
Authentication and Data Protection under Strong

Adversarial Model

Lianying Zhao

A thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Ful�llment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

July 2018

c© Lianying Zhao, 2018

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Lianying Zhao

Entitled: Authentication and Data Protection under Strong Ad-

versarial Model

and submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the �nal examining commitee:

Dr. Ketra Schmitt
Chair

Dr. Urs Hengartner
External Examiner

Dr. Otmane Ait Mohamed
External to Program

Dr. Jeremy Clark
Examiner

Dr. Lingyu Wang
Examiner

Dr. Mohammad Mannan
Thesis Supervisor

Approved by
Dr. Chadi Assi, Graduate Program Director

June 21, 2018

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Authentication and Data Protection under Strong Adversarial Model

Lianying Zhao, Ph.D.

Concordia University, 2018

We are interested in addressing a series of existing and plausible threats to cyberse-

curity where the adversary possesses unconventional attack capabilities. Such uncon-

ventionality includes, in our exploration but not limited to, crowd-sourcing, physi-

cal/juridical coercion, substantial (but bounded) computational resources, malicious

insiders, etc. Our studies show that unconventional adversaries can be counteracted

with a special anchor of trust and/or a paradigm shift on a case-speci�c basis.

Complementing cryptography, hardware security primitives are the last defense in

the face of co-located (physical) and privileged (software) adversaries, hence serving

as the special trust anchor. Examples of hardware primitives are architecture-shipped

features (e.g., with CPU or chipsets), security chips or tokens, and certain features on

peripheral/storage devices. We also propose changes of paradigm in conjunction with

hardware primitives, such as containing attacks instead of counteracting, pretended

compliance, and immunization instead of detection/prevention.

In this thesis, we demonstrate how our philosophy is applied to cope with sev-

eral exemplary scenarios of unconventional threats, and elaborate on the prototype

systems we have implemented. Speci�cally, Gracewipe is designed for stealthy and

veri�able secure deletion of on-disk user secrets under coercion; Hypnoguard pro-

tects in-RAM data when a computer is in sleep (ACPI S3) in case of various mem-

ory/guessing attacks; Uvauth mitigates large-scale human-assisted guessing attacks

iii

by receiving all login attempts in an indistinguishable manner, i.e., correct creden-

tials in a legitimate session and incorrect ones in a plausible fake session; Inuksuk is

proposed to protect user �les against ransomware or other authorized tampering. It

augments the hardware access control on self-encrypting drives with trusted execu-

tion to achieve data immunization. We have also extended the Gracewipe scenario to

a network-based enterprise environment, aiming to address slightly di�erent threats,

e.g., malicious insiders.

We believe the high-level methodology of these research topics can contribute to

advancing the security research under strong adversarial assumptions, and the pro-

motion of software-hardware orchestration in protecting execution integrity therein.

iv

Acknowledgments

My thesis supervisor, Dr. Mohammad Mannan, has always been the driving force,

reliable support and rigorous guide for my Ph.D. research, which lead to my smooth

conversion to an academic mindset from the industry. I appreciate the meticulousness

and rigorousness that are �genetically� implanted into my research habits and even

the way I think, just because of him.

I am grateful for all members of Madiba Security Research Group (especially

Xavier de Carné de Carnavalet), as well as the rest of my research colleagues of

the CIISE department, for the pleasant discussions we have had, regarding research,

career and life. When disappointment or frustration comes, it is them who make me

look forward.

I also would like to express my gratitude to my family members, who have been

backing me up and understanding the devoted nature of Ph.D. studies, without which

this thesis would not have been possible.

v

Contents

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Unconventional Attack Capabilities 1

1.2 Methodology . 3

1.2.1 Hardware security primitives � P1 3

1.2.2 Passive but resilient defense � P2 4

1.3 Thesis Statement . 5

1.4 Main Contributions . 5

1.5 Related Publications . 8

1.6 Outline . 9

2 Deceptive Deletion Triggers under Coercion 10

2.1 Introduction and Motivation . 10

2.2 Goals and Threat Model . 14

2.2.1 Goals and terminology . 14

2.2.2 Threat model and assumptions 16

2.3 Gracewipe Design . 18

2.3.1 Overview and disk layout . 18

2.3.2 Execution steps . 20

2.3.3 Sealing in NVRAM . 20

2.3.4 Password management . 21

2.4 Implementation with TrueCrypt . 22

2.4.1 Implementing the wiper . 22

2.4.2 Adapting TrueCrypt . 23

vi

2.4.3 Orchestrating components . 23

2.4.4 Windows and TPM issues . 24

2.5 Extended Unlocking Schemes . 25

2.5.1 Existing panic password schemes 26

2.5.2 Counter-based deletion trigger 27

2.5.3 Edit-distance-based password scheme 28

2.5.4 Other possible schemes . 31

2.6 Performance Overhead . 32

2.7 Generalized Work�ow and Comparison 34

2.8 Security Analysis . 36

2.9 Related Work . 38

2.10 Concluding Remarks . 40

3 Extending Gracewipe to Network-based Environments 41

3.1 Introduction . 41

3.2 Threat Model and Assumptions . 43

3.3 An Analysis and Status-quo of Remote Secure Erase 44

3.4 End-to-end Veri�able Secure Deletion 47

3.4.1 Design considerations . 47

3.5 A Proof-of-concept on x86 PCs . 48

3.5.1 Assumptions and terminology 49

3.5.2 Design overview . 50

3.5.3 Implementation of Gracewipe Remote 51

3.5.4 Adapting for server-coordinated remote wipe 54

3.6 Related Work . 55

3.7 Conclusion . 55

4 Hypnoguard: Protecting Secrets across Sleep-wake Cycles 57

4.1 Introduction . 57

4.2 Terminologies, Goals and Threat Model 60

4.2.1 Terminologies . 60

4.2.2 Goals . 61

4.2.3 Threat model and assumptions 61

4.3 Design . 63

4.3.1 Design choices and elements 64

4.3.2 Unlock/deletion policy and deployment 65

vii

4.3.3 How goals are achieved . 67

4.4 Implementation . 68

4.4.1 Overview and execution steps 68

4.4.2 Instrumenting the S3 handler 70

4.4.3 Memory considerations . 70

4.4.4 User interaction . 71

4.4.5 Moving data around . 73

4.4.6 Unencrypted memory regions 73

4.5 High-speed Full Memory Encryption and Decryption 74

4.5.1 Enabling techniques . 74

4.5.2 Performance analysis . 75

4.6 Variants . 76

4.7 Security Analysis . 78

4.8 Related Work . 79

4.9 Concluding Remarks . 83

5 Trusted Write-protection Against Privileged Data Tampering 85

5.1 Introduction and Motivation . 85

5.2 Threat Model and Assumptions . 89

5.3 Design . 90

5.3.1 Design goals . 91

5.3.2 Trusted �le versioning . 92

5.3.3 Design choices . 94

5.3.4 System components and work�ow 96

5.3.5 A remote data vault . 97

5.4 Implementation . 99

5.4.1 Using Flicker to handle TXT sessions 99

5.4.2 OPAL access to SED inside TXT 99

5.4.3 Secure user interface . 100

5.4.4 OPAL implementation challenges 102

5.5 Performance Considerations . 103

5.5.1 File system e�ciency . 103

5.5.2 CPU slowdown in Flicker PAL 104

5.5.3 Adding support for DMA disk access 106

5.5.4 Usage scenarios and performance 106

viii

5.6 Security Analysis . 109

5.7 Related Work . 112

5.8 Conclusions . 115

6 COTS One-Time Programs 116

6.1 Introduction . 116

6.2 Preliminaries . 118

6.2.1 Design goals . 118

6.2.2 Trusted execution environments 121

6.2.3 Threat model . 123

6.2.4 Terminology . 124

6.2.5 Additional background . 125

6.3 System 1: TXT-only . 126

6.3.1 TXT-only provisioning at Alice's site 127

6.3.2 TXT-only evaluation at Bob's site 128

6.3.3 Trusted execution . 128

6.3.4 Performance evaluation . 129

6.4 System 2: GC-based . 130

6.4.1 The Frigate GC compiler . 132

6.4.2 Execution steps . 133

6.4.3 Enhanced security: GC-based Plus 135

6.4.4 Performance evaluation . 135

6.5 Case Study . 136

6.5.1 Genomic test . 138

6.5.2 GC-Based OTP implementation 141

6.5.3 GC-based case study setup . 142

6.5.4 TXT-only OTP implementation 143

6.5.5 Evaluation . 143

6.5.6 Porting e�ort . 144

6.6 Other Use Cases . 145

6.7 Security analysis . 147

6.8 Related Work . 152

6.9 Concluding Remarks . 153

ix

7 Explicit Authentication Response Considered Harmful 154

7.1 Introduction . 154

7.2 Threat Model and Assumptions . 157

7.3 Uvauth: User-veri�able Authentication 159

7.3.1 Implicit detection of an authentication outcome 160

7.3.2 Designing fake sessions . 162

7.4 Distorted Image as a Communication Channel 165

7.4.1 Captchas as a cipher . 165

7.4.2 Adaptation of regular captchas 166

7.4.3 An example with VNC . 167

7.5 Limitations and Attacks . 167

7.6 Related Work . 170

7.7 Conclusion . 172

8 Further Discussion 174

8.1 Onto Mobile Platforms . 174

8.2 Open Problems . 175

8.3 Concluding Remarks . 176

A Glossary and Additional Information 214

x

List of Figures

1 An overview of security features in hardware 4

2 A generalized representation of Gracewipe 19

3 Dividing password space with DL-distance 29

4 The framework of trusted remote erase 47

5 An x86 instantiation of the trusted remote deletion with Intel AMT . 48

6 Memory layout and key usage of Hypnoguard 63

7 Simpli�ed execution steps of Hypnoguard 69

8 System overview of Inuksuk . 97

9 A screenshot of the mini �le browser inside the trusted updater. . . . 108

10 Our realization of One Time Programs with TXT alone 128

11 Our GC-based One Time Programs 133

12 Overview of user-veri�able authentication 159

13 Distorted image with random padding 166

14 A VNC session with an adapted distorted image 167

xi

List of Tables

1 Comparison of Gracewipe password schemes 35

2 A comparative list of encryption/decryption performance 76

3 File transfer performance in the trusted updater. 109

4 TXT-only results with �xed vendor and varying client input sizes . . 130

5 TXT-only results with �xed client and varying vendor input sizes . . 130

6 GC-based results with �xed client and varying vendor input sizes . . 136

7 GC-based results with �xed vendor and varying client input sizes . . 136

8 Comparison of our technique with existing methods for genomic testing.138

9 SNPs on BRCA1 and their corresponding risk factors for breast cancer. 139

10 Performance numbers for our BRCA1 genomic test 142

11 Comparison between GC-based and TXT-only 144

xii

Chapter 1

Introduction

What if a user of 256-bit AES encrypted con�dential data is forced to give away

the key? What if rootkit malware terminates antivirus and other security tools on a

computer? What if an adversary with physical access extracts sensitive information

from a stolen laptop? Such questions lead to identi�cation of certain attack vectors

that have not been (su�ciently) considered in most state-of-the-art security solu-

tions. In this thesis, we explore approaches to such security problems under a strong

adversarial model.

1.1 Unconventional Attack Capabilities

The notion of unconventional attack vectors largely comes from observation. Individ-

ually such vectors may have overlap in their real-world instances (e.g., an attack can

involve both coercion and physical control). Nevertheless, this does not a�ect their

signi�cance or usefulness in identifying unsolved problems and studying them based

on the commonness.

De�nition. In the domain of authentication and data protection (e.g., for integrity

and con�dentiality), we consider attack vectors that have already been included in

the state-of-the-art threat models in both academic and industrial solutions as con-

ventional ; and those that have not been (su�ciently) addressed are considered un-

conventional. For instance, rootkit ransomware is an unconventional attack vector

because it is only found formally considered in one academic proposal [122] with a

con�ned solution.

In this section, to facilitate discussion in the subsequent chapters, we classify the

1

de�ned unconvential attack vectors/capabilities as follows:

1. Physical access. Unlike traditional threat models in network communica-

tions [70], physical access to computer systems can also be a serious threat

to today's cybersecurity. The adversary can tap exposed pins and eaves-

drop on any tra�c, manipulate the computer execution (e.g., by warm/cold

boot [55, 288, 287, 108]), or exploit side channels to extract/learn secrets, such

as in DMA ([246, 174]) and physical side-channel attacks [89]. Especially, when

combined with abundant computational resources, o�ine dictionary/guessing

attacks [198] can become a serious threat to encrypted data.

2. Coercion. The victim can be either coerced physically [224] or threatened with

a consequence, such as imprisonment (e.g., law enforcement), torture, harming

a hostage or revealing a scandal. In this situation, the victim can be forced to

unlock the system or decrypt the secret the same way he usually does it, but

for the adversary.

3. Human assistance. In automated large-scale attacks, certain logic is used to

distinguish machine from human, such as Captchas [152]. The adversary can

forward requests to sweatshops in the underground market (or through crowd-

sourcing [191]), or even trick legitimate users visiting compromised legitimate

websites into solving them.

4. Privileged programs. Most security solutions assume the adversarial entity to

be lower privileged (e.g., antivirus tools assuming a user-space adversary and

hypervisor-based tools assuming guest OS only). However, rootkit malware

has been around for decades (as long as malware exploits the �root� privilege)

and rootkit ransomware's existence is also obvious (e.g., Petya [215]). More

importantly, even systems booted with secure/trusted booting are still subject

to run-time exploitation, potentially escalating to the highest privilege.

5. Privileged personnel. To perform the designated tasks in an organization, em-

ployees like system administrators must be granted the highest privilege. If they

turn hostile (e.g., due to being laid o�), a serious harm can be caused [210, 177]

to the organization.

2

1.2 Methodology

Two major principles are re�ected throughout all the research topics and form the

foundation of our research methodology.

1.2.1 Hardware security primitives � P1

What computer systems do can be categorized into execution (performing the task)

and communications (input, output, or networking). Securing communications largely

depends on cryptography with properly designed protocols, where dedicated hardware

is not essential, as the assumed worst-case scenario is communication channel compro-

mise (e.g., [185]), but the communicating parties are never able to access each other's

internal state (e.g., processor, memory, user input), or otherwise it is no longer a com-

munications problem. However, securing execution usually involves both software and

hardware, because the adversary may co-locate with the code in question and see any

secrets used in crypto operations. The legacy approaches mostly rely on isolation and

access control provided by the OS or hypervisor.This might be insu�cient in the face

of the aforementioned unconventional attack vectors.

Both the physical and privilege vectors are eventually an arms race of who pre-

empts whom, in terms of restriction enforcement. Intuitively, hardware can attain

the lowest protection level (highest privilege) in the battle with various adversaries.

This comes in the forms of �minus� privileges if it participates in the CPU execution,

hardware-isolated crypto- or access-operations as a co-processing device, and self-

contained security features as a stand-alone peripheral/storage device. See Figure 1

for an incomplete classi�cation of hardware security primitives.

