
A FRAMEWORK TO EVALUATE PIPELINE
REPRODUCIBILITY ACROSS OPERATING SYSTEMS

Lalet Scaria

A thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science (Software

Engineering)
Concordia University

Montréal, Québec, Canada

September 2018
c© Lalet Scaria, 2018

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Lalet Scaria
Entitled: A framework to evaluate pipeline reproducibility across

operating systems

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining commitee:

Chair
Examiner
Examiner
Supervisor

Approved
Chair of Department or Graduate Program Director

20
Rama Bhat, Ph.D.,ing., FEIC, FCSME, FASME, Interim
Dean
Faculty of Engineering and Computer Science

Lalet Scaria
Dr. Tse-Hsun Chen

Lalet Scaria
Dr. Yann-Gaël Guéhéneuc⽀

Lalet Scaria
Dr. Marta Kersten-Oertel

Lalet Scaria
Dr. Tristan Glatard

Abstract

A framework to evaluate pipeline reproducibility across operating
systems

Lalet Scaria

The lack of computational reproducibility threatens data science in several domains.
In particular, it has been shown that different operating systems can lead to different
analysis results. This study identifies and quantifies the effect of the operating system
on neuroimaging analysis pipelines. We developed a framework to evaluate the repro-
ducibility of these neuroimaging pipelines across operating systems. The framework
themselves leverages software containerization and system-call interception to record
results provenance without having to instrument the pipelines. A tool (Repro-tools)
compares results obtained under different conditions. We used our framework to
evaluate the effect of the operating system on results produced by pipelines from the
Human Connectome Project (HCP), a large open-data initiative to study the human
brain. In particular, we focused on pre-processing pipelines for anatomical and func-
tional data, namely PreFreeSurfer, FreeSurfer, PostFreeSurfer, and fMRIVolume. We
used data from five subjects released by the HCP. Results highlight substantial differ-
ences in the output of the HCP pipelines obtained in two versions of Linux (CentOS6
and CentOS7). Inter-OS differences corresponding to normalized root mean square
errors of up to 0.27 were observed, which corresponds to visually important differ-
ences. We provide visualizations of the most important differences for various pipeline
steps. No meaningful inter-run differences were observed, which shows that the inter-
OS differences do not originate from the use of pseudo-random numbers or silent
crashes of the pipelines. We hypothesize that the observed inter-OS differences come
from numerical instabilities in the pipelines, triggered by rounding and truncation
differences that originate in the update of mathematical libraries in different systems.
An apparent solution to this issue is to freeze the execution environment using, for
example, software containers. However, this would only mask instabilities while they
should ultimately be corrected in the pipelines.

iii

Acknowledgments

First and foremost I would like to thank my supervisor Dr. Tristan Glatard , who has
supported me throughout my thesis with his motivating words, patience and knowl-
edge. I consider myself so lucky to have such an exceptional and friendly supervisor.
Many thanks to my friends and family who have always been cheering me up and
for being there for me. With a special mention to all the BIN Lab members and
MCIN team, you guys have always been fun to work with. Special thanks to Valérie,
Soudabeh and Ali, you guys have been wonderful labmates. “TOM” family, for all
the love and support, can’t thank them enough ! I am also grateful to Concordia Uni-
versity for having trust in me, the infrastructure and financial support you provided
for completing this thesis work.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Definitions of Reproducibility . 1
1.2 Reproducibility Crisis and its Relevance 3
1.3 Reproducibility in the context of Neuroimaging Pipelines 4

2 Tools and Platforms for Reproducibility evaluations of Neuroimag-
ing Pipelines 5
2.1 Neuroimaging Pipelines . 5
2.2 Reproducibility of Neuroimaging Pipelines across Operating Systems 8
2.3 Containers . 10

2.3.1 Pipeline Containerization . 12
2.3.2 Docker . 13
2.3.3 Singularity . 16

2.4 Web Platforms and Tools to run Containers 18
2.4.1 CBRAIN . 18
2.4.2 Amazon Web Services . 19
2.4.3 Boutiques . 21

2.5 Interposition Techniques . 23
2.5.1 System and Library call interposition 23
2.5.2 Reprozip Tool . 24

v

3 A framework for analyzing the reproducibility issues of neuroimag-
ing pipelines 27
3.1 Repro-tools Workflow . 28
3.2 Docker Images . 28
3.3 Pipeline Encapsulation . 29
3.4 Pipeline Deployment . 30
3.5 File comparisons across conditions . 30
3.6 Provenance Capture . 33
3.7 Metrics . 34

3.7.1 Normalized Root Mean Square Error (NRMSE) 34
3.7.2 Dice Similarity Coefficient . 34
3.7.3 Text Filtering . 35

4 Application to HCP pre-processing Pipelines 36
4.1 HCP Pipelines (v3.19.0) . 36
4.2 HCP Data . 38
4.3 PreFreeSurfer . 39
4.4 FreeSurfer . 42
4.5 PostFreeSurfer . 44
4.6 fMRIVolume . 45
4.7 Subjects of the study . 46

4.7.1 HCP Data Selection . 46
4.8 HCP Docker Images . 47
4.9 Processing of Data . 48

4.9.1 PreFreeSurfer . 48
4.9.2 FreeSurfer . 49
4.9.3 PostFreeSurfer . 49
4.9.4 fMRIVolume . 50

5 Results 51
5.1 PreFreeSurfer . 51

5.1.1 Global Comparison . 51
5.1.2 Comparison of specific files . 53

5.2 FreeSurfer . 56

vi

5.2.1 Global Comparison . 57
5.2.2 Comparison of specific files . 58

5.3 PostFreeSurfer . 60
5.3.1 Global Comparison . 60
5.3.2 Comparison of specific files . 62

5.4 fMRIVolume . 64
5.4.1 Global Comparison . 64
5.4.2 Comparison of specific files . 65

5.5 Effect of changing Subject vs. changing Condition 67

6 Conclusions 69
6.1 General Conclusions . 69
6.2 Contributions . 70
6.3 Future work . 71

References 72

vii

List of Figures

1 Source code, compilation, libraries, kernel and hardware 9
2 Comparison of hypervisor and container 11
3 Container Architecture . 13
4 Docker Architecture . 14
5 Docker Sample File . 15
6 Singularity usage workflow. 16
7 Boutiques input descriptor. 22
8 Boutiques output descriptor. 23
9 Reprozip packing and unpacking . 25
10 Workflow of Reproducibility Analysis in neuroimaging pipelines . . . 28
11 Query for provenance information . 33
12 HCP Preprocessing Pipelines Overview 37
13 T1-weighted image . 38
14 T2-weighted image . 39
15 PreFreeSurfer Overview . 40
16 Effect of gradient nonlinearity distortion on the T1w image 41
17 FreeSurfer Overview . 42
18 PostFreeSurfer Overview . 44
19 fMRI Volume Overview . 46
20 PreFreeSurfer metric values . 52
21 Differences in T1wmulT2w brain normalization file 53
22 Zoomed in version of T1wmulT2w brain normalization file 54
23 Differences in T2w ACPC file . 54
24 Zoomed in version of T2w ACPC checkerboard image 55
25 Differences in bias raw file . 56

viii

26 Zoomed in bias raw file . 56
27 FreeSurfer metric values . 57
28 Differences in the ribbon file . 58
29 Differences in aseg hires file . 59
30 Differences in WM hire file . 60
31 PostFreeSurfer metric values . 61
32 Differences in aparc.a2009s+aseg file 62
33 Differences in the T1w Ribbon file . 63
34 Differences in the segmentation file 63
35 fMRIVolume metric values . 64
36 Differences in all grey matter file . 66
37 Differences in the Scout gdc undistorted2T1w file 66
38 Zoomed in Scout gdc undistorted2T1w file 67

ix

List of Tables

1 HCP Subject Details . 47
2 Unprocessed HCP Subject Size . 47
3 PreFreeSurfer processing details . 49
4 FreeSurfer processing details . 49
5 PostFreeSurfer processing details . 49
6 fMRIVolume processing details . 50
7 NRMSE & DICE values of PreFreeSurfer 52
8 NRMSE & DICE values of FreeSurfer 57
9 NRMSE & DICE values of PostFreeSurfer 60
10 NRMSE & DICE values of fMRIVolume 64
11 Anatomical differences vs. Effect of operating system 68

x

Chapter 1

Introduction

This chapter introduces the concept of reproducibility, the reproducibility crisis, the
general opinion of scientific community about reproducible experiments and the re-
producibility issues in the field of neuroimaging.

1.1 Definitions of Reproducibility

The R-words, “Repeatability, Replicability, and Reproducibility” are used as a sub-
stitute to each other and there are many variations of definitions available for each
of these terms [1]. Drummond defined clear distinction between reproducibility
and replicability, as reproducibility accommodates changes, but replicability avoids
them [2]. The Association of Computer Machinery defined these terms to make the
usage uniform across the community, which is listed below [3].

• Repeatability (Same team, same experimental setup)
“The measurement can be obtained with stated precision by the same team
using the same measurement procedure, the same measuring system, under
the same operating conditions, in the same location on multiple trials. For
computational experiments, this means that a researcher can reliably repeat
her own computation.”

1

• Replicability (Different team, same experimental setup)
“The measurement can be obtained with stated precision by a different team
using the same measurement procedure, the same measuring system, under
the same operating conditions, in the same or a different location on multiple
trials. For computational experiments, this means that an independent group
can obtain the same result using the author’s own artifacts.”

• Reproducibility (Different team, different experimental setup)
“The measurement can be obtained with stated precision by a different team,
a different measuring system, in a different location on multiple trials. For
computational experiments, this means that an independent group can obtain
the same result using artifacts which they develop completely independently.”

Though the ACM terminology clearly defined the distinction between the
R-words, the definition of reproducibility was not complete. To avoid this confusion,
Goodman et al. defined a new lexicon exclusively for reproducibility [4], which is
listed below:

• Methods reproducibility: “provide sufficient detail about procedures and data
so that the same procedures could be exactly repeated.”

• Results reproducibility: “obtain the same results from an independent study
with procedures as closely matched to the original study as possible”.

• Inferential reproducibility: “draw the same conclusions from either an indepen-
dent replication of a study or a reanalysis of the original study”.

According to Prasad Patil et al. reproducibility is defined as, “re-performing
the same analysis with the same code using a different analyst” and replicability is
defined as, “re-performing the experiment and collecting new data”.

In the context of this study, “reproducibility” refers to the definition given
in [5]. The factors that change from the original study are the anaylst and the
operating system on which the processing takes place.

2

1.2 Reproducibility Crisis and its Relevance

Reproducibility of scientific claims should be the measure with which a scientific
study should be given credits [6]. According to [1], “A cornerstone of science is the
possibility to critically assess the correctness of scientific claims made and conclusions
drawn by other scientists”. To make a study reproducible, it is necessary to have a
good documentation about the methods/experiment, resources and availability of
data used for the study. In an ideal scenario, an experiment described in sufficient
detail could undergo reproducibility test (verify the results from the reproducibility
study) carried out by other scientists with sufficient knowledge and, if the results
are within the range of experimental deviation, the experiment can be considered as
reproducible [1]. The lack of well documented methods/experiment and reluctance
to make the data publicly available leads to reproducibility crisis [7].

The reproducibility crisis across several domains in science gained a lot of
attention in the recent years [6–10]. A study conducted on reproducibility of psy-
chological experiments revealed that over half of them failed reproducibility tests [6].
Another study in the field of cancer biology also had the similar findings: the majority
of the effort to reproduce well-known studies failed [8]. From the survey conducted
with 1576 scientists spanning across several scientific disciplines, 52% responded that
there is a reproducibility crisis [7]. As a solution to overcome the reproducibility crisis,
Peng defined a reproducibility standard and emphasized the importance on sharing
of code and data among the scientific community [11] to tackle the reproducibility
crisis. This standard emphasizes on the importance of publishing the code and data
along with the publications or journals, as that gives the researchers a better chance
in reproducing the study than the study that has not published the code or the data.
With the rapid changes happening in software and infrastructure, several external
factors, like the version of software libraries and the hardware architecture play an
important role in the reproducibility [10, 12] of experiments.

3

1.3 Reproducibility in the context of Neuroimag-
ing Pipelines

Neuroimaging pipelines are computationally intensive software that are commonly
used for the analysis and visualization of neuroimaging data. Studies [10, 12] shows
that neuroimaging pipelines can have varying results based on the hardware archi-
tecture, software versions, and operating system on which the processing takes place.
The reproducibility issues associated with the neuroimaging pipelines is discussed in
Section 2.1.

This study focuses on reproducibility of the Human Connectome Project
(HCP) pipelines [13]. Through this study, we are trying to (i) identify the effect of
operating system on neuroimaging pipelines and (ii) quantify the effect of operating
systems on neuroimaging pipelines. Human Connectome Project pipelines are de-
veloped in order to make high quality of neuroimaging data freely accessible and to
create highly valuable software pipelines for characterizing human brain connectivity
and function [14]. We selected HCP pipelines for our study due to their high impact
in the neuroimaging domain.

The pipelines are available in GitHub1 and the data2 is also accessible by
anyone. A framework for processing the data along with the HCP pipelines was
created for the study3. With this framework, we are trying to process the HCP data
using HCP pre-processing pipelines and evaluate the results we get from different
operating systems to understand if the operating systems are having an effect on the
reprocducibility of HCP Pipelines.

Chapter 2 discusses the tools and techniques that are used. Chapter 3
describes the framework and the workflow from processing to the analysis of data.
Chapter 4 contains the details on the pipelines and the data. Chapter 5 discusses the
results and Chapter 6 contains the conclusions we made out of our study.

1https://github.com/Washington-University/Pipelines
2https://db.humanconnectome.org/app/template/Login.vm
3https://github.com/big-data-lab-team/repro-tools

4

https://github.com/Washington-University/Pipelines
https://db.humanconnectome.org/app/template/Login.vm
https://github.com/big-data-lab-team/repro-tools

Chapter 2

Tools and Platforms for
Reproducibility evaluations of
Neuroimaging Pipelines

This chapter discusses the tools and platforms used for the reproducibility evaluations
of neuroimaging pipelines. Section 2.1 discusses the various Neuroimaging pipelines.
Section 2.2 discusses studies conducted on the topic of reproducibility and the effect of
operating systems on neuroimaging pipelines. Section 2.3 talks about containers and
various virtualization techniques. Section 2.4 describes the Web platforms and tools
commonly used to run containers and the last section (Section 2.5) is interposition
techniques used for provenance capture.

2.1 Neuroimaging Pipelines

Neuroimaging pipelines are used for the analysis and visualization of human brain
structure, function, and connectivity. Neuroscientists rely on neuroimaging tech-
niques as an essential tool for understanding the complex spatial and temporal char-
acteristics of the human brain. Some popular neuroimaging techniques are functional

5

magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), magnetoen-
cephalography (MEG), electroencephalography (EEG), and optical imaging. fMRI
helps in mapping the neural activity across the brain [15]. DTI helps in producing
neural tract images with the help of diffused water molecules in brain tissue [16].
MEG technique records the data about magnetic fields generated by the brian [17]
and EEG measures the neuronal electrical activity in the brain with the help of elec-
trodes [18]. Optical imaging makes use of light sources and reflectors to record data
about the brain [19].

