomposition Marking ... 43 4.3.3

 Service Dimensioning ... 44 4.3.4

4.4 Traceability ... 51

 Traceability Metamodel .. 51 4.4.1

 Insufficient Solutions Metamodel ... 54 4.4.2

4.5 Summary ... 55

Chapter 5 Design Time Elasticity Rules Generation .. 57

5.1 Introduction ... 57

5.2 Elasticity Rule Metamodel .. 59

5.3 Simultaneous Generation of Configuration and Elasticity Rules.. 61

 The Extended Configuration Generation Approach.. 61 5.3.1

 Generating Elasticity Rules for the Service Side .. 68 5.3.2

 Generating Elasticity Rules for the Service Provider Side ... 75 5.3.3

5.4 Summary ... 82

Chapter 6 SLA Compliance Management .. 83

6.1 Introduction ... 83

6.2 The Overall Approach for SLA Compliance Management .. 84

6.3 Modeling for the SLA Compliance Management ... 84

 The SLA Metamodel ... 85 6.3.1

 The Measurement Metamodel .. 87 6.3.2

 The Threshold Metamodel .. 88 6.3.3

 The SLA Compliance Metamodel .. 91 6.3.4

 The Trigger Metamodel .. 98 6.3.5

6.4 Building/and Update the SLA Compliance Model ... 99

6.5 Trigger Generation .. 100

6.6 Prototype Implementation and Preliminary Evaluation .. 101

 Validation of the SLA Compliance Model and Trigger Generation 102 6.6.1

6.7 Summary ... 104

Chapter 7 Trigger Correlation for Dynamic System Reconfiguration .. 105

ix

7.1 Introduction ... 105

7.2 The Overall Approach for Trigger Correlation and Dynamic Reconfiguration 106

7.3 Modeling for Trigger Correlation and Dynamic Reconfiguration 107

 The Relation Graphs Metamodel .. 107 7.3.1

7.4 Trigger Correlation ... 108

7.5 Elasticity Rule Selection and Execution ... 110

 Selecting Applicable Elasticity Rules ... 111 7.5.1

 Selecting the Optimal Action .. 111 7.5.2

 Action Correlation Meta-Rules ... 113 7.5.3

7.6 An Example for Trigger Correlation and System Reconfiguration 117

7.7 Prototype Implementation and Experimental Evaluation ... 121

7.8 Summary ... 122

Chapter 8 Conclusion and Future Work.. 124

8.1 Conclusion .. 124

8.2 Future Research .. 126

 Elasticity Rule Generation .. 126 8.2.1

 SLA Compliance Management ... 126 8.2.2

 Dynamic Reconfiguration ... 127 8.2.3

Bibliography ... 128

Appendix ... 135

x

List of Figures

Figure ‎1.1 The overall picture of the configuration management framework .. 4

Figure ‎2.1 An AMF configuration .. 14

Figure ‎4.1 Selection of COTS components using service ontology ... 28

Figure ‎4.2 Generation of AMF configurations from user requirements ... 29

Figure ‎4.3 User requirements metamodel ... 30

Figure ‎4.4 Classification of non-functional aspects based on their composition operation 30

Figure ‎4.5 Example of user requirements for a triple play service ... 32

Figure ‎4.6 A portion of the metamodel for the extended ETF .. 33

Figure ‎4.7 A portion of the ETF model for VoIP .. 34

Figure ‎4.8 Metamodel for the service ontology .. 35

Figure ‎4.9 An example of service ontology for a telecommunication bundle 37

Figure ‎4.10 Model transformations for decomposing user requirements and mapping to ETF

components ... 38

Figure ‎4.11 The SM metamodel combining the information from the user requirements, ontology and

extended ETF .. 39

Figure ‎4.12 Part of the traceability metamodel for traces obtained in the decomposition process 40

Figure ‎4.13 The SM model for the TriplePlay example of Figure 4.5 ... 42

Figure ‎4.14 The candidate solutions metamodel .. 45

Figure ‎4.15 Recursive computations of candidate solutions ... 46

Figure ‎4.16 Metamodel for tracing between solutions and functional requirements 47

Figure ‎4.17 The separated solutions for the TriplePlay example of Figure 4.5 47

Figure ‎4.18 Traces between solutions and functionalities for the TriplePlay example of Figure 4.5 .. 48

Figure ‎4.19 The complete traceability metamodel .. 52

Figure ‎4.20 Part of the traceability model for the TriplePlay Example of Figure 4.5 53

Figure ‎4.21 The insufficient solutions metamodel .. 54

Figure ‎5.1 The elasticity rule metamodel .. 59

file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530828
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530829
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530830
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530831
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530832
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530833
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530834
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530835
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530836
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530837
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530838
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530839
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530839
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530840
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530840
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530841
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530842
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530843
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530844
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530845
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530846
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530847
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530848
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530849
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530850
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530851

xi

Figure ‎5.2 The extended configuration generation process .. 62

Figure ‎5.3 An example of configuration at runtime .. 66

Figure ‎5.4 Part of the configuration model for the example in Figure 5.3 .. 67

Figure ‎6.1 The SLA compliance management process ... 84

Figure ‎6.2 The SLA metamodel .. 86

Figure ‎6.3 Two different SLAs ... 87

Figure ‎6.4 The measurement metamodel .. 88

Figure ‎6.5 An example of measurement model .. 88

Figure ‎6.6 The threshold metamodel .. 89

Figure ‎6.7 An example of threshold model ... 91

Figure ‎6.8 The SLA compliance metamodel .. 92

Figure ‎6.9 An example of SLA compliance model... 93

Figure ‎6.10 The different types of SLA violations ... 94

Figure ‎6.11 The trigger metamodel... 99

Figure ‎6.12 Performance evaluation for SLA compliance model validation and trigger generation

given different SLA compliance models .. 103

Figure ‎7.1 The overall approach for trigger correlation and dynamic reconfiguration process 107

Figure ‎7.2 The relation graph metamodel ... 108

Figure ‎7.3 Different types of relations between configuration entities ... 109

Figure ‎7.4 An example of invoked action path ... 113

Figure ‎7.5 System reconfiguration-An example ... 120

Figure ‎7.6 Comparison of the execution time and the number of reconfiguration actions for dynamic

reconfiguration with correlation and dynamic reconfiguration without correlation 122

file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530852
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530853
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530854
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530855
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530856
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530858
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530859
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530860
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530866
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530866
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530867
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530868
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530869
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530870
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530871
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530872
file:///C:/Users/umroot/Desktop/Forms-Thesis/Abbasipour_PhD_F2018.docx%23_Toc519530872

xii

List of Tables
Table ‎6.1 SLA compliance model validation and trigger generation performance evaluation 102

file:///C:/Users/umroot/Desktop/Thesis-mt-ma-fk.docx%23_Toc514526945

xiii

List of Acronyms

AIS Application Interface Specification

AMF Availability Management Framework

ATL Atlas Transformation Language

COTS Commercial-Off-The-Shelf

CST Component Service Type

CT Component Type

DSML Domain Specific Modeling Language

EMF Eclipse Modeling Framework

ETF Entity Types File

FR Functional Requirements

HPI Hardware Platform Interface

MDA Model Driven Approach

MDD Model Driven Development

NFR Non-functional Requirements

OCL Object Constraint Language

SA Forum Service Availability Forum

SI Service Instance

SLA Service Level Agreement

SLO Service Level Objective

SOA Service Oriented Architecture

SU Service Unit

UML Unified Modeling Language

UR User Requirements

VM Virtual Machine

1

Chapter 1

1 Introduction

1.1 Thesis Motivation

Commercial off-The-Shelf (COTS) components are reusable software components which are

developed independently from each other. The use of COTS components promises a better

productivity in software development as well as more maintainable system. A COTS-based

system is built by integrating such independently developed components together. The organ-

ization and characteristics of the entities composing the system (e.g. the components and re-

sources the components require) and their relationships are described in a system configura-

tion.

User requirements are the main goals to meet with the envisioned system. The user require-

ments are high level and related to the overall system while the components are at lower lev-

el; therefore, the gap between these requirements and the components can be large. To close

the gap, it is required to decompose the user requirements to a level where the components

can be selected. For the selection of appropriate components, both functional and non-

functional requirements need to be taken into account. Thus, the first challenge we tackle in

this thesis is to define an automated approach for decomposing functional user requirements

2

and selecting components while both functional and non-functional requirements are satis-

fied.

Service availability, which is defined as the percentage of time the service is provided to the

users [1], is required in several domains such as mission critical and telecom systems. Any

service outage in these systems can result in catastrophic damages, financial or reputation

loss [2]. As a result, service availability is an important non-functional requirement to con-

sider during design of the system.

When the system is built, deployed and is ready to provide services to customers, the service

quality the provider agrees to deliver to the customer as well as the rights and obligations of

the service provider and the customer are negotiated. The negotiated terms are included in a

contract called Service Level Agreement (SLA) [3]. For example, the level of service availa-

bility is included in the SLAs. When an obligation is not met, the responsible party may be

subject to penalty to compensate the breach of SLA commitment.

At runtime the workload of the deployed system varies dynamically, which results in variable

resource usage. Service providers aim at maximizing system’s resource utilization while en-

suring that the SLAs are always met. For this purpose, instead of allocating a fixed amount

resource, service providers want to allocate only as much as required for the current workload

and adapt according to workload variations. This is known as elasticity where a system

evolves and adapts dynamically to workload variations by scaling up/down and in/out [4].

Generally, whenever there is a potential SLA violation or the resource utilization is low, one

or more triggers are generated to invoke the elasticity rules, which consist of actions to take

in the current system’s situation. One of the main challenges is the definition of the elasticity

rules which are applied at runtime to ensure that the resulting system meets the required qual-

ities of service such as availability and performance while using only the necessary resources.

3

On the other hand, at runtime, more than one trigger may be generated at a time. Each trigger

invokes an elasticity rule consisting of actions to perform. An action applied on a configura-

tion entity may have an impact on other entities of the configuration because of the relations

and dependencies between them. As a result, handling each trigger independently or in an ad

hoc manner may endanger the stability of the system. Therefore, an approach is required to

manage reconfiguration dynamically and protect the system from instability and malfunction-

ing.

1.2 Contributions of this Thesis

To address the aforementioned issues we define a model-driven configuration management

framework. The Model-Driven Development (MDD) [5] paradigm separates the application

logic from the platform technology and manipulates platform-independent models; thus mod-

els are the primary artifacts in the development process [6]. The major advantage of this par-

adigm is that the models are at higher level of abstraction than the implementation technology

and artifacts. This paradigm is appropriate for our purpose as it allows not only to facilitate

the understanding, design and maintenance of the system [7], but also to reuse the models

generated during the system design phase. In this framework, we use Domain Specific Mod-

eling Languages (DSMLs) to capture the concepts, their relations as well as their constraints

[8]. We use the Unified Modeling Language (UML) profiling mechanism [9] to define the

DSMLs. The constraints are expressed using the Object Constraint Language (OCL) [10].

4

The main objective of this thesis is to define a model driven solution for designing COTS

based systems to ensure user requirements satisfaction, and enabling dynamic reconfiguration

by reusing the design information at runtime. As shown in Figure 1.1, our configuration man-

agement framework consists of two parts: offline and online. The offline part includes service

configurations and elasticity rules generations. The online part consists of SLA compliance

management and dynamic system reconfiguration using predefined action correlation meta-

rules and the generated elasticity rules.

In [11] an approach has been developed to generate automatically a valid configuration for

highly available systems starting from service configurations and software catalog. Service

configurations specify the set of services to be provided by a software system. More specifi-

cally, they define different characteristics of services such as their types, the number of in-

stances of each type and the relationship between services. Therefore, service configurations

are low level and in relation with COTS components and far from the requirements that a

Figure ‎1.1 The overall picture of the configuration management framework

Service

Ontology
Component

catalog

User

requirements

Service

Configuration

Generation

Configuration

OCL

Constraints

SLA_1SLA_1
SLAs

. .
. Monitoring System

Measurement

Trigger Correlation

and Dynamic

Reconfiguration

Offline Runtime

Elasticity

Rules

Thresholds

Configuration

Generation

Integrated Configuration

Generation
SLA compliance

Management

Trigger(s)

uses

Action

Correlation

Meta-Rules

uses

5

user would express. Specifying the service configurations requires deep domain knowledge

and expertise. To alleviate the work of the system designer and start configuration generation

from higher level requirements, we devised a model driven approach that generates service

configurations by decomposing the user requirements automatically with the decomposition

knowledge captured in a service ontology and selects the COTS components that satisfy both

functional and non-functional requirements.

In this thesis, we generate the elasticity rules at system configuration generation time while

taking into account availability of services. During the design of the system, the thresholds

related to the capacity of the system are generated.

At runtime, the SLA compliance management watches the workload variations and SLAs.

For this purpose, we have defined some OCL constraints which are periodically evaluated at

runtime. Violation of the OCL constraints leads to the generation of triggers for dynamic re-

configuration. Triggers initiate the application of the corresponding elasticity rules to recon-

figure the system accordingly and avoid SLA violations from the provider and resource wast-

ing.

To handle triggers raised at the same time, we propose a model driven approach to correlate

the triggers and the actions of their related elasticity rules. In order to automatically coordi-

nate the actions of invoked elasticity rules, execute them on the fly and also avoid resource

oscillation [12] we have defined action correlation meta-rules. The action correlation meta-

rules are high level rules that govern the application of the elasticity rules when the triggers

are correlated.

As mentioned before, our framework is model-driven; we use DSMLs to capture the con-

cepts, their relations as well as their semantics. To define the DSMLs, we use the UML pro-

6

filing mechanism. We follow the approach in [8] to define the UML profiles: first, we define

the metamodels and then we map the metamodels to the UML metamodel.

The main contributions of this thesis are summarized as follows:

 To design a system that meets user requirements, we propose a model-driven ap-

proach to generate service configurations by decomposing functional user require-

ments to a level where COTS components can be selected while taking into account

the non-functional requirements. During the decomposition process, we also generate

the traceability links that relate the user requirements and selected components as well

as rejected solutions. We integrate our service configurations generator with the con-

figuration generator in [11] to generate automatically configurations for highly avail-

able systems from higher level requirements.

 To generate elasticity rules offline, we propose a model-driven approach that reuses

the information acquired during configuration generation time. The generated elastici-

ty rules will be used at runtime to reconfigure the system dynamically.

 To check the compliance of SLAs at runtime, we have defined a set of OCL con-

straints which are evaluated periodically and dynamically. Violation of the OCL con-

straints leads to the generation of triggers for dynamic system reconfiguration.

 To reconfigure the system dynamically, we propose a model-driven approach that cor-

relates triggers issued on related entities and executes actions of their related elasticity

rules on the fly. In order to achieve this, we defined action correlation meta-rules that

govern the application of elasticity rules when the triggers are correlated. We also en-

sure that certain properties of the provided service such as service availability and

performance are maintained.

7

To illustrate our work we use the Service Availability Forum (SA Forum) [13] middleware as

an application domain throughout this thesis. However, our work is applicable in more gen-

eral context where the service and service provider perspectives are described explicitly in

the configuration.

As a proof of concept we implemented our approach for user requirement decomposition and

service configurations generation using the Atlas Transformation Language (ATL) [14]. To

derive the configuration from higher level requirements and generate elasticity rules offline,

we extended the current tool for configuration generation [11] and integrated it with the ser-

vice configurations generator. We implemented a prototype of SLA compliance management

in the Eclipse Modeling Framework (EMF) [15] using OCL APIs [16]. We also implemented

a prototype of trigger correlation and dynamic reconfiguration using ATL.

1.3 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we provide the background

knowledge including the SA Forum services and concepts which are used as an application

domain throughout this thesis. We also discuss briefly some concepts from the model-driven

paradigm. In Chapter 3 we review the related work in functional user requirements decompo-

sition, elasticity rule generation, trigger correlation and elasticity management. In Chapter 4

we discuss our model-based approach for the decomposition of functional user requirements

and selection of COTS components to satisfy user requirements. In Chapter 5 we elaborate on

the generation of the elasticity rules at configuration generation time, i.e. offline. In Chapter

6, we discuss our approach for checking the compliance of SLAs and generating triggers for

system reconfiguration at runtime. In Chapter 7 we discuss our trigger correlation and dy-

namic reconfiguration approach to manage the application of elasticity rules at runtime. In

8

Chapter 8 we conclude this thesis by reviewing its main contributions and potential future

work.

9

Chapter 2

2 Background

In this chapter, a brief overview of the model driven paradigm [6] and the SA Forum mid-

dleware [13] is provided. In the first part of this chapter we introduce the main concepts of

model driven development such as Domain Specific Modeling languages (DSML) [8], meta-

models, Unified Modeling Language (UML) profiles [9] and traceability in general. In the

second part of this chapter, we review the context of service availability in SA Forum and

explain how Availability Management Framework (AMF) [17] manages the availability of

services.

2.1 Model Driven Development (MDD)

The model driven development is a system development approach which emphasizes ab-

stracting the concepts of the domain by creating and analyzing models. Therefore, models are

the primary artifacts in this approach which replace the codes in the software development.

These models, which are called platform independent models, capture the information about

the system and its behavior rather than the specific implementation and platform details [7].

The model driven approach consists of models which are the abstract representation of the

system, metamodels that specify the syntax and semantic of the models, and transformations

(e.g. model to model and model to code transformations).

10

 Modeling 2.1.1

A model is an abstract representation of a system at high level. To describe models, various

modeling languages as metamodels can be used. A metamodel is a special kind of model that

defines the entities, their structures as well as the semantic of instance models. A model

which is built according to the syntax and semantics of its metamodel is said to conform to its

metamodel. The modeling languages can be generic such as UML [18] to formally define

models in different domains or they can be customized i.e. Domain Specific Modeling Lan-

guages (DSMLs) [8].

 Domain Specific Modeling Languages and UML Profiles 2.1.2

A Domain Specific Modeling Language (DSML) is a specialized language for defining the

models in a specific domain. DSMLs allow developers to express their application models

with specific concepts and properties of the application domain [8]. To benefit UML as a

standardized modeling language and also take the advantage of DSML, UML provides profil-

ing mechanisms [18] which allow constraining and customizing the UML for creating

DSMLs for specific domains. A UML profile consists of stereotypes, tagged values (i.e. the

attributes of the stereotypes), and constraints to restrict and customize the UML. The con-

straints are side-effect free; therefore, their evaluation does not affect the executing system

[10]. The constraints in UML profiles and models can be described by Object Constraint

Language (OCL) [10]. OCL expressions can also be used to specify the operations/actions

that when executed, the state of the system changes. In our work we define UML profiles to

formally define the concepts, relations and constraints of the configuration domains.

 Model Transformation 2.1.1

Various operations as model transformations are defined to manipulate models and generate

other artifacts (such as source codes, configurations, etc.). Therefore, model transformations

11

are mapping functions from the source model(s) to the target model(s) which facilitate the

automation of the development process. Model-to-model and model-to-code transformations

are the most common model transformation. Model transformations are mainly unidirection-

al. In the case that a transformation works in both directions, the input and output sides can

be generated from each other.

 Traceability 2.1.2

During the development process, many models are created, refined or transformed [19]. In

order to keep consistency between the models, it is useful to keep trace links between the

models. There are several studies related to traceability. In [20], traceability is classified into

two categories: requirement traceability and traceability in MDD. In the first category, trace-

ability is defined as the ability to follow the life of a requirement during development process

in both directions [21]. The second category defines the trace as a link between a group of

elements in input models and a group of elements in output models [20]. In this approach,

trace links are generated via model transformations. The second category can have the same

purpose as the first category because MDD is used for the automation of software develop-

ment process.

2.2 The Service Availability Forum (SA Forum) Middleware

In this section we introduce service availability as well as the SA Forum concepts.

 Service Availability 2.2.1

Many critical applications are needed to provide a service with no or minimum outage. The

service availability is defined as a probability that a service is provided during a time interval.

Therefore, it is defined based on the time that the service is up. It is measured using the fol-

lowing formula:

12

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑢𝑝𝑡𝑖𝑚𝑒

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑢𝑝𝑡𝑖𝑚𝑒 + 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑜𝑢𝑡𝑎𝑔𝑒 𝑡𝑖𝑚𝑒

High Availability (HA) is achieved when the service is available at least 99.999% of the time,

i.e. five minutes and 15 seconds of downtime per year [1].

 The Service Availability Forum 2.2.2

Several leading telecommunications and computing companies have formed the Service

Availability Forum (SA Forum) [13]. The solution offered by SA Forum facilitates service

availability. The SA Forum middleware consists of two sets of interfaces: the Hardware Plat-

form Interface (HPI) [22] and the Application Interface Specification (AIS) [17]. The SA Fo-

rum HPI specifies a generic mechanism to discover the hardware entities present in systems

as well as to monitor and control the hardware platform through a consistent, platform inde-

pendent set of programmatic interfaces. AIS defines the application programming interfaces

for functionalities commonly used by application developers to develop highly available ap-

plications therefore allowing for portable solutions. AIS defines several services to support

the development of HA applications. Among these services, Availability Management

Framework (AMF) [17] manages the availability of services that are provided by the con-

structed system. In the next section we briefly introduce AMF.

 The Availability Management Framework (AMF) 2.2.3

AMF maintains service availability by managing redundant entities that together compose the

applications deployed within a cluster [1]. To manage an application by AMF, the application

needs to be described according to the AMF configuration model. In this configuration, the

entities composing the system, their types (i.e. the common characteristics of a set of entities)

and their relations are given. In AMF, the entities in the configuration are classified into two

categories: service entities to represent the provided services and service provider entities to

13

describe the entities that can provide those services. Thus in AMF, a system then can be

viewed from two perspectives: service side and service provider side. On the service side, a

Component Service Instance (CSI) is a service entity that represents a chunk of the workload.

A Service Instance (SI) is the aggregation of CSIs. CSIs and SIs are logical entities. On the

provider side, service provider entities are pieces of application software, physical or virtual

computing nodes, which are tangible resources. The application software entities are compo-

nents capable of supporting/providing CSIs. A set of components that collaborate to combine

their services forms a Service Unit (SU) capable of supporting/providing SIs. Each SU is de-

ployed on a computing node. In [23], AMF UML profile has been defined by mapping the

AMF configuration metamodel to the UML metamodel.

The reason for the distinction between service entities and service provider entities is that the

relation between them is not always one-to-one, and service entities can be assigned and re-

assigned dynamically to different service provider entities even to multiple of them simultane-

ously. Indeed, to provide highly available services the provider side contains entities to pro-

vide and also to protect the service side entities in case of failure [1]. A set of redundant ser-

vice units can be grouped into a Service Group (SG), which can be organized with different

redundancy models, namely 2N, N+M, N-way active, N-way and No-redundancy [1]. An SG

is deployed on a node group eligible hosting its SUs. An application may consist of multiple

different SGs. Depending on the redundancy model of the SG, at runtime an SI may have one

or more active and zero or more standby assignments; each of which is assigned to a different

service unit of the service group. A service unit with an active assignment provides the ser-

vice. A service unit with a standby assignment does not provide the service, but is ready to

become active in a minimal amount of time [1].

14

In Figure 2.1, App1 consists of one SG (SG1) and one SI (SI1). This SG has two SUs (SU1,

SU2) and protects the service represented by SI1. Each of the SU1 and SU2 is hosted on a

separate node: Node1 and Node2. AMF assigns the active and standby roles on behalf of SI1

to the SUs at runtime. SUs in active and standby roles are shown with solid and dashed lines

in this figure. When SU1 fails, AMF changes the standby SU2’s assignment to active to con-

tinue service provisioning.

 Entity Types File (ETF) 2.2.4

In order to design an AMF configuration for a given software system, it is necessary to have a

description of the software’s components, their capabilities, the services they support, as well

as the constraints on any of the parameters and their combination options. This description is

provided by the software developer which is compliant to another SA Forum standard, known

as the Entity Types File (ETF). Using ETF, software developers can specify the characteristics

of their software, capabilities, and limitations in a way that can guide the generation of an

AMF configuration. Moreover, ETF types describe how an application’s components can be

combined by providing information regarding their dependencies and compatibility options.

Figure ‎2.1 An AMF configuration

Node1 Node2

App1

SU1 SU2SG1

SI1

Active Standby

C2

C1

C4

C3

15

Chapter 3

3 Related Work

In this chapter we review the work related to our management framework in five aspects:

functional user requirements decomposition, elasticity rule generation, SLA compliance

management, trigger correlation and dynamic system reconfiguration. As most of the related

work focuses only on one aspect of our framework, we organize this section into five sub-

sections, one for each aspect.

3.1. Functional User Requirement Decomposition

The composition/decomposition of functionalities resembles feature models [24]. A feature

model is used to describe a software product line, i.e. all the products that can be built from a

given set of features. This is done using a feature diagram where features can be marked as

mandatory or optional and alternatives can be described. The focus is to define the valid

combinations (also called configurations) of a given set of features in bottom-up manner

while in our approach the goal is to decompose functionalities and determine components

that can be used to compose the system in a top down manner. We decided to use UML for

the modeling of service ontology and user requirements instead of feature diagrams to cap-

ture properly non-functional requirements when associated with functional requirements, po-

tential communications and interactions between components and/or environment.