Architecture-shipped features. Anchoring the root of trust at or close to the

processor helps make the TCB (Trusted Computing Base) minimal. Architecture-

shipped features provide isolated execution, code integrity/measurement, attestation,

memory encryption, etc. They are exposed to the applications as additional CPU in-

structions or I/O-mapped resources. They form the foundation of trusted computing

and an intrinsic starting point for addressing unconventional attack vectors.

On-board devices. The category of on-board devices in itself has some

ambiguity because of the rapidly developing semiconductor technologies and the

same functionality shifts between circuit boards and microchips as their design

evolves. Generally, on-board devices have a strong bond with the processor, e.g.,

3

Figure 1: An overview of security features in hardware

co-processing dependently or complementing processor functions. They provide some-

times architecture-agnostic support that the processor does not already have.

Security tokens. As opposed to the aforementioned categories, a security token

is totally removable from the system. An additional implication by its name is that

their functions are usually self-contained and do not need CPU intervention. Such

devices are often used for authentication (physical access control, presence check) or

digital signature purposes. If generalized, many of such products help enable two-

factor authentication [176] (or even multi-factor authentication). Moreover, we also

consider in the same category any on-device security feature such as that of hard

drives.

We make use of hardware security features where appropriate as the primary

research principle (P1).

1.2.2 Passive but resilient defense � P2

Reacting to threats head-on is a common practice in cybersecurity, as exempli�ed

by the current variety of tools/proposals for detection, prevention and destruction

of, and sometimes recovery from malware or network intrusion. Deception is one

4

exception (cf. [233, 310, 59, 27]), which is applied more in networking or multi-host

scenarios, for the purpose of attack monitoring, data collection and anomaly signaling

(honeypots or honeynet).

With this consideration in mind, we are inspired by the philosophy of T'ai Chi [154],

which advocates yielding instead of counteracting, to achieve equivalent or even bet-

ter defense in face of powerful attacks. When attacks are assumed inevitable, we

propose to use redirection (for protecting the target), undetectable destruction (of

the target), and immunization (to armor the target).

This principle (P2) is combined with and enhances the hardware security primi-

tives.

1.3 Thesis Statement

Our research is aimed at solving selected typical security problems caused by uncon-

ventional attack vectors, which fall in (or at the intersection of) authentication, data

integrity and data con�dentiality, using the combination of hardware-assisted security

approaches (P1) and passive but resilient defense (P2).

Our proposed approaches may serve as a lead-in to more formalization and gener-

alization, into how today's hardware security primitives can fortify the defense against

unconventional attack capabilities under the strong adversarial model.

1.4 Main Contributions

Our research is aimed at solving several realistic security scenarios caused by uncon-

ventional attack vectors, and as a lead-in to more formalization, shedding some light

on the application (and importance) of hardware-assisted security approaches under

the strong adversarial model. The selected practical scenarios not being concentrated

in a narrow area indicates the actuality and prevalence of the unconventional attack

vectors.

In this section, we advance the problems and solutions of our research topics from

their individual chapters as follows. The proposed solutions target a primary concern

in the �rst place and usually also solve a wider scope of related problems.

• Protecting data-at-rest against coercion. As the Achilles' heel of cryptogra-

phy, giving away the decryption key leaves little space for traditional mech-

anisms to work. For instance, in physical attacks when the attacker has full

5

control over the target machine, or he can coerce the machine owner into re-

vealing decryption passwords, most traditional defenses might be defeated. We

believe such a strong threat is in accordance with current state-level adver-

saries with high technical capabilities and legal/questionable/illegal powers [271]

(e.g., US FISA, clandestine NSA programs, physical/psychological tortures).

Gracewipe (Chapter 2, full implementation, published) addresses such threats

as well as o�ine guessing/dictionary attacks, enabling stealthy and indistin-

guishable secure deletion (P2) with veri�cation and machine state binding (P1).

The deletion trigger is undetectable by the adversary; the deletion process is

prompt, and once completed, can be veri�able by a diligent adversary; �nally

but more importantly the adversary is also held back from o�ine brute-forcing

without relying on the victim or Gracewipe.

• Secure remote data erase. When the aforementioned encrypted disk data is

stored in a remote computer owned by a special professional (e.g., human right

activist) or an enterprise (e.g., about to announce a lay-o� plan), being able to

securely and remotely destroy data is needed. In this case, convincing veri�a-

bility is also necessary but to the user. Gracewipe Remote (Chapter 3, full

implementation) inherits Gracewipe's platform-bound encryption and guess-

ing prevention, and further employs certain hardware-assisted remote control

to securely communicate the deletion trigger to the target computer. In such

end-to-end veri�able remote erase, the trust is not anchored in what the remote

�rmware (e.g., BIOS) says but in the attestable hardware primitive (P1). No in-

termediate parties other than the device manufacturer should be trusted (hence

end-to-end) and especially any simple indication of success from the remote

computer never su�ces.

• Protecting data-in-sleep. Users may neglect the fact that most of the time

their laptops are not in a powered-o� state and the sensitive data in RAM

can be extracted in several ways by the adversary. Moving from the encrypted

disk data (data-at-rest) in Gracewipe over to S3 data in RAM (data-in-sleep),

Hypnoguard (Chapter 4, full implementation, published) addresses the threats

of device loss and theft as well as coercion. The Gracewipe scenario is extended

to any sleeping devices not attended by the legitimate owner. The same guessing

prevention and deletion triggering (P2) and hardware binding (P1) are applied.

The protected in-RAM data always stays encrypted if it falls in the wrong hands

6

and the encryption/decryption process is fast, because of hardware acceleration,

so as not to downgrade user experience.

• Data integrity against rootkit ransomware. Turning from data con�dentiality

(as in Gracewipe and Hypnoguard) onto data integrity, we focus on unautho-

rized data alteration from rootkit malware or remote attackers. Speci�cally,

very few proposals have taken into account that ransomware can be a rootkit

at the same time. With the same privilege as or higher than that of the defense

mechanism, ransomware can stay undetected or suppress any mitigation tools.

As opposed to platform-bound encryption/deletion, we propose platform-bound

write-protection, as the foundation of Inuksuk (Chapter 5, full implementa-

tion). It does not detect, prevent or counteract the adversary head-on where

undesired alteration is initiated (P2). Instead, Inuksuk �armors� the protected

data with the hardware write protection (P1) to achieve data immunization so

that naturally no reaction is necessary. Gracewipe's and Hypnoguard's trusted

decryption/deletion (of data-at-rest and data-in-sleep) now becomes trusted

write-protection (of data-at-rest). The hardware write-protection is immune

to any privileged software; meanwhile it is made di�cult for the adversary to

impersonate the user and bypass the write-protection.

• COTS One-Time Programs. Further to Inuksuk, we shift from data integrity to

execution integrity. Functions that are allowed to evaluate only once and only on

one set of input have many application scenarios (hence OTP � the one-time pro-

grams [92]). Seeing state-of-the-art one-time programs being mainly based on

special/expensive hardware (e.g., FPGA) or involving assumptions (e.g., multi-

party oblivious interaction), we propose to achieve them using commercially

o�-the-shelf (COTS) devices (full implementation, see Chapter 6, co-authored 1

with the work (writing/implementation) mostly done in collaboration). It can

be considered as a further generalized form of Gracewipe, i.e., from enforcing

correct decryption/deletion over to enforcing arbitrary logic but for a limited

number (one) of times. Several variants are proposed for di�erent security and

performance requirements. Our design of the OTP can also be con�gured for

N-time execution.
1The co-authors are Joseph Choi (University of Florida), Didem Demirag (Concordia University),

Kevin Butler (University of Florida), Mohammad Mannan(Concordia University), Erman Ayday
(Case Western Reserve University), and Jeremy Clark (Concordia University).

7

• Defender-helped guessing attackers. We consider guessing attacks against pass-

words in o�ine scenarios (as in Gracewipe and Hypnoguard). As a continua-

tion, we also consider such attacks against password-protected online services,

especially, when the attacker can use crowd-sourcing if faced with Captcha chal-

lenges. The ultimate issue of regular authentication is that a Yes/No answer

is always fed back to the adversary. With that answer, he can keep guessing

until a Yes is seen. He does not need to hit the rate-limit (trying di�erent users

at large scale) and it may not necessarily take that long, thanks to dictionaries

and advanced algorithms. Uvauth (Chapter 7, published) addresses human-

assisted online guessing/dictionary attacks. As with Inuksuk, it does not react

in a way easily/programmatically distinguishable by the attacker, but passively

contains the attack attempts (P2). The adversary should be in no way informed

of the authentication results (success/failure); but the legitimate user must ei-

ther discern by herself or learn the authentication outcome via human-readable

channels.

1.5 Related Publications

Part of our research topics in this thesis has been peer-reviewed. The corresponding

publications are listed below.

1. Explicit authentication response considered harmful. L. Zhao and M. Mannan.

New Security Paradigms Workshop 2013 (NSPW'13, pp. 77-86), September

9�12, 2013, Ban�, Canada.

2. Gracewipe: Secure and veri�able deletion under coercion. L. Zhao and M. Man-

nan. Network and Distributed System Security (NDSS'15) Symposium, Febru-

ary, 8�11 2015, San Diego, CA, USA.

3. Hypnoguard: Protecting Secrets across Sleep-wake Cycles. L. Zhao and M.

Mannan. ACM Conference on Computer and Communications Security (CCS'16),

October 24-28, 2016, Vienna, Austria.

4. Deceptive Deletion Triggers Under Coercion. L. Zhao and M. Mannan. IEEE

Transactions on Information Forensics and Security (TIFS), 11(12): 2763�

2776, December 2016.

8

1.6 Outline

The rest of the thesis is organized as follows. Chapters 2, 4, 5, 7, and 6 introduce the

design and detail the implementation of Gracewipe, Hypnoguard, Inuksuk, Uvauth

and our TEE-based OTP, respectively. Chapter 3 discusses Gracewipe Remote, an

extension of Gracewipe to address a di�erent security scenario and its implementa-

tion. Chapter 8 explains in brief how Gracewipe can be ported to mobile platforms

(with partial engineering attempt), then casts some light on certain open issues ob-

served from our research, and concludes the thesis. Because of the wide scope of

our research topics (for demonstrating the problem's prevalence and the solution's

wide applicability), we have the discussion on related work in each individual chapter

instead of a dedicated chapter of the thesis.

9

Chapter 2

Deceptive Deletion Triggers under

Coercion

Coercion falls into our priority concerns under the strong adversarial model. It is

considered as the Achilles' heel of cryptography. To start with, we �rst focus on

�data at rest� with powered-o� devices. In this chapter, we present our design and

implementation of Gracewipe, a boot-time tool which securely unlocks/decrypts user

data upon successful authentication, or stealthily and veri�ably erases the decryption

key through prede�ned password schemes in the case of coercion/emergency.

2.1 Introduction and Motivation

Plausibly deniable encryption (PDE)1 schemes for �le storage were proposed more

than a decade ago; see Anderson et al. [17] for the �rst academic proposal (1998). In

terms of real-world PDE usage, TrueCrypt [275] is possibly the most-widely used tool,

available since 2004. Several other systems also have been proposed and implemented.

All these solutions share an inherent limitation: an attacker can detect the existence of

such systems (see e.g., TCHunt [9]). A user may provide a reasonable explanation for

the existence of such tools or random-looking free space; e.g., claiming that TrueCrypt

is used only as a full-disk encryption (FDE) tool, no hidden volumes exist; or, the

random data is the after-e�ect of using tools that write random data to securely erase

a �le/disk. However, a coercive attacker may choose to detain and punish a suspect

up until the true password for the hidden volume is revealed, or up to a time period

1Encryption techniques for which the plaintext cannot be proven to exist, e.g., the user can
convincingly deny that a given piece of data is the outcome of encryption.

10

as deemed necessary by the attacker. Such coercion is also known as rubberhose

cryptanalysis [224], which is alleged to be used in some countries (e.g., Turkey [58],

USA [22]); several incidents of forced password extractions during border crossings

have also been reported in the recent past (e.g., USA [247], France [273]). The use of

multiple hidden volumes or security levels (e.g., as in StegFS [184]), may also be of no

use if the adversary is patient. Another avenue for the attacker is to derive candidate

keys from a password dictionary, and keep trying those keys, i.e., a classic o�ine

dictionary attack. If the attacker possesses some knowledge about the plaintext,

e.g., the hidden volume contains a Windows installation, such guessing attacks may

(easily) succeed against most user-chosen passwords.

Another option for the victim is to provably destroy/erase data when being co-

erced, unbeknownst to the adversary (i.e., triggered in an undetectable way). Note

that such coercive situations mandate a very quick response time from tools used for

erasure irrespective of media type (e.g., magnetic or �ash); i.e., tools such as ATA se-

cure erase, and DBAN [66] that rely on data overwriting are not acceptable solutions

(cf. [107]). Otherwise, the attacker can simply terminate the tool being used by cut-

ting o� the power, or make a backup copy of the target data �rst. The need for rapid

destruction was recognized by government agencies decades ago; see Slusarczuk et

al. [252]. For a quick deletion, cryptographic approaches appear to be an appropriate

solution, as introduced by Boneh and Lipton [40] (see also [62, 227]). Such techniques

have also been implemented by several storage vendors in solid-state/magnetic disk

drives that are commonly termed as self-encrypting drives (SEDs); see, e.g., Sea-

gate [243], HGST/Western Digital [115] (cf. ISO/IEC WD 27040 [141]). SEDs allow

overwriting of the data decryption key via an API call. Currently, as we are aware of,

no solutions o�er pre-OS secure erase that withstand coercive threats (i.e., with un-

detectable deletion trigger). Even if such a tool is designed, still several issues remain:

veri�able deletion is not possible with SEDs alone (i.e., how to ensure that the secure

erase API has been executed); and undetectable deletion trigger does not mean un-

detectable execution (e.g., calls to the deletion API can be monitored via SATA/IDE

interface). We use SEDs as part of our solution without directly depending on their

key deletion API.

11

In this chapter, we discuss the design and implementation of Gracewipe, a so-

lution implemented on top of TrueCrypt2 and SEDs that can make the encrypted

data permanently inaccessible without exposing the victim. When coerced to reveal

her hidden volume encryption password, the victim will use a special pre-registered

password that will irrecoverably erase the hidden volume key. The coercer cannot

distinguish the deletion password from a regular password used to unlock the hidden

volume key. After deletion, the victim can also prove to the coercer that Gracewipe

has been executed, and the key cannot be recovered anymore. A trusted hardware

chip such as the Trusted Platform Module (TPM) alone cannot realize Gracewipe, as

current TPMs are passive (i.e., run commands as sent by the CPU), and are unable

to execute external custom logic. To implement Gracewipe, we use TPM along with

Intel trusted execution technology (TXT), a special secure mode available in several

consumer-grade Intel CPU versions (similar to AMD SVM).