Among the neuroimaging techniques listed above, fMRI is popular among
neuroscientists due to the noninvasive nature of experiments, high temporal and spa-
tial resolution, ease of implementation, and high quality signal [20]. fMRI images
can be used to identify the cerebral blood flow and oxygenation changes due to sen-
sory, motor, or cognitive tasks. The technique used by the fMRI technology relies
on the blood oxygenated level-dependant (BOLD) method. The oxygenated and de-
oxygenated hemoglobin have different magnetic characteristics and the change in the
blood oxygenation level after a neuronal activity results in MRI signals [21]. This
change of oxygen levels in blood is the principle behind the BOLD-fMRI technology.
BOLD-fMRI uses task-fMRI and resting-state fMRI for studying functional connec-
tivity in human brain. Task-related fMRI analyses help in identifying the functionally
distinct nodes in the human brain belonging to a specific task [22] and resting-state
fMRI helps in analyzing functional connectivity when a subject is at the state of
rest [23].

In neuroimaging, relevant information must be extracted from noisy images
of the brain [24]. To help extraction of structural, functional or diffusion MRI data,
several pipelines are freely available. Some of the most popular pipelines are The FM-
RIB Software Library1 (FSL), FreeSurfer2, and HCP Pipelines3. We are conducting
our study with the help of these three pipelines.

FSL is a library consisting of a set of tools for analyzing fMRI, MRI and
DTI brain imaging data [25]. This toolbox consists of over 230 individual command

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
2https://surfer.nmr.mgh.harvard.edu/
3https://github.com/Washington-University/Pipelines

6

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://surfer.nmr.mgh.harvard.edu/
https://github.com/Washington-University/Pipelines

line tools and 23 GUIs, among which only a sub-set is commonly used. fMRI pre-
processing can be implemented from FSL tools, for both task-based and resting-state
fMRI. Among other things, FSL can do motion correction, distortion correction,
spatial smoothing, temporal filtering and registration of images.

FreeSurfer helps in analyzing and visualizing the structural and functional
neuroimaging data [26]. It consists of a set of tools that provide automated analysis of
main features of human brain. The main tasks include volumetric segmentation, hip-
pocampal subfield segmentation, inter-subject alignment based on the folding pattern
of cortex, cortical gray matter thickness detection and human cerebral cortex surface
model construction [27].

Human Connectome Project, wants to develop an automated preprocessing
framework that can handle multiple magnetic resonance imaging modalities, such as
structural, functional, and diffusion without compromising the quality of data [13].
The pipeline for processing the images from HCP is open and freely accessible. The
dataset from the HCP are qualitatively different from standard neuroimaging data,
having higher spatial and temporal resolutions. These preprocessing pipelines create
results that are available in standard volume and combined surface and volume spaces
that make it easier for researchers to compare the images across the neuroimaging
spectrum. Because the images from the HCP dataset are cutting edge in terms of
quality, it is anticipated to be widely used [28]. The pipeline consists of separate
processing flow for structural and functional images. The structural pre-processing
consists of PreFreeSurfer, FreeSurfer and PostFreeSurfer. Functional pre-processing
consists of fMRIVolume and fMRISurface [29].

The main goals of structural and functional pipelines [13] are provided below.
The main goals of PreFreeSurfer are: (1) Produce an undistorted native structural
volume space for each subject, (2) Align T1w and T2w images, (3) Perform Bias
Field correction, (4) Registration of the structural volume to MNI space (a statistical
MRI atlas for brain mapping). FreeSurfer goals are: (1) Segmentation of the volume
into predefined structures, (2) Reconstruction of white and pial cortical surfaces, (3)
Surface registration. PostFreeSurfer main goals are: (1) Creation of myelin maps
and brain mask, (2) Preparation of registered surfaces for connectivity analysis by

7

downsampling, (3) Surface Registration, (4) Production of GIFTI4 and NIfTI5 used
for visualizing data by Connectome Workbench (a tool for visualizing HCP data).
fMRIVolume pipeline goals are: (1) Removes spatial distortions, (2) Corrects subject
motion, (3) Reduces bias field, (4) Reduction of 4D images to global mean, (5) Ap-
plication of final brain mask to data. The main goal of fMRISurface is the creation
of CIFTI6 files.

Connectome Workbench is an open-source tool created by the HCP team
for the visualization of neuroimaging data (HCP Data) [30]. This package includes
wb view, a GUI-based visualization platform, and wb command, a command-line
program for performing a variety of algorithmic tasks using volume, surface, and
gray-ordinate data. The data generated by HCP preprocessing and analysis pipelines
are of different modalities and Connectome Workbench can be used for visualizing
them. Workbench extended its support to include CIFTI file in addition to standard
neuroimaging formats like NIfTI and GIFTI [31].

2.2 Reproducibility of Neuroimaging Pipelines across
Operating Systems

Study [12] conducted on FreeSurfer had identified the variabilities resulting from dif-
ferent data processing conditions, like software version, operating system and hard-
ware. The differences found in images were due to updates of the operating system
versions (OSX 10.6 and OSX 10.5) as well as FreeSurfer (v4.3.1 vs. v4.5.0, v4.3.1
vs. v5.0.0, and v4.5.0 vs. v5.0.0) software. They also identified differences in the im-
ages when they were processed on different set of hardware (Mac vs. HP systems).
It concludes that “users are discouraged to update to a new major release of either
FreeSurfer or operating system or to switch to a different type of workstation without
repeating the analysis”.

4https://www.nitrc.org/projects/gifti
5https://nifti.nimh.nih.gov
6https://www.nitrc.org/projects/cifti/

8

https://www.nitrc.org/projects/gifti
https://nifti.nimh.nih.gov
https://www.nitrc.org/projects/cifti/

A similar study [10], on FSL7, Freesurfer8, CIVET9 and different versions of
GNU/Linux found that the differences in the output images are occurring due to the
evolution of math libraries used in the operating systems. As illustrated in Figure 1,
the study states that “the execution of an application depends on its source code, on
the compilation process, on software libraries, on an operating system (OS) kernel,
and on a hardware processor. Libraries may be embedded in the application, i.e.,
statically linked, or loaded from the OS, i.e., dynamically linked. The reproducibility
of results may be influenced by any variation in these elements, in particular: versions
of the source code, compilation options, versions of the dynamic and static libraries,
or architecture of hardware systems”.

Figure 1: Source code, compilation, libraries, kernel and hardware

Extracted from [10]

The above studies point out the reasons that can cause differences in the
output images: updates, compilation process, software library version, kernel version
or the architecture of the hardware. With the use of containers, the variance in these
reproducibility issues can be minimized to a certain extent. We focus on the repro-
ducibility aspect of HCP pipelines across operating systems due to its high impact in
the neuroimaging community (a new brain parcellation), like how stable the pipeline
is, if the results are different across operating systems, quantify these differences with
the use of metrices and identify the likely cause of these differences.

7https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
8https://surfer.nmr.mgh.harvard.edu/
9http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET

9

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://surfer.nmr.mgh.harvard.edu/
http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET

2.3 Containers

A container is a self-contained, ready-to-use software component with all the neces-
sary dependencies and softwares [32]. Containers allow a user to run an application
and its dependencies in resource-isolated processes by encapsulating the entire soft-
ware environment. Containers thus help in tackling one of the serious challenges
associated with making an experiment computationally reproducible, i.e., the rapidly
changing nature of computer software environments. The container technology be-
came popular in the year 2000, FreeBSD (4.0) featured the Jails system that focused
on providing a virtual environment running on the host machine with its own files,
processes, user and superuser accounts. Later came Solaris Containers, providing
not only isolation services but also mechanisms related to snapshot and cloning. A
snapshot is a read-only copy of a file system or volume while a clone is a writable
volume or file system created from a snapshot. In 2005, OpenVZ10 was announced as
a containerization technology supporting Linux systems and Virtuozzo11 containers
was built on top of OpenVZ components. Linux containers (LXC), took advantage
of namespaces and extended its isolation property to users, processes and network-
ing. Namespaces help the Linux operating system in preventing naming collisions of
identifiers (variables, constants, classes etc.). The resources are arranged in such a
way that there no ambiguity in between processes about the resources [33]. In 2006,
Google started a project that implemented a functionality to limit the resource usage
of containers. This project was later merged into the Linux kernel and was named
“cgroups”. Cgroups help the Linux operating system to arrange the processes in a
hierarchical structure to limit and monitor the allocated resources [34]. Docker was
started as an open source project in 2013, which added an additional layer on top of
Linux Containers (LXC), exposing additional features such as mounted storage, net-
work port redirection, and container catalog management. Singularity was started in
2015, with focus on experimental reproducibility and isolation [35]. These container
technologies help us to create an immutable software environment that can be shared
easily. Containers can thus preserve these software environments and can be used at
a later point in time.

10https://openvz.org/Main_Page
11https://openvz.org/Virtuozzo

10

https://openvz.org/Main_Page
https://openvz.org/Virtuozzo

Full virtualization, paravirtualization and containers are different kinds of
virtualization. In full virtualization, guest operating systems can run without mod-
ifications on top of the host operating system and the Virtual Machine Monitor
(VMM) [36]. The Hypervisor, also known as Virtual Machine Monitor enables the
running of multiple virtual machines, by utilizing the resources of the host machine
alone [37]. In paravirtualization, the guest OS (the one being virtualized) is aware
that it is in a virtualized environment and the guest’s kernel is modified to com-
municate directly with the virtualization hypervisor [36]. OS-Layer virtualization or
container-based virtualization differs from full or paravirtualization by modifying the
underlying OS to isolate instances. It utilizes host OS kernel to provide isolation and
multi-tenancy layer.

Figure 2: Comparison of hypervisor-based (a) and container-based (b) instances.

Extracted from [36]

11

Figure 2 illustrates the differences based on hypervisor and container. Con-
tainers have a closer access to operating system services than their counterpart virtu-
alization tools that makes their performance closer to the performance exhibited on
top of native environments [35]. Containers access the host operating system directly,
which reduces the overhead compared to other types of virtualization.

Some notable features of containers [38–41] that facilitate conducting exper-
iments easily are:

• Help in encapsulating the entire software environment.

• Avoid the software version conflicts with the host OS by packaging the right
software versions and dependencies in the container environment.

• Simplify collaboration and sharing ability.

• Improve reproducibility and portability of applications.

• Facilitate the rapid deployment and execution.

However, containers are not the ultimate solution for reproducible compu-
tations. Reproducibility issues may arise from other causes than software libraries,
for example, the amount of available resources or hardware heterogeneity, which are
not covered by containers.

2.3.1 Pipeline Containerization

Figure 3 illustrates the container image architecture. The architecture is based on
LXC, which makes use of cgroups and namespaces. The images are layered on top
of each other and the writable container image is kept at the top. The top layer
is executable and can have a state. The container can be considered as a directory
containing everything needed for the execution of an application [32].

12

Figure 3: Container Architecture

Adapted from [32]

Namespace isolation prevents processes from seeing resources allocated to
each other. Container technologies use separate namespaces dedicated for each func-
tionality, such as, process isolation, network interfaces, interprocess communication
etc. Control groups manage and limit resource access for process groups through
limit enforcement, accounting and isolation. Thus, namespace and cgroups makes it
easier to manage and execute multi-tenant containers on the host system.

2.3.2 Docker

As illustrated in Figure 4, Docker uses a client-server architecture. The Docker soft-
ware runs as a daemon on host machine. This daemon can launch containers, control
their isolation level, monitor them to trigger actions, and spawn shells into running
containers for administration purposes. Daemon can change firewall rules on the host
and create network interfaces. Docker can create and store images encapsulating
an entire software environment. Docker images can be stored locally or it can be

13

stored in Dockerhub12. Dockerhub is an online repository that helps developers to
manage the Docker images. Anyone who signs up on the Dockerhub has access to
public images and can host their own images. There is also feature to automate the
image creation with the help of Git13 [42]. The management of the images on the
host machine, pushing and pulling of images from Dockerhub14, building images from
Dockerfile are all taken care by the daemon. The daemon itself runs as a root user
on the host machine and is remotely controlled through a Unix socket. The Docker
client talks to the Docker daemon and the daemon does pushing, pulling and building
images. The Docker client and daemon communicate using a REST API, over UNIX
sockets or a network interface. The client and daemon need not necessarily be on the
same machine [43].

Figure 4: Docker Architecture

Extracted from [43]

Docker provides access to virtualization facilities provided by the Linux ker-
nel, along with some abstracted virtualized interfaces such as libvirt15, LXC and

12https://hub.docker.com/
13https://git-scm.com/
14https://www.hub.docker.com/
15https://libvirt.org/

14

https://hub.docker.com/
https://git-scm.com/
https://www.hub.docker.com/
https://libvirt.org/

systemd-nspawn16. The control over the host’s resources is provided thorough Con-
trol Groups (cgroups) and thus it limits the amount of resources used by a container,
such as memory, disk space and I/O. Docker features a layered file system called AuFS
(Advanced Multi Layered Unification File System) that allows to overlay one or more
existing file systems. AuFS feature provides capabilities such as image versioning
management and exposing base images to more specialized virtualized systems. One
of the main reasons for the wide adoption of Docker containers is that they can lever-
age the infrastructure consolidation (an organization’s strategy to reduce IT assets
by using more efficient technologies) and exhibit a low resource footprint. Docker
also boosted the adoption of service oriented architectures (e.g. micro services)over
monotlic architecture because that makes the deployment of self-contained modules
easy. They independently interact with third parties using existing network protocols
(e.g. Web services) [35].

Figure 5: Docker Sample File

Extracted from [44]

The development of standardized Dockerfile format as illustrated in Figure 5,
16https://www.freedesktop.org/software/systemd/man/systemdnspawn.html

15

https://www.freedesktop.org/software/systemd/man/systemdnspawn.html

for describing and managing software containers is straightforward. The details about
the Docker commands and the complete documentation about various other Docker
features is available online [45].

Docker helps developers to easily create standard containers for their soft-
ware applications or services. For a system administrator, Docker helps in the au-
tomation of deployment and management of business level services with the help of
containers. Docker can be used as a part of virtualization layer for deploying and
managing the execution environments. Another advantage is that Docker containers
provide reliable and predictable execution environments and thus helps in reducing
the issues related to deployment [46].

2.3.3 Singularity

Singularity is an open source initiative started by the Lawrence Berkeley National
Laboratory (LBNL). The main reason for this technology initiative was to overcome
the security concerns of using Docker containers in a high performance computing
cluster. The main security concern with Docker containers running on high perfor-
mance computing clusters is that the daemon run as a root user, which could lead to
unnecessary risks, like coercing the daemon process into granting the users escalated
privileges. With the help of system and software engineers along with researchers,
a containerization technology suited for high performance computing environments
was created under the Singularity initiative. Singularity containers are agnostic to
the host environment [47]. Figure 6 illustrates the Singularity usage workflow.

16

Figure 6: Singularity usage workflow.

Extracted from [47]

The main goals of Singularity are, (1) Mobility of compute, (2) Reproducibil-
ity, (3) User Freedom, and (4) Support on existing traditional HPC resources. Ac-
cording to [47], “Mobility of compute is defined as the ability to define, create, and
maintain a workflow locally while remaining confident that the workflow can be ex-
ecuted on different hosts, Linux operating systems, and/or cloud service providers”.
Singularity achieves this by utilizing a distributable image format that encapsulates
the entire container and stack into a single image file. The feature that supports
reproducibility is the use of hashing. Any singularity image can make use of the hash
feature to create hash and store it as metadata with built images. Users can verify
these hashes to check if the image is modified or not. User freedom is granted by the
ability to define their own working environment and copy the Singularity image con-
taining the entire details of that environment along with the code to a shared resource
and reproduce the workflow inside that image. Singularity supports the existing and
traditional HPC resources easily as installing a single package onto host operating
system. Singularity is compatible with RHEL and Linux distributions dating back
to Linux 2.2. It natively supports cluster resource managers (e.g., SLURM17—a
free and open-source job scheduler for Linux and Unix-like kernels, Torque18—an
open-source Resource and QUEue Manager is a distributed resource manager pro-
viding control over batch jobs and distributed compute nodes, SGE19— a grid com-
puting computer cluster software system, etc.) and supports various technologies,
such as InfiniBand20(a computer-networking communications standard used in high-
performance computing that features very high throughput and very low latency)
and Lustre21(Open source, parallel file system that supports many requirements of
leadership class HPC simulation environments).