16

The work done in the CARE project [25] is closely related to this research. In [25] software

components are evaluated using models of software components and models of the compo-

nent-based application. Requirements are expressed as logical queries that can be composed

of sub-queries using logical operators. The queries and sub-queries are matched against the

functionalities of the components. The components can be ranked and selected using different

searching/evaluation techniques. The focus in our work is on automating the requirement de-

composition – which remains a manual and incremental task through interactions in [25] –

and only afterwards choosing appropriate components.

A lot of work has been done in the domain of web service composition, either at runtime or

offline during design. The closest works related to our work are the approaches that start from

an overall goal or functionality, decompose it into sub-requirements/goals, search for services

that meet sub-requirements, compose them, and verify for the satisfaction of the overall goal.

Such approaches like [26, 27] are generally based on formal methods, focus on the behavioral

description of the services, their behavioral properties and verification techniques. Our work

is targeting COTS components described at a higher level of granularity. In addition, our

work is completely model driven and enables traceability.

In [28], an ontology is used to store the knowledge about requirements, their relations, com-

ponents and their non-functional characteristics. The purpose of the ontology is to capture

design knowledge. The goal is to propose a generic requirement management process to han-

dle consistency during concurrent engineering activities, completeness, traceability and

change management among others.

In [29], component service replacement within a composite service is investigated. An IT

service process is given, which consists of an orchestration of service steps (like basic ser-

vices). One of these service steps may be underperforming, for instance, and the question is

17

how to replace it from the service catalog. To do so, a dependency network is generated using

different ontology related technologies to associate a service process with the existing ser-

vices that can be used as replacements and one is chosen according to certain non-functional

criteria. This is more of a replacement problem in the domain of IT services using ontologies

in contrast to user requirements decomposition with ontologies.

A lot of work has been done to model Non-Functional Requirements (NFRs) related to the

functional requirements. In [30] the modeling is based on software quality standards. To con-

sider NFRs at software development lifecycle, they define ontology for NFRs. In their ontol-

ogy model, NFRs are modeled as a hierarchy of different NFR types that the parent type has

sub-types. For example, accuracy is a sub-type of integrity which is the sub-type of reliabil-

ity. In the ontology, the knowledge about the decomposition of an NFR type into other NFR

types is also kept. Therefore, an NFR like security can be refined into more detailed NFRs

such as confidentiality, integrity and availability. They use the ontology to express NFRs,

trace them [31] and estimate software effort. In [31], a traceability metamodel is represented

and it is explained how this metamodel is used to analyze the impact of a change. In their

approach, the decomposition relations within non-functional requirements, the decomposition

relations within functional requirements and the relations between functional and non-

functional requirements are considered. In our approach, besides traceability links, we also

keep track of the non-optimal solutions so the expert later can see for what reason a require-

ment is not satisfied. In [32], authors propose an approach to analyze the Software Require-

ments Specification (SRS) documents for extracting different NFR types automatically. The

approach is based on natural language processing, machine learning and the ontology pro-

posed in [30]. Their approach consists of two major phases: NFR classification and ontology

population. In NFR classification, all sentences of the documents are split and later, the can-

18

didate sentences are detected and classified into functional requirements, nonfunctional re-

quirements or design constraints using a machine learning-based classifier. After classifying

all the sentences in the SRS, the sentences are linked with the classes of the ontology pro-

posed in [30] to provide reasoning and queries.

The work in [33] discusses the modeling of quality (non-functional characteristics) of COTS

components as well as the specification of quality (non-functional) requirements. The work is

based on software quality standards and the goal is to provide a taxonomy to enable the selec-

tion of appropriate COTS components. In their approach they assume that the requirements

are decomposed.

There are some works like in [34, 35, 36] that define models to represent non-functional re-

quirements along with functional requirements but these do not include how the non-

functional requirements are handled during the development process.

Traceability relationships help stakeholders understand the many associations and dependen-

cies that exist among software artifacts created during a software development. In order to

keep consistency between the models, it is useful to keep the trace links between the models.

There are some studies about the traceability approaches. The approach in [37, 19] is similar

to our approach. Authors use model transformations for creating traceability. They aim at

generating some performance models to study the performance characteristics of the designed

system in early stages. The generated traceability links are used to analyze the impact of

changes in terms of performance [19].

In [38], similar to us, the authors create traceability model during model transformation.

However, the metamodel for the generated traceability link is the extension of the Atlas

Model Weaver (AMW) metamodel [39]. AMW is used for establishing links between the

19

elements of models. Our approach also decomposes requirements and includes traceability

for non-sufficient solutions as well.

3.2. Elasticity Rules Generation

Elasticity rules can be defined offline or online. In both approaches, the elasticity rules should

be precise enough such that by their execution the system is reconfigured properly.

With online approaches [40], [41], [42], [43] and [44] the elasticity rules are learned during

the operations of the system using machine learning algorithms. In these studies, the elasticity

rules are defined for the states in which the system can be. Each elasticity rule is modeled as:

alternative actions that can be taken when the system is in a specific state; the probability of

transitioning to a target state when a specific action is taken as well as a reward which indi-

cates the expected benefit of the action. These approaches depend on the learning through the

dynamic interaction between the system and a learning agent [45]. Time is divided into inter-

vals. The learning agent watches the current state of the system within an interval; it takes an

action among the allowed ones in that state and then observes the new state and the achieved

reward. Depending on the achieved reward and state, the probability of transitioning and the

expected reward of the elasticity rule may be updated. In these approaches, the new state of

the system depends on the probability distribution, which is learned during the operation of

the system. Since these elasticity rules are generated online and independently from the con-

figuration, tracing and fixing the problems in the elasticity rules is not easy.

With offline approaches the elasticity rules are predefined before the operation of the system.

In these approaches, the elasticity rules are not modified at runtime; therefore, the generated

elasticity rules should be precise to reconfigure the system properly. To overcome this chal-

lenge, instead of defining elasticity rules with quantitative values, in [46] the elasticity rules

20

are qualitative. For example, an elasticity rule is defined by an expert as follows: “if the

workload is high and the response time is low, add VMs”. They use time-series runtime data

to predict the future workload as well as a fuzzy controller to specify if qualitative thresholds

are reached. The fuzzy logic facilitates the use of qualitative elasticity rules for auto-scaling.

In our approach, we generate elasticity rules based on the knowledge used for dimensioning

the system at configuration design time. As a result, the defined elasticity rules are more pre-

cise than the qualitative elasticity rules or the elasticity rules of online learning approaches

which are based on probability.

To express elasticity rules, different languages have been defined/used. Most of these lan-

guages use the condition-action syntax for the rules [47], [48], [49] and [50]. The condition is

an event such as threshold violation, when it occurs the corresponding action is triggered. The

languages differ in the level of abstraction and expressiveness. Some languages like [50] use

temporal logic to express the rules. Using temporal logic, time related conditions can be ex-

pressed. For example, one can specify a rule like: if event e1 happens x seconds after event

e2, action A should be taken. [47] and [48] define Domain Specific Modeling Languages

(DSMLs) named as SRL and SYBL to specify elasticity rules. SRL [47] has a better expres-

siveness for events than the languages defined in [48], [49] and [50]. In SRL, events can be

behavior related events (e.g. failure of a component) or non-functional related events (viola-

tion of a particular quality of service like service availability). Similar to most languages, the

definition of actions remains very abstract in SRL and it is not clear how an action makes

changes in the system. In SYBL [49], elasticity rules are classified as applications, applica-

tion components and application component code rules. At the application level, the defined

rules are about the whole application (e.g. when the incoming workload hits a threshold). The

rules about the components of the system are specified at the component level (e.g. when the

21

resource usage of a component reaches a threshold). At the programming level, the strategies

are about the resource usage of a specific code. Someone who is familiar with the system

needs to define the triggers and the actions of the rules. The Planning Domain Definition

Language (PDDL) [51] is a language which is used extensively to specify the reconfiguration

plans including elasticity rules. With PDDL the goal (e.g. a measurement should not cross a

threshold), the action (e.g. adding or removing a VM), the impact of the action on the config-

uration (e.g. the increase in the capacity), the duration of the action as well as the condition

under which the action is applicable can be specified. Similar to [51] in our proposed elastici-

ty rule metamodel, the condition checks for the applicability of an action. We also define pre-

requisites and follow-ups in association with actions to check if prerequisite or follow-up ac-

tions are required. This structure enables action correlation at runtime to avoid conflicting

actions.

3.3. SLA Compliance Management

 Monitoring the system, collecting measurements and assessing them against the SLAs are

necessary to ensure the compliance of SLAs.

In [52] and [53], authors propose the rSLA framework to monitor SLAs during their life cy-

cle. The framework consists of three main components: rSLA language, rSLA Service and

Xlets. The rSLA language is defined to describe SLAs and service metrics as well as evalua-

tion conditions. In rSLA, it is described how the metrics should be measured and composed

to define Service Level Objectives (SLOs). It can also be specified what actions should be

taken when the SLAs are violated. The authors of SLAs are the providers. As the SLAs are

agreements among the providers and customers and need common understanding of the

terms, considering all of the above terms may be cumbersome or not important for the cus-

tomers as they may not care how the measurements are obtained. The rSLA Service checks

22

for SLA compliance. Xlets provide standard interfaces for monitoring the system and report-

ing measurements.

In [54], to detect violations with respect to response time, a timed automata is used. The work

in [55] is closely related to the SLA compliance management of our framework. The goal in

[55] is to detect individual SLA violations only, while in our case we want to avoid the poten-

tial SLA violations and achieve this goal with the minimum amount of resources needed ac-

cording to the workload variations. To check the compliance of SLAs in [55], for each SLA

parameter an OCL constraint is defined to check if the measurement has reached the thresh-

old. However, when a new parameter is added to an SLA a new OCL constraint for the viola-

tion detection has to be defined as well, which is not the case in our framework.

In [56], authors demonstrate their architecture for SLA violation detection at the application

level. In [56], thresholds for SLA parameters such as response time and throughput are de-

fined. According to their architecture, when a user requests for a service, first the request is

checked with the SLA to see if the request is coming from the right customer. In the next

step, based on the requests, the tasks are generated and executed. There are multiple monitor-

ing agents that collect application level measurements. The measurements are passed to the

SLA management framework where it is checked if the value of a threshold has been reached

or not.

In [57], a framework for monitoring SLAs is proposed. It consists of three components: a

monitoring system for providing measurements, LoM2HiS for mapping monitored data to

parameters in the SLAs, and a knowledge database which uses past experience to solve cur-

rent SLA related issues. This framework is suitable for the infrastructure layer of the cloud.

In our framework both, infrastructure and application, levels are handled. On the other hand,

[58, 59] for instance do not take SLAs into account.

23

3.4. Trigger Correlation

In the studies which are threshold based, trigger correlation and the coordination of the relat-

ed actions which are important for the dynamic reconfiguration of systems are hardly consid-

ered. In the current literature, trigger correlation is discussed extensively for fault manage-

ment of distributed systems and networks where an error caused by a fault is propagated

through many related objects and potentially large volume of triggers are generated for the

same fault. In these studies, a reported fault is an event which triggers an action and correla-

tion is used as a reduction technique to filter the symptoms and identify the root cause fault;

while in our approach triggers are not necessarily symptoms and should not be simply elimi-

nated because the allocation of resources to one entity does not necessarily mean the alloca-

tion of resources to another entity even if they are related.

In [60] and [61], authors come up with different correlation graphs based on which the trig-

gers are correlated. The proposed correlation graphs only capture the paths where a fault can

propagate, while the edges of our proposed relation graph are of different types and used for

correlating the triggered actions. To build a correlation graph in [60], for each entity of the

system, the faults that can originate from the entity, the relationships that the entity has with

other entities and the faults that propagate along these relationships are specified by an ex-

pert. From these elements, a causality graph is inferred. A node in a causality graph is an

event which can be a symptom or a root cause fault. A causality graph may have information

which may not contribute to the correlation analysis like a cycle. A correlation graph is de-

duced from a causality graph by eliminating the cycles and aggregating each into a single

event or by pruning indirect symptoms (i.e. the symptoms that are not caused by a root cause

fault directly). The correlation process in [60] is based on an encoding technique where the

events are represented by a code. To code a correlation graph, the root faults in the graph

24

contain bits where each bit corresponds to a single symptom in the correlation graph. For ex-

ample, for a graph with three symptoms, the code length will be three. The value of 1 for a

symptom for a root fault indicates that the root fault causes the corresponding symptom.

Therefore, the event correlation process becomes finding problems in the correlation graph

whose codes optimally match the observed symptoms. In the case that similar symptoms are

caused by different root faults, the root cause is not distinguishable. In [61], the correlation

graph is obtained from the dependencies between the functionalities of the managed system.

Therefore, the nodes of the correlation graph in [61] are the functionalities and the edges are

the dependencies. When a fault occurs in a component, the components which communicate

with that component are also affected and similar faults will be reported for them. In [61]

they use their proposed correlation graph to identify the component whose failure caused a

large number of symptoms. In [60, 61], trigger correlation is the aggregation of similar trig-

gers that report the same fault.

3.5. Dynamic System Reconfiguration

There are many papers which focus on elasticity management. They reconfigure the system

by adding/removing VM instances or by scaling up/downsizing the VM instances at runtime

[59, 62, 63, 64, 65, 58]. Among them, the study in [65] considers elasticity rule correlation to

some extent. In this thesis, we propose a finer grain approach which not only adds or removes

resources when it is required but also reorganizes them (e.g. by changing the active and

standby assignment roles) for better resource utilization while taking into account the service

availability.

In [65], when the load on VMs increases, the VMs are scaled up. In their approach, they con-

sidered action correlation for a specific case where hosted VMs with the same supporting

physical node need to be scaled up and the supporting node does not have enough resources

25

for all the requests. To handle such conflicts, authors use VM migration. To choose the can-

didate VM for migration, they select the one for which the cost and time of migration as well

as the release of resources resulted from migration is optimal. The accuracy of their approach

depends on the weight they set for different types of resources like CPU, memory, etc.

There has been some research study in which they do not use thresholds as the points for al-

locating or deallocating resources. Instead, they use prediction techniques which take the pre-

vious workload and utilized resources as input and forecast the future workload and resource

requirements. In these studies, the previous workload at different time intervals with a fixed

window size is analyzed to identify any repeating patterns in the workload [45]. Based on the

found pattern, the future workload is predicted. Next, the system is scaled according to the

defined policies if it is necessary. The size of the window and the accuracy of the prediction

have significant impact on the efficiency of the scaling. These approaches try to solve the

problem of when and how much to scale; but they do not specify how the system is scaled or

the elasticity rules based on which the system is scaled are general.

In [66], [62] and [63] workload variations are predicted by machine learning. In [62] based

on the predicted workload, penalty of violating SLAs and the cost of adding VM instances, it

is decided if VM instances should be added or removed. In [63], online machine learning is

used as a decision maker to add or remove virtualized network functions. Similar to other

online learning approaches, the initial performance when the system is learning can be low.

The performance can be worse especially when the workload is not even. Others such as [67]

used queuing theory to model the cloud system based on the arrival rate of requests and other

parameters such as mean service time (i.e. response time) and CPU load. They use this model

to predict the response time or the load in the next time interval.

26

Chapter 4

4 Ontology-Based User Requirements

Decomposition and COTS Component

Selection

In this chapter we introduce a part of our model-driven framework which decomposes high

level functionalities and selects COTS components that match the decomposed functionalities

in order to meet user requirements.

4.1 Introduction

Service providers often offer a limited set of services that can be customized according to the

customer's needs. Let us consider for instance the provisioning of a web server service. One

client may require a high bandwidth; while another one may want secure interactions and a

third one may prefer COTS components from a specific vendor. Instead of having a service

configurator going through the process of decomposing the required service until it can be

mapped to COTS components for each customer separately, possible decompositions can be

stored in a service ontology. Experience with service decomposition and component selection

can be reused.

27

According to [68], an ontology represents some knowledge about a domain and it consists of

classes, attributes and relationships. We are interested in a service ontology to represent the

information about the different functionalities that compose a service and their known de-

compositions/compositions. The important classes in a service ontology are therefore func-

tionalities, compositions and interactions; the relationships define how functionalities can be

decomposed/composed and where interactions are required. The ontology is constructed in

such a way that the elements at the lowest level of decomposition can be mapped to COTS

components. With the help of a service ontology, requirement decomposition and component

mapping can be automated. Additionally, alternative component sets can be generated so that

later compliance with non-functional requirements can be evaluated for different solutions.

Optional functionalities that may not be requested by all customers can be easily included.

Note that in our work we only use the ontology to store alternative decompositions to allow

addressing a functionality by different names (where model elements usually have unique

names used as identifiers), but we do not use the formal semantics of ontologies.

The COTS components that are available for providing the desired functionality are stored in

a separate model, as they might change more frequently. For instance, a new version of some

software may be released every few months, or available hardware elements may change. By

keeping the decomposition separate from the components, it is ensured that the ontology and

thus the knowledge about the functionality decomposition can be reused even when the

COTS components that are available to provide different functionalities change. In addition,

it makes it easier to use different sets of COTS components for different customers.

28

The overall process of decomposing user requirements using a service ontology and then se-

lecting COTS components is shown in Figure 4.1. UML models are used to describe all the

artifacts in Figure 4.1 and the Atlas Transformation Language (ATL) [14] is used for the

transformations T1, T2, T3 and T4.

In [11], a model-driven approach has been developed to derive automatically a valid AMF

configuration starting from service configurations model. However, the service configura-

tions model is specific to the AMF domain and far from requirements the user would express.

Rather than specifying the requirements in terms of AMF concepts, the user is interested in

the service functionality the system will provide and its non-functional properties, like per-

formance and level of availability. The service as perceived by the user may consist of sever-

al functionalities. A method to derive service configurations from user requirements (UR) has

been proposed in [69]; however, the first step of decomposing the user requirements to a level

from where they can be mapped to AMF concepts is left to the service configurator, an expert

in the service domain. Moreover, data rate is the only non-functional requirement that is con-

User

Requirements
Decomposed

Requirements

Service

Ontology

COTS
Components
Satisfying

Functional
Requirements

Software

Catalog

T

1
T

2

Service

Configurations
T

4
T

3

COTS

Components
Satisfying

Nonfunctional

Requirements

Traceability

Figure ‎4.1 Selection of COTS components using service ontology

29

sidered in component selection. As the services requested by different customers are often the

same or at least similar, the configurator's work could be simplified and automated by provid-

ing a way to store and reuse decompositions of services and functionalities. Therefore, in this

thesis, we aim to generate service configurations from available components to satisfy high

level user requirements. Figure 4.2 shows the overall picture of the configuration generation.

4.2 Modeling of User Requirements, Service Ontology and COTS

components

In this section, the UML model of user requirements, COTS components and service ontolo-

gy are presented.

 User Requirements Metamodel 4.2.1

We model the functional and non-functional user requirements in UML as shown in the met-

amodel in Figure 4.3.

Figure ‎4.2 Generation of AMF configurations from user requirements

User

Requirements

Service

Configurations

AMF

Configuration

Service

Ontology

Extended ETF

Generating

Configuration

Requirements

Configuration

Generator

Traceability

30

Requirements may evolve over time. The evolution is captured by the EvolvedTo metaclass.

In this relation, it is specified when, by whom and for what reason a specific requirement has

changed.

 User may decompose functional or non-functional requirements to some extent. It is usually

done when for a functional requirement, there are alternative decompositions and user wants

to force (a) specific one(s) or to introduce a new decomposition. Non-functional requirements

DecomposedTo
0..1

0..*

UserRequirement
Stakeholder: String
version: String
priority: Int

Functional

Requirement

Nonfunctional

Requirement
type: NfType
goal: Goal

EvolvedTo
author: String
reason: String
date: Date

RelatedTo 0..*

<<Enum>>
Goal

Maximize
Minimize

1
1

1 1

1

Figure ‎4.3 User requirements metamodel

<<DataType>>
Parallel

max ()

<<DataType>>
Serial

sum ()

<<DataType>>
MinAgg

min ()

<<DataType>>
MulAgg

mul ()

<<DataType>>
MaxSumAgg

<<DataType>>
MinSumAgg

Availability

type: MulAgg
goal: Maximize

DataRate

type: MinSumAgg
goal: Maximize

Reputation

Type: MinAgg
goal: Maximize

Security

type: MinAgg
goal: Maximize

Cost

type: Serial
goal: Minimize

Nonfunctional

Requirement

ResourceUsage

type: Serial
goal: Minimize

ResponseTime

type:

MaxSumAgg
goal: Minimize

<<DataType>>
NfType

value

Figure ‎4.4 Classification of non-functional aspects based on their composition operation

31

are applied to functional requirements at any level of granularity. Non-functional require-

ments can be of different types. For example, a customer does not ask for interoperability

while a Software-as-a-Service (SaaS) provider who owns the components may request it.

Each non-functional requirement has an attribute named goal. This attribute categorizes the

non-functional requirements based on their optimization goal. For example for security, a

higher value is better and for cost, the lower value is preferable. In Figure 4.4, similar to [70]

the non-functional requirements are categorized further based on their appropriate composi-

tion operation. For instance, the total cost is the summation of the costs of the composed

functionalities. These categorizations are used when components are selected based on the

non-functional requirements.

Each non-functional requirement is of a specific data type. A data type can inherit from an-

other data type. In the UML metamodel [18], a data type is a kind of a classifier. Thus the

inheritance/generalization relation that is defined between classifiers is defined between data

types too. For instance, the type MaxSumAgg inherits max() and sum() operations. The non-

functional requirement ResponseTime is of type MaxSumAgg because depending on the ar-

chitecture of the system, we have to take the maximum of response times of the sub-systems

(if the sub-systems operate in parallel) or sum them up (if the sub-systems co-operate in a

serial way, one after the other) or we have to use a combination of the two to obtain the re-

sponse time for the whole system.

The attribute value can be either a qualitative or a quantitative value. We use Object Con-

straint Language (OCL) [10] expressions to specify NFtypes’ operations. For example, the

operations for taking the minimum in the MinAgg data type and the summation in the Serial

data type are defined as follows:

32

Context MinAgg :: min (x: MinAgg) : MinAgg

body: If self.value > x.value then x.value else self.value endif

Context Serial :: sum (x: Serial) : Serial

body: self.value + x.value

According to the second operation, if we want to compose two non-functional aspects that are

of type Serial, then the resulting operation is the summation of their values which is also of

type Serial.

An example for an UR model is given in Figure 4.5. For readability purposes, the rectangles

represent the functional requirements and the ones with the rounded corners are for the relat-

ed non-functional requirements. The dotted lines with arrow show the RelatedTo relations

and the dashed lines without arrow show the DecomposedTo relations. The requested service

is a triple play, and the user specified the requested functionalities and some elements of the

decomposition. Three non-functional requirements were specified for the overall service,

namely the maximum cost, the number of customers and the capacity for each customer.

Moreover, for one of the composing functionalities, a different capacity is required.

VoIP

Cost

<10,000 Triple Play
DataRate per customer=

1000 Req/Sec

Voice Text Fax

IPTV Internet

DataRate= 200 Req/Sec

Reputation >= 3

Number of customers= 1000

Figure ‎4.5 Example of user requirements for a triple play service

33

 Extended ETF Metamodel 4.2.2

For describing components in the domain of high availability, ETF is used. The basic entities

in ETF are Component Types (CTs) and Component Service Types (CSTs). A CT represents

a version of hardware or software and a CST represents the type of the service such compo-

nent can provide. The CST is different from the service as perceived by a user. A service per-

ceived by a user refers to the functionality that a component provides while a CST defines

which attributes of a component have to be configured to provide such functionality [1]. Each

service can be provided by different components and the quality of the service that those

components can provide may differ. To provide the same service, components might use dif-

ferent types and amount of resources. The components may also provide the same service

with different qualities. These characteristics are represented by Non-

functionalCharacteristics metaclass. The metrics that can be observed by a monitoring sys-

tem or reported by the component itself are also described in the extended ETF as Measura-

Figure ‎4.6 A portion of the metamodel for the extended ETF

1..*

d

0..*

0..*

0..*

1..*1..*

1..* Component

Service Type
Functionality

CTCST

Non-functional

Characteristic

CTCST

DepPort

ProxyProxied

DepPort

ContainerContained

DepPort

Communication

Port

Communication

CTCST

Dependency

ProxyProxied

Dependency

ContainerContained

Dependency

s

Component

Type

SUType SvcType
1..*1..* 1..*

1..*

SutSvct

0..*

0..*

RelatedTo

RelatedTo

RelatedTo

PossibleMapping

PossibleMapping1..*1

1

1

1 1

1..*

1

1

MeasurableMetric

-reported: bool

1*

34

bleMetric. For the purpose of our work, ETF is extended to include for each CST which func-

tionalities, as perceived by users, it can provide and with what non-functional characteristics.