The basic logic in Gracewipe for a PDE-enabled FDE system (e.g., TrueCrypt) can

be summarized as follows: A user selects three (types of) passwords during the setup

procedure: (i) Password PH that unlocks only the hidden volume key; (ii) Password

PN that unlocks only the decoy volume key; and (iii) Password PD that unlocks

the decoy volume key and overwrites the hidden volume key (schemes with multiple

PDs are discussed in Section 2.5). These volume keys are stored as TPM-protected

secrets that cannot be retrieved without defeating TPM security. Depending on the

scenario, the user will provide the appropriate password. When coerced, the user

can disclose PDs or PN , but not PH . Attackers' success probability of accessing the

hidden volume can be con�gured to be very low (e.g., deletion after a single invalid

password), and will depend on their use of user-supplied or guessed passwords, and/or

the deployed variant in Gracewipe-XD; see Section 2.5. Deletion (overwriting with

zeros) of the hidden volume key occurs within the TPM hardware chip, an event we

assume to be unobservable to the attacker. Now, the attacker does not enjoy the

�exibility of password guessing without risking the data being destroyed.

The relatively simple design of Gracewipe however faced several challenges when

implemented with real-world systems such as TrueCrypt and SEDs. To support FDE

(where the OS is also encrypted), as in TrueCrypt, Gracewipe needs to work in the

pre-OS stage. However, no ready-made TPM interfacing support is available. We

2Projects that are based on the TrueCrypt codebase or related to TrueCrypt can also be
used/adapted with Gracewipe; e.g., TCnext (http://truecrypt.ch), CipherShed (https://
ciphershed.org), VeraCrypt (https://veracrypt.codeplex.com).

12

http://truecrypt.ch
https://ciphershed.org
https://ciphershed.org
https://veracrypt.codeplex.com

have to construct TPM protocol messages on our own. Furthermore, we primar-

ily base Gracewipe on TrueCrypt as it is open sourced. Auditability is essential to

security applications, and most other FDE solutions as we found are proprietary soft-

ware/�rmware and thus verifying their design and implementation becomes di�cult

for users. For this reason, we must be able to load Windows after exiting TXT (as

TrueCrypt FDE is only available in Windows), which requires invocation of real-mode

BIOS interrupts. It turned out to be a major challenge for Gracewipe. For the SED-

based solution, we also choose to boot a Windows installation from the SED disk.

However, our Windows-based prototypes require a few heuristic changes speci�c to

the versions of tboot [134] and Windows. This is due to Intel TXT's incompatibil-

ity with real-mode (switching from protected to real-mode is required by Windows

boot) and Windows' unawareness of TXT. Booting a Linux-based OS after Gracewipe

would have been easier to implement (we also managed to do so), but that would have

less utility than the Windows-targeted implementations.

Note that, in Gracewipe, the victim actively participates in destroying the hid-

den/con�dential data, and thus may still be punished, e.g., put into jail for a signi�-

cant period of time (e.g., [272]; see also cryptolaw.org for a survey on related laws

in di�erent jurisdictions). Gracewipe is expected to be used in situations where the

exposure of hidden data is no way a preferable option. We assume a coercive ad-

versary, who may release the victim when there is no chance of recovering the target

data. Complexities of designing technical solutions for data hiding (including deniable

encryption and veri�able destruction) are discussed in a blog post by Rescorla [228].

Authentication schemes under duress have been explored in recent proposals,

e.g., [106, 38]. Such techniques may be integrated with Gracewipe, but they alone

cannot achieve its goals, e.g., being able to delete keys under duress.

Contributions.

1.We propose Gracewipe, a secure data deletion mechanism to be used in coercive

situations, when protecting the hidden/con�dential data is of utmost importance. To

the best of our knowledge, this is the �rst proposal to enable the following features

together: triggering the hidden key deletion process in a way that is indistinguishable

from unlocking the hidden data; veri�cation of the deletion process; preventing o�ine

guessing of passwords used for data con�dentiality; restricting password guessing only

to an unmodi�ed Gracewipe environment; and tying password guessing with the risk

of key deletion.

13

cryptolaw.org

2.We implement Gracewipe with a PDE-mode TrueCrypt installation, and with an

SED disk. Our implementation relies on secure storage as provided by TPM chips,

and the trusted execution mode of modern Intel/AMD CPUs; such capabilities are

widely available even in consumer-grade systems.

3. From our implementation experience with TrueCrypt and SED, apparently the

design of Gracewipe is generic enough that it can be easily adapted for other existing

software and hardware based FDE/PDE schemes. SED-based Gracewipe is discussed

elsewhere [311].

4. Apart from secure deletion, our pre-OS trusted execution environment may enable

other security-related checks, e.g., verifying OS integrity as in Windows secure boot,

but through an auditable, open-source alternative. To the best of our knowledge,

Gracewipe is the �rst project to enable running a fully-functional Windows OS at the

end of a trusted execution session (Intel TXT).

5.We also analyze and compare several schemes for triggering password-based dele-

tion, with considerations respectively on plausibility, security, and usability; some

of these schemes are adapted from Clark and Hengartner [57]. We also discuss the

implementation of some selected schemes. We label these schemes as Gracewipe-XD

(Gracewipe Extended Deletion). Users may choose a scheme suitable to their threat

model.

2.2 Goals and Threat Model

Gracewipe leverages several existing tools and mechanisms, such as multiboot [91],

chainloading,3 tboot [134], and TrueCrypt. We assume the reader is familiar with

these techniques (for a brief introduction, see Appendix A).

2.2.1 Goals and terminology

Goals.

(1) When under duress, the user should be able to initiate key deletion in a way

indistinguishable to the adversary. The adversary is aware of Gracewipe, and

knows the possibility of key deletion, but is unable to prevent such deletion, if

he wants to try retrieving the suspected hidden data.

3https://www.gnu.org/software/grub/manual/html_node/Chain_002dloading.html

14

https://www.gnu.org/software/grub/manual/html_node/Chain_002dloading.html

(2) In the case of emergency data deletion (e.g., noticing that the adversary is

close-by), the user may also want to erase her data quickly.

(3) In both cases, when the deletion �nishes, the adversary must be convinced that

the hidden data has become inaccessible and no data/key recovery is possible,

even with (forced) user cooperation.

(4) The adversary must be unable to retrieve TPM-stored volume encryption keys

by password guessing, without risking key deletion; i.e., the adversary can at-

tempt password guessing only through the Gracewipe interface. Direct o�ine

attacks on volume keys must also be computationally infeasible.

Terminology and notation. We primarily target the software-based FDE with

support for plausible deniability (termed as PDE-FDE, e.g., TrueCrypt under Win-

dows). A decoy system refers to the one containing non-con�dential data for everyday

entertainment and insensitive work. We inherit this notion largely from TrueCrypt

with its original purpose. A hidden system is the actual protected system, the exis-

tence of which may be deniable and can only be accessed when the correct password

is provided. The user should avoid leaking any trace of its use (as in TrueCrypt;

cf. [65]), e.g., browsing �les by mounting the partition from the decoy system, or

accessing shared resources such as the same remote server. KN is the key needed to

decrypt the decoy system, and PN is the password for retrieving KN . Similarly, KH

is the key needed to decrypt the hidden system and PH is the password for retrieving

KH . In addition, PD is the password to perform the secure deletion of KH ; note

that there might be multiple PDs (see Section 2.5), but to simplify discussion, we

consider only one here. KN and KH are stored/sealed in TPM NVRAM, which can

be retrieved using the corresponding password, only within the veri�ed Gracewipe

environment. We use hidden/protected/con�dential data interchangeably.

Overview of how Gracewipe goals are achieved. For goal (1), we introduce PD

that retrieves KN but at the same time deletes KH from TPM. Thus, if either the

user/adversary enters a PD , the hidden data will become inaccessible and unrecover-

able (due to the deletion of KH). PN , PH and PDs should be indistinguishable, e.g.,

in terms of password composition. In a usual situation, the user can use either PH or

PN to boot the corresponding system. If the user is under duress and forced to enter

PH , she may input a PD instead, and Gracewipe will immediately delete KH (so that

next time PH only outputs a null string). Under duress, she can reveal PN /PDs ,

15

but must refrain from exposing PH . The use of any PD at any time (emergency or

otherwise), will delete KH the same way, and thus goal (2) can be achieved.

Goal (3) can be achieved by a chained trust model and deterministic output of

Gracewipe. The trusted environment is established by running the deletion operation

via DRTM, e.g., using Intel TXT through tboot [134]. We assume that Gracewipe's

functionality is publicly known and its measurement (in the form of values in TPM

PCRs) is available for the target environment, so that the adversary can match the

content in PCRs with the known values, e.g., via a TPM quote. Gracewipe prints a

hexadecimal representation of the quote value, and also stores it in TPM NVRAM for

further veri�cation. A con�rmation message is also displayed after the deletion (e.g.,

�A deletion password has been entered and the hidden system is now permanently

inaccessible!�).

For goal (4), we use TPM sealing, to force the adversary to use a genuine version

of Gracewipe for password guessing. Sealing also stops the adversary from modifying

Gracewipe in such a way that it does not trigger key deletion, even when a PD is

used (otherwise unsealing would fail). We use long random keys (e.g., 128/256-bit

AES keys) for actual data encryption to thwart o�ine attacks directly on the keys.

A by-product of goal (4) is that, if a Gracewipe-enabled device (e.g., a laptop) with

sensitive data is lost or stolen, the attacker is still restricted to password guessing

with the risk of key deletion.

2.2.2 Threat model and assumptions

Here we specify assumptions for Gracewipe, and list several unaddressed attacks.

1.We assume the adversary to be hostile and coercive, but rational otherwise (cf. [228]).

He is diligent enough to verify the TPM quote when key deletion occurs, and then

(optimistically) stop punishing the victim, as the hidden password is of no use at this

point. If the victim suspects severe retaliation from the adversary, she may choose to

use the deletion password only if the protected data is extremely valuable, i.e., she is

willing to accept the consequences of provable deletion.

2. The adversary knows well (or otherwise can easily �nd out) that a TrueCrypt disk

is used, and probably there exists a hidden volume on the system. He is also aware

of Gracewipe, and its use of di�erent passwords for accessing decoy/hidden systems

and key deletion. However, he cannot distinguish PDs from other passwords that the

victim is coerced to provide.

16

3. The adversary can have physical control of the machine and can clone the hard

drive before trying any password. However, we assume that the adversary does not

get the physical machine when the user is using the hidden system (i.e., KH is in

RAM). Otherwise, he can use cold-boot attacks [108] to retrieve KH ; such attacks

are excluded, but see also TRESOR [194].

4. The adversary may reset the TPM owner password with the takeownership com-

mand, or learn the original owner password from the victim; note that NVRAM

indices (where we seal the keys) encrypted with separate passwords are not a�ected

by resetting ownership, or the exposure of the owner password. With the owner pass-

word, the adversary can forge TXT launch policies and allow executing a modi�ed

Gracewipe instance. Any such attempts will fail to unlock the hidden key (KH),

as KH is sealed with the genuine copy of Gracewipe. However, with the modi�ca-

tions, the attacker may try to convince the user to enter valid passwords (PH , PN

or PD), which are then exposed to the attacker. We expect the victim not to reveal

PH , whenever the machine is suspected to have been tampered with. We do not

address the so called evil-maid attacks [234, 156], but Gracewipe can be extended

with existing solutions against such attacks (e.g., [195]).

5.We exclude inadvertent leakage of secrets/passwords from human memory via side-

channel attacks, e.g., the EEG-based subliminal probing [84]; see Bonaci et al. [39] for

counter-measures. We also exclude truth-serum [293] induced attacks; e�ectiveness

of such drugs is also strongly doubted (cf. [237]).

6. Gracewipe facilitates secure key deletion, but relies on FDE-based schemes for data

con�dentiality. For our prototypes, we assume TrueCrypt adequately protects user

data and is free of backdoors.

7.We assume the size of hidden data is signi�cant, i.e., not memorizable by the user,

e.g., a list of all US citizens with top-secret clearances (reportedly, more than a million

citizens4). After key deletion, the victim may be forced to reveal the nature of the

hidden data, but she cannot disclose much.

8.We assume Intel TXT is trustworthy and cannot be compromised and thus en-

sures trusted measurements (hence only genuine Gracewipe unseals the keys); past

attacks [297, 299] on TXT include exploiting the CPU's SMM (System Management

Mode) to intercept TXT execution. SMM attacks can be addressed by Intel SMI

transfer monitor (STM [133], for further reasons why SMM attacks do not pose a

4http://www.usatoday.com/story/news/2013/06/09/government-security-clearance/

2406243/

17

http://www.usatoday.com/story/news/2013/06/09/government-security-clearance/2406243/
http://www.usatoday.com/story/news/2013/06/09/government-security-clearance/2406243/

threat, see Section 5.6 and Section 6.7). We also assume that hardware-based de-

buggers cannot compromise Intel TXT. We could not locate any documentation from

Intel in this regard.5 As documented [15], AMD's SVM disables hardware debugging.

2.3 Gracewipe Design

In this section, we expand the basic design as outlined in Section 2.1. We primarily

discuss Gracewipe for an FDE solution with deniable hidden volume support (i.e.,

PDE-FDE), and we use TrueCrypt as a concrete example. The FDE-only version

(e.g., based on SED, not discussed here) is simpler than the PDE-FDE (TrueCrypt)

design, e.g., no decoy volume and no chainloading are needed. These two versions

mostly use the same design components, di�ering mainly in the key unlocked by

Gracewipe and the destination system that receives the key.

2.3.1 Overview and disk layout

Gracewipe inter-connects several components, including: BIOS, GRUB, tboot, TPM,

wiper (provides Gracewipe's core functionality�see below under �Wiper�), TrueCrypt

MBR, and Windows bootloader. The hidden data is stored encrypted on a hard

drive, as in a typical TrueCrypt hidden volume. We assume two physical volumes:

one hosting the decoy system (regular TrueCrypt encrypted volume), and the other

volume containing the hidden system (hidden TrueCrypt volume). KN and KH are

technically TrueCrypt volume �passwords� for the two volumes respectively, but we

generate them from a random source. Both are stored in TPM NVRAM, and are

not typed/memorized explicitly by the user. In the deployment phase, they are

generated with good entropy and con�gured as TrueCrypt �passwords�. Each valid

user password (including any PD) will unlock a corresponding key in TPM NVRAM

for a speci�c purpose. See Fig. 2 for Gracewipe components.

Wiper. The core part of Gracewipe's functionality includes bridging its components,

unlocking appropriate TPM-stored keys, and deletion of the hidden volume key. We

term this part as the wiper, which is implemented as a module securely loaded with

tboot. It prompts for the user password, and its behavior is determined by the

entered password (or more precisely, by the data retrieved from TPM NVRAM with

that password). Namely, if the retrieved data contains only a regular key (KH /KN),

5See a related tboot discussion thread at (Aug. 2012): http://sourceforge.net/p/tboot/

mailman/message/29747527/

18

http://sourceforge.net/p/tboot/mailman/message/29747527/
http://sourceforge.net/p/tboot/mailman/message/29747527/

TPM Gracewipe

PH decrypts KH

PN decrypts KN

PD deletes KH
 decrypts KN

User PWD input

Hidden system

Decoy system

Secure storage

Power on/Reset

DeletionKH = key for hidden system
trigger

schemes
?