A Singularity image encapsulates the operating system environment and all
application dependencies necessary to run a defined workflow. Singularity container

17https://slurm.schedmd.com/
18http://www.adaptivecomputing.com/products/open-source/torque/
19https://en.wikipedia.org/wiki/Oracle_Grid_Engine
20https://en.wikipedia.org/wiki/InfiniBand
21https://en.wikipedia.org/wiki/Lustre_(file_system)

17

https://slurm.schedmd.com/
http://www.adaptivecomputing.com/products/open-source/torque/
https://en.wikipedia.org/wiki/Oracle_Grid_Engine
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/Lustre_(file_system)

supports different kinds of uniform resource identifiers (http:// and https://) and also
other container formats like Docker (docker:// - for pulling images from docker hub,
shub:// - for pulling images from singularity hub). Singularity images thus can be
created from existing Docker images.

2.4 Web Platforms and Tools to run Containers

This section discusses the various tools and platforms that can be used to run the
containers. The platforms and tools described in this section are CBRAIN, Amazon
Web Services, and Boutiques descriptors.

2.4.1 CBRAIN

The Canadian Brain Imaging Research Platform (CBRAIN), is a Web platform devel-
oped at the Montreal Neurological Institute (MNI) to tackle the Big-Data research and
heavy computational challenges faced by neuroimaging researchers. Even though it is
mainly used for neuroimaging, the framework is generic enough to work on data and
tools irrespective of discipline [48]. Literature on CBRAIN [48] defines the platform
as, “a controlled and secure platform which is user-friendly, lightweight, extensible and
it can support heterogeneous computing platforms and data resources. It also pro-
vides access to an array of processing and visualization tools”. The CBRAIN service
deployed at the Montreal Neurological Institute relies on the infrastructure provided
by Compute Canada [49]. It currently provides 500+ collaborators in 22 countries
with Web access to several systems, including six clusters of Compute Canada22 high-
performance computing infrastructure (totaling more than 100,000 computing cores
and 40 PB of disk storage) and Amazon EC2. CBRAIN transiently stores about
10 million files representing over 50 TB distributed in 42 servers. 51 public data
processing applications are integrated and over 340,000 processing batches have been
submitted since 2010.

CBRAIN consists of three layers mainly. The access layer that uses RESTful
22https://www.computecanada.ca/

18

https://www.computecanada.ca/

WebAPI or a Web-browser, service layer that controls user requests, data movement,
jobs etc. and the infrasturcutre layer that controls the data repositories and comput-
ing resources [48].

CBRAIN supports container technologies, like Docker, Singularity and it
also extends its support to Boutiques. Thus, with the help of container technologies
and Boutiques, applications can be ported to CBRAIN. Any user who has access
to this application can try to reproduce the experiments because the data and the
application are accessible within the framework. However, the neuroimaging pipelines
might have different results due to differences in the computing platforms on which
the images are getting processed [50].

The components of CBRAIN are implemented using Ruby on Rails, a widely
used RESTful, Ruby-based framework. Ruby classes are used for integrating appli-
cations into the platform and those classes can create Web forms, which creates the
user interface for the application, validate the parameters and helps in running the
command lines. These user interfaces are created out of standard templates and thus
provide uniformity across the application interfaces with respect to the user experi-
ence.

Applications into CBRAIN can be integrated in two ways: (1) The descriptor
is stored in a CBRAIN plugin and the Ruby classes are generated when the CBRAIN
server starts. But this mode has the limitation that it does not allow for customization
beyond the Boutiques schema. (2) Second mode generates Ruby classes through an
offline process and it allows developers to customize the application by editing these
Ruby classes. However, manual intervention is needed whenever the descriptors get
updated to update these classes.

2.4.2 Amazon Web Services

Amazon Web Services23 (AWS) offers cloud computing services. The white paper
on AWS [51] states “cloud computing is the on-demand delivery of compute power,

23https://aws.amazon.com/

19

https://aws.amazon.com/

database storage, applications, and other IT resources through a cloud services plat-
form via the Internet with pay-as-you-go pricing”. One of the main advantages of
cloud computing is that it can eliminate the need for up-front capital for infrastruc-
ture as businesses can leverage the scale of computing according to the demand and
thus save significant amount of money. Three types of cloud computing models24 are
available in Amazon Web Services. They are: (i) infrastructure as a service (IaaS),
which provides access to networking features, computing infrastructure and data stor-
age capability, (ii) platform as a service (PaaS), which offers complete management of
the infrastructure including resource procurement, planning, maintenance, patching
etc., and (iii) software as a service (SaaS), which provides completed product that
is run and managed by the service provider. There are a variety of cloud-platform
services provided by AWS. Elastic Compute Cloud (EC2) and Simple Storage Service
(S3) are the most popularly used ones in terms of computing and storage.

EC2 provides total control over the virtual machines (instances) which you
can create and you have to pay according to the resources that you actually use. Each
virtual machine configuration that a user can create from the AWS user interface is
called an “instance type”. The pricing strategies of EC2 are of three kinds: (i) On
Demand Instances - where you pay for compute capacity by the hour. (ii) Reserved
instances - where you have the flexibility to change families, OS types etc. and also a
significant discount (up to 75%). (iii) Spot Instances - where you are allowed to bid
on spare EC2 computing capacity. If the bid amount goes higher than the bid price
by the user, the instance is terminated instantly.

Amazon S3 enables the user to access their data from anywhere on the
internet [51]. The downloading of data from S3 incurs a charge, but transferring data
to S3 is free. S3 is thus suitable for less frequently accessed data.

In neuroimaging, processing of datasets are done using complicated pipelines
that are both time-consuming and computationally intensive. Pipelines might run
for days, depending upon the type and size of the dataset. The image size also
can increase exponentially due to the processing through pipelines. The total cost
of owning the infrastructure for processing these sorts of data increases non-linearly

24https://aws.amazon.com/types-of-cloud-computing/

20

https://aws.amazon.com/types-of-cloud-computing/

with processing requirements. The ability of cloud computing services to create a
cluster on demand thus helps neuroimaging research to tackle larger problems.

2.4.3 Boutiques

To enable sharing of ideas and software, it is a common practice to port applica-
tions to common platforms so that the community as a whole can make use of the
ready-to-use applications. However, porting applications to a high performance com-
puting infrastructure or a Web platform is not so easy. Application porting needs
considerable effort to install the application depending on the infrastructure/oper-
ating system, to make the application compatible with the execution platform, and
for the generation of user interfaces [52]. These installations and deployments are
platform specific and the same tasks must be repeated from one platform to another.
Boutiques, an open source tool, can be used to save time and cost spent on these
repeated actions to deploy applications on various platforms. Boutiques help us de-
scribe the command-line arguments for running the pipelines and it helps us to run
the application with the help of a descriptor and an invocation schema (invocation
file contains the input parameters).

Docker and Singularity help in the creation of reproducible and portable
software experiments by containerizing the software environment that can be shared
easily [52]. The software or applications inside these containers should be invoked
through proper command line to run an application. Boutiques makes use of a flex-
ible template that describe the inputs and outputs an application produces. These
templates, also known as manifests, are created to share them among the research
community and for using it on various execution platforms. These manifests are also
used as the reference to validate the input parameters. The preferred way of describ-
ing these command line template, input and argument is through a JSON document.
The manifest contains the details to a container where the intended application is
installed. The proper command line argument is built at runtime with the help of
manifest and the template gets replaced by the actual values given by the user. For
validating the inputs an invocation schema is used.

21

Here is an example of a typical command-line template:

exampleTool [INPUT-FILE] [OUTPUT_FILE]

which invokes a tool named exampleTool that needs two arguments, an input pa-
rameter and an output parameter. It is mandatory for an input parameter to have
a name, a unique identifier and a type associated with it and the mandatory at-
tributes of an output parameter are a unique identifier, a name for the parameter
and a path-template that indicates the file or directory name [52]. These parame-
ters can have optional attributes like a description, a command-line-flag, a default
value, etc. depending on whether it is an input parameter or output parameter. More
documentation on Boutiques is available in GitHub25.

At runtime, with the help of the JSON descriptor, Boutiques substitutes
all the mandatory parameters and the optional parameters with the original values
selected by the user. The core tools of Boutiques are validator and local executor.
Boutiques validator checks if the JSON manifests conform to the rules of Boutiques
schema and the local executor tests and debug the applications locally.

25https://github.com/boutiques/boutiques/blob/master/examples/Getting%20Started%
20with%20Boutiques.ipynb

22

https://github.com/boutiques/boutiques/blob/master/examples/Getting%20Started%20with%20Boutiques.ipynb
https://github.com/boutiques/boutiques/blob/master/examples/Getting%20Started%20with%20Boutiques.ipynb

Figure 7: Boutiques input descriptor.

Figure 8: Boutiques output descriptor.

2.5 Interposition Techniques

Interposition techniques are used to intercept and store details regarding the pro-
cesses, the syscalls, and the files used of a reference execution. The data that gets
stored can be used as the reference to trace back the origin of files or to identify
the parameters used by a process at a particular step in the execution. Another
advantage of interposition technique is that they do not require any change to the
application code. This makes interposition technique a good candidate for tracing
the provenance of neuroimaging pipelines because it adds a very little overhead to
the processing.

2.5.1 System and Library call interposition

System call interposition is a mechanism that allows a process to monitor the system
calls made by another process [53]. System call interposition techniques can be used to
implement several important features such as (1) system call tracing and monitoring,
(2) the emulation of other system call implementations, (3) wrapper environment
for testing untrusted binaries, (4) transactional software environments that keeps
track of all the operations and can record a commit or abort message based on the
transactions, etc. [54].

23

Library call interposition techniques can be used for monitoring and logging
the calls made to the shared libraries by different applications or processes. Library
call interposing is done by placing an intermediate function in between the application
and the original library function [55]. This technique uses wrapper functions that are
modified to collect information before and after calling the real library function and
thus it does not require to modify either the library or the application.

One of the main application of interposition technique is debugging. In
Linux, utilities like gdb26, strace27, ltrace28, and ptrace29 are used for debugging by
tracing the system processes and library calls. Ptrace system-call interface is explicitly
used for tracing processes [56]. The most widely used debugger in Linux, gdb uses the
help of ptrace to control the program to be debugged, strace utility used for system
call tracing makes use of ptrace’s PTRACE SYSCALL feature and ltrace utility used
for tracing the dynamic library function calls also uses ptrace features [56].

2.5.2 Reprozip Tool

Reprozip30 is a tool to make computational experiments reproducible across different
platforms [57]. Reprozip creates a package of the whole experiment by tracking and
recording all the processes and dependencies. The main two tasks of Reprozip are
packing and unpacking.

To package the experiment (trace and record the processes and arguments),
Reprozip must be ran on a Linux operating system. The packaged experiment can
be unpacked and ran on Linux, Mac or Windows operating system. Figure 9 illus-
trates the packing and unpacking steps in Reprozip. The block on the left shows
the packaging step (on a Linux machine), and the block on the right side shows the
unpacking step. This package can be shared among the researchers so that they can
try to reproduce the experiments.

26https://www.gnu.org/software/gdb/
27https://linux.die.net/man/1/strace
28http://man7.org/linux/man-pages/man1/ltrace.1.html
29http://man7.org/linux/man-pages/man2/ptrace.2.html
30https://reprozip.readthedocs.io/en/1.0.x/reprozip.html

24

https://www.gnu.org/software/gdb/
https://linux.die.net/man/1/strace
http://man7.org/linux/man-pages/man1/ltrace.1.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://reprozip.readthedocs.io/en/1.0.x/reprozip.html

Figure 9: Reprozip packing and unpacking

Extracted from [58]

Reprozip uses ptrace31 (process trace) to trace all the system calls and hence
it needs a Linux operating system for packing the experiments. The tedious task of
producing a package containing all the necessary details of an experiment is made
possible using four modules. System Call Tracing, Provenance Analysis, Package
Customization, and Package Generation [57]. Tracing includes command-line argu-
ments, environment variables, files read, and files written, and stores everything in a
SQLite database. The provenance data analysis is done to identify the software pack-
ages, input files and output filesused by the experiment. All collected information
is then written into a file. Package customization gives the researchers the power to
customize the experiment by editing the files. Thus, researchers can rerun the exper-
iment with intended changes and thus Reprozip helps to make the experiments more
flexible. After tracing all the system calls, provenance analysis, optional editing of the
configuration files, the experiment package can be created using the “reprozip pack”
command. The end result is a “.rpz” file, containing all the information required for
reproducing an experiment.

The unpacking process makes use of the “.rpz” file. The unpacking can be
done in three ways. If the host operating system is similar to the one on which the

31http://man7.org/linux/man-pages/man2/ptrace.2.html

25

http://man7.org/linux/man-pages/man2/ptrace.2.html

experiment was packed, the experiment can be reproduced on the host operating
system itself by installing the dependencies on the host. If the host operating system
is a totally different platform, then Vagrant32 or Docker can be used to unpack and
reproduce the experiment. Vagrant is a tool for the management of virtual machines
in a single workflow [59]. Irrespective of platforms the unpacking process consists of
experiment setup and experiment reproduction steps. Experiment setup is done by
calling the “setup” command. This command copies the experiment to the intended
destination and it is followed by “run” command which reruns the experiment. The
“upload” and “download” command can be used to replace an input file and download
a processed file respectively.

According to [60], “provenance captures where data came from, how it was
derived, manipulated, and combined, and how it has been updated over time”. Prove-
nance information can be used to explain the source or evolution of a data set. Thus,
it can help in generating a deeper understanding of the data set. It can also be used to
verify and confirm that there were no bugs in the processing. Provenance information
can be used to identify the bugs in the processing. It can thus, help in recomputing
the steps that got corrupted and send the corrected data downstream [60]. We make
use of Reprozip to trace the HCP Pipelines so that the trace can be used as a reference
to debug and identify the processes that creates reproducibility issues (differences in
files).

32https://www.vagrantup.com/

26

https://www.vagrantup.com/

Chapter 3

A framework for analyzing the
reproducibility issues of
neuroimaging pipelines

In this thesis I developed Repro-tools, a framework to analyze the reproducibility
issues occurring in the neuroimaging pipelines. Though this framework is developed
with some neuroimaging pipelines in focus, in principle, it can be also be used for
analyzing data belonging to various other disciplines. The term “condition” with
respect to this framework refers to different operating systems on which the data
processing takes place. Likewise, the term “subject” refers to the human subjects
involved in the data provided by the Human Connectome Project.

This chapter discusses the overall workflow of the framework (Section 3.1),
Docker images (Section 3.2), how the pipelines were encapsulated (Section 3.3), how
they were deployed (Section 3.4), analysis of results (Section 3.5), provenance capture
(Section 3.6) and the metrics used for quantifying the differences (Section 3.7).

27

3.1 Repro-tools Workflow

Figure 10: Workflow of Reproducibility Analysis in neuroimaging pipelines

Figure 10 illustrates the overall workflow. The Docker image creation is
automated. For each commit, made to the Dockerfile stored in Github1, a new build
is triggered in Dockerhub2. These images (containging HCP Pipelines) are then used
by CBRAIN for processing the subjects. Boutiques helps in deploying these containers
to CBRAIN platform. CBRAIN can harness the power of computational clusters as
well. The subjects processed under different conditions are then analyzed using the
Repro-tools.

