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Abstract

p-adic Abelian Integrals: from Theory to Practice

Leonardo COLO

Let K be a complete subfield of C,. Consider a rigid space X over K with good reduction
and a differential of the second kind w over X. Coleman theory of p-adic integration tells us

how to give a meaning to an expression of the form

Q
j o P,Q e X(K)\(w)x

P

The work of Coleman relies on using the Dwork principle of continuation along Frobenius to
overcome the topological problems coming from the ultrametric nature of K.

Between 2006 and 2011, K.S. Kedlaya and J. Balakrishnan have constructed algorithms
to compute explicitly Coleman’s integrals on hyperelliptic curves and, together with R. Brad-
shaw, they have implemented these methods in SAGE.

In this thesis, I study the theory of Coleman both from the theoretical and the algorithmic
point of view and I provide the results of some explicit computations.

After a review of some fundamental ideas in rigid geometry, I present the theory of
Coleman as it appears in his original articles. The second part of this work is devoted to the
computational approach: I describe the ideas of Kedlaya and Balakrishnan and I produce
some concrete examples. Finally, the last Chapter deals with one application of Coleman’s
integrals: I study the method of Chabauty and Coleman and I show how it can be used to

effectively detect rational points on curves.

il
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Introduction

Over the last century, p-adic numbers and p-adic analysis have started playing an important
role in number theory. Suppose we have an algebraic variety X over R; it is well known that
X(R) or X(C), the set of points on X valued on R or C respectively, form a real or complex
variety on which we are perfectly able to integrate.

The situation changed with the introduction of p-adic numbers by K. Hensel in 1897. The
German mathematician developed his theory, based on the work of E. Kummer, in analogy
with the relation between the ring of polynomials C[z] and its field of fractions C(z). The

result was a set of formal expansions

+00
Zanp" a;€Z, 0<a; <p
n=ng
which turns out to have the structure of a field and, nowadays, we denote Q,, the field of
p-adic numbers.

The definition of Hensel was improved by A. Ostrowski (1918) who proved that any
absolute value on Q is equivalent either to the standard one or to a p-adic absolute value.
Completing Q@ with respect to the latter, we recover the field of p-adic numbers discovered
by Hensel.

The work of Ostrowski allowed mathematicians to ask whether the well-known properties
of real numbers (the completion of Q with respect to | - |,) were inherited also by Q,. In
particular, one of the most important area of study was the possibility of constructing a
theory of analytic functions over p-adic fields. If at the beginning the question might have
been motivated only by curiosity, with the progress of Algebraic Geometry it became clear
that the question was of central importance.

However, in 1944, M. Krasner introduced the concept of ultrametric fields, to which p-adic
numbers belong, and proved (1954) that the topology of these objects is totally disconnected
making clear the fact that to obtain a global theory of functions over p-adic fields there was

the need of different ideas from the ones used in the real and complex case.



The turning point was the work of the American mathematician J. Tate. He understood
that algebraic methods were somehow unsuitable to such a description and focused the atten-
tion on an analytic approach. Let K be a complete non-archimedean field; Tate introduced
the algebra

VEZL vI—+

0 (1) - { T

lim |, |r” =0 Vr> 0}
e ¢]

of Laurent expansions converging on K*. He constructed its field of fractions M(K*) =
Frac (O(K*)) and defined, for every ¢ € K* with |¢| < 1, the set

MUE>) = {f e M(K™) [ f(ag) = f(C)}

He observed that MY(K*) is an elliptic function field and the set of K-points of the associated
elliptic curve €k coincides with the quotient K /g% (Tate elliptic curve). To describe the
nature of this elliptic curve, Tate realized that algebraic geometry was ineffective. In 1961 he
published an important article [Tat] developing a theory that was able to give a meaning to
the quotient K*/q%. Nowadays we use to indicate his work as the birth of Rigid Geometry.

The theory of Tate was eventually enriched and expanded by D. Mumford, who generalized
the construction of Tate to higher dimensional abelian varieties (1972), M. Raynaud, who
introduce Formal Geometry (1974) and G. Faltings (1990).

Although a theory of analytic functions over an ultrametric field K had been developed,
the nature of the topology on K still made difficult to construct a theory of integration: the
fact that the p-adic topology is totally disconnected makes impossible to pass from local to
global as we do in the complex case.

The situation changed in the 80’s with the work of the American mathematician R.
Coleman. He was the first to propose a solution to the problem of constructing a global theory
of integration on rigid spaces using the Dwork principle of “continuation along Frobenius”.

The idea appeared first in [Coll] (1982) under the form of integration on subsets of P';
at the end of the article Coleman announced his intention to develop this work to a theory
of p-adic abelian integrals on arbitrary varieties.!

In fact, in [Col2] (1985), he established the basis for an integration theory for differential
of the II kind on abelian varieties of arbitrary dimension having good reduction at p.

Finally, in a joint work with E. de Shalit (1988, [CdS]), the approach was enlarged to a

wider range of differentials on curves.

1Tn a subsequent paper we intend to show how the ideas in this paper lead to a theory of p-adic abelian
integrals” - R.F. Coleman [Coll].



Coleman theory was then extended by Y. Zarhin (“Local heights and abelian varieties”,
1988/1989) and P. Colmez (“Périodes p-adiques des variétés abéliennes”, 1992 and [Colm)],
1998); they were able to eliminate the hypothesis of good reduction and, equally remarkable,
they did not pass through rigid geometry.

During the last 20 years, the work of Coleman has been generalized by A. Besser (“A
generalization of Coleman’s p-adic integration theory”, 1999) using methods of p-adic coho-
mology, V. Vologodsky. (“Hodge structure on the fundamental group and its application to
p-adic integration”, 2003) and V.G. Berkovich (“Integration of one-forms on p-adic analytic
spaces”, 2007).

Apart from their purely theoretical interest, Coleman integrals have a great importance

because of several applications introduced during the years:

- Torsion Points on Curves. This was Coleman’s original application of p-adic integra-
tion. He proved (after Raynaud) the Manin-Mumford conjecture asserting that any
curve, of genus at least two in an abelian variety, contains only finitely many torsion

points. (R.F. Coleman, “Torsion points on curves and p-adic abelian integrals”, 1985)

- Rational Points on Curves. Coleman used the theory of p-adic abelian integrals to
show that it was possible to give effective bounds to the number of rational points on
an algebraic curve over a number field K, provided that the Mordell-Weil rank of the
Jacobian of the curve is not too large. (R.F. Coleman, “Effective Chabauty”, 1985)

- p-adic Regulators, Polylogarithms and Multiples of Zeta Values. If C is a smooth com-
plete curve over leg whose Jacobian J has good reduction, Coleman and de Shalit

constructed a p-adic analogue of regulator pairing in the form of a homomorphism
o Ko (Q;lg(C)) — Hom (HO(C, ), Qzlg)

whose value at the Steinberg symbol {f, g} is the linear functional

rpe ({£,93) ( ZJ Log(g

where div(f) = 3'_,(Qi) — (P,) and Log denotes a fixed branch of the p-adic logarithm.

This can be used to compute special values of the p-adic L-function associated to an
elliptic curve over Q having good reduction at p. (R.F. Coleman and E. de Shalit,

p-adic regulators on curves and special values of p-adic L-functions”, 1988)



- p-adic heights on Curves. Coleman and Gross proposed a new definition of a p-adic
height pairing on curves over number fields with good reduction at primes above p
(based on the work of Mazur, Tate and Schneider). The pairing was defined as a sum
of local terms; the ones corresponding to primes above p depend on Coleman’s theory

of p-adic integration. (R.F. Coleman and B.H. Gross, p-adic heights on curves”, 1989)

- p-adic Periods It was Coleman (inspired by the work of Fontaine) who first proposed
to use p-adic integrals to define p-adic period on varieties having good reduction at p.

His ideas were eventually formalized by Colmez:

Theorem. The map (w,7) — § w of Hin(X) x T,(X) to Bl is bilinear, commutes
with the action of Galots, respects filtrations and it is non degenerate when extending

scalars to Byg.

(R.F. Coleman, “Hodge-Tate periods and p-adic abelian integrals”, 1984 - P. Colmez,

“Périodes p-adiques des variétés abéliennes”, 1992)

The great variety of potential applications of Coleman integrals has resulted, in the 2000’s,
in the spread of a more concrete line of investigation.

A first explicit method for the computation of Coleman integrals on hyperelliptic curves
was described in the M.Sc. thesis of Igor Gutnik “Coleman Integration on hyperelliptic curves
using Kedlaya algorithm” (Ben-Gurion University of the Negev, 2005). Gutnik produced an
implementation in MAGMA based on previous works of K.S. Kedlaya on Frobenius compu-
tations. Unfortunately, his work was not tested, optimized, distributed or used for any
application.

Few years later Kedlaya proposed the numerical calculation of Coleman integrals on hy-
perelliptic curves first at Banff (2/2007) and then at the Arizona Winter School (3,/2007).
An implementation for the case g = 1 was developed in SAGE mostly by R. Bradshaw, using
the implementation of the Frobenius calculations developed at MSRI (6/2006) by himself, .J.
Balakrishnan, D. Harvey and L. Xiao.

This work was eventually extended to arbitrary g by K. Kedlaya, J. Balakrishnan and R.
Bradshaw.

During the last ten years there have been several attempts to construct algorithms for the
applications we have illustrated before: p-adic heights have been studied by Balakrishnan
(“Local heights on hyperelliptic curves”), Besser (“On the computation of p-adic height pairings
on Jacobians of hyperelliptic curves”) and Harvey (“Efficient computation of p-adic heights”).

Besser and R. de Jeu (“An algorithm for computing p-adic polylogarithms”) have done some



computations for p-adic regulators; H. Furusho have introduced some methods to study p-
adic multiple zeta values (“p-adic multiple zeta values. II. Tannakian interpretations”) and,
finally, rational points on curves have been studied among the others by W. McCallum - B.
Poonen (“The method of Chabauty and Coleman”) and M. Kim.

In conclusion, we would like to mention some more recent contributions: since Kedlaya's
formulation of the algorithm, his work has been extended among the others by J. Denef and
F. Vercauteren (introducing the computations in characteristic 2), P. Gaudry and N. Giirel
(superelliptic curves), W. Castryck, T.G. Abbot, D. Roe and D. Harvey.

Structure of the Thesis

The aim of this Master thesis is to give an overview on the theory developed by Coleman of
p-adic abelian integrals, to discuss the computational methods introduced in recent times by
Kedlaya and Balakrishnan and to produce some concrete computations.

This presentation is articulated into 6 chapters.

Chapter 1 - We present some preliminary results about valued fields and normed space.
The purpose of this chapter is to highlight the setting in which we will be working for
the rest of the thesis.

Chapter 2 - This chapter deals with the construction of Tate that are the basis of rigid
geometry. In particular, we give the definition of affinoid algebras and affinoid spaces

carrying on a comparison with the objects of study in classical algebraic geometry.

Chapter 3 - We use the dictionary developed in the previous chapter to construct general
rigid spaces. Firstly, we define a suitable topology on affinoid spaces and we use it to
glue them together; then, we show how rigid spaces and algebraic varieties are related
illustrating the techniques of analytification and reduction. Finally, we glance at the

construction of formal geometry.

Chapter 4 - The goal of this part is to describe the theory of p-adic abelian integrals devel-
oped by Coleman in [Col3]. After a brief motivation, we describe the objects coming

into play and we prove the main Theorem of Coleman’s theory.

Chapter 5 - We discuss here the explicit algorithms for computing Coleman integrals on

hyperelliptic curves; we also present some concrete examples.

Chapter 6 - In this last chapter we give an example of application of Coleman integrals; in
particular, we describe the Chabauty-Coleman method for counting rational points on

curves.



Chapter 1
Valued Fields and Normed Spaces

In this first chapter we recall some basic definitions and results about valued fields which
will be useful for the study of rigid geometry. In particular, we introduce the notion of
non-archimedean valuation and we study the associated topology. In the second section we
deduce the behavior of this kind of valuations in fields extensions and we give an overview
on the problem of field completion. In the last part of the chapter we introduce the idea of
Banach spaces and Banach algebras which will be used to study Tate’s algebras and Affinoid
Algebras in the second chapter.

The main References are [Gou, Chapter 2|, [BGR, §1.5], [Ser2, Chapter II| and [EP,
Chapter 3|.

1.1 Non Archimedean Fields

Let K be a field.

Definition. An absolute value on K isamap |-| : K — R satisfying the following conditions:
1. |z| >0, Vz e K and |z| = 0 if and only if x = 0.

2. |z y| = x| |y| for all z,y e K.

3. |z +y| < x|+ |yl for all 2,y € K.

We say that an absolute value on K is non-archimedean if it satisfies the additional condition:
4. |z + y| < max{|z|, |y|} for all z,y € K.

It turns out that one can associate a valuation on K to any non-archimedean absolute

value.



A valuation is a map v : K — R u {0} satisfying the following conditions:
1. v(z) = oo if and only if z = 0.
2. vz y)=v(z)+rv(y) forall z,y € K.
3. v(z +y) = min{r(z),v(y)} for all z,y € K.

Indeed, we can set v(z) = —log|x| and, in the other direction, |z| = e™(®). This gives a
one-to-one correspondence between non-archimedean absolute values and valuations and it
allows us to talk indiscriminately about absolute values and valuations. A field K with a

valuation is called a valued field.
Ezxample. Fix a prime number p € Z. The p-adic valuation on Z is the map

v, : Z\{0} — R

defined as follows: if n is an integer, v,(n) is the unique positive integer such that n can be
written as

n=p*"n with ptn/

We can extend v, to Q as follows: if z = € Q*, then

p(2) = vp(n) —vp(m)

with the convention that v,(0) = .

For any x € Q we define the p-adic absolute value as
|x’p = p_yp(:t)

with the convention that |0] = 0.

It is easy to prove that the p-adic absolute value is non-archimedean.

Definition. Given an absolute value |- | on a field K, we define the distance d(z,y) between

two elements x,y € K by
d(z,y) = |z —y|
The function d(z,y) is called a metric and it induces a topology on K.

Metrics arising from non-archimedean absolute values are called ultrametrics.

Lot of the properties of usual metric spaces do not remain true when we study non-
archimedean fields. In particular, the notion of open balls which is of great importance in

metric spaces turns out to be pretty strange in the ultrametric setting.



Definition. Let K be a field with an absolute value |- |. Take an element ¢ € K and a

positive real number r € R. The open ball centered at a with radius r is the set
B(a,r) ={re K |d(z,a) = |x —a| <r}

Proposition 1.1.1. Let K be a field endowed with a non-archimedean absolute value.
(a) Ifbe B(a,r), then B(a,r) = B(b,r); in other words, every point that is contained in an
open ball is a center of that ball.

(b) Ifa,be K and r,s € R we have B(a,r) n B(b,s) # & if and only if Bla,r) < B(b, s)
or B(a,r) 2 B(b, s); in other words, any two open balls are either disjoint or contained

in one another.

This situation is completely different from the one we are used to when we work with

metric spaces. The proposition is saying the following:

This can occur This can occur This cannot occur

o0 © W

Proposition 1.1.2. The topology of K induced by a non-archimedean absolute value is totally

disconnected, i.e., any subset in K consisting of more than just one point is not connected.
We want now to take a more algebraically flavored point of view.

Definition. Let K be a field with a non-archimedean absolute value | - |. The value group

of K is the set of values assumed by | - |:
] = {lol | a € K}
The valuation ring of K is the set
Ok ={ae K|la] <1}

The maximal ideal of Of is
p—lac K|l <1}

Finally, the residue field is
k= Oxk/p

8



1.2 Completions

The problem giving rise to the theory of completions is that, in some cases, a field K presents
some “missing points”, i.e., it is possible to construct some convergent sequences whose limit
is not in K.

In particular, there are special sequences, called Cauchy sequences, which somehow
“should have” a limit because their terms get crowded into balls with smaller and smaller
radius. The idea of completing a field consists in “filling the gaps” in such a way that the

sequences that should have a limit do have a limit.

Definition. Let K be a field with an absolute value | - |. A sequence (x,)nen Of elements
x, € K is called a Cauchy sequence if the x,,’s become arbitrarily close to each other as n
grows. More precisely (z,), is a Cauchy sequence if for every € > 0 one can find N such that

|z, — x| < € whenever n,m > N.

Definition. A field K is said to be complete with respect to the absolute value | - | if every

Cauchy sequence of elements of K has a limit in K.

One can refer to [Lan2, §1V.4| for a precise description on how to complete a given metric
space. The idea is to consider the set of all the Cauchy sequences in K with an equivalence
relation identifying two sequences which are “converging to the same missing point” and to
show that this set has the desired properties.

The standard example is the completion of Q. It is well known that the field of rational
numbers is not complete with respect to the standard absolute value | - |,. The completion
of (Q,|-|x) yields R, the field of real numbers, which turns out to be complete with respect
to the metric given by the extension of | - |, and to contain a copy of Q which is dense.

On the other hand, we have seen that there is another absolute value on Q coming from

the p-adic valuation.

Lemma 1.2.1. A sequence (zp)nen in a non-archimedean field K is a Cauchy sequence if

and only if |x,41 — x,| tends to 0 as n — +o0.

Lemma 1.2.2. The field Q of rational numbers is not complete with respect to the p-adic

absolute value.

The proofs of these two lemmas can be found in [Gou, Lemmas 3.2.2 and 3.2.3]. The
completion of Q with respect to the p-adic absolute value is called the field of p-adic numbers
and it is denoted by Q,,.



As we said, we can think of points of Q, as represented by Cauchy sequences of rational
numbers; we can introduce an absolute value on Q,, extending (the meaning of this will be
explained in the next section) the one on Q, in the following way: if A € Q, and (z,,)nen is a

Cauchy sequence representing A, then
A, = i
[Alp " Hf |Tnlp

The valuation ring of Q, is Og,, usually denoted by Z,; the maximal ideal of Z,, is pZ, and
the residue field is Z,/pZ, = F,, the field with p elements.

1.3 Extension of Valuation

From now on we will suppose that K is a non-archimedean field. Consider a field extension
K < L and suppose that | - |k is a valuation on K while | - |, is a valuation on L. We say
that | - |1 is an extension of | - |k if ||, = |a|x for every a € K. The problem of existence

for extension of valuations is solved by the following result:

Theorem 1.3.1 (Chevalley). Consider a field K, a subring R < K and a prime ideal p < R.
There exists a valuation ring O of K such that R < O and mn R = p where m is the mazimal
deal of O.

Corollary 1.3.2. Let L/K be a field extension and let O1 € K be a valuation ring. There

exists an extension Oy < L of O.

In general, we are very far from having uniqueness of extension of valuation. The situation

becomes more pleasant when we consider algebraic or finite extensions.

Theorem 1.3.3. Let K be a valued field with valuation v and L a finite extension of K.

Then v has only finitely many inequivalent extensions wy, . ..,w; to L.

Finally, if K is complete and L/K is finite, then there is only one extension of the valuation
on K:

Theorem 1.3.4. Suppose that K is a field that is complete with respect to |- | and that L is
a finite extension of K of degree n = [L : K|. Then there is precisely one extension of | -| to
L, namely

jal = [Normy i ()|

and L is complete with respect to this absolute value.

10



Notice that, if K is complete, then there exists a unique extension of the valuation on K
to K8 the algebraic closure of K. In general, K2 is an infinite extension of K and in this

case K# is not complete. We will denote K28 the completion of K?#.

Remark. This is another important difference between the two different kind of absolute
values that we defined over Q. The completion with respect to | - |4 is R whose algebraic
closure C is finite dimensional over R and, in fact, the absolute value on R extends uniquely
to C.

On the other hand, if we complete Q with respect to the p-adic absolute value, we obtain
Q, whose algebraic closure is an infinite extension. Since Q, is complete, the p-adic valuation
extends uniquely to leg but this turns out to be not complete ([Gou, Theorem 5.7.4|). We

can construct the completion of leg playing again with Cauchy sequences.

Proposition 1.3.5. There exists a field C, and an absolute value |-| on C, such that C, contains
al, - alg .o - -

Q), and the restriction of | - | to Qp coincides with the p-adic absolute value. Further, C,

is complete with respect to | - | and Qzlg is dense in C,,.

C, has the desirable property of being algebraically closed (as well as complete) but the
price we have to pay is the loss of locally compactness and maximally completeness: in C,
there is a decreasing set of closed disks D,, = {a € K | |a — ¢,| < r,} having the properties

cne K, r,e|K*|, rpy1 <ryand D, © D,y ¥n > 1, has an empty intersection, nD,, = (.

1.4 Banach Algebras

We denote by K a complete non-archimedean field.

Definition. A normed space over K is a vector space V over K with amap || || : V - R
such that

1. ||lv|| = 0.

2. ||v|| = 0 if and only if v = 0.

3. |la-v| =la| - ||v]|| for all a € K and for all v e V.

4. [Jv + w| < max{||v]|, [|w]} for all v,we V.

The map || || is called a norm. A seminorm is a map satisfying properties 1, 3 and 4 (possibly
not 2).
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As for field extensions, one verifies that if K is complete, then every finite dimensional
vector space over K possesses only one norm (up to equivalence) and it is a Banach space

with respect to it.

Remark. Tt is possible to prove that classical theorems on Banach spaces in functional analysis

over archimedean fields still hold in the non-archimedean case (|Tia, §1.2]).

Definition. A Banach algebra A over K is a commutative K-algebra having an identity

element and a norm || || such that:

1. A is a Banach space with respect to || ||.
2. 1 =1

3. a0l < [lal| - [|o]

Definition. A Banach Module M over a Banach algebra A is an A-module provided with
a norm || || such that M is a Banach space with respect to || || and ||a - m| < ||a|| - [|m] for

every a € A and m e M.

Let A be a Banach K-algebra and E, F' be two Banach A-module. Consider the usual
tensor product £ ®4 F. For any x € F ®4 F', we can define

Joll = nf {11}
where z = Y| €;® f; runs through all possible representations of z. This defines a seminorm
on the tensor product £ ®4 F. We define the completed tensor product EQ4F as the
completion of £ ®4 F. There are two natural maps ¢ : £ — E®AF and 15 : F — EQF.
The completed tensor product has following universal property: if M is a Banach A-module
and ¢ : E — M and ¢ : F — M are two continuous A-linear maps, then there exists a

unique A-linear map ¢®1) : EQ4F — M such that ¢ = ¢®1) 0 1, and 9 = dp&np o 1.
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Chapter 2

Affinoid Algebras and Affinoid Spaces

In classical algebraic geometry we construct affine varieties starting from polynomial algebras
over fields with archimedean absolute values. The idea is to consider the prime spectrum of
these algebras and to define a Zariski topology over it. An algebraic variety is obtained by
gluing together in a suitable way some affine varieties.

When considering a field K, complete with respect to a non-archimedean valuation, we
can still try to work with polynomial algebras but this approach has some inconveniences. In
particular, it turns out that K[(i,...,(,] is not complete with respect to the Gauss norm.
The completion of the space of polynomials is a Tate Algebra.

An affinoid algebra is the quotient of some Tate algebra and plays the role of a finitely
generated algebra in algebraic geometry. An affinoid space is the set of maximal ideals of an
affinoid algebra and it will be the analogue of an affine variety.

In this chapter we present the definition of Tate Algebras and we prove some basic results
about them. We will then explain why the canonical constructions coming from algebraic
geometry are not the suitable tools to approach the study of varieties over non-archimedean
fields and we will give the definitions of affinoid spaces and affinoid subdomains. In the last
section we will start constructing a topology on affinoid spaces which will allow us to glue
them together.

The references are [Bos, Chapters 2 and 3|, [Tia, Chapter 1], [BGR, Chapter 5|, [FvdP,
Chapter 3| and the original article by Tate [Tat].
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2.1 Tate Algebras

Before starting, let us fix the notation. K will denote a complete field with respect to a non-
archimedean valuation. The valuation ring of K will be written as Ox = {a € K | |a| < 1}.
The maximal ideal of the valuation ring is p = {a € K | |a| < 1} and the residue field Ok /p
of K is denoted by k.

According to the philosophy of Algebraic geometry, the study of an affine variety is
equivalent to the study of its ring of algebraic functions ([Har|). One might try to figure out
what could be a good notion of analytic functions over a non-archimedean field.

Tate’s idea is to mimic the Weierstrass’ definition of holomorphic functions.