The relationship between CTs and CSTs is also given in the ETF as CTCST association class

[17]. This includes both information on component’s capability as active or standby. The

Communication and CommunicationPort elements are used to specify the communication

capabilities of a CT when providing a CST [69]. Service provider entities in providing their

services can communicate among each other by exchanging data. Besides data exchange,

there can also be other dependencies between that a component requires another one to func-

tion. Components can be combined with other components as service units to obtain a bigger

functionality referred as a service type (shown as svcType in the figure). Part of ETF meta-

model is shown in Figure 4.6. Figure 4.7 shows an example of ETF model for VoIP. For the

purpose of transformation, the models of all available ETF files are combined into one ETF

model.

Figure ‎4.7 A portion of the ETF model for VoIP

Comp

Text

Text

SUVoIP

CTCST

Text

Comp

Voice

Voice

CTCST

Voice

Comp

Fax

Fax

CTCST

Fax

DataRate
1000

DataRate
1000

DataRate
1000

Internet

VoIP

Comp

InternetCost
200

Cost
500

Cost
750

SUSvcVoIP NetworkCommunication SUSvcInternet

Cost
3000

DataRate
1000

Reputation
= 4

Reputation
= 4

Reputation
= 3

Reputation
= 5

CST

Text

CST

Voice

CST

Fax

CST

Internet

SvcInternet SUInternet

CTCST

Internet

35

 Service Ontology Metamodel 4.2.3

The ontology model represents the domain knowledge. Decompositions of functional user

requirements are stored in a service ontology. The reason for keeping the knowledge of de-

composition is that users may request for same/similar service functionalities over time. For

example, one user may prefer to have a component from a specific vendor and the other one

wants to have it with more capacity. Moreover, users may request a high level functionality

that its decomposition cannot be found in the ETF. Therefore, we keep the knowledge of the

decomposition to reuse it for similar requests.

A domain model for ontology is shown in Figure 4.8. Functional requirements can be decom-

posed in several hierarchies, and for each requirement, several alternative decompositions

may exist. Alternative decompositions may have common decomposed functionalities be-

cause some sub-functionalities are not strictly needed. The main usage of the ontology is for

decomposition. However, it may store additional knowledge about the mapping between

Figure ‎4.8 Metamodel for the service ontology

PossibleMappingEnd2

0..*

End2

End1

1..*

0..*

1

0..*

HasDecomposition

0..*

0..*

ContainsModule

Functionality
Alternative

Name

Communication

direction

External

Communication

Internal

Communication

Environment

SrvcType

Composition

0..*

1
1

11

1

36

functionalities and the service types if it is not specified in the ETF how a specific functional-

ity can be combined with others to make a higher functionality. Functionalities at the lowest

level of decomposition (leaf functionality in the ontology model) are mapped to CSTypes.

This mapping is not specified in service ontologies as this is already contained in the ETF. A

functionality that is not leaf in the ontology can be mapped to either a service type or CST

because we may have either a component or a set of components in the software catalog that

can provide the composed functionality.

The primary source for constructing a service ontology is ETF because in the ETF, the ven-

dor may specify how CSTs can be grouped together to obtain a higher service as a service

type. However in ETF, the groupings of functionalities are specified at most at two levels.

We keep further possible grouping of functionalities in the service ontology. The ontology

will be enriched during the configuration generation process by storing successful decompo-

sition automatically or by a service configurator by hand. Because similar/same functionali-

ties may be requested over time, we store the knowledge of the decomposition as ontology to

reuse this knowledge especially when the decomposition is not specified.

An instance model of ontology metamodel is shown in Figure 4.9. The main classes are func-

tionalities and the compositions between functionalities to identify alternative decomposi-

tions. The decomposed functionalities are the contained module of the higher level function-

ality. To obtain a functionality, it may need to interact with environment or with other func-

tionalities. Whenever a new COTS component becomes available, the software catalog (i.e.

ETF) and ontology will be updated as it may add a new functionality or decomposition to the

ontology. Similarly, if a component is no longer available, the software catalog will be updat-

ed. If by removal of a component a functionality is no longer offered, the service ontology

should be updated accordingly. In the model in Figure 4.9, the decomposition for telecom-

37

munication bundle is shown. The telecommunication bundle consists of the mobility and the

triple play services. Both interact with the environment. The functionality IPTV which is a

decomposed element of TriplePlay functionality needs interaction with internet service.

There are two alternative decompositions for the IPTV functionality: BasicIPTV and Com-

pleteIPTV with a number of common functionalities but IPTV also includes the iTV element.

4.3 User Requirements Satisfaction and COTS Components Selection

In this section, the steps toward the selection of components that meet both functional and

non-functional requirements are explained. We have divided the process of decomposing the

user requirements and generating service configurations into four main model transfor-

mations as shown in Figure 4.10. We used ATL [14] to implement the transformations. In

this figure, the transformations are shown with dashed rectangles. Additional transformations

Figure ‎4.9 An example of service ontology for a telecommunication bundle

38

were defined to update the ETF model and ontology by new and obsolete ETF files. These

updates, shown on the left-hand side, need to be performed first.

 Solution Map (SM) Metamodel 4.3.1

To decompose functional requirements, rather than looking at ontology and find the matched

functionality and decomposition by hand, we automate it by model transformation. Besides

providing automation, it facilitates tracing the decomposed functionalities and selected com-

ponents. The transformations combine the information of three models: user requirements,

ontology and ETF to do the decomposition and find the component mappings. Because the

ontology is partially derived from ETF, then it is consistent by construction. The resulting

model corresponds to a metamodel, the Solution Map (SM) metamodel, that is a combination

of the three input metamodels. The SM metamodel is shown in figure 4.11. In this figure, the

functional requirement represents the functionality which is also in the ontology or it is the

decomposed functionality that is brought from the ontology.

Figure ‎4.10 Model transformations for decomposing user requirements and mapping to ETF components

Update of Ontology and Software Catalog

Add/Remove
Compositions,
functionalities

Add/Remove
Software

New/Old
Software

Software Catalog

Service Ontology

User Requirements

Decomposition

Decomposed Requirements

Component Mapping

Decomposed Requirements
Mapped to ETF

Unfeasible Decompositions

Feasible Decompositions

Service Dimensioning (Based
on NFRs)

Service
Configurations

Backward
Traceability

39

When a functional requirement, either a leaf or higher level functionality, matches the CST

that a CT can provide, we have a potential mapping for the functionality which is represented

by the PossibleMapping association. This mapping means that in the software catalog there is

at least one component type that can support the functionality. The non-functional character-

istics of a service (CST) provided by a CT and the non-functional requirements requested by

a user derive from the same concept and they represent a non-functional aspect. For example,

taking cost as a non-functional aspect, the former represents that a CT can provide a CST

with a specific price, while the latter represents the cost requested by a user.

Figure ‎4.11 The SM metamodel combining the information from the user requirements, ontology and extended ETF

0..*

RelatedTo

0..*
0..*

End1

End2

HasDecomposition

0..*

ContainsModule

1..*

0..*

0..*

0..*

1..*

0..*

User

Requirement

Interaction

two-way: Bool

Functional

Requirement

source: String

feasible: Bool

Nonfunctional

Requirement

Composition

feasible: Bool

End2

External

Interaction

Environment

Internal

Interaction

PossibleMapping

0..*

CST CT

Nonfunctional

Aspect

Type: NfType

CTCST Nonfunctional

Characteristic

ds

Communication

Port

Communication

CTCST

Dependency

ProxyProxied

Dependency

ContainerContained

Dependency

CTCST

DepPort

ProxyProxied

DepPort

ContainerContained

DepPort

0..*

0..*

RelatedTo

RelatedTo

0..*

RelatedTo

40

 Decomposition of Functional Requirements by Service Ontology 4.3.2

To decompose functional requirements, user requirement model will be combined with on-

tology model. In order to combine, we only bring the parts into the SM model for which we

could find a match in the ontology model. The process of decomposition is done in two steps.

In the first step, the user requirements will be transformed into the solution domain which

means the DecomposedTo relations in the user requirement will be replaced by Composition

classes. When the decomposition process is being done, backward traceability links between

the composed functionality and its decomposed elements are created in a separate model

called traceability model. In this model, the roots of the traceability model are the leaf func-

tionalities in the ontology and the leaves are the leaf functionalities in the user requirements

model. In addition, a backward trace link between each leaf functionality and its correspond-

ing root (i.e. the leaf functionality in the user requirement model) is created. This traceability

model will be refined in next steps. Figure 4.12 shows the metamodel of traceability created

in this step.

Considering example in Figure 4.5, for the first step, the composition classes for TriplePlay,

VoIP and will be added. In the second step which is the core transformation for decomposi-

tion, the refined user requirement will be combined with the ontology. This means a match

for TriplePlay functionality will be found in the ontology and it is checked if it is a leaf func-

tionality or not. Although TriplePlay and VoIP functionalities are decomposed already by the

user, we still start the decomposition from the root of user requirements model because the

Figure ‎4.12 Part of the traceability metamodel for traces obtained in the decomposition process

FunctionalRequirement

CompositionTrace

*

1

41

decomposition by user may not be complete. In this case, the decomposition would be com-

pleted by the ontology. For example, if the decomposed VoIP didn’t have Fax functionality as

its decomposed element in the user requirements model, then it would be added in the de-

composition process. The decomposition process is a recursive process and it will be stopped

when all functionalities in the solution are leaf functionalities in the ontology. If for IPTV

user only had specified iTV as its decomposed element, then in the decomposition process,

the alternative BasicIPTV decomposition would be discarded.

After combining user requirements and ontology, the SM model will be refined by the addi-

tion of information from ETF model to see which CTs are able to provide the functionalities.

Similar to the decomposition process, all the information from the ETF model will not be

brought to the combined model. In this transformation, all functional requirement nodes of

the SM model are of interest. For each of these nodes, it is checked whether any CST in the

ETF model provide the needed functionality. If it is the case, then all such CSTs are added.

They are added as PossibleMapping associations from the functionality to the CST. Next, for

each CST in the SM model, all the CTs that provide it are added to the SM model together

with the appropriate CTCST associations and the non-functional characteristics of the pro-

vided service. It is also checked if any CT needs to interact with another CT to provide its

CST. If so, the sponsor CT as well as its CST and their CTCST association (if they are not

already added because of ontology) together with the communication, communication ports

and non-functional characteristics of the ports are added to the SM model. For functionalities

which are not leaf, it is checked if the functionality has mapping with service type or CST.

For a functionality which is not leaf, it is possible to have mappings to an CST and a service

type. This means we have two alternative solutions which one solution is the combination of

42

some component types and the other solution is only one component type that can provide the

requested functionality.

A functional requirement can be met by more than one component type providing the same or

different CSTs. In this case, they are alternative solutions. It is likely that they have different

non-functional characteristics, and the most appropriate one, that provides the best match

with the user requirements, needs to be selected. In some cases, no matches can be found in

the ETF model. It means that no available component type can provide this functionality

which causes the corresponding decompositions not to be valid.

The result of the transformations for triple play is shown in Figure 4.13. As seen in this fig-

ure, there are three COTS component types CompVoD1, CompVoD2 and CompVoD3 that

support VoD functionality. For functionality iTV, no match in the ETF could be found. There-

fore, the functionality iTV along with the composition CompleteIPTV should be marked as

infeasible. This is the purpose of next transformation. In Figure 4.13, the non-functional

Figure ‎4.13 The SM model for the TriplePlay example of Figure 4.5

TPComposition

TriplePlay

IPNetwork

Interaction

InternetVoIP
VoIP

Interaction

IPTV
HomeNetwork

Interaction

IPTV
Basic

IPTV

liveTV VoD iTV

VoIP

Composition

VoiceTextFax

Environment

Cost

<10,000

DataRate= 200

Request/sec

Comp
Fax

Comp
Text

Comp
Voice

Comp
Internet

Comp
liveTV

Comp
VoD2

Comp
VoD3

DataRate=1000

Request/sec
Reputation

>= 3

Comp
VoD1

CST

Text

CST

Voice
CST

Fax

CST

Internet

CST

liveTV
CST

VoD

Number of

customers= 1000

43

characteristics of component types, ports and communications are not shown.

 Infeasible Decomposition Marking 4.3.3

In this step, any leaf functionality that no available component type can provide should be

marked as infeasible. The compositions that have this functionality must be marked infeasible

too as they are the part of the composed functionality. To detect infeasible decompositions,

we have defined a helper which checks if a leaf functionality has a mapping. When this help-

er returns false, the corresponding functionality is infeasible. This helper is defined as follow:

helper context MM!FunctionalRequirement def: Boolean =

HasDecomposition.allInstances()

->select (HD|HD.supplier->includes (self))-> isEmpty()

implies

PossibleMapping.allInstances()->exists (PM|PM.endType()->includes (self))

This process is recursive. First, all leaf functional requirements without a mapping are

marked; then all compositions that contain infeasible functionalities are marked. Functionali-

ties that are not at the leaf level are marked as unfeasible if and only if all of their decomposi-

tions are infeasible. For the triple play example in Figure 4.13, only two elements are marked

as infeasible. The first one is iTV functionality, as it does not have any mapping to a CST. As

a consequence, the composition CompleteIPTV also has to be marked as unfeasible. The par-

ent of this composition, IPTV however, does not have to be marked as unfeasible, as it has an

alternative decomposition, BasicIPTV, which is feasible.

Once the feasible decompositions are identified they can be used to enrich the ontology.

Namely the composition elements that appear in the user requirements model but not in the

ontology are added as new compositions to the ontology. This is a transformation similar to

the addition of compositions based on a new ETF file. By identifying the infeasible decom-

44

positions, the corresponding functionalities from the traceability should be removed because

the traceability model keeps the information about the solutions.

 Service Dimensioning 4.3.4

 Separation of Different Candidate Solution 4.3.4.1

Combining user requirements, service ontology and ETF models results in a model with al-

ternative decompositions and where the mapping of decomposed requirements to available

CTs is captured. The high level requirement in the user requirements model can be satisfied

by different combinations of CTs when there are alternative decompositions, or functionali-

ties with mappings to alternative CTs in the solution map. In the next step, different combina-

tions of CTs that satisfy high level user requirements are identified and separated. We need to

separate different solutions (i.e. different sets of components that can be used to provide the

required functionality) because later we want to investigate each candidate solution separate-

ly based on the non-functional requirements and choose the optimal one that best meets all

the requirements.

Candidate solutions that can support the highest level functional user requirement are com-

plete solutions; while the ones that support its constituent functionalities, i.e. they support a

part of the functional requirements in the composition tree, are represented by partial solu-

tions (see Figure 4.14).

As seen in the candidate solution metamodel in Figure 4.14, a solution can be a partial or a

complete solution and a solution may contain other solutions as well. However, there is an

OCL rule that forces this containment relation to be between partial solutions, or between a

complete solution and partial solutions as its containments. The solutions in the metamodel

represent sets of components that satisfy a functional requirement and the non-functional re-

45

quirements that were attached to functional requirements are now attached to the correspond-

ing solutions. In the separated solutions model, the interactions can be either part of a solu-

tion or between two partial solutions, for instance communication between two component

types.

To calculate the number of complete and partial solutions, the SM model is traversed bottom-

up. First, the leaf functionalities that are mapped to CTs are considered. For each functionali-

ty at that level, it is checked how many CTs can support it. The number of CTs is the number

of solutions for the leaf functionality. The next layer in the decomposition tree consists of

composition elements. For a composition element, all possible combinations of the function-

alities that it contains have to be considered. Therefore, for a composition element, the num-

ber of alternative solutions is the product of the number of partial solutions of its composed

functionalities. For a higher level functionality i.e. one that is not a leaf, the number of alter-

native solutions is equal to the sum of the solutions for its alternative decompositions plus the

number of direct mappings to CTs if there is any. The number of complete solutions is deter-

mined when the top node in the decomposition tree is reached.

Figure ‎4.14 The candidate solutions metamodel

Solution

PartialSolution CompleteSolution

Contains

CompType

Nonfunctional

Requirement

type: NfType

Goal: Goal

RelatedTo

0..*

0..*

Communication
PartOf

External

Communication

Internal

Communication

0..*

Int_src

Int_dst

Environment

1

1..*
1

1

0..*

0..*

1

1

1

0..*0..*

46

An example of this calculation is illustrated in Figure 4.15. In this figure, functionalities are

shown in gray squares with rounded corners, CTs in white and composition elements are

shown with circles with crosses. The numbers next to the functionality and composition ele-

ments indicate the number of solutions for them. For instance, for the left-most composition

(named a in the figure) each child functionality has exactly one solution. Therefore, there is

only one solution corresponding to the composition a (combining the solutions of both com-

posed functionalities, i.e. the two left-most CTs named b and c). For the functionality d in the

next layer, the number of partial solutions is equal to the summation of: partial solutions for

its alternative decompositions which is four; plus one solution obtained from a direct map-

ping to a CT.

To keep track of which solution corresponds to which functionality, trace links between these

elements are added to the traceability model. Figure 4.16 shows the metamodel for these

traceability links. According to the metamodel, a functionality can have multiple solutions

but a solution traces back only to one functionality. Complete solutions trace back to the high

level functionality at the root of solution map model and partial solutions to other functionali-

ties at lower levels of the hierarchy.

Figure ‎4.15 Recursive computations of candidate solutions

1112111

b

25

7

1 2 1

1

1
2

25 1

1 2

a

c

d

47

If we consider the feasible decompositions for the triple play example in Figure 4.13, there

are three alternative component types (i.e. three alternative solutions) that support the VoD

functionality, each with different non-functional characteristics. For instance, the reputation

for component types CompVoD1, CompVoD2 and CompVoD3 is 4, 2 and 3 respectively.

Therefore, there are three complete solutions for the TriplePlay functionality. The result of

this is shown in Figure 4.17. For the purpose of readability, the solutions are represented dif-

ferently. The complete solutions are represented with dotted gray rectangles, partial solutions

with dotted white rectangles and functionalities are shown as white rectangles. The commu-

Figure ‎4.17 The separated solutions for the TriplePlay example of Figure 4.5

CompleteSolution1
TriplePlay

PartialSolution
VoIP

Comp
Voice

Comp
Text

Comp
Fax

Comp
Internet

CompleteSolution2
TriplePlay

PartialSolution1
IPTV

Comp
VoD1

Comp
LiveTV

PartialSolution2
IPTV

Comp
VoD2

PartialSolution3
IPTV

CompleteSolution3
TriplePlay

Comp
VoD3

Reputation
= 4

Reputation
= 2 Reputation

= 3

Figure ‎4.16 Metamodel for tracing between solutions and functional requirements

Solution

PartialSolution CompleteSolution

CompType

Functional

Requirement
1..*

TracesBack

1

48

nications between the solutions (i.e. component types) are not shown in this figure.

The traces between the different solutions and functionalities are shown in Figure 4.18.

 Checking Non-functional Requirements 4.3.4.2

After separating the different candidate solutions capable of supporting the requested func-

tionality, each solution now has to be checked with respect to the non-functional require-

ments. Non-functional requirements are attached to solutions of any size, as they can be at-

tached to functional requirements at any level. That means that while some of the non-

functional requirements may only apply to a single component type, others apply to a set of

component types.

Not all non-functional requirements can be taken into account at this point. Some of them like

Cost or Availability depend on the number of components used in a configuration and we can

Figure ‎4.18 Traces between solutions and functionalities for the TriplePlay example of Figure 4.5

CompleteSolution1
TriplePlay

PartialSolution
VoIP

TriplePlay
CompleteSolution3

TriplePlay

VoIP

PartialSolution3
IPTV

PartialSolution1
IPTV

TracesBack TracesBack

TracesBack

IPTV
TracesBack TracesBack

PartialSolution2
IPTV

CompleteSolution2
TriplePlay

TracesBack

TracesBack

49

only do a preliminary check for them at this point. However, for other non-functional re-

quirements like Security or Reputation, it is enough to know which component types are be-

ing used to see if they can be fulfilled. It is worth mentioning that security can also be a func-

tional requirement which in this case the requirement is a function which enforces security

such as the login functionality. In this thesis, we consider security as a non-functional re-

quirement.

To proceed we need to determine the non-functional requirements for each solution. Even

though a non-functional requirement may be associated with a functional user requirement at

the highest level only, all functionalities composing that requested functionality are also con-

strained by that non-functional requirement. The non-functional requirements therefore have

to be distributed over all decompositions of functionalities. For a number of non-functional

requirements, the distribution is straightforward: A non-functional requirement associated

with a functionality is also associated to all its decomposed functionalities. An example for

this is DataRate. If a functionality is requested to handle a specific rate of requests, then all

the elements that contribute to this functionality are requested to handle that rate as well. This

includes the decomposed functionalities and thus the selected component types that are

mapped to those decomposed elements. For other non-functional requirements like Cost, Re-

sponseTime or Availability, the distribution is different. If the functionality should not exceed

cost X, then the sum of all costs for all the decomposed functionalities should not exceed X.

At this stage, where only the component types are chosen and not the number of components

from each type, compliance of a solution with Cost cannot be fully determined yet. However,

we can already dismiss a solution if the sum of the costs of all component types exceeds X.

To check component types against the non-functional requirements, OCL constraints have

been defined. Later, these constraints are used to define ATL rules [14] in the implementa-

50

tion. Instead of defining separate rules for each non-functional requirement (i.e. having sepa-

rate rules for Reputation, Cost, etc.), the definitions of rules are based on the goal and type

attributes of the non-functional requirements. When a new non-functional aspect is intro-

duced and needs to be considered for checking, there is no need to add a new ATL rule based

on the new kind as long as it fits into one of the categories we have defined for the non-

functional aspects.

For non-functional aspects like Reputation that we aim to maximize, a solution is accepted if

the non-functional characteristic of each component type in the solution is equal or greater

than the requested value. Otherwise, all solutions that contain this component type will be

dismissed. The constraint for checking non-functional aspects with the goal of maximize is as

follows:

Context Solution

RelatedTo->allInstances()->

select(r|r.supplier->includes(self))->collect(c.client)->

forAll(c|c.goal=Goal::Maximize implies c.value <=

(RelatedTo -> allInstances()-> select(s|s.supplier->

includes(c.ct))->collect(c.client)->

select(s|s.oclIsTypeOf(c.appliedStereotype()))->

collect(s.value)->at(1)))

The rule for non-functional aspects with the goal of minimizing them is similar to the above.

The violation of a rule means that all solutions that contain this component type should be

marked as insufficient.

If we consider the separated solution in Figure 4.17, the minimum requested reputation is 3,

while the reputation for CompVoD2 is 2. Therefore, PartialSolution2VoD and CompleteSolu-

tion2TriplePlay that contain CompVoD2 are marked as insufficient solutions.

The maximum number of requests per second that can be handled by a component type is

specified in the extended ETF as its DataRate. A component of this component type needs to

51

be assigned some workload in order to provide this service. This workload is configured as an

instance of the related CST. The component type may allow for multiple workload assign-

ments. This data rate applies for each assignment that is assigned to a component. When a

solution is validated against the non-functional requirements like Security, Reputation and

partly against Cost and Availability, the minimum workload necessary to be assigned to the

component types is calculated so the requested data rate can be met. The number of assign-

ments for each component type is calculated as follows:

 #𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 =

No of customers × ⌈
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 for each customer specified 𝑖𝑛 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 𝑏𝑦 the 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑇𝑦𝑝𝑒
⌉ (4. 1)

For example, if the number of customers is 1000, the number of requests for each customer

(i.e. DataRate) is 350 requests per second and by each workload assignment, the correspond-

ing component type can handle 200 requests per second, to be able to support these requests,

1000 × ⌈
350

200
⌉ = 2000 assignments are required.

The minimum set of assignments and SIs required to satisfy the user requirements form the

service configurations used as the starting point for the configuration generation in [11].

4.4 Traceability

 Traceability Metamodel 4.4.1

The traceability model is the integration of all traces that are obtained in the different trans-

formation steps. The metamodel for traceability is shown in Figure 4.19.

Bidirectional traceability links between user requirements and configuration solutions allow

stakeholders to see why certain component types were chosen and where the requirements are

52

implemented in the configuration. Traceability links ease the management of requirement

evolution as not the entire process of component selection needs to be repeated, but only

those parts that trace to the modified requirement(s). For example, suppose the customer de-

cides to increase the data rate to support more requests. With the help of this model, the de-

signer would see what the affected component types are and then the number of workloads

that should be assigned to those component types can be recalculated accordingly. In another

case, suppose that a component type is no longer supported by a vendor and the configurator

wants to see what other possible solutions exist for the affected functionalities. As the tracea-

bility model keeps the traces between functionalities and all possible component types, it is

easy to find the mapped components and the related data rate that should be considered for

workload calculation.