3.2 Docker Images

Repro-tools framework uses Docker containers for reproducibility studies. A Docker
container is the running instance of a Docker image. Dockerfiles are used for specifying
the operating system and the libraries needed for creating a Docker image. With
the help of automated image creation feature in Dockerhub, whenever a commit is
made to the Dockerfile, a new image build gets triggered. Thus, the automated build

1https://github.com/big-data-lab-team/Dockerfiles-HCP-PreFreesurfer
2https://hub.docker.com/r/bigdatalabteam/hcp-prefreesurfer/

28

https://github.com/big-data-lab-team/Dockerfiles-HCP-PreFreesurfer
https://hub.docker.com/r/bigdatalabteam/hcp-prefreesurfer/

makes sure that the changes made in the Dockerfile are always reflected in the Docker
images.

Repro-tools, at the beginning of processing a subject, makes a check to
ensure that the image that is getting used is the latest one. This check makes sure
that the processing is done with the image containing the latest changes that are
made to the HCP Docker file.

3.3 Pipeline Encapsulation

Wrapper scripts3 were created on top of the pipeline to add the following features:

• Compute the checksum of the files in each subject before and after the execution.

• Create execution directory and copy the subject (data) to prevent corrupting
the input data.

• Record all the software (library versions) present in the container and hardware
specifications of the workstation4.

• Ability to trace the execution using Reprozip (optional).

The checksums of files are computed before and after execution so that
corruption check can be done with the use of recorded checksums. After the execution
directory creation, the subject folder is copied into the execution directory and thus, it
prevents the corruption of the input data. Another feature, recording of the software
library versions and hardware specifications to make sure that the only factor that
changes in these experiments is the operating system version. The optional Reprozip
tracing records the details of the pipeline while the processing takes place so that it
can be used as a reference for provenance tracing.

3https://github.com/big-data-lab-team/Dockerfiles-HCP-PreFreesurfer/blob/
master/PreFreeSurfer-DockerFiles/command-line-script.sh

4Recording the software and hardware details and making sure that all the subjects were processed
in the same condition

29

https://github.com/big-data-lab-team/Dockerfiles-HCP-PreFreesurfer/blob/master/PreFreeSurfer-DockerFiles/command-line-script.sh
https://github.com/big-data-lab-team/Dockerfiles-HCP-PreFreesurfer/blob/master/PreFreeSurfer-DockerFiles/command-line-script.sh

3.4 Pipeline Deployment

The Docker container containing the pipelines along with the Boutiques descriptor is
deployed on a server setup as part of our study. With the help of CBRAIN along with
the containers and the descriptors, we process the subjects. Single server was used to
prevent differences occurring in the files due to differences arising from the hardware
architecture. Boutiques descriptors used for deploying the pipelines on CBRAIN are
available at [61].

3.5 File comparisons across conditions

Repro-tools framework can compare the files across different conditions based on the
checksum. We have used MD55 algorithm for calculating the checksum of files. The
output of a MD5 algorithm is a 128-bit “fingerprint” or “message digest” [62]. Though
MD5 is susceptible to hash collision6, Repro-tools focus more on the data integrity
than security and how fast the algorithm can create the checksum. These qualities
make MD5 a good choice for checksum generation in Repro-tools.

Two types of differences can occur in the subjects due to the differences
in the operating systems. One is inter-OS difference that occur due the operating
system library updates and the other type, inter-run differences, occurs due to the
pseudo-random processes used in the pipelines or due to silent crashes in the pipeline.
An example of a pseudo-random process function is a random number generator that
would get initialized using a seed state. Repro-tools can be used to identify both kind
of differences.

The files that are common to all the subjects only are taken into consider-
ation for comparison. The first step is identification of files with differences in their
checksums. This is identified using the checksums that are recorded after the pro-
cessing. Inter-run differences are identified using the run-number added as the suffix
for the conditions. For example, the two batches of subjects processed under the

5https://tools.ietf.org/html/rfc1321
6https://en.wikipedia.org/wiki/Collision_(computer_science)

30

https://tools.ietf.org/html/rfc1321
https://en.wikipedia.org/wiki/Collision_(computer_science)

same condition (CentOS6) are stored as run-1 and run-2. The files belonging to the
subjects stored under the above mentioned conditions are treated as inter-runs.

For the files that are identified to have differences, different kind of metrics
(Section 3.7) are used base on the file type to quantify the differences. Normalized
root mean square error, Dice coefficient and text filter are the various metrics used
for quantifying the differences.

These metric values help us understand how big or small the differences
are. Apart from quantifying the differences using type specific metrics, Repro-tools
can also be used to trace the provenance of these differences. It can identify all the
processes and associated parameters that wrote the files having differences. These
details about various processes is helpful in debugging the pipelines. This information
helps in recreating the processing step by step and also to identify the processes that
creates the differences.

31

Algorithm 1: Algorithm for finding the file differences and metric values
Function find differences and calculate metrics(conditions):

1: for each condition C do
2: for each subject S do
3: LS,C = list of timestamp,file name,file size objects, ordered by timestamp,

where timestamp is the file modification time and file name refers to a file
produced in subject S and condition C

4: end for
5: end for
6: for each pair of conditions:C1,C2 in conditions do
7: for each file name f in LS,C do
8: n differences[f][C1][C2] = 0 {Initialize the differences dictionary}
9: metric[f][C1][C2] = 0 {Initialize the metric value dictionary}

10: for each subject S in condition C1 do
11: metric[f][C1][C2][S] = 0
12: difference = 0 {Variable to hold the value if file is different}
13: if size(f,S,C1) 6= size(f,S,C2) ‖ checksum(f,S,C1) 6= checksum(f,S,C2) then
14: dictionary metrics value=calculate metric value(f,C1,C2,S)
15: difference = 1
16: end if
17: n differences[f][C1][C2] += differ {Cumulative sum of differences}
18: metric[f][C1][C2] += metric[f][C1][C2][S] {Cumulative sum of metric val-

ues}
19: end for
20: end for
21: end for

return n differences, metric;

Algorithm 1, Section 3.5 shows the high-level logic for identifying the files
with differences and quantifying the differences with the help of metrices described
in Section 3.7. First step is to get the name of all the files that are common to all the
subjects and conditions. We iterate through every subject in all the conditions and

32

cr e at es a list of fil es t h at ar e c o m m o n t o all t h e s u bj e cts. Al o n g wit h t h e fil e n a m e, w e

c oll e ct als o t h e cr e ati o n ti m e, m o di fi c ati o n ti m e, et c. T his list is t h e n s ort e d a c c or di n g

t o t h e m o di fi c ati o n ti m e.

A p air of c o n diti o n is t a k e n at a ti m e as t h e f oll o wi n g st e p (Li n e 6). T h e

fil es u n d er t h e s u bj e ct i n t w o di ff er e nt c o n diti o ns ar e t h e n c o m p ar e d t o s e e if t h eir fil e

si z es or c h e c ks u ms di ff er (Li n e 1 3). If a di ff er e n c e is o bs er v e d, t h e n t h e m etri c v al u e

is c o m p ut e d it is st or e d i n a di cti o n ar y wit h t h e fil e n a m e, s u bj e ct a n d c o n diti o n as

t h e k e y v al u e. T h e di ff er e n c e i n t h e fil e is d e n ot e d wit h a v al u e “ 1 ” i nt o a v ari a bl e

(Li n es 1 4- 1 5).

3. 6 P r o v e n a n c e C a p t u r e

R e pr o-t o ols tr a c es t h e pr o v e n a n c e of di ff er e n c es usi n g t h e d at a c a pt ur e d b y R e pr o zi p.

R e pr o zi p r e c or ds t h e d at a i n a n S Q Lit e 7 d at a b as e. R e pr o-t o ols fr a m e w or k q u eri es

t his d at a b as e t o fi n d o ut t h e pr o v e n a n c e i nf or m ati o n a b o ut t h e fil es t h at h as a di ff er-

e n c e i n t h eir c h e c ks u m. Fi g ur e 1 1 c o nt ai ns t h e q u er y us e d f or fi n di n g t h e pr o v e n a n c e

i nf or m ati o n.

S E L E C T DI S TI N C T e x e c ut e d fil es. n a m e, e x e c ut e d fil es. ar g v, e x e-

c ut e d fil es. e n v p, e x e c ut e d fil es.ti m est a m p, e x e c ut e d fil es. w or ki n g dir fr o m

e x e c ut e d fil es I N N E R J OI N o p e n e d fil es w h er e o p e n e d fil es. pr o c ess = e x e-

c ut e d fil es. pr o c ess a n d o p e n e d fil es. n a m e li k e ? a n d o p e n e d fil es. m o d e = 2 a n d

o p e n e d fil es.is dir e ct or y = 0’,(’ % /’ + fil e n a m e,)

Fi g ur e 1 1: Q u er y f or pr o v e n a n c e i nf or m ati o n

Q u er y a b o v e r et ur ns us t h e d et ails a b o ut: (1) t h e pr o c ess es t h at wr ot e t h e fil e, (2)

c o m m a n d li n e ar g u m e nts us e d b y t h os e pr o c ess es, (3) E n vir o n m e nt v ari a bl es us e d,

(4) ti m est a m p, a n d (5) w or ki n g dir e ct or y. B y t h e h el p of q u er y s h o w n i n Fi g ur e

1 1 a n d its o ut p ut fr o m t h e R e pr o zi p d at a b as e, w e c a n i d e ntif y t h e pr o c ess es i n t h e

pi p eli n e t h at cr e at e t h es e di ff er e n c es.

7 h t t p s : / / w w w . s q l i t e . o r g /

3 3

https://www.sqlite.org/

3.7 Metrics

The metrics that are used to quantify the differences are described below.

3.7.1 Normalized Root Mean Square Error (NRMSE)

The Root Mean Square Deviation (RMSD) or root-mean-square error (RMSE), ac-
cording to [63] is, “a frequently used measure of the difference between values pre-
dicted by a model or an estimator and the values actually observed”. The equation
we used for computing the NRMSE value is shown in equation 1. We computed
the minimum and maximum intensities of the image (I1) as well as the mean square
difference between the images with the help of FSL tools. The script we used to
compute NRMSE value is available in GitHub.

NRMSE =
√

mean square difference

maximum intensity −minimum intensity
(1)

3.7.2 Dice Similarity Coefficient

Dice Similarity Coefficient [64] can be used as a statistical validation metric for mea-
suring the reproducibility of magnetic resonance images [65]. To measure the simi-
larity of image files in reproducibility study, we used Dice Similarity Coefficient. The
coefficient ranges from [0.0,1.0]. 1.0 meaning the images are exactly similar and 0
meaning there is zero similarity. The equation used for finding the Dice Coefficient
is given in equation 2. |I1| and |I2|, are the total number of voxels in the images I1
and I2 (including the zero intensity voxels), and |I1 − I2| computes the number of
non-zero voxels (image two is substracted from image one and the common non-zero
voxel count is taken). We computed the voxel differences with the help of FSL tools
for calculating the Dice Similarity Coefficient. The script we used to compute Dice
value is available in GitHub.

Dice coefficient = ((|I1|+ |I2|)− (2|I1− I2|))
(|I1|+ |I2|) (2)

34

https://github.com/lalet/repro-tools/blob/master/metrics/nrmse.sh
https://github.com/big-data-lab-team/repro-tools/blob/master/metrics/dice.sh

3.7.3 Text Filtering

Because the hardware architecture used for processing the neuroimages has an effect
on the output images [12], text filtering is done to make sure that the hardware spec-
ifications remains the same throughout the experiment. The wrapper script around
the HCP preprocessing pipelines records the hardware specification of the machine on
which the subject gets processed. This recorded text file contains the details about
the processor, vendor id, CPU family, model name etc. With the help of these details,
text filtering metric return a 0 if the records are equal and 1 if any of these details
are found to be different. This metric is more suited in case of a study that uses high
performance cluster with heterogeneous machines for processing the data than using
it for a study which uses a single machine. For this study, we used a single sever to
maintain the homogeneity of the processing environment.

35

Chapter 4

Application to HCP pre-processing
Pipelines

We used the framework described in the previous chapter to identify the reproduc-
bility issues in the Human Conectome Project pipelines. This chapter introduces
the HCP pipelines (Section 4.1), the data used in our experiments (Section 4.2),
PreFreeSurfer pipeline (Section 4.3, FreeSurfer pipeline (Section 4.4), PostFreeSurfer
pipeline (Section 4.5), fMRIVolume pipeline (Section 4.6), subjects used for the study
(Section 4.7), HCP Docker images (Section 4.8) and the last section describes the de-
tails of processing of the HCP subjects (Section 4.9).

4.1 HCP Pipelines (v3.19.0)

Figure 12 illustrates the HCP Preprocessing Pipelines overview. HCP pipelines con-
sists of three structural pipelines (PreFreeSurfer, FreeSurfer and PostFreeSurfer), two
functional pipelines (fMRIVolume and fMRISurface) and a Diffusion PreProcessing
pipeline [13]. According to [13], the overall goals of HCP Preprocessing pipelines are:
“(1) to remove spatial artifacts and distortions, (2) to generate cortical surfaces, seg-
mentations, and myelin maps, (3) to make the data easily viewable in the Connectome
Workbench visualization software, (4) to generate precise within-subject cross-modal
registrations, (5) to handle surface and volume cross-subject registrations to standard

36

volume and surface spaces, and (6) to make the data available in the CIFTI format
in a standard “grayordinate” space”. Grayordinate represents the gray matter in the
brain using a surface vertex or a volume voxel [66]. The minimal preprocessed sub-
jects are available in standard format that makes it easier to compare it with subjects
from other studies. This standardization makes it easier for researchers to report
their findings and replicate the studies. HCP preprocessing pipelines are designed to
minimize the amount of information removed from the HCP data.

Figure 12: HCP Preprocessing Pipelines Overview

Extracted from [13]

Out of the six pipelines illustrated in Figure 12, we used three structural
pipelines and one functional pipeline for study. The pipelines are listed below:

• PreFreeSurfer (Section 4.3)

• FreesSurfer (Section 4.4)

• PostFreeSurfer (Section 4.5)

• fMRIVolume (Section 4.6)

The HCP pipeline is open source, and the study is conducted using the
version 3.19.01.

1https://github.com/Washington-University/Pipelines/releases/tag/v3.19.0

37

https://github.com/Washington-University/Pipelines/releases/tag/v3.19.0

4.2 HCP Data

HCP Data consists of brain images collected from twins and their non-twin siblings,
in the age range from 22-35 years [67]. Data from, 1200 subjects is available in the
ConnectomeDB repository2. Each HCP data set is data collected from an individual
person and such a directory containing the HCP data is denoted by the term “subject”.
Each subject contains data belonging to four modalities. They are structural MRI,
resting-state fMRI (rfMRI), task fMRI (tfMRI), and diffusion MRI (dMRI) [67].

Terms “T1-weighted” and “T2-weighted” are used quite often in the realm of
structural images. These images helps in differentiating brain tissues from the cerebro-
spinal fluid. In a T1w-weighted image, the cerebrospinal fluid appears dark (black)
while gray matter and white matter are clearly distinguishable. Vice versa, in a T2w-
weighted image, cerebrospinal fluid appears bright and we can easily differentiate
between cerebrospinal fluid and brain tissues [68]. T1w and T2w images are obtained
by taking scans of brain with different relaxation times (spin-lattice and spin-spin
relaxation3). Figures 13 and 14 illustrates T1-weighted and T2-weighted images.