KN = key for decoy system

Disk Encryption

TXT-protected

(e.g., TrueCrypt and SED)

Figure 2: A generalized representation of Gracewipe. PN = password for the decoy
system; PH = password for the hidden system; PD = deletion password. PH unlocks
KH , the key that decrypts the hidden system; PN unlocks KN , the key that decrypts
the decoy system; PD deletes KH from TPM NVRAM, and may optionally unlock
KN .

the wiper passes it on to TrueCrypt, or if it appears otherwise (as designated by a

deletion indicator) to have a control block for deletion, the wiper performs the deletion

and passes the decoy key KN to TrueCrypt. We modi�ed TrueCrypt to directly

accept input from the wiper (i.e., no password prompt), and boot the corresponding

encrypted system. Note that each user password corresponds to one TPM NVRAM

index. Each index contain an indicator value (byte-long; `P' for PH , `K' for KN

and `D' for PD) concatenated with a proper decryption key (KH /KN , or for the

deletion index either some random data or KN). Both the indicator and key values

are protected by TPM sealing, and an attacker cannot exploit the indicator values

(see Section 2.8 under item (b)).

As the wiper must operate at an early stage of system boot and still provide sup-

port for relatively complex functionality, it must meet several design considerations,

including: (1) It must be bootable by tboot, as we need tboot for the measured

launch of the wiper. This can be achieved by conforming to required �le formats

(e.g., ELF) and header structures (e.g., multiboot version number). (2) It must load

the TrueCrypt loader for usual operations, e.g., decrypt the correct volume and load

Windows. This is mainly about parameter passing (e.g., TrueCrypt assumes register

DL to contain the drive number). (3) It must access the TPM chip and perform

several TPM operations including sealing/unsealing, quote generation, and NVRAM

19

read/write. Note that at this point, there is no OS or trusted computing software

stack (such as TrouSerS [8]) to facilitate TPM operations. (4) It must provide an

expected machine state for the component that will be loaded after the wiper (e.g.,

Windows). Both TrueCrypt and Windows assume a clean boot from BIOS; however,

Windows supports only strict chainloading (see Appendix A), failure of which causes

several troubles including system crash (see Section 2.4.4).

2.3.2 Execution steps

Gracewipe's execution �ow is outlined in Fig. 2. It involves the following steps:

(1) The system BIOS loads GRUB, which then loads tboot and other modules in-

cluding the wiper and ACM SINIT module (cf. Appendix A). (2) Tboot performs

necessary checks and calculates/matches the platform measurement with the values

stored in the TPM (halts on failure). (3) The wiper prompts the user for a password,

and uses the entered password to access TPM indices where we store KH /KN one

by one (the extended schemes are di�erent, see Section 2.5). Note that we merely

provide the entered password to the TPM specifying an index to unlock and receive

the result; no decryption happens in the Gracewipe code. If no index is accessible, an

invalid password is received (resulting reboot/halt). (4) As part of the TPM accessed

data, an indicator �eld shows if the entered password is PH , PN or PD . Upon recep-

tion of PD , the wiper immediately erases KH from TPM, and performs a quote to

display the attestation string on the screen. (5) In the case of PH or PN , the wiper

copies the decryption key (i.e., TrueCrypt �password�) to a memory location to be

retrieved later by TrueCrypt. (6) The wiper switches the system back to real-mode,

reinitializes it by mimicking what is done by BIOS at boot time. (7) The TrueCrypt

MBR is executed, which proceeds as if the wiper-copied �password� is typed by the

user and loads the system as usual (the decoy or the hidden one).

2.3.3 Sealing in NVRAM

TPM speci�cations mandate mechanisms against guessing attacks on password-

protected NVRAM data (e.g., only a few passwords may be consecutively tested

within a speci�c period of time). However, such mechanisms are inadequate for

Gracewipe as the adversary has physical control and can patiently keep testing pass-

words, and user-chosen passwords tend to be relatively weak. The implementation

of such mechanisms is also vendor-speci�c (see Section 2.4.4). If the adversary would

like to brute-force a speci�c index a few times until the chip is locked out and reset it

20

with TPM_ResetLockValue, he may eventually succeed by automating the process.

To address this, we apply the TPM's data sealing technique, so that if an altered

software stack (i.e., anything other than the genuine copy of Gracewipe) is run, the

desired data will not be unsealed, and thus will remain inaccessible. Note that sealing

does not disallow guessing from within the Gracewipe environment; however, when

Gracewipe is active, each guess may unlock the hidden/decoy data, or trigger key

deletion.

Instead of directly sealing the keys into NVRAM, we make use of the access-

control-based PCR binding to achieve the same goal. When an NVRAM index is

de�ned, selected PCRs are speci�ed as the access requirement in addition to the user

password (authdata). The stored key can be accessed only if both the password and

the PCR values (correct environment) are satis�ed. This design choice prevents of-

�ine guessing of user passwords protecting the sealed keys, as opposed to the following

construction: use PN as the authdata secret to protect KN stored in NVRAM in its

sealed form. Without the correct environment, KN cannot be unsealed. However, by

checking the TPM's response (success/failure) to a guessed authdata secret value, the

attacker can learn PN and other valid passwords, without going through Gracewipe;

the attacker can then use the (guessed) valid passwords in Gracewipe to unlock cor-

responding keys. With our current construction, TPM will output the same failure

message, if either PCR values or passwords are incorrect.

2.3.4 Password management

Under the strong adversarial model in Gracewipe, the user (e.g., security personnel)

is expected to properly maintain the con�gured passwords, and if they are lost the

recommended solution is redeployment; i.e., there must be no password recovery. The

data or keys protected under Gracewipe must not be backed-up in any Internet-

accessible storage under any circumstances; this will enable easy coercion even after

a successful local deletion. However, password update can still be supported; we

propose a simple mechanism below (can be extended to accommodate other schemes

in Section 2.5).

At the same password prompt where the user normally unlocks the system at

boot-time, password update mode can be triggered by using a special key sequence

(e.g., �Ctrl+Enter� instead of the regular �Enter� key). The received password is

�rst handled by the deployed deletion triggering scheme, i.e., deletion will be initi-

ated if PD is typed. After the password update mode is entered (i.e., deletion is

21

not triggered), the user is prompted to enter an existing password to be changed

(PH /PN /PD), and then type the new password twice. Gracewipe will try to access

indices one by one until a success and replace the protecting password with the new

one. Note that in order not to reveal any further information in the password up-

date mode, no explicit feedback is provided, i.e., merely �Update process is done!�

is displayed regardless of a successful update or failure. Also, a random delay can

be added so that timing characteristics do not help distinguish valid passwords. We

have implemented this scheme.

2.4 Implementation with TrueCrypt

In this section, we summarize certain implementation considerations of Gracewipe

speci�c to TrueCrypt. We also discuss several side e�ects resulting from our imple-

mentation choices and corresponding workarounds. The implementation e�ort mainly

involves the wiper (Gracewipe core), TrueCrypt modi�cations, and a few con�gura-

tion steps to make the components work together.

Our choice of Windows is largely in consideration of its prevalence, and TrueCrypt

FDE's availability only under Windows. We have also successfully booted up Linux

via Gracewipe with fewer changes compared to Windows. Gracewipe in itself is a

boot-time tool, which does not run along-side the user OS. For our prototype system,

we used a primary test machine with an Intel Core i7-3770S processor (3.10 GHz)

and Intel DQ77MK motherboard, 8GB RAM with 1TB Western Digital hard drive.

2.4.1 Implementing the wiper

Approximately, the wiper has 400 lines of code in assembly, 700 lines in C and 1300

lines of reused code from tboot. As discussed in Section 2.3.1, the TPM must be

accessed by the wiper, which runs at an early stage of system boot, i.e., right after

GRUB and tboot. Due to lack of TPM access support at boot time (at least for

NVRAM storage as in our case), we must handle the communications between TPM

and the wiper, and implement a subset of the TCG software stack [8].

We choose to communicate with with TPM through the MMIO interface for future

compatibility and consistency with tboot. After being able to send commands to the

TPM via MMIO, we implement the authdata-protected NVRAM access functions

(for secure storage of Gracewipe keys). Due to inadequate documentation, we had to

reverse-engineer the related functions in the TCG stack for our implementation.

22

Moreover, for verifying the correct execution of Gracewipe (and thus the deletion

of KH), the wiper must be able to perform a TPM Quote. A quote operation involves

generating a signature on a requested set of PCRs, and a veri�er-provided nonce with

TPM's attestation identity key (AIK). We allow the veri�er (adversary) to enter a

string of his choice as the nonce and store the quote value in an unprotected NVRAM

index as well as displaying it on the screen.

At the end, we have developed the following TPM functions:

tpm_nv_read_value_auth(), tpm_nv_write_value_auth(), tpm_loadkey2(),

tpm_nv_de�ne_release(), tpm_quote2(); we reuse most other functions from tboot.

2.4.2 Adapting TrueCrypt

To make TrueCrypt aware of Gracewipe, we require some changes in its source

code. We keep such changes to a minimum for easier maintenance and deployment.

They are mostly in BootLoader.com.gz (BootMain.cpp), and a few minor changes

in BootSector.bin (BootSector.asm). In BootSector.bin, changes are for the modi-

�ed version of BootLoader.com.gz to pass the original integrity check (CRC32). In

BootLoader.com.gz (TrueCrypt modules), the modi�cations are mainly for receiving

decrypted passwords (treated as keys in Gracewipe) from the wiper without user

intervention.

2.4.3 Orchestrating components

Additional deployment-time e�orts are needed to make Gracewipe components work

seamlessly. Such e�orts include con�guring GRUB (with a Gracewipe-customized

menu.lst), initializing TPM, and installing TrueCrypt. Also, as the integrity of the

Gracewipe environment relies on tboot's policy enforcement, it is critical to ensure

the proper setup of the MLE policy and tboot's custom policy.

Preparation in the host OS. A script that works with the TrueCrypt installer must

automatically generate a strong key (i.e., random and of su�cient length) to replace

the user-chosen password. This is done for both KN and KH . Then the user must

copy (manually or with the help of the script) KN and KH to be used with Gracewipe.

She must destroy her copies of the two keys after the setup phase.

Preparation in Gracewipe. Gracewipe comes with a single consolidated binary

with two modes of operation: deployment and normal. Modes are determined by

the value (zero/non-zero) in an unprotected NVRAM index; note that, reinitializing

Gracewipe has no security impact (beyond DoS), but still a simple password can

23

be set to avoid inadvertent reset. If the value is non-zero, normal mode is entered;

otherwise, Gracewipe warns the user and enters the deployment mode.

In the deployment mode, the user is prompted for the three passwords (PN , PH

and PD) of her choice and the two keys (KN and KH) generated in the OS. The

wiper seals the two keys with the current environment measurements into NVRAM

indices with the three passwords. The indices can be user-con�gured to avoid con�icts

with other use of the TPM; however, the order of password to index assignment is

randomized to avoid any possibility of interference with the deletion process using

time di�erences (cf. Section 2.6). Note that di�erent unlocking schemes may involve

di�erent procedures, see Section 2.5. In the end, the wiper toggles the mode value

for the next time to run in the normal mode.

2.4.4 Windows and TPM issues

Disabling TXT DMA protection for Windows. During implementation, we

faced several issues related to Windows, mostly due to Windows being unaware of

protections enabled by Intel TXT. Unlike Linux, Windows also cannot be adapted

for TXT as it is closed-sourced. Below, we discuss a DMA problem and its solution.

TXT protects the execution environment from unauthorized code. The I/O pro-

tection (i.e., no peripheral on the bus other than the measured code can access pro-

tected memory regions) is enforced in hardware by IOMMU in collaboration with

the chipset. By default, it is left enabled, when TXT is torn down with instruction

GETSEC[SEXIT] (see [136]); the guest OS is supposed to be aware of the DMA

protection, and perform any additional cleanup operations.

In addition to the platform-speci�c �xed DMA Protected Range (DPR, usually

3MB in size), custom Protected Memory Regions (PMRs [137]) can also be speci�ed

to SINIT for DMA protection. SINIT guarantees that the measured program (in

our case: tboot and the wiper) is covered by either the DPR or one of the PMRs;

otherwise, the program cannot be started.

The consequence of the aforementioned DMA protection depends on the OS taking

control after TXT exit; e.g., if the OS is aware of IOMMU, the protected ranges

can be avoided or remapped, or IOMMU should be disabled. For Gracewipe with

Windows, IOMMU must be disabled due to Windows' unawareness. There is an

IOMMU register DMAR_PMEN_REG, and by setting its DMA_PMEN_EPM bit

to 0, the IOMMU PMR can be disabled.

If the PMRs are left enabled to Windows, as in the initial implementation of

24

Gracewipe [311], the system will behave unpredictably, when memory access hits

the protected regions. For example, right after Windows switches to the hard

disk device driver from BIOS calls, the booting process fails with UNMOUNT-

ABLE_BOOT_VOLUME (0x000000ED). The reason code of 0xC000014F indicates

a disk hardware problem, which is incorrect as we could boot Windows without tboot.

Initially, we changed the ATA channel to use the �PIO� mode instead of �Ultra DMA

Mode 5�, and Windows booted successfully, but with disabled DMA for disk opera-

tions (i.e., degraded disk performance). Disabling IOMMU PMRs solved this issue

without a�ecting disk performance.

TPM deadlock. Here, we discuss an issue originating from our somewhat unusual

way of leveraging a TPM. By design, TPM NVRAM is intended to provide pro-

tected access to con�dential data. Such protection, especially with authdata access,

is unsuitable to be used as a general purpose decryption oracle: a program accessing

NVRAM is expected to supply the correct authdata secret, and a failed attempt is

considered as part of a guessing attack or an anomaly.

We attempt to consecutively access one to three NVRAM indices with the same

user password, i.e., until we can unlock a key, or fail at all three authdata-protected

indices. Therefore, TPM actually counts each failed attempt as a violation and may

enter a lockout state (released by an explicit reset or timeout); for details, see un-

der dictionary attack considerations in the TPM speci�cation [277]. We relied on

TPM_ResetLockValue and time-out during our development.

Note that this limitation is mitigated by the DL-distance and pattern-based

Gracewipe-XD schemes (Section 2.5), where the secret data to compare with is un-

sealed from NVRAM and the user-typed password is not used as authdata (thus no

failed authentication to access NVRAM).

2.5 Extended Unlocking Schemes

In the basic version of Gracewipe, only one or a few prede�ned PDs are allowed. In

this section, we discuss password-based deletion triggers to avoid limitations of the

basic Gracewipe design (see below). We adapt some existing schemes and explore

new ones, and implement the most promising variants (called Gracewipe-XD).