If a non-functional requirement other than rate changes, the previously selected component

types may not be acceptable any more. In this case, the affected functionalities will be found

by the RelatedTo relations in the user requirements model. Then using the traceability model,

the component types mapped to the affected functionalities can be determined. The mapped

Solution

PartialSolution CompleteSolution

CompType

Functional

Requirement
1..*

TracesBack

Assignments

-number

IsAssigned

DataRate

Reason

*

1

1..*

1

1

Figure ‎4.19 The complete traceability metamodel

53

component types can be checked against the new requirement to see if we need to change

them or not. If they need to be changed, then new sets of component types can be found for

the affected functionalities and the number of their related SIs is calculated. In this case, the

traceability model is updated with the new sets of component types and the minimum number

of SIs to be assigned to. In this case, the traceability model is useful especially when the af-

fected functionality is big with many hierarchies of decompositions. In this case, there is no

need to do the decomposition as traceability has the traces between this functionality and its

constituent atomic functionalities. Therefore, the mapping between functionalities and the

components can be found by the traceability model without redoing the decomposition and

component mapping.

The created traceability model keeps the trace of non-functional requirement DataRate and

the number of assigned workloads. The non-functional requirements Security and Reputation

will not be brought in this model; because when a component type is in traceability model, it

Figure ‎4.20 Part of the traceability model for the TriplePlay Example of Figure 4.5

DataRate= 1000

Request/sec

IPTV

Assignment

no: 20000

Reason1

PartialSolution2
IPTV

IPTV

Comp
VoD2

Comp
LiveTV

TracesBack

TracesBack TracesBack

PartialSolution3
IPTV

Comp
VoD3

TracesBack

TracesBack

IsAssigned

NoOfCustomers=1000

Reason2

TracesBack

54

means that it meets the requested Reputation and Security otherwise it will be in the insuffi-

cient solutions model (see next section). Other non-functional requirements like Cost and

Availability that affect the number of instances will be added to the traceability in the next

steps of AMF configuration generation.

Figure 4.20 shows a portion of the traceability model for the example in Figure 4.5.

 Insufficient Solutions Metamodel 4.4.2

If a solution is dismissed, due to missing component types, non-functional requirements that

cannot be satisfied, or other reasons, it is kept in the insufficient solutions model along with

the reason for its dismissal to indicate which requirement is not satisfied by the solution. For

some solutions, the reason may not be severe and they can be considered as sub-optimal solu-

tions. For example, if a solution has been dismissed because of a requirement with low priori-

ty was not met, then we may consider it as a solution if we cannot find any other valid solu-

tion. This model may help with the management decisions. Suppose, for instance, that no val-

id configurations can be found and the reason is the underestimated cost. One may decide to

Insufficient

Solution

Dismissed

Solution

Sub-optimal

Solution

CompType

Reason
1..*

Broken

NFR

Broken

FR

Other

description

Document

1..*

Link

Link

1..*

1

Figure ‎4.21 The insufficient solutions metamodel

55

increase the budget to allow for higher cost and find a solution.

The metamodel for insufficient solutions is shown in Figure 4.21. A solution is insufficient

because of a non-functional requirement that a component type cannot meet or because of a

functional requirement that no available component type can support. If there are other rea-

sons like the functionality will be available on a specific date, then they should be document-

ed.

4.5 Summary

In this chapter, we have presented an approach to determine sets of COTS components that

can satisfy both high level functional and non-functional user requirements. We used the ex-

tended ETF model to describe COTS components of the domain of high-availability. Howev-

er, our approach is general and can be applied to other domains using other domain-specific

component models. Model-to-model transformations are used to implement the whole ap-

proach.

In the first step, the high level functional user requirements are decomposed to the level

where they can be matched with functionalities provided by COTS components. The

knowledge about the decomposition of different functionalities is specified in a service ontol-

ogy and the functionalities provided by the available component types are described in a sep-

arate model.

While the mapping of functionalities to component service types is an essential step in the

component type selection process, it is also necessary to pick based on the non-functional

requirements the component types and other entity prototypes combining them. Some com-

ponent types might not be able to function on their own but require the presence of other

component types as indicated in the extended ETF metamodel of Figure 4.6 by the dependen-

56

cies. These dependent component types also have to be included in the final configuration to

be valid and deployable.

After mapping functional requirements to component service types, alternative solutions for

providing the overall requirement are separated and evaluated. The evaluation is based on the

available component types and whether or not their non-functional properties are sufficient to

ensure that the user’s non-functional requirements can be met. In the process the service con-

figurations are generated as a set of assignments and service instances that the configuration

will need to provide. With determining the service configurations, this work can be integrated

with previous work that derives AMF configurations from service configurations [11]. We

also aim at generating elasticity rules at the same time as the configuration generation. In the

next chapter, we explain the generation of the elasticity rules when the service side and ser-

vice provider side of the system is dimensioned.

When a valid set of component types that satisfy the user requirements is selected, a tracea-

bility model between the selected component types and the requirements is automatically

generated. This model can be used to manage the evolution of the user requirements as well

as the configuration. However, if no combinations of available component types can satisfy

the user requirements, the generated traceability for insufficient solutions can help the de-

signer to find out which requirements and for what reason are not satisfied.

57

Chapter 5

5 Design Time Elasticity Rules

Generation

In this chapter first we describe the integrated configuration generation process and then, we

introduce our approach for automating the generation of elasticity rules during the configura-

tion generation process.

5.1 Introduction

To scale a system dynamically, actions are taken according to a set of defined patterns, called

elasticity rules. An elasticity rule may provide different actions that are applicable and can be

performed in different situations. An elasticity rule is generally invoked by a trigger, which is

generated in reaction to a monitoring event. Elasticity rules could be defined online with the

help of agents that watch and learn about the behavior and the usage of the system using ma-

chine learning techniques [42], [43] and [44]. The drawback of these approaches is that if the

learning agents learn fast, they may learn problems such as Denial of Service (DoS) [71] at-

tacks easily and therefore, they may incorporate the problems in the elasticity rules as well. In

this case, the elasticity rules should be updated and the system needs to be brought back in its

normal state. Since the relation between the generated elasticity rules and configuration is not

58

clear, identifying the problems in the elasticity rules and updating them is not easy. In other

words, such online approaches do not guarantee that the system evolves correctly within the

designed boundaries. Moreover depending on the learning method used, it may be difficult to

come up with the appropriate reward function. In this thesis, we propose an approach for de-

fining elasticity rules offline, more specifically at system dimensioning time. That is, at the

time when the system is dimensioned and configured to provide the required services with the

expected highest workload in mind. The elasticity rules of our approach are generated based

on the configuration generation process. As a result, the relation between the generated elas-

ticity rules and the configuration is clear and therefore, we can trace the elasticity rules if it is

necessary.

The dimensions of the system, i.e. the maximum eligible number of entities in the system are

determined according to some formulas based on the characteristics of these entities, their

relations and the maximum required workload to service. We propose to capture this infor-

mation in the form of equations and use them not only for system dimensioning and configu-

ration but also for the definition of the elasticity rules that will govern the system dynamic

reconfiguration within the dimensioned scope. Since at runtime several elasticity rules may

be invoked simultaneously, it is important to have an elasticity rule structure that allows ac-

tion correlation to avoid conflicting reconfiguration actions. Offline generation of the elastici-

ty rules is the main contribution proposed in this chapter with the use of a model driven ap-

proach.

The remainder of this chapter is organized as follows. The metamodel for describing elastici-

ty rules is presented in Section 5.2. In Section 5.3, the combined process of configuration and

the elasticity rule generation is explained. We conclude this chapter in Section 5.4.

59

5.2 Elasticity Rule Metamodel

The manipulation of configuration entities at runtime to adapt them to the workload changes

is achieved by applying elasticity rules.

In our approach, elasticity rules are defined for entity types because instances of the same

type share the same features and are subject to the same actions. Figure 5.1 shows the meta-

model for the elasticity rule description. The metaclass EntityType specifies the type of the

configuration entities the elasticity rule applies to.

An elasticity rule may consist of different actions, each applicable and feasible in a specific

situation. The applicability of an action is defined with a Boolean expression represented by

the Condition metaclass in the elasticity rule metamodel. At runtime, for an action to be ap-

Figure ‎5.1 The elasticity rule metamodel

ElasticityRule

-scalingRule

Prerequisite

-boolExpression

Action

-cost

-midcost

1

1..*

1..*

AssociatedWith1..*

1

1

Generates
1

ExpressedBy

*

Trigger

-scalingType

-measurement

-threshold [0..1]

EntityType

+prerequisiteTrigger

Parameter

-value

-direction

*

*

1..*

0..1

*

*

BelongsTo

1

OperatesOn

ExpressedBy

Generates

DefinedFor

Entity

Realizes

FollowUp

-boolExpression

1..*

*

+followUpTrigger

1

Condition

-boolExpression

*

*

ExpressedBy

AssociatedWith

0..1

AssociatedWith

*

0..1

BelongsTo ExpressedBy

Operation

-method

-language

*

*

Has

*

*

*

60

plicable and therefore considered for execution, its associated condition must evaluate to true.

For example, to scale up a resizable VM, the condition checks if the VM has not reached yet

the maximum capacity that it can expand to. If the VM has reached the maximum capacity,

the scale up action is not applicable and is not considered for execution.

An applicable action may not always be feasible. For instance, even though the VM has not

yet reached its maximum capacity it cannot be expanded for the lack of resources in the host-

ing node which it depends on. If it is possible to free up some of those resources then the VM

can also be resized. Prerequisites are defined to check the feasibility of an action. A prerequi-

site evaluating to false could be satisfied by taking first actions of other elasticity rules on

sponsor entities. In this case, a trigger to invoke the prerequisite elasticity rule is generated

for providing the required sponsor resources first. Since prerequisite triggers always initiate

the allocation of prerequisite resources, the scalingType of these triggers is always Increase.

After the execution of an action, a follow-up trigger may be generated to invoke an elasticity

rule to execute a follow-up action on the sponsor. For instance, after the removal of SIs or

assignments, a follow-up trigger may be generated to initiate an elasticity rule to remove any

provider entity without assignments. A follow-up trigger is generated when the scalingRule

of the executed elasticity rule is Decrease.

An action contained in an elasticity rule is an operation, which has a method specified using a

language. We use the OCL [10] for expressing the method of the operation and the Boolean

expression of the conditions, follow ups and prerequisites in the elasticity rule.

The method of an operation and Boolean expression of a condition, follow-up and prerequi-

site contain a number of parameters. These parameters belong to the entity type of the elastic-

ity rule or its entities. The values of some of these parameters are set during configuration

61

generation process while others are obtained at runtime from the monitoring system or the

configuration.

Each action of an elasticity rule has a cost. The attribute midCost represents an approximate

cost of the action and its value is the median of the minimum cost (where all the prerequisites

are met and it is cost of the given action) and the maximum cost (where none of the prerequi-

sites are met and all prerequisite actions are invoked). The midCost for an action is calculated

as part of the elasticity rule generation process. Recursively all the prerequisite elasticity rules

are generated with their actions to calculate it.

5.3 Simultaneous Generation of Configuration and Elasticity Rules

 The Extended Configuration Generation Approach 5.3.1

As mentioned before, elasticity rules are used to reconfigure the system according to the

workload variations. Therefore, there is a tight coupling between the elasticity rules and the

configuration. Thus, we propose to use the configuration generation process to generate not

only the configuration but the elasticity rules as well. We propose to generate the elasticity

rules based on the equations used for dimensioning the system that determines the number of

configuration entities on the service side as well as on the service provider side.

The extended configuration generation process is shown in Figure 5.2. The user require-

ments, the service ontology and the software catalog (i.e. ETF) are used as input for the pro-

cess. First the functional user requirements are decomposed (using the service ontology) to

the level they can be matched with component types available in the software catalog that can

support these functional requirements. These are the candidate component types and at this

stage they are “prototypes” as they allow for different deployment options.

62

The maximum workload the system should be able to handle is one of the non-functional user

requirements. It determines the service side of the system configuration in terms of the active

capacity and needs to be expressed as the number of active assignments of the different ser-

vice types. The Service Dimensioning step considers the candidate component types and the

maximum requested workload to support, and as part of the service side dimensioning calcu-

lates the number of active assignments for each service type using appropriate equations.

In our approach whenever an equation is used for calculating the number of instances of an

entity type two elasticity rules are generated for the entity type: one with the scaling type In-

Figure ‎5.2 The extended configuration generation process

User Requirements

(UR)

UR Decomposition

and Component Type Selection

Service Ontology

Configuration

Traceability

Elasticity Rules

Distribution of Entities and Node

Configuration Generation

Components, SUs and SGs Dimensioning

Type Creation
Measurable Metrics

Service Dimensioning

Prototype Selection

Software Catalog

Cluster

Information

63

crease and one with the scaling type Decrease. The equation used for the calculation is trans-

formed into the methods of the actions of the generated elasticity rules while the variables of

the equations are transformed into the parameters of those methods. Further details of the

elasticity rule generation are explained in the next sub-section. To trigger these elasticity

rules, thresholds are also generated.

A threshold represents a point at which some actions should be taken to reconfigure the sys-

tem. For example, when at runtime the workload for a service instance of service type “A”

reaches its maximum threshold, the elasticity rule with scaling type Increase needs to be in-

voked for service type “A”. By executing the action of this elasticity rule, the equation based

on which this action was defined (and was used to calculate the number of assignments of the

service type) is re-applied with the parameters reflecting the current workload. As a result,

the required number of active assignments for service type “A” is recalculated for the current

workload. By changing the number of active assignments, the service side capacity of the

system is reconfigured. Note that to actually perform this reconfiguration prerequisites may

need to be satisfied.

The Prototype Selection step considers the candidate component types and service unit types

and their SG types if defined in the software catalog for selecting those that can provide the

requested service availability, another non-functional user requirement. Based on the availa-

bility estimation methods of [11], the candidate service unit types that cannot provide the ser-

vice types with the requested level of availability are removed together with the elasticity

rules generated for the service types it supports. It is expected that the prototypes in the soft-

ware catalog (i.e. ETF) are described by their vendor(s) in terms of their performance, availa-

bility and other characteristics as well as their monitoring facilities that can be observed by a

monitoring system. In this step, for the remaining candidate service unit types, these metrics

64

are extracted from the software catalog and captured in a measurable metrics model. The

generated measureable metrics model can be used later to specify the monitoring agents of a

monitoring system.

In the Type Creation step, from the candidate prototypes offering different deployment op-

tions, fully specified types are created for deployment by parametrization, as well as missing

service group types are added with an appropriate redundancy model. This in turn determines

whether a service instance of a service type can have one or many active assignments.

In the Components, SUs and SGs Dimensioning step, the required numbers of components,

service units and service groups are determined based on the previously calculated number of

active assignments representing the maximum requested workload. There should be enough

service groups and service units of the system to provide and protect all the active assign-

ments. Therefore, this step involves the grouping of active assignments into SIs, adding the

standby assignments necessary for the redundancy model and calculating the service provider

entities for all. The relation between the service side capacity and the service provider side

capacity is often not 1:1 as the latter includes the active capacity as well as the capacity re-

quired for the protection of the active assignments by standbys and spare service units. Since

this step calculates the number of SGs and SUs using equations we also generate the related

elasticity rules as discussed at the service side. It is described later in more details.

In the last step, the required number of nodes (either physical or virtual) is calculated and

entities among the nodes are distributed [72]. The distribution guarantees that SUs of the

same SG are configured on different virtual and physical nodes and this is maintained also in

case of node migration [73]. In this step, the node configuration is generated. Moreover, the

initial states of the entities (i.e. locked or unlocked) and their related thresholds are set. In this

step, the elasticity rules for the nodes are also generated.

65

In the user requirements, the workload that the system should support is specified as a range

(e.g. minimum and maximum number of requests per second). To generate the configuration

entities, the maximum workload that the system should handle is considered. However, gen-

erating the configuration for the maximum workload does not mean that all entities of the

configuration are instantiated in the system. When a service unit is not assigned any SI, it is

removed from the system by “locking” it to reduce the resource/power consumption. The ser-

vice unit remains in the configuration, but it is said to be in the “locked” state and according-

ly terminated or powered off. In contrast, when such a service unit needs to be assigned some

workload again it is added back to its SG (i.e. reconfiguring the SG) by “unlocking” it. Thus,

its state becomes “unlocked” resulting in instantiation or power up and thus available to pro-

vide services. We can also add (remove) an entire SG or a node to (from) the system. In this

case, the state of the SG/node changes from “locked” to “unlocked” (from “unlocked” to

“locked”). Similarly, on the service side, an SI can be in the “unlocked” or “locked” states

depending on whether the chunk of workload it represents needs to be assigned or not. As a

result, generating the configuration for the maximum workload means that with all these enti-

ties instantiated (i.e. healthy and in the “unlocked” state) the system can handle the maximum

workload according to the SLAs. This represents the configuration boundaries therefore the

boundary thresholds which represent the maximum limit of resources are set at this point.

These do not change.

Figure 5.3 shows some configuration entities at runtime. The availability of the service is

maintained by assigning multiple active assignments (shown with green lines in the figure) to

different service units of the protecting service group. The “unlocked” and “locked” service

units of ServiceGroup1 are shown with solid and dashed rectangles, respectively. Each ser-

vice unit is hosted on a separate node. In this example, if an assignment is added to Ser-

66

viceInstance1 due to workload increase, ServiceUnit4 and its hosting node are “unlocked” to

support the added assignment. Similarly, when one of the active assignments of ServiceIn-

stance1 is removed due to workload decrease, the SU and the node that were supporting the

assignment are locked to save resources. If any of the service units which provide the service

fails, since the workload is shared among other service units with the active role, the service

remains available. However, the total capacity is reduced until the failed SU is repaired. If the

repair performed by the availability management is not successful, the increased load on the

remaining service units is handled by the elasticity management—provided the maximum

capacity was not already reached—and the failed SU will be replaced by ServiceUnit4. Note

that the maximum capacity of the system remains reduced until the failed unit is repaired.

Figure 5.4 shows a portion of the configuration model for the example in Figure 5.3. As

shown in Figures 5.3 and 5.4, there is one SI (i.e. ServiceInstance1) of ServiceType1 which

has three assignments and is protected by ServiceGroup1. The redundancy model of this ser-

vice group is N-way active and each service unit of ServiceGroup1 can handle at most one

active assignment at a time.

Figure ‎5.3 An example of configuration at runtime

Node1 Node2

Service
Unit1

Service
Unit2

ServiceInstance1

NodeGroup1

Node3

Service
Unit3

Node4

Service
Unit4

ServiceGroup1

67

When the system starts provisioning services, it is unlikely that the workload will be at the

maximum. Therefore, we initially dimension the system for the mid workload (i.e. median of

minimum and maximum workload specified in the user requirements). Using the same equa-

tions, we configure the initial capacity of the system for handling the mid workload by lock-

ing configuration entities not needed to support any workload and setting the related attrib-

utes. The values of different thresholds of the deployed system are determined at this step to

reflect the unlocked capacity of the system.

At runtime then, with the generated elasticity rules that are triggered by the thresholds viola-

tions, the system is reconfigured within the configuration boundary as the workload varies

within the range of the minimum and the maximum workload specified in the user require-

ments. Threshold triggers are primarily issued on service entities (i.e. SIs) and computing

nodes (either physical or virtual nodes). The threshold triggers on service entities represent

variations in the workload coming from users. As explained before, these triggers may lead to

the generation of prerequisite/follow-up triggers on provider side entities. In case a threshold

trigger is issued on a node while no threshold trigger is generated on its supported SIs, the

issued threshold trigger is not directly related to the workload variation. It is related to the

distribution of entities among the nodes. Since in our approach we use different estimates to

Figure ‎5.4 Part of the configuration model for the example in Figure 5.3

ServiceGroup1

-noOfInServiceSus= 3

-noOfOutOfServiceSus=1

ServiceInstance1

-noOfActiveAssignments=3

ProtectedBy

Realizes

Realizes
ServiceType1

ServiceGroupType1

-redundancyModel: N-way-active

-maxNoOfActiveAssignmentPerSu:1

68

reconfigure the system (e.g. estimation of threshold, of cost and of load) the reconfiguration

may not result in an optimal distribution. In this case, complementary actions should be taken

to rearrange the entities hosted by the node, which means the rearrangement of assignments

or virtual compute nodes. Note that the capacity of an SU in terms of number of assignments

is checked as prerequisite or follow-up.

As mentioned earlier, each elasticity rule consists of action(s) and possibly condition, follow-

ups, follow-up triggers, prerequisites and prerequisite triggers. These elements are specified

in the process of generating the elasticity rules, which we describe in more details in the next

sub-sections.

 Generating Elasticity Rules for the Service Side 5.3.2

In this section we explain in more details the generation of elasticity rules for the service side.

The entity types of the elasticity rules for the service side are the service types realized by

SIs.

 Action Definition 5.3.2.1

Actions addAssignment and addSI are defined for the case of workload increase and re-

moveAssignment and removeSI are the actions defined for the case of workload decrease.

They change the number of active assignments of an unlocked SI and/or the number of un-

locked SIs in the system. These result in changes of the service side capacity of the system.

In the service dimensioning step of the configuration generation process, to determine the

number of active assignments, the assignment rate is calculated first (i.e. the workload ca-

pacity represented by one active assignment). It is calculated based on the characteristics of

the given service unit type and it remains fixed (up until major changes such as upgrade is

69

performed that would change these characteristics). The number of required active assign-

ments (i.e. the active capacity of service side) is calculated according to equation (5.1):

#ActiveAssignments = ceil (Workload/AssignmentRate) (5.1)

Equation (5.1) is re-used in the elasticity rule and transformed into the methods of the addAs-

signment and removeAssignment actions. The variables of equation (5.1) are transformed into

parameters by which the aforementioned actions are defined. The variable #ActiveAssign-

ments is transformed into an output parameter calculated by the methods of their operations.

The variable Workload is transformed into an input parameter and its value is provided at

runtime by the monitoring system. The value of AssignmentRate is constant, whose value is

determined at the configuration generation.

Depending on the applicable redundancy model a service instance may group some active

assignments. If so, equation (5.2) is used in the service dimensioning step to determine the

number of required SIs from the calculated active assignments.

#SIs = ceil (#ActiveAssignment / max#ActiveAssignmentsSI) (5.2)

The value of max#ActiveAssignmentsSI is determined at service dimensioning time based on

the maximum workload of a customer and the number of nodes the customer allowed to use.

It remains constant similar to the assignment rate.

Equation (5.2) is transformed into the method of the addSI action to add SIs when the work-

load of a customer exceeds the capacity of the current SIs. This equation is also re-used in the

elasticity rules which have their scaling rule set to Decrease to define the method of the re-

moveSI action. I.e. when fewer SIs are needed for the calculated number of active assign-

ments and some SIs should be locked as a follow-up action. Note that using these equations

70

(5.1) and (5.2) guarantees that always the minimum required number of active assignments

and SIs are in the system.

At runtime, when these operations are executed the service side of the system is re-

dimensioned. For example, if the measurement from the monitoring system shows that the

current workload represented by an SI with 2 active assignments and with the assignment rate

of 400 requests per second has increased to 1100 requests per second, the number of assign-

ments for that SI should change to 3. On the other hand, if a similar increase is detected for a

service type where each SI can have only one active assignment then the increase requires

three unlocked SIs in the system. If there are two unlocked SIs, a third needs to be added to

the system.

As part of such reconfigurations, the threshold values related to the appropriate services, i.e.

for the service side of the system, need to be updated. For this purpose, the equations used to

determine the boundary thresholds in the service dimensioning step are also re-used to define

the method for the updateThreshold operation. This operation is part of the

add/removeAssignment action and it is executed when add/removeAssignment operation is

executed.

 Prerequisite and Follow-up Definition 5.3.2.2

Service entities depend on service provider entities for being provided and protected, i.e. the

service side relies on the resources of the service provider side. In addition, services may de-

pend on each other within the service side, i.e. to function one service may require another

service. Therefore for each dependency, a prerequisite is generated for the case of the addi-

tion of an assignment or a service instance, and a follow-up is generated for the removal case.

71

At the same time both the prerequisites and the follow-ups are generated as they are applica-

ble to the same sponsor entities.

Prerequisite and Follow-Up for Checking the Service Provider Side Capacity

On the one hand side, there should be enough service provider entities to which the added

active assignments or the assignments of the added SIs can be assigned. On the other hand,

provider entities without assignment should be removed. In the context introduced in Chapter

2, there should be also enough groups of service units (i.e. service groups) to provide and

protect the required number of SIs and their assignments. Therefore, the equation used for

dimensioning the service groups and service units are reused to define the Boolean expres-

sions of the prerequisite and the follow-up checks. To add an assignment or service instance,

inequality (5.3) should be respected:

Current #SGs ≥ Required #SGs for protection (5.3)

To avoid wasting resources however the left-hand side of inequality (5.3) has an upper

boundary. That is, the current number of service groups should be equal to their required

number. Hence inequality (5.4) is used to check if a service group is extra when an assign-

ment or SI is removed.