Figure 13: T1-weighted image

Extracted from [68]

2https://db.humanconnectome.org/
3https://www.ucl.ac.uk/nmr/NMR_lecture_notes/L5_3SH_web_shortened.pdf

38

https://db.humanconnectome.org/
https://www.ucl.ac.uk/nmr/NMR_lecture_notes/L5_3SH_web_shortened.pdf

Figure 14: T2-weighted image

Extracted from [68]

Functional data consists of task based and resting state fMRI data. Emotion,
gambling, language, motor, relational, and social are examples of task based fMRI
data available in the HCP Subjects. Resting state data consists of 2 sets (Rest1
and Rest2) in HCP subjects. Task based fMRI data is used for studying functional
brain networks under task performance. Task based fMRI analyses can identify and
characterize functionally distinct nodes in human brain4. Resting state fMRI consists
of data that is collected when the subject is not performing an explicit task. This
can be used to map the regional interactions happening in the brain at the time of
rest5.

4.3 PreFreeSurfer

Main goals of PreFreeSurfer, according to [13], are “(1) to produce an undistorted
native structural volume space for each subject, (2) align the T1w and T2w images,
(3) perform bias field correction, (4) register the subject’s native structural volume
space to MNI space”. The workflow of PreFreeSurfer is illustrated in Figure 15.

4https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/
resting-state-fmri

5https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/
resting-state-fmri

39

https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/resting-state-fmri
https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/resting-state-fmri
https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/resting-state-fmri
https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/resting-state-fmri

Figure 15: PreFreeSurfer Overview

Extracted from [13]

Figure 15 illustrates the numbered sequence of steps in the PreFreeSurfer
pipeline. The input to the pipeline are T1w and T2w images and the registered
field map. The second Step (2) is gradient nonlinearity correction. This distortion is
caused by magnetic resonance gradient nonlinearity [13]. According to [65], “gradient
nonlinearity is a static characteristic of the gradient coil system known to system
engineers and universally utilized for correction of geometric distortions for routine
MRI scans”. Gradient nonlinearity distortion must be corrected from all images used
for structural preprocessing (T1w, T2w, the field map and phase). Figure 16 repre-
sent gradient nonlinearity distortion correction. The gradient nonlin unwarp package
available in FreeSurfer is used for correcting this distortion. For correcting the gra-
dient nonlinearity distortion, the images are converted into a field map (in units of
radians per second) using the fsl prepare fieldmap script. According to [69], “a field
map is an image of the intensity of the magnetic field across space”. Gradient non-
linearity distortion is then corrected with the help of field map. This is followed by
warping of the field map magnitude image, according to the readout distortion. Sep-
arate registrations of the field map are then done to the T1w and T2w images using
FLIRT6.

6https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT

40

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT

Figure 16: Effect of gradient nonlinearity distortion on the T1w image. Panel A is
the T1w image before gradient distortion correction, whereas Panel B is the T1w
image after gradient distortion correction (the white/gray matter boundary was

delineated manually). The main differences are denoted with white colored arrows.
Files are taken from subject 105216.

The next Step (3) is aligning the T1w and T2w images, using FSL’s FLIRT.
Subsequent step is aligning the average T1w and T2w images to the MNI space tem-
plate. The main purpose behind this step is to have the same orientation as the refer-
ence template for the ease of visualization. Step (4) is ACPC (Anterior commissure,
Posterior commissure) alignment. Step (5) includes a robust initial brain extraction,
using FSL’s linear (FLIRT) and non-linear (FNIRT) registration. Removing the read-
out distortion is the last Step (6) in creating the subject’s undistorted native volume
space. The distortion corrected images are used as the input for the next series of
steps. To completely remove the distortion, the T1w and T2w images are transformed
according to the field map registration. After that, the T1w and T2w images are un-
warped, removing the differential readout distortion present in them. The T1w image
without readout and spatial distortion, represents the native volume space for each
subject. Step (9) consist of cross-modal registration of undistorted T2w image to the
T1w image using FLIRT’s boundary based registration (BBR) cost function. Align-
ing the intensity gradients across tissue boundaries is the focus of boundary based
registration. Once the T1w and T2w images are in the same space, Step (10) intensity
inhomogeneity correction is applied on these images. After the bias field correction,
T1w image is registered to the MNI space in Step (11) after a FLIRT registration
followed by FNIRT nonlinear registration. The output of PreFreeSurfer pipeline are

41

organized into a folder called “T1w” that contains native volume space images and a
second folder (MNINonLinear) that contains MNI space image. [13]

4.4 FreeSurfer

HCP pipelines use FreeSurfer version 5.2 with a lot of enhancements made particu-
larly focusing HCP data. The main goals, according to [13] are: “(1) improve the
robustness of brain extraction, (2) fine tune T2w to T1w registration, (3) accurately
place the white and pial surface with high resolution data, (4) perform FreeSurfer’s
standard folding-based surface registration to their surface atlas (fsaverage)”. The
workflow of FreeSurfer is illustrated in Figure 17.

Figure 17: FreeSurfer Overview

Extracted from [13]

After the PreFreeSurfer processing, FreeSurfer’s recon-all (cortical recon-
struction process)7 pipeline is used widely in FreeSurfer pipeline. One limitation with
the recon-all pipeline is that it cannot process structural images having high resolu-
tion (images greater than 1mm isotropic resolution or structural scans of greater than
256 * 256 * 256 voxels). So HCP data must be downsampled to meet the requirements
of the recon-all pipeline.

The first Step (1) in the FreeSurfer pipeline is inputting the disortion and
bias free native volume space image from PreFreeSurfer. The T1w registration in
the FreeSurfer is performed using the initial brain mask generated in PreFreeSurfer.

7https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all

42

https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all

The important steps that takes place before the recon-all process includes, automated
segmentation of the T1w volume and tessellation and topology correction of the initial
white matter surface. Also, downsampling of images to a lower resolution takes
place at Step (2), such that it matches the requirements of recon-all process. The
output of Step (3) is white-matter surface created with the help of recon-all process.
The resultant white matter surface is generated using a segmentation of the 1 mm
downsampled T1w image. Final white matter surface placement is done with the
help of the original high resolution T1w images at Step (4). The required FreeSurfer
volume and surface files are brought into the .7 mm native volume space and intensity
normalization is done on the high resolution T1w image. Also, the white matter
surface position is adjusted at those points, where it is placed superficially into the
gray matter, based on intensity gradients in the .7 mm T1w image. The latter part of
Step (4) handles T2w to T1w registration. This registration step is fine-tuned using
FreeSurfer’s BBRegister algorithm since it gives more accurate results than FLIRT’s
BBR implementation. As the next step, the white matter surfaces are brought into
the FreeSurfer space. Recon-all processing continues after this step. [13]

The set of steps in the FreeSurfer pipeline is for generating the pial surfaces
(surface representing the boundary between grey matter and cerebrospinal fluid).
The first Step (5) in pial surface generation is normalization of T1w and T2w images
to a standard mean white matter intensity. The initial pial surfaces are generated
in Step (6) from the high-resolution PreFreeSurfer bias-corrected T1w image and
not the FreeSurfer white matter specific intensity normalized image. This kind of
generation of pial surfaces tend to include large amounts of dura (a thick membrane
that is the outermost of the three layers of the meninges that surround the brain and
spinal cord) and blood vessels. The dura and blood vessels present in the image are
removed in Step (7) with the help of T2w images because dura and blood vessels
are very different in intensity from gray matter in the T2w image. After the pial
surface generation, recon-all continues. Final Step (8) include anatomical parcellation
(surface and volume) and morphometric measurements of structural volumes, surface
areas, and thickness. [13]

43

4.5 PostFreeSurfer

Main goals of PostFreeSurfer, according to [13] are “(1) produces all the NIFTI volume
and GIFTI surface files necessary for viewing the data in Connectome Workbench, (2)
application of surface registration; Surface registration algorithms help in mapping
the 3D points accurately in rotational and translational motion between the two
views [70], (3) downsampling registered surfaces for connectivity analyses; (4) creating
the final brain mask, and creating myelin maps”. Figure 18 illustrates the workflow
of PostFreeSurfer.

Figure 18: PostFreeSurfer Overview

Extracted from [13]

As mentioned in the previous paragraph, the first Step (1) in PostFreeSurfer
pipeline is to convert the recon-all outputs to NIFTI and GIFTI formats. The white,
pial, spherical and registered spherical surfaces are all converted GIFTI surface files.
Thickness, curvature and sulc files are converted into GIFTI shape files. The cortical
parcellations from FreeSurfer are converted to GIFTI label files and three full subcor-
tical volume parcellations are converted into NIFTI label files. One among the three
volume parcellations (wmparc) is used to create a final gray and white matter brain

44

mask Step (2), which is used as the reference in the subsequent steps. Step (3) cre-
ates cortical ribbon volume and that step is followed by Step (4) cortical myelin map
creation. Next Step (5) is the generation of Conte69 Group Average by normalizing
the Myelin Maps. Steps (6-10) leads to the creation of 32k Registered Surface Mesh
Native Volume Space. They starts off with Step (6) where the pipeline combines the
structural transforms of T1w and T2w images from the PreFreeSurfer and FreeSurfer
pipelines. This transformed file is then applied to the averaged T1w and T2w images,
and they are brought to the native volume and MNI spaces. Next step is creating
a mid-thickness surface. It is created by taking the average of the white and pial
surfaces. Mid-thickness file is used for creating inflated and very inflated files. The
volume, label and metric files are then organized into a file called as specification file
(spec file) that is used for easy visualization of anatomical data using Connectome
Workbench. The surface files are stored as GIFTI files while the specs files are CIFTI
files. Step (7) uses the Conte698 (Human Surface-based Atlas and Reference Data)
population-average surfaces for registering individual subject’s native-mesh surfaces.
This step consists of combined surface registration applied to all surfaces and surface
data files. The end goal of this Step (8) is to bring the images to 164k fs LR standard
surface mesh space. Registration Step (9) is followed by the downsampling of the
164k Registered surface mesh to 32k fs LR MNI volume space. These lower resolu-
tion images are suited for functional and connectivity analyses. The last Step (10)
in this pipeline is transformation of the 32k fs LR mesh from MNI space to native
volume space. [13]

4.6 fMRIVolume

Main goals of, fMRIVolume, according to [13] are: “(1) remove spatial distortions,
(2) realignment of volumes to adjust subject motion, (3) registration of fMRI data
to structural volume, (4) normalizaton of the 4D image, (5) mask the data with final
brain mask”. Figure 19 illustrates the workflow of fMRIVolume pipeline.

It is a prerequisite of fMRIVolume pipeline that the input files should have
8http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas

45

http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas

completed the structural processing (PreFreeSurfer, FreeSurfer and PostFreeSurfer).
Similiar to the PreFreeSurfer pipeline, fMRIVolume pipeline starts with the gradient-
nonlinearity-induced distortion correction Step (2), though it is optional. It is followed
by Step (3) subject motion correction using FLIRT. The distortion in the phase
encoding direction is corrected in the next Step (4). In Step (5), with the use of
FLIRT, BBR cost function and FreeSurfer’s BBRegister, an accurate registration
between fMRI data and the structural data is created. The final Step (8) in the
fMRIVolume pipeline consists of concatenating all the transforms for each registration
and distortion correction into a single nonlinear transformation [13].

Figure 19: fMRI Volume Overview

Extracted from [13]

4.7 Subjects of the study

4.7.1 HCP Data Selection

The data was obtained from Human Connectome Project9. We used the subjects
101006, 101017, 101410, 104820 and 105216. All these subjects were scanned using
the HCP3T type of scanner. Table 1 can provide more insight into the HCP subjects
that were used for our study.

9https://db.humanconnectome.org

46

https://db.humanconnectome.org

Subject Release Acquisition Gender Age
101006 S500 Q06 F 31-35
101107 S500 Q06 M 22-25
101410 S500 Q06 M 26-30
104820 S500 Q06 F 36+
105216 Q3 Q03 M 26-30

Table 1: HCP Subject Details

Data retrieved from [71]

Subject ID Size
101006 12.4 GB
101107 12.5 GB
101410 7.5 GB
104820 7.2 GB
105216 14.4 GB

Table 2: Unprocessed HCP Subject Size

4.8 HCP Docker Images

We conducted our study across Docker containers created out of CentOS 6.8 and Cen-
tOS 7.2.1511. CentOS10 (Community Enterprise Operating System) according to [72],
is a widely used operating system among the Neuroscience community. CentOS oper-
ating system is widely known for the community support, network functions, safety,
portability and openness [73]. All these qualities make CentOS a popular choice
among the research community and high performance computing clusters. These
containers were installed with all the necessary softwares and libraries required to
run the HCP pipelines. HCP pipelines prerequisites are listed below:

• A 64-bit Linux Operating System
10https://en.wikipedia.org/wiki/CentOS

47

https://en.wikipedia.org/wiki/CentOS

• FSL Version - 5.0.6

• FreeSurfer Version - 5.3.0-HCP

• Connectome Workbench Version - 1.0

• HCP version of gradunwarp version 1.0.2 (this is optional and must be installed
only if gradient nonlinearity corrections must be done)

FSL 5.0.611, FreeSurfer 5.3.0-HCP12 (CentOS 4 build) and Connectome Workbench
1.013 were installed in the containers with the help of DockerFiles. Docker container
creation was automated with the help of GitHub and DockerHub. All the containers
that are used for this study are available in the Dockerhub14.

4.9 Processing of Data

The data was processed in the order PreFreeSurfer, FreeSurfer, PostFreeSurfer and
fMRIVolume. Two runs were made on CentOS6 and CentOS7 using the five subjects
listed in Table 2.

4.9.1 PreFreeSurfer

Table 3 contains the details about processing time and file-size on CentOS6 and
CentOS7 respectively. Average time per subject taken for PreFreeSurfer processing
is 73.7 minutes (10 runs) and average output file size of PreFreeSurfer processing is
13.08 GB (5 subjects) on CentOS6. Average time per subject taken for PreFreeSurfer
processing is 80.2 minutes (10 runs) and average output file size of PreFreeSurfer
processing is 13.10 GB (5 subjects) on CentOS7.

11https://fsl.fmrib.ox.ac.uk/fsldownloads/oldversions/
12http://ftp.nmr.mgh.harvard.edu/pub/dist/freesurfer/5.3.0-HCP/
13https://www.humanconnectome.org/software/get-connectome-workbench
14https://hub.docker.com/r/bigdatalabteam/hcp-prefreesurfer/tags/

48

https://fsl.fmrib.ox.ac.uk/fsldownloads/oldversions/
http://ftp.nmr.mgh.harvard.edu/pub/dist/freesurfer/5.3.0-HCP/
https://www.humanconnectome.org/software/get-connectome-workbench
https://hub.docker.com/r/bigdatalabteam/hcp-prefreesurfer/tags/

Condition Average Time Per Subject Average File Size
CentOS 6 73.7 min. 13.08 GB
CentOS 7 80.2 min. 13.10 GB

Table 3: PreFreeSurfer processing details

4.9.2 FreeSurfer

Table 4 contains the details about processing time and file-size on CentOS6 and
CentOS7 respectively. Average time per subject taken for FreeSurfer processing is 7.4
hours (10 runs) and average output file size of FreeSurfer processing is 15.2 GB (5
subjects) on CentOS6. Average time per subject taken for FreeSurfer processing is
7.58 hours (10 runs) and average output file size of FreeSurfer processing is 15.2 GB
(5 subjects) on CentOS7.

Condition Average Time Per Subject Average File Size
CentOS 6 7.4 hours 15.2 GB
CentOS 7 7.58 hours 15.2 GB

Table 4: FreeSurfer processing details

4.9.3 PostFreeSurfer

Table 5 contains the details about processing time and file-size on CentOS6 and
CentOS7 respectively. Average time per subject taken for PostFreeSurfer processing
is 22.5 minutes (10 runs) and average output file size of PostFreeSurfer processing is
16.2 GB (5 subjects) on CentOS6. Average time per subject taken for PostFreeSurfer
processing is 28.3 minutes (10 runs) and average output file size of PostFreeSurfer
processing is 16.2 GB (5 subjects) on CentOS7.