Limitations of few deletion passwords. (1) The adversary's risk in guessing

passwords is rather low. One or a few deletion passwords represent a very small

fraction of a large set of possible passwords, e.g., millions in the case of brute-forcing,

25

or at least hundreds, in the case of a small dictionary of most frequent passwords.

(2) In terms of plausibility, the user is left with too few choices when coerced to

provide a list of valid passwords; passwords other than PN , PH or PD will unlock no

system nor trigger the deletion, and generate an error message. The adversary may

choose to punish the user for any invalid password. With three valid passwords, the

attacker's chance of guessing PH is at least 1
3
(although the risk of triggering deletion

is also the same).

2.5.1 Existing panic password schemes

We summarize several existing panic password proposals [57] (primarily for Internet

voting), and analyze their applicability in our threat model (client-only).

2P. The user has a regular password (in our case, PH) and a panic password (in our

case, PD). The 2P scheme applies to situations where authentication reactions are

unrecoverable; e.g., if PD is entered in Gracewipe, further adversary actions cannot

help data recovery, as the target key KH is now permanently inaccessible. However,

if the attacker can extract both passwords from the victim, the chance of triggering

deletion/panic is 1
2
; for 3P, the chance is: 2

3
, and so on. Thus 2P resembles the

mechanism in the basic Gracewipe, which has both the aforementioned limitations.

2P-lock. When the reactions are recoverable, i.e., after PD is entered, knowing PH is

still useful for the adversary (unlike Gracewipe), the adversary may continue guessing

until he �nds PH , but is bound to a time limit to end coercion (e.g., for escaping). In

this case, a lockout mechanism can be applied to allow only one attempt, and make

the two passwords indistinguishable. If a valid password is entered, the system always

behaves the same (the panic passwords would signal coercion silently); then within a

speci�ed period, if a second valid but di�erent password is used, the system locks out

for a period longer than the adversary's time limit. However, 2P-lock is ill-suited for

Gracewipe as there is no trusted clock to enforce the lockout (the BIOS clock can be

easily reset).

P-Compliment. This scheme is applicable against persistent adversaries (i.e., re-

actions are recoverable and no time limit for coercion). Instead of having a limited

number of panic passwords, any invalid password (i.e., other than the correct one)

can be considered a panic password. This simple rule will result in user typos to

trigger unwanted panic/deletion. To alleviate, passwords that are close to the correct

one (i.e., easily mistyped) can be considered invalid (instead of panic), and thus the

26

password space is divided into three sets based on edit distance: the correct password,

invalid passwords and panic passwords. The user can now provide a large number of

panic passwords, and typos are tolerated. Note that for a persistent adversary, it is

assumed that there is no fatal consequence when a panic password is used (e.g., as

in the case of online voting, the account is locked for a while). Thus, if the panic

password and invalid password spaces are not well mixed, the adversary can try to

approximate the boundary between them with multiple attempts. In Section 2.5.3,

we discuss a Gracewipe variant derived from P-Complement.

5-Dictionary. For better memorizability, a user can choose 5 words from a standard

dictionary, using a password space division similar to P-Compliment: any 5 words in

the dictionary other than the user-chosen ones are considered panic passwords; any

other strings are invalid. This scheme tolerates user typos and provides a large set of

panic passwords. However, the number of panic passwords (P n
5 , for a dictionary of

n words) could still be much smaller than the invalid ones. We propose an adapted

version of this scheme in Section 2.5.4.

5-Click. For image-based schemes, any valid region in an image (excluding parts used

for the correct login) can be used to communicate the panic situation. As Gracewipe

relies only on text passwords, we exclude such schemes.

2.5.2 Counter-based deletion trigger

We design a counter-based mechanism by adapting 2P-lock to limit adversarial iter-

ative attempts without increasing the risk of accidental deletion (by user). Reaching

the limit of failed attempts is used to trigger deletion, instead of locking out the

system. Below, we provide the design and implementation of this adapted scheme.

Design. We keep the functionality of PD/PH /PN as in the basic Gracewipe design,

i.e., entering PD will still initiate an immediate deletion. In addition, we now count

the number of invalid attempts (i.e., entry of passwords other than PD/PH /PN),

and use the counter value as a deletion trigger when a user-de�ned preset threshold

(e.g., 10) is reached. The counter must be integrity-protected�i.e., can be updated

only by the correct Gracewipe environment.

An important consideration is when to reset the counter value. Because a legit-

imate user may also mistype sometimes, and as such errors accumulate the deletion

will be triggered eventually. We consider two options for resetting the counter value:

(1) Timeout. It is mainly used in online authentication systems. However, without a

27

reliable clock source, it is inapplicable to Gracewipe. (2) Successful login. Assuming

that typos are relatively infrequent, a legitimate user will successfully login before the

threshold is reached. We use such login to reset the counter. Note that only the entry

of a valid PH is considered a successful login (but not PN , which can be revealed to

the adversary when needed).

Implementation. This scheme is implemented by simply adding checks to the code

where the entered password has failed to unlock any indices and where KH is suc-

cessfully unlocked. The counter value is sealed in a separate NVRAM index with the

environment measurements. We also bind the measurements to both read and write

access of this index so that a modi�ed program cannot even read it, not to mention

updating. At deployment time, the counter is initialized to 0. A user-speci�c trig-

ger value is secured the same way as the counter (i.e., no access outside the correct

Gracewipe environment). If the adversary tries to reset either of them by re-initiating

Gracewipe deployment, he will have KH erased �rst before both values are reset. The

logic is as follows: Any invalid passwords will increment the counter; entry of PN does

not a�ect the counter; entry of PH will reset it to 0. Whenever the counter value is

equal to the trigger value, deletion is initiated.

2.5.3 Edit-distance-based password scheme

The counter-based deletion trigger can severely limit guessing attempts. However, if

the user is forced to reveal all valid passwords, the attacker's guessing success rate

will increase, due to the limited number of valid passwords (PN and few PDs). We

design the following variant to counter both threats.

Design. Following the P-Compliment scheme, we use edit distance to divide the

password space. Instead of prede�ned PD/PH /PN , we develop a rule to determine

which category the password falls into during authentication. There will be no invalid

passwords any more, and actions are taken silently (unlock the hidden system, decoy

system, or trigger deletion).

We must balance between the risk of user typos and the coverage of passwords the

adversary may guess. To measure the closeness between two passwords, we use edit

distance: the number of operations (edits) required to convert one string to another.

By centering to user-de�ned PH , we can treat the rest of the password space according

to edit distance. The farther a password is from PH , the more likely it is entered by

the adversary, and vice versa.

There are di�erent variants of edit distance metrics, mostly depending on the

28

PDs

PNs

PH

Threshold2

DL-distance

Figure 3: Dividing password space with DL-distance

types of allowed edit operations (e.g., insertion, deletion, substitution, and transpo-

sition). These metrics usually provide similar performance in distinguishing strings

but with various computation complexity (less critical for Gracewipe). We use the

Damerau-Levenshtein distance [30] (DL-distance), which considers only the follow-

ing operations: insertion (one character), deletion (one character), substitution (one

character) and transposition (two adjacent characters).

The choice of edit distance metrics may also involve other considerations. For

example, we can take into account cognitive aspects (e.g., words with interchangeable

meanings or user-speci�c typing habits), and device/physical aspects (e.g., common

keyboard layouts). Especially, the CapsLock key must be checked, which can lead to

large edit distance even when the correct password characters are typed, and convert

all characters into lower case before processing. If such aspects are parametrized,

a training process can also be introduced to customize Gracewipe-XD for a speci�c

user.

If we denote the entered password as PX , the overall logic is as follows (see Fig. 3):

if DL-distance (PX, PH) is less than or equal to Threshold1, PH is received; if DL-

distance (PX, PH) is greater than Threshold1 but less than or equal to Threshold2,

then PN is received; otherwise, PD is received, which triggers the deletion process

29

(including quote generation). We convert both PX and PH into lowercase for the

DL-distance calculation (to avoid accidental CapsLock on status).

Note that, using DL-distance, multiple PHs can be allowed to access the hidden

volume (e.g., by allowing Threshold1 to be greater than 0). However, the usability

bene�t may be insigni�cant, as the range has to be centered to one PH , and thus

forgetting PH may also indicate not remembering those that are only one or two

characters di�erent. On the other hand, allowing multiple PHs will increase the

adversary's guessing probability (PHs cover more in the guessable space). At the

end, we kept Threshold1 to 0, i.e., a single PH is used.

In contrast to P-Complement [57], password spaces for PN and PD may not need

to be well-mixed in our variant. However, we still re-examine any potential security

consequence of our choice as follows:

1. Only a single PD will su�ce to make the target data inaccessible. Thus approxi-

mating PH with multiple provided PDs or PNs is infeasible due to the high risk of

deletion.

2. The adversary may extract non-PH words (i.e., PNs and PDs) from a victim, before

launching a guessing attack through the Gracewipe interface. Such seemingly non-

secret information may help the adversary to identify boundaries between password

spaces (cf. [52]). In Gracewipe-XD, edit distance is omnidirectional (unlike the simple

depiction in Figure 3, where values are centralized to one PH on the same plane),

and also parametrized by character sets, maximum length etc. We thus argue that

the attacker cannot easily identify a trend/pattern pointing to PH .

Implementation. A signi�cant change in the edit-distance-based scheme is that

we must store PH in an NVRAM index for the DL-distance calculation. We seal

PH with the Gracewipe environment measurements. At evaluation time, PH must

be loaded to the system memory (with the correct Gracewipe environment), which

may provide a chance to launch cold boot attacks [108]; note that DMA attacks are

prevented by TXT. However, in our implementation, PH stays in memory for a short

period of time�PH is unlocked after the candidate password is entered, and erased

immediately after the DL-distance calculation (on average, 3-4 milliseconds in our

test environment, for 8-character passwords). In this case, we argue that timing the

cold boot attack to extract PH would be infeasible; for complexities of such attacks,

see e.g., [102, 48]. Alternatively, PH can be copied directly to CPU registers to bypass

memory attacks (cf. TRESOR [194]).

30

2.5.4 Other possible schemes

We have also explored more possibilities for the password schemes and deletion trig-

gers. They can be further examined and implemented for speci�c use-cases.

Pattern-based deletion passwords. The user is allowed to de�ne her own cus-

tomized pattern for PDs , e.g., using regular expressions. Any string that does not

match such pattern will be treated as PNs or invalid. This may provide better mem-

orizability while allowing a large number of PDs (users must remember the pattern,

but not the actual PDs). A foreseeable downside is that the adversary may learn

the pattern (e.g., through text-mining) from passwords extracted from the victim,

and then avoid passwords of such pattern when guessing. Also, this scheme does not

address mistyping.

Misremember-tolerant deletion passwords. A user may accidentally enter a

deletion password (e.g., due to stress, misremember) and realize the mistake instantly.

In the basic Gracewipe, this would be fatal, as KH will be deleted immediately after

receiving a PD . To reduce such accidental dental deletion, we adapt the counter-based

scheme as follows.

For any entered PD , before triggering deletion, a counter value is checked; if it

is already 1 (or any custom threshold), deletion is triggered as usual; otherwise, the

counter value is incremented and the entered PD is just treated as PN . The counter

value is initialized to 0 during deployment. A correct entry of PH will reset the

counter. Thus, at the cost of allowing the adversary to try an additional password,

accidental deletion can be avoided.

Small-dictionary scheme. The use of a built-in dictionary may serve as an alter-

native for tolerating user typos. The assumption here is that a mistyped word is more

likely to be absent in the dictionary (but not always, e.g., race and face). Multiple

user-chosen words (e.g., 5) form a passphrase. We adapt the 5-Dictionary scheme [57]

to incorporate the following considerations: (1) We would like to follow the princi-

ple in the edit-distance-based scheme, i.e., the number of PDs is arbitrarily large to

make sure that the probability of triggering deletion is rather high, meanwhile with

PNs serving as a bu�er zone to accommodate typos. (2) To increase the number of

PDs , we can treat the invalid passwords in 5-Dictionary as PDs . However, most such

invalid passwords are formed by non-dictionary words, and therefore can be easily

entered by mistyping. Thus, we would like to design an adapted scheme that triggers

deletion with non-dictionary words but tolerates mistyping.

31

Instead of using large natural dictionaries (e.g., English vocabulary), the user de-

�nes a custom dictionary that contains her memorizable strings (words or non-words).

The size of the custom dictionary is relatively small that �ts in TPM NVRAM, e.g.,

50�100 words; such a small dictionary ensures that at a very high probability a ran-

dom word falls outside the dictionary and may eventually lead to deletion. However,

the custom dictionary must be both con�dentiality and integrity protected, unlike

the public standard dictionary in 5-Dictionary.

A PH consists of three (or more) segments, each picked from the custom dictio-

nary. If none of the three segments of the typed password belong to the dictionary,

the password is considered as PD , and deletion is triggered. If all of the three seg-

ments of the typed password belong to the dictionary, the password is considered as

PH . Otherwise, the typed password is treated as PN . We assume that the probability

of mistyping all three segments is low, reducing the chance of inadvertent deletion

trigger by mistyping or even misremembering (see below). In contrast, without the

knowledge of the custom dictionary, the attacker's guessable password space is as

large as 5-Dictionary.

This scheme also partially addresses accidental deletion due to misremembering. If

the user chooses to include all potential words/strings she may use in her passphrases

for other accounts, even if she misremembers, still one or more segments of the misused

passphrase fall in the custom dictionary and thus will be only treated as a PN .

Another bene�t of the small-dictionary scheme is that the invalid password space

and the deletion password space can be better mixed (for plausibility). Also, the

hidden password is more di�cult to approximate from extracted passwords (i.e., not

re�ecting constant space �away� from other passwords), because the custom dictionary

di�uses candidate invalid/deletion passwords from the hidden one. Also, the custom

dictionary being small allows it to be stored securely in TPM NVRAM, which re-

moves access to the sealed dictionary without the correct Gracewipe environment (as

opposed to sealed data stored on disk).

2.6 Performance Overhead

By design, Gracewipe merely replaces the user authentication part of an existing

FDE scheme at boot-time, and does not interfere with the runtime performance of

the OS or applications. In this section, the boot-time overhead of Gracewipe in

normal operations is evaluated to demonstrate Gracewipe's practicality. We exclude

32

the one-time deployment phase and quote generation after deletion as they occur only

in special cases, and introduce only a delay of less than a second (for operations like

loading keys in TPM and quoting).