Lemma 2.1.1. A formal power series

fF=>Y al = > el e K GGl

veNn (V1,eeesn ) ENT

converges in {(a1,...,a,) € (K%)" | |a;| < 1} if and only if limyy—0 [c,| = O (where |v| =
2vi)-

In the following, we will use the notation
B"(K) = {(a1,...,a,) € K" ||a;| <1}

Definition. The Tate algebra (or standard affinoid algebra) over K is the set of all formal
power series Y . ¢,¢Y € K[(1, ..., (] such that limy,| [c,| = 0. It is denoted by

Tn:K<C17aCn>:{Z CVCVGK[[Clv"'a<n]]

veN™

lim |c,| =0
|v|—00
Hence, the Tate algebra is the subring of K[(;,...,(,] consisting of formal power series with
coefficients in K that converge in B"(K?#).
This algebra can be endowed with a norm, called the Gauss Norm, defined by

RIS

veN”

= max |c, |
14

The Gauss norm has the following properties:
o [fl=0<=f=0.
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o |lcf]l = ||| f|l for all c e K and f € T,.

o [lFgll =1 lgll for all f, g € T,.

o [If +gll < max{[|f[],[lg]l} for all f,g €T,

It follows from the third property that 7, is an integral domain.
The Gauss Norm gives to 7T, the structure of K-Banach algebra:

Proposition 2.1.2. T}, s complete with respect to the Gauss norm.

Sketch of Proof. Suppose we have a Cauchy sequence (f;)ien in T,,. We take
fi = Z ¢

Then, for each fixed v € N, the sequence (cl(,i))ieN is a Cauchy sequence. We set ¢, to be its
limit; it can be proved that f = >, ¢,(¥ is the limit of (f;).en and it lives in 7,,. For more

details we can refer to [Bos, Proposition 2.2.3| ]

Proposition 2.1.3 (Maximum Modulus Principle). Let f € T,,. Then |f(z)| < || f]| for all
points x € B"(K%), and there exists a point x € B"(K %) such that the equality | f(z)| = || f]|
holds.

The Tate algebra has lot of properties in common with the usual polynomial ring in n
variables over K. The key result for proving it is the Weierstrass Preparation and Division
Theorem. Before stating it, we need to introduce some notation. Let f € T, be of the form
S0 9uCl with g, € T,,_1. f is called (,-distinguished of order s € N if g, is a unit in 7},
and ||gs|| = ||lgll and ||gs|| > ||g,|| for v > s. If, in addition, f has norm 1, then we say that f
is regular of order s. Notice that in case f is regular, the two conditions above are equivalent
to require that the reduction of f in T,, = k[(y, ..., (] (IBGR, Proposition 5.1.2.2]) is of the
form f =G.C5 +G, & 4+ ...+, with g, e k.

Theorem 2.1.4 (Weierstrass Division). Let g € T), be (,-distinguished of degree s. Then, for
each f € T, there exist uniquely determined elements q € T,, and r € T,,_1[(,] with degr < s

such that f can be written as f = qg + r. Further, || f|| = max{||q| |g] . ||7]}
Proof. Without loss of generality we may assume ||g|| = 1.

(Uniqueness) Suppose we have two different decompositions of the same f:

lgll=1
gg+r=Ff=g9¢+r" = (q—d)g=1"—r——lg=¢| = | — 7|
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Take some ¢ € K with |¢| = ||¢ —¢/||”". Then ¢(q¢ — ¢')g = ¢(r' — r) and so the same
is true with overbars everywhere; but this contradicts the uniqueness in the ordinary

division algorithm for polynomials.

(Estimate) If f = qg + r, then clearly ||f|| < max{|lqg|l,||r]}. Suppose that ||f| <
max{||ggl, |||}, then we may assume max{||gg||,||r]|} = 1. Thus ||f|| < 1 which
means that 0 = gg +7 and g # 0, ¥ # 0 but this contradicts the FEuclid’s division in

K[G, - GGl

(Existence) Define
B={qg+r|reT,1[¢] degr <s,qeT,}

It can be deduced that B is a closed subgroup of T,. Let’s write ¢ in the form g =
S0 9u(Clye e Gu1)CY; we define € = max,-s{|g,|}, where ¢ < 1. Further, we set
K. ={r e K||z| <€} and k. = Og/K,.. Then, there is a natural ring epimorphism
o T, — kel[Ci,...,¢] with kero. = {f € T,, | ||f]| < €}, and o.(g) is a unitary
polynomial in (, of degree s. Therefore, Euclid’s division with respect to o.(g) is
possible in the ring k.[(i, ..., G-1][¢n] and so, for all f € T,,, we can find ¢ € T;, and
r € T,-1[C,] with degr < s such that o.(f) = 0.(g9)oc(q) + o.(r). Hence, for all f € T,
there is an element b € B such that |f — b| < €|f|. Therefore, B is dense in 7}, and,
since B is closed in T,,, we get B = T,. Hence, every f € T, admits the desired

decomposition.
O

Theorem 2.1.5 (Weierstrass Preparation). Let g € T,, be (,-distinguished of degree s. Then
there are a unique monic polynomial w € T, _1[(,] of degree s and a unique unit e € T,, such

that g = e -w. Further, |[w|| =1 so that w is distinguished of degree s.

Proof. (Existence) We start by applying the Weierstrass Division Theorem 2.1.4 to the
monomial (; we get
Ch=qg9+rT
with g € T,, and r € T,,_1[(,] of degree < s. Now w = qg = (3 — r is (,-distinguished of
degree s. Assuming ||g|| = [|¢|| = 1, we can look at the reduction gg = @. Since both @

and g are polynomials of degree s in (,, it follows that g is a unit in £* (w is monic).

(Uniqueness) If g = ew and r = (¢ — w as before, then (¢ = e 'g + r which, by the

uniqueness of Weierstrass Division, shows the uniqueness of e~!

and r and, therefore,
of e and w.

]
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Theorem 2.1.6 (Weierstrass Distinction). If fi,..., f; € T, all have norm 1, then there
exists an automorphism o of T,, (preserving the Gauss norms) such that f7, ..., fo are (,-

distinguished.

The proof of this can be found in [Bos, Lemma 2.2.7]. The Weierstrass Preparation and

Division Theorems immediately yield a lot of properties of Tate Algebras.
Proposition 2.1.7. The Tate Algebra T,, is Néetherian.

Proof. We will work by induction on n. We consider a non trivial ideal J of T},. Choose
a non zero element f € J. We use Weierstrass Distinction Theorem 2.1.6 and we select an
automorphism o of T}, such that f7 is (,-distinguished of degree s. Now we apply Weierstrass
Division Theorem 2.1.4 and we obtain that J7 is generated by f° and I° n T, _1[(,]. By
the induction hypothesis, T,,_; is Noetherian, and so is 7,,_1[(,] by the usual Hilbert basis

theorem. Thus, J9 is finitely generated, and then so is J. O
Proposition 2.1.8. The Tate Algebra T), is a U.F.D.

Proof. Also in this situation we proceed by induction; we may assume that 7, _; is a unique
factorization domain. It follows that 7, _1[(,] is a U.F.D. by a result of Gauss. We consider a
non-zero element f € T, that is not a unit. Applying Weierstrass Distinction Theorem 2.1.6
(where necessary), we may assume that f is (,-distinguished. Modulo the use of Weierstrass
Division Theorem 2.1.4, we can take f to be in T, 1[(,]; thus f has a factorization. Now
consider a factorization f = wj - ... w; into prime elements w; € T;,_1[(,]. Since f is a monic
polynomial in (,, we can assume the same for wy,...,w;. Then, as ||w;|| = 1, we must have
||lwi|| = 1 for all 4, since ||f|| = 1. It remains to show that the w; are prime in T,, (they are

prime in T}, 1[(,]). Now it suffices to observe that there is an isomorphism

Tha[Cal/ (W) = T/ (w)

and both sides are free T},,_; modules. It follows that T}, is a U.F.D. O
Corollary 2.1.9. The Tate Algebra T, is normal.
For details in the proof one can refer to [Bos, Proposition 2.2.15].

Proposition 2.1.10. The Krull dimension of the Tate Algebra T, is n.
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Proof. Clearly the Krull dimension is at least n since we have the sequence of ideals

(CHR=N(CHC) K== (CH TN

To prove the inverse inequality we can observe that, by Weierstrass Distinction and Prepa-
ration Theorems (2.1.6 and 2.1.5), for any irreducible f € T,,, T,,/(f) is finite over T,,_; and
so it has Krull dimension n — 1. But then, since finite ring extensions of Noetherian rings do

not increase Krull dimensions, 7}, has dimension at most n. O

Proposition 2.1.11. Let || || be a norm on the Tate algebra T, making T, into a Banach
algebra. Then every ideal I of T, is closed with respect to || ||.

This is a particular application of a more general Lemma: [FvdP, Lemma 1.2.3].

Proof. Choose generators ¢i,...,g, of J such that ||g;|| = 1 for all i and every f € 7,
[ = 23_, figi for some f; € T, with ||fi]| < | f|| (We can always do this choice - [Bos,
Corollary 2.2.7)). Iff = > f,, f, € J is convergent in T, there are equations f, =
i1 fvi9is fui€ T, But then f =37, (37 f.,) g belongs to J and we are done. O

2.2 Affinoid Algebras

In this section we introduce a generalization of Tate algebras: affinoid algebras. Affinoids
algebras play a parallel role to the one of finitely generated algebras in algebraic geometry.
Hence, as we do over archimedean fields, we start by proving a non-archimedean version of

the Noether Normalization Theorem.

Definition. A K-algebra A is called an affinoid K-algebra if there is an epimorphism of
K-algebras T,, — A for some n € N.

Theorem 2.2.1 (Noether Normalization). Let J be an ideal of T,,, and let A =T, /T be the
corresponding affinoid algebra. Then there exists a finite injective map Ty — A for some d;

moreover, A is Néetherian and its Krull dimension is d.

Proof. We will proceed by induction on n. After applying Weierstrass Preparation and
Division Theorems, we may assume that J contains a monic polynomial f € T,,_1[(,]. Then
T,./(f) is free over T,,_; with basis (,, ..., (%" 1; now we can set J = J n T,,_;. Now we have

an injective and finite map 7,,_1/J — T,,/7J.
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By induction, we have a finite injective K-algebra homomorphism 7,; — 7,,_1/J which

gives a finite and injective map
Td E— Tnfl/ﬁ - T'n/j

To prove the statement about the Krull dimension, we only need to recall that for a finite
injective homomorphism A — B of Noetherian rings, the rings A and B have the same Krull
dimension. The statement now follows from Proposition 2.1.10.

Finally, the proof that A is Noetherian is the same given for the Tate Algebra T, in
Proposition 2.1.7. []

Corollary 2.2.2. For any mazimal ideal m of A, the field A/m is a finite extension of K.

Proof. Tt follows directly from Noether Normalization Theorem: If m is a maximal ideal,

then A/m is a field. We know the existence of a finite injective map
Td — A/m

but, since the Krull dimension of A/m is zero, then we must have d = 0. Hence, we have a

finite injective homomorphism K — A/m. O]

Proposition 2.2.3. An affinoid K-algebra A is Jacobson (i.e., every prime ideal is the

intersection of mazimal ideals).

Let A be a K-affinoid algebra. We want to introduce an intrinsic semi-norm on A. Let J
be a maximal ideal in A. Then A/J is a finite extension of K by what we have just proved.
This means, thanks to the discussion in Section 1.3, that it carries a unique extension of the
valuation on K: we will denote it by | - |. Further, we denote by f(J) the image of f € A in
A/J.

Definition. The spectral semi-norm on A is defined by:

[fllsy = sup[f(m)]

meMax(A)
This is, in fact, a semi-norm (we will see that in some cases it will be a norm).

We present now a list of properties of the spectral semi-norm. For more details one can
see |[FvdP, §3.4], [BGR, §6.2] or [Bos, §3.1].
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Lemma 2.2.4. The spectral norm satisfies || f*||,, = | f|Iy, for any element f of an affinoid

K-algebra.

Lemma 2.2.5. Let ¢ : A — B be a morphism of affinoid K-algebras. Then ||¢(f),, < |IfIl,
for all f e A.

Proposition 2.2.6. On a Tate algebra T, the spectral (or supremum) norm coincides with

the Gauss norm.

Proof. Using the Maximum Modulus Principle (Proposition 2.1.3) we see that

Ifllg = sup ){\f(x)l} Vfel,

zeBn (Kalg
It can be proved [Bos, Corollary 2.2.13| that we can construct a surjective map

B"(K*&) — Max(T,,)
v—my ={feT,|f(z)=0}

Thus, we get an embedding T,,/r — K8 and we see that

flme) = f(z) = [f(ma)] = |f ()]

Now the result follows from the surjectivity of the map defined above. m

Proposition 2.2.7. Let T; — A be a finite monomorphism into some K-algebra A. Let

f € A and assume that A, as a Ty-module, has no zero divisors.

(i) There is a unique monic polynomial Py = ¢+ a,—1¢"  + ...+ a1(+ag € Ty[C] of minimal
degree such that Ps(f) =0 (Minimal Polynomial).

(iii) The supremum norm of f is given by

Hl/z

.....

Sketch of Proof. Take f € A. f satisfies a minimal polynomial P with coefficients in the
field of fractions of 7;,. Since T} is a U.F.D. (Proposition 2.1.8), then it is integrally closed
and therefore P has coefficients in T;. Now, for any m € Max(7,,) and any root A of (" +
ar_1 (M)t + ...+ ag(m) there is x € Max(A) such that x n T}, = m and f(z) = . Hence

|1l = masx{max|a;(m)| | m & Max(T,)} = mas ]| =
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Theorem 2.2.8 (Maximum Principle). For any affinoid K-algebra A and any f € A, there
exists a point m € Max(A) such that || f||,, = |f(m)].

A proof of this can be found in [Bos, Theorem 3.1.15] or [FvdP, Proposition 3.4.3].

Corollary 2.2.9. Let A be an affinoid algebra. The intersection of all maximal ideals of A
1s the ideal of nilpotent elements of A. In particular, if A is a reduced affinoid algebra, the

spectral semi-norm on A is a norm.

Theorem 2.2.10. Let A be a reduced affinoid algebra. The spectral norm is equivalent to

any other norm which makes A into a Banach algebra.

For a proof of this see [FvdP, Theorem 3.4.9].

2.3 Affinoid Spaces

Let us consider now an affinoid K-algebra A. We have seen that if we have an element
f € A and a maximal ideal & of A, then we have an embedding A/z < K®# yielding a good
definition of valuation of f(z) (the image of f in A/x). Thus, we can think of A as the set
of functions on its maximal spectrum Max(A).

We will denote by Sp (A) the maximal spectrum Max(A) = {m € A | m maximal ideal}
together with its K-algebra of functions A. It is clear that we are somehow mimicking the
constructions of algebraic geometry where we have affine varieties with their rings of regular
functions.

Considering this parallelism with algebraic geometry, one might ask why we are restrict-
ing ourselves to consider only maximal ideals instead of extending the study to the whole

spectrum Spec(A). There are several reasons to do that. Let us give a look at some of them:

e First of all, as noticed in [Bos|, for a prime ideal q of an affinoid K-algebra A, the the
field of fractions of A/q, will, in general, be of infinite degree over K. Hence, K, cannot

be viewed as an affinoid K-algebra (since, otherwise, K, would be finite over K).

e Secondly, we have seen that there is a natural norm on affinoid K-algebras. This is
defined valuating f € A over maximal ideals and considering the absolute value of these
objects. This valuation is well defined once that we know how to embed A/ideal — K&

and this is possible for maximal ideals and not, in general, for prime ideals.
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e Further, since an affinoid K-algebra is Jacobson, this implies that, if we have an element
f € A that vanishes on all the maximal ideals, this must be nilpotent. We can observe
that we do not have any need of considering prime ideals. (To be honest, this is also
the case of finitely generated algebras over fields or algebraic varieties and in fact it is

possible to study algebraic varieties considering their maximal spectrum).

e Finally, it is possible to prove that any homomorphism of K-affinoid algebras induces
a map between their maximal spectra (in the reverse order - in the sense that this
functor is contravariant) by sending a maximal ideal to its contraction. This is a similar
situation to algebraic geometry where ¢ : A — B induces f : Spec(B) — Spec(A)
sending B 2 q — ¢ 1(q).

Definition. Let A be an affinoid K-algebra. We associate to A the set
X =Sp(A) = Max(A)

of its maximal ideals. We call X an affinoid space.

In principle, we could define a Zariski topology on X and study the properties of the resulting

topological space.

Definition. We define the Zariski topology on Sp (A) such that the closed subsets of Sp (A)

are of the form
V(a)={xeSp(A)| f(x) =0Vfea} foranyideal a of A
Alternatively, we can see V(a) as:
V(a) ={zeSp(4)] acm,}

where m,, is the maximal ideal of A corresponding to x € Sp (A).

FExample. Let K be an algebraically closed field and consider an affinoid K-algebra A. If
¢ : A — K is a homomorphism of K-algebras, then ker(¢) is a maximal ideal and ¢(f) = f(x).
Thus, Sp (A) can be viewed as the set of K algebra homomorphisms A — K.

In particular, for the free Tate Algebra T,,, we can identify

Sp(T,) =B"(K) = {(x1,...,2,) € K" | |z;] < 1}
Thus, T;, can be regarded as the space of “functions” over the set of its maximal ideals.
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Ezample. The affinoid space associated to an affinoid algebra A = T,,/J can be seen as
Sp(A) =V (3) ={zeB"(K)| f(x) =0 for all fe 7T}

One can think of A as the set of “functions” on Sp (A).

It is easy to prove that the topology just defined satisfies similar properties to the Zariski
topology defined for affine schemes:

Lemma 2.3.1. Let A be an affinoid K -algebra and a,b, (a;);cr be ideals of A. Then,
(i) Ifa b, then V(6) < V(a).

(1) Nier Vi) =V (X ).

(i) V(a) L V(B) = V(ab).

(iv) The sets
D(f) = {z e Sp(A)| f(x) # 0}

form a basis for the Zariski topology on Sp(A).

The proof is straightforward and very similar to the one given for classical affine spaces.

As usual, for U < Sp (A), one can define the sets
IU)={feA|f(u)=0forall yeY}

This yields the Hilbert Nullstellensatz Theorem:

Theorem 2.3.2 (Hilbert Nullstellensatz). Let A be an affinoid K-algebra and a < A an
ideal. Then I(V(a)) = +/a

Corollary 2.3.3. The maps V(-) and I(-) induce a bijection between the set of reduced ideals
in A and the set of Zariski-closed subsets of Sp(A).

A complete discussion about Zariski topology on affinoid spaces can be found in [Tia,
§1.5].

Remark. As pointed out in the introduction to this section, a morphism
¢ :Sp (A) — Sp(B)
of affinoid K-spaces can be induced by a morphism ¢* : B — A of affinoid K-algebras by:
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¢(m) = (¢*) 7 (m)

Note that ¢(m) is maximal since we have a chain of injections
K = B/ (¢%) " (m) = A/m

and A/m is a field which is finite over K.

We want to conclude this section with a brief remark about fiber products of affinoid
K-spaces (|[BGR, Proposition 7.1.4/4]).

Proposition 2.3.4. In the category of K-affinoid spaces the fiber product of two spaces
Sp (B1) and Sp(Bs) over a space Sp(A) can be constructed in this way:

Sp (B1®B2) =Sp(B1) X Sp(A) Sp (Bz) — Sp(Bx)

| l

Sp (Ba) Sp(4)

2.4 Affinoid Subdomains

We have observed that A can be regarded as a space of functions over Sp (A). In general,
it would be nice to extend this notion of “analytic functions” to (open) subsets of Sp (A).
For this purpose, the Zariski topology turns out to be too rough since it does not take into
account the non-archimedean nature of A. Therefore, we have to provide Sp (A) with an extra
topological structure. This was first done by Tate in [Tat| and then simplified by Gerritzen
and Grauert with the introduction of Rational subsets.

Let A be an affinoid K-algebra and X = Sp (A). For f € A and € € R.( we define the set

X(f,0) ={ze X||f(2)] < ¢}

Definition. The canonical (Tate) topology on Sp (A) is the topology generated by sets of
the form X (f,€). In particular, a subset & < X is open if and only if it is the union of sets
of the form X (fi,e1) n...n X(fr, €).

For simplicity we will write

X(f)=X(£,1)  and  X(fi,....f)) = X(fr) 0.0 X(fy)
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Lemma 2.4.1. For any affinoid K-space X = Sp(A), the canonical topology is generated by
all subsets X (f) with f varying in A, i.e., a subset U < Sp(A) is open if and only if it is a
union of sets of type X (f1,..., fr) = X(f).

Proof. Since |f(z)| € | (K)” |, we can write

X(f7€): U X(f>€/)

€' <e
ce|(K5) |

Because of Theorem 1.3.4, for all ¢ € | (Ka‘lg)X | we can find ¢ € |[K*| such that |c¢| = €*.

Thus,
X(f, €)= X(f€") = X(c'f)
m

We state now a technical Lemma which will help us in determining the openness of

subsets. The proof can be found in [Bos, Lemma 3.3.3.

Lemma 2.4.2. For an affinoid K-space X = Sp(A), consider an element f € A and a point
x € Sp(A) such that € = |f(x)|. Then, there is an element g € A satisfying g(x) = 0 such
that | f(y)| = € for ally € X(g). In other words, X(g) is an open neighborhood of x contained

in{ye X ||f(y)| = e}

Corollary 2.4.3. The following sets are open with respect to the canonical topology:

{weSp(A)] f(x) # 0}
{reSp(A)| fz) <€
{zeSp(A)| fz) =€}
{zeSp(A)] f(x) = ¢}

Lemma 2.4.4. Let ¢* : A — B be a morphism of affinoid K-algebras. We consider the
associated morphism ¢ 1Y = Sp(B) — Sp(A) = X. Then, for every choice fi,..., f. € A,

we have

o (X (fryo s ) =Y (0% (), -, 0% (fr)

In particular, ¢ is continuous with respect to the canonical topology.
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Proof. For each y € Y the map ¢* : B — A gives rise to a commutative diagram

B—2 A
| |

B/m¢(y) — A/my

which implies the result.

Definition. Let X be an affinoid K-space. A subset in X of the form

X(fiy.oonfr) ={ze X||filx)] <1}

is called a Weierstrass domain in X.

Definition. Let X be an affinoid K-space. A subset in X of the form

X(frooofrogrtgsh) = {we X | fi(a) < 1,1g;(2)| = 1}

is called a Laurent domain in X.

Definition. Let X be an affinoid K-space. A subset in X of the form

fl fr —{re (x T
X(%,...,%)—{ X | 1fi@)] < |fo(@))}

for functions fy, ..., f, € A without common zeros, is called a Rational domain in X.

Lemma 2.4.5. Weierstrass, Laurent and Rational domains are open in X = Sp(A) with

respect to the canonical topology. Further, the Weierstrass domains form a basis of this

topology.

This is a straightforward application of Lemma 2.4.2.