Condition Average Time Per Subject Average File Size
CentOS 6 22.5 min. 16.02 GB
CentOS 7 28.3 min. 16.02 GB

49

Table 5: PostFreeSurfer processing details

4.9.4 fMRIVolume

Table 6 contains the details about processing time and file-size on CentOS6 and Cen-
tOS7 respectively. Average time per subject taken for fMRIVolume processing is 24.68
hours (10 runs) and average output file size of fMRIVolume preprocessing is 221.2 GB
(10 subjects) on CentOS6. Average time per subject taken for fMRIVolume process-
ing is 24.76 hours (10 runs) and average output file size of fMRIVolume preprocessing
is 220.8 GB (10 subjects) on CentOS7.

Condition Average Time Per Subject Average File Size
CentOS 6 24.68 hours 221.2 GB
CentOS 7 24.76 hours 220.8 GB

Table 6: fMRIVolume processing details

50

Chapter 5

Results

This chapter discusses the results we obtained by processing data using the HCP
pipelines. The differences that we observed and the quantified metric values are dis-
cussed in detail for each pipeline. Section 5.1 discusses PrefreeSurfer results, followed
by Section 5.2 on FreeSurfer results, Section 5.3 on PostFreeSurfer results, Section 5.4
discusses fMRIVolume pipeline results and Section 5.5 compares the effect of operat-
ing systems on HCP pipelines against the anatomical variations in the subjects.

5.1 PreFreeSurfer

The subjects that were processed on CentOS6 and CentOS7 using the PreFreeSurfer
pipeline. Among the 92 NIfTI imaging files common to all 5 subjects, 76 (.nii.gz)
files differed between CentOS6 and CentOS7. Figure 20 shows the Dice coefficient
and NRMSE values of the NIfTI files that were found to have differences in between
operating systems.

5.1.1 Global Comparison

The general findings about the differences in the output images due to the Pre-
FreeSurfer processing is discussed in this section.

51

Stats. NRMSE Dice
Mean 0.0088 0.3212
Median 0.0043 0.0557
Standard Deviation 0.0160 0.3806

Table 7: NRMSE & DICE values of PreFreeSurfer processing on CentOS6 and
CentOS7

Table 7 contains the average mean, median and standard deviation that we
calculated for the metrics, NRMSE value and Dice coefficient. Dice coefficient shows
that out of the results we obtained from PreFreeSurfer processing on two conditions,
there was only 32% similarity while taking the average of Dice coefficient of every file
that we found to have a checksum difference.

Figure 20: PreFreeSurfer metric values
(i) NRMSE (left) (ii)Dice coefficient (right)

Figure 20 contains the matrices showing the plotted values of NRMSE (left)
and Dice Coefficient (right). Each line in the matrix corresponds to a file common
to all the subjects. Each column represents a subject and each row represents the
same file in 5 different subjects. The files are sorted according to their modification
time. The NRMSE value appears brighter if the images are dissimilar and it appears
darker if the images are similar. Conversely, the Dice coefficient value appears darker
if the images are dissimilar and appears brighter if the images are similar. We can
also observe that the magnitude of differences varies across the files as well as the
subjects.

52

5.1.2 Comparison of specific files

Figure 21 illustrates the differences in the “T1wmulT2w brain norm s5.nii.gz” file.
This file gets created as part of bias field correction (Step (10), Figure 15). Figure 21
is a checkerboard image with a patch size 5. A checker board image is created by
alternating between the patches belonging to two different images. No two adjacent
squares would belong to the same image. The file was taken from BiasFieldCorrec-
tion sqrtT1wXT1w folder for subject 101410. The file has an NRMSE value of 0.009
and the Dice coefficient value is 0.328. Small squares in the figure indicates the dif-
ferences. The link given below at the caption of the image contains the CentOS6
and CentOS7 files alternating in between each other. We can identify the differences
around the border visually.

Figure 21: Differences in T1wmulT2w brain normalization file (checkerboard
image). Link to the animated illustration of differences.

Figure 22 shows the zoomed version part of the image marked by the red rectangle.
(Subject: 101410; Filename: T1wmulT2w brain norm s5.nii.gz; Dice coeff.: 0.328 ;

NRMSE: 0.009)

53

https://drive.google.com/file/d/1eHyrs180QbF4a-kSSz5mFkdirTgdXhc_/view?usp=sharing

Figure 22: Zoomed in version of part of checkerboard image marked by the red
rectangle given in Figure 21

Figure 23 illustrates the differences in the “T2w acpc nii.gz”. This file gets
created as a part of ACPC alignment (Step (4), Figure 15). This file was taken from
T2w directory in subject “105216”. File has an NRMSE value of 0.0352 and the Dice
coefficient value is 5.53*10-2. The square pixels in the image shows the differences in
between two conditions (CentOS6 and CentOS7). Figure 24 illustrates the zoomed
version of part of checkerboard image marked by a red square in Figure 23. The link
given below at the caption of the Figure23 contains the CentOS6 and CentOS7 files
alternating in between each other.

54

Figure 23: Differences in T2w ACPC file (checkerboard image). Link to the
animated illustration of differences.

Figure 24 shows the zoomed version part of the image marked by the red rectangle.
(Subject: 105216; Filename: T2w acpc nii.gz; Dice coeff.: 5.53*10-02 ; NRMSE:

0.0352)

Figure 24: Zoomed in version of part of checkerboard image marked by the red
rectangle given in Figure 23

The visualization of the differences in T2w ACPC file given in the link
above shows that the images from two conditions are totally misaligned (appear-
ance of checkerboard square indicates misalignment). This difference is the created
due to linear registration done using FLIRT (Step (4), Figure 15) in PreFreeSurfer
preprocessing pipeline.

Figure 25 illustrates the differences in the “bias raw.nii.gz”. This file gets
created as part of bias field correction (Step (10), Figure 15). The file was taken
from subject “105216”. The file has an NRMSE value of 0.036 and Dice coefficient
value is 0.2*10-7. The small squares in the image shows the differences in between
two conditions (CentOS6 and CentOS7). Figure 26 illustrates the zoomed version of
portion of checkerboard image marked by the red rectangle containing differences in
Figure 25. The link given below at the caption of the image contains the CentOS6
and CentOS7 files alternating in between each other.

55

https://drive.google.com/file/d/1NrNl7POyCS_SZm3an00wOLUnkmLJ_ngo/view?usp=sharing
https://drive.google.com/file/d/1NrNl7POyCS_SZm3an00wOLUnkmLJ_ngo/view?usp=sharing

Figure 25: Differences in bias raw file (checkerboard image). Link to the animated
illustration of differences.

Figure 26 shows the zoomed version of part of the image marked by the red
rectangle.

(Subject: 105216; Filename: bias raw.nii.gz; Dice coeff.: 6.04*10-6 ; NRMSE: 0.0065)

Figure 26: Zoomed in version of part of checkerboard image marked by the red
rectangle given in Figure 25

5.2 FreeSurfer

FreeSurfer results presented in this section do not take the files that were found to
be different in PreFreeSurfer pipeline. The number of files that have differences and

56

https://drive.google.com/file/d/1rbGR0zGPQsOPzEVkiR6NynudbfjDFLvn/view?usp=sharing
https://drive.google.com/file/d/1rbGR0zGPQsOPzEVkiR6NynudbfjDFLvn/view?usp=sharing

which are common to all the subjects, was found to be 61 (23 .nii.gz files and 38 .mgz
files).

The PreFreeSurfer pipeline results obtained from CentOS6 was used as the
input to the FreeSurfer pipeline on CentOS6 and the PreFreeSurfer pipeline results
obtained from CentOS7 was used as the input for FreeSurfer pipeline on CentOS7.
The preprocessing on other pipelines is also done in the same way.

5.2.1 Global Comparison

The general findings about the differences in the output images due to the FreeSurfer
processing is discussed in this section.

Stats. NRMSE Dice
Mean 0.0177 0.6953
Median 0.0098 0.9262
Standard Deviation 0.0181 0.4051

Table 8: NRMSE & DICE values of FreeSurfer processing on CentOS6 and CentOS7

Table 8 contains the mean, median and standard deviation of files having
differences from FreeSurfer preprocessing on CentOS6 and CentOS7. The Dice Coef-
ficient shows that out of the results that we obtained from FreeSurfer processing on
two conditions, there was 69% similarity while taking the average of Dice coefficient
of every file that we found to have a checksum difference.

57

Figure 27: FreeSurfer metric values

(i) NRMSE (left) (ii)Dice Coefficient (right)

Figure 27 contains the matrices showing the plotted values of NRMSE (left)
and Dice Coefficient (right). Each line in the matrix corresponds to a file common
to all the subjects. Each column represents a subject and each row represents the
same file in 5 different subjects. The NRMSE value appears brighter if the images
are dissimilar and it appears darker if the images are similar. Conversely, the Dice
coefficient value appears darker if the images are dissimilar and appears brighter if
the images are similar. We can again observe that the magnitude of differences varies
across the files as well as the subjects.

5.2.2 Comparison of specific files

Figure 28 illustrates the differences in the “ribbon.nii.gz” file. FreeSurfer pipeline
produces this file in Step (7) (Figure 17) for high resolution pial surface placement
with grey matter intensity normalization and T2w exclusion of Dura and Vessels. The
file was taken from subject “105216”. The file illustrated here has an NRMSE value
of 0.081 and the Dice coefficient value is 0.993. The red spots in the images shows the
differences in the images in two conditions (CentOS6 and CentOS7). These localized
differences are spread across the entire image. The link given below the caption of the
image contains the visualized CentOS6 and CentOS7 files with differences, alternating
in between each other.

58

Figure 28: Differences in the ribbon file (Red spots in the figure shows the
differences). Link to the animated illustration of differences

(Subject: 105216; Filename: ribbon.nii.gz; Dice coeff.: 0.993 ; NRMSE: 0.081)

Figure 29 illustrates the differences in the “aseg.hires.mgz” file. This file
gets created under mri directory inside T1w file directory. The file was taken from
subject “105216”. The file illustrated here has an NRMSE value of 0.010, and the
Dice coefficient value is 0.987. The bright spots in the image shows the difference
in the images in between two conditions (CentOS6 and CentOS7). These localized
images are spread across the image. The image is the result of the segmentation
done for identifying and segmenting the smaller structures inside the brain. Each
color represents a different structure and we can find important differences in all
structures. The link given below at the caption of the image contains the visualized
CentOS6 and CentOS7 files with differences, alternating in between each other.

Figure 29: Differences in aseg hires file (Bright spots in the figure shows the
differences). Link to the animated illustration of differences

(Subject: 105216; Filename: aseg.hires.mgz; Dice coeff.: 0.987 ; NRMSE: 0.010)

Figure 30 illustrates the differences in the “wm.hires.nii.gz” file. This file
also gets created after FreeSurfer processing inside the MRI folder under the T1w
directory. The file was taken from subject “105216”. The file illustrated here has an
NRMSE value of 0.074 and a Dice coefficient value is 0.994. The red spots in the
image shows the differences in between two conditions (CentOS6 and CentOS7). We
can observe that the localized differences are spread throughout the image. The link

59

https://drive.google.com/file/d/14nQNb9qNxqgpUrl4D1P6BYplXsGpNUx_/view?usp=sharing
https://drive.google.com/file/d/1WUwWp5muXvotbMQqTqR5LcMyncH1ET3P/view?usp=sharing

given below the caption of the image contains the visualized CentOS6 and CentOS7
files with differences, alternating in between each other.

Figure 30: Differences in WM hire file (Red spots in the image shows the
differences). Link to the animated illustration of differences

(Subject: 105216; Filename: wm.hires.nii.gz; Dice coeff.: 0.994 ; NRMSE: 0.074)

5.3 PostFreeSurfer

25 (.nii.gz) were found to have inter-OS differences after PostFreeSurfer processing.
These files are created as part of PostFreeSurfer processing alone, and they are com-
mon to all the five subjects.

5.3.1 Global Comparison

The general findings about the differences in the output images due to the Post-
FreeSurfer processing is discussed in this section.

Stats. NRMSE Dice
Mean 0.0347 0.6768
Median 0.0386 0.9829
Standard Deviation 0.0254 0.4584

60

https://drive.google.com/file/d/1i6WpH6Le5xry4j-RtRZxt0_NP3Ulm5AT/view?usp=sharing

Table 9: NRMSE & DICE values of PostFreeSurfer processing on CentOS6 and
CentOS7

Table 9 contains the mean, median and standard deviation values of files hav-
ing differences from PostFreeSurfer pipeline on CentOS6 and CentOS7 operating sys-
tems. Dice Coefficient shows that out of the results we obtained from PostFreeSurfer
processing on two conditions, there was 67% similarity while taking the average of
Dice coefficient of every file that we found to have a checksum difference.

Figure 31: PostFreeSurfer metric values

(i) NRMSE (left) (ii)Dice Coefficient (right)

Figure 31 contains the matrices showing the plotted values of NRMSE (left)
and Dice Coefficient (right). Each line in the matrix corresponds to a file common
to all the subjects. Each column represents a subject and each row represents the
same file in 5 different subjects. The files are sorted according to the modification
time. The NRMSE value appears brighter if the images are dissimilar and it appears
darker if the images are similar. Conversely, the Dice coefficient value appears darker
if the images are dissimilar and appears brighter if the images are similar. We can
also observe that the magnitude of differences varies across the files as well as the
subjects.

61

5.3.2 Comparison of specific files

Figure 32 illustrates the differences in the “aparc.a2009s+aseg.nii.gz” file. The file
was taken from MNINonLinear directory in subject “101410”. The file illustrated
here has an NRMSE value of 0.101 and the Dice coefficient value is 0.97. The bright
spots in the image shows the differences in between two conditions (CentOS6 and
CentOS7). We can observe the localized differences spread across the images. The
link given below at the caption of the image contains the visualized CentOS6 and
CentOS7 files with differences, alternating in between each other.

Figure 32: Differences in aparc.a2009s+aseg file (Bright spots in the image indicates
the differences). Link to the animated illustration of differences

(Subject: 101410; Filename: aparc.a2009s+aseg.nii.gz; Dice coeff.: 0.97 ; NRMSE:
0.101)

Figure 33 illustrates the differences in the “ribbon.nii.gz” file. PostFreeSurfer
creates this file as a part of generation of cortical ribbon volume (step (3) - Figure 18).
The file was taken from T1w directory in subject “105216”. The file illustrated here
has an NRMSE value of 0.038 and the Dice coefficient value is 0.995. The bright spots
in the image shows the difference in the image in between two conditions (CentOS6
and CentOS7). We can observe the localized differences spread across the images.
The link given below at the caption of the image contains the visualized CentOS6
and CentOS7 files with differences, alternating in between each other.

62

https://drive.google.com/file/d/1eeofWaPyk-A2pQd6LlieQwbMYVOrfeI3/view?usp=sharing

Figure 33: Differences in the T1w Ribbon file (Bright spots in the image shows the
differences). Link to the animated illustration of differences

(Subject: 105216; Filename: ribbon.nii.gz; Dice coeff.: 0.995 ; NRMSE: 0.038)

Figure 34 illustrates the differences in the “aparc+aseg.nii.gz” file. The file
was taken from MNINonLinear directory from subject “101006”. The file illustrated
here has an NRMSE value of 0.073 and the Dice coefficient value is 0.98. The bright
spots in the image shows the difference in the image in between two conditions (Cen-
tOS 6 and CentOS7). We can find localized differences spread across the images.
The link given below at the caption of the image contains the visualized CentOS6
and CentOS7 files with differences, alternating in between each other.