Methodology of measurement. Unlike Linux kernel's do_gettimeofday(), we lack

a reliable clock source in the pre-OS environment. We use CPU's Time Stamp Counter

(TSC) via the rdtsc instruction. TSC stores the total number of machine cycles

since the processor reset. A divisor (denoted as N.TSC hereafter) can be calculated

so that TSC/N.TSC produces the total number of elapsed milliseconds (instead of

machine cycles). This process is called TSC calibration, where the hardware 8253

Programmable Interval Timer (PIT) is programmed to produce a millisecond-long

interval and the TSC value di�erence before and after is N.TSC. We do not try more

recent alternatives (e.g., the invariant TSC feature in recent CPUs) as the original

calibration-based approach has been tested and used in well-established projects, e.g.,

tboot, Linux kernel and GRUB2.

In our test machine, we get N.TSC values roughly between 3494388 and 3504892

across multiple calibration attempts (error ±0.003ms). Instead of taking an average of
the calibrated values, we use the actual N.TSC value right before each measurement

to calculate the elapsed milliseconds, as per-measurement calibration re�ects real-

time characteristics. We perform each measurement 15 times and use the R project

to calculate statistics.

Tboot. The choice of using tboot (as opposed to dealing with TXT with custom

code) is justi�ed by the fact that it has undergone su�cient public/expert scrutiny and

thus is more reliable especially for the crucial TXT-handling logic. It also introduces

an apparently acceptable level of latency.

By default, tboot enables debugging (to VGA, serial port or memory), which slows

it down signi�cantly, taking 30 seconds or more to complete. We disable debugging

by passing necessary arguments. Our 15 independent measurements demonstrate

coherent execution times: mean 1611.20ms, median 1611.96ms, standard deviation

(sd) 6.08.

The basic Gracewipe. As the basic design tries to unlock the three de�ned indices

in sequence until a success, we separately time the three cases: (1) Success at the

�rst index (including deletion, if it stores PD): mean 646.83ms, median 645.98ms, and

sd 2.81. (2) Success at the �rst index (excluding deletion): mean 560.21ms, median

558.90ms, sd 3.78. (3) Success at the second index: mean 616.81ms, median 617.16ms,

33

and sd 3.47. (4) Success at the third index: mean 746.97ms, median 743.40ms, and

sd 10.61.

DL-distance-based Gracewipe-XD. User response time, such as password typing,

is excluded from our measurement, since it is also needed for regular FDE. We hard-

code the user input corresponding to each scenario for measuring only the execution

time. We count from the point where control is taken over from tboot to the point

where TrueCrypt is about to be loaded. Our attempts to measure the DL-distance-

based scheme result in an average of 591.16ms, median of 589.71ms and standard

deviation of 7.74.

Promptness of deletion. We also measure the duration of the deletion operation

(releasing and overwriting an NVRAM index). Over the 15 attempts, we found that

deletion takes about 87ms (mean 86.62 and median 87.05), with a very small deviation

(sd 1.39), supporting our claim for a quick deletion.

In summary, the overall latency introduced by Gracewipe is between 2 and 2.5

seconds.

2.7 Generalized Work�ow and Comparison

Di�erent password and deletion schemes provide �exibility, and can be used in di�er-

ent application scenarios. However, the core Gracewipe features are always provided:

plausible user compliance, undetectable deletion trigger, risky guessing and veri�a-

bility. In this section, we provide a generalized work�ow for Gracewipe variants and

compare them in terms of security bene�ts and ease of use.

Generalized work�ow. At deployment time, in addition to setting up secrets

(KH , KN), according to the actual variant of Gracewipe in use, the user de�nes

corresponding parameters (thresholds, rules, or a custom dictionary). Each time the

system is booted into Gracewipe in a TXT session (loaded by GRUB and tboot). The

user is prompted for a password. The di�erence of Gracewipe variants is re�ected in

the evaluation of the entered password, which eventually produces an outcome (KN ,

KH , or deletion). Thereafter, the system is unlocked, or a quote is generated for later

veri�cation if deletion is triggered.

In normal operations, the user chooses to enter PN or PH , which unlocks KN

for the decoy system or KH for the hidden system, respectively. If she mistypes or

misremembers the password, the Gracewipe variant in use determines to what extent

she can avoid triggering the deletion. When the user is coerced, she can be forced

34

to provide a list of valid password, the number of which depends on the password

scheme used.

Comparison. Table 1 summarizes several security and ease-of-use features of di�er-

ent deletion triggering/password schemes.

Large Deletion Space denotes the availability of many plausible deletion passwords

that the user can reveal to pretend compliance. The basic Gracewipe only supports

one or a few deletion passwords; the counter-based and misremember-tolerant variants

are used with other schemes, and do not o�er this property alone.

High Guessing Risk represents a relatively high probability of triggering deletion

with a guessed password. For the basic Gracewipe, it is just a few out of a large

password space. Other schemes o�er this feature by either rate-limiting (the counter-

based one), or having a large deletion password space.

Typo-tolerant means the scheme tolerates user typos. This feature can be achieved

either by using static passwords (assuming they are not close in terms of edit distance),

or carefully managing the password distribution (e.g., greater distance between PDs

and PHs). For the pattern-based scheme, typo tolerance is determined by the de�ned

pattern.

Reduced Accidental Deletion denotes reduced risk from accidental deletion, e.g.,

mistakenly typing PD instead of PH . Schemes with �xed PD (s), e.g., the basic

Gracewipe, obviously do not o�er this feature. PDs are not prede�ned in the DL-

distance and pattern-based schemes; however, misremembering PH or the pattern can

still trigger accidental deletion. Small-dictionary partially tolerates misremembering,

when at least one segment of a misremembered passphrase is found in the dictionary.

The misremember-tolerant add-on can reduce the risk of accidental deletion in any

variant.

Non-RAM Secrets indicates that plaintext e.g., PH , custom dictionary, are not

exposed to the system memory. Although the feasibility of cold boot attacks is

Deletion triggers/password schemes
Large

Deletion Space
High

Guessing Risk
Typo-tolerant

Reduced
Accidental Deletion

Non-RAM
Secrets

Gracewipe Single/few deletion passwords
Counter-based (add-on) � � �
DL-distance-based
Pattern-based #
Misremember-tolerant (add-on) � � �

Gracewipe-XD

Small-dictionary # #

Table 1: Comparison of Gracewipe password schemes. Keys: (o�ers the feature);
(partially o�ers the feature);
� (scheme-dependent, �add-ons� may not be evaluated alone for certain properties);
blank (lacks the feature).

35

arguably low (recall that DMA attacks are already prevented by TXT), due to the

very-short in-RAM password exposure period, avoiding plaintext secrets in memory

is a better design choice. The basic Gracewipe's password evaluation is entirely

TPM-bound. In contrast, the DL-distance-based scheme loads PH and the pattern-

based scheme loads the pattern (e.g., a regex) in memory at evaluation-time. The

small-dictionary scheme can partially avoid loading secrets in memory, if the custom

dictionary is unlocked chunk by chunk to be matched with the typed passphrase

(at the cost of performance), so that at a speci�c time only a small portion of the

dictionary is in RAM.

2.8 Security Analysis

In this section, we analyze possible attacks that may a�ect the correct functionality

of Gracewipe. Note that, the veri�ability of Gracewipe's execution comes from a

regular TPM attestation process. Since the good values (publicly available) only

rely on Intel's SINIT modules, tboot binaries and Gracewipe, as long as the PCR

values (via quoting) are veri�ed to match them, it can be guaranteed that the desired

software stack has been run. For all Gracewipe variants we exclude known physical

attacks on TPM chips, as either they could have been patched by the vendor or the

user is motivated to choose a model/situation where such attacks do not apply due

to their being ad-hoc, e.g., TPM integrated in the SuperIO chip; we brie�y discuss

several (historical) attacks on TPM elsewhere [311].

(a) Evil-maid attacks. In 2009, Rutkowska demonstrated the possibility of an evil-

maid attack [234] (also termed as bootkit by Kleissner [156] in a similar attack) against

software-based FDEs. The key insight is that the MBRs must remain unencrypted

even for FDE disks, and thus can be tampered with. We consider two situations

directly applicable to Gracewipe: 1) In normal operation (i.e., not under duress),

the user may expose her password for the hidden system (PH). As soon as such an

attack is suspected (e.g., when PH fails to unlock the hidden volume), users must

reinitialize Gracewipe, and change PH (and other attempted passwords); note that,

the user is still in physical control of the machine to reset it, or physically destroy

the data. 2) Under duress, we assume that the user avoids revealing PH in any case.

However, the adversary may still learn valid PN /PDs as entered by the user without

the risk of losing the data (due to the lack of Gracewipe protection). The use of

multiple valid PDs can limit this attack. Note that if an attacker copies encrypted

36

hidden data, and then collects the hidden password through an evil-maid attack, the

plaintext data will still remain inaccessible to the attacker due to the use of TPM-

bound secrets (see under �Sealing in NVRAM� in Section 2.3). The attacker must

steal the user machine (at least, the motherboard and disk) and launch the evil-maid

attack through a look-alike machine. Existing mechanisms against evil-maid attacks,

e.g., MARK [96], can also be integrated with Gracewipe.

(b) Undetectable deletion trigger. As discussed under �Sealing in NVRAM� in

Section 2.3, sealing prevents guessing attacks without risking key deletion. Sealing

also prevents an attacker from determining which user-entered passwords may trigger

deletion, before the actual deletion occurs. If the adversary alters Gracewipe, any

password, including the actual deletion password, will fail to unseal the hidden volume

key from NVRAM. Since the deletion indicator lies only within the sealed data in

NVRAM, the adversary will be unable to detect whether an entered password is for

deletion or not (e.g., by checking the execution of a branch instruction triggered by

the deletion indicator).

(c) Quoting for detecting spoofed environment. Currently, we generate a

quote only in the case of secure deletion. However, in normal operations, the user

may want to discern when a special type of evil-maid attack has happened, e.g.,

when the whole software stack is replaced with a similar environment (e.g., OS and

applications). For this purpose, we can generate a quote each time Gracewipe is run

and store it in NVRAM. By checking the last generated quote value, the user can

detect any modi�cations to Gracewipe. In both secure deletion and normal operation,

the selection of a proper nonce is required. We currently support both arbitrary user-

chosen strings and timestamps as nonces. Nevertheless, the use of a timestamp is

susceptible to a pre-play attack, where one party can approximately predict the time

of the next use, and pre-generate a quote while actually running an altered binary.

This is feasible because the malicious party has physical access, and thus, is able to

use TPM to sign the well-known good PCR values for Gracewipe and the timestamp

he predicts. Therefore, for spoofed environment detection, we recommend the use of

user-chosen strings during quote generation, although it requires user intervention.

(d) Booting from non-Gracewipe media. The attacker may try to bypass

Gracewipe by booting from other media. For an SED-based implementation, such

attempts cannot proceed (i.e., the disk cannot be mounted). Even if he can mount the

disk, e.g., with a copy of Gracewipe-unaware TrueCrypt, he must use the unmodi�ed

version of Gracewipe to try passwords that are guessed or extracted from the user

37

(e.g., under coercion), as TrueCrypt volumes are now encrypted with long random

keys (e.g., 256-bit AES keys), as opposed to password-derived keys. Brute-forcing

such long keys is assumed to be infeasible even for state-level adversaries.

(e) User diligence. We require users to understand how security goals are achieved

in Gracewipe, and diligently choose which password to use depending on a given

context. If the deletion password is entered accidentally, the protected data will be lost

without any warning, or requiring any con�rmation. Note that, we do not impose any

special requirement on password choice; i.e., users can choose any generally-acceptable

decent passwords (e.g., 20 bits of entropy may su�ce). We do not mandate strong

passwords, as the adversary is forced to guess passwords online, and always faces the

risk of guessing the deletion password. Also, the user must reliably destroy her copy

of the TrueCrypt keys when passing them to con�gure TrueCrypt. We can automate

this key setup step at the cost of enlarging the trusted computing base. However, we

believe that even if the whole process is without any user intervention, the adversary

may still suspect the victim to have another copy of the key or the con�dential data.

Here we only consider destroying the copy that the adversary has captured.

2.9 Related Work

Solutions related to secure deletion have been explored extensively both by the re-

search community and the industry; see e.g., the recent survey [226]. However, we

are unaware of solutions that target veri�ability of the deletion procedure, and un-

observability and indistingushability of the triggering mechanism�features that are

particularly important in the threat model we assumed. Here we summarize proposals

related to secure deletion and coercive environment.

Limited-try approach [228]. In a blog post, Rescorla [228] discusses technical and

legal problems of data protection under coercion. Limitations of existing approaches

including deniable encryption (such as TrueCrypt hidden volumes), veri�able destruc-

tion (Vanish [88]) have been discussed. He also proposes possible solutions, one of

which is based on leveraging a hardware security module (HSM) with a limited-try

scheme. The HSM will delete the encryption key if wrong keys are entered a limited

number of times. As mentioned [228], such a system cannot be software-only as the

destruction feature can be easily bypassed. Essentially, Gracewipe combines TPM

and TXT to achieve HSM-like guarantees, i.e., isolated and secure execution with

secure storage (albeit limited tamper-resistance), without requiring HSMs.

38

Secure deletion survey [226]. Reardon et al. provide a comprehensive survey

of existing solutions for secure deletion of user data on physical media, including

�ash, and magnetic disks/tapes. Solutions are categorized and compared based on

how they are interfaced with the physical media (e.g., via user-level applications, �le

system, physical/controller layers), and the features they o�er (e.g., deletion latency,

target adversary and device wear). However, SED-based solutions were not evaluated,

which is of signi�cance to secure deletion. The authors also presented a taxonomy of

adversaries that a secure deletion approach is faced with. The adversary in Gracewipe

can be classi�ed as bounded coercive as he can detain the victim, and keep the device

for a signi�cantly long time with hardware tools available, but cannot decrypt the

Gracewipe-protected data without the proper key. Reardon et al. also discuss a few

solutions involving encrypting user data and making it inaccessible by deleting the

keys. The authors suggested to be more cautious about such cryptographic deletion

and consider the adversary's true computational bound (which would be rather high

for a state-level adversary).

STARK and MARK [195]. Müller et al. propose a protocol for mutual authenti-

cation between humans and computers, arguing that a forged bootloader can trick the

user to leak her password (cf. [234, 156]). Even with TPM sealing, attacks aiming to

just obtain the user secret can still occur, as demonstrated by the tamper-and-revert

attack to BitLocker [280]. STARK allows the user to set up a sealed user-chosen mes-

sage, which should be unsealed by the machine before it authenticates the user. The

user can then verify if it is her message. Each time a new message is set by the user

to maintain the freshness, hence its name monce. Its improved version MARK uses

a special USB device as secure storage to bootstrap the process credibly. Gracewipe

may be extended with such techniques to defeat evil-maid attacks.

DriveCrypt Plus Pack [245]. DCPP can be considered the closest prior art to

Gracewipe. It is a closed-source FDE counterpart of TrueCrypt, with the support for

deniable storage (hidden volumes), destruction passwords and security by obfuscation.

A user can de�ne one or two destruction passwords (when two are de�ned, both must

be used together), which, if entered, can immediately cause erasure of some regions

of the hard drive, including where the encryption keys are stored. What DCPP is

obviously still missing is a trusted environment for deletion trigger, and measurement

for the deletion environment. The adversary may also alter DCPP (e.g., through

binary analysis) to prevent the deletion from happening. More seriously, the adversary

can clone the disk before allowing any password input.