Definition. Let X = Sp(A) be an affinoid K-space. A subset Y < X is called an affinoid

subdomain of X if there exists a morphism of affinoid K-spaces

t: X' '=Sp(A") > Sp(A) =X

such that +(X’) € U and the following universal property holds: for any morphism of affinoid

K-spaces v : Y — X with v(Y) € U, there exists a unique morphism ' : Y — X’ such that

y=1t07"
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Y =Sp(B)
3!’//// \7‘
X'=8p(A') —— U< X =Sp(A)

Ezxample (Weierstrass domains are affinoid subdomains). Let us consider a Weierstrass do-

main

X(fr-o fe) ={re X[[fil) <1, i=1,...,r}

There is a natural morphism of affinoid K-algebras:

L*:A—’A<f17“"fT>:W

and associated to it a morphism of affinoid K-spaces:

LS (Alfie ) — Sp(4) = X

We want to show that it satisfies the universal property; let ¢ : Sp(B) =Y — X = Sp(A)
be a morphism of affinoid K-spaces such that ¢(Y) < X(fi,..., f.). There is a morphism
¢* : A — B corresponding to ¢. Now

oY) X(fr,.... fr) = [[o*(fi)]| <1 Vi

Indeed, from the inclusion A/mgy,) < B/m, of finite extensions of K we obtain the equality

0% (fi) ()| = [fi(&(y))| for each i.
Thus, there exists a morphism ¢* : A{(,...,(,) — B such that ¢¥*| , = ¢* and ¥*((;) =

¢*(fi), i.e, the morphism * factors through A{Cy, ..., /(G — fi)ie1,..0

Ezample (Laurent domains are affinoid subdomains). Let us consider a Laurent domain

X(froofrogi 0 ={ee X fi(@) <1, (@) = 1i=1,...7}
There is a natural morphism of affinoid K-algebras:

A5G &y 6s)

L*:A—nﬁlf,...,fr,g*l,...,g;1 =
i 1 / (G = fi 1 = 9i& )=
‘7:

and associated to it a morphism of affinoid K-spaces:

L:Sp(A<f17-"7fr;g;17"'7g;1>) —)SP(A) =X

Now, proving that this satisfies the universal property is similar to the previous example.
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Ezample (Rational domains are affinoid subdomains). A rational domain is a set of the form

fl fr ={re (o T
X<%,...,%)—{ X | i) < |fola))}

First of all we observe that fy cannot have zeros in X (%, e %) if ¢ was such a zero we

would have |f;(z0)| < |fo(z0)| = 0 and this contradicts the hypothesis that fy,. .., f. have no

common zeros. We observe that there is a morphism of K-affinoid algebras

& _ A<<17~'7<r>
fo (fi = foGi)iz1,..r

L*:A—>Aﬁ,...,
57

which gives a morphism of K-affinoid spaces ¢ : Sp (A<f—(1), c %>> — Sp (A) = X and again

this satisfies the universal property.
We present now a series of results about affinoid subdomains without proof. A complete

description can be found in [BGR, §7.2] and [Bos, §3.3].

Lemma 2.4.6. Let U be a subset of Sp(A) and let v+ : X' = Sp(A") — Sp(A) = X be a

K -affinoid map. Then

(1) ¢ is injective and it satisfies «(Sp (A')) = U. Thus, it induces a bijection of sets X' —— U.

(2) For xz € Sp(A’) and n € N, the map * : A — A’ induces an isomorphism of affinoid
K-algebras Ajmy,, ~ A'/m7.

(3) Forxe Sp(A'), we have m, = 1*(m,(,))A’.

Proposition 2.4.7. [Transitivity of Affinoid Subdomains| For an affinoid K -space X, con-
sider an affinoid subdomain U = X , and an affinoid subdomain V < U. Then V is an

affinoid subdomain in X as well.

Proposition 2.4.8. Let ¢ : Y — X be a morphism of affinoid K-spaces and let X' — X
be an affinoid subdomain. Then Y' = ¢~ (X') is an affinoid subdomain of Y, and there is a
unique morphism of affinoid K-spaces ¢' :Y' — X' such that the diagram

Y — X'

L

Y — X

18 commutative.
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In fact, the diagram is Cartesian in the sense that it characterizes Y' as the fiber product
X' xx Y. Further If X' is Weierstrass (respectively Laurent, Rational) domain in X, the

corresponding fact is true for Y’ as an affinoid subdomain of Y.

Proposition 2.4.9. Let X be an affinoid K -space and let U,V < X be affinoid subdomains.
Then U NV is an affinoid subdomain of X. IfU and V are Weierstrass, respectively Laurent

or rational domains, the same is true fort n'V.

Lemma 2.4.10. Let U — X be a morphism of affinoid K-spaces defining U as an affinoid
subdomain of X. Then U is open in X, and the canonical topology of U equals the canonical

topology of X restricted to U .

Theorem 2.4.11 (Gerritzen-Grauert). Let X be an affinoid K-space andU — X an affinoid

subdomain. Then U is a finite union of rational subdomains of X.

Note that, in general, the converse is not true: a counterexample can be found in [FvdP,
Remarks 4.1.5(7)].

Remark. In general, points {z} € X are not affinoid subdomains. Indeed, one can consider

the map {x} — X which gives rise to the K-algebras homomorphism
A— A/m,  m, is the ideal corresponding to x

The problem is that this homomorphism fails to satisfy the universal property. For instance

we can construct v : A — A/m2 and this does not factor through A — A/m,

2.5 Affinoid Functions

Now that we have defined a topology on an affinoid K-space X = Sp (A), we would like to
construct a sheaf on it. The idea is again to mimic algebraic geometry and to define a sheaf
of functions.

For any affinoid subdomain & < X we denote Ox(U) the corresponding K-affinoid al-
gebra. Given V an affinoid subdomain of & we know from Proposition 2.4.7 that V is an
affinoid subdomain of X and we have a canonical morphism of affinoid K-algebras given by

the universal property:

Ox(U) — Ox(V)

Remark. This map can be regarded as a sort of restriction map of affinoid functions on U to

affinoid functions on V.
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What we obtain is a presheaf of affinoid K-algebras on the category of affinoid subdomains
of X.

Definition. The presheaf Ox is called the presheaf of affinoid functions on X.

Definition. For every point x € X, the ring

Ox. = lim Ox (U)
Usz

where the limit runs over all the affinoid subdomains containing x, is called the stalk of Ox

at x. Every element f, € Oy, is called germ of f € Ox(U) at .

Proposition 2.5.1. Let x € X = Sp(A) be a point corresponding to the maximal ideal m,

of A= Ox(X). Then Ox is a local ring with mazimal ideal

meX,x = {fz € OX,:E ‘ fz(x) = O}

Proof. Let Y < X be an affinoid subdomain. From Lemma 2.4.6 we get an isomorphism
Ox(X)/m,Ox(X) ~ Ox(U)/m,Ox(U). Since the direct limit preserves exact sequences, we

obtain another isomorphism

Ox(X) _ Ox,
m:cOX(X) B m:cOX,:c

which shows that m,Ox , is a maximal ideal since Ox(X)/m,Ox(X) is a field.

Now to see the uniqueness of the maximal ideal, we consider f, € Ox,\m,;Ox,. This

germ is represented by f € Ox(U) for some affinoid subdomain x € Y < X. Hence, f(z) # 0
and, up to multiplication by a scalar, we may assume |f(z)| > 1. But then U(f™!) is a
Laurent affinoid subdomain of X containing x and the restriction of f to U(f~') is a unit in
OxU(f™Y)). Thus, f, is a unit in Ox, and m, Oy, is the unique maximal ideal of Ox,. O
Proposition 2.5.2. For any point x of an affinoid variety X, the local ring Ox , is Noethe-
rian

We conclude this section stating a result about local properties of affinoid varieties [BGR,
§7.3.2]. We say that an affinoid variety X is “reduced”, “normal” or “smooth” at a point

x € X, if the local ring Ox , is reduced, normal or regular, respectively.

Lemma 2.5.3. An affinoid space X = Sp(A) is reduced or normal if and only if A is reduced
or normal, respectively.
Let Sp(A") be an affinoid subdomain of X = Sp(A). Then if A is reduced or normal, A’

15 reduced or normal, respectively.

30



2.6 Tate’s Acyclicity Theorem

We let X be an affinoid K-space and Aff(X) be the category of affinoid subdomains of X;
here we take the morphisms to be the inclusions. We have seen that, in general, Oy (the
functor associating to an affinoid subdomain its affinoid algebra) is a presheaf. It is natural
to ask whether this is the maximum we can obtain or, under some conditions, we may expect

to obtain a sheaf.
Recall. A presheaf F on an affinoid K-space X is a sheaf if the sequence
0— "r(u) - Hie] ]:(MZ) - Hi,j F(Z/{z N uj)

f (fles,)
(fi)z‘e[ - (fi|uimz,{j - fj

U; \U; )i.i

is exact for every U € Aff(X) and every covering 4 = {U;} of U. A family of morphisms
(U; > U)ier in Aff(X) is a covering of U if ., U = U.

It is possible to prove that Oy satisfies the uniqueness condition, i.e., the first morphism
is injective ([Bos, Corollaries 4.1.4 and 4.1.5]):

Lemma 2.6.1. An affinoid function f on some affinoid K-space X is zero if and only if all

its germs f, € Ox, at points x € X are zero.

Lemma 2.6.2. Let X be an affinoid K-space and X = )

domains. Then the restriction maps Ox(X) — Ox(X;) define an injection

X, a covering by affinoid sub-

iel

Ox(X) = [ [Ox(X))

el

The problem is that, in general, Ox is far from satisfying the gluing condition (exactness

at Hie] ./—"(Z/{Z))

Definition. For a presheaf F on X and a covering & = {U;};c; of X by affinoid subdomains
U; < X, we say that F is a i-sheaf, if for all affinoid subdomains &/ < X the sequence above
applied to the covering U|,, = {U N U;}ier is exact.

The best result we can obtain is the following:

Theorem 2.6.3 (Tate). Let X be an affinoid K-space. The presheaf Ox of affinoid functions
is a -sheaf on X for all finite coverings b = {U; }icr of X by affinoid subdomains U; < X .
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The proof of this theorem relies on restricting computations on simpler and simpler cov-
erings. Here we mention just few intermediate lemmas (A complete discussion can be found

in [Bos, §4.3|).

Definition. If we have two coverings 4 = {U;};e; and U = {V;},e; of X by affinoid subdo-
mains, we say that 2 is a refinement of 4 if there exists a map 7 : J — I such that V; < U,

for any j € J.

Lemma 2.6.4. Let F be a presheaf on an affinoid K-space X and U,0 two coverings of X
where U is a refinement of . If F is a *V-sheaf then it is a iU-sheaf.

Lemma 2.6.5. Fvery affinoid covering 4 of X admits a rational covering as a refinement.
The next steps consists in reducing the discussion to the case of Laurent domains

Lemma 2.6.6. Let F be a presheaf on an affinoid K-space X. If F is a U-sheaf for all
Laurent coverings 4 of X, then it is a *U-sheaf for all affinoid coverings U of X.

Finally, to prove Tate’s Theorem it suffices to do computations for Laurent coverings.
Instead of Theorem 2.6.3, we want to focus on a slightly stronger result which is known as
Tate’s acyclicity Theorem; this will give us the opportunity to introduce the idea of Cech
cohomology. A detailed approach to Cech cohomology can be found in [Liu, §5.2| or [BGR,
§8.1 and 8.2].

Let X be an affinoid K-space, F a presheaf (of abelian groups for instance) on X and

= {U;}ies a finite covering of X made of affinoid subdomains. We denote
Z/{io,..‘,iq :uio M ...ﬂuz'q (ig,...,iq>€]q+1

and we set

clwF) = ] Fth.a)

(i05.-mig)ET9H1
An element of C?(4L, F) is called a g-cochain (of Ll in F). We say that a g-cochain is alternating
if, for every permutation o of the indices, fo(i).....o(i,) = sgn(o)fio,m,iq and fy,,..:, = 0 as soon
as two indices are equal. CI(, F) denotes the module of alternating g-cochains.

We naturally have two graded modules

C(U, F) =Pl F) Ca(U, F) = P CILU, F)

q=0 q=0
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Let us define a coboundary map d : C/(, F) — CIHL(U, F). If f e CI(4, F), then

It can be proved that d?> = 0. Thus, we obtain a complex, called complex of Cech cochains

on i with values in F.
CUULF): 00— COLLF) 2 M, F) —“ 0 2, F) — 2

We define the Cech cohomology groups as the cohomology groups of (C*(4, F),d*):

HI(W, F) = —I;e(rc(lffz) HI(, F) =

ker(d?)
Tm(dd ")

Lemma 2.6.7. The inclusion C3(U, F) < C* (U, F) induces an isomorphism
HI( F) ~ HI(W, F)
Corollary 2.6.8. If the covering i is made of n elements, we have
HIW F)=0 Vg=n

Definition. A covering U is called F-acyclic if the sequence
0 —— F — OO, F) —Ls CY(8l, F) —2 C2(1, F) —Ls .

is exact. Here € is the argumentation map sending f — (f, )ier. In other words 4 is
F-acyclic if F is a H-sheaf and H?(U, F) = 0 for all ¢ > 0.

Theorem 2.6.9 (Tate Acyclicity Theorem). Let X be an affinoid K-space and 4 a finite
covering of X by affinoid subdomains. Then U is acyclic with respect to the presheaf Ox of
affinoid functions on X.

Even if nowadays we refer to Theorem 2.6.9 as Tate’s Acyclicity Theorem, it is curious
to notice that while Tate did introduce the concept of an affinoid subspace, he did not even

formulate the question of whether an arbitrary finite covering by affinoid subspaces is acyclic
(|[Ked]). This was done by Gerritzen and Grauert.

Theorem 2.6.10. Let X = Sp(A) be an affinoid K-space, M an A-module, and i\ a finite
covering of X by affinoid subdomains. Then Al is acyclic with respect to the presheaf M&4Ox .
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Chapter 3
Rigid Spaces

In this chapter we introduce the notion of rigid spaces: these objects can be obtained gluing
some affinoid spaces together.

As we have seen, Tate’s acyclicity Theorem is the best result we can obtain. Thus, Ox
cannot be a sheaf unless we reduce the choices for affinoid coverings; for this purpose, we
start by defining Grothendieck topologies. In the second section we will see how to glue
affinoid K-spaces together using an approach similar to the one used in Algebraic geometry
to glue schemes.

In section 3 we will explain how to associate to a K-scheme a K rigid space.

We will then introduce some constructions we can do on rigid spaces such as cohomology
and reductions. Finally, we will give a brief look at the ideas of formal schemes and formal
geometry.

The main references for the chapter are [FvdP, Chapter 4], [BGR, Chapter 9|, [Bos,
Chapter 5|, |[Con| and [Ked|.

3.1 Grothendieck Topology

We have seen that Oy, the presheaf of affinoid functions on an affinoid K-space X endowed
with the canonical topology, will usually not be a sheaf. To solve this problem, we will try
to introduce a different definition of sheaf or, more precisely, of open cover. We present here

some generalities about Grothendieck topologies. A complete reference for this section is

[Art].
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Definition. A Grothendieck topology ¥ on X (or G-topology) consists of

(a) A category Cat(%); we can think of the objects in this category as the open subsets in
X. We call each object an admissible open (or T-open) subsets of X.

(b) A set Cov(%) of families (U; — U );er of morphism in Cat(T), called admissible coverings

(or FT-coverings).
Further, Cat(¥) and Cov(%) satisfy the following conditions
(i) IfU and V are in Cat(¥), then U NV is also an object in Cat(¥).
(ii) If ® : YV —> U is an isomorphism in Cat(¥), then ® € Cov(%).

(iii) If (U; — U)er and (Vi; — U;) jes, are in Cov(T), then the same is true for the composition
(Vij - u)ie[, jed;+

(iv) If (U; — U);er is an admissible covering and V — U is a morphism in Cat(T), then the
fiber products U; xy V exist in Cat (%), and (U; %y V — V) belongs to Cov(T).

A set X endowed with a Grothendieck topology ¥ will be called a G-topological space.

Definition. Let ¥ = (Cat(%), Cov(¥)) be a Grothendieck topology. A presheaf on ¥ with
values in Cat(¥) is a contravariant functor F : Cat(¥) — Sets. A presheaf F on ¥ is a sheaf

if the sequence
0— FU) — | [FWth) — [ [ F U xultty)

iel i

is exact for any admissible covering (U; — U)ic;.
Now we specialize the definition to the case of affinoid K-spaces.

Definition. Let X = Sp(A) be an affinoid K-space. Let Cat(T) be the category of affinoid
subdomains of X with the inclusions as morphisms. The set Cov(¥) consists of all finite
families (U; — U);er of inclusions of affinoid subdomains of X such that U = J,.;U;. We
call ¥ the weak Grothendieck topology on X.

By Tate’s Acyclicity Theorem we know that Oy is a sheaf for the weak Grothendieck
Topology.

There is a canonical way of enlarging and refining this topology:
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Definition. Let X be an affinoid K-space. The strong Grothendieck topology on X is
defined by:

(i) A subset U < X is an admissible open if there is a covering 4 = {U; };c; of U by affinoid
subdomains U; © X such that for all morphisms of affinoid K-spaces ¢ : W — X
satisfying ¢(W) < U, the covering {¢™'(U;)}ier of W admits a refinement that is a

finite covering of W by affinoid subdomains.

(ii) A covering (V; — V);e; of some admissible open subset V € X by admissible open sets
V; is called admissible if for each morphism of affinoid K-spaces ¢ : W — X satisfying
d(W) < U, the covering {¢1(U;)}ier of VW admits a refinement by finitely many affinoid

subdomains.
We need to prove that the strong G-topology is indeed a Grothendieck topology:

Proposition 3.1.1. Let X be an affinoid K-space. The strong Grothendieck topology is a

Grothendieck topology on X satisfying the following completeness conditions:
(GO) I and X are admissible opens.

(G1) If (U; — U)ier is an admissible covering of an admissible open subset U and V < U
18 a subset such that ¥V nU; is an admissible open for all i € I, then V is an admissible

open i X.

(G2) If (U; — U)ier is a covering of an admissible open set U = X by admissible open
subsets U; < X such that (U;)ier admits an admissible covering of U as refinement,

then (Us)ier 1is admissible too.

We already know, from Proposition 2.4.8, that every morphism of affinoid K-spaces ¢ :
X — Y is continuous with respect to the weak Grothendieck topology. The next result shows

that this is also true for the strong Grothendieck topology:

Proposition 3.1.2. Let ¢ : X — Y be a morphism of affinoid K-spaces. Then ¢ is contin-
uous with respect to the strong Grothendieck topologies on X and Y .

We also want to mention that the strong G-topology is related to the Zariski topology in

this sense:

Lemma 3.1.3. Let X be an affinoid K-space. Then, the strong Grothendieck topology on X
is finer than the Zariski topology.
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We have seen that Oy, the presheaf of affinoid functions, is a sheaf for the weak G-
topology. Further, we have observed that many of the properties of the weak G-topology are
inherited by the strong one. It is therefore natural to ask whether this construction preserves

the structure of sheaves or not. For a complete approach one can refer to [BGR, §9.2].

Proposition 3.1.4. Let X be an affinoid K-space. Then, any sheaf F on X with re-
spect to the weak Grothendieck topology admits a unique extension with respect to the strong

Grothendieck topology.

The proof consists in studying the sheafification of some extension of the sheaf with
respect to the strong G-topology and then to prove that any other extension is isomorphic to
it. The idea relies on the fact that the strong Grothendieck topology ¥ is slightly finer than
the weak one ¥, which means that the admissible opens of ¥,, form a basis for ¥ and each
T-covering admits a T-covering as a refinement [Bos, §5.2].

This last result shows that there is a unique way to extend the sheaf Oy in the weak
Grothendieck topology to the strong Grothendieck topology. The resulting sheaf is called the

sheaf of rigid analytic functions on X and it is denoted by Ox as well.

3.2 Rigid Analytic Spaces

Finally, we are ready to give the definition of general rigid spaces.

Definition. A G-ringed K-space is a pair (X, Ox) consisting of a G-topological space X and
a sheaf of K-algebras Ox on X.

Definition. A locally G-ringed space is a G-ringed space (X, Ox) over K such that for every
x € X, the stalk Ox, is a local ring.

The trivial example is the case of affinoid K-spaces. If X = Sp (A) is an affinoid space,
then we can see X as a G-ringed K-space if we endow it with the strong Grothendieck topology
and we consider the sheaf of rigid analytic functions Ox. Further, thanks to Proposition 2.5.1,

we conclude that (Sp (A), Ogp(a)) is a locally G-ringed space over K.

Definition. A morphism of G-ringed spaces over K is a pair
(¢7 ¢*) : <X7 OX) - (Y7 OY)

where ¢ is a continuous map and ¢* is a collection of K-algebra homomorphisms ¢35 :
Oy (V) — Ox(¢~1(V)), for each admissible open V < Y, such that this family is compatible

with restriction homomorphisms induced by inclusions W < V.
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In other words, we want to have a commutative diagram:

&

Oy (V) —— Ox(¢71(V))

| |

Oy(W) —— Oy (67! (W)

S
Taking the direct limit, one gets a ring homomorphism
gb;k . Oy@(@ —> OXJ Vee X

Definition. The pair (¢, ¢*) is a morphism of locally G-ringed spaces if (X, Ox) and (Y, Oy)

are locally G-ringed spaces and ¢ is a map of local rings for each = € X.

It is more or less clear that we are somehow reconstructing the theory of schemes that is
used in algebraic geometry in the non-archimedean setting.

Coming back to our example, we have seen that affinoid spaces have a natural structure
of locally G-ringed spaces. The problem now is how to extend the notion of morphisms
of K-affinoid spaces to morphisms of locally G-ringed spaces over K. Let ¢ : X — Y be
a morphism of affinoid K-spaces. We know from Proposition 3.1.2 that ¢ is continuous
and then we can take it as first component. We only have to describe how ¢* acts. If V
is an affinoid subdomain of Y, we know from Proposition 2.4.8 that ¢~!(}) is an affinoid

subdomain of X and ¢ induces a unique affinoid map ¢y : ¢~ (V) — V. Now we denote
¢% : Oy (V) = Ox (97 (V)

the associated map of affinoid algebras.
Since affinoid subdomains form a basis for the strong Grothendieck topology, we can now
extend the construction to all the admissible open subsets of Y using admissible coverings;

namely, if U = {V;}; is an affinoid covering of an admissible open V € Y, then

Vfe OY(V) Qb;k(f)’d),l(vz) = gbﬁ(fh}l) iel

Proposition 3.2.1. If X and Y are affinoid K-spaces, there is a one-to-one correspondence
between K -affinoid maps X — Y and maps of locally G-ringed spaces (X,O0x) — (Y, Oy).
In other words, the functor from the category of K-affinoid spaces to the category of locally
G-ringed spaces 1s fully faithful.
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This result allows us to see the category of affinoid K-spaces as a subcategory of the
category of locally G-ringed spaces. In particular, we will use this fact to think of rigid
spaces as locally G-ringed spaces that, locally, are affinoid spaces in a similar fashion as

schemes that locally are affine schemes.
Definition. A rigid analytic K-space is a locally G-ringed space (X, Ox) over K such that

1. The G-topology of X satisfies conditions (GO), (G1) and (G2) of Proposition 3.1.1.

2. X admits an admissible covering (X;);c; where (Xi, Ox| Xi) is an affinoid K-space for all

rel.
A morphism of Rigid analytic spaces is a morphism of locally G-ringed spaces.

Fxample. Any admissible open subset of an affinoid K-space X is a rigid space. This follows
immediately from the axioms of Grothendieck topologies (|Con, Example 2.4.2|)

Proposition 3.2.2. Let X be a rigid K-space and'Y an affinoid K-space. Then the canonical

map

Hom(X,Y) — Hom(Oy(Y),Ox(X))
¢ — oF
15 bijective.
We present here the general technique to glue rigid spaces together:
Proposition 3.2.3 (Pasting Analytic Spaces). Suppose that the following data are given:
(i) Rigid K-spaces (X;)ier-
(ii) Open subspaces X;; < X; and isomorphisms ¢; ; : X;; — X;,;, for alli,je I
Assume that the following conditions hold:
(a) ;00 =1d X;; =X, and ¢;; = Id.
(b) The map ¢;; induces isomorphisms ¢; i @ Xij; N Xiy — X;i 0 X, such that ¢; 5, =
Grjio iy foralli,jlel.

Then the X;’s can be glued by identifying X, ; with X;; via ¢;; to yield a rigid K-space X
admitting (X;)ier as an admissible covering. More precisely, there exists a rigid K-space
X with an admissible covering (X))ic; and isomorphisms ¢; : X; — X! giving rise to

isomorphisms ; ; : X; j — X[ n X} such that the diagram
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e

il Xz/ N X]/

X

Jit

commutes for all v, j,€ I; the analytic space X is unique up to isomorphism.

Corollary 3.2.4. For two rigid K-spaces X andY over Z, the fiber product X x ;Y can be

constructed.

Proof. Since we know how to construct the fiber product between affinoid K-spaces (Propo-

sition 2.3.4), we can work locally and then glue together the affinoid spaces. O]

3.3 Analytification

In this section we will describe how to associate (in a functorial way) to any K-scheme of
locally finite type X a rigid analytic space X*® called the rigid analytification of X. Some
good references are [Bos, §5.4|, [BGR, §9.3.4], [Tia, §2.3] and |Berl, §0.3]. Some examples
can also be found in [Con, §2.4|.