Figure 34: Differences in the segmentation file (Bright spots in the image indicates
the differences). Link to the animated illustration of differences

(Subject: 101006; Filename: aparc+aseg.nii.gz; Dice coeff.: 0.98 ; NRMSE: 0.073)

63

https://drive.google.com/file/d/1KGEvLP4bltu5k6m9tttoTuhehaH3ldGk/view?usp=sharing
https://drive.google.com/file/d/1_ZyAtveS1oVle8tAXeKsp1_4KdS2MVoB/view?usp=sharing

5.4 fMRIVolume

1152 files were found to have inter-OS differences after fMRIVolume processing which
were common to all subjects.

5.4.1 Global Comparison

The general findings about the differences in the output images due to the fMRIVol-
ume processing is discussed in this section.

Stats. NRMSE Dice
Mean 0.0160 0.5605
Median 0.0090 0.7511
Standard Deviation 0.0196 0.3769

Table 10: NRMSE & DICE values of fMRIVolume processing on CentOS6 and
CentOS7

Table 10 contains the mean, median and standard deviation of the files
having differences produced by the fMRIVolume pipeline on CentOS6 and CentOS7
operating systems. Dice Coefficient shows that out of the results we obtained from
fMRIVolume processing on two conditions, there was 56% similarity while taking
the average of Dice coefficient of every file that we found to have a checksum differ-
ence.

64

Figure 35: fMRIVolume metric values

(i) NRMSE (left) (ii)Dice Coefficient (right)

Figure 35 contains the matrices showing the plotted values of NRMSE (left)
and Dice Coefficient (right) with respect to the files having differences from the fM-
RIVolume pipeline preprocessing. Each line in the matrix corresponds to a file com-
mon to all the subjects. Each column represents a subject and each row represents the
same file in 5 different subjects. The files are sorted according to their modification
time. The NRMSE value appears brighter if the images are dissimilar and it appears
darker if the images are similar. Conversely, the Dice coefficient value appears darker
if the images are dissimilar and appears brighter if the images are similar. We can
also observe that the magnitude of differences varies across the files as well as the
subjects.

5.4.2 Comparison of specific files

Figure 36 illustrates the differences in the “AllGreyMatter.nii.gz” file. This file gets
created at step (5) (Figure 19), with the use of FLIRT, BBR cost function and
FreeSurfer’s BBRegister. The file was taken from the ComputeSpinEchoBiasField
directory in subject “101006”. The file illustrated here has an NRMSE value of 0.074
and the Dice coefficient value is 0.99. The red spots in the image shows the differences
between the conditions (CentOS 6 and CentOS7). The localized differences are spread
across the image. The link given below at the caption of the image contains the
visualized CentOS6 and CentOS7 files with differences, alternating in between each
other.

65

Figure 36: Differences in all grey matter file (Red spots in the image indicates the
differences). Link to the animated illustration of differences

(Subject: 101006; Filename: AllGreyMatter.nii.gz; Dice coeff.; 0.99; NRMSE; .074)

Figure 37 illustrates the differences in the
“Scout gdc undistorted2T1w.nii.gz” file. This file gets created at step (5)
(Figure 19), with the use of FLIRT, BBR cost function and FreeSurfer’s
BBRegister. The files are taken from the directory DistortionCorrectionAndE-
PIToT1wReg FLIRTBBRAndFreeSurferBBRbased in subject “101410”. The files
illustrated here have an NRMSE value of 0.010 and the Dice coefficient value is
0.778. The small squares in the image indicates the differences. Figure 38 shows the
zoomed in version of portion of the checkerboard image marked by red square in
Figure 37. The link given below at the caption of the image contains the visualized
CentOS6 and CentOS7 files with differences, alternating in between each other.

66

https://drive.google.com/file/d/1dzpyMalJ6_ox8jLedKvhKrP2ew7C7N-r/view?usp=sharing

Figure 37: Differences in the Scout gdc undistorted2T1w file (checkerboard image).
Link to the animated illustration of differences.

Figure 38 shows the zoomed version part of the image marked by the red square.
(Subject: 101410; Filename: Scout gdc undistorted2T1w.nii.gz ; Dice coeff.; 0.778;

NRMSE; 0.010)

Figure 38: Zoomed in version of part of checkerboard image marked with red square
in Figure 37

5.5 Effect of changing Subject vs. changing Con-
dition

To quantify the effect of the operating system on the output image and to compare the
difference with the anatomical differences between subjects, we made a comparison
with two subjects processed in the same condition (101107 and 101006) vs. same sub-
jects processed in two different conditions (CentOS6 and CentOS7). Subjects 101107
and 101006 processed using PreFreeSurfer on CentOS7 was compared against 101006
and 101007 processed on CentOS6 and CentOS7 respectively. Table 11 contains the
mean, median, and standard deviation across the said conditions.

67

https://drive.google.com/file/d/1iRP6jVMKbGBLjLdEi3l5j4Q8Pngp5Nln/view?usp=sharing

Item

NRMSE
(101006
vs.
101107)

Dice Coeff.
(101006
vs.
101107)

NRMSE
101006
CentOS
(6 vs. 7)

Dice Coeff.
101006
CentOS
(6 vs. 7)

NRMSE
101107
CentOS
(6 vs. 7)

Dice Coeff.
101107
CentOS
(6 vs. 7)

Average 0.092 0.265 0.006 0.300 0.008 0.300
Median 0.078 0.010 0.004 0.022 0.005 0.021
Std.
Dev

0.073 0.377 0.009 0.381 0.010 0.385

Table 11: Anatomical differences vs. Effect of operating system

Comparing the metric values obtained from anatomical differences and effect
of operating system differences, differences due to the effect of operating systems,
quantified by NRMSE value on subject 101006 is 1/15th (0.092/.006) of the differences
that are caused by the anatomical variations of the subjects (101006 vs. 101107).
Similarly, the effect of the operating system on subject 101107 is 1/12th (0.092/.008)
of the differences that are caused by the anatomical variations of the subjects (101006
vs. 101107).

Analyzing the Dice coefficient value of similarity, in the same manner, shows
that the differences due to operating systems are close to the differences due to
anatomical variations (101006, Dice coeff. ratio, .265/.30=0.88; 101107, Dice co-
eff. ratio, .265/.30=0.88). The differences caused by anatomical variations in the
subjects is 0.88 times the differences caused by operating system version updates.
Thus, operating system updates are having a strong influence on the output images
from the pipelines.

68

Chapter 6

Conclusions

This chapter discusses the general conclusions, contributions, and the future
work.

6.1 General Conclusions

We conclude that the operating system library version updates are affecting the out-
put images from HCP preprocessing pipelines. The analysis of results obtained by
processing subjects in different CentOS versions shows that inter-OS differences in
these images are visually substantial.

For finding the inter-run differences, we analysed results obtained from pro-
cessing subjects twice in the same condition. No inter-run differences were identified
from these results. We conclude that pseudo-random processes in the HCP prepro-
cessing pipelines are not causing any differences.

The likely causes, of the inter-OS differences are, (i) the evolution of math
libraries over the time and, (ii) the instability of the pipelines, i.e, these pipelines
amplify the small numerical differences that are created by the differences in the
underlying operating system libraries.

69

There are two ways to tackle this problem. The easy but less preferred
solution to this problem would be masking the instabilities. The preferred solution is
to fix the instabilities in the pipeline.

The masking of instabilities can be done by using, (i) single operating system
for the processing of subjects, (ii) containerizing the pipelines so that the processing
is done on a more controlled environment (researchers can control the updates to li-
braries and operating system), (iii) increasing the numerical precision of the pipelines,
(iv) following stricter truncation and rounding standard (IEEE 754), (v) building
static executable by removing the host operating system library dependency.

The masking of instabilities is said to be less preferred because it just makes
the problem invisible but the instability still remains. If we conduct the study with a
change of condition like a newer version of operating system or on an entirely different
operating system, the results we obtain would be different.

The preferred solution is to fix the particular functions/scripts in the pre-
processing pipelines that are unstable. To reduce the variance in results considerably
and thus, to the output more stable and reliable.

6.2 Contributions

All the software tools developed for this study are open-source. Docker images created
for this study are hosted on Dockerhub1. Dockerhub status shows that these images
has been pulled from the repository more than, 8000 times. Repro-tools can be used
to analyze the datasets to find out the differences in checksum or size of files. It
can also quantify the differences with the use of metrics. Different metrics can be
configured in Repro-tools (verifyFiles script) to quantify the differences with respect to
the file formats. The differences in the files from PreFreeSurfer pipeline was presented
at Neuroinformatics (INCF-2017) conference held at Kuala Lumpur, Malaysia2. The
visualizations that we have added to the results section portrays the effect of changing
the operating system when conducting experiments. These images convey the message

1https://hub.docker.com/r/bigdatalabteam/hcp-prefreesurfer/
2https://abstracts.g-node.org/abstracts/1d0afd7e-0542-4b79-99df-e15c5e0e4487

70

https://hub.docker.com/r/bigdatalabteam/hcp-prefreesurfer/
https://abstracts.g-node.org/abstracts/1d0afd7e-0542-4b79-99df-e15c5e0e4487

that operating systems on which the preprocessing takes place have a strong effect
on the output image.

6.3 Future work

Though we could identify the differences in these files and quantify these differences
using the metrics, the functions in the pipeline that causes these differences should
be identified. Pipelines should be studied in detail to identify the first instance of
difference that gets created and how this difference is propagated through the pipeline.
Because the pipelines are linked to each other (previous pipeline’s output becomes
next pipeline’s input), each pipeline must be examined in detail to find out if the
pipeline just propagates the error, whether it amplifies them, or it creates new files
with differences as well. Study can be extended to other pipelines in the HCP pipelines
(e.g., fMRISurface and Diffusion Preprocessing pipeline).

71

Bibliography

[1] Hans E. Plesser. Reproducibility vs. Replicability: A Brief History of a Confused
Terminology. Frontiers in Neuroinformatics, 11, January 2018.

[2] Chris Drummond. Replicability is not reproducibility: Nor is it good science,
June 2009.

[3] Artifact Review and Badging. Available at https://www.acm.org/

publications/policies/artifact-review-badging, Accessed on: April 20,
2018.

[4] Steven N. Goodman, Daniele Fanelli, and John P. A. Ioannidis. What does
research reproducibility mean? Science Translational Medicine, 8(341):341ps12,
June 2016.

[5] Prasad Patil, Roger D Peng, and Jeffrey T Leek. A statistical definition for
reproducibility and replicability. Psychological Science, 351:1037–1037, 2016.

[6] Estimating the reproducibility of psychological science. Science,
349(6251):aac4716, August 2015.

[7] Monya Baker. 1, 500 scientists lift the lid on reproducibility. Nature,
533(7604):452–454, May 2016.

[8] C. Glenn Begley and Lee M. Ellis. Raise standards for preclinical cancer research.
Nature, 483(7391):531–533, March 2012.

[9] Katherine S. Button, John P. A. Ioannidis, Claire Mokrysz, Brian A. Nosek,

72

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

Jonathan Flint, Emma S. J. Robinson, and Marcus R. Munafò. Power failure:
why small sample size undermines the reliability of neuroscience. Nature Reviews
Neuroscience, 14(5):365–376, April 2013.

[10] Tristan Glatard, Lindsay B. Lewis, Rafael Ferreira da Silva, Reza Adalat, Nat-
acha Beck, Claude Lepage, Pierre Rioux, Marc-Etienne Rousseau, Tarek Sherif,
Ewa Deelman, Najmeh Khalili-Mahani, and Alan C. Evans. Reproducibility of
neuroimaging analyses across operating systems. Frontiers in Neuroinformatics,
9:12, 2015.

[11] R. D. Peng. Reproducible Research in Computational Science. Science,
334(6060):1226–1227, December 2011.

[12] Ed H. B. M. Gronenschild, Petra Habets, Heidi I. L. Jacobs, Ron Mengelers, Nico
Rozendaal, Jim van Os, and Machteld Marcelis. The Effects of Freesurfer Ver-
sion, Workstation Type, and Macintosh Operating System Version on Anatom-
ical Volume and Cortical Thickness Measurements. PLOS ONE, 7(6):1–13, 06
2012.

[13] Matthew F. Glasser, Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S.
Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, Saad Jbabdi, Matthew
Webster, Jonathan R. Polimeni, David C. Van Essen, and Mark Jenkinson. The
minimal preprocessing pipelines for the Human Connectome Project. NeuroIm-
age, 80(Supplement C):105 – 124, 2013. Mapping the Connectome.

[14] David C. Van Essen, Stephen M. Smith, Deanna M. Barch, Timothy E.J.
Behrens, Essa Yacoub, and Kamil Ugurbil. The WU-minn human connectome
project: An overview. NeuroImage, 80:62–79, October 2013.

[15] Bradley R. Buchbinder. Chapter 4 - functional magnetic resonance imaging. In
Joseph C. Masdeu and R. Gilberto GonzÃąlez, editors, Neuroimaging Part I,
volume 135 of Handbook of Clinical Neurology, pages 61 – 92. Elsevier, 2016.

[16] RE Rizea, AV Ciurea, G Onose, RM Gorgan, A Tascu, and F Brehar. New
application of Diffusion Tensor Imaging in neurosurgery. Journal of Medicine
and Life, 4(4):372–376, 11 2011.

73

[17] S Sato and P D Smith. Magnetoencephalography. Journal of clinical neuro-
physiology : official publication of the American Electroencephalographic Society,
2(2):173–192, apr 1985.

[18] Gregory A. Light, Lisa E. Williams, Falk Minow, Joyce Sprock, Anthony Rissling,
Richard Sharp, Neal R. Swerdlow, and David L. Braff. Electroencephalography
(EEG) and Event-Related Potentials (ERPs) with Human Participants. John
Wiley and Sons, Inc., 2001.

[19] Jonathan E. Peelle. Optical neuroimaging of spoken language. Language, Cog-
nition and Neuroscience, 32(7):847–854, 2017.

[20] Peter A Bandettini. What’s new in neuroimaging methods?, volume 1156, pages
260–293. March 2009.

[21] Elizabeth Stief O’Shaughnessy, Madison M. Berl, Erin N. Moore, and William D.
Gaillard. Pediatric Functional Magnetic Resonance Imaging (fMRI): Issues and
Applications. Journal of Child Neurology, 23(7):791–801, 2008. PMID: 18281625.

[22] Task-fMRI. Available at https://www.humanconnectome.org/study/

hcp-young-adult/project-protocol/task-fmri, Accessed on: Novem-
ber 29, 2017.

[23] Stephen M. Smith, Christian F. Beckmann, Jesper Andersson, Edward J. Auer-
bach, Janine Bijsterbosch, GwenaÃńlle Douaud, Eugene Duff, David A. Fein-
berg, Ludovica Griffanti, Michael P. Harms, Michael Kelly, Timothy Laumann,
Karla L. Miller, Steen Moeller, Steve Petersen, Jonathan Power, Gholamreza
Salimi-Khorshidi, Abraham Z. Snyder, An T. Vu, Mark W. Woolrich, Junqian
Xu, Essa Yacoub, Kamil Uğurbil, David C. Van Essen, and Matthew F. Glasser.
Resting-state fMRI in the Human Connectome Project. NeuroImage, 80:144–168,
October 2013.

[24] Mark W. Woolrich, Saad Jbabdi, Brian Patenaude, Michael Chappell, Salima
Makni, Timothy Behrens, Christian Beckmann, Mark Jenkinson, and Stephen M.
Smith. Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45(1,
Supplement 1):S173 – S186, 2009. Mathematics in Brain Imaging.