Current #SGs > Required #SGs for protection (5.4)

For the service provider side prerequisite, we start with (5.3) and for the service provider side

follow-up, we start with (5.4), and define both sides of the inequalities. The current number

of service groups (i.e. the left-hand sides of inequalities (5.3) and (5.4)) is obtained from the

system at runtime. The number of service groups which are required for protecting service

instances is determined based on the equations used in the service provider dimensioning step

that calculates the number of required service groups. The service provider side prerequisite

72

and follow-up are generated at the same time when the number of service groups is deter-

mined.

Depending on the redundancy model, the number of service groups is calculated differently

[11]. For instance, for the 2N redundancy model where each active assignment requires an SI,

Equation (5.5) is used to dimension the SGs.

#SGs 

ceil (#SIs / min (max#ActiveAssignmentsPerSU, max#StandbyAssignmentsPerSU)) (5.5)

We use (5.5) in the service side elasticity rules to define the right hand side of the Boolean

expressions of the prerequisite (5.3) and follow-up (5.4). For this purpose, the variables of

(5.5) are transformed into parameters. The number of service instances (#SIs) is transformed

into a parameter whose value for the prerequisite is calculated using (5.1) i.e. the required

number of service instances; while for the follow-up it is the current number of service in-

stances and comes from the current configuration since it has changed as a result of perform-

ing the removeAssignment/SI action of the elasticity rule in question. Similarly to the Assign-

mentRate, the variables max#ActiveAssignmentsPerSU and max#StandbyAssignmentsPerSU

are both constant and their values are determined at configuration generation time.

Prerequisites and Follow-Ups for Checking the Service Side Capacity

If a service depends on another service (i.e. the sponsor), then the sponsor entity is dimen-

sioned in terms of active assignments based on the dependent entity according to equation

(5.6):

#ActiveAssignmentsSponsor

ceil(#ActiveAssignmentsDependentAssignmentRateDependentAssignmentRateSponsor) (5.6)

73

 By rewriting (5.6) we can generate right away the prerequisite and the follow-up applicable

at runtime to check if the current number of active assignments of the sponsor provides the

required capacity for the active assignments of the dependent. From equation (5.6) inequality

(5.7) is obtained as the Boolean expression for the prerequisite. The Boolean expression for

the follow-up is defined similarly.

Current #ActiveAssignmentsSponsor ≥ ceil (required #ActiveAssignmentsDependent  Assign-

mentRateDependentAssignmentRateSponsor) (5.7)

For the Boolean expressions of the prerequisite and follow-up, the current number of assign-

ments of the sponsor is transformed into a parameter whose value is obtained at runtime from

the system. The required number of assignments of the dependent is transformed into a pa-

rameter whose value in the prerequisite is calculated using (5.1). In the follow-up the value is

obtained from the current configuration, which just has changed as a result of performing

removeAssignment action.

In addition, to check if there are enough unlocked SIs currently in the system to group the

required number of active assignments, based on (5.2) a prerequisite as well as a follow-up

are generated. The inequality (5.8) obtained from (5.2) is used as the Boolean expression of

the prerequisite. The Boolean expression of the follow-up is defined similarly.

Current #SIs × max#ActiveAssignmentsSI ≥ #RequiredActiveAssignments (5.8)

 Prerequisite and Follow-Up Triggers Definitions 5.3.2.3

Triggers are normally generated on entities. At the time of the configuration generation, how-

ever, we cannot specify on which entity a prerequisite or a follow-up trigger needs to be is-

sued; we can only specify the type of this entity. As a result, the prerequisite and follow-up

triggers are also defined for the appropriate type. This means that for a prerequisite/follow-up

74

that checks the capacity of the SGs of a type, the corresponding prerequisite/follow-up trigger

is defined on the SG type and for a prerequisite/follow-up that checks the capacity of SIs of a

service type, the prerequisite/follow-up trigger is defined on the service type. Then based on

this at runtime, the follow-up/prerequisite trigger is issued on the SG or SI sponsoring the SI

for which the elasticity rule was invoked. The scalingType of a prerequisite trigger is In-

crease and Decrease for a follow-up trigger because a prerequisite trigger always initiates the

allocation of the prerequisite resources and a follow-up trigger always initiates the release of

excess resources of the sponsors. The attribute measurement of a prerequisite trigger repre-

sents the minimum sponsor capacity which is required to be added to meet the prerequisite

Boolean expression. In contrast, the attribute measurement of the follow-up trigger represents

the minimum sponsor capacity which is required to be removed so that the follow-up Boolean

expression is evaluated to false indicating no extra sponsor resource. These prerequisite and

follow-up triggers are defined together with their corresponding prerequisite and follow-up

Boolean expressions.

 Condition Definition 5.3.2.4

The addSI, addAssignment, removeSI and removeAssignment actions are applicable when by

adding/removing SIs or assignments the designed boundaries of the system are not violated.

Moreover, the action addSI is applicable only if the SI on which the trigger was issued is cur-

rently “locked” as the action changes its status to “unlocked”. In contrast, the action addAs-

signment is applicable if the SI for which the trigger is generated is currently “unlocked”.

Therefore, the state of the SI is transformed into a parameter by which the Boolean expres-

sions of these conditions are defined. The action removeAssignment is applicable if the SI

contains some active assignments and removeSI is applicable when fewer SIs for grouping

active assignments are required. As a result for the removeAssignment and removeSI actions,

75

the current number of active assignments in an SI is transformed into a parameter by which

the Boolean expressions of the conditions are defined. All the aforementioned conditions are

generated when their corresponding actions are generated.

 Generating Elasticity Rules for the Service Provider Side 5.3.3

In this sub-section, we explain the generation of elasticity rules for SGs and nodes.

 Elasticity Rules for SGs 5.3.3.1

An elasticity rule for an SG is triggered as a prerequisite when the workload increases and the

current SGs cannot provide the added SIs/assignments or as a follow-up action when the

workload decreases and SUs and/or SGs become in excess and should be removed.

Action Definition

Depending on the situation different actions are possible:

 Reconfiguring the Current SGs by Adding or Removing SUs: The capacity of the sys-

tem for providing SIs can change by reconfiguring its current SGs. An SG is recon-

figured by changing the state of its constituting SUs. That is, the capacity of an SG

can increase by “unlocking” some of its “locked” SUs. Similarly, the SG can be re-

configured by “locking” its unassigned SUs when the workload decreases. By taking

such actions, the number of “unlocked” SUs in the SG changes. The equation used to

dimension the SUs at configuration design time is used in the SG elasticity rule as the

method of the reconfigureSG operation.

 Adding New SGs or Removing the Ones in Excess: When the workload is not at its

maximum, some of the SGs may not have any SI to protect. Not to waste resources,

the action removeSG is taken to lock the excess SGs and their SUs. In contrast when a

new SI is required, to increase the capacity of the system, a new SG may be required

76

as the service provider entity. By performing the action addSG, the SG and some of

its SUs become “unlocked”. At runtime, when the operation addSG or RemoveSG is

executed based on the required or removed SIs the current number of unlocked SGs in

the system changes. The equation used in the service provider dimensioning step to

calculate the number of SGs (i.e. equation (5.5)) is used to define the method of

addSG or removeSG operations. The required number of “unlocked” SUs in each SG

is determined according to the redundancy model of the SG as described in [11]. For

example, if the redundancy model is 2N, the required number of “unlocked” SUs is 2

(i.e. one SU for supporting the active assignments and one SU for supporting the

standby assignments).

Prerequisite and Follow-up Definitions

Service units are hosted on nodes; therefore to unlock a service unit, as prerequisite the host-

ing node should be in the “unlocked” state and it should have enough capacity to host the

added service unit. The load that is imposed on the node by requests of a service is estimated

by a function at runtime. This function takes into account parameters that characterize the

workload as well as the node (e.g. the types of workload the node currently supports, the op-

erating system, etc.). By calculating the estimated load at runtime, we can check if the under-

lying node will have enough resources to support the required service unit. As a result, in the

SG elasticity rule model the Boolean expressions of the prerequisites are defined as (5.9) and

(5.10) to check if the node is “unlocked” and if it has enough resources to host the required

service unit:

node.state=”unlocked” (5.9)

node.maxNodeThreshold > node.load + su.requiredResource (5.10)

77

In contrast, by putting a service unit into the “locked” state, the resources of the hosting node

may become in excess; thus a follow-up trigger on the node should be generated to initiate

the removal of the node or its excess resources (if applicable) by a follow-up action. The re-

sources of the node are in excess if the current load on the node is less than its minimum

threshold. Therefore, in the SG elasticity rule model the follow-up is defined as (5.11):

node.minNodeThreshold > node.load (5.11)

The Boolean expressions (5.9), (5.10) and (5.11) are generated at the last step of the configu-

ration generation process when the nodes for hosting the SGs are determined. At this step, the

variables maxNodeThreshold, minNodeThreshold, load and state are transformed into param-

eters that belong to the node. The variable requiredResource of (5.10) is transformed into

parameter that belongs to the hosted SU.

Prerequisite and Follow-up Triggers Definitions

Since the SUs of an SG may be hosted on different nodes of a node group, it is not possible to

specify offline on which node the prerequisite or follow-up trigger should be generated at

runtime. However, we can specify to which node group an SU belongs. Therefore, at design

time, the prerequisite/follow-up trigger is defined for the node group. At runtime, when the

prerequisite for adding an SU is not met or when after the removal of the SU resources be-

come extra, the trigger is generated for the hosting node.

Condition Definition

In case of increase, the action reconfigureSG is applicable if the SG on which this action

should be taken is unlocked. If the SG is locked, the action addSG is applicable. As a result,

the state of the SG is transformed into a parameter by which the Boolean expressions of these

conditions are defined. In case of decrease, the action reconfigureSG is applicable if the SG

still protects some SIs. In contrast, the action removeSG is applicable when the SG does not

78

have any SI to protect and as the result of the action it should be locked. Therefore, the cur-

rent number of protected SIs is transformed into a parameter by which the conditions of re-

configureSG and removeSG actions are defined. All the aforementioned conditions are gener-

ated when their corresponding actions are generated.

 Elasticity Rules for Nodes 5.3.3.2

The configuration of nodes need to support the SGs, their SUs and if applicable virtual com-

pute nodes, which is guaranteed by the prerequisites and follow-ups of their elasticity rules.

However, because of different estimates used at their execution, these may not always guar-

antee an optimal distribution of assignments to the SUs and SGs hosted on the nodes. To re-

distribute hosted entities, additional complementary actions may be needed. Therefore, the

actions of node elasticity rules are categorized into: Actions to handle prerequisite or follow-

up triggers; and actions to redistribute the hosted entities for better resource utilization. Note

that in turn actions of the latter category may require actions of the first category as prerequi-

sites/follow-ups. To define the actions of the second type, we define templates based on the

distribution principles. We use these templates to generate the different elements of the elas-

ticity rules for the nodes. Since a node can be members of multiple node groups, we do not

define the elasticity rules per node group. We define them per node at the last step of the con-

figuration generation process when the node configuration is generated.

In the following, the actions of the node elasticity rules are explained.

Add or Remove a Node

These actions are defined for the cases of adding a node as a prerequisite or removing one as

a follow-up action. The action addNode is applicable when the state of the node is “locked”

and by taking this action, the state will change to “unlocked”. The action removeNode is ap-

79

plicable when an “unlocked” node has no services to support and by taking this action, the

state of the node changes to “locked”.

The prerequisite for the addNode action is expressed as inequality (5.12). According to this

prerequisite, if the node is hosted by another node (e.g. it is a VM hosted by a physical node),

the hosting node should have enough resources for the hosted node (i.e. by unlocking the

node, the maximum threshold of its hosting node should not be reached).

node.hostingNode ->notEmpty() implies node.hostingNode.load + requiredResource <

 node.hostingNode.maxNodeThreshold (5.12)

If the node is hosted by another node, the follow-up as (5.13) is associated with the remove-

Node action to check if by the removal of node, the resources of the hosting node are in ex-

cess. Since the nodes can migrate at runtime, we cannot specify at design time on which host-

ing node the prerequisite and follow-up trigger should be defined. Therefore, at design time,

the prerequisite and follow-up triggers are defined on the group of nodes which can host the

node.

node.hostingNode ->notEmpty() implies node.hostingNode.load ≥

node.hostingNode.minNodeThreshold (5.13)

Adding or Removing Virtual/Physical Resources to or from the Node

These actions are defined primarily for the cases of prerequisite/follow-up actions. They can

be used also to avoid redistribution by adding/removing resources of the current node if it is

resizable. A node can be a resizable virtual machine or a hyperscale system like Ericsson

HDS 8000 [74]. Resources can be added to a resizable node to decrease the resource utiliza-

tion, or removed from it to increase. These actions are only included in the elasticity rules of

resizable nodes. By these actions, the amount of resources allocated to a node changes. A

80

resizable computing node still has a maximum capacity that it can expand to. If the node has

reached its maximum capacity, no more resources can be added to the node and this action is

not applicable. Therefore, the condition for addResources action is defined as (5.14) to check

if the node has not reached its maximum capacity yet.

node.maxNodeBoundary > node.currentResource + requiredResource (5.14)

To take the removeResources action, as condition, the node should have at least one running

process. The prerequisite, prerequisite trigger, follow-up and follow-up trigger of these ac-

tions are similar to those of add/removeNode actions.

Rearrangement of Workload

These actions are defined to redistribute hosted entities of a node. I.e. trying to resolve the

threshold trigger on the node by taking actions on its hosted entities. To decrease the load on

a node, the supported services can be moved out to other nodes if as prerequisite there are

service provider entities with enough capacity to host them. At runtime, when the node sup-

ports multiple services, based on the estimated cost of releasing one unit of resource it is de-

cided which supported service should be moved out. To rearrange the workload, the follow-

ing actions are defined:

 Migration of hosted nodes: If the node is capable of hosting other nodes, some of its

hosted nodes can be migrated to other hosting nodes to release the resources of the

given node. The prerequisite to migrate a hosted node is expressed as (5.15). Accord-

ingly, in the hosting node group there should be a hosting node with enough capacity

to host the hosted node to be migrated. As expressed in (5.16), this action is applica-

ble when the hosting node hosts at least one hosted node. The prerequisite and follow-

up triggers are defined on the group of hosting nodes which are eligible to host the

hosted node.

81

nodeGroup.nodes() -> exists (n|n.load + requiredResource ≤ maxNodeThreshold)

 (5.15)

node.hostedNodes -> size() >0 (5.16)

 Moving assignments/SIs to other nodes: Similar to the migration of hosted nodes, one

way of releasing a node’s resources is to move the assignments or SIs supported by

the node to other nodes. The prerequisite, prerequisite trigger, follow-up and follow-

up trigger of this action are similar to those of addSI/Assignment and remove-

SI/Assignment actions.

 Adding SI/assignment to an additional node: By adding an SI or an assignment, the

workload is shared among more nodes and therefore, less load will be imposed on the

given node. This action is applicable if the boundary of the system from the service

side has not been reached. This action has been explained in Section 5.3.2.

 Swapping the active and standby assignments: Standby assignments often impose less

load on the nodes than active assignments; therefore, swapping the role may reduce

the load on the node having the active assignment. However, for services such as data

bases where the load imposed by the active and the standby assignments are quite the

same, this action may not be effective. This action has no prerequisite and prerequisite

trigger; however, a condition is defined to check if for an active assignment supported

by the node, there exists a standby assignment such that the load imposed by its

standby will be less than the load imposed by it. Depending on the redundancy model

of the protecting SG, other constraints may be needed too. After performing this ac-

tion, if a failure happens the node may experience high load again as the standby as-

signment becomes active due to the failure.

82

5.4 Summary

To reconfigure the system dynamically, a set of elasticity rules are generally used. In this

chapter, we propose an approach to generate automatically elasticity rules at configuration

design time. While the system’s configuration is designed (i.e. generated automatically), the

calculations used to dimension the system as well as some computed parameters are reused to

define the elasticity rules. We reuse the system dimensioning knowledge instead of learning

about the system behavior and usage. Moreover, the elasticity rules are at a finer granularity

than what is presented in the related work as we also consider the rearrangement of resources

and not only the addition and removal. Since we use the calculations for dimensioning of the

system to generate the elasticity rules, the elasticity rules generation requires the configura-

tion generation process.

83

Chapter 6

6 SLA Compliance Management

In this chapter we explain the SLA compliance management, a part of our management

framework. The SLA compliance management aims at generating triggers whenever there is

a potential SLA violation (i.e. an SLA is probable to be violated in the next time interval of

monitoring) or the resource utilization is low.

6.1 Introduction

A Service Level Agreement (SLA) is a contract negotiated and agreed on between a service

provider and a customer; it defines the expected quality of the services to be provided [75].

For instance, the level of service availability, i.e. the percentage of time the service is provid-

ed in a given period of time [1], is part of the SLA. The rights and obligations of each party

are also described in the SLA. When any of the parties fails to meet their respective obliga-

tions, SLA violations occur and the responsible party may be subject to penalties.

System workload varies over time, which results in variable resource usage. To increase rev-

enue, instead of allocating a fixed amount of resources, service providers try to allocate only

as much as needed to support the workload and adapt this allocation according to the work-

load variations. In the cloud environment, the dynamic resource provisioning according to

84

workload variations is called elasticity. A cloud system evolves and adapts dynamically to

workload variations by scaling out/in and up/down [4].

6.2 The Overall Approach for SLA Compliance Management

 In the SLA Compliance Management process, all the SLAs, their corresponding measure-

ments and the thresholds are combined into an SLA compliance model. The validation of the

SLA compliance model against its metamodel is performed periodically. The violation of

OCL constraints during this validation will generate automatically triggers for system recon-

figuration, to save resources when the workload decreases or avoid SLA violations when the

workload increases and the SLAs are about to be violated. The output of this process, i.e. the

generated triggers, serves as input for the dynamic reconfiguration process (see Chapter 7).

6.3 Modeling for the SLA Compliance Management

To manage the compliance of the SLAs at runtime, we adopt a model driven approach not

Figure ‎6.1 The SLA compliance management process

uses

Violated Constraints

Thresholds

SLAs Measurements

SLA Compliance

Model

OCL

Constraints

Built/update of SLA

compliance model

Validation

Trigger Generation

SLA Compliance Management

Triggers

85

only to facilitate the understanding, design and maintenance of the system [7], but also to

reuse the models generated during the system design phase, such as the thresholds, and to

build on existing tools. In this section, we introduce the metamodels of SLA, SLA compli-

ance and trigger. We use the Unified Modeling Language (UML) profiling mechanism [9] to

customize the UML and design the modeling languages for SLA, SLA compliance, threshold,

measurement and trigger. For this purpose, we define the domain model (or domain meta-

model) and map it to the UML metamodel [8].

 The SLA Metamodel 6.3.1

The SLA metamodel is shown in Figure 6.2. Each SLA has an ID and is an agreement be-

tween a provider and a customer. A third party may also participate to verify the agreed terms

and play the monitoring role. An SLA includes some service functionalities that the provider

agrees to provide with specific Quality of Service (QoS). Abstract metaclass SlaParameter

captures the different types of QoS included in the SLA. The agreed values are represented

by maxAgreedValue and minAgreedValue in the figure. For example, for the SLA parameter

availability, the minAgreedValue represents the minimum percentage of the time that the pro-

vider guarantees the service is available. For the SLA parameter DataRate, the maxA-

greedValue represents the maximum number of requests per second the customer may send

for the specific service, and the minAgreedValue represents the minimum amount of service

that the provider agreed to provide. If service providers or customers fail to meet the agreed

terms, they may be subject to penalties.

The QoS included in the SLAs should be either measurable by the monitoring system or re-

ported by the constituent components of the system; otherwise, it cannot be included in

SLAs. Customers may want to specify at which frequency the SLA parameters should be

measured. This customization is represented by SlaMetric metaclass. However, the frequency

86

specified by the user should be compatible with the capability of the monitoring system. An

SLA is applicable for specific time duration and has a cost that customer agrees to pay.

Figure 6.3 shows two SLA models. The VoIP functionality is sold to customers C1 and C2

with different quality of service. The service functionality is represented with gray rectangles

and SLA parameters with rounded square. The dashed lines show RelatedTo relations.

Figure ‎6.2 The SLA metamodel

SLA

-startDate

-duration

-id

-price

ServiceType

1..*

SlaParameter

-maxAgreedValue [0..1]

-minAgreedValue [0..1]

0..*

Party
+customer

+provider

SlaMetric

0..*

+composite

+ThirdParty

0..1

0..*

CustomizedBy

RelatedTo

Penalty

-fee

0..1

AssociatedWith
MeasuredMetric

Metric

-frequency: Real

1..* +measuredMetric

MappedTo

ObligedBy

*

1

1

1..*

1..*

*

11

1

1

87

Figure ‎6.3 Two different SLAs

 The Measurement Metamodel 6.3.2

A monitoring system collects the metrics of interest. These measured metrics are related to a

computing node or a service. The Service metaclass represents instances of a service type,

which—in the explained domain in Chapter 2—are represented by service instances. Some of

the metrics (e.g. service up/down time) and the SLA parameters perceived by the customers

(e.g. availability of service) are not at the same level. To bridge the gap between the meas-

ured metrics and the SLA parameters, we have defined mapping rules. Figure 6.4 shows the

measurements metamodel. The attribute mappedValue represents the value of such mapped

measurements. As an example, the mapping rule for mapping service up time and down time

to service availability is presented:

Context Availability :: mappingRule ()

self.mappedValue = self.metric->

select(c|c.oclIsTypeOf(MeasuredUpTime)).measuredValue->at(1)/(self.metric->

select(c|c.oclTypeIsTypeOf(MeasuredUpTime)).measuredValue -> at(1) +

self.metric->select(c|c.oclType(MeasuredDownTime)).measuredValue->

at(1))*100

SLA_1

FTP

DataRate

-minAgreedValue: 300

-maxAgreedValue: 700

SLA_2

FTP

DataRate

-minAgreedValue: 200

-maxAgreedValue: 400

Model1 Model2

Provider_P1

Customer_C1

Provider_P1

Customer_C2

Availability

-minAgreedValue: 99.9

Availability

-minAgreedValue: 99

88

Figure 6.5 shows an example of measurement model. In this figure, the measured metrics are

represented by rounded squares in light gray. The dotted and dashed lines represent Be-

longsTo and RelatedTo relations respectively.

 The Threshold Metamodel 6.3.3

We use thresholds as points. When they are reached, actions are required to avoid SLA viola-

tions or low resource utilization. Figure 6.6 shows the threshold metamodel. As shown in the

Figure ‎6.5 An example of measurement model

SLA_1VoIP

MeasuredDownTime

-measuredValue: 200

IncludedIn

Model_2

Availability

-mappedValue: 99.51

MeasuredUpTime

-measuredValue: 1433

RelatedToRelatedTo

MappedTo

MappedTo

BelongsTo

Figure ‎6.4 The measurement metamodel

Entity

Service SLA

MeasuredMetric

-measuredValue

1..*

1

RelatedTo

Node

SlaParameter

-mappedValue

mappingRule()

1..*

*

MappedTo

DecomposedTo

*

1

1..*

1

BelongsTo

+metric

ServiceType

1..*

1

1..*

1..*

Includes

IsInstanceOf

89

figure, thresholds are defined on nodes, service functionalities or individual SLAs. Some of

the thresholds are related to all customers’ (aggregate) resource usage (i.e. thresholds defined

on nodes) while others are related to individual SLAs (e.g. service availability). The attribute

currentCapacity in the Service metaclass specifies the current capacity of a service entity (i.e.

a service instance) for handling the workload of a specific customer. The attribute maxSys-

temCapacity is determined at the design phase as the maximum capacity the system can be

expanded to for a specific service type without major changes (e.g. upgrade/redesign). For

nodes and service entities (i.e. represented as service instances), two thresholds (maximum

and minimum thresholds) are defined: The maximum limit represents the load of the node or

the service instance without SLAs violation. If no action is taken SLA violation is likely to

happen within the next measurement period. The minimum limit represents the load of the

node or the service instance for efficient usage of the resources; otherwise they are wasted. In

the following the different types of the thresholds are explained:

 maxCurrentThreshold and minCurrentThreshold: For each service, the system is di-

mensioned dynamically with a currentCapacity to handle the workload of a certain

customer. In order to avoid SLA violations, i.e. workload exceeding currentCapacity,

Figure ‎6.6 The threshold metamodel

Entity

Node

SLA

SlaParameter

Threshold

-value

DefinedFor

*

*

0..1

maxCurrent

Threshold

RelatedTo

SlaThreshold
minCurrent

Threshold

maxNode

Threshold

minNode

Threshold

Service

-currentCapacity

1..*

1
BelongsTo

DefinedFor

1

ServiceType

-maxSystemCapacity

IsInstanceOf
*

1

1..*

1

90

we define a maxCurrentThreshold point with maxCurrentThreshold < currentCapaci-

ty. Not to waste resources, we also define a minCurrentThreshold. Unlike resource

provisioning, the resources should be released in a reactive manner. The values of

maxCurrentThreshold and minCurrentThreshold are determined by different func-

tions which take into account the current capacity, the measurement period, the aver-

age reconfiguration time and the predicted workload.

 maxNodeThreshold and minNodeThreshold: To avoid SLA violations because of node

limitations, e.g. trying to load a node beyond its capacity, we define the

maxNodeThreshold point at which we may allocate more resources to the node (e.g.

virtual machine, hyper scale system [74]), add more nodes to the system or rearrange

the assignments (i.e. the relation load < maxNodeThreshold should be always re-

spected). To avoid wasting resources, the minNodeThreshold is defined. The

maxNodeThreshold and minNodeThreshold are vectors that take into account different

types of node resources (e.g. CPU, RAM, etc.).

 slaThreshold: Some SLA parameters like service availability are set on a per customer

basis. Therefore, to avoid SLA violations, we need to watch the SLAs separately us-

ing a slaThreshold for each QoS of each SLA.