We start by presenting how to construct a rigid analytic analogue for the n-dimensional
affine space over K.

Choose a constant ¢ € K with |¢| > 1. For i € N U {0} we denote by A; the K-algebra of

power series

Z&VCVEK[[C]] where ¢ = (1, .-, ()

n

converging on the ball of center 0 and radius |c|' in (K™#)
Ai=Top={D 0" € K[(] | limp¥la,| = 0} = K(cCry €70

where p = (||, ..., |c[").

The A;’s occur in a decreasing sequence
Ay A DAy o ... o K[(]

and they are all affinoid algebras. There is a canonical isomorphism A; = A;,{c™'() and
hence, we have an inclusion A;;; — A; inducing a map of K-affinoid spaces Sp (4;) —
Sp (A;+1) which identifies Sp (A;) with an affinoid subdomain of Sp (A4;41).
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This yields an increasing sequence of affinoid subdomains

B" = Sp(Ap) < Sp(A;) — Sp(A4z) — ...
I I I
Xo X X5
Set X ; = Xningijy and ¢, : X;; — Xj; to be the identity map. Now we apply Proposition
3.2.3 and we glue together the X;’s. The resulting space is a rigid analytic space which is
not an affinoid. We denote it by

wyE = | B 0, Je)

Remark. Observe that the construction is independent of the choice of c.

Now we would like to generalize this process to arbitrary algebraic varieties over K.

Let B be a finitely generated K-algebra: B = K[(1,...,(,]/a where a € K[(1,...,(,] is
an ideal. Using the notation introduced before, we get a sequence of K-algebras homomor-
phisms

Apg/aAy — AjJaA; «— AyJady «— Az/ads — ... — B

which yields an increasing sequence of affinoid subdomains
Sp (Ao/adg) — Sp (A1/ad;) — Sp (Az/ads) — Sp (Az/ad;) — ...

One can construct a rigid analytic space X™8 by gluing together these affinoids:

X8 = | JSp(A,/ad,)

r=0
Remark. X™& admits {Sp (A4,/aA,)},en as covering.

Definition. Let (X,Ox) be a K-scheme of locally finite type. A rigid analytification
of (X,0x) is a rigid K-space (X rig OXrig) together with a morphism of locally G-ringed
K-spaces (i,0*) : (Xﬁg,(’)xrig) —> (X, Oyx) satisfying the following universal property:
given a rigid K-space (Y,Oy) and a morphism of locally G-ringed K-spaces (Y,0Oy) —
(X, Ox), the latter factors through (¢, ¢*) via a unique morphism of rigid K-spaces (Y, Oy) —
(X", Oxrie).

Proposition 3.3.1. Let X and Y be two K-schemes of locally finite type.

1. X admits a unique structure of rigid analytic space X™ on X satisfying the following

properties:
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(a) The underlying map of sets identifies the points of X™ with the closed points of
X.

(b) For every open subset U = X (respectively open covering of U), U n X™ is an
admissible open of X™ (resp. an admissible covering of U < X™).
(c) For every affine open subsetU < X, the structure of rigid space induced on U N X"
coincide with the one of U™.
2. The rigid analytification defines a functor from the category of K-schemes of locally finite
type to the category of rigid K-spaces.

Ezample (Projective space). ]P’%rig as a rigid analytic variety can be obtained by pasting n
copies of the rigid affine A28, Then P28 is covered by n + 1 copies of B} -balls of radius

one-; these are isomorphic to

XizSp<K<%,...,%> i=0,...,n

where we identify (;/(; with the constant 1.

Ezample (Elliptic curves). Given an elliptic curve € over K with split multiplicative reduction

(7(€) > 1), Tate showed that there exists a unique ¢ € K* with |¢| < 1 such that
grig ~ Gm/qZ

and every such ¢ occurs. Here G,, is the multiplicative group scheme over K which can be
cut out of A? ([BGR, Example 9.3.4(4)] and [FvdP, §5.1]).

3.4 Coherent Sheaves

In this section we provide a brief description of coherent sheaves on rigid spaces. We’ll mainly
follow [FvdP, §4.4-4.5]|.

Let X = (X,%x,Ox) be a rigid space provided with the Grothendieck topology. It has
an admissible affinoid covering {X;};c; and we can use it to construct sheaves on X by gluing

sheaves on X;. Suppose the following data are given:

a) On each X; a sheaf F;.
b) For every i, j, an isomorphism of sheaves v); ; : ]—"AXU — ]:"‘Xu where X, ; = X; n Xj.

c) Forevery i,j,k eI, ¥ ;00 =iy on X, .
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Then there exist a (unique up to isomorphism) sheaf F on X and isomorphisms

P }"\Xi — JF; such that 1); ; 0 ; = 1,

Definition. A sheaf of Ox-modules F on a rigid space X is called coherent if there exist an

admissible affinoid covering {X;};c; of X and, for every i € I, a finitely generated Ox (X;)-

module M; such that the restrictions of F to X; is isomorphic (as a sheaf of Ox-modules) to
M where M(U) = M; ®oy (x,) Ox (U)

Definition. The sheaf F is called locally free of rank r (or rigid vector bundle of rank r)
if the admissible affinoid covering {X;} can be chosen such that each M; is a free Ox(X;)

module of rank r.

Theorem 3.4.1 (Kiehl). For every coherent sheaf F on an affinoid space X = Sp(A) there
is a finitely generated A-module M such that F is isomorphic to the sheaf of Ox-modules M.

Definition. We present some definitions relative to morphism of rigid spaces:

A morphism of rigid K-spaces ¢ : X — Y is called a closed immersion if there exists
an admissible affinoid covering {Y;};c; such that, for all ¢ € I, the induced morphism
¢; : d~1(Y;) — Y; is a closed immersion of affinoid K-spaces, i.e., ¢; is a morphism of
affinoid spaces (for instance Y; = Sp (B;) and ¢~ '(Y;) = Sp (4;)), and the corresponding

morphism of affinoid K-algebras B; — A; is an epimorphism.

A rigid K-space X is called quasi-compact if it admits a finite admissible affinoid
covering. A morphism of rigid K-spaces is called quasi-compact if for each quasi-

compact open subspace Yy € Y, its inverse image ¢~ '(Y}) is quasi-compact.

A morphism of rigid K-spaces ¢ : X — Y is called separated (resp. quasi- separated) if
the diagonal morphism A : X — X xy X is a closed immersion (resp. a quasi-compact

morphism).

A rigid K-space X is called separated (resp. quasi-separated) if the structural morphism
X — Sp (K) is separated (resp. quasi-separated).

A morphism f : X — Y of rigid spaces is said to be finite if Y has an admissible affinoid
covering {Y;};cr such that each f~1(Y;) is an affinoid and Oy (Y;) — Ox(f~1(V})) is a

finite morphism of affinoid algebras.
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Definition. A morphism of rigid K-spaces ¢ : Y — X is called smooth if there exist
admissible affinoid coverings {Y;}ic; and {X;}ic; of Y and X respectively, such that

(i) f(¥i) € X
(ii) If A; = Ox(X;) and B; = Oy(Y;), then there exist an isomorphism

AT T
BZ (flvafm)

det (%)
T, 1<,k<m

is invertible in B;. If, further, m = n, then ¢ is said to be étale.

such that

Definition. A rigid K-space X is said to be connected if one of the following equivalent

conditions hold:
(a) Ox(X) has no nilpotent elements outside 0 and 1.
(b) There is no admissible covering of X consisting of two disjoint opens.

We conclude this section by mentioning that there is a technique to associate to a rigid
space X a reduced rigid space X™ ([FvdP, Exercise 4.6.2|). In general, this is similar to the
one used to associate to a scheme its reduced scheme (|Liu, §2.4.1]). If X = (X,Tx,Ox) is
a rigid space, then

X = (X, Tx, Ox/N)

where N' = Ox is a coherent sheaf of ideals on X such that for every admissible affinoid
U< X, N(U) is the ideal of nilpotent elements of Ox (U).

Proposition 3.4.2. X" has a structure of rigid space and it satisfies the following universal
property: for every morphism g :'Y — X with Y reduced, there exists a unique morphism

h:Y — X" such that g = 1o h where v : X™ — X is the canonical morphism.
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3.5 Analytic Reductions

In this section we want to attach to a rigid K-space X its analytic reduction, i.e., a reduced
algebraic variety over the residue field k. In order to be able to do that we recall some
definitions. If X = Sp (A) is an affinoid K-space, then we denote by

A? ={ae A [la] <1}

the Ok-algebra of functions over X with norm less than or equal to 1. It contains the ideal
A” ={ae Al [la]| <1}

Finally, we denote by A the quotient A°/A°. The latter is a finitely generated k-algebra

which turns out to be reduced since the spectral norm is power multiplicative.

Definition. The reduced affine k-scheme X = Max(A) is called the canonical reduction of
the affinoid K-space X.

Remark. We are using the set of maximal ideals instead of the prime spectrum because this

allows us to define a canonical reduction map
Red = Red$ : X — X

defined by
r — ker(A — A/m,)

where we recall that A/m, is a finite extension of K and, therefore, it carries a unique
valuation extending the one of K. The map whose kernel appears in the definition of Red

is the reduction of the quotient map A — A/m,.
Proposition 3.5.1. The map Redy is surjective.

Proposition 3.5.2. The preimage (Reds)™" (U) of a Zariski open subset U of X~ is an

admissible open in X.

Sketch of Proof. If f € A° with | f|| = 1, then f ¢ Red% (=) if and only if |f(z)| = 1. This

means that
(Red$y) ™" (Max(Ay)) = X G)
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3.6 Towards Formal Geometry

So far, we have worked over the field K. The idea of formal rigid geometry is to replace
K by its ring of integers Ok. In this way we obtain Og-algebras that can be regarded as
Ox-models for affinoid K-algebras.

The idea is that, taking generic fibers (tensoring over Ok with K), one should obtain
affinoid K-algebras.

In this section we will try to follow a more general approach working with general topo-
logical rings. Some good references are [Berl, §0], [Bos, Chapter 7|, [Tia, Chapter 3|, [FvdP,
§4.8], [Con, §3.3] and |Liit, Chapter 3|.

Let’s consider a topological ring A.

Definition. We say that A is adic if the topology on A is a-adic for some ideal a = A and
A is separated and complete for this topology.
The ideal a is usually called the ideal of definition.

Remark. The first property is equivalent to: for any a € A, (a + a"),>0 form a basis of open
neighborhoods of a € A. The second request means that A = Liﬂln A/T".
One can associate to A an affine formal scheme

X = Spf(A) = lim Spec(A/a™)

n

One can see that X, as a topological space, consists of all open prime ideals p < A. An ideal

p © A is open if and only if it contains a power of a which means that Spf(.A) is canonically
identified with Spec(A/a).

In this way the Zariski topology on Spec(.A/a) induces a topology on Spf(.A): for any
f e A, we denote D(f) = {x € Spf(A) | f(x) # 0} = {p < A|p prime, [ ¢ p}.

Then

D(f) — AU = lim (Afa™) [£71]

defines a presheaf O of topological rings on the category of subsets D(f) < Spf(A), f € A.
Lemma 3.6.1. O is, in fact, a sheaf.

Proof. Let D(f;) be an open covering of D(f). The sequence
0—>A/a H.A/Cl -_ —’H»A/a fzf] ]
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is exact. Now we use the fact that the inverse limit is left exact. If we apply lim we obtain

another left exact sequence
0— A —TTAGD — T[AEHD

which implies that O is a sheaf. O

For any x € X = Spf(A), let p, < A be the corresponding open prime ideal. We define

Ox. = lim A(f™)
zeD(f)

The following Lemma ([Tia, p. 3.1.2]) tells us that our construction is the correct one:
Lemma 3.6.2. The ring Ox , is local with mazimal ideal p,Ox ;.

Definition. A formal scheme is a locally topologically ringed space (X, Ox) such that every
point z € X admits an open neighborhood U such that (U, Ox]|,,) is isomorphic to an affine
formal scheme Spf(.A) for some adic ring .A.

Now we fix a non-archimedean field K and we consider its ring of integers Q. We also

choose an element 7 in Ok such that 0 < || < 1. Define
OK<C17 B Cn> = mOK/<Wn) [Cla B Cn]

This is a separated complete m-adic Og-algebra and it can be regarded as the integral model
of the Tate algebra K{(1,..., ()

Remark. If O is not discrete valued, then Og{((y, ..., (,) is not Noetherian.
Definition. We say that a topological Ok-algebra A is

i. of topologically finite type if A is isomorphic to Ox{(, . . ., (,)/b, equipped with the 7-adic
topology where b € Ox{((y,...,(,) is an ideal;

ii. of topologically finite presentation if, in addition to i., the ideal b is finitely generated;
iii. admissible if A is topologically of finite presentation and A is flat over Q.

We present here a series of results that might be useful in the proceeding The proofs can
be found in [Tia, §3.2].
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Theorem 3.6.3. Let A be an Og-algebra of topologically finite type, and M be a finitely

generated A-module which is flat over Ok . Then, M is an A-module of finite presentation.

Corollary 3.6.4. Let A be an Ok-algebra of topologically finite type. If A is flat over O,
then A is of topologically finite presentation over Ok.

Proposition 3.6.5. Let A be an Og-algebra of topologically finite type and M be a finite
A-module. Then M is w-adic separated and complete.

Corollary 3.6.6. Every Og-algebra of topologically finite type is separated and complete for
the m-adic topology.

3.7 Analytic Spaces and Formal Schemes

To every formal scheme X of locally finite type over Ok one can associate a rigid analytic
K-space X thanks to the work of Raynaud (|Berl, §0.2|).

Let X = Spf(A) a formal affine Og-scheme of finite type. Since A is of topologically finite
type, A® K is a Tate algebra and, then, the affinoid K-space X can be defined by:

Xk = Sp (A®o, K)

Definition. If X is an admissible formal Og-scheme, a rigid point of X is a morphism

j Y — X of admissible formal schemes such that j is a closed immersion and
Y = Spf(B)

with B a local integral domain of dimension 1.

Two rigid points j; : Yy — X and jo : Vo — X are said to be equivalent if there exists an
isomorphism ¢ : )y — Y, such that j; = js 0.

We denote Pts,i;(X) the set of isomorphism classes of rigid points on X.

Lemma 3.7.1. Let X = Spf(A) be an affine admissible formal O -scheme. Then there exist

canonical bijections between the following sets of points:
(a) Isomorphism classes of rigid points on X.
(b) Non open prime ideals p < A such that dim(A/p) = 1.

(c) Mazimal ideals in A Rp,. K.
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Moreover, the bijections between the three sets of points are given as follows:

1. Given a rigid point j : Y = SpfiB) — Spf(A) defined by a surjection j* : A — B, we
associate to j the prime ideal p = ker(j*) which is a point of type (b).

2. Given a non open prime ideal p = A, we associate to it the prime ideal pr = p o, K <
A®o,. K, which is a mazimal ideal of A Qp,, K.

3. Given a mazrimal ideal m € AQo, K, let p = m n A; we associate to it the canonical

morphism Spf(A/p) — Spf(A).

Proof. Firstly, we focus on the map defined in 1:

Pts,ig(X) — {p < A|p non open, dim (A/p) =1}
(4:Sp(B) = X) — ker(j¥)

Clearly ker(j*) is a prime ideal and it is not open since B is flat over O.

Now let’s have a look at the map defined in 2.

{p < A|p non open, dim (A/p) =1} — Sp (AR, K)
p—pr =pQox K

we need to prove that pg is a maximal ideal. Suppose that there is a prime ideal q < A with
p < q. Then q is a maximal ideal (since dim(A/p) = 1). Furthermore, q must be open in A
(otherwise we would have 74 + q = A for m € Ok, 0 < || < 1, which yields an equation of
type 1 — am = ¢ for some a € A, q € q and this would imply the invertibility of ¢ which is a
contradiction). It follows that px is a maximal ideal in A ®p, K.

Finally,

Sp (A®o, K) — Ptsi(X)
m — (j:Spf(A/p) — Spf(A)) p=mnA

We have a natural inclusion B = A/p — K' = (A®o, K)/m where K’ is a finite extension
of K. We denote by B the image of A in K’. It is possible to prove that O is the integral
closure of Ok in K’ and B < Ok (|Bos, Lemma 8.3(6)|). It follows that A — B gives rise to
a rigid point Spf(B) — Spf(.A) and the quotient A/p is isomorphic to B.

All these maps are injective by construction and, if we compose them, we get the identity

on Pts,ig(X). This is enough to prove that they are all bijections. O
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Corollary 3.7.2. If X is a formal Og-scheme, then there is a bijection of sets
Pts,;y(X) «— Xk

Remark. In general, if X is an arbitrary admissible formal Og-scheme, we can construct Xg
by gluing together the rigid spaces associated to X; = Spf(.A;) where the X;’s form a formal

affine covering of X.

Let j : Y = Spf(B) — X be a rigid point. It induces a closed immersion
jk . Spec(B ®@K k‘) - .’fk = %@OK k

Since B is a local integral domain, Spec(B ®o,. k) consists only of a single point. Thus, the
image ji is a well-defined closed point on the special fiber Xy, usually called the specialization
of j. Using the previous corollary, we conclude that there exists a canonical specialization
map

Sp }CK I }:kz
Proposition 3.7.3. Let X and X' be two formal Og-schemes of locally finite presentation.

(a) There exists a unique structure of rigid analytic space on X satisfying the following

properties:

(i) The inverse image of every open (resp. open covering) of Xy is an admissible open

(resp. admissible covering) of Xk.

(ii) For every open affine subscheme U < X with reduction U, < Xi, the structure
induced on Ux = sp~'(Uy,) by Xx is the same as the one induced by U, 1i.e.,
sp~H(Uy) = U™.

(b) The construction of Xk is functorial and, for every morphism of formal Ok-schemes

o:X — X', the following diagram commutes:

aKl lak

! /
%K sp %k

(c) This functorial construction preserves open and closed immersions.

The space Xk is called generic fiber of X.
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We conclude this section with few facts about the generic fiber ([Berl, Remarks 0.2.4]).
Remark. The rigid analytic space X is quasi-separated.
Remark. 1f X is of finite type, then Xx is quasi-compact.

Remark. X depends only on the biggest formal flat subscheme of X.
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Chapter 4
p-adic Abelian Integrals

In this chapter we introduce the theory of p-adic integration developed by Coleman in [Coll]
and [Col3].

In the first section we will try to give an intuition of the methods used starting from a
classical example; we will then review (Sections 4.2 - 4.4) some basic notions required to fully
understand the ideas of Coleman. Finally, in Section 4.5 we will prove the main Theorem of
Coleman’s integration.

The main references are the original articles by Coleman: in [Coll] we can find an explicit
theory of p-adic integrals on P!, in [Col3] (which is the article we will mainly follow) we have
a general theory of p-adic integrals for differentials of the II kind on varieties of any dimension
having good reduction at p and, finally, in [CdS]| the theory is extended to arbitrary forms
on curves with good reduction.

In addition, one can refer to |Bre, §1.2|, for a more expository treatise of the theory, or
[Bes].

4.1 Battle Plan

We give here a naive description of the Coleman theory referring to the following sections
for all the details.
Suppose that K is a complete subfield of C, and suppose we are give a variety X over K

with good reduction and a closed holomorphic one form w on X.

Q
| e
P

Question. How can we define

for P,Q e X(K) or X(K9)?
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More in general, we would like to construct a coherent Theory of integration on X, i.e.,

we would like to have

Q R R
e Additivity at points: J w + f w = J w.
P Q P

Q Q Q
e Linearity on forms: A\; f wy + )\ZJ Wy = f (Aw1 + Aows).
P P P

e Change of variables: if ® : X — X’ is a morphism with some “good properties” and w’

Q (Q)
is a one form on X', then f P*(W') = J W'
P ®(P)

Q
e Fundamental Theorem of Calculus: J df = f(Q) — f(P).
P

Figure 2: Integration path from P to @)

A first attempt can be mimicking the standard integration theory developed for varieties over

C:

1) Cover X with (in the case of rigid spaces) affinoid subdomains.
2) Integrate on each affinoid.

3) Adjust the constant of integration and do analytic continuation.

We have seen in the previous chapter that point 1 cause non problem. Also point 3 is not
an issue since affinoids have plenty of intersections. The problem is that there is no natural
way of integrating on affinoids.

We present here a classical example following [Bes|.
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Figure 3: Affinoid Covering

Ezample. Suppose we are given the space X = {z € K | |z|] = 1} where K is a complete

subfield of C,. Now consider the form w = dz/z. Ideally, we would like to obtain the

logarithmic function log(z) as primitive of w.
e Choose a € X.

e Expand w in power series centered at a:

dla+z)  dv 1 dz :éZ(*l)’%E)ndx

a+x a+x al+

e Integrate term by term:

+00 n
B (_1) N\ n+l
Fw(o‘”)‘énH(a) e

which converges for |z| < 1 |Gou, §4.5].

Now the strategy in C would be to play with the constant C doing analytic continuation:
cover X with open disks and adjust C so that the two expansions agree on the intersection.
In the p-adic word this is not possible since two open disks are either disjoint or one contained
in the other (Proposition 1.1.1).

Our first idea yields nothing. Trying to solve this problem, we can cover our affinoid by

residue disks. We have seen that there is a way of integrating on residue disks:
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Figure 4: Covering of O by residue disks

Back to the example. We recall that « € X = {z € K ||z| = 1} and w = dz/z. 2z = a + z,
|z] <1
F,(a+z) =log(a+z) + C, = log(1 + 2) + Cq

Unfortunately, the price we pay is the loss of intersections since residue disks are com-
pletely disjoint. Here intervenes Coleman: his solution consists in using Frobenius endomor-

phims to connect integrals in disjoint residue disks.

Figure 5: Continuation along Frobenius between two residue disks

Back to the example. If X = {z € K ||z| = 1}, we can take

O: X — X

z— 2P
Coleman’s idea is to use the fact that ®*w = pw to find a relation between integrals:

O*F, = pF, + C
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Supposing C = 0 (we can just adjust F,, by constants), we get
Fou(2") = pFu(2)
Now, if o satisfies o = « (we will see that this is reasonable), then
F. (o) = F,(a”") = p*F(a) = F.(a) =0

This determines F,, on the disk |z — a| < 1 and therefore on the whole X.

In this first section we have assumed without proving many facts (for instance the exis-
tence of these Frobenius endomorphisms or of some points fixed by powers of Frobenius); in

the following sections we will fix all the details.

4.2 Lifting Morphisms

Let X be an affinoid over K (our complete subfield of C,) and A(X) be the algebra of rigid

analytic functions on X.
Notation. Here we follow the notation in [Col3|: A(X) := Ox(X).
Consider, as in Section 3.5, Ay(X) = {f € A(X) | ||f]| < 1} with respect to the spectral

seminorm || ||. We recall that, if X is reduced, then || || is, in fact, a norm (Corollary 2.2.9
and Lemma 2.5.3) and A(X) is complete with respect to this norm (Theorem 2.2.10).

We define (X
Gy AlX)

(%)= pAy(X)

X = Spec(A(X))
If Ag(X) is of topologically finite type, then X is a scheme of finite type over F = O /p.

Definition. We say that X has good reduction if Ay(X) is of topologically finite type over

Ok and X is smooth over F (Xpai is regular).

We have a natural reduction map

red : X — X (F)
r— T =120 Ag(X) mod pAy(X)

and if we extend the scalars, we get redc, : Xc, — X (F'®).
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Lemma 4.2.1 ([Berl, Lemma 1.1.1]). If u e X(F™), then red *(u) (residue class in X ) has

a natural structure of rigid space over C,.

Let us consider a morphism of affinoid K-spaces ¢ : X — Y; we denote (13 - X - Y its
reduction. Viceversa, if ¢ : X — Y is a morphism over F, we say that ¢ : X — Y is a lifting

of 4 if ¥ = 4p.

Theorem 4.2.2.A. Let K be discretely valued or K = C,. Suppose that

W —

X
| o | g
Z

Y ——

1s a commutative diagram of reduced K-affinoids such that W — Y 1is a closed immersion
(with the meaning of Section 4.4) and X is smooth over Z. If h : X — Y is a morphism

commuting with the reduction of (%), then there exists a lift h : Y — X commuting with

(k).