39

2.10 Concluding Remarks

We consider a special case of data security: making data permanently inaccessible

when under coercion. We want to enable such deletion with additional guarantees:

(1) veri�cation of the deletion process; (2) indistingushability of the deletion trigger

from the actual key unlocking process; and (3) no password guessing without risking

key deletion. If key deletion occurs through a user supplied deletion password, the

user may face serious consequences (legal or otherwise). Therefore, such a deletion

mechanism should be used only for very high-value data, which must not be exposed

at any cost, and where even accidental deletion is an acceptable risk (i.e., the data

may be backed up at locations beyond the adversary's reach). We use TPM for secure

storage and enforcing loading of an untampered Gracewipe environment. For secure

and isolated execution, we rely on Intel TXT. Millions of consumer-grade machines are

already equipped with a TPM chip and TXT/SVM capable CPU. Thus, Gracewipe

can immediately bene�t its targeted user base. The source code of our prototypes

can be obtained via: https://madiba.encs.concordia.ca/software.html.

40

https://madiba.encs.concordia.ca/software.html

Chapter 3

Extending Gracewipe to

Network-based Environments

Based on Gracewipe, we shift our focus from coercion to remote data erase. We

have noticed the paradigm of secure remote deletion is not positioned with the un-

conventional threats considered. Especially, motivated by malicious insiders (e.g., a

privileged employee, receiving the lay-o� notice, may try to steal con�dential data

from servers they manage)[177], we would like to look further to see what can be done

to improve secure remote deletion.

3.1 Introduction

The need for secure remote deletion of user data (also referred to as remote erase

or remote wipe) has made it the de-facto standard for certain services/products in

the industry. Examples include features available in cloud-storage client apps (e.g.,

[72] and [188]), shipped with the OS (e.g., [93] and [18]), and supported by �rmware

(e.g., Dell's Remote Data Delete service [67]), targeting both enterprise and consumer

markets. Academic proposals also have been around for years (see [264] and [87]) as

well as some patents (e.g., [240, 238]).

The purpose thereof is mainly to ensure data secrecy with lost or stolen devices

where the owner has lost physical control. To ensure prompt e�ect, cryptographic

deletion is usually used (i.e., encrypting data �rst and erasing only the encryption

keys) instead of the time-consuming overwriting-based deletion.

However, the claimed security therein usually only considers authentication (al-

though sometimes even mutual authentication), i.e., making sure that the device can

41

only be erased by authorized persons and that the right device is being erased (no

impersonation). When considering that the device can be potentially compromised

or that the adversary has physical control over the device, the erase process might be

interfered with and as a result the data would not be properly erased. Moreover, even

without the presence of an adversary, device miscon�guration (changes after initial

deployment) and untrusted provider employees may still pose an uncertainty to the

correct erase operation.

Therefore, in certain scenarios, in addition to initiating the erase operation, ver-

i�ability is more crucial, i.e., the ability to tell whether the deletion is provably (de-

pending on the threat model) successful or aborted. Simply checking the operation

status returned from the target device is insu�cient because if the software stack is

compromised the returned status may be forged.

Repositioning secure remote deletion. We shift our purpose from increasing the

likelihood of deletion success (e.g., in the case of lost or stolen devices) due to the

di�culty stated above, to being able to tell whether the deletion has succeeded or

not (cryptographically), hence trusted remote deletion.

Enriching secure remote deletion. We also demonstrate that the e�ectiveness of

remote deletion is highly associated with the way the secret (to be deleted) is stored

and used. So the trusted remote deletion must be integrated or collaborate with the

underlying data protection mechanism (e.g., an FDE scheme).

Contributions.

1. We formalize various factors a�ecting the e�ectiveness and usefulness of remote

secure erase by surveying existing academic/industrial solutions and propose

user-veri�ability to be of the utmost importance to remote secure erase solu-

tions.

2. We accommodate the above factors and put forward a high-level design for

an end-to-end veri�able remote data erase that can be later instantiated on

di�erent platforms.

3. Targeting PCs and enterprise workstations, we design and implement a proof-

of-concept of the proposed framework, using Intel TXT with TPM and Intel

AMT.

42

3.2 Threat Model and Assumptions

Goals. Our objective is to create a high-level framework for remote secure data erase

whose veri�ability does not rely on the intermediate parties (i.e., end-to-end), and

which is integrated with how the secret is stored/used, so that the con�rmation of

success does indicate that the secret has been irreversibly deleted.

We argue that an e�ective remote solution does not simply stop at ensuring suc-

cessful issuance of the wipe command and receipt of the acknowledgment.

Assumptions.

a) Owned device. The device where data erase happens belongs to the initiating

user, i.e., we do not consider the case when a user tries to delete a �le from a

server owned by another party.

b) Trust anchoring. All hardware-based approaches have to rely on at least the

manufacturer for correctly implementing the security functions (e.g., without a

backdoor). That being said, we already minimize the number of trusted parties

by excluding various service providers and other entities.

c) Storage media. We do not consider physical storage media in our discussion.

For instance, magnetic media and �ash storage demonstrate di�erent charac-

teristics in terms of the chance by which deleted data can be recovered (and if

any, to what extent). This is in light of our consideration of only cryptographic

deletion (cf. Section 3.3), where the deleted data is of very small size (e.g., a

128-bit key).

d) Complete coverage. Traces elsewhere left by the data to be erased are out

of scope. If any, we assume whatever proves the ever-existence of erased data

has already been included in the erase. Full disk encryption (FDE) is one of

the examples that address this, hence leading to full disk erase.

e) Con�dentiality of utmost importance. We prioritize data con�dentiality

over all other threats, such as denial-of-service attacks or monetary loss, so that

the sensitive data never falls in the wrong hands.

f) Correct initial deployment. In addition to trusted parties, everything should

be assumed to be correct at the time the device is �rst set up.

43

3.3 An Analysis and Status-quo of Remote Secure

Erase

The main purpose of current remote erase solutions is to perform the erase operation

on a target device, to which the user does not have physical access. The operation

can usually be initiated from any computer system (e.g., web browser or client app

on a cellphone, tablet or PC), as long as certain authentication is satis�ed. Below,

we analyze a few factors that should be considered when evaluating existing remote

erase approaches.

Application scenarios. Today's computing devices tend to apply data encryption

for persistent storage (e.g., �ash or hard drive) as a common practice. This is espe-

cially true in our setting when con�dentiality is the �rst priority. However, encryption

does not save the need of remote (secure) erase for reasons as follows:

• Breaking of cryptographic algorithms. Encrypted data is merely computation-

ally safe at present. Over time, hardware processing power will improve and

cryptanalysis may also evolve. For important sensitive data, it may happen

that the encryption is defeated before the data becomes useless.

• Implementation �aws. Vulnerabilities in system implementation always cause

sensitive data disclosed earlier than broken algorithms. Depending on how keys

are stored or derived, there is the possibility of secret leakage as long as the

data is kept on the device.

In view of such facts, the study of erasing encrypted data remotely and securely is of

great values. The former one may still persist as long as we perform cryptographic

deletion (overwriting of data takes a much longer time). Minimizing the TCB and

enforcing cryptographic validation of the key deletion process with hardware security

primitives can at least improve the latter situation.

Service availability. A �rst important factor to consider in the setting of remote

erase is whether the device can be erased (reached) in a timely manner as needed by

the user. For example, if the device is found to be lost/stolen, or a threat of data

revelation is detected for a remote device the user owns, an erase operation needs to

be performed as soon as possible.

However, remote erase possesses two intrinsic dependencies that must be satis-

�ed: power supply and connectivity. If the device can be completely switched o� or

44

disconnected by the adversary, remote erase is impossible. In very rare cases, when

the data is highly valuable, a battery-backed tamper-resistant device still allows erase

operations (e.g., IBM CryptoCards [20]) within the device.

On the other hand, connectivity (which includes Internet access) is as essential but

more susceptible, i.e., a device is more easily isolated than removed from power supply.

An electromagnetic shielding box would do the job. In spite of this, there are multiple

proposals that take a step back assuming a limited communication channel still exists.

Kuppusamy et al. [163] allow SIM card changes (thus with a di�erent phone number)

by having the target device contact a pre-con�gured server in various ways including

SMS. If the adversary also tries to take out the SIM card, disabling both SMS and

cellular Internet access, Yu et al. [309] propose to make use of emergency calls as the

communication channel for sending erase commands. However, their approach relies

on the operator's support, as emergency calls can only reach designated numbers

(e.g., 911 in North America).

Promptness. Nowadays, cryptographic deletion has widely replaced (multi-round)

overwriting-based erase, which is slow and subject to interruption. Usually, user data

on the device is �rst encrypted before saved to non-volatile storage. Therefore, in

cryptographic deletion, only the encryption key is erased and this process takes very

trivial time and is thus non-interruptible.

E�ectiveness. A signi�cant di�erence between generic secure remote computing

and secure remote erase is that the latter also requires secure local I/O to reach

the persistent storage where the target data resides. Here we skip the discussion of

non-cryptographic deletion (overwriting or �le system based) for obvious security and

performance reasons.

Therefore, in addition to the correctness of the execution logic (e.g., the right

command has been issued with the expected response), to achieve an e�ective erase

of the keys in persistent storage, two aspects must be considered: 1) The operation

was not interfered with. This can be achieved by running high-privilege/exclusive

code avoiding lower-level threats, or containing the keys in TEE. 2) There is not

another copy of the deleted keys (at least on this target device). This is about how

the secret is stored and used.

Put another way, a remote secure erase solution encompasses the whole of the

data protection solution, hence ensuring that the erase operation does lead to data

unavailability. Such e�ectiveness of remote erase is not explicitly discussed in the

literature, although some (industrial) solutions may have achieved it. For instance,

45

in a comprehensive survey [168] of recent secure remote wipe solutions, the authors

only list �Acknowledge Source that Wipe is Completed� (a con�rmation of success

issued by the target device), �Secure Delete� (whether the deleted data is recoverable

from the media) and �Secure Wipe Command� (simply encrypting commands to avoid

sni�ng and tampering), instead of the two aspects above.

Trusted parties. The user always has to trust certain third parties with her in-

valuable data, which is inevitable if she would like to have data stored remotely.

However, even if the company that the user must rely on is benign and honest, the

trustworthiness of the user's erase operation may still be doubtable. Examples in-

clude: a) Post-deployment miscon�guration. The provider's infrastructure changes

with time frequently. Due to human mistakes or program errors, an initially cor-

rect con�guration can malfunction. b) Malicious employees. A proper environment

will not allow employees to have access to user data and the keys. However, they

may somehow interfere with the erase process (e.g., by duplicating encrypted data).

c) Compulsory government cooperation. There have been multiple incidents [284]

where the provider is legally obliged to expose customers' data.

In most cases, the user has to go through an enrollment process with a trusted

service provider [168], and when a remote erase is needed the initiating device logs

in to the service where the provider contacts the target device. This manner has a

bene�t of better service availability (device reachability) to a certain extent (e.g., the

SIM card has been replaced but SMS from the device to the service provider is still

possible).

There are two options to avoid such trusted parties (but not the hardware manu-

facturers):

• End-to-end connection with the target device (e.g., direct TLS session with no

online server).

• Using remote attestation protocol opaque to the server (logically end-to-end).

Guessing prevention. While most approaches that do consider password brute-

forcing, they mainly focus on guessing the password for illegitimate erase (i.e., a

form of denial-of-service attack) with no user consent. Here we argue that if the

data protection is susceptible to guessing (e.g., encryption key derived from a weak

password), a separate strong password for remote data erase does not help with data

leakage.

46

Leom et al. [168] brie�y discuss an iCloud brute-force attack which also leads

to data leakage in addition to simply illegitimate erase, which was patched soon

thereafter.

In a setting of end-to-end approaches (logically or physically as discussed above),

the guessing prevention mechanism must be implemented on the target device instead

of any intermediate parties.

User veri�ability. We propose to consider the user veri�ability of remote erase

operations through cryptographic attestation, which leads to what we refer to as

trusted remote erase. To the best of our knowledge, this has not been discussed for

remote secure erase in the literature.

3.4 End-to-end Veri�able Secure Deletion

In this section, we propose a high-level framework that enables end-to-end trusted

remote erase, agnostic to underlying platforms (we later instantiate it in Section 3.5

on x86 PCs). We consider the factors discussed in Section 3.3, and make use of TEE

technologies to achieve user veri�ability.

Figure 4 depicts the architecture.

Figure 4: The framework of trusted remote erase

3.4.1 Design considerations

Communication channel. Our approach is independent of the media type through

which the wipe command is sent. Cellular communications, direct Internet connection

47

and even radio frequency access are all considered physically end-to-end.

If an intermediate party is involved (e.g., iCloud), we leave its current work�ow

intact (such as device management, authentication requirement and communication

protocol) as long as the target device is eventually triggered to perform the erase

operation. An advantage of this is that pending erase is possible. When a target

device is powered o� or has temporarily lost connectivity, the next time it comes

back it will try to contact the intermediate party and thus the pending erase is still

performed at the soonest possibility.

End-to-end attestation. Usually all forms of TEE provide a quote-like data ele-

ment signed (or the like) with the measurement of the execution environment, hence

bound to the machine state. Examples include the Intel TXT/TPM quotes and the

Intel SGX local/remote attestation protocol. The correctness of such attestation is

only determined by the two participating parties (with the freshness nonce blended

from the initiator/veri�er).

3.5 A Proof-of-concept on x86 PCs

Figure 5: An x86 instantiation of the trusted remote deletion with Intel AMT

48

In this section, we explain the design and implementation of a tool for end-to-

end trusted remote deletion that instantiates the high-level design discussed in Sec-

tion 3.1). We choose to target x86 PCs and enterprise workstations to showcase the

feasibility.

Although we do not focus on deletion success (e.g., against an adversary with

physical proximity cutting o� the power), the user must be able to initiate deletion at

any time, even if the device is manually powered o�, halted, in sleep modes or looping

in�nitely. To this end, we employ Intel AMT [128] as an out-of-band management

channel which is available on many o�-the-shelf motherboards and located outside

the processor complex.

3.5.1 Assumptions and terminology

Admin system. The admin system refers to the computer where the user initiates the

erase operation. This system only needs to be network-ready, since all operations are

through TCP/IP.

Target system. This is the managed computer/device where the data (to be erased)

resides and there might be many of such systems. It must be TXT-capable equipped

with a TPM, in addition to the AMT support.

SOL. Serial-Over-Lan (aka., SOL [135]) is one of the AMT-shipped features, which

simulates the legacy serial port communication via an IP network. It serves as the

communication channel between the admin system and the target system.

AMT password. This refers to the password that the user is required to set when

activating the AMT feature on the target system. Whoever trying to connect to the

target system must be authenticated with this password. There are complex rules for

the composition of an AMT password.