Figure 6.7 shows an example of threshold model. In this figure, different thresholds for the

services of type VoIP and Node3 are defined.

91

Figure ‎6.7 An example of threshold model

 The SLA Compliance Metamodel 6.3.4

An SLA compliance model is the combination of all SLA models, thresholds model and the

measurements obtained from the monitoring system. The main reason for merging all SLA

models into one model is that we want to be able not only to avoid violations of each individ-

ual SLA but also to trigger elasticity rules which are related to all customers’ resource usage.

The SLA compliance metamodel is shown in Figure 6.8 and an instance model of it is shown

in Figure 6.9. Different services of the same service type with the same or different QoS (i.e.

represented by SLAParameter) are generally offered to multiple customers. The Measured-

Metric metaclass represents the measurements that are collected from the monitoring system

per service for each customer or per node of the system. When an SLA parameter is not re-

spected, the RelatedTo relation indicates which service of which SLA has been violated.

Node3

DefinedFor

maxCurrent

Threshold

-value: 350

minCurrent

Threshold

-value: 250

maxNode

Threshold

-value: 85

minNode

Threshold

-value: 20

ServiceInstance1

-currentCapacity: 400

DefinedFor DefinedFor

DefinedFor

FTP

-maxSystemCapacity: 2000

maxCurrent

Threshold

-value: 350

minCurrent

Threshold

-value: 250

ServiceInstance2

-currentCapacity: 400

DefinedFor DefinedFor

IsInstanceOf IsInstanceOf

92

Figure ‎6.8 The SLA compliance metamodel

The attribute goal of an SLA parameter specifies the parameter’s optimization goal. For some

SLA parameters, like service availability, the optimization goal is maximization while for

others like response time, the goal is minimization. We categorize OCL constraints for SLA

violation avoidance based on these optimization goals. When a new SLA parameter is intro-

duced and taken into consideration, there is no need to define a new OCL constraint as long

as its optimization goal fits into one of the aforementioned categories.

According to UML [9], a constraint is a model element that can have a name (it is optional)

and consists of an invariant (i.e. a Boolean expression that must be evaluated to true for the

constraint to be satisfied), constrained elements (i.e. a set of elements required to evaluate the

constraint) and a context (i.e. the model element on which the constraint is defined). There-

fore, an OCL constraint is defined as a tuple of (name, context, ConstrainedElements, invari-

ant). To define an OCL constraint, its different elements should be specified.

Service

-currentCapacity

-maxCurrentThreshold

-minCurrentThreshold

1..*

SlaParameter

-mappedValue: Real

-goal: Goal

-maxAgreedVale [0..1]

-minAgreedValue [0..1]

-slaThreshold

0..*

MeasuredMetric

-measuredValue

1..*

SLA

-startDate

-duration

-id

-price

Party+customer

+provider

+thirdParty

0..1

1

RelatedTo

+containedService

DecomposedTo

0..*

MappedTo

<<Enumeration>>

Goal

-Minimize

-Maximize

Penalty

-fee

0..1

1..*

Node

-capacity

-maxThreshold

-minThreshold

SupportedBy

+measuredMetric

1..*

Obliged

1..*

1

*

1..*

ServiceType

-maxSystemCapacity

1..*

+serviceInstance
IsInstanceOf

1..*

1

1..*

+sla

+serviceType

1

1

93

Figure ‎6.9 An example of SLA compliance model

Depending on the type of SLA violation, different OCL constraints are defined in the SLA

compliance metamodel. As shown in Figure 6.10, an SLA can be violated by the provider or

by the customer. Violations by providers are categorized into: violations issued on system

resources, which can be violations on service entities (i.e. represented as service instances in

our domain) or nodes and lead to the generation of triggers for dynamic reconfiguration; in-

dividual SLA violations can be related to the design of the system and system boundary relat-

ed violations. The focus of this thesis is on the triggers, which lead to dynamic reconfigura-

tions (i.e. violations on system resources). When the trigger is of this type, the generated elas-

ticity rules are applied to reconfigure the system dynamically. The different types of viola-

tions are defined as follows:

12

SLA_1 SLA_2

FTP

-maxSystemCapacity: 2000

DataRate_1

-mappedValue: 350

-minAgreedValue: 300

-maxAgreedValue: 700

-goal: Maximize

DataRate_2

-mappedValue: 210

-minAgreedValue: 200

-maxAgreedValue: 400

-goal: Maximize

Provider_P1Customer_C1 Customer_C2

Availability_1

-mappedValue: 99.51

-minAgreedValue: 99.9

-slaThreshold: 99.9

-goal: Maximize

Availability_2

-mappedValue: 99.2361

-minAgreedValue: 99

-slaThreshold: 99

-goal: Maximize

MeasuredUpTime_1

-measuredValue: 1433

MeasuredDownTime_1

-measuredValue: 7

MeasuredUpTime_2

-measuredValue: 1429

MeasuredDownTime_2

-measuredValue: 11

ServiceInstance1

-currentCapacity: 400

-maxCurrentThreshold: 350

-minCurrentThreshold: 250

ServiceInstance2

-currentCapacity: 400

-maxCurrentThreshold: 350

-minCurrentThreshold: 250

Node3

-maxNodeThreshold: 85

-minNodeThreshold: 25

ResourceUtilization

-mappedValue: 20

94

Figure ‎6.10 The different types of SLA violations

The focus of this thesis is reconfiguration because of generation of triggers for scaling the

system. When the trigger is of this type, the generated elasticity rules are used to reconfigure

the system dynamically. The different types of violations are defined as follows:

 SLA Violations from a Provider 6.3.4.1

 Service Entities Violations: For each service, the system is configured with a capacity

to handle the workload of a specific customer. In order to avoid SLA violations, the

relation workload < maxCurrentThreshold must be respected. If the workload ex-

ceeds the threshold, a potential violation is detected and a trigger should be generated

to increase the system capacity to a new currentCapacity for which a new maxCur-

rentThreshold is defined. To check if the system needs to be scaled due to workload

increase, the following OCL constraint is defined. This OCL constraint is named as

Increase. Later we use this name as the scaling type of the generated trigger to see the

violation was due to increase in the workload.

Context Service

Violation

Violation from

a Provider

Violations from

a Customer

Violation on a

Node

System Boundary

Violation
Individual SLA

Violation

Violation on a

Service Entity

Violation on a

system resource

95

Inv Increase: maxAgreedValue > Service.allInstances() ->

select(s|s.sla = self.sla and s.serviceType = self.servicetype) ->

collect(currentCapacity) -> sum() implies

self.maxCurrentThreshold > (self.slaParameter -> select

(p|p.oclIsTypeOf(DataRate)).mappedValue -> at(1)

Not to waste resources we define an OCL constraint to check if the relation workload

≥ minCurrentThreshold is respected. This OCL constraint is named as Decrease be-

cause its violation indicates the resources of the system are excess and the system

should be shrunk.

 Context Service

Inv Decrease: self.minCurrentThreshold ≤ (self.slaParameter -> select

(p|p.oclIsTypeOf (DataRate)).mappedValue -> at(1)

Considering the SLA compliance model in Figure 6.9, the workload of the customer

C1 represented by ServiceInstance1, i.e. 350 requests per second, reaches the maxCur-

rentThreshold. Therefore, its corresponding OCL constraint named as Increase is vio-

lated which indicates more resources for handling the workload of this customer

should be allocated.

 Node Violations: Although services are supported by nodes and service side viola-

tions (i.e. increase in the workload) usually lead to the violations on the underlying

nodes, we still need to distinguish between violations on the services and on the

nodes. The reason is that when the node hosts multiple services and the workload in-

crease of an individual service does not reach its threshold, the workload increases of

the hosted services will accumulate on the hosting node and the total load may cause

violation. This happens when the distribution of entities among the nodes is not opti-

mal. Therefore, to detect SLA violations because of node limitations, the relation load

96

< maxNodeThreshold should be respected. Similar to the maxNodeThreshold, the

load represents the load on the different types of resources which is measured by the

monitoring system. In addition, the relation load ≥ minNodeThreshold should be re-

spected in order to not to waste resources. The load that is imposed on the node by re-

quests of a service is estimated by a function at runtime. This function takes into ac-

count parameters that characterize the workload as well as the node (e.g. the types of

workload the node currently supports, the operating system, etc.).

Context Node

Inv Increase: self.maxNodeThreshold > (self.measuredMetric-> select

(p|p.oclIsTypeOf(ResourceUsage))->at(1).measuredValue)

Context Node

Inv Decrease: self.minNodeThreshold  (self.measuredMetric->select

(p|p.oclIsTypeOf(ResourceUsage))->at(1).measuredValue)

Similar to the OCL constraints defined on the services, these OCL constraints are also

named as Increase and Decrease as their violations indicate if the load on the node

has to be decreased or if the node or some resources of the node are in excess. Con-

sidering the SLA compliance model in Figure 6.9, the current load on Node3 is 20

which is less than the minNodeThreshold which is 25. Therefore, for Node3 the OCL

constraint with the name of Decrease is violated.

 Individual SLA violations: Some SLA parameters behave similarly with respect to vi-

olation. Some of them like availability and throughput for which a higher value is

preferable (i.e. the attribute goal is equal to Maximize) will be violated by a service

provider when in the SLA compliance model, the experienced quality is less than their

defined slaThreshold (i.e. the relation mappedValue > slaThreshold must be respect-

ed all the time if goal=Maximize); while for others like response time, the violation

97

happens from the provider side when the measured response time is greater than the

slaThreshold (i.e. the relation mappedValue < slaThreshold must be respected if

goal=Minimize). We use OCL constraints as follows to define these restrictions:

Context SlaParameter

Inv Maximize: Self.goal=Goal::Maximize implies self.mappedValue >

self.slaThreshold

Context SlaParameter

Inv Minimize: Self.goal=Goal::Minimize implies self.mappedValue <

self.slaThreshold

Considering the SLA compliance model in Figure 6.9, for customer C1 the measured

availability of VoIP is 99.51 which is less than its corresponding slaThreshold of

99.51; therefore in this example, the OCL constraint of availability which has the goal

of Maximize is violated.

 System Boundary Violation: Customers have periods of activity and inactivity; there-

fore, the customers may not use resources all at the same time. To make the most

profit, providers sell the same resource to multiple customers. This is known as over-

booking technique [76]. In this thesis, we assume that the provider sells the services to

the maximum number of customers such that minimum or no SLA violation occurs

and the revenue is the most. With overbooking, there is a risk that the customers want

to use resources all at the same time [77, 78]. In this case, the system reaches its max-

imum capacity. When the value of maxCurrentThreshold is reached, system cannot be

expanded further; thus the admission control/overload protection needs to be engaged

to protect the system from overload. In addition, the provider may decide to redesign

the system with new user requirements using the traceability model generated during

configuration generation process (explained in Chapter 4). The following OCL con-

98

straint detects the potential SLA violations when the system reaches its maximum ca-

pacity:

Context ServiceType

Inv SystemBoundary: maxSystemCapacity = self.serviceInstance -> col-

lect(currentCapacity)->sum() implies self.sla -> forAll(sla:SLA| let

services: sla.containedService -> select (s|s.serviceType = self) in

services -> collect(currentCapacity) -> sum () < services ->

at(1).slaParameter -> select (p|p.oclIsTypeOf(DataRate))->

at(1).maxAgreedValue implies services ->

forAll(srvc:Service|srvc.maxCurrentThreshold > srvc.slaParameter ->

select (p|p.oclIsTypeOf(DataRate)) -> at(1).mappedValue))

 Customer Side SLA Violation 6.3.4.2

Unlike provider side violations, the violations from customers cannot be avoided. However, it

is important to detect any service overuse by a customer to take the appropriate actions (e.g.

charging or dropping the extra workload). By the following OCL constraint it is detected if a

customer has violated an SLA:

Context DataRate

Inv CustomerViolation: self.mappedValue  self.maxAgreedValue

 The Trigger Metamodel 6.3.5

Whenever a system needs to be scaled because of potential SLA violation or low resource

utilization, one or more triggers are generated to invoke the elasticity rules. To scale the sys-

tem at runtime, a trigger is issued on a configuration entity to reconfigure the entity or on an

entity type to add or remove instances of a type. Figure 6.11 shows the metamodel of triggers

for scaling of the system. In this metamodel, the attribute scalingType can have the value of

either Increase or Decrease and specifies whether an action to increase or decrease the re-

99

sources is needed. The attributes measurement and threshold represent the measurements

from the monitoring system and the current threshold value that has been violated. The values

of threshold and measurement are used to determine the amount of resources that should be

given to or released from the entity to resolve the violation of the received trigger. For exam-

ple, if the current load on a node is 85% and the threshold on the node is 80%, the load of the

node should be decreased by at least 5% to resolve the issued trigger.

Figure ‎6.11 The trigger metamodel

6.4 Building/and Update the SLA Compliance Model

To build the SLA compliance model all SLA, measurement and the threshold models are

combined at runtime. We use the Atlas Transformation Language (ATL) [14] transformation

to implement this process. When any of the measurement or threshold models are updated or

new/old SLAs are added/terminated, the SLA compliance model is updated too. New meas-

urements arrive at the end of each measurement period. The measurement period should be

long enough to process the previous measurements and reconfigure the system as necessary

before the arrival of new measurements. After each reconfiguration, the thresholds model

may also be updated before the new measurements arrive. Although new SLAs arrive or ex-

isting ones can be terminated at any time, we update the SLA compliance model at the end of

each time interval. For illustration purposes, assume a new SLA (representing a new custom-

er) arrives when a reconfiguration is being performed. If we update the SLA compliance

Trigger

-scalingType: ScalingType

-measurement

-threshold

Entity
IssuedOn

1 1

<<Enumeration>>

ScalingType

-Increase

-Decrease

100

model as soon as the new SLA arrives, when the previously generated triggers have not been

resolved yet, at the validation of the updated SLA compliance model the same triggers may

be regenerated. Handling the same triggers may cause instability in the system.

When a new SLA for a new customer arrives, all the SLA elements are added to the current

SLA compliance model. Since no service instance is yet assigned to represent the workload

of the new customer, for each service type contained in the new SLA, a Service model ele-

ment with the current capacity of 0 is created in the SLA compliance model. This added ele-

ment represents a service instance which needs to be added to represent the workload of the

new customer. The validation of the updated SLA compliance model leads to the generation

of a trigger to add that service instance. Similarly, when an SLA is removed, the elements

related to only this SLA should be removed from the SLA compliance model together with

their measurements and thresholds. This is achieved with a different transformation that takes

the SLA to be removed and the SLA compliance model as input and generates a new SLA

compliance model. In ATL language, the number of input and output models cannot be arbi-

trary; therefore, to add or remove multiple SLAs, we execute the corresponding transfor-

mation multiple times as required. In the prototype implementation the addition and removal

of SLAs are done offline.

6.5 Trigger Generation

As mentioned earlier, the validation of SLA compliance model may lead to the generation of

triggers. An SLA compliance model is valid when all the constraints of its metamodel are

satisfied.

To generate a trigger, its different elements should be specified based on the constituent ele-

ments of the violated OCL constraint. In the SLA compliance metamodel, the constraints for

101

the scaling of the system are defined on nodes and services. These OCL constraints are vio-

lated when there are not enough resources for such entities or their resources are in excess.

Therefore, the entity on which a trigger is generated is the node or the service for which the

respective OCL constraint is violated.

The constrained elements based on which the invariant is defined are the measurement and

the threshold. The constraint checks if the measurement has reached the value of the current

threshold. If the value of the threshold reaches (i.e. the constraint is violated), the constrained

elements of the violated OCL constraints are extracted to specify the measurement and

threshold elements of the generated trigger.

We use the names of the constraints as the scalingType of the generated triggers to initiate

resource allocation (when the name is Increase) or release of surplus resources (when the

name is Decrease).

6.6 Prototype Implementation and Preliminary Evaluation

In this section we present a preliminary evaluation of our SLA compliance management us-

ing a prototype implementation and discuss the results. We aim at analyzing the growth of the

execution time with respect to the size of the SLA compliance model. Since the SLA compli-

ance model contains SLAs model and a part of the configuration model, size of the system as

well as size of the SLAs model (i.e. depends on the number of the SLAs and the number of

included SLA parameters in each SLA) are reflected by the size of the SLA compliance mod-

el too.

The experiments were performed on a machine with an Intel® Core™ i7 with 2.7 GHz and 8

Gigabytes RAM and a Windows 7 operating system. Each test was performed five times and

the average is reported here as the execution time.

102

 Validation of the SLA Compliance Model and Trigger Generation 6.6.1

To generate triggers from violated OCL constraints, we used OCL APIs [16] in a standalone

java application. The OCL constraints of SLA compliance profile are extracted and validated

given an SLA compliance model. If a constraint is evaluated to false, a trigger is generated

and takes the name of the violated constraint (i.e. either Increase or Decrease); corresponding

entity is the context of the violated constraint (i.e. either a node or a service) and the meas-

urement and threshold are from the constrained elements (i.e. the measurement and the

threshold) of the violated constraint.

 Table 1 presents the results for SLA compliance model validation and trigger generation giv-

en different SLA compliance models and measurements. The first column of the table is the

number of elements in the SLA compliance model. The SLA compliance models differ in the

number of nodes, the number of SLAs and the number of services of the same or different

service types. Therefore, the size of the SLA compliance models reflects somehow the size of

the system as well as the size of the SLAs model. It is worth mentioning that the size of the

SLAs model depends on the number of the SLAs and the number of included parameters in

Table 6.1 SLA compliance model validation and trigger generation performance evaluation

Number
of Model
Elements

Number of Con-
straint Checks

performed

Number of
Generated
Triggers

Execution Time
(ms)

CASE 1 13 7 1 694

CASE 2 16 11 2 1189

CASE 3 24 14 3 1377

CASE 4 26 18 4 1845

CASE 5 42 28 6 2844

CASE 6 87 77 8 7573

103

each SLA. These SLA compliance models were built offline. For each case, the input meas-

urements were compiled also offline in such a way that some would violate their correspond-

ing thresholds. The second column is the total number of constraints to check. As explained

in Section 6.3.4, constraints are defined on SLA parameters, service entities (i.e. SIs) and

nodes where for service entities and nodes (i.e. configuration entities) more than one con-

straint is defined. As a result, as the size of the SLA compliance model increases with the

increase of the number of nodes, service entities or SLAs, the number of constraints to check

increases too. The third and fourth columns show the number of the generated triggers and

the total execution time of the SLA compliance model validation and the trigger generation,

respectively. The result of this evaluation is represented by the chart in Figure 6.12. As the

number of elements in the SLA compliance model increases, more constraints are checked,

and therefore the validation time increases. From the validation of the SLA compliance mod-

els we can conclude that the execution time grows linearly with respect to the numbers of

constraints to check (in each case, the proportion of execution time to the number of con-

straints to check is almost 100).

Figure ‎6.12 Performance evaluation for SLA compliance model validation and trigger generation given different SLA
compliance models

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

e
r

o
f

M
o

d
e

l
El

e
m

e
n

ts

N
u

m
b

e
r

o
f

C
o

n
st

ra
in

t
C

h
e

ck
s

P
e

rf
o

rm
e

d

Execution Time (ms)

104

6.7 Summary

Service providers aim at increasing their revenue by operating a system with the minimum

amount of resources necessary to avoid SLA violation penalties. For this purpose, there is a

need for an SLA management and dynamic reconfiguration that scales the system (up/down

and in/out) according to the workload changes while avoiding SLA violations. In this chapter

we described a part of our model-driven framework that checks the compliance of SLAs at

runtime and generates triggers when dynamic reconfiguration is required. It is model driven;

thus it is at the right level of abstraction. OCL constraints are written for categories of SLA

parameters and are not specific for each parameter, which eases future extension. The SLA

compliance management reuses models developed at the system design stage (e.g. Thresholds

model). In this chapter, we discussed the usage of models to check the compliance of SLAs

and generate triggers for dynamic reconfiguration. In the current implementation, the evolu-

tion of the SLA compliance models is done offline.

105

Chapter 7

7 Trigger Correlation for Dynamic

System Reconfiguration

In this chapter we describe our trigger correlation and dynamic reconfiguration as part of the

framework. At the end of this chapter, we evaluate the complexity of our dynamic reconfigu-

ration approach and conduct experiments to evaluate its efficiency.

7.1 Introduction

Triggers generated from the SLA compliance management invoke elasticity rules, which con-

sist of actions to take in the current system’s situation. One may be tempted to handle each

trigger separately. The issue in this case is that the triggers may be related, and handling them

separately may lead to serious problems. For illustration purpose, let us assume two triggers

t1 and t2 invoke two opposite elasticity rules e1 and e2, respectively, where e1’s action is to

remove a node and e2’s action is to add a node. If the triggers are handled separately, resource

oscillation [12] will certainly occur. In cloud systems due to the existence of multiple layers

(infrastructure, platform and application layer), one root cause may generate multiple triggers

in the different layers. For example, some workload decrease at the application layer may

cause triggers at the application layer as well as triggers at the infrastructure layer. If these

106

triggers are considered separately, the corresponding elasticity rules may remove some criti-

cal resources twice and this may jeopardize the availability of the service. As a result, corre-

lation of the triggers and coordination of their actions is necessary.

To correlate triggers different solutions have been proposed in the literature [79, 80, 81, 60,

61, 82]. In these studies, a trigger is issued to signal an error caused by a fault in an entity of

the system. As an error may propagate throughout the system, a large number of errors and

therefore symptom triggers may be generated. The majority of these correlation solutions aim

at eliminating the symptoms and identifying the root cause, i.e. the fault in the system. When

the root cause is identified, appropriate actions are taken. In this thesis, a trigger is issued due

to workload changes for an entity to invoke elasticity rules for resource allocation or deallo-

cation. When triggers on related entities are issued simultaneously, these are not necessarily

only “symptom” triggers because allocation of resources to one entity does not necessarily

mean allocation of resources to the other ones and as a result they should not be simply elim-

inated. Instead, resource allocations/deallocations for related entities should be coordinated.

In this chapter, we present an approach to correlate these triggers and also their related elas-

ticity rules and actions (i.e. resource allocation or deallocation) to reconfigure the system. In

order to achieve this, we defined meta-rules to coordinate the invoked actions at runtime.

7.2 The Overall Approach for Trigger Correlation and Dynamic

Reconfiguration

Figure 7.1 shows the dynamic reconfiguration as part of the management framework in more

details. In the Trigger Correlation and Dynamic Reconfiguration process, the triggers gener-

ated on related entities of the configuration are first correlated and a set of graphs called rela-

tion graphs are defined. For each trigger in a relation graph, the applicable elasticity rule is

then selected. Since an elasticity rule may contain multiple alternative actions, based on the

107

current situation an optimal action among these alternatives is selected. The actions of two

unrelated triggers do not impact each other. Therefore, actions of elasticity rules invoked by

triggers in different relation graphs can be executed in parallel. For each relation graph, based

on the relations between the triggers the optimal actions of the selected elasticity rules are

correlated using a set of action correlation meta-rules. With the reconfiguration of the system,

the values of the thresholds may also be updated. In the next sections we formally define the

relation graphs and action paths as used in this thesis before elaborating on these processes in

Section 7.4 and Section 7.5.

7.3 Modeling for Trigger Correlation and Dynamic Reconfiguration

 The Relation Graphs Metamodel 7.3.1

When the triggers are correlated, a set of relation graphs are generated. Later, we use the

generated relation graphs to correlate the actions of applicable elasticity rules (see Section

7.5). Figure 7.2 shows the metamodel of the relation graphs. Each relation graph consists of

some triggers and relations between them. As shown in the figure, the relation between the

Figure ‎7.1 The overall approach for trigger correlation and dynamic reconfiguration process

Relations

Elasticity

Rules

Configuration

Action

Correlation

Meta-Rules uses

Trigger Correlation

Elasticity Rules Selection, Actions

Correlation and Execution

Trigger Correlation and

Dynamic Reconfiguration

Relation

Graph

rg1

Relation

Graph

rg2

Relation

Graph

rgk

…

…

Triggers

108

triggers is categorized into adjacency and dependency relations. The dependency relation is

categorized further into service or protection dependency, assignment relationship, member-

ship relation and physical containment. The different types of relations are explained in Sec-

tion 7.4 in more details.