74

https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/task-fmri
https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/task-fmri

[25] Mark Jenkinson, Christian F. Beckmann, Timothy E.J. Behrens, Mark W. Wool-
rich, and Stephen M. Smith. FSL. NeuroImage, 62(2):782 – 790, 2012. 20 YEARS
OF fMRI.

[26] Freesurfer. Available at http://surfer.nmr.mgh.harvard.edu/fswiki/

FreeSurferWiki#Publications, Accessed on: November 21, 2017.

[27] Bruce Fischl. FreeSurfer. NeuroImage, 62(2):774–781, August 2012.

[28] Michael R. Hodge, William Horton, Timothy Brown, Rick Herrick, Timothy
Olsen, Michael E. Hileman, Michael McKay, Kevin A. Archie, Eileen Cler,
Michael P. Harms, Gregory C. Burgess, Matthew F. Glasser, Jennifer S. Elam,
Sandra W. Curtiss, Deanna M. Barch, Robert Oostenveld, Linda J. Larson-Prior,
Kamil Ugurbil, David C. Van Essen, and Daniel S. Marcus. ConnectomeDB–
Sharing human brain connectivity data. NeuroImage, 124(Part B):1102 – 1107,
2016. Sharing the wealth: Brain Imaging Repositories in 2015.

[29] FSL preprocessing pipeline. Available at http://www.humanbrainmapping.

org/files/2015/Ed%20Materials/FSL_PreProcessing_Pipeline_OHBM15_

Jenkinson.pdf, Accessed on: November 22, 2017.

[30] Connectome Workbench. Available at https://www.humanconnectome.org/

software/connectome-workbench, Accessed on: November 21, 2017.

[31] Daniel S. Marcus, Michael P. Harms, Abraham Z. Snyder, Mark Jenkinson,
J. Anthony Wilson, Matthew F. Glasser, Deanna M. Barch, Kevin A. Archie,
Gregory C. Burgess, Mohana Ramaratnam, Michael R. Hodge, William Hor-
ton, Rick Herrick, Timothy R. Olsen, Michael McKay, Matthew House, Michael
Hileman, Erin Reid, John W. Harwell, Timothy S. Coalson, Jon Schindler, Jen-
nifer Stine Elam, Sandra W. Curtiss, and David C. Van Essen. Human Connec-
tome Project informatics: Quality control, database services, and data visualiza-
tion. NeuroImage, 80:202–219, 2013.

[32] C. Pahl. Containerization and the Paas Cloud. IEEE Cloud Computing, 2(3):24–
31, May-June 2015.

75

http://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki#Publications
http://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki#Publications
http://www.humanbrainmapping.org/files/2015/Ed%20Materials/FSL_PreProcessing_Pipeline_OHBM15_Jenkinson.pdf
http://www.humanbrainmapping.org/files/2015/Ed%20Materials/FSL_PreProcessing_Pipeline_OHBM15_Jenkinson.pdf
http://www.humanbrainmapping.org/files/2015/Ed%20Materials/FSL_PreProcessing_Pipeline_OHBM15_Jenkinson.pdf
https://www.humanconnectome.org/software/connectome-workbench
https://www.humanconnectome.org/software/connectome-workbench

[33] Linux programmer’s manual, namespace. Available at http://man7.org/linux/

man-pages/man7/namespaces.7.html, Accessed on: November 14, 2017.

[34] Linux programmer’s manual, cgroups. Available at http://man7.org/linux/

man-pages/man7/cgroups.7.html, Accessed on: October 31, 2017.

[35] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Timoteo
Lange, and Cesar A. F. De Rose. Performance evaluation of container-based
virtualization for high performance computing environments. In Proceedings of
the 2013 21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, PDP ’13, pages 233–240, Washington, DC, USA,
2013. IEEE Computer Society.

[36] Teemu Kämäräinen, Yuanqi Shan, Matti Siekkinen, and Antti Ylä-Jääski. Vir-
tual machines vs. containers in cloud gaming systems. In NETGAMES, pages
1–6. IEEE, 2015.

[37] Hypervisor. Available at http://www.expertglossary.com/virtualization/

definition/hypervisor, Accessed on: October 31, 2017.

[38] Docker: Build, ship, and run any app, anywhere. Available at https://docs.

docker.com/, Accessed on: October 31, 2017.

[39] Jack S. Hale, Lizao Li, Chris N. Richardson, and Garth N. Wells. Con-
tainers for portable, productive and performant scientific computing. CoRR,
abs/1608.07573, 2016.

[40] Spencer Julian, Michael Shuey, and Seth Cook. Containers in Research: Initial
Experiences with Lightweight Infrastructure. In Proceedings of the XSEDE16
Conference on Diversity, Big Data, and Science at Scale, XSEDE16, pages 25:1–
25:6, New York, NY, USA, 2016. ACM.

[41] Felter Wes, Ferreira Alexandre, Rajamony Ram, and Rubio Juan. An updated
performance comparison of virtual machines and linux containers. 2015 IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), 00:171–172, 2015.

76

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://www.expertglossary.com/virtualization/definition/hypervisor
http://www.expertglossary.com/virtualization/definition/hypervisor
https://docs.docker.com/
https://docs.docker.com/

[42] T. Combe, A. Martin, and R. Di Pietro. To docker or not to docker: A security
perspective. IEEE Cloud Computing, 3(5):54–62, September 2016.

[43] Docker architecture. Available at https://docs.docker.com/engine/

docker-overview, Accessed on: October 31, 2017.

[44] Docker file format. Available at https://docs.docker.com/get-started/

part2/#dockerfile, Accessed on: November 14, 2017.

[45] Docker build commands. Available at https://docs.docker.com/engine/

reference/commandline/build/, Accessed on: November 14, 2017.

[46] Dave Morris, S. Voutsinas, Nigel C. Hambly, and Robert G. Mann. Use of Docker
for deployment and testing of astronomy software. CoRR, abs/1707.03341, 2017.

[47] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity: Sci-
entific containers for mobility of compute. PLOS ONE, 12(5):1–20, 05 2017.

[48] Samir Das, Tristan Glatard, Christine Rogers, John Saigle, Santiago Paiva,
Leigh C. MacIntyre, Mouna Safi-Harb, Marc-Etienne Rousseau, Jordan Stirling,
Najmeh Khalili-Mahani, Dave MacFarlane, Penelope Kostopoulos, Pierre Rioux,
Cecile Madjar, Xavier Lecours-Boucher, Sandeep Vanamala, Reza Adalat, Zia
Mohaddes, Vladimir S. Fonov, Sylvain Milot, Ilana Leppert, Clotilde Degroot,
Thomas M. Durcan, Tara Campbell, Jeremy T. Moreau, Alain Dagher, D. Louis
Collins, Jason Karamchandani, Amit Bar-Or, Edward A. Fon, Rick Hoge, Syl-
vain Baillet, Guy Rouleau, and Alan C. Evans. Cyberinfrastructure for Open
Science at the Montreal Neurological Institute. Front. Neuroinform., 2017, 2017.

[49] Samir Das, Tristan Glatard, Leigh C. MacIntyre, Cecile Madjar, Christine
Rogers, Marc-Etienne Rousseau, Pierre Rioux, Dave MacFarlane, Zia Mohades,
Rathi Gnanasekaran, Carolina Makowski, Penelope Kostopoulos, Reza Adalat,
Najmeh Khalili-Mahani, Guiomar Niso, Jeremy T. Moreau, and Alan C. Evans.
The MNI data-sharing and processing ecosystem. NeuroImage, 124(Part B):1188
– 1195, 2016. Sharing the wealth: Brain Imaging Repositories in 2015.

[50] Tristan Glatard, Lindsay B Lewis, Rafael Ferreira da Silva, Marc-Etienne

77

https://docs.docker.com/engine/docker-overview
https://docs.docker.com/engine/docker-overview
https://docs.docker.com/get-started/part2/#dockerfile
https://docs.docker.com/get-started/part2/#dockerfile
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/

Rousseau, Claude Lepage, Pierre Rioux, Najmeh Mahani, Ewa Deelman, and
Alan C Evans. Extending provenance information in CBRAIN to address re-
producibility issues across computing platforms. Frontiers in Neuroinformatics,
76(76), 2014.

[51] Amazon web services. Available at https://d1.awsstatic.com/whitepapers/

aws-overview.pdf, Accessed on: November 12, 2017.

[52] Tristan Glatard, Gregory Kiar, Tristan Aumentado-Armstrong, Natacha Beck,
Pierre Bellec, Rémi Bernard, Axel Bonnet, Sorina Camarasu-Pop, Frédéric Cer-
venansky, Samir Das, Rafael Ferreira da Silva, Guillaume Flandin, Pascal Gi-
rard, Krzysztof J. Gorgolewski, Charles R. G. Guttmann, Valérie Hayot-Sasson,
Pierre-Olivier Quirion, Pierre Rioux, Marc-Etienne Rousseau, and Alan C.
Evans. Boutiques: a flexible framework for automated application integration in
computing platforms. CoRR, abs/1711.09713, 2017.

[53] K. Jain. User-level infrastructure for system call interposition: A platform for in-
trusion detection and confinement. In In Proc. Network and Distributed Systems
Security Symposium, 2000.

[54] Michael B. Jones. Interposition agents: transparently interposing user code at
the system interface. ACM Symposium on Operating Systems Principles, pages
80–93, 1993.

[55] Timothy W. Curry. Profiling and Tracing Dynamic Library Usage via Inter-
position. In Proceedings of the USENIX Summer 1994 Technical Conference
on USENIX Summer 1994 Technical Conference - Volume 1, USTC’94, pages
18–18, Berkeley, CA, USA, 1994. USENIX Association.

[56] Jim Keniston, Ananth Mavinakayanahalli, Prasanna Panchamukhi, and Vara
Prasad. Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps
Abstract, 2007.

[57] Fernando Chirigati, Dennis Shasha, and Juliana Freire. ReproZip: Using Prove-
nance to Support Computational Reproducibility. In Proceedings of the 5th
USENIX Conference on Theory and Practice of Provenance, TaPP’13, pages

78

https://d1.awsstatic.com/whitepapers/aws-overview.pdf
https://d1.awsstatic.com/whitepapers/aws-overview.pdf

1–1, Berkeley, CA, USA, 2013. USENIX Association.

[58] Rémi Rampin, Fernando Chirigati, Dennis Shasha, Juliana Freire, and Vicky
Steeves. ReproZip: The Reproducibility Packer. The Journal of Open Source
Software, 1(8):107, December 2016.

[59] Vagrant. Available at https://www.vagrantup.com/intro/index.html, Ac-
cessed on: December 02, 2017.

[60] Robert Ikeda and Jennifer Widom. Panda: A System for Provenance and Data.
In Proceedings of the 2Nd Conference on Theory and Practice of Provenance,
TAPP’10, pages 5–5, Berkeley, CA, USA, 2010. USENIX Association.

[61] Boutiques Descriptors. Available at https://github.com/

big-data-lab-team/cbrain-plugins-hcp, Accessed on: December 29,
2017.

[62] Md5. Available at https://tools.ietf.org/html/rfc6151, Accessed on: Jan-
uary 14, 2018.

[63] M. Khosrow-Pour. Handbook of Research on Global Enterprise Operations and
Opportunities. Advances in Information Quality and Management. IGI Global,
2017.

[64] Lee R. Dice. Measures of the Amount of Ecologic Association Between Species.
Ecology, 26(3):297–302, 1945.

[65] Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare M C Tempany,
Michael R Kaus, Steven J Haker, William M Wells, Ferenc A Jolesz, and Ron
Kikinis. Statistical Validation of Image Segmentation Quality Based on a Spatial
Overlap Index: Scientific Reports. Academic radiology, 11(2):178–189, February
2004.

[66] Grayordinate. Available at https://wiki.humanconnectome.org/display/

WBPublic/Workbench+Glossary, Accessed on: December 25, 2017.

[67] David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy E J Behrens,

79

https://www.vagrantup.com/intro/index.html
https://github.com/big-data-lab-team/cbrain-plugins-hcp
https://github.com/big-data-lab-team/cbrain-plugins-hcp
https://tools.ietf.org/html/rfc6151
https://wiki.humanconnectome.org/display/WBPublic/Workbench+Glossary
https://wiki.humanconnectome.org/display/WBPublic/Workbench+Glossary

Essa Yacoub, Kamil Ugurbil, and for the WU-Minn H C P Consortium. The
WU-Minn Human Connectome Project: An Overview. NeuroImage, 80:62–79,
October 2013.

[68] T1w and T2w images. Available at http://fmri.ucsd.edu/Howto/3T/

structure.html#T1, Accessed on: January 6, 2018.

[69] Field map. Available at https://en.wikibooks.org/wiki/Neuroimaging_

Data_Processing/Field_map_correction#Field_mapping, Accessed on: Jan-
uary 10, 2018.

[70] Vedran Hrgetic and Tomislav Pribanic. Surface Registration Using Genetic Al-
gorithm in Reduced Search Space. CoRR, abs/1310.0302.

[71] DB Human Connectome Project. Available at https://db.humanconnectome.

org, Accessed on: January 2, 2018.

[72] Michael Hanke and Yaroslav Halchenko. Neuroscience Runs on GNU/Linux.
Frontiers in Neuroinformatics, 5:8, 2011.

[73] L. Lu, G. Cen, W. Gao, Q. Wang, J. Zhao, and J. Du. A research of informa-
tion management system solution base on CentOS and Oracle. In 2010 World
Automation Congress, pages 309–312, September 2010.

80

http://fmri.ucsd.edu/Howto/3T/structure.html#T1
http://fmri.ucsd.edu/Howto/3T/structure.html#T1
https://en.wikibooks.org/wiki/Neuroimaging_Data_Processing/Field_map_correction#Field_mapping
https://en.wikibooks.org/wiki/Neuroimaging_Data_Processing/Field_map_correction#Field_mapping
https://db.humanconnectome.org
https://db.humanconnectome.org

	List of Figures
	List of Tables
	Introduction
	Definitions of Reproducibility
	Reproducibility Crisis and its Relevance
	Reproducibility in the context of Neuroimaging Pipelines

	Tools and Platforms for Reproducibility evaluations of Neuroimaging Pipelines
	Neuroimaging Pipelines
	Reproducibility of Neuroimaging Pipelines across Operating Systems
	Containers
	Pipeline Containerization
	Docker
	Singularity

	Web Platforms and Tools to run Containers
	CBRAIN
	Amazon Web Services
	Boutiques

	Interposition Techniques
	System and Library call interposition
	Reprozip Tool

	A framework for analyzing the reproducibility issues of neuroimaging pipelines
	Repro-tools Workflow
	Docker Images
	Pipeline Encapsulation
	Pipeline Deployment
	File comparisons across conditions
	Provenance Capture
	Metrics
	Normalized Root Mean Square Error (NRMSE)
	Dice Similarity Coefficient
	Text Filtering

	Application to HCP pre-processing Pipelines
	HCP Pipelines (v3.19.0)
	HCP Data
	PreFreeSurfer
	FreeSurfer
	PostFreeSurfer
	fMRIVolume
	Subjects of the study
	HCP Data Selection

	HCP Docker Images
	Processing of Data
	PreFreeSurfer
	FreeSurfer
	PostFreeSurfer
	fMRIVolume

	Results
	PreFreeSurfer
	Global Comparison
	Comparison of specific files

	FreeSurfer
	Global Comparison
	Comparison of specific files

	PostFreeSurfer
	Global Comparison
	Comparison of specific files

	fMRIVolume
	Global Comparison
	Comparison of specific files

	Effect of changing Subject vs. changing Condition

	Conclusions
	General Conclusions
	Contributions
	Future work

	References