W— X W—X
[ — 1271
vz y s 7

We will prove an analogue of Theorem 4.2.2.A for affinoid algebras (recall that in section
2.3 we have seen how to go back a forth from maps of affinoid algebras and morphisms of

affinoid spaces).

Definition. A Tate Og-algebra is an Og-algebra of the form

Or{C1y. .., (/T

for some finitely generated ideal J of Ok {((y, ..., (), the completion of Ok[(y, ..., (..
Let A be a Tate Of-algebra and set A = A/pA.

Definition. The annihilator in A of r € O is
Anny(r) = {ae A|ra =0}

Definition. Given a homomorphism of Tate Og-algebras A — B, we say that B is Og-
torsion free over A if
Anng(r) = Anna(r)- B Vre Og
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Definition. We say that B is formally smooth over A if B is smooth over A and B is

Og-torsion free over A.

Theorem 4.2.2.B. Let K be discretely valued or K = C,,. Suppose that

(')

Q— "
=]
~—

is a commutative diagram of Tate O-algebras such that C — D is surjective and B is
formally smooth over A. If s : B — C is a homomorphism commuting with the reduction
of ('), then there exists a lift s : B — C which makes the following into a commutative

diagram:

|

D B

C+— A

x

Proof. The proof consists of several lemmas patched together.

Lemma 4.2.3. If ¢ : A — B is a surjective homomorphism of Tate Og-algebras, then its

kernel is finitely generated.

Proof. Without loss of generality we can assume that A = Og{(y,...,(n) (A is a quotient
of Ox{(y,...,(my). By hypothesis, we know that B is a quotient of Ox{((1,...,(,) by some
finitely generated ideal J:

Consider now the following diagram

OK<C17 s 7Cn>
/ l”
OK<C17 AR 7Cm> T) B
where h @ Og{(i,..., () — Og{(y,...,(ny makes it into a commutative diagram. Now,

consider (j,...,(, to be elements in Ok{((y,...,(,) such that 7(¢!) = ¥(() for any ¢ =
1,....m.
Then, the kernel of 1 is generated by h(J) together with the set {¢; — h(¢)};. In

conclusion, this kernel is finitely generated. O]
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Remark. Since B is of topologically finite type over Ok then it is so over A. In particular,

this implies that there exists an integer ¢ and a surjective map

Ay, Gy —> B

which, together with the previous lemma, gives us an isomorphism of A-algebras

A<<1>"'7Ct>/(glv"'7gs) ~ B for gl?"'7986A<Cl7'--7<t>

We denote by G the column vector (gi;...;9s) € (A, ..., ¢))°. Let g be the composition:
g: A, ...,G)—>B—D

and V be the map V : A, » B — D where A, = Ay, G
We notice that, in the hypothesis of Theorem 4.2.2.B, the map C — Dis surjective; this
implies that C' — D is surjective and, therefore, D = C'/J for some ideal J.

Lemma 4.2.4. There exists a map V : A, — C lifting V such that V = g mod 7.

g

At > B >D:C/j
Lol
A, s B s D
\/r
1%

Proof. Observe that we are in the following situation:

Find g/ such that

+— B o such o D B
TR NG

A

Q— T
&

Where ¢’ is defined in the following way: consider the vector ¢ = ((y,...,(;) and set ¢'({) to
be any lift of g(¢) (i-e., ¢'(¢) = g(¢) mod J); then extend to all A; using the map A — C
defined in (sk').

In the same way one define a morphism V' : A, — C lifting V. Now observe that

V() —g(em+I) cC
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because of the commutativity of the diagram:

)

S — 0

~
~

B—
W — ™

~
~

C

C

Now it suffices to consider a € pt = C* and b e J* = C* such that
V() —d(()=a—0

Set d = V'({) —a = ¢'(¢) — b and clearly d=V and d = ¢ mod J. The desired map V now
is the unique homomorphism A; — C' such that V() = d. O

The homomorphism V' we have just found is the first approximation of the lifting we were

looking for. The idea is to consider a sequence of approximations tending to the desired lift.

Lemma 4.2.5 ([Col3, Lemma A-3|). There exist t x s matric N and s x s matrices M and
Q over A; such that
G((+ NG)=G"MG + QG

where the entries of Q) are in pA;.

We set Vy = V' and we define recursively Vj by

Vi1 (€) = Va(Q) + N(Vi(Q)) G (Vi (<))

Since Vj41(¢) € C*, it determines a unique homomorphism Vi, : A; — C. Applying Lemma
4.2.5, we immediately see that Vj1(¢) — Vi(¢) — 0 and therefore (by the completeness of
Tate algebras), the sequence {V,} converges to the desired lifting. O]

So far we have proved Theorem 4.2.2.B; Theorem 4.2.2.A follows taking A = Ay(WW),
B = Ao(X), C = Ao(Y) and D = A()(Z)



Remark. This is enough since, if X is a reduced affinoid, then Ay(X) is a Tate Og-algebra
([Col3, Lemma A-1.5]).

4.3 Frobenius Endomorphisms

Suppose now that S is a scheme over a field F' and let ¢ be an automorphism of F. In the
canonical way, we can consider the scheme S? obtained from S with the technique of base

change:
S7 = S Xgpee(r) Spec(F7) —7F— S

| |

Spec(F7) I — Spec(F)

If f is a form on S, we denote by f? its pullback via o.

If X is an affinoid over F' = K and o is an automorphism of K, then we consider
S = Spec(A(X))
(which is a scheme over K). We define X to be the affinoid characterized by
S? = Spec(A(X7))

Next, we consider the case F' = F, and 0 =Frobenius automorphism of [F:
o:F, —F,
r— a?

If S is a scheme over I, then the absolute Frobenius morphism on S is ¢ : S — S which is

the identity on points and the map f — f on sections:

¢*f7 =" VfeOsU)

(o

In general, for any integer n € Z-q, ¢ : S — S?" is characterized by ¢* fo" = fP".

If S is of finite type over F,, then it has a finite affine covering {S;} such that {Og(S;)}
are finitely generated [F,-algebras; this implies that there exists n € Z-, such that S ~ S7".
If

-

p:S?

is such an isomorphism, we call

po¢p:S— 8

the Frobenius Endomorphism of S.
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Finally, suppose that X is a K-affinoid space and & is a continuous automorphism of K
which restricts to the Frobenius endomorphism of F = O /p. Since X is of finite type over
F, X possesses a Frobenius endomorphism and an endomorphism of X lifting one of those is

called Frobenius endomorphism of X.

Corollary 4.3.1. Suppose that X is a reduced affinoid over K with good reduction. Then:
1. X possesses a Frobenius endomorphism.

2. There is a morphism from X to X7 lifting the Frobenius morphism X — X°.

3. X ~ X" for some positive integer n.

Let now X be a reduced affinoid over K with good reduction.

Xparg = X X Spec(F) Spec(F38) —— X

| |

Spec(F?8) > Spec(F')

Xpaie is a scheme over F*2. If U/ is a residue class in X, then I is in X (F*¢) (F?2 does
not have finite extensions) and therefore, U is defined over some finite extension of F. In

particular, this implies that there is an integer m € Z-( such that

Lemma 4.3.2. For each residue class U of X, there exist some m € Z~y and some & € U
such that:

The point & is called a Teichmiiller point.

Sketch of proof. Since U reduces to one point in X, U is isomorphic to the open ball
B0, 1) = {(1, .., 2a) € K| 2] < 13}

where d is the dimension of X ([Berl, Proposition 1.1.1]).

Now we apply Lemma 3.0 in [Dwo| which tells us that ¢™ has a unique fixed point in
B4(0,1_). The proof consists in showing that, given any z € U, the sequence {¢™"(z)}, is
convergent and the limit does not depend on the choice of the point x: increasing n we can

make ¢""(z) arbitrarily close to ¢""(y) for any other y € U.
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Finally the Teichmiiller point is defined to be

= lim ¢™(x) foranyxeld

n—-+0o0

4.4 Differentials

In this section we give some details about the theory of differentials on rigid spaces. The
main references are [MW, §4|, [VdP] and [FvdP, §3.6].

Let A be an affinoid K-algebra and M a finitely generated A-module. A derivation for
A is a K-linear map D : A — M such that D(ab) = aD(b) + bD(a). Theorem 4.1 in [MW]|

guarantees the existence of a module of differentials €24/x with a derivation
d: A— QA/K

satisfying the following universal property: “if E is another A-module with a derivation
A1 A— E, then there exists a unique A-linear differential homomorphisms Qa4 — E.
Similarly, if X is an affinoid K-space and A = A(X), we have a module of rigid differentials

Qx/k with a standard derivation map
d: A(X) — Qx/k
We define Q% /i @s the i-th exterior power of Quy/:
fX/K = Q?(i/K/ I

where I is the ideal generated by the objects wj, ® ... ® w;, where w;, = w,, for some [ # k.
The derivation map d extends naturally to a derivation of the complex Q% K- If Y is any
rigid space over K, we can construct a natural complex of rigid differentials (€23, I d) onY
gluing together the differential sheaves of the affinoids covering Y ([FvdP, §4.4]).

Definition. A closed differential on Y is an element w € H°(Y, Q) i)

Let X be a connected affinoid K -space with good reduction. Consider the diagonal A in
X x X.
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Remark. D = red ' A has the structure of rigid space: since X is an affine scheme over F,
then it is separated and, therefore, A is affine. ([Liu, §3.3.1]). Now we can apply [Berl,
0.2.2.1].

Denote by A(D) the ring of rigid analytic functions on D and consider two projections
p1,p2: D — X
Proposition 4.4.1 (|Col3, Proposition 1.2|). If w is a closed differential on X, then
piw — pyw e dA(D)

Corollary 4.4.2. Suppose that fi, fo : X' — X are two morphisms of reduced connected
affinoid spaces over K with good reduction such that fl = fg and consider a closed one form
w on X. Then, the following hold:

1) fifw — ffwe dA(X').

2) If X is a function on X(C,) which is analytic on each residue class of X and such that
d\ = w, then fEN— f¥xe A(X).

Proof. Point 1 follows directly from the proposition: if f = (f1,f2) : X' — X x X, we
immediately notice that f(X’) < D (the two reductions are equal, i.e., fi = f3)

X’—>D

N

fifw = fFw = f* (pfw — piw)

Let’s now prove point 2. Consider a function F' € A(D) such that dF = pfw — pFw whose

This implies that

existence is given by Proposition 4.4.1. Since F' is now constant on the diagonal D, we may
assume that F' =0 on D.

If U is a residue disk in X, then pA— p¥\ is analytic on U x U and vanishes on AnU xU.
Further,

d(pfA = p3 ) = pfw — piw
This means that F = pfA — pi\ on U x U and, since D is a union of U x U, we conclude
that
PEXN — pEN = F e A(D)

Now the Corollary follows applying the pullback via f. O]
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We have now most of the ingredients that we need to construct our theory of integration:

e Lifting of Frobenius morphisms.
e Teichmiiller points.

e Differentials on affinoids.

The last ingredient we have to introduce is a suitable covering of our space X.

Let X be a proper scheme of finite type over Ok and X be its special fiber over F. If
Y < X is an affine open set, then W = red™'Y < X has the structure of rigid space. If X
is smooth, then W has good reduction and W = Y. In this case we call W a Zariski affinoid

open subset of Xk

Definition. If X is smooth, then a differential of the second kind on Xy is an element

w € Qx,/k(U), for some dense open subset U of X, such that:
(i) dw = 0.

(ii) There exists a Zariski open covering C of Xk such that for every W e C,
Pt (@) € PLnw (Qeie/x (W) + dOx, (U 0 W)

where p denotes the restriction map.

In other words, the covering we want is such that

wly =ww +d(fly)  wweQuwe, , feO(Xk)

Question. How do Zariski open subsets behave under the action of Frobenius endomor-

phisms?

Definition. If X is proper and smooth over Og we say that Frobenius acts properly on X if,

for each Frobenius endomorphism ¢ of ¥ there exists a polynomial Z(T') € C,[T7] such that

(i) No root of Z(T) in C, is a root of unity.

(ii) For each Zariski affinoid open W of X such that ®W = W, there exists a lifting ¢ : W —
W of ¢l,, such that Z (E*ﬂu e dA(W) for each differential of the second kind w on Xk

regular on W.

Theorem 4.4.3 ([Col3, Theorem 1.4|). If K is discretely valued and X is a smooth projective

scheme over Ok, then any Frobenius endomorphism acts properly on X.
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4.5 p-adic Integrals

In this section we describe how to effectively integrate differentials of the second kind on
affinoids. The main reference is [Col3, §2].

Let X be a smooth proper connected scheme of finite type over Ok and w a differential
of the second kind on Xx; we know that Frobenius acts properly on X (Theorem 4.4.3).

Now we want to consider D, the collection of Zariski open subsets X in X such that
UJ|X — ng = Wx € QK(X)

for some gy € K(X), the function field of X.

Lemma 4.5.1. D is, in fact, a covering.

Proof. This is straightforward using the fact that w is of II kind: by the definition, there
exists a Zariski open covering C of Xy such that for every X € C

P (W) € pX Qe (X)) + dOx, (X)

and therefore C < D and the latter is a covering. O]

Now we consider (w),, the set of poles of w and we write
/K =Xk — (w)oo

Let ¢ be a power of the Frobenius endomorphism of X and consider D' < D consisting of
those X such that

PX = X
Lemma 4.5.2. D’ is a covering.

Proof. X is smooth, then every Zariski open affinoid X of Xk have good reduction and X is
affine. This, in particular, means that we can cover ¥ by affines X. But now we know that
Xk is quasi compact since X is of finite type (Remarks at the end of Section 3.7 based on
[Berl, 0.2.4]). Thus, we can extract from D a finite subcovering D’ which implies that D' is
also finite. Now X is covered by a finite number of affine subspaces. Hence, we can choose a
sufficiently large power of ¢ fixing all the X’s. In conclusion, modulo replacing ¢ with one

of its power, D’ is a covering. O
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Choose now a polynomial Z(7T') € C,[T] associated to X and to ¢ as in the definition of
proper action of Frobenius.
If X e D', let ¢ = ¢x be a lifting of the restriction ¢| ¢ to X. Tt follows that

Z(3%)wx € dA(X)

Theorem 4.5.3 (Coleman). With the notation as above, there exists a locally analytic func-

tion f, on X% (C,) unique up to additive constant such that
I) df, = w.

IT) VX e D' there exists gx € K(X) such that (f, — gx)|x extends to a locally analytic

function on X and

Z(¢%)(fo — gx) € A(X)
Further, f, is independent of all the choices (the covering D', the polynomial Z and the power
of the Frobenius endomorphism of X fizing the elements of D).
For w and f,, as above and for two points P, Q € Xx(C,), we define

Q
f w=1.(Q) — fu(P)

P

the integral of w from P to Q).

Proof of Theorem 4.5.3

The proof of the Theorem can be articulated into 4 steps: we’ll first show that the conditions
dfx = wx and Z (5;)( fx) € A(X) determine a unique function fx which is locally analytic
on X. Then, we will show that fx + gx and fx + gx: agree on the intersection X n X’ and,
finally, we will see how to glue together all these fx + gx.

Step I: Determining (f, — gx)|x

In this first step we focus our attention on one Zariski open affinoid.

Theorem 4.5.4. Let X be a smooth connected affinoid over K with good reduction X. Let
w be a closed one form on X and ¢ be a Frobenius endomorphism of X. Suppose Z(T) is a

polynomial over C, such that
Z(¢*)w € dA(X)

and such that no root of Z is a root of unity.
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Then, there exists a unique (up to additive constant) locally analytic function f,, on X(C,)
such that

(a) df, = w.
(b) Z(¢*)f. € A(X).
Proof. Modulo multiplying Z by a constant, we may assume

Z(T)=T"+an T '+ ... +ayeC,

hence,

Z(6*)(h) = Y an(h o ¢")

Let Q = (w, oFw, ..., (gb”_l)*) regarded as a column vector and consider the matrix M over

C, defined as the companion matrix of Z:

0
0 0 0
M ==
0 0 0o ... 0 1
—Qpg —a; —Q ... —Ap—2 —Ap_1

Then ¢*Q = MQ mod (dA(X))" - by hypothesis Z(¢*)w € dA(X).

(Case deg P = 1). In the special case Z(T') = T — a, we have Q) = w and M = a which shows
that (¢* — a)w = ¢*w — aw € dA(X).

(Case deg P = 2). In case Z(T) = T? + aT + b, we have

() ()

MQ=< Prw ) and ¢*Q=< d)*‘;)
—aw — bw (0*) w

Therefore, we have equality on the first component while on the second component we use
the definition of Z.

Thus,
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Hence, Theorem 4.5.4 is equivalent to:

Claim. There exists a locally analytic function f : X(C,) — C} wunique up to additive

constant such that

(a’) dF = Q.

(b’) ¢*F = MF mod (A(X))"
Indeed, F = (fo, fo0 @, ..., fuo d" ).

(Uniqueness) Suppose we have two solutions; their difference would be a function

G:(gla"'7gn)

locally analytic satisfying dG = 0 and ¢*G = MG mod (A(X))". Observe that the
former implies that G is locally constant and therefore, ¢*G — MG is locally constant

too. Since X is connected, we conclude that
¢*G— MG =C  some CeC,

We would like to conclude that G = (1 — M)~!C. By hypothesis, we know that 1 is
not a root of Z; then, 1 — M € GL,(C,) and so

(6%)" G = M'G = (1-M") (1= M)~'C (1)

Now let U be a residue disk in X and &, be its Teichmiiller point with respect to ¢
(Lemma 4.3.2):

" (u) = &u

Now fix k£ = m and evaluate equation (1) at &,:

0¥ G(&) - M*G(&) = (1 - M") (1— M)7'C

G(€u)~M*G (&)

which yields
(1-M")G&) = (1-M)(1-M)"'C = G&) =01-M"C (2

Observe that, in fact, also 1 — M* € GL,(C,).
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Since G is locally constant and, for every x € U, ¢™"(x) —— &, we can find an
n—+0o0

integer k, such that
G(@™ (x)) = G(&)

Using again equation (1), we get
(1—M™ ) (1 - M)~IC = (¢%)"™ G(z) — M™G(x) =
= G(&) — M™=G(z) € (1 - M)~'C — M™=G(z)
Thus,
M™G(z) = M™=(1- M)"'C = M™ (G(z) —(1-M)"'C) =0
Regarding M™*= as a linear map on C,, we see that
G(z) — (1 — M)7'C € ker M™*=

Remark. C, is algebraically closed and, therefore, ¢™ : U — U is surjective and, for

any positive integer r, there exists y, such that ¢"" (y,) = .

Using this remark we re-read equation (1):
G(z) — (1-M)'C =M™ (G(y,)(1 = M)~'C)

which means that G(z) — (1 — M)~'C € Im(M™"). We conclude that
G(x) — (1 — M)™'C € ker(M™=) n (ﬂ) Im(M™") = {0}
r=0
and therefore G(r) = (1 — M)~'C as we wanted. In particular, G is constant and,

therefore, F' is unique.

(Existence) Suppose
¢ =MQ+dh  some he A(X)"

Again U will be a residue class of X and &, its Teichmiiller point with respect to ¢.
Let m be the minimum integer such that ¢™(&,) = &.

Since €2 is closed and U is an open ball , there exists a unique function Fy; analytic on
U such that dfy = Q,, and (we fix this value at &)

Fy(&) = (1—M™)~ mZ h(¢" V(&)
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Let F' be the unique locally analytic function defined by F|,, = Fy (recall that the
residue disks are disjoint). Clearly F' satisfies dF' = ); further,

(6*F) (@) = (F o 6) (&) = (1 - M")" mZ b (o) —

m—2

= M(1L—M™ Y MR (gm0 (g) =

j=—1

m—

M(1—M™)" Z MR (6™ (&) = M(1 = M™) 7M™ h (977" (&) +

+ ML= M™)" M h(6™ (&) =

= MF(&)+ (1 =M™ h(¢™ (&) — M™(1—M™)"'h (&) =
= MF(&) + (1= M™) " (h(¢™ (&) — M™h(&y)) =

= MF(&) + (1 —M™)™ (h(&) — M™h(&,)) =
= MF(&) — (1 — M™) 7 (1 — M™)h(&) = MF(&) — h(&)

This means that

(¢*F — MF) (&) = h(&u)

and
d((b*F—MF):Q*—MQ:dh on U

In conclusion, ¢*F — MF = h on each residue disk 4/ < X and, hence, on all X.

Corollary 4.5.5. The function f,, is analytic on each residue class of X.

This concludes the first step of the proof of Theorem 4.5.3. n

Step II: Independence of f, of all choices

Lemma 4.5.6. The function f, depends modulo constants only on w and not on the choice
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Proof. Consider the vector space
Vy ={(¢*)"w mod dA(X))n=0

Because of the hypothesis Z(¢*w) € dA(X) of Theorem 4.5.4, we know that V,, is finite
dimensional. If P, is the minimal polynomial of ¢ acting on Vj, then P,(T) | Z(T') which
implies that if f/, = w and P,(¢*)f, € A(X), then Z(¢™)f], € A(X) and so f,— [/ is constant
by the uniqueness of f,,. O

Lemma 4.5.7. With the notation introduced before, if W' is another closed one form on X
such that Z(¢™*)w' € dA(X), then

ic fotw = fo+ fu +C for CeC,.
ii. If w is exact, f, € A(X).

Lemma 4.5.8 (|Col3, Corollary 2.1.d|). The function f, is independent (modulo constants)
of the choice of ¢.

Sketch of Proof. It suffices to show that, replacing ¢ by ¢', we do not change f,. It can be
verified that

Pyu(T') = | [ Po(CT)

¢t=1

Thus, the fact that Py(¢*)(f.,) € A(X) implies that Py ((¢")™) f(w) and now the result follows

from the uniqueness of f,,. O]

Lemma 4.5.9 (|Col3, Corollary 2.1.¢|). Let o be a continuous automorphism of C, and w’
the pullback of w to X?. Let fJ be the function on X°(C,) defined by

fo(x) = ofu(o™ (z))
then

(a) w? satisfies the hypothesis of Theorem 4.5.4 on X°.

(b) If fue is a solution of Theorem 4.5.4, then f7 — f,e is constant. In particular, if o fizes
K, then fJ — f, is constant.
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Step III: Comparing functions on X n X’

So far we have focused on one affinoid. Let’s enlarge the picture recovering the notation of
4.5.3. In the previous steps we have seen that on each X € D’ there exists a locally analytic

function fx unique up to additive constant such that

(I) dfx = wx = w|y —dgx

(IT) Z(6")fx € AX)

Now we set hy = fx + gx; this is a function on X\(X n (w),).

Lemma 4.5.10. hx s independent of all the choices of g and f up to additive constants.

Proof. Take g’y € K(X) such that w|, — dg’y = wy € Qx/k, then
wy —wx = dgx — dgy = d(g: — gx) = gx — gx € A(X)

Now choose f% to be a solution of df}, = w’ and Z(a*)fk e A(X) (a solution for Theorem
4.5.4), then
fx —fx =9x —dx

modulo constants (uniqueness applied to wy — w' ). Thus,

fx+ogx=fx+dx+C

and this concludes the proof. O]

Step IV: Gluing the integrals

We claim that hy — hx is constant on X n X’ for X, X’ € D'. First note that X n X’ € D;
hence, it suffices to prove the claim in case X’ € X. In this case we can take gy = gx/. Thus,
wy- is the restriction of wx to X’ and if we restrict f,, to X’ we get a solution to Theorem
4.5.4 for X’. In conclusion hys = hx|y, (modulo constants).

This means that, in order to glue the integrals, we only have to adjust the constants so
that hx and hxs agree on the intersection.

Finally, as mentioned before, we define

@
J w:= fu,(Q) — fu(P)

P

This concludes the proof of the main Theorem. ]
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Properties of the Integral

Proposition 4.5.11. Suppose that w and w' are two differentials of the second kind on X .
Then,

Q Q Q
(a) Additivity on forms: /\lf wy + AQJ Wy = J (Arwr + Aows).
P P P

(b) Fundamental Theorem of Calculus: if dg = w for a meromorphic function g € C,(%),
Q
then, f w = g(Q) — g(P).
P

(c) Change of variables: if T : X' — X is a morphism of smooth proper schemes over O on

which Frobenius acts properly, then,

if T(P), 7(Q) ¢ (w),,-

In his article [Col3], Coleman proved that the change of variable formula holds even if we
soften and relax some hypothesis. In order to be able to state this result, we need a small
digression on Albanese variety.