7.4 Trigger Correlation

Since triggers may lead to reconfiguration actions through the invocation of elasticity rules,

when two configuration entities are related the actions to be applied may also be related and

need to be coordinated. Therefore, we need to put into relation the triggers raised at the

same time before correlating their respective actions invoked. To correlate triggers, we need

to take into account the relations between the configuration entities they are related to. We

first discuss the different types of relations between configuration entities before explaining

how the triggers are correlated according to these relations.

Trigger

-scalingType

-measurement

-threshold

TriggerEntity
IssuedOn

1 1

Relation

Service

Dependency

Dependency Adjacency

Physical

Containment
Membership

Relation

Assignment

Relationship

Protection

Dependency

+source +target 1 1

* *

Figure ‎7.2 The relation graph metamodel

109

As shown in Figure 7.3, the relations between entities can be of different types and catego-

rized into two categories, dependency relations and adjacency relation. The first group con-

sists of directed relations while the second defines a symmetric relation. The different types

of relations are defined as follows:

Service Dependency: Dependency relation exists between services when the provision of

one service (i.e. dependent entity) depends on the provision of another service (i.e. sponsor

entity); therefore, the sponsor needs to be provided first to support the dependent.

Protection Dependency: This relation is defined between the active and the standby as-

signments of an SI.

Assignment Relationship: This relation is defined between a service unit (i.e. service

provider entity) and the assignment (i.e. service entity) assigned to it.

Membership Relation: A membership relation exists between two entities when an entity

is logically a member of a group represented by the other entity. For example, a node is a

member of a node group.

Figure ‎7.3 Different types of relations between configuration entities

Relation

Service

Dependency

Dependency Adjacency

Physical

Containment

Membership

Relation

Assignment

Relationship

Protection

Dependency

Configuration

Entity
*

*

+source

+target

0..1

0..1

110

Physical Containment: A physical containment relation exists between two entities if one

entity is physically part of the other entity. In this case, the container entity (i.e. sponsor)

provides resources for the contained entity (i.e. dependent). For example, a physical node is

a container entity which provides resources for its hosted VMs as contained entities.

Adjacency: Two entities are adjacent when they are depending on (they are dependent of)

the same sponsor. In this case, the common sponsor is called the common entity.

Trigger correlation is defined as a procedure of putting two or more triggers into relation, if

any, to handle them together [83]. Correlated triggers are put into a relation graph where

nodes are the triggers and edges represent the relations between these triggers. A set of rela-

tion graphs is automatically generated based on the triggers and the relations between the

entities they correspond to. The algorithm correlating triggers generated for the same meas-

urement period is provided in the appendix (Algorithm1). The entities of the triggers are

looked up in the current configuration. Any relations between these entities are transferred

to their associated triggers.

7.5 Elasticity Rule Selection and Execution

After the correlation of triggers, the generated relation graphs are processed in parallel. For

each relation graph, the applicable elasticity rules are selected and their actions are correlat-

ed. The correlated actions are executed on the fly. Therefore, in our approach, we do not

build or evaluate different action paths before their execution.

In this section, we first introduce our approach of selecting the applicable elasticity rules

given the correlated triggers; then we explain the selection of the optimal action among all

the alternatives available for execution. We also introduce a set of meta-rules used for the

correlation of the optimal actions of the selected elasticity rules.

111

 Selecting Applicable Elasticity Rules 7.5.1

The generated triggers invoke the applicable elasticity rules. On the one hand side, a trigger

is issued on a configuration entity when any of its current threshold values is reached. On

the other hand, an elasticity rule specifies the actions that can be taken on an instance of a

given type to resolve a given type of threshold violation. Therefore, an elasticity rule is con-

sidered for invocation if the entityType for which the elasticity rule is defined is the same as

the type of the entity on which the trigger was generated.

The scalingType of a trigger is either Increase to initiate resource allocation or Decrease to

release surplus resources. On the other hand, the scalingRule of an elasticity rule is Increase

if its actions add resources; and it is Decrease if its actions remove resources. As a result,

for an elasticity rule to be applicable its scalingRule should be equal to the scalingType of

the trigger (see Algorithm 2 in the appendix). It is worth noting that the applicability of an

elasticity rule is different from the applicability of its contained actions. Once the applicable

elasticity rule is selected, the applicability and feasibility of its contained actions should be

determined to select the optimal action (see Section 7.5.2).

 Selecting the Optimal Action 7.5.2

In an elasticity rule, multiple actions may be specified. When such an applicable elasticity

rule is invoked by a trigger, among these alternatives an optimal action needs to be selected

for execution depending on the condition and the prerequisite(s) met (see Algorithm 3 in the

appendix).

To be considered as optimal, the contained action of the invoked elasticity rule should at

least be applicable in the current situation (i.e. its corresponding condition must be evaluat-

ed to true). It also needs to be feasible, so among the applicable alternatives, the feasible ac-

112

tion with the least cost is selected if there is such. In the case that none of the applicable al-

ternatives are feasible, the infeasible action with least midCost is selected for invocation and

an appropriate prerequisite trigger is generated. If the cost of an infeasible action is less than

the cost of a feasible action, we still select the feasible one because according to the current

situation no prerequisite action is required, which more likely results in an efficient recon-

figuration.

For illustration purpose, let us assume that due to workload increase, a trigger (T1) for scal-

ing the system is received from the SLA compliance management (see Figure 7.4). Based

on the scalingType of the trigger (increase) and the related entity, the applicable elasticity

rule is selected and invoked. As shown in the figure, the actions of invoked elasticity rules

have a cost. In the elasticity rule invoked by T1, the defined action is the addition of an as-

signment. To add an assignment, the prerequisite is that there should be an SU in the SG to

which the new assignment can be assigned. If there is no such SU in the SG (i.e. the prereq-

uisite is not met), a prerequisite trigger is generated to initiate another elasticity rule for re-

configuring the SG by adding to it a new service unit. However, a service unit requires a

node to host it. If there is no such node, a prerequisite trigger is generated again to invoke

the corresponding elasticity rule. The actions contained in the node elasticity rule are: mov-

ing out some workload to other nodes with approximate cost of 500 which is feasible if

there are enough providers for them; scaling up the node with approximate cost of 300,

which is applicable if the node has not reached the maximum capacity yet and feasible if the

physical node hosting the node has enough resources. Considering the current situation, as-

sume that all of the contained actions are applicable, but only the first action which is mov-

ing out some workload is feasible. In this example, the first action is chosen as the optimal

113

action as all the action’s prerequisites are met and most likely it will result in an efficient re-

configuration in terms of cost.

In this example, trigger T1 leads to the invocation of multiple elasticity rules where the in-

vocation of one elasticity rule is a prerequisite for another one. The path resulted from the

execution of an elasticity rule is called an action path.

 Action Correlation Meta-Rules 7.5.3

A meta-rule is a higher level rule that governs the application of other rules by indicating

how to apply them [84]. In this thesis, we use higher level rules to govern the application of

elasticity rules and execute their actions on the fly. We refer to these rules as action correla-

tion meta-rules and their applicability is governed by the relations between the triggers. Al-

Figure ‎7.4 An example of invoked action path

Invokes

<<Action>>

Add Assignment

-midCost: 350

<<Elasticity Rule>>

Service

<<Action>>

ReconfigureService

Group

-midCost: 350

<<Elasticity Rule>>

Service Group

ExpressedBy

Prerequisites

ExpressedBy

<<Action>>

Move Out Other

Workload

-midCost: 500

<<Elasticity Rule>>

Node
ExpressedBy

Prerequisites

<<Action>>

Scale Up

-midCost: 300

ExpressedBy

S
e
le

ct
e
d
 A

ct
io

n
 P

at
h

<<Trigger>>

T1

-scalingType: Increase

-measurement: 350

-maxCurrentThreshold: 350

A
lt

e
rn

at
iv

e
 A

ct
io

n
 P

at
h

114

gorithm 4, provided in the appendix, is used to apply the action correlation meta-rules at

runtime. They have been implemented as Atlas Transformation Language (ATL) [29] lazy

rules in our framework.

 Meta-Rules for Dependency Relation 7.5.3.1

Triggers on a sponsor entity can be due to the violation of one its thresholds and because of

its dependent(s) as to take an action on a dependent entity, first the capacity of its sponsor is

checked as a prerequisite. If both cases apply and a prerequisite action is taken to provide a

sponsor first, it may also resolve the sponsor’s trigger. To illustrate, let us assume that the

workload for a service represented by an SI has more than one active assignment. Suppose

at some point in time, the workload increases and two triggers are generated: One on the

service instance (dependent) and one on the node (sponsor) which supports one of the as-

signments of the service instance. In this example, the least costly action of the elasticity

rule invoked by the dependent trigger is executed first, which is adding an assignment on

another node (i.e. the system is scaled out). Once the action path of the dependent entity is

executed, the workload is shared between more nodes and therefore less workload will be

imposed on the original sponsor node for which the sponsor trigger was received. As a re-

sult, the sponsor trigger may be resolved and to determine that the sponsor trigger needs to

be updated. As a result, the first meta-rule for the dependency relation is defined to handle

horizontal scaling (i.e. scaling out). It is as follows:

 Meta-Rule 1: If the relation between triggers is of type physical containment or as-

signment relationship and the optimal action for resolving the dependent trigger is

scale-out, the action path for the dependent entity is executed before the path for the

sponsor entity.

115

Meta-Rule 1 handles the cases where the relation between the triggers is of type physical

containment or assignment relationship and the execution of the action path for the depend-

ent provides solution for the sponsor through adding a new sponsor (i.e. scaling out). Note

that it is possible that adding an assignment was not the least costly action or it was not an

option at all and therefore the first meta-rule is not always applicable.

 Meta-Rule 2: If multiple triggers have physical containment relations with the same

container trigger and the optimal action for resolving each contained trigger is scale-

up, some of the corresponding entities of the contained triggers may be migrated base

on the cost of the migration. The corresponding entities of the contained triggers are

sorted in ascending order using the metric m = (migrationCost/releasedResource),

where migrationCost is the approximate cost of migrating the contained entity to an-

other container and releasedResource is the amount of resources released by migra-

tion. The contained entities with smaller m are migrated until the container trigger is

resolved.

Unlike Mata-Rule 1, Meta-Rule 2 handles vertical scaling (i.e. scale up). According to Me-

ta-Rule 2, if multiple contained entities (i.e. dependents such as VMs) depending on the

same container (i.e. sponsor such as a physical host) need to be scaled up but the container

does not have enough resources for all of them, one or more contained entities (i.e. depend-

ents) whose migration release more critical resources with less cost are migrated to other

containers first to release resources of the container. The released resources of the sponsor

can then be given to the remaining dependent entities to scale up.

If the relation between triggers is of type dependency, but neither Meta-Rule 1 nor Meta-

Rule 2 can be applied, still we need to make sure that the action paths of dependent and

116

sponsor are not executed simultaneously. For that purpose, we execute the action path of the

sponsor before the action path of dependent. Therefore, the third meta-rule is defined as fol-

lows:

 Meta-Rule 3: If the relation between triggers is of type dependency but none of Meta-

Rule 1 and Meta-Rule 2 can be applied, the action path for the sponsor entity is exe-

cuted before the path for the dependent entity.

 Meta-Rules for Adjacency Relation 7.5.3.2

When triggers invoke elasticity rules on adjacent entities, it is possible that the actions of

the elasticity rules would like to manipulate the common sponsor entity of the adjacent enti-

ties (i.e. their container or sponsor) simultaneously. These actions may be conflicting or in-

terfering. To prevent such conflicts, only one action at a time is taken on the common enti-

ty, i.e. the actions are ordered. The order of actions on the common entity affects the effi-

ciency of reconfiguration. To optimize it, the following meta-rules are defined:

 Meta-Rule 4: The actions releasing resources of the common entity are taken first.

 Meta-Rule 5: Any action that would remove a common resource/entity (e.g. remov-

ing a node) is considered only after executing all the action paths of all adjacent trig-

gers.

When executing the action paths, triggers which release resources are given higher priority

than triggers which allocate resources to enable reallocation. However, the actions releasing

resources of the common entity are delayed until all the adjacent triggers have been consid-

ered. Thus, the resources of the common entity are released at the end only if they have not

been reallocated by corresponding actions of other adjacent triggers. When all the resources

of a common entity can be removed, the common entity is removed as well (e.g. a service

117

group is removed when its entire member service units can be removed or when a common

entity such as node has no process to run).

7.6 An Example for Trigger Correlation and System Reconfiguration

Suppose at some point in time, the configuration is as shown in Figure 7.5 (a). In this con-

figuration, there are two service groups (Service Group1 and Service Group2) which are pro-

tecting three SIs (SI1, SI2 and SI3). The service units of Service Group1 can be hosted only

on the nodes of Node Group1 (Node1, Node2, Node3 and Node4) and the service units of

Service Group2 can be hosted only on nodes of Node Group2. As shown in the figure with

the service dependency relation, the provisioning of the service represented by SI2 depends

on the provisioning of the service represented by SI3. In this example, each assignment of

SI2 requires one assignment of SI3. At this point of time, two triggers (t1 and t2) are generat-

ed by the SLA compliance management framework for SI1 and SI2, respectively. Assume

Trigger t1 is generated due to the decrease in the workload represented by SI1 to the point

that two assignments should be removed, and Trigger t2 is generated due to the increase of

the workload represented by SI2.

To reconfigure the system, first the triggers issued on related entities are put into relation.

SI1 and SI2 are protected by the same service group (having the same logical container).

Therefore, their corresponding triggers are put in the adjacency relation. In this relation, the

common entity is Service Group1. Figure 7.5 (b) shows the relation graph resulted from the

trigger correlation process.

Next, the applicable elasticity rules are selected and based on the defined action correlation

meta-rules, the triggers of the relation graph are ordered for the invocation of the applicable

elasticity rules. Based on Meta-Rule 4 for the adjacency relation, the action path resulting

118

from t1 should be executed before the action path resulting from t2 because the scalingType

of Trigger t1 is Decrease. Therefore, Trigger t1 is considered first and its corresponding

elasticity rule is executed. According to the elasticity rule for SI1, two assignments should

be removed to reconfigure the system. Figure 7.5 (c) shows the configuration resulting from

the removal of assignments. As shown in the figure, by the removal of assignments, service

units hosted on Node3 and Node4 become unassigned (without assignments). Considering

Meta-Rule 5, the issue of follow-up trigger on Service Group1 as common entity is delayed

till the adjacent Trigger t2 manipulates the common entity.

According to the elasticity rule initiated by Trigger t2, one assignment should be added to

handle the workload increase represented by SI3. To take this action, two prerequisites

should be met: There should be a service unit in a service group to which the added assign-

ment can be assigned and also its sponsor should have enough capacity to support the in-

crease. The first prerequisite can be met by Service Unit3 or Service Unit4. Since according

to the service dependency each assignment of SI2 needs one assignment of SI3, the increase

in the workload represented by SI2 cannot be sponsored by the current number of SI3’s as-

signments. Therefore, the second prerequisite is not met by the current configuration. To

make the action feasible, a prerequisite trigger on SI3 is generated to increase the sponsor’s

capacity. The generated prerequisite trigger invokes the elasticity rule for SI3. According to

SI2’s elasticity rule, one assignment of SI3 should be added to resolve the prerequisite trig-

ger; however, the action cannot be taken until Service Group2 is reconfigured in a way that

the added assignment can be assigned. Therefore as a prerequisite, the required service unit

should be added to Service Group2 first. To add a service unit, there should be a node to

provide the required resources for the added service unit. Although Node4 has enough re-

sources, it cannot host the service units of Service Group2 because Node4 is not a member

119

of Node Group2 on which Service Group2 can be configured. Since this perquisite is not

met, first a node is added so that the service unit can be added to Service Group2. Figure 7.5

(d) shows the configuration resulting from the execution of Action Path2. Note that node

groups are shown in Figure 7.5 (a) only.

Once all adjacent triggers (i.e. t1 and t2) with the same common entity have been processed,

the delayed follow-up trigger on Service Group1 can be evaluated and therefore the service

unit hosted on Node4 is removed from Service Group1. Node4 does not have any running

service units. Therefore, the resource removal action can be taken at this moment. Figure

7.5 (e) shows the configuration resulting from the execution of the delayed follow-up ac-

tions in Action Path1. As explained in this example, the action paths are not pre-built and

the actions are executed right away.

120

Figure ‎7.5 System reconfiguration-An example

Node5 Node6Node4Node3

Service Group2

Node2Node1

Service Group1

Service

Unit1

Service

Unit2

SI2

Service

Unit3

SI1

Service

Unit5

Service

Unit6

SI3

Service

Unit4

Service Dependency

Node Group1 Node Group2

(a)

𝑡 𝑡2
Adjacency

Common entity = Service Group1

(b)

Node6Node5Node4Node3

𝑡 𝑡2
Adjacency

Service Group2

Node2Node1

Service Group1

SI1

SI2 SI3

Action Path1

Remove SI1
Assignments

(2 Assignments)

Service

Unit1

Service

Unit2

Service

Unit3

Service

Unit4

Service

Unit5

Service

Unit6

Service Dependency

Invokes

(c)

Node7Node6Node5Node3

Service Group2

Node2Node1

Service Group1

𝑡2

SI1

SI2 SI3

Service

Unit1

Service

Unit2

Service

Unit3

Service

Unit6

Service

Unit7

Service

Unit5

Service Dependency

Action Path2

Add

Service Instance2

Assignment

Add

Service Instance3

Assignment

Prerequisite

Reconfigure

Service Group2

Add Node7

Prerequisite

Prerequisite

Invokes
(d)

Node4

Service

Unit4

Node7Node6Node5Node3

Service Group2

Node2Node1

Service Group1

𝑡

SI1

SI2

Service

Unit1

Service

Unit2

Service

Unit3

Service

Unit6

Service

Unit7

Service

Unit5

Service Dependency

Action Path1

Remove

Service Instance1

Assignment

Reconfigure

Service Group1

Remove

Node4

Follow-Up

Follow-Up

Invokes
(e)

SI3

121

7.7 Prototype Implementation and Experimental Evaluation

We implemented a prototype of trigger correlation and dynamic reconfiguration using ATL

[14]. To analyze the efficiency of our approach for trigger correlation and dynamic recon-

figuration, we consider the triggers generated in the previous experiment (i.e. Section 6.6).

To perform this, the same machine with the same specification as the previous experiments

in Section 6.6 was used. For each case, we also used different AMF configuration models as

the current configurations. The AMF configuration models conform to AMF UML profile

defined in [23]. It is worth mentioning that the generated triggers are not redundant and

therefore, with the correlation approach the number of triggers remains the same after corre-

lation. Since we manipulate the models, the execution time is the time of making changes in

the configuration model and does not include the execution time of the actions. For exam-

ple, when a node is added, this addition manifests as a change in the number of instantiated

nodes in the configuration model; however, in real systems, creation of VM instances may

take several minutes [85]. As a result to analyze the efficiency of our approach, we measure

the execution time as well as the number of reconfiguration actions with our approach

where the triggers as well as the actions of invoked elasticity rules are correlated, and com-

pare them to the execution time and number of actions when the triggers are not correlated.

Figure 7.6 shows the result of this comparison. As shown in Figure 7.6 (a), the results

demonstrate the reduction in the number of actions by the correlation approach in overall

which means less applicable elasticity rules are selected and invoked at runtime. As a result

as shown in Figure 7.6 (b), by the correlation approach the execution time which includes

the correlation time is reduced in overall as well. As the actions are executed at runtime, re-

ducing the number of reconfiguration action is an important goal for real time and highly

available systems. In the case that the triggers are not related (like last case in Figure 7.6),

122

the execution time is more in our approach which is due to the time for checking relations

between the triggers to correlate them. It is worth mentioning that the stability of the system

is not guaranteed when the triggers are not correlated.

7.8 Summary

Since multiple triggers may be generated simultaneously, handling the triggers independent-

ly may jeopardize the stability of the system. In this chapter, we proposed a model driven

Figure ‎7.6 Comparison of the execution time and the number of reconfiguration actions for dynamic reconfiguration
with correlation and dynamic reconfiguration without correlation

0

2

4

6

8

10

12

14

16

1 2 3 4 6 8

Number of
Reconfiguration

Actions

Number of Triggers

with correlation

without correlation

(a)

0

100

200

300

400

500

600

700

800

900

1 2 3 4 6 8

Execution Time
(ms)

Number of Triggers

with correlation

without correlation

(b)

123

approach for correlating the triggers and the actions of their related elasticity rules. Triggers

are correlated based on the relations existing between their corresponding configuration en-

tities. The result of trigger correlation is represented as a set of relation graphs. For each

trigger of a relation graph, the applicable elasticity rule is then selected. In order to correlate

the actions of applicable elasticity rules, we defined action correlation meta-rules that gov-

ern the application of elasticity rules when the triggers are correlated. The goal is not only to

reconfigure the system properly and avoid resource oscillation but also to minimize the

number of reconfiguration actions because any change in the configuration needs to be ap-

plied at runtime on system entities. Moreover, to reduce overhead and react to workload

changes in a timely manner the correlated actions are executed on the fly. I.e. no action path

is evaluated or built before the execution. A correlated action is executed right away once

its prerequisites are met if there is any.

We performed some experiments that show that our solution reduces the time of the dynam-

ic reconfiguration and the number of reconfiguration actions while avoiding resource oscil-

lation compared to the reconfiguration solution without trigger correlation.

In our approach, to choose an action among alternatives the cost of actions is considered,

but this is an approximation and it includes the approximate cost of prerequisites as well.

Thus, it is not guaranteed that the resulting reconfiguration is the best solution in terms of

cost.

124

Chapter 8

8 Conclusion and Future Work

8.1 Conclusion

In this thesis, we presented a model-driven management framework for user requirement de-

composition, offline elasticity rule generation, SLA compliance management and dynamic

reconfiguration using the generated elasticity rules.

In [11] an approach has been developed to generate automatically a valid configuration start-

ing from service configurations and software catalog. However, specifying the service con-

figurations requires extensive domain knowledge and expertise. To alleviate the work of de-

signer, we devised a model driven approach to generate automatically service configurations

from the user requirements. For this purpose, the user requirements are decomposed automat-

ically with the decomposition knowledge captured in a service ontology model and the COTS

components that satisfy both functional and non-functional requirements are selected. When a

valid set of component types is selected, traceability links between the requirements and the

selected component types are automatically generated. After successful decomposition, the

service ontology model may be updated with any alternative decomposition for existing func-

tionalities it includes. When a solution is dismissed due to missing component types or non-

functional requirements that cannot be satisfied, the trace links between the rejected solutions

125

and the requirements are generated. This model may help with the management decisions to

modify a user requirement if it is necessary.

To manage the reconfiguration of the system at runtime, we use a set of patterns called elas-

ticity rules. While the system’s configuration is designed (i.e. generated automatically), the

calculations used to dimension the system as well as some computed parameters are reused to

define the elasticity rules. The elasticity rules considered in this thesis are at a finer granulari-

ty than what is presented in the related work as we also consider the rearrangement of re-

sources and not only the addition and removal.

To adapt the system based on the workload fluctuation at runtime, we proposed a model-

driven approach which reuses the models developed at the design stage (e.g. configuration

model). We defined OCL constraints that are periodically evaluated at runtime to generate

triggers automatically from the violated OCL constraints. The defined constraints are general

and defined for categories of SLA parameters; therefore, when a new SLA parameter is in-

troduced and needs to be considered for checking, there is no need to add a new constraint

based on the new parameter as long as it fits into one of the categories we have defined.

The generated triggers initiate the application of corresponding elasticity rules to reconfigure

the system and avoid SLA violations by the provider and resource wasting. Since multiple

triggers may be generated simultaneously, they may invoke elasticity rules that contain ac-

tions which impact each other. As a result, handling the triggers independently may jeopard-

ize the stability of the system. In this thesis, we proposed a model based approach for trigger

correlation, elasticity rule selection and the coordination of the related actions. In order to

correlate the actions and execute them on the fly, we have defined some action correlation

meta-rules that govern the application of elasticity rules when the triggers are correlated. The

goal is not only to reconfigure the system properly and avoid resource oscillation but also to

126

minimize the number of reconfiguration actions because any change in the configuration

needs to be applied at runtime on system entities. This approach is part of our management

framework.

We performed some experiments that show that our solution reduces the time of the dynamic

reconfiguration and the number of reconfiguration actions while avoiding resource oscillation

compared to the reconfiguration solution without trigger correlation. The work presented in

this thesis has been published in [86, 87, 88, 89, 90, 91, 92].

8.2 Future Research

In this section we briefly discuss the issues which are left open in this thesis and that can be

considered in the future.

 Elasticity Rule Generation 8.2.1

 In this thesis, we proposed to use the system dimensioning information to define elasticity

rules at design time. Therefore, the elasticity rules generation requires the configuration gen-

eration process. We discussed our approach in the context where the service and service pro-

vider perspectives are described explicitly in the configuration. The approach can be extend-

ed to apply it in more general context where there is no distinction between the service and

service provider.

 SLA Compliance Management 8.2.2

 To provide resources in a proactive manner, the values of current thresholds are less than the

current capacity of the system. In this thesis, we assumed the values of the threshold for the

capacity of the system is given. As future work, the monitoring period, reconfiguration time

and the predicted workload as well as the cost of reconfiguration versus the penalty of SLA

violations can be considered to determine the values of the thresholds.

127

 Dynamic Reconfiguration 8.2.3

As mentioned in Chapter 7, the goal of our approach for dynamic reconfiguration is to recon-

figure the system properly while reducing the number of reconfiguration action and optimiz-

ing resource utilization. For this purpose, some action correlation meta-rules have been intro-

duced. Future work can involve the design of new heuristics as new action correlation meta-

rules to improve the performance of the proposed approach. For this purpose, a set of large

scale configurations need to be considered as case studies to analyze the performance of dif-

ferent heuristics.

In our approach, we assumed the load that is imposed on a node by requests of a service is

estimated by a given function at runtime. As future work, the parameters that characterize the

workload as well as the node (e.g. the types of workload the node currently supports, the op-

erating system, etc.) can be considered to define the function.

In this thesis, we only handled the triggers which lead to dynamic reconfiguration. The future

work can involve the approach for handling design related triggers by which the system con-

figuration has to be redesigned. For example, the system configuration needs to be modified

due to frequent service outage and consider for instance alternate components. The traceabil-

ity links generated at configuration time can be reused to identify on which parts of the con-

figuration the modifications should be applied.

128

9 Bibliography

[1] M. Toeroe and F. Tam, Service Availability: Principles and Practice, John Wiley & Sons, 2012.

[2] A. Kanso, "Automated Configuration Design and Analysis for Service High-Availability," PhD

thesis, Concordia University, 2012.

[3] K. D. Larson, "The Role of Service Level Agreements in IT Service," Information Management

& Computer , vol. 6, no. 3, pp. 128-132, 1998.

[4] N. R. Herbst, S. Kounev and R. Reussner, "Elasticity in Cloud Computing: What It Is, and What

It Is Not," in International Conference on Autonomic Computing (ICAC13), San Jose, 2013.

[5] "MDA," [Online]. Available: http://www.omg.org/mda/. [Accessed 11 July 2018].

[6] B. Selic, "The Pragmatics of Model-Driven Development," IEEE software, vol. 20, no. 5, pp. 19-

25, 2003.

[7] "MDA User Guide, version 1.0.0," 01 06 2003. [Online]. Available:

https://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf. [Accessed 23 01 2015].

[8] B. Selic, "A Systematic Approach to Domain-Specific Language Design Using UML," in Object

and Component-Oriented Real-Time Distributed Computing, 2007.

[9] "OMG Unified Modeling language (OMG UML), Superstructure," 2011. [Online]. Available:

https://www.omg.org/spec/UML/2.4.1/About-UML/. [Accessed 11 July 2018].

[10] "OMG Object Constraint Language (OCL), version 2.4," February 2014. [Online]. Available:

http://www.omg.org/spec/OCL/. [Accessed 11 July 2018].

[11] P. Pourali, "Pattern-Based Generation of AMF Configurations," Master thesis, Concordia

University, 2014.

[12] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala and K. Shin, "What Does

Control Theory Bring to Systems Research?," ACM SIGOPS Operating Systems Review, vol. 43,

no. 1, pp. 62-69, 2009.

[13] "Service Availability Forum," [Online]. Available: http://www.saforum.org. [Accessed 11 July

2018].

[14] "ATL/User Guide-The ATL Language," [Online]. Available:

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language. [Accessed 11 July 2018].

129

[15] "Eclipse Modeling Framework (EMF)," [Online]. Available:

https://www.eclipse.org/modeling/emf/. [Accessed 1 November 2017].

[16] "OCL - Eclipsepedia - Eclipse Wiki," [Online]. Available: https://wiki.eclipse.org/OCL.

[Accessed 01 August 2017].

[17] "Service Availability Forum, “Application Interface Specification, Availability Management

Framework”, SAI-AIS-AMF-B.04.01," [Online]. Available:

http://www.saforum.org/HOA/assn16627/images/SAI-AIS-AMF-B.04.01.pdf. [Accessed 18 June

2016].

[18] "OMG Unified Modeling Language (OMG UML) Infrastructure, version 2.4.1," 2011. [Online].

Available: https://www.omg.org/spec/UML/2.4.1/About-UML/. [Accessed 11 July 2018].

[19] M. Alhaj and D. C. Petriu, "Traceability Links in Model Transformations between Software and

Performance Models," in SDL, 2013.

[20] I. Galvao and A. Goknil, "Survey of Traceability Approaches in Model-Driven Engineering,"

Object Computing Conference, 2007. EDOC 2007. 11th IEEE International, 2007.

[21] O. C. Gotel and A. C. Finkelstein, "An Analysis of the Requirements Traceability Problem," in

Requirements Engineering, 1994.

[22] "Service Availability Forum, Hardware Platform Interface, Specification,SAI-HPI-B.03.02,"

[Online]. Available: http://www.saforum.org/HOA/assn16627/images/SAI-HPI-B.03.02.pdf.

[Accessed 11 July 2018].

[23] P. Salehi, A. Hamoud-Lhadj, M. Toeroe and F. Khendek, "A UML-Based Domain Specific

Modeling Language for the Availability Management Framework," Computer Standards &

Interfaces, vol. 44, pp. 63-83, 2016.

[24] K. Czarnecki, S. Helsen and U. Eisenecker, "Staged Configuration Using Feature Models," in

Third Software Product-Line Conference (SPLC'04), 2004.

[25] L. Chung, W. Ma and K. Cooper, "Requirements Elicitation Through Model-Driven Evaluation

of Software Components," in 5th International Conference on Commercial-off-the-Shelf (COTS)-

Based Software Systems, 2006.

[26] Z. J. Oster, G. R. Santhanam and S. Basu, "Decomposing the Service Composition Problem," in

8th IEEE European Conference on Web Services, 2010.

[27] Z. J. Oster, G. R. Santhanam and S. Basu, "Identifying Optimal Composite Services by

Decomposing the Service Composition Problem," in IEEE European Conference on Web

Services, 2011.

[28] J. Lin, M. S. Fox and T. Bilgic, "A Requirement Ontology for Engineering Design," in Third

ISPE International Conference on Concurrent Engineering, 1996.

130

[29] C. Bartsch, L. Shwartz, C. Ward, G. Grabarnik and M. J. Buco, "Decomposition of IT Service

Processes and Alternative Service Identification using Ontologies," in Network Operations and

Management Symposium (NOMS 2008), 2008.

[30] M. Kassab, O. Ormandjieva and M. Daneva, "An Ontology Based Approach to Non-Functional

Requirements Conceptualization," in Software Engineering Advances, 2009. ICSEA '09. Fourth

International Conference on, 2009.

[31] M. Kassab, O. Ormandjieva and M. Daneva, "A Traceability Metamodel for Change

Management of Non-Functional Requirements," in Sixth International Conference on Software

Engineering Research, Management and Applications, 2008.

[32] A. Rashwan, O. Ormandjieva and R. Witte, "Ontology-Based Classification of Non-Functional

Requirements in Software Specifications: A New Corpus and SVM-Based Classifier," in

Computer Software and Applications Conference (COMPSAC), 2013.

[33] X. Franch and J. P. Carvallo, "Using Quality Models in Software Package Selection," IEEE

Software, vol. 20, no. 1, pp. 34-41, 2003.

[34] H. Wada, J. Suzuki and K. Oba, "Modeling Non-Functional Aspects in Service Oriented

Architecture," in IEEE International Conference on Services Computing SCC06, 2006.

[35] R. Heckel, M. Lohmann and S. Thone, "Towards a UML Profile for Service-Oriented

Architectures," in Model Driven Architecture: Foundations and Applications, 2003.

[36] L. M. Cysneiros and J. C. S. d. P. Leite, "Using UML to Reflect Non-Functional Requirements,"

in Proceedings of theconference of the Centre for Advanced Studies on Collaborative research,

2001.

[37] M. Alhaj and D. C. Petriu, "Approach for Generating Performance Models from UML Models of

SOA Systems," in Proceedings of CASCON’2010, Toronto, 2010.

[38] A. Mate and J. Trujillo, "A Trace Metamodel Proposal Based on the Model Driven Architecture

Framework for the Traceability of User Requirements in Data Warehouses," Information

Systems, vol. 37, no. 8, pp. 753-766, 2012.

[39] M. D. Del Fabro, J. Bezivin, F. Jouault and P. Valduriez, "Applying Generic Model Management

to Data Mapping," in BDA, 2005.

[40] E. Barret, E. Howley and J. Dugan, "Applying Reinforcement Learning towards Automating

Resource Allocation and Application Scalability in the Cloud," Concurrency and Computation:

Practice and Experience, vol. 25, no. 12, pp. 1656-1674, 30 May 2012.

[41] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre and I. Truck, "Using

Reinforcement Learning for Autonomic Resource Allocation in Clouds: towards a Fully

Automated Workflow," in The Seventh International Conference on Autonomic and Autonomous

Systems (ICAS 2011), 2011.

131

[42] G. Tesauro, N. K. Jong, R. Das and M. N. Bennani, "A Hybrid Reinforcement Learning

Approach to Autonomic Resource Allocation," in IEEE International Conference on Autonomic

Computing (ICAC'06), 2006.

[43] A. Galstyan, K. Czajkowski and K. Lerman, "Resource Allocation in the Grid Using

Reinforcement Learning," in Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems, New York, July 19 - 23, 2004.

[44] J. Rao, X. Bu, C.-Z. Xu, L. Wang and G. Yin, "VCONF: A Reinforcement Learning Approach to

Virtual Machines Auto-configuration," in Proceedings of the 6th international conference on

Autonomic computing (ICAC’09), Barcelona, Spain, June 15–19, 2009.

[45] Y. Al-Dhuraibi, F. Paraiso and N. Djarallah, "Elasticity in Cloud Computing: State of the Art and

Research Challenges," in IEEE Transactions on Services Computing, 01 June 2017.

[46] P. Jamshidi, A. Ahmad and C. Pahl, "Autonomic Resource Provisioning for Coud-Based

Software," in Proceedings of the 9th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS 2014), Hyderabad, India, June 02 - 03, 2014.

[47] J. Domaschka, K. Kritikos and A. Rossini, "Towards a Generic Language for Scalability Rules,"

in European Conference on Service-Oriented and Cloud Computing, 2014.

[48] C. Chapman, W. Emmerich, F. G. Márquez, S. Clayman and A. Galis, "Software Architecture

Definition for On-demand Coud Provisioning," Cluster Computing, vol. 15, no. 2, pp. 79-100,

2012.

[49] G. Copil, D. Moldovan, H.-L. Truong and S. Dustdar, "SYBL: An Extensible Language for

Controlling Elasticity in Cloud Applications," in 13th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), 2013.

[50] C. Giblin, S. Muller and B. Pfitzmann, "From Regulatory Policies to Event Monitoring Rules:

Towards Model-Driven Compliance Automation," IBM Research, Zurich, 16 October 2006.

[51] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld and D.

Wilkins, "PDDL- The Planning Domain Definition Language," 1998. [Online]. Available:

http://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf. [Accessed 23 September

2016].

[52] H. Ludwig, K. Stamou, M. Mohamed, N. Mandagere, B. Langston, G. Alatorre, H. Nakaruma, O.

Anya and A. Keller, "rSLA: Monitoring SLAs in Dynamic Service Environments," in

International Conference on Service-Oriented Computing, 2015.

[53] S. Tata, M. Mohamed and T. Sakairi, "rSLA: A Service Level agreement Language for Cloud

Services," in Cloud Computing (CLOUD), 2016.

[54] F. Raimondi, J. Skene, W. Emmerich and B. Wozna, "A Methodology for Online Monitoring

Non-Functional Specifications of Web-Services," in First International Workshop on Property

132

Verification for Software Components and Services (PROVECS), 2007.

[55] J. Skene and W. Emmerich, "Generating a Contract Checker for an SLA Language," 2004.

[Online]. Available: http://eprints.ucl.ac.uk/712/1/9.9.1coala.pdf. [Accessed December 2014].

[56] V. C. Emeakaroha, M. A. S. Netto, I. Brandic and C. A. F. De Rose, "Application Level

Monitoring and SLA Violation Detection for Multi-tenant Cloud Services," Emerging Research

in Cloud Distributed Computing Systems, 2015.

[57] V. C. Emeakaroha, M. A. Netto, R. N. Calheiros, I. Brandic, R. Buyya and C. A. De Rose,

"Towards Autonomic Detection of SLA Violations in Cloud Infrastructures," Future Generation

Computer Systems 28, vol. 28, no. 7, pp. 1017-1029, 2012.

[58] B. Konig, J. A. Calero and J. Kirschnick, "Elastic Monitoring Framework for Cloud

Infrastructures," IET Communications, vol. 6, no. 10, pp. 1306-1315, 2012.

[59] M. Sedaghat, F. Hernandez-Rodriguez and E. Elmroth, "A Virtual Machine Re-packing

Approach to the Horizontal vs. Vertical Elasticity Trade-Off for Cloud Autoscaling," in

Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, 2013.

[60] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini and D. Ohsie, "High Speed and Robust Event

Correlation," IEEE communications Magazine, vol. 34, no. 5, pp. 82-90, 1996.

[61] B. Gruschke, "Integrated Event Management: Event Correlation using Dependency Graphs," in

InProceedings of the 9th IFIP/IEEE International Workshop on Distributed Systems: Operations

& Management (DSOM 98), 1998.

[62] R. S. Shariffdeen, D. Munasinghe, H. Bhathiya, U. Bandara and H. Dilum Bandara, "Workload

and Resource Aware Proactive Auto-Scaler for PaaS Cloud," in 2016 IEEE 9th International

Conference on Cloud Computing, 2016.

[63] P. Tang, F. Li, W. Zhou, W. Hu and L. Yang, "Efficient Auto-Scaling Approach in the Telco

Cloud Using Self-Learning Algorithm," in IEEE Global Communications Conference

(GLOBECOM), December 2015.

[64] C. Wang, A. Gupta and B. Urgaonkar, "Fine-Grained Resource Scaling in a Public Cloud: A

Tenant’s Perspective," in 2016 IEEE 9th International Conference on Cloud Computing, 2016.

[65] Z. Shen, S. Subbiah, X. Gu and J. Wilkes, "Cloudscale: Elastic Resource Scaling for Multi-tenant

Cloud Systems," in 2nd ACM Symposium on Cloud Computing, 2011.

[66] Q. Zhang, H. Chen and Z. Yin, "PRMRAP: A Proactive Virtual Resource Management

Framework in Cloud," in 1st International Conference on Edge Computing, 2017.

[67] A. Ali-Eldin, J. Tordsson and E. Elmroth, "An Adaptive Hybrid Elasticity Controller for Cloud

Infrastructures," in Network Operations and Management Symposium (NOMS), 2012.

133

[68] T. Gruber, "Ontology," Encyclopedia of Database Systems, Springer, pp. 1963-1965, 2009.

[69] P. Colombo, P. Salehi, F. Khendek and M. Toeroe, "Bridging the Gap between High Level User

Requirements and Availability Management Framework Configurations," in 17th International

Conference on Engineering of Complex Computer Systems (ICECCS), 2012.

[70] D. Mazmanov, C. Curescu, H. Olsson, A. Ton and J. Kempf, "Handling Performance Sensitive

Native Cloud Applications with Distributed Cloud Computing and SLA Management," in 6th

International Conference on Utility and Cloud Computing (UCC), 2013.

[71] S. V. Raghavan and E. Dawson, "An Investigation into the Detection and Mitigation of Denial of

Dervice (DoS) Attacks," Springer Science & Business Media, 2011.

[72] P. C. Rangarajan, F. Khendek and M. Toeroe, "Managing the Availability of VNFs with the

Availability Management Framework," in Network and Service Management (CNSM), 2017.

[73] A. Jahanbanifar, F. Khendek and M. Toeroe, "Providing Hardware Redundancy for Highly

Available Services in Virtualized Environments," in Software Security and Reliability (SERE),

2014.

[74] "Ericsson Introduces A Hyperscale Cloud Solution," [Online]. Available:

http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-

FGB1010554&Lang=EN&HighestFree=Y. [Accessed July 2016].

[75] J. Skene, D. D. Lamanna and W. Emmerich, "Precise Service Level Agreements," in

Proceedings of the 26th International Conference on Software Engineering, 2004.

[76] M. Toeroe and F. Tam, Service Availability: Principles and Practice, John Wiley & Sons, 2012.

[77] T. Luis and J. Tordsson, "An Autonomic Approach to Risk-Aware Data Center Overbooking,"

Cloud Computing IEEE Transaction, vol. 2, no. 3, 2014.

[78] C. Vazquez, L. Tomas, G. Moreno and J. Tordsson, "A Fuzzy Approach to Cloud Admission

Control for Safe Overbooking," in Fuzzy Logic and Applications, 2013.

[79] S. Katker and M. Paterok, "Fault Isolation and Event Correlation for Integrated Fault

Management," Integrated Network Management V, Part of the series IFIP — The International

Federation for Information Processing, pp. 583-596, 1997.

[80] R. D. Gardner and D. A. Harle, "Methods and Systems for Alarm Correlation," in Global

Telecommunications Conference, 1996.

[81] M. Steinder and A. S. Sethi, "The Present and Future of Event Correlation: A Need for End-to-

End Service Fault Localization," in World Multi-Conf. Systemics, Cybernetics, and Informatics,

Orlando, 2001.

[82] M. K. Agarwal, K. Appleby , M. Gupta, G. Kar, A. Neogi and A. Sailer, "Problem Determination

134

Using Dependency Graphs and Run-Time Behavior Models," in International Workshop on

Distributed Systems: Operations and Management, 2004.

[83] G. Jakobson and M. Weissman, "Real-time Telecommunication Network Management:

Extending Event Correlation with Temporal Constraints," InIntegrated Network Management IV,

pp. 290-301, 1995.

[84] R. Davis and B. G. Buchanan, "Meta-Level Knowledge," Rulebased expert systems, The MYCIN

Experiments of the Stanford Heuristic Programming Project, pp. 507-530, 1984.

[85] Y. Jiang, C.-S. Perng and T. Li, "Cloud Analytics for Capacity Planning and Instant VM

Provisioning," IEEE Transactions on Network and Service Management, vol. 10, no. 3, pp. 312-

325, 2013.

[86] M. Abbasipour, M. Sackmann, F. Khendek and M. Toeroe, "Ontology-based User Requirements

Decomposition for Component Selection for Highly Available Systems," in IEEE Information

Reuse and Integration (IRI), San Francisco, 2014.

[87] M. Abbasipour, M. Sackmann, F. Khendek and M. Toeroe, "A Model-Based Approach for User

Requirements Decomposition and Component Selection," Formalisms for Reuse and Systems

Integration, pp. 173-202, 2015.

[88] M. Abbasipour, F. Khendek and M. Toeroe, "A Model-Based Framework for SLA Management

and Dynamic Reconfiguration," in International SDL Forum, 2015.

[89] M. Abbasipour, F. Khendek and M. Toeroe, "Trigger Correlation for Dynamic System

Reconfiguration," in The 33rd ACM/SIGAPP Symposium On Applied Computing (SAC 2018),

Pau, France, 2018.

[90] M. Abbasipour, F. Khendek and M. Toeroe, "A Model-based Approach for Design Time

Elasticity Rules Generation," in 23rd International Conference on Engineering of Complex

Computer Systems (ICECCS 2018), (Submitted), 2018.

[91] M. Abbasipour, F. Khendek and M. Toeroe, "A Model-Driven Framework for SLA Compliance

Management and Dynamic System Reconfiguration," Journal of Networks and Computer

Applications (JNCA), p. (Submitted), 2018 .

[92] M. Abbasipour, M. Sackmann, F. Khendek and M. Toeroe, "Ontology-Based User Requirement

Decomposition for Component Selection for Service Provision". US Patent 9164734, 20 October

2015.

135

10 Appendix

Algorithm 2: Selecting Applicable Elasticity Rules

Input: TriggerSet, ElasticityRuleSet

Output: ApplicableElasticityRuleSet

1: // Selecting applicable elasticity rules

2: ApplicableElasticityRuleSet:={}

3: For each trigger in TriggerSet

4: For each elasticityRule in ElasticityRuleSet

5: If (elasticityRule.entityType == trigger.entity.entityType) then

6: If (elasticityRule.scalingRule==trigger.scalingType) then

7: ApplicableElasticityRuleSet := ApplicableElasticityRuleSet ∪ {(trigger,

elasticityRule)}

8: End if

9: End if

10: End For

11: End For

12: Return ApplicableElasticityRuleSet

Algorithm 1: Trigger Correlation

Input: TriggerSet, Configuration

Output: RelationGraphSet

1: //creating relationgraphs

2: RelationSet := Configuration.relations

3: RelationGraphSet.relations := {}

4: RelationGraphSet.triggers := TriggerSet

5: For each relation in RelationSet

6: If (TriggerSet.entities.includesAll(relation.entities)) then

7: RelationGraphSet.relations := RelationGraphSet.relations  { TransformRela-

tion(relation, relation.entities.at(1).trigger, relation.entities.at(2).trigger)}

8: End if

9: End for

10: Return RelationGraphSet

136

Algorithm 3: Selecting Optimal Action

Input: ElasticityRule, Measurement, Threshold, configuration

Output: OptimalAction

1: //Selecting Optimal action based on the current situation

2: ActionSet := ElasticityRule.actions /// Set of all actions contained in the elasticity

rule

3: optimalAction := action0

4: optimalCost := action0.midCost

5: elasticityRuleFeasibility := false

6: For each action in ActionSet

7: If (evaluate(action.condition,configuration,threshold,Measurement)) then

8: actionFeasibility := true

9: For each prerequisite in action.prerequisites

10: If (not evaluate(prerequisite,configuration,threshold,Measurement)) then

11: actionFeasibility := false

12: Break

13: End if

14: End for

15: If (not elasticityRuleFeasibility and not actionFeasibility) then

16: If (optimalCost > action.midCost) then

17: optimalAction := action

18: optimalCost := action.midCost

19: End if
20: If (elasticityRuleFeasibility and actionFeasibility) then

21: If (optimalCost > action.cost) then

22: optimalAction := action

23: optimalCost := action.cost

24: End if
25: Else if (not elasticityRuleFeasibility and actionFeasibility) then

26: elasticityRuleFeasibility := true

27: optimalAction := action

28: optimalCost := action.cost

29: End if

30: End if

31: End for

32: Return optimalAction

137

 Algorithm 4: Applying Action Correlation Meta-Rules

Input: relationGraph, ApplicableElasticityRuleSet, configuration, Measurement, Threshold,
configuration

Output: TriggerSet

33: //Sorting the triggers of a relation graph based on the relations between them

34: TriggerSet := RelationGraph.triggers

35: RelationSet := RelationGraph.relations

36: For each relation in RelationSet

37: If (relation.isTypeOf() == Adjacency) then

38: adjcent1:= relation.vertices().at(1)

39: adjacent2:= relation.vertices.at(2)

40: If (adjacent1.indexAtTriggerSet () < adjacent2.indexAtTriggerSet() and adja-

cent1.scalingType == increase and adjacent2.scalingType == decrease) then

41: TriggerSet.swap (adjacent1,adjacent2)

42: End if

43: End if

44: If (relation.isTypeOf() == Dependency) then

45: dependentOptAction := optimalAction(dependent.applicableEr,configuration,

Measurement,Threshold)

46: sponsorOptAction := optimalAction(sponsor.applicableEr, configuration, Meas-

urement, Threshold)

47: If (dependentOptAction == scale-out) then

48: If (sponsor.indexAtTriggerSet () < dependent.indexAtTriggerSet()) then

49: TriggerSet.swap (sponsor,dependent)

50: End if

51: Else if (dependentOptAction == scale-up and sponsorOptAction == scale-up) then

52: RelationSubset:= findOtherDependency (sponsor, RelationSet))

53: If (findOtherScaleUpDependents (RelationSubset).notEmpty()) then

54: DependentSet := RelationSubset.dependents ∪ {dependent}

55: migrationSet := findMigrationSet (DependentSet)

56: scaleUpSet := DependentSet – migrationSet

57: TriggerSet.partialSort (MigrationSet, DependentSet)

58: RelationSet := RelationSet – RelationSubset

59: Else if (findOtherScaleUpDependents (RelationSubset).isEmpty()) then

60: If (dependent.indexAtTriggerSet () < sponsor.indexAtTriggerSet())

then

61: TriggerSet.swap (dependent, sponsor)

62: End if

63: Else

64: If (dependent.indexAtTriggerSet () < sponsor.indexAtTriggerSet()) then

65: TriggerSet.swap (dependent, sponsor)

66: End if

67: End if

68: End for

69: Return TriggerSet