Given a variety X which is smooth over K, one can associate to it, in a functorial way,
its Albanese Variety. As a reference one can look at [Serl]|, [Lanl, §I1.3] or [Colm, §L.5].

In general, the Albanese variety associated to X is a pair (Alb(X), f) consisting of an
abelian variety Alb(X) and a natural map

F:X — Alb(X)

such that:

(1) There exists a non-negative integer n € Zg such that the map

F:XxXx...x X — Alb(X)

n-times

equal to the sum of f with itself n-times, is generically surjective.

(2) For every rational map g : X — Y with Y an abelian variety, there exists a homomor-

phism g, : A — B and a constant C € Y such that g = g f + C.
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FExample. If X is proper and smooth over C, then

Hag (X)*
ALX) ~ S D)

Observe that any point a € X (K) gives rise to a morphism
fo: X — Alb(X) such that f,(a) =0

A morphism of this type is called an Albanese morphism.

Proposition 4.5.12 (|Colm, Proposition 1.5.3]). If X is proper, then an Albanese morphism

fa induces an isomorphism

Hip(A(X)) ~ Hap(X)
Now we can re-state the Change of variables property:

Theorem 4.5.13 (Changes of variables). Suppose that X and X' are two smooth and proper

schemes over Qg of finite type on which Frobenius acts properly. Consider a rational map
f:Xy — Xk

and let w be a differential of the second kind on Xx. Then

Q (@)
[ -
P f(P)

for P,Q € X' (C,) in the domain of reqularity of f such that f(P), f(Q) ¢ (w)

o
Proof. Consider the following diagram:

X —L L xy

| !

X' X

| |

AIB(X') —— Alb(X)

where the two maps X' — Alb(X’) and X — Alb(X) are Albanese morphisms and the bottom

arrow is the morphism induced functorially by f.

Recall. Observe that Alb(X) and Alb(X’) are the models of Alb(Xx) and Alb(X';).
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By Proposition 4.5.12, we know that
Hig (AIb(X5)) ~ Hap (Xk)

and this implies that any one form of I kind on Xk comes (modulo an exact differential) from
a one form of II kind on Alb(Xx). Now the Theorem follows from Proposition 4.5.11 O

There is an important Corollary to this Theorem:
Corollary 4.5.14. The integral Sgw does not depend on the model X of Xk .

For a detailed discussion about models, one can refer to [BLR].
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Chapter 5
p-adic Integrals on Curves

The general theory of integration has been developed in the previous chapter following [Col3].
Now we want to specialize our approach to curves; in particular to hyperelliptic curves.

Hystorically, Coleman did the inverse road developing first a theory of integration on P!
in [Coll] and then constructing the theory in higher dimensions.

The reason why we postponed the chapter on curves is twofold:
e We would like to use it as an example of the abstract theory developed before.

e Secondly, we want to approach the problem from a different point of view introducing

in the picture some concrete computations.

In recent times (around 2007 — 2011), Jennifer S. Balakrishnan, Robert W. Bradshaw and
Kiran S. Kedlaya have constructed explicit algorithms thanks to which it is possible to do
some very concrete computations using Coleman’s integrals. The motivation of their work
was the possibility of exploring the various application of this theory.

In this chapter we want to present these algorithmic methods; we will mainly follow [Coll]
for the first three sections while [Bal|, [BaT] and [BBK] for the second part. We also want to
mention a video of a seminar given by K.S. Kedlaya and R.W. Bradshaw at Clay Institute
in 2007: |[KB].

5.1 Preliminary Definitions

In this section we give some introductory definitions following [Coll].
Let’s consider C,, the completed algebraic closure of Q,. We will denote by O its ring of
integers and by P the maximal ideal of O.
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Definition. An open affinoid subspace of ]P’(lcp is a set of the form
X ={zePg||f(x) <1, feS)}

where S is a finite subset of Rat(C,), the set of rational functions over C,, containing at least

one non-constant function.

One can refer to [FvdP, Chapter 2] for a discussion about P! over non-archimedean fields.
We define A(X) to be the set of analytic functions over X; this is the completion of the
set of rational functions which are regular over X with respect to the supremum norm.

For simplicity, we will denote
Bla,r] = {z e A' ||z —a| <7} B' = B[O, 1]

B(a,r)={zeA1‘|z—a| <r}
Ala,r,R] = {2 € Al |r < |z —a| < R}

Definition. A wide open set is a subset of P! of the form
U={zeP||f(2)] <e; feS}

where, again, S is a finite set of rational functions over C, containing at least one non-constant
function and ey € {1, o0}.
Ezample. The open balls B(a,r), with a € A'(C,), are wide open subsets.

If X < P! is an affinoid and I/ is a wide open containing X, we say that U/ is a wide open
neighborhood of X.

Notation. If V < P! is an open subset, we write

QV)=AV)dz and Qg(V)=L(V)dz
locally analytic
functions on V/

HY(V) = Q(V)/dA(V)

where d : A(V) — Q(V) is the canonical derivation.

It is interesting to notice that there exist canonical derivations making the following into
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a commutative diagram:

LV) — Qp(V)

J J

AV) —4— (V)

Now, if V' is an annulus about a € A, it can be proved ([FvdP, §2.2]) that every f € A(V)
admits a unique expression in power series around a.

For w e Q(V) we write

w= Z an(z —a)"dz

nez

and we define (|[FvdP, §2.3|) the residue of w at a as
Resqw = a_;

Lemma 5.1.1. we dA(V) < Res, =0

Proof. (=) Suppose

Thus,

has expansion

df — ~~~ nay(z —a)" 'dz

n=ngo

and, therefore, Res,df = 0-a_; = 0.

(<) If w has residue 0, then we can integrate term by term obtaining a function f such that
df = w. It can be proved that the convergence of the expansion of w is inherited by the

expansion of f.
O

5.2 The Logarithm

Definition. A branch of the Logarithm is a locally analytic function [ : C; — C; such
that
d

(1) = 1

Lemma 5.2.1 ([Coll, Theorem 2.1]). I(2) is analytic on B(z, |x|) for any x € C,. Further,

0e]

l(z) = =

1—a)" _
% in{reC, | [x—1] <1}

3
o
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Lemma 5.2.2 ([Coll, Theorem 2.2|). Let V' be an annulus about a, and suppose that g €

A(V)*. If ne C, is defined by

n= Resad—g

g
then n € Z and g can be written as g = c(z — a)"(1 + h), where ¢ € C,, h € A(V), and
|h(2)] <1 forall zeV .

For an open subset V' < P!, we can fix a branch of the logarithm Log(z). We define
Arog(V) = A(V) [Log(f) | f € A(V)*]

Lemma 5.2.2 has an important corollary:

Corollary 5.2.3. IfV is an annulus about a, then
ALog<V) = A(V) [LOg(Z’ - &)]

The importance of working on wide open annulus is given by the following “uniqueness

principle”.

Proposition 5.2.4. Let V' be a wide open annulus, and f € Ap,,(V). If f vanishes on a

non-empty open subset of V', then f wvanishes identically on V .

In particular, the previous proposition enables us to compute the cohomology of a wide

open annulus: we denote by Hiog(V) the ¢-th cohomology group of the complex
0— ALOg(V> i) Qiog(‘/) —0

Lemma 5.2.5. If V is a wide open annulus, then
(i) HOLOg(V) =C,, i.e., if f, f' € Apog(V) such that df = df’, then f = f' + ¢, c e C,.

(i) Hp,,(V) =0, i, Vwe Qo (V), there exists f € Apyy such that df = w.

The conclusion of this brief discussion is that there exists a theory of integration on wide

open annulus, modulo admitting the use of Logarithms:

Definition. If A(a,r, R) = {z € A'|r < || < R} is an open annulus (or disk if r = 0), then
for P,Q € A(a,r, R), we define

@ n Q Cn n+1 n+1
J;; Z Cnt dt = C_1l (ﬁ) + Z n——i—l (Q - P )

nez neZ\{—1}
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Observe that this integral is taken over a wide open annulus as the denominator n + 1

would affect the convergence on the boundary if the domain of integration was closed.

5.3 Curves with Good Reduction

Definition. A curve over O is a smooth proper connected scheme over O of relative dimen-

sion 1.

We keep the same notation adopted in Chapter 4. If X is a curve over @, X will be the
reduction of X over O/ while X¢, will denote the generic fiber of X.

Again we consider the canonical reduction map red : X¢, — X

Recall. The inverse image of a point of X is a unitary open disk in Xc, (|Bre, 1.2.1.2]): this
follows from [Berl, Proposition 1.1.1] taking y = (y1,42) € X (F); then

W=V —-—y,GC—1w)=V(A f)

and red™'V (G —y1, & — o) = {z € X¢, | | fi(z)] < 1}

Definition. We call such an open disk a residue disk of X.

A4

// \‘
Ired=1(Py)
\ h
\ ,

Xc

// \‘
e Y
Y\ /! PO

, \
rred=1(Ps) 1
\ /
\

red red1!

Py
o

o Py

.
oP3

Figure 6: Reduction of a curve and residue disks
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Definition. Let X be a curve over O. A wide open subspace of X is a rigid analytic subspace
of X¢, that is the complement of the union of a finite collection of disjoint closed disks of

radius r < 1.

Figure 7: Wide open subspace

Remark. Wide open subsets are obtained cutting out certain closed disks and keeping every-

thing else.

This will allow us to consider differential forms which are not holomorphic on all X but
just on a wide open subset U (in a certain sense we are eliminating the problematic points
(@) )

In the previous chapter, we have seen the properties of the Coleman integral. Let’s us

re-state the result in the case of curves using the terminology of [BBK]:

Theorem 5.3.1. For every curve X over O and every wide open subspace V' of Xc,, there
erists a unique map
py : Dit’ (V) x Q‘l//(cp — C,

such that:

(Linearity) The map po is linear on Din®(V)) (linearity on points) and C,-linear on Q3 I,

(linearity on forms).

(Compatibility) For any residue disk D of X and any isomorphism ¢ : V- n D — A(r, R),
the restriction of py to Div®(V n D) x Q%//Cp is compatible with the definition in Section

5.2 of integral on an open wide annulus.

(Change of variables) Let X' be another curve over O, V' be a wide open subspace of

X', and let ¢ - V. — V' be any morphism of rigid spaces relative to a continuous
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automorphism of C,. Then
v (0(), - ) =nv (-, 0%())

(Fundamental Theorem of Calculus) If f € A(V) and Y, v;P; € Din”(V), then

3% (Z%‘Pi ) df) = Z%f(Pz)

In the following sections we will try to explain the explicit method of Kedlaya and Bal-

akrishnan for computing the Coleman’s integrals.

5.4 Hyperelliptic Curves

We start by introducing the principal ingredient of the algorithm: hyperelliptic curves.
Let K be a field of characteristic # 2.

Definition. An hyperelliptic curve is a smooth projective curve given by an equation of the

form

where F € K[z] is a monic polynomial of degree 2g + 1 such that F(z) has no repeated roots.

Remark. This gives us a curve of genus g with good reduction.

We denote by
vi(z,y) — (2, —y)

the hyperelliptic involution.

Definition. A Weierstrass point P is a K®#-rational point fixed by . We denote
Z ={PeC(K")|P) =P}

the set of Weierstrass points.

Remark. Here is where we are explicitly making holomorphic functions on wide opens.

Now let K be an unramified extension of Q, and C/K be an hyperelliptic curve with good

reduction. Let C’ be the affine curve obtained from C by eliminating the Weierstrass points.
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The coordinate ring of C’ is given by

K[z,y, 2] Klz,y,y™"]

(y* = F(z),yz—=1) (y* - F(z))
Let’s try to compute the de Rham cohomology of C’; we have to consider the complex

2 dim C’
O—’ALQA/KL>/\QA/KL>L> QA/K—>O

where €24,k is the module of Kahler differentials, i.e., the A-module generated by the symbols
dr, for r € A, modulo the relations dc = 0 for ¢ € K and d(ab) = a-db+b- da.

Clearly H)3(C') = K and H'z(C') = 0 for i > 1. To determine H}(C’) it is necessary to
use the relations defining C’ ([Hrt, Example 3.1.2]):

d d
AL (C) = <m——x>
y y i=0,...,2g—1

The problem is that the underlying coordinate ring does not admit a proper Frobenius lifting:

Example. Suppose that X is the affine space over F, defined by the equation zy = 1. Its
coordinate ring is A = F,[z,z7']. If one wants to construct the de Rham cohomology
immediately bump into the problem of lifting forms x?~!'dz (the cohomology group being

independent on the choice of the lifting). For instance, we can lift A to Z, in two ways:
Ay =Zy[v, 27" and Ay = Z,[x, (z + pa®) 7Y

and the cohomology groups are not isomorphic:

dx dr dz
HéR(Al) = <;> and HéR(A2) = 71 +p$>

Therefore, the de Rham cohomology is not the suitable tool to study integrals on hyper-

elliptic curves.

5.5 Monsky-Washnitzer Cohomology

As we have seen, computing the de Rham cohomology of a rigid space might be somehow

problematic.
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In general, if X is a smooth variety over K and A is its coordinate ring, one can consider
A® | the p-adic completion of A (where p < O is the maximal ideal). Unfortunately, the price
we pay is that now the de Rham cohomology of A* is bigger than the one of A. To solve
this problem, in 1968, the two American mathematicians P. Monsky and G. Washnitzer
introduced a subring of A® consisting of power series converging fast enough that their
integrals also converge. This subject has been first developed in the 60’s by Monsky and
Washnitzer [MW] motivated by the work of Dwork, and then refined in the 80’s by van der
Put [VdP].

Definition. If A is an Og-algebra, its p-adic completion is

i

)

The weak completion of A is the subset AT of A® consisting of elements having representation

+o0
DIP(G )
i=0
where (1,...,( € A, Piep'[(y, ..., (] and there exists a constant C such that
deg P, < C(i + 1) Vi

If one consider

Tg = {Z a,C”

[v] >+
v

a, € Ok, 3r > 1 such that lim |a,|r" = O}

the algebra of overconvergent power series, then a weakly complete finitely generated Og-

algebra, is the homomorphic image of T\ for some n.

Remark. T is a set of power series converging on a space which is slightly bigger than a

unitary ball.

Theorem 5.5.1 (|[VAP, Proposition 2.2]). T satisfies Weierstrass Preparation and Division

Theorem.

Theorem 5.5.2 ([MW, Theorem 2.1|). Any weakly complete finitely generated algebra is

Noetherian.
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Now let AT = T /3 be a weakly complete finitely generated algebra. We define the module

of differentials as
Atd¢, + ..+ Atdg,
Submodule generated by

of; of; .
{gg dGu+...+ 2Lk dg ‘ i=1,.., m}

Q'(Al) =

where (f1,..., fm) =7.
This is the universal finite module of differentials of AT over O (|VdP, §2]). As usual,

we define ‘
i(Al) = /\ 04T

the i-the exterior power of Q!(A") and we denote with d’ the exterior differentiation:
d(xdy; A ... Ady;) =dz Adyy A ... Ady;
We obtain the de Rham complex
0 — (Al 25 Qleal) 25 02(Al) -2
Notation. Let AT be a weakly complete finitely generated algebra, then we set
A=Al /nAl

where 7 is a uniformizer of p.
Remark. Observe that T /7T is isomorphic to the polynomial algebra F [(y, .. ., (]

We deduce from this that, if AT is a weakly complete finitely generated algebra (i.e., there
exists a surjective morphism 7)) — AT), then A is a finitely generated F-algebra.

On the other hand, we also know |Bes, §1.3.2] that any finitely generated smooth F-algebra
can be obtained as the reduction A of a suitable Af.

In particular, the weak completion depends, up to isomorphisms, only on A.

Definition. The Monsky-Washnitzer cohomology of A is the cohomology of the de Rham
complex Q*(A" ® K:
Hyw(4, K) = Hgp(2°(AT) ® K)

Remark. Hiw (A, K) is a finite dimensional K-vector space [Ber2, §3].

Question. The reason why we introduced the Monsky-Washnitzer cohomology was to over-
come the lifting problems arising when computing the de Rham cohomology in characteristic

p. Do we have, in fact, solved the issue?
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Lemma 5.5.3 (|VdP, Theorem 2.4.4|). With the notation as above, the following hold:
(a) Any two lifts are isomorphic.
(b) Any morphism f: A — B can be lifted to a morphism f1: AT — BT,

(c) Any two maps fT,g" : AT — BT with the same reduction induce homotopic maps fl, gzk :
Q* (AT — Q*(BY).

Let’s go back to hyperelliptic curves. Consider again C : y* = F(x) and ' = C\Z. If

Klz,y,y ']

A= Fw)

is the coordinate ring of C’, then its Monsky-Washnitzer weak completion is

A { §° Bulo)

n
ne—w Y

B, € K|x], deg B,, < 29}

with the further condition that v,(B,(z)) grows faster than some linear function of |n| as

In| — +o0.

Remark. We are “allowing singularities” near the Weierstrass points but, with the additional
condition, we force the elements of A" to be holomorphic not only out of the Weierstrass

residue disks but also in some annulus around Weierstrass points.

Now we consider the derivation

d: AT — Q

and we observe that

which means

d: Al At
2y
xt xt irt lylde — jaty’~tdy
%}amﬁ — ;amd <y—j) = %}am Y% -
0] y2i—1 2y

B 2ixt=t GrtF\  dx
“Zew () g
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We denote
HYw(C') = kerd = {he A" | dh = 0}
dx

Hyw(C') = coker d = A==/ dAf
y

Remark. The hyperelliptic involution induces a map ¢* on cohomology decomposing Hyy (C')

into two eigenspaces on which it acts respectively as I and —1I:
Hyw(C)' = {Even 1-forms} ,  Hyw(C)~ = {Odd 1-forms}

Lemma 5.5.4 (|Bal, Lemma 2.2.2|). The two eigenspaces have the following description:
dx ) Az ) !
Hyw(CHT has basis {xl—f} and Hy/(C')™ has basis {x‘—x}
Y* )izo 2y ) izo
Remark. We notice that even 1-forms can be written in terms of = alone; thus, they can

be integrated directly as in the definition in Section 5.2. Consequently, we will focus our

attention on odd 1-forms.

Now, any differential w € €2 can be written uniquely as
w = df + YoWo + Y11 + ...+ V2g—1W2g—1

where f € Af, v; € K and the w;’s are the elements of the basis:

Remark. The process of writing w in terms of elements of the basis can be made algorithmic
thanks to Kedlaya |Bal, §2.2.2|: in Section 5.8 we will give an intuition of how this method
works (Algorithm 6).

5.6 Lifting of Frobenius

We recall that K is an unramified extension of @,. Thus, we have a unique automorphism
¢k lifting the Frobenius automorphism ¢ : x — xP on its residue field F. Now we extend this

automorphism to A'. Clearly ¢(x) = ; then,

O(y) = (o (F)(@)"* = (9x(F)(a”) = F(a) + >1/2

o S g 1 )

e i (112) st F(a))

szp
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6(z) =y =y "), o -

=0

(712) sl ey
-2 f] (77 ontrran) - plapy 2o

Let’s us compute the action of Frobenius on the basis of Hy;y (C)™:

_ puho- 1(2y Z( 1/2) oulF)) F<x>p>_ldx

Note that we need 4! to be an element of A': this is why we work on C’ instead of C.

At this point we must make an important consideration about the effectiveness of the
Kedlaya algorithm: as all the elements in A" are infinite series, a practical computation will

be made with a suitable approximation. Hence, one should keep track of the precision used.

5.7 Local Parameters

Before being able to integrate, we need to compute a parametrization of the path between the
two endpoints of integration. In this section we describe the algorithms needed to compute

local parameters in residue disks. A good discussion about this can be found in [Bal, §2.1]
or [BaT, §3.1].

' ALGORITHM 1. Local coordinate at a point in a non-Weierstrass residue disk

3 INPUT: A point P = (zp,yp) € C(K) in a non-Weierstrass disk and an integer n.

'OUTPUT: A parametrization (z(t),y(t)) at P in terms of a local coordinate.

1. We set z(t) =t + xp for a local coordinate ¢.

i 2. We approximate a solution of y(t) = 1/ F(z(t)) using the Newton-Raphson method of
3 tangents with yo = yp. Thus,

i 2 F(x(t 1 F(z(t

‘ o - EEBO) L (PO
| 2y; 2 Yi

i 3. The integer n gives us the precision. Hence, the number of iterations depends on n: for

precision O(t"), one can take i to be [log,(n)].



Example. Let us consider the hyperelliptic curve
y? = x(x—1)(z — 2)(z — 5)(z — 6) = 2° — 142" + 652° — 1122 + 60z

which has good reduction at 7. Let us consider the point P = (3,6). The local coordinates

at P are given by
xz(t) =3+t

For y(t) we obtain:
i yi(t)

0|6

13 13 1 1
1| 64+3t— —t2— —3 4+ —¢* 4+ —¢°
2 | 6+3t— —t2— 3 — t—

6 6 1728 3456

11 1 49 7
3| 6+3t——t>2— 32— —t*— — 5+ 018

6 6 462 864 (*)

t* + O(t%

11, 1. 49
t)=6+3t — —t* — > — —* — —
y(t) 6° 6 162" 864

 ALGORITHM 2. Local coordinate at a finite Weierstrass point

' INPUT: A finite Weierstrass point P = (zp,0) € C(K) and an integer n.

. OUTPUT: A parametrization (z(t),y(t)) at P in terms of a local coordinate.

1. We set y(t) =t for a local coordinate ¢.
2. We approximate x(¢) using the Newton-Raphson method of tangents. Take

F(z)

(x —zp)

G(x) =

t2
G(ﬂ?p)

Xo=2Tp +

Then the Newton-Raphson method yields

h(zi(t), 1)
W (xi(t),t)

Oh(z,t)
ox

T (t) = z(t) — where  W'(x,t) =

3. The integer n gives us the precision. Hence, the number of iterations depends on n: for

which is a polynomial in z since F(xp) = 0. Set |
precision O(t™), one can take i to be [log,(n)]. |



Fxample. Consider again the hyperelliptic curve
y? =z(xr —1)(z —2)(z —5)(z — 6) = 2° — 142" + 652 — 1122* + 60z

Now take the point P = (2,0). The local coordinates at P are given by

1
0| 2+ —t
' 214 11
1 9 42 = 44 6
+ 24t 691215 + O(t°)
1 11
2 | 24 —t*— —t" +O(t°
* 24 6912 +0(t)
1 11
2+ —t*— ¢ £
3 * 24 6912 +O()
Thus,
(t) =2+ Lp U t' + Ot d (t) =t
T ET o T 012 we =
At last, we have to consider the case of infinity. We know that deg F'(z) = 2¢ + 1 and

y* = F(z); this implies that x has a pole of order 2 at oo while y has a pole of order 2¢g + 1.

' ALGORITHM 3. Local coordinate at infinity

3 INPUT: The point P,, above x = o0 and an integer n

' OUTPUT: A parametrization (x(t),y(t)) at Py such that ¢ has a zero at co.

1. Take zo = t=2 and let

h(z,1) = (?)2_1?(3;) s W (1) =

Oh(z,t)
ox

Now approximate a solution for z(t) using the Newton-Raphson method

2. The integer n gives us the precision. Hence, the number of iterations depends on n: for

precision O(t"), one can take i to be [log,(n)].

i $i+1(t> = xz(t) -



FExample. Let
y? =z(xr —1)(z —2)(z —5)(z — 6) = 2° — 142" + 652 — 1122* + 60z

be our favorite hyperelliptic curve. At oo we have

1
0 2

1 14 3181, 72086 , 39925007 4

VBt aman omsest’ T ssassar’ T O
o | s B SO SR g
3 %2 + 14 — 65¢% + 1022t* + 315?:2223?5991%6 + O(t%)
And, therefore,
x(t) = t% + 14 — 65t + 1022t* + O(t°)
y(t) = %5 + i—f + ? + 224t + 32841t — 132860t° + O(t°)

5.8 Explicit Integrals

Finally, we present the Algorithm to compute Coleman integrals on hyperelliptic curves.
The idea is to first integrate on residue disks and then use the Frobenius lifting to connect

integrals on different residue disks.

Step I - Integrating on residue disks
This first step involves the so called “tiny integrals”. Let P and () be in the same residue
disk; then we can use the fact (guaranteed by Coleman Theorem) that the function f, is

locally analytic.

i ALGORITHM 4. Tiny Coleman integrals

' INPUT: Two points P, @ in the same residue disk and a basis of differentials {wi}?ial.

 OUTPUT: The integrals Sg Wi.

1. Using one of the algorithms (1), (2) or (3), compute a parametrization (z(t),y(t)) at P

in terms of a local coordinate t.

2. Formally integrate

JQ s — JQ $zd_x _ f(Q) z(t)" dx(t) "

P P2y

as a power series in t.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



FExample. Take the hyperelliptic curve
v =z(z—1)(z —2)(z —5)(z — 6) = 2° — 142" + 652° — 1122* + 60z

over Q7 and consider the point P = (3,6). We can find the Teichmiiller point 7" living in the
same residue disk of P (Section 4.3): this is a point fixed by Frobenius ¢:

z(T)=x(P) mod7
y(T)=y(P) mod 7

o(T)=T and

To find T, one can just take the Teichmiiller lift of z(P) and then solve
y? =z(z —1)(z — 2)(z — 5)(z — 6)

to find the y-coordinate.

Remark. We should be careful in choosing the correct sign of the y-coordinate.

sage: R.<x>=QQ[’x’]

sage: E= HyperellipticCurve(x~5-14*x"4+65xx"3-112*x"2+60%*x)
sage: K=Qp(7,8)

sage: EK=E.change_ring(K)

sage: P=(XK(3),K(6));

sage: EK.frobenius(P) == P

False

sage: TP = EK.teichmuller(P); TP
(3+4*T7+6%7~2+3%7"3+2%x7"5+6%x7"6+2%x7~7 +0(7°8)
B+5%T+6%7~2+6%7"3+3%7~4+7"5+2%x7~6+5x7~7+0(7"8)

1+0(7°8))
sage: E.frobenius(TP) == TP
True

This gives us the Teichmiiller point

T=0B447+6-7+3 - 7+2.7+6-7+2.-7 +0(7%);
64+5-7T+6-7+6-7+3-T" +7 +2-7+5-7 +O(7%))

Now we compute the integral

T de
J wo=f 2—=5-7+3-72+3-73+3-74+6-76+77+O(78)
y

P P
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sage: K = pAdicField (7, 8)

sage: x = polygen (K)

sage: C = HyperellipticCurve(x~5-14*x"4+65*xx"3-112*x"2+60%*x)
sage: P = C(3,6);

sage: TP = C.teichmuller (P);

sage: x, y = C.monsky_washnitzer_gens ()

sage: C.tiny_integrals ([1],P,TP)
Bx7 + 3%x7°2 + 3*%7°3 + 3*%7~4 + 6%x7°6 + 7°7 + 0(7°8)

Remark. One can even integrate any holomorphic differential w.

Remark. Since P and @) are in the same residue disk, all the power series involved are, in

fact, power series in pt

Remark. This works either on Weierstrass or non-Weierstrass residue disks.

Figure 8: Tiny Integrals in non-Weierstrass and Weierstrass residue disks

Step II - Connecting two integrals

Suppose now that P and @ lie in two different residue disks. We cannot use the method
of tiny integrals anymore: the problem is that now the series expansion does not converge
everywhere.

In this case, we have to do a distinction between the case of Weierstrass and non-
Weierstrass disks.

We essentially follow the construction of Coleman.

We indicate with Up the residue disk of the point P and with Uy the residue disk of
(). As we have seen, in each residue disk there exists a unique Teichmiiller point fixed by
Frobenius. The idea is to perform the two tiny integrals between P and {p (the Teichmiiller

point of Up) and from &, to @ and then to connect them using Frobenius:
Q Ep £Q Q
J w = f w + f w+ J w
P P 33 €
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Figure 9: Coleman Integral via Teichmiiller points
Hence, we have reduced the problem to compute
€Q
J w
&p
Connecting two integrals: non-Weierstrass disks

The idea relies in computing the action of Frobenius on the elements of the basis of Hyy (C').

>

LGORITHM 5. Coleman integral with endpoints in two non-Weierstrass disks

[

NPUT: Two points P, in different residue disks, a basis of differentials {w}?ial and an
integer m such that the residue fields of P and () are contained in [Fym.

OuTPUT: The integrals Sg W;.

1. Compute Teichmiiller points p and .

2. Calculate the action of the m-th power of Frobenius on each basis element:

2g—1

(™) wi = dfi + > Mijw; i
| i |

3. By change of variables, we get the fundamental linear system

2g—1 £o
S (- %f wi = Fi€r) — Fi(€Q)
i=0 &p

4. One can prove that the matrix M — I is invertible. Thus, we can solve the system above

and find the desired integral.



Remark (Action of Frobenius). To compute the action of the m-th power of Frobenius, first
we have to compute the action of Frobenius on the basis {w,-}?igl. As already mentioned, we
can use the Kedlaya’s algorithm [Bal, §2.2.2]:

LGORITHM 6. Kedlaya’s Algorithm

Z | >

NPUT: The basis of differentials {w}>%;".

o

UTPUT: Functions h; € AT and a 2g x 2g matrix B such that
2g—1
¢*wi = dhl + Z BZ'J(JJ]'

1=0

foralli=0,...,29g -1

1. Compute ¢(z) and ¢(y) as infinite series in AT,

2. Use Newton iteration method to approximate

Yy
o(y)
3. Write
¢*w; = ¢* (wd_x> it L0 g, +2ngB W
' o(y) 2y B T

Denote by f (respectively h) the column vector whose i-th component is f; (h;). Once

that we have the action of Frobenius, we can define:
f=¢"""(h) + B¢™*(h) + Bor(B)p" *(h) + ...+ Bow(B) ... - o5 *(B)h

M = ¢k(B)-...- o3 (B)
Remark (Change of variables). To obtain the fundamental linear system we observe that

2g9—1

" (6q) tQ ¢
J‘ w;‘heore; (5.3-1)J (¢m)* wi — J dfl —|— Z Ml,jw‘] =
o™ (€p) & & =
2g—1

= fi(&o) — fi(ép) + Z MUJ Wi
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but now
™ (£Q) §Q
[ [
o™ (Ep) ép

2g—1

EQ%:J%(&Q — fil¢p) + ZOMJ wj

from which

Connecting two integrals: Weierstrass disks

Finally, it only remains to study the situation in which P and @ live in two different residue
disks of which at least one is Weierstrass.
We will assume that w is everywhere meromorphic with no poles at P and (). This is

because otherwise we cannot even define Sg w

Lemma 5.8.1. Let P,Q € C(C,) with P a Weierstrass point. Let w be an odd differen-

tial which is everywhere meromorphic on C and has no poles in P or Q). Then for , the

[o-3[
w=—= w
P 2 Ju@

In particular, if Q) is also a Weierstrass point, then

Q
J w=20
P

Proof. Observe that, since P is Weierstrass, then

Q «(P) uQ) Q
J w =J w + J w + f w =
P P (P) u(Q)
P Q Q Q Q
=f w+f L*(w)—i-f wzf (—w)—i—f w
Po p UQ) p UQ)

Q Q
QJ w = J w ]
P «Q)
Therefore, in order to compute Sg w, we find the Weierstrass point P’ in the residue disk

of P and then
Q P Q P @
fwzj w—i—fwzj w—i——f w
P P P P 2 Juq)
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where the first is a tiny integral, while the second integral involves points lying in non-

Weierstrass disks.

Figure 10: Coleman integral involving Weierstrass disks

Ezxample. Let us consider again the hyperelliptic curve
v =z(z—1)(z —2)(z —5)(z — 6) = 2° — 142 + 652° — 1122% + 60z

and the points P = (3,6), @ = (10, 120):

Q

(o= [ Gri6. a3 s T 2 T 7+ O(7)
JP JP 2

(Q Q

wlz( —4-7+2-72+6-73+4-75+5-77+O(78)

JP JP

Q Q

[ Wy = ( z? _2+5 T+2- TP +4- TP+ 5.7 +2. T+ 4- 7+ O(7%)
JP JP

Q Q d

[ wgzj P — 643 T+3- T 46T +6-7+0(7)
JP P 2y

sage: K=Qp(7,8)

sage: x=polygen (K)

sage: E=HyperellipticCurve(x~5 - 14*x~4 + 65*x~3 - 112*x~2 + 60%*x)
sage: P=E(3,6)

sage: Q=E(10,120)

sage: w=E.invariant_differential ()

sage: x, y=E.monsky_washnitzer_gens ()

sage: (w).coleman_integral (P,Q)
B*T+B*7~2+3*%7"3+3*%7~4+2*x7~5+6*7~7+0(7°8)

sage: (x*w).coleman_integral(P,Q)
A*T+2%T7~2+6*x7~3+4*7~5+5x7~7+0(7°8)

sage: (x~2*w).coleman_integral (P,Q)

2+5%T+2*x 7~ 2+4 %7~ 3+T7~4+5xT7 " 5+2*%7~6+4*x7~7+0(7°8)
sage: (x~3*%w).coleman_integral (P,Q)
6+3*%7+3*%7~3+6*%7"5+6x7"6+0(7"8)

98



Ezample. Let us consider the elliptic curve '11.a’ (http://www.lmfdb.org/EllipticCurve/
Q/11/a/2):

E iy’ +y=a®—a? 10" - 20 LI £ y? = o — 133922 — 1080432

€ has good reduction at 19. Consider the point P = (168, 1188) which is a 5-torsion point

on £.

sage: K=Qp(19,15)

sage: EE=EllipticCurve(K,’11la’)

sage: E=EE.short_weierstrass_model ()
sage: P=E(K(168) ,K(1188))

sage: bx*P

(0 : 1 +0(19°8) : 0)

sage: w=E.invariant_differential ();
sage: x, y=E.monsky_washnitzer_gens ()
sage: w.coleman_integral (P,2*P)

0(19°8)
2P 2P
d
f wo = f 00199
P P 2y

which is consistent with the fact that wy is holomorphic and P is a torsion point (|Col3,

Proposition 3.1]).

sage: (x*w).coleman_integral (P,2*P)
9+2%19+15%x1972+3%19°3+15%1974+3%19°5+15%19°6+3%19~7+0(19°8)

2P 2P
d
f wlzf x2—x:9+2-19+15-192+3-193+15-194+3-195+15-196+3-197+0(198)
P P )

This reflects the fact that w; is not holomorphic on &.

sage: (x*w).coleman_integral (2P ,3%P)
18+5%19+15%19~2+3%19°3+15%19~4+3%19°5+15%x19~6+3%19~7+0(19"8)
sage: (x*w).coleman_integral (3%P,4*P)
9+2%19+15%x1972+3*%19"3+15%x1974+3%19°5+15%19°6+3%19°7+0(19°8)

4P —P
d
J wlzj x2—x:9+2-19+15-192+3-193+15-194+3-195+15-196+3-197+0(198)
3P —2p <Y

and this is consistent with the linearity on Div’(€) of the map e (Theorem 5.3.1).

The detection of torsion points is one of the original applications of the theory of Coleman
integrals [Col3]. Another very important example of the power of this tool is illustrated in
[Col2|, a very influential paper in which Coleman resumed an idea of Chabauty and proved
that p-adic abelian integrals could be used to produce effective bounds for the number of

rational points on curves.
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Proposition 5.8.2. Suppose that K is a complete discretely valued subfield of C,. Suppose
J: (Cyeo) = (A,0O) is a morphism over K of a pointed curve into an abelian variety, both
with good reduction. Suppose G is a subgroup of A(K), then j(C(K)) NG is contained in the
set of all v € C(K) such that i
f w=20
co

for all w e 7%V where Vg = {w e HY(A, Q) ) ‘ fu(x) =0, Vo e G}.
Ezxample. Let us consider the hyperelliptic curve

9
€:y2=x7+Z—lx6—2x5—9x4—4x3—|—8x2—|—8x—|—2

having good reduction at 7 and whose Jacobian has rank 1. £ has the following five known

rational points:

@ 2 &@uom = {=.(-1.3). (-1-3). (13). (1.-3)}

sage: p=7; K=Qp(p,10)

sage: x=polygen (K)

sage: E=HyperellipticCurve (x"7+9/4*x"6-2%x"5-9%x"4-4%x"3+8*xx~2+8*x+2)
sage: w=E.invariant_differential ()

sage: x, y=E.monsky_washnitzer_gens ()

sage: INFTY=E(K(0),K(1),K(0))

sage: P=E(K(-1),K(-1/2))

sage: P1=E(K(-1),K(+1/2))

sage: P2=E(K(1),K(-5/2))

sage: P3=E(K(1),K(5/2))

We compute the coleman integrals from o to (—1,—3) on the basis of Hyw (€)

sage: A=E.coleman_integrals_on_basis (INFTY,P)
sage: a=A[0]
sage: b=A[1]
sage: c=A[2]
5.7 +5- T +4-74+4.74+2-7+0(7)
A=13-7T+5 - T+ +2-74+2-7+5-7"+4-74+0(7)
6-7T+T7+5 7" +4-7+6-7°+5-7 +4-7 4+ O(7)

Define the following differentials

sage: alpha=b*w-a*x*w
sage: beta=c*w-a*(x~2)*w
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We observe that the integrals of both o and S vanish at every rational point:

sage: alpha.coleman_integral (P,P1)

0(7-10)
sage: alpha.coleman_integral (P,P2)
0(7-10)
sage: alpha.coleman_integral(P,P3)
0(7~10)
sage: beta.coleman_integral (P,P1)
0(7~10)
sage: beta.coleman_integral (P,P2)
0(7~10)
sage: beta.coleman_integral (P,P3)
0(7~10)

a and [ play the role of w in Proposition 5.8.2.

Remark. Actually, it is also possible to prove that €(Q)nown is all £(Q) [Bal+, Algorithm

3.3 and Example 4.1].

Remark. Potentially, the problem of computing rational points on curve can be made effective
(provided that the curve respects the hypothesis of Chabauty-Coleman). In Chapter 6 we’ll
describe an algorithm based on [Bal, Algorithm 6.2.1].

References. For a complete overview of the potential of the algorithms described above,

one may have a look at the SAGE Reference Manual “Hyperelliptic curves over a p-adic field”:
http://doc.sagemath.org/html/en/reference/curves/sage/schemes/hyperelliptic_curves/
hyperelliptic_padic_field.html.

5.9 Implementation Analysis

In the previous section we have given some examples of the implementation of the algorithm
in SAGE. In the following, we present some results about the precision of the computations.
The proofs can be found in [BBK, §4].

Proposition 5.9.1. Let Sgw be a tiny integral in a non- Weierstrass residue disc (the dis-
cussion about Weierstrass disks is similar), with P,Q € C(K) with an accuracy of n digits.
Let (x(t),y(t)) be the local interpolation between P and Q defined by

v(t) =ap-(1-1)+zg-1 y(t) =V F(X(1))

Let w = g(z,y) be a differential of the second kind such that h(t) = g(z(t),y(t))dx belongs
to O[t]. If we truncate h(t) modulo t™, then the computed value of the integral Sgw will be

correct up to
min{n, m + 1 — [log,(m + 1)]}

digits of absolute precision.
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Proposition 5.9.2. Let Sgw be a Coleman integral, with w a differential of the second kind
and with P and Q living in two different non-Weierstrass residue disks and a precision of n
digits. Let M be the matriz of the action of Frobenius on the basis differentials (Algorithm
6). Set B= M, and let m = v,(det(B)). Then the computed value of the integral Sg w will
be accurate up to

n — max{m, [logp(n)J}
digits of precision.

We conclude this chapter with a note about the running time of the algorithm. For

instance, let us observe how SAGE uses the time in computing the following function:

sage: w.coleman_integral(P,Q)

< 0.0001% — Setup.

10.88647% — Tiny Integrals.

67.75531% — Monsky-Washnitzer Computations.

< 0.0001% — Evaluating f (Remark of Algorithm 6).

0.103681% — Evaluating f over the Rationals.

20.47693% — Changing Rings.

0.570244% — Evaluating f on p-adic Field with Capped Precision.
0.207361% — Solve the Fundamental Linear System.

We immediately notice that the great majority of the time is spent doing Monsky-Washnitzer
computations and changing rings.

This is because there is no “good” (in the sense of fast) linear algebra over Q, and,
therefore, we work over the rationals where linear algebra is much faster.

Essentially, changing rings consists in pretending that the polynomials B, (z) in the defi-
nition of A" are defined over Q instead of Q,.

Example. Consider the Hyperelliptic curve with even model
E:y? =5 4+ 82°5 + 222 +222% + 5% + 62 + 1

This has good reduction at 3 and its Jacobian has Mordell-Weil rank 1.

We compute the Matrix of Frobenius appearing in the fundamental linear system
sage: p = 3
sage: prec = 10
sage: R.<x> = QQ[’x’]
sage: A,forms=monsky_washnitzer .matrix_of_frobenius_hyperelliptic(
X"6+8*%x"5+22%xx~4+22*%x~3+5*%x"2+6*x+1,p,prec)
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Because of the dimension of the matrix we report here only the first column

FP+31+2-334+2-354+2-37+2-3%+0(3'9)
3+32+33+31+35+304+2.38+2-3%+0(319
3+2.324342.3+2.36 4 O(31)
2:3+3+3F+3F+3+2-3+0(3"9)
3+33+2-31+ 3>+ 0(39

In the following, we change the ring of definition of the matrix A:

sage: EQ=HyperellipticCurve (x"6+8*x~5+22%x~4+22%x"3+5*%x"2+6*x+1)
sage: K=Qp(p,prec)

sage: E=EQ.change_ring(K)

sage: M=A.change_ring(ZZ)

we obtain
45774 23097 37179 49839 26815
53580 13467 16317 15091 41178
M =1 2046 44625 3159 17202 4756
46212 45531 52146 46726 30348
435 33288 52140 31222 8975
sage: V = VectorSpace(K,5)
sage: R = forms[0].base_ring()
sage: PP=E(K(0),K(1))

sage: QQ=E(X(0),K(-1))
These two are non-Weierstrass rational points on £ and they turn out to be the Teichmiiller

points in their residue disks:

sage: E.is_same_disc (PP,QQ)
False
sage: E.is_weierstrass (PP)
False
sage: E.is_weierstrass (QQ)

False

sage: E.frobenius (PP) == PP
True

sage: E.frobenius(QQ) == QQ
True

We evaluate the functions f; at the two points PP and Q@

sage: L=[f(R(PP[0]),R(PP[1]))-£f(R(QQL0]),R(QQ[1])) for f in forms]
sage: b=V(L)

Finally, we solve the fundamental linear system

sage: M_sys = matrix(K, A).transpose() - 1
sage: M_sys#**x(-1) * D
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obtaining

(0,—1)
J wo=3"1+2+2-32+3+3"+3°+0(3")
(1)

(0,—
J w1=1+33+35+2-36+37+0(38)
1)

(0,—
J w2=1+32+33+2-34+35+0(38)
(0,1)

/\

(0,-1)
J ws=2-324+1+3+3+3+0(3%
(0,1)

(0,—1)
J wr=2-3143+2-324+2-33+3+2.3°+0(3)
(0,1)

References. One can have a look at the complete source code developed by Bradshaw at
https://github.com/sagemath/sage/blob/master/src/sage/schemes/hyperelliptic_curves/
hyperelliptic_padic_field.py - The previous example roughly follows the code around

line 650.
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Chapter 6
Rational Points on Curves

In this chapter we give a brief description of the method of Chabauty and Coleman; this is
a p-adic tool for determining the set of rational points on a curve C defined over Q of genus
g = 2. We provide a theoretical introduction as well as some numerical examples of the
implementation of this method. The purpose is to study one of the applications of Coleman
integration theory.

The main reference is the article of McCallum and Poonen [MP| but of course we also
keep an eye on the original works of Chabauty [Cha] and Coleman [Col2]. For the description
of the algorithm at the end of Section 6.3, we refer to the PhD thesis of Balakrishnan [Bal,
Chapter 6].

6.1 Formulation of the Problem

Let us consider a curve C defined over Q, the field of rational numbers. The problem of
finding the set of rational points on C is one of the fundamental questions arising in algebraic
geometry.

Despite its appearance, the question is very difficult and the numerous attempts of solving
it have led to the development of many new techniques in geometry and number theory. For
centuries, mathematicians have tried to find a general method to compute C(Q) but even
nowadays we do not know if there is an algorithm suitable to approach this problem; in fact,
we do not even know if there is an algorithm deciding whether C(Q) is finite or not.!

Fortunately, in some cases, we have quantitative results giving at least the finiteness of

the number of rational points on a curve: in 1983, G. Faltings proved the Mordell conjecture

1Some of these questions have been solved for other base rings such as C, R, F,, Qp and Z (see, for
instance, the Hilbert 10*" problem).
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(which is now known as Faltings’” Theorem) stating that a curve of genus greater than 1
over Q has only finitely many rational points (Endlichkeitssitze fiir abelsche Varietiten dber
Zahlkérpern, 1983).

However, Faltings’ proof is not effective in the sense that it does not yield an explicit
method of finding C(Q). Nevertheless, this can be done, thanks to the work of C. Chabauty
before and eventually R. Coleman, in the case when the Jacobian of the curve has Mordell-
Weil rank strictly less than the genus of C.

In particular, in the article of Coleman [Col2|, the integration theory developed so far

plays a central role.

Definition. The Jacobian of a curve C is

J(C) = %ggé;* where H;(C) < H°(22)* via the map [y] — J N

6.2 The Theorem of Chabauty

Let J be the Jacobian of our curve C. By the Abel-Jacoby Theorem, we know that J is an
abelian variety of dimension g over Q.
Suppose that we know a point O € C(Q); then, we can identify our curve with a subvariety

of its Jacobian using the Abel-Jacobi embedding

C—>J
P—— [P-0]

sending P to the class of the divisor of P — O.
The idea is to perform the following steps:

1. Compute J(Q).
2. Determine which points in J(Q) lie on C.

Observe that computing J(Q) is, in general, a difficult problem. However, by the Mordell-
Weil Theorem, we know that J(Q) is a finitely generated abelian group. Hence, describing
it can be read as “finding generators and relations”. From now on we’ll suppose that J(Q) is

known.
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Theorem 6.2.1 (Mordell-Weil). IfC is defined over a number field K, then J(K) is a finitely

generated abelian group.

Example. Consider the curve
y* =a(z—1)(z - 2)(x - 5)(z — 6)

all the computation are implemented in MAGMA.

> P<x> := PolynomialRing(Rationals ());
> C := HyperellipticCurve (x*(x-1)*(x-2)*(x-5)*(x-6));
> BadPrimes (C);
> ptsC := Points(C : Bound := 1000); ptsC;
> J := Jacobian(C);
> RankBound (J);
We get
J(Q) = Z X J(Q)tors
> PJ:= J! [ ptsC[5], ptsC[1] 1;
> Order (PJ);
> heightconst := HeightConstant(J : Effort:=2, Factor);
> LogarithmicBound := Height(PJ) + heightconst;
> AbsoluteBound := Ceiling(Exp(LogarithmicBound));
> PtsUpToAbsBound := Points(J : Bound:=AbsoluteBound );
> ReducedBasis ([ pt : pt in PtsUpToAbsBound ]);
> Height (PJ);

The generator for the the infinite part is given by [(3,6) — o0].

TT ,mm:=TwoTorsionSubgroup(J); TT;
T,m:=TwoTorsionSubgroup(J); T;

m(T.1); m(T.2); m(T.3); m(T.4);

PJ1:= J!' [ ptsC[3], ptsC[1] 1; Order(PJ1);
PJ2:= J! [ ptsC[4], ptsC[1] 1; Order(PJ2);
PJ3:= J! [ ptsC[7], ptsC[1] 1; Order(PJ3);
PJ4:= J! [ ptsC[8], ptsC[1] 1; Order(PJ4);

V V V V V V V

Hence,
7 7 7 7

J ors —~
Qhors > 37 % 57 % 57 X 57

and it is generated by

[(1,0) =] [(2,0) =] [(50) =]  [(6,0) — ]

Remark. In some cases, it suffices something less than the full knowledge of J(Q) [MP,
Remark 2.2].
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Chabauty idea was to study the lie Group J(Q,). Consider Jg,, the base change of .J to
Q, (naively, we are considering the variety defined by the same equations of .J but we think
at them as defined over Q,). We take

H” (Jg,, ')

the g dimensional Q,-vector space of 1-forms on Jg,, and we consider w; € H° (J@p, Ql); we

can construct a map

nr: (@) — Q@
P
P— J Wy
0
uniquely characterized by:
e 7); is a homomorphism.

e There exists an open subset U < J(Q,) such that if () € U, then S(? wy can be computed
by expanding w; in power series in local coordinates, finding a formal antiderivative

and evaluating the resulting formal expansion at the local coordinates of Q.

We obtain a bilinear pairing

J(Qp) x H (Jg,, ) — Q,
P
(Pwy) — J Wy
10)
that we can re-write as
log : J(Q,) — (H (Jg,,2"))"

Definition. We denote by Jf(\/Q) the p-adic closure of J(Q) in J(Q,).

—~—

Lemma 6.2.2 ([MP, Lemma 4.2]). If v’ = dim J(Q) and r = dim J(Q), then " < r.

Now we recall that C(Q,) lies in J(Q,) and, in particular, it is a one dimensional sub-

manifold.

Theorem 6.2.3 ([Cha|). If C is a curve of genus g = 2 defined over Q and r' < g, then

—~—

C(Q,) n J(Q) is finite and, therefore, so is C(Q).
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6.3 The Method of Coleman

Now we turn the previous Theorem into a practical method of computing rational points

following [Col2]. The idea is to find functions on J(Q,) (here intervenes Coleman integration

—~—

theory) vanishing on J(Q) and restrict them to parametrizations of C(Q).
Suppose now that our curve C has good reduction at p; thus, J has good reduction at p
as well and the embedding
C—>J

induces an embedding of the special fiber of C into the reduction of J.

One can show that the embedding above induces an isomorphism of QQ,-vector spaces
Y (Jo,, ) = H' (Co,. )

Suppose that w is the image of w; via this isomorphism; then, we have

Q [Q—P]
Joes )y
P 0

and we can recover some properties of the integral on the right from the theory of integration

on J.

(i) If P, Q; € C(Q,) are such that [>.(Q; — F;)] is a torsion element of J(Q,), then
Qi
ZJ w=20
P;

ii) If P and () have the same reduction in F,, then % can be computed by expanding in
P P

power series in a local parameter t on the curve C.

By the definition of 7y, its restriction to C(Q,), is the function

n= 77J|C(Qp) 1C(Q) — @
P

P— J w
o

log (f@) C H (Jg,, Q)" ~ Q¥

One can see that

is a Z,-submodule of rank r’.
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If " < g, there exists a non-zero Q,-linear functional

A\:H° (J@p,Ql)* —- Q,

—_—~—

that vanishes on log <J (Q)) By duality, A corresponds to a particular w; € H (J@p, Ql).

Hence, \ gives rise to 15, w,n as above:

0 J(Qy) =2 H° (Jg,, 1) > @,

—~—

and so 7, vanishes on J(Q). It follows that w satisfies also

—~—

(iii) If P, Q; € C(Q,) are such that [}}(Q; — )] € J(Q), then 3] {5 w = 0.

—~—

and 7 vanishes on C(Q,) n J(Q). Now we only need to bound the number of zeros of 7.

Theorem 6.3.1 (Coleman). Let C, J, p, " be as above. Suppose also that p is a prime of good

reduction for C.

a. Let w be a nonzero 1-form in H° (Cg,. ) satisfying conditions (i)-(iii). Scale w by an
element of Q, so that it reduces to a nonzero 1-form w € H° (CFP,Ql). Suppose Q €
C(Fp). Let m = ordgw. If m < p— 2, then the number of points in C(Q) reducing to Q

1s at most m + 1.

b. If p > 2g, then #C(Q) < #C(F,) + (29 — 2).

The proof requires some technical lemmas in p-adic analysis involving the theory of New-
ton Polygons |Gou, §6.4].

Coleman’s Theorem can be improved by choosing the “best” w for each residue disk.

Theorem 6.3.2 (M. Stoll). Ifr < g and p > 2r + 2 is a prime of good reduction then

#C(Q) < #C(F,) +2r

Explicit computations on the map 7 can potentially give lot of informations about the

set C(Q).
In the following, we suppose that C is a hyperelliptic curve of equation y*> = F(x) where

F' is a monic and nonsingular polynomial defined over Q.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

parameter z.

i INPUT: A Weierstrass basepoint P, a non-Weierstrass point ) (whose residue disk will be
i the object of investigation) and a holomorphic basis of differentials.

' OUTPUT: A power series folz) = SSZ w;, where @, = (z + 2(Q), A/ f(z + x(Q))) is taken
so that (), is in the residue disk of Q).

1. Compute @, = (:I:(Q) + 2,4/ f(z + x(@))), choosing the correct square root.
2. Compute ¢(Q),), choosing the right square root.
3. Compute the local coordinate at Q,: x(t) =t + z + 2(Q), y(t) = A/ f(z(t)).

4. This gives us

J “ w; = fo w(t) da(t) dt

#(Q=)

5. Using the fundamental linear system, compute

falz) = fQZ o= 01 =17 (<42 - fQZ )wi)

P

Remark (Effectiveness). It is necessary to point out that the algorithm presents some limi-

tations (for a more detailed analysis of the algorithm one can refer to [MP, §7].):

e It may be difficult to bound ' and r.
e In the case when ' = g, there is no chance of finding a bound for #C(Q).

e Even if # (C(@p) N j(?Q/)) is known, the true value of #C(Q) could be smaller.

6.4 Examples
Ezxample. Let’s consider our Hyperelliptic curve
E:y=a(r—1)(x—2)(x —5)(z —6) = 2° — 14z* + 652° — 1122% + 60z

whose Jacobian has Mordell-Weil rank 1. We have already observed that the curve has good

reduction at 7.
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Suppose we want to find all the rational points on £. The purpose is to see the method
of Coleman in action.

Since £ has good reduction at 7, we reduce the equation defining £ over F:
E:yt=a"+22° + 4x

We consider the following table:

reF; |0 1 2 3 4 5 6
>eF; [0 1 4 5 2 3 6
20¢F; |0 2 2 5 2 5 5

2’ +22° +4reF; |0 0 0 1 6 0 0

Remark. o € F; is a square if and only if & = 0,1, 2,4 which means that y =0, 1,6.

€(F7) = {(0,0);(1,0); (2,0); (5,0); (6,0); (3,6); (3,1); 0}
Notice that £(F7) has 8 elements and we can represent them in the following way:

]
o0

O N W Ot

X
0123456

Figure 11: Representation of £(F7)
We can try to lift these points and we find:
6(@) = {(07 0)7 (17 O)v (27 O)a (57 0)7 (67 O)a (37 6)? (37 _6); OO}

We now want to study if there are other rational points in the residue disks of the two non-

Weierstrass points Py = (3, +6). First of all we consider £ defined over Q; and we compute

(3,6) (3,6)
a= f wo b= f w1
o0 [es}

where wy = dz/2y and w; = xdx/2y are the first elements of the basis of differentials.

the Coleman integrals
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sage: Campo=QQ; x=polygen (Campo)

sage: EQ=HyperellipticCurve (x~5-14*x"4+65xx~3-112*%x"2+60%*x)
sage: p=7; prec=10; K=Qp(p,prec); E=EQ.change_ring(K)

sage: w=E.invariant_differential ()

sage: x, y=E.monsky_washnitzer_gens ()

sage: INFTY=E(K(0),K(1),K(0)); P=E(K(3),K(6))

sage: A=E.coleman_integrals_on_basis_hyperelliptic (INFTY,P)
sage: a=A[0]; b=A[1]

We obtain:

a=6-T+6-7+3-T+3-T+2.-7+6-7+4-7+4-7 407"

b=4-T+2-7*4+6-T+4-7+5-7+3-7+0(7)
Let us define a new differential o (living in the annihilator of the Jacobian J(€) as in Propo-
sition 5.8.2):

a = bwy — aw;

Remark. 1t is immediate to verify that Sg « vanishes on each rational point ) (the situation

is similar to the one in the example following Proposition 5.8.2).

Now we want to integrate o from the base point P, to a generic point (), = (¢, s) in the
same residue disk. In particular, since this will be a tiny integral, we can compute integrals

expanding the equation defining £ in power series in the uniformizing parameter z:

J‘(t,s) J‘(t,s)(b )dx Jt (b N aq:)d:c
o = — ar)— = =

th—aac 1 x—3+5(x—3)2 29(x—3)3+
6 12 54 432

=%[(—%+g> (t—3) + <%—%) (t—3)*+ <—%+%> (t —3)*+

ATa 200 \
- (1728 - 1728> =37+ ]
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Notice that we are working in the residue disk of (3,6): this means that t = 3 mod 7.

Hence, we can write t = 3 + 7z for z € Z;. We get

a b a b 9 7a 5b 3 47a 29b 4
<_Z - E) (72) + (48 - 48) (72)" + (_216 " 324) (72)"+ (3456 3456> (72)" + .

Now we substitute the exact values of a and b:

sage: alpha=b*w-a*x*w

sage: z=polygen (K)

sage: £=1/2x((-1/2*%a+1/6*%b)*(7*z)+(1/24*a-1/24xb)*(Tx2z) "2+
(-7/108*a+5/162%b)*(7*z) ~3+(47/1728%a-29/1728%b)*(7*z)"~4)

We find

f2)=@2- P+ +0(T)z+ (5T +2- 7+ 0(7)2 + > O(74) 7
>3
Theorem 6.4.1 (Strassmann). Let f = >, ,a;z" be a power series with a; € Z, such that

lima; = 0. Let k = minv,(a;) and let
N = maz {j | vp(a;) = k}
Then, the number of zeros of f in Z, is at most N.

In our case, the Theorem says that we have at most two rational points in the residue

disk of P, = (3,6). It is not difficult to observe that 1 is a zero of f:

sage: f(x=K(1))
0(7°6)

this zero yields a second rational point reducing to (3,6) in &: if z = 1, then ¢ = 10 and
therefore @ = (10, —120).
Repeating the argument above for the other Weierstrass residue disk, we obtain the

following table

5 Bound on the Number of Rational Points
Rational Points P = Py (mod 7) | P = P, (mod 7)

(3,6) 2 (3,6), (10, —120)
(3,—6) 2 (3,—6), (10, 120)

and this gives:
£(Q) =2 {x, (0,0),(1,0),(2,0), (5,0),(6,0),(3,6),(3,—6), (10, 120), (10, —120)}

As we have seen at the beginning of the example, #&(F7) = 8.

114



Hence, applying Theorem 6.3.1.b,
0<#EQ) < #E(F7)+29—2=8+2-2-2=10= #E(Q) =10

In conclusion, we have:

£(Q) = {x, (0,0),(1,0),(2,0), (5,0),(6,0),(3,6),(3,—6), (10, 120), (10, —120)}
FExample. Let us consider the hyperelliptic curve

E:yt=ax(r—3)(v—4)(v—6)(x—7)
As in the previous example, the curve has genus g = 2. Its Jacobian has now rank 0:
7\ 4
J(Q) ~ (ﬁ)

Finally, the curve has good reduction at 5; we observe that 5 > 2r + 2 = 2. Hence, we can
apply Stoll’s Theorem 6.3.2:

#E(Q) < #E(Fs) + 2r = #E(Fs)

An easy computation shows that

£(Fs) = {%0,(0,0),(1,0),(2,0),(3,0),(4,0)}  #&E(F5) =6
Hence, £(Q) consists only of the 6 Weierstrass points:
£(Q) = {0, (0,0),(3,0), (4,0),(6,0), (7,0)}

We want to conclude this section with an example where Coleman method is not sufficient

to write a complete list of rational points.

FExample. Consider the hyperelliptic curve
C:y?=ad+42t —22+1

This is a genus 2 curve, with good reduction at 5, whose Jacobian has rank 1.

115



We reduce the curve over Fs: y? = 2° + 42* + 422 + 1:

xeF; |0 1 2 3 4
?»eF; |0 1 2 3 4 yelFs |0 1 2 3 4
42 eFs |0 4 4 4 4 yv?elFs |0 1 4 4 1
422eF5 |0 4 1 1 4

4+t +422+1eF5 |1 0 3 4 3

and we find

C(]F5) = {@7 (07 1)7 (074)v (17 O)? (37 2)7 (37 3)} g #C(FS) =6

Using Theorem 6.3.1, we have the following bound on the number of rational points:

#C(Q) <8

(0,1) and (0,4) lift respectively to (0,1) and (0, —1) in C(Q) but the other 3 points have no
obvious lift.

x is a local coordinate on the residue disk of (0, 1):
1 1, 13, 1, 43, 3, 323, 33,

-~ =1+ o — ot - Sa® - Tab o TaT o TS 2
NG P R R TR D T

+O(2")

Again we compute the two Coleman integrals

©0.1) 74 0.1 1y
a = f — b= J r—
w 2y w 2y

and we define the differential @ = bwy — aw,. Following the method of Coleman, we integrate
a between (0, 1) and a generic point (¢, s) living in the same residue disk of (0, 1). Noticing
that t =0 mod 5, t can be written as 5z (for z € Z5) and so we get the function

a

2

3¢

(52)% + 3

- (52)

|

f(z) =b-(52) =
Substituting the exact values of a and b we find

f(2)=(4-52+3-5° + O(5")z + (2: 52+ 3-5° + O(5"))22 + > O(5")

Jj=3

Now we apply Strassmann Theorem 6.4.1 and we see that in the residue disk of (0,1) there

are at most two rational points. The second one is given by (—%, —%). In the same way
we find (=12, 22) in the residue disk of (0, —1).
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Question. How can we study the residue disks of (1,0),(3,2) and (3,3)?
We have still not used Theorem 6.3.1.a: we consider again our differential a:

dx

a=[-(+5+5°+0() + (1+3:5+4- 5 +4.5°+2.5'+ 0() 2] 5

We have to study the order of vanishing of the reduction @ of @ modulo 5. Notice that

We list the order of vanishing of @ at the elements in C(FF5) in the following table:

Q@ |©OD ©4 @) B2 B3 @

odga | 11 0 0 0 0

By Theorem 6.3.1.a, we can say that in the residue disks given by the preimages of (1, 0), (3, 2)

and (3,3) there is at most one rational point.

First of all we observe that, by Hensel’s Lemma, the residue class of (1,0) contains one
Weierstrass point WW. This is defined over Q5 but it is not rational. With an easy computation

in SAGE we can find that
W=(1+5+2-5"4+3-5+5"+3-5°4+3-5°+0O(5") , 0)

sage: R.<x> = QQ[’x’]

sage: E = HyperellipticCurve (x~5+4*x~4-x"2+1)
sage: K Qp(5,10); EK = E.change_ring(K)
sage: EK.weierstrass_points ()

It only remains to study the residue disks of (3,2) and (3, 3).

As noticed before, Coleman method is not completely effective in this situation: we do
not have any evidence of the existence of a rational point in the remaining residue classes.
To study these disks one have to describe more in details the Jacobian of the curve making

more explicit the idea of Chabauty. Here, we only give an idea of how this works.

Notation. We denote by J the Neron model of J (note that J = Pic’(C/Zs)) and by J(Q)
the reduction of J(Q) over F;.

The idea is to study J(Q) < J(F5).

Idea (|Wet, §1.8]). Suppose that we know generators for a finite index subgroup G < J(Q).
Since the Qs-linear spaces spanned by log(G) and log(J(Q)) are equal, we will often be able
to determine the generators of V' = Ann(J(Q)).
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We denote G and J(Q) the images of G and J(Q) under the reduction map. If the index
of G in J(Q) is coprime to the order of J(F5), then G = J(Q).

Let P € C(Qs) and let P € C(F5) be its reduction. If P € C(Q), then we see that
[TF —Dl|e @ where D is a rational divisor of positive degree r; conversely, if [TF — E] ¢

J(Q) then there is no rational point in the residue class of P.

A good example of this method can be found in [Wet, Chapter 1.

In our situation, it turns out that there is no rational point in the residue disk of (3,2)

and the same is true for the residue disk of (3,3). Thus,

c@ - {=00.0-0. (-7 %) (-7 -5%)]

We notice that, in this case, the Coleman’s bound is not sharp anymore.

118



Bibliography

[Art]
[Bal|

[Bal-+|

[BaT]|

[BBK]

[Berl|

[Ber2|

[Berk]

[Bes]

[BCR|

[BLR]

[Bos|

M. Artin. “Grothendieck Topologies”. In: Notes on a Seminar (Spring 1962).

J.S. Balakrishnan. “Coleman Integration for Hyperelliptic Curves: Algorithms and
Applications”. PhD thesis. Massachusetts Institute of Technology, 2011.

J.S. Balakrishnan et al. “Chabauty-Coleman experiments for genus 3 hyperelliptic
curves”. In: ArXiv e-prints (2018).

J.S. Balakrishnan and J. Tuitman. “Explicit Coleman integration for curves”. In:
ArXiv e-prints (2017).

J.S. Balakrishnan, R.W. Bradshaw, and K.S. Kedlaya. “Explicit Coleman Integra-
tion for Hyperelliptic Curves”. In: Algorithmic Number Theory”. Springer Berlin
Heidelberg, 2010, pp. 16-31.

P. Berthelot. “Cohomologie rigide et cohomologie rigide a supports propres”. In:
Prépublication IRMAR 96-03 (Jan. 1996).

P. Berthelot. “Finitude et pureté cohomologique en cohomologie rigide”. In: Inven-
tiones Mathematicae 128 (Apr. 1997), pp. 329-377.

V.G. Berkovich. Integration of one-forms on p-adic analytic spaces. Annals of math-

ematics studies. Princeton University Press, 2007.
A. Besser. Heidelberg lectures on Coleman integration. 2010.

S. Bosch, U. Giintzer, and R. Remmert. Non-Archimedean Analysis: A System-
atic Approach to Rigid Analytic Geometry. Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg, 1984.

S. Bosch, W. Liitkebohmert, and M. Raynaud. Neron Models. A Series of Modern
Surveys in Mathematics Series. Springer, 1990.

S. Bosch. Lectures on Formal and Rigid Geometry. Lecture Notes in Mathematics.

Springer International Publishing, 2014.

119



[Bre]

[Cds]

[Cha|

[Coll]

[Col2]

|Col3|

[Colm)|

[Con|

[Dwol

[EP]

[FvdP]

[Gou]

[Har]|

[Hrt]

C. Breuil. “Intégration sur les variétés p-adiques”. In: Séminaire N. Bourbaki 1998-
1999 (1999), pp. 319-350.

R.F. Coleman and E. de Shalit. “p-Adic regulators on curves and special values of
p-adic L-functions.” In: Inventiones mathematicae 93.2 (1988), pp. 239-266.

C. Chabauty. “Sur les points rationnels des courbes algébriques de genre supérieur
a l'unité”. In: Comptes Rendus Mathématique de I’Académie des Sciences de Paris
212 (1941), pp. 882-885.

R.F. Coleman. “Dilogarithms, Regulators and p-adic L-functions.” In: Inventiones
mathematicae 69 (1982), pp. 171-208.

R.F. Coleman. “Effective Chabauty”. In: Duke Mathematical Journal 52.3 (Sept.
1985), pp. 765-770.

R.F. Coleman. “Torsion Points on Curves and p-Adic Abelian Integrals”. In: Annals
of Mathematics 121.1 (1985), pp. 111-168.

P. Colmez. Intégration sur les variétés p-adiques. Astérisque 248. Société Mathéma-

tique de France, 1998.

B. Conrad. “Several approaches to non-archimedean geometry”. In: p-adic Geome-
try: Lectures from the 2007 Arizona Winter School. Ed. by D.S. Thakur D. Savitt.
University Lecture Series, 2008. Chap. 2.

B. Dwork. “Normalized Period Matrices I: Plane Curves”. In: Annals of Mathematics

94.2 (1971), pp. 337-388.

A.J. Engler and A. Prestel. Valued Fields. Springer Monographs in Mathematics.
Springer Berlin Heidelberg, 2005.

J. Fresnel and M. van der Put. Rigid Analytic Geometry and Its Applications.
Progress in Mathematics. Boston: Birkh&user, 2004.

F. Gouvea. p-adic Numbers: An Introduction. Universitext. New York: Springer
Berlin Heidelberg, 1997.

R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. New York:
Springer-Verlag New York, 1977.

R. Hartog. “Zeta functions and Dwork modules”. MA thesis. The Netherlands:
Utrecht University, 2017.

120



KB

[Ked|
[Lanl]
[Lan2|

[Liu]

|Liit]

[Mag]

[Mas|

[MP]

[MW]

[Sage]

[Serl|

[Ser2]
[Sik]

[Tat]

K.S. Kedlaya and R. Bradshaw. Sage Days 5: Kiran Kedlaya and Robert Bradshaw
— Coleman Integration. Youtube. 2011. URL: https://www.youtube.com/watch?
v=GrR3-JX3NiY.

K.S. Kedlaya. Notes for the Course “Topics in Algebraic Geometry”. Fall 2004.
S. Lang. Abelian Varieties. Springer New York, 1983.

S. Lang. Real and Functional Analysis. Graduate Texts in Mathematics. Springer
New York, 1993.

Q. Liu. Algebraic Geometry and Arithmetic Curves. Oxford graduate texts in math-
ematics. Oxford University Press, 2002.

W. Liitkebohmert. Rigid Geometry of Curves and Their Jacobians. Springer Inter-
national Publishing, 2016.

W. Bosma, J. Cannon, and C. Playoust. “The Magma algebra system. I. The user
language”. In: Journal of Symbolic Computation 24 (1997). Computational algebra
and number theory (London, 1993). URL: http://magma . maths.usyd.edu. au/

magma/.

M. Masdeu-Sabaté. “CM cycles on varieties fibered over Shimura curves, and p-adic
L-functions”. PhD thesis. McGill University, Montréal, Québec, 2010.

W. McCallum and B. Poonen. “The method of Chabauty and Coleman”. In: Société
Mathématique de France, Paris 36 (Jan. 2012), pp. 99-117.

P. Monsky and G. Washnitzer. “Formal Cohomology: I". In: Annals of Mathematics
88.2 (1968), pp. 181-217.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.2). 2018. URL: http://www.sagemath.org.

J.P. Serre. “Morphismes universels et variété d’Albanese”. In: Séminaire Claude
Chevalley 4 (1958-1959), pp. 1-22.

J.P. Serre. Local Fields. Graduate Texts in Mathematics. Springer New York, 1995.

S. Siksek. Chabauty and the Mordell-Weil Sieve. Notes based on lectures given at
the “Arithmetic of Hyperelliptic Curves” workshop, Ohrid (MK). 2014.

J. Tate. “Rigid Analytic Spaces.” In: Inventiones mathematicae 12 (1971), pp. 257
289.

121



[Tia| Y. Tian. Introduction to Rigid Geometry. Notes. Mathematics Institute, University

of Bonn.

[VAP| M. van der Put. “The cohomology of Monsky and Washnitzer”. In: Mémoires de la
Société Mathématique de France 23 (1986), pp. 33-59.

[Wet]  J.L. Wetherell. “Bounding the number of rational points on certain curves of high
rank”. PhD thesis. University of California at Berkeley (CA), USA, 1997.

122



	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Structure of the Thesis

	Valued Fields and Normed Spaces
	Non Archimedean Fields
	Completions
	Extension of Valuation
	Banach Algebras

	Affinoid Algebras and Affinoid Spaces
	Tate Algebras
	Affinoid Algebras
	Affinoid Spaces
	Affinoid Subdomains
	Affinoid Functions
	Tate's Acyclicity Theorem

	Rigid Spaces
	Grothendieck Topology
	Rigid Analytic Spaces
	Analytification
	Coherent Sheaves
	Analytic Reductions
	Towards Formal Geometry
	Analytic Spaces and Formal Schemes

	p-adic Abelian Integrals
	Battle Plan
	Lifting Morphisms
	Frobenius Endomorphisms
	Differentials
	p-adic Integrals

	p-adic Integrals on Curves
	Preliminary Definitions
	The Logarithm
	Curves with Good Reduction
	Hyperelliptic Curves
	Monsky-Washnitzer Cohomology
	Lifting of Frobenius
	Local Parameters
	Explicit Integrals
	Implementation Analysis

	Rational Points on Curves
	Formulation of the Problem
	The Theorem of Chabauty
	The Method of Coleman
	Examples

	Bibliography