Adversarial model. As we only aim to detect incomplete/failed erase operations,

we consider any such detected attempts as denial-of-service (DoS) attacks and exclude

them, such as disconnecting the target system from network/power supply, cutting

the hard drive cable, tampering with communicated control data, etc. With regard to

altering the target system software to evade detection, see the veri�ability guarantee

in Section 3.5.2

49

3.5.2 Design overview

Con�dence of the erase operation. We base the cryptographic veri�ability of

an executed program on the combination of Intel TXT and TPM as is used in

Gracewipe [311]. Namely, as long as a valid quote received is veri�ed bound to a

speci�c machine, the desired program must have been executed correctly on that

machine, indicating a successful erase operation.

Con�dentiality of the communication channel. By default, the AMT connec-

tion is established with no encryption (i.e., in cleartext HTTP). This is a fatal problem

for us since the adversary can eavesdrop the tra�c and learn the AMT password sent

from the admin system to the target. As client authentication (verifying the identity

of the admin system) is already achieved with the AMT password, we merely need

two additional defenses: (a) The tra�c must be encrypted so that the AMT password

is not leaked through eavesdropping. (b) The identify of the target system must be

veri�ed or otherwise the password can be leaked through phishing (impersonating the

target system to record the password sent).

To achieve the �rst defense, we can simply change HTTP to HTTPS by enabling

TLS, so that a third party can no longer see the plaintext data being transferred.

To verify the identity of the target system (acting as the server in terms of the TLS

session), performing the regular server authentication will su�ce, i.e., a certi�cate

presented by the target system to be veri�ed by the admin system. Any TLS secrets

will remain only with AMT, without being exposed to the target host or outside.

Note that the TLS client authentication (the admin system presenting its certi�cate)

is not essential in our construction since the admin system is already authenticated

by the AMT password. But we can still enable client authentication so that leaking

the AMT password does not enable access from any device belonging to the attacker.

Execution of the erase operation. As long as the aforementioned conditions

are satis�ed, deletion initiation via the network has both the secrecy (through TLS)

and integrity (through TXT and TPM) similar to that with the admin's physical

presence. The rest of the operation can be executed the same way as with the original

Gracewipe.

There are three pieces of key information to be transferred once the communication

channel is established: the (deletion) password from Admin to Target triggering the

operation, the custom nonce (for generating quotes) from Admin to Target, and the

quote values from Target to Admin attesting to the integrity of the operation.

50

3.5.3 Implementation of Gracewipe Remote

The implementation e�ort corresponds to two components: the admin client on the

admin system that interacts with the admin (human), with GUI or command-line

interface; and the new AMT-based functionalities to be integrated to the original

Gracewipe on the target system.

As a proof-of-concept for the admin client, we adapt the open-source project

amtterm [116] with a patch for TLS support [209] by implementing our logic on top

of it. We preserve its command-line interface leaving GUI development as future

work.

Con�guring AMT

In addition to the programmatic implementation, a few AMT con�guration steps are

required on the target system. Here we omit steps necessary for regular use of AMT

(such as setting an AMT password), which are also needed for Gracewipe Remote.

No con�guration speci�c to Gracewipe Remote is needed on the admin system.

Basic setup. �Legacy Redirection Mode� must be enabled so that the target system

can accept an SOL connection without the need for a management console (see below)

to �rst connect and enable it.

Enabling TLS for server authentication. By default, AMT provides password-

only authentication with no encryption (port for SOL: 16994) and TLS can be man-

ually enabled for encrypted communication. To do so, a management console (Intel

Manageability Commander Tool [129]) must be used to connect to the target system.

Under the Security tab, we may see that the current TLS setting is Local: NoAuth,

Remote: NoAuth (where Local and Remote refer to local and remote connections re-

spectively). After ticking �Use Transport Layer Security�, a dialog pops up prompting

for a certi�cate. Here note that the speci�ed certi�cate will be stored on the target

system and presented to whoever is connecting to it. A root certi�cate is also needed

to be kept on the admin system (and all the systems that would authenticate the

target system later). When the new settings are saved, we should see Local: Server-

Auth, Remote: ServerAuth. Now the SOL accepts TLS connection at the port 16995

(with 16994 closed).

�Accept NON-TLS Connections� must remain unchecked to avoid TLS downgrade

attacks. Also, as discussed above, it is not necessary to require the admin system

to present a certi�cate (i.e., �MutualAuth�, unless for another layer of protection),

51

which involves more complex steps, such as manually typing the hash value of the

root certi�cate into the MEBX interface (entered by pressing �Ctrl+P� at boot-time).

Certi�cate management. We make use of the OpenSSL command-line utility to

generate both the root certi�cate (stored on all admin systems) and the leaf certi�-

cates to be sent to individual target systems. An AMT-compatible certi�cate man-

dates certain requirements which can be satis�ed by providing additional parameters

to the command line.

Deciding on management modes

The way target systems can be managed varies (e.g., full control vs. remote console

access). This leads to the intuitive options to select from as follows:

1. The admin system can reboot the target system remotely by uploading a boot

image (the Gracewipe binary and corresponding con�guration �les). Then based

on the target ID, a proper deletion password is retrieved from the database and

used to trigger the remote deletion via SOL, depending only on the CPU and

TPM of the target system. In this option, Gracewipe must be modi�ed to

accept control from and send output to only SOL but not the person present in

front of the target system.

2. As an intermediate, we can also boot locally from the target system's hard drive

and interact with the local Gracewipe the same way as with the option above.

3. Combining the Manageability Commander Tool and a regular VNC viewer, the

third option is similar to remote desktop. It has the advantage of requiring

no changes to Gracewipe. But the disadvantage is unacceptable: both send-

ing commands (e.g., typing the deletion password) and retrieving quote values

require user interaction and may not be scalable; or if automated, parsing the

screen content involves unnecessary implementation complexity.

We decide to choose the �rst option which has the most advantages. First, the

size of the transferred �les is trivial (in the order of hundreds of kilobytes, negligible

considering the bandwidth of today's network), and doing so leaves less chance to

DoS attacks and can maintain proper centralized control. Second, the interaction via

SOL has semantics instead of parsing raw VNC screen objects or examining manually,

hence allowing easy automation with scalability.

52

The boot image is transferred with the AMT redirection protocol (also protected

by the AMT password), and the deletion password, custom nonce and the quote

values are transferred as part of the encrypted SOL communication.

A naive protocol

We use a simple asymmetric protocol for the interaction between the admin system

and the target system. Asymmetric here means that data sent to the admin system is

organized in packets, while on the target system data received is treated as strings on

a serial console. This is in light of the fact that the target system (running Gracewipe

at boot-time) has very limited capability in parsing and handling packets with a state

machine.

Packets (Target to Admin). We use the following characters to delimit packets:

• The apostrophe (`) serves as frame start. It always resets the state machine.

• The frame start is always followed by a function code. For example:

1. 0x02 indicates a new target handshake, followed by the target ID.

2. 0x01 indicates a literal message to be displayed to the admin, followed by

the text.

3. 0x05 brings back the quote values indicating a successful deletion.

• The Esc (0x1b) is used as frame end.

• The escape character is tilde (~), to precede any character above and itself.

It is also possible to apply the network-packet-like structures, with header/length

information for packet parsing.

Console input/output (Admin to Target). Gracewipe can be either completely

switched over to a remote mode where the original standard input/output is (par-

tially) redirected to AMT, or con�gured to run a separate thread for network com-

munication. Since it does not make much sense to allow both the remote admin

and a local user to control the system at the same time, we choose the former for

redirection (leaving certain messages on the local console). We follow the way the

AT commands [279] in telecommunications are handled and read from console line

by line.

53

Changes to Gracewipe

We try to maintain the minimum changes to Gracewipe. A small but important

change is to add dynamic port redirection for all console output functions, switching

between the local display and the AMT port. Also, an initial handshake function is

added to establish the connection. After this, other trivial adaptations are needed to

accommodate the protocol, such as prepending and appending to the original human-

readable messages the packet characters discussed above.

3.5.4 Adapting for server-coordinated remote wipe

The principles applied in the design of Gracewipe Remote actually apply to scenarios

involving servers as well. Namely, with an isolated trusted execution environment

which is attestation-capable (e.g., TXT), the integrity of an operation in that envi-

ronment can be attested to, regardless of who initiates it and how. One more trusted

party is introduced in this case (the owner of the server) and the underlying ser-

vice must be adapted to accommodate the trusted remote deletion, which is usually

nontrivial in practice. Such adaptation concerns both operational logic and storage

strategies (see below). Also, the user has to rely on the server to initiate the wipe

operation, so no techniques like AMT is needed to establish an end-to-end connection

(usually service provides do not allow users to manipulate their servers directly).

Category 1. Like the iCloud remote wipe [18] or Dell remote data delete service [67],

the main purpose of remote wipe in this category is to assist the user in erasing

lost/stolen devices once they are powered on and connected to Internet. Since data

is only stored on the target device, with the help of a plug-in, kernel driver or system

application, the wipe operation can be executed in the trusted execution environment

on the target device. This requires the service provider's implementation/integration,

but the attestation result (e.g., quote values) can be sent to the user either directly

or through the trusted server.

Category 2. When the data is stored on the server (i.e., on the cloud, such as

[72]), remote wipe is usually not provided explicitly as a feature, to the best of our

knowledge. This is because when the user deletes �les or folders from her account, it

is already remote deletion of data. However, although the service provider is trusted,

there is no guarantee that their server is not compromised or the private key is

not leaked. It still makes sense to contain the deletion operation inside the trusted

execution environment on the server and attest to the result. This may incur a major

54

change to the architecture of the service and thus require cautious consideration. The

user may have both �Delete� and �Secure Deletion� options on her client device. Note

that if the data has been sync'd to client devices, it is up to the user to make sure no

o�ine copies are leaked.

3.6 Related Work

As most services/products provide features for remote data deletion, as mentioned in

the beginning of Section 3.1, we do not list them here as related work, but only point

out a few that are comparable to Gracewipe Remote.

Remote Drive Erase (RDE) [131]. As a use case reference design for Intel vPro,

RDE was only positioned to demonstrate how AMT can be utilized to achieve secure

remote deletion, although the term secure refers to merely multiple rounds of write.

With that said, RDE follows very similar execution steps as Gracewipe Remote: an

image �le called rde.iso (a lightweight Linux) is used to boot the remote device;

a script erases the hard drive as instructed by the admin and an email is sent as

con�rmation and documentation. There is no cryptographic proof that the erase

process is not interrupted.

Remote Secure Erase (RSE) [132]. Starting from AMT 11.0, Secure Erase Sup-

port is added to the �rmware (AMT_BootCapabilities.SecureErase), i.e., the admin

system connected to the target system can issue the erase command without booting

any custom image at any time. Its advantage over RDE is that there is less chance

that �rmware is compromised as compared to the lightweight Linux environment.

Nevertheless, just note that, unlike Gracewipe RSE does employ cryptographic dele-

tion, so the erase process is overwriting-based, and thus time-consuming and prone

to being interrupted. Likewise, the outcome cannot be attested to.

3.7 Conclusion

In this chapter, we discussed why ensuring successful remote secure wipe is a di�-

cult problem and explained the necessity of veri�ability as an alternative solution.

We introduced the notion of trusted remote wipe by designing and implementing an

extension to Gracewipe [311], named Gracewipe Remote, for end-to-end serverless

55

application scenarios. It is potentially useful in the two exemplary cases of delet-

ing secrets from remote owned computers and avenging laid-o� administrators. We

also demonstrated how the same methodology could be applied to server-coordinated

scenarios. Future work may focus on how new TEE technologies (e.g., Intel SGX

with �ner granularity) can be incorporated and whether more �exible communica-

tion channels are available.

56

Chapter 4

Hypnoguard: Protecting Secrets

across Sleep-wake Cycles

Gracewipe aims to ensuring the con�dentiality of disk �les, i.e., data-at-rest (in ad-

dition to coercion). Meanwhile, we notice that with a high probability the computer

faced with physical attacks can be in a suspended mode (data-in-sleep). In this chap-

ter, we apply a similar methodology as Gracewipe and extend the defense scenario to

a wider scope, e.g., memory attacks.

4.1 Introduction

Most computers, especially laptops, remain in sleep (S3/suspend-to-RAM), when not

in active use (e.g., as in a lid-close event); see e.g., [220]. A major concern for

unattended computers in sleep is the presence of user secrets in system memory. An

attacker with physical access to a computer in sleep (e.g., when lost/stolen, or by

coercion) can launch side-channel memory attacks, e.g., DMA attacks [174, 246, 36,

258] by exploiting vulnerable device drivers; common mitigations include: bug �xes,

IOMMU (Intel VT-d/AMD Vi), and disabling (FireWire) DMA when the screen

is locked (e.g., Mac OS X 10.7.2 and later, Windows 8.1 [174]). A sophisticated

attacker can also resort to cold-boot attacks by exploiting DRAM memory remanence

e�ect [108, 102]. Simpler techniques also exist for memory extraction (e.g., [82]);

some tools (e.g., [74]) may bypass the OS lock screen and extract in-memory full-disk

encryption (FDE) keys.

Some proposals address memory-extraction attacks by making the attacks di�-

cult to launch, or by reducing applicability of known attacks (e.g., [212, 194, 251,

57

103, 285, 104]; see Section 4.8). Limitations of these solutions include: being too

application-speci�c (e.g., disk encryption), not being scalable (i.e., can support only

a few application-speci�c secrets), and other identi�ed �aws (cf. [35]). Most solutions

also do not consider re-authentication when the computer wakes up from sleep. If a

regular re-authentication is mandated (e.g., OS unlock), a user-chosen password may

not provide enough entropy against guessing attacks (o�ine/online).

Protecting only cryptographic keys also appears to be fundamentally inadequate,

as there exists more privacy/security sensitive content in RAM than keys and pass-

words. Full memory encryption can be used to keep all RAM content encrypted,

as used in proposals for encrypted execution (see XOM [169], and a comprehensive

survey [113]). However, most such proposals require hardware architectural changes.

Microsoft BitLocker can be con�gured to provide cold boot protection by relying

on S4/suspend-to-disk instead of S3. This introduces noticeable delays in the sleep-

wake process. More importantly, BitLocker is not designed to withstand coercion and

can provide only limited defence against password guessing attacks (discussed more

in Section 4.8).

We propose Hypnoguard to protect all memory-resident OS/user data across S3

suspensions, against memory extraction attacks, and guessing/coercion of user pass-

words during wakeup-time re-authentication. Memory extraction is mitigated by

performing an in-place full memory encryption before entering sleep, and then restor-

ing the plaintext content/secrets after the wakeup process. The memory encryption

key is encrypted by a Hypnoguard public key, the private part of which is stored in a

Trusted Platform Module (TPM v1.2) chip, protected by both the user password and

the measurement of the execution environment supported by CPU's trusted execution

mode, e.g., Intel Trusted Execution Technology (TXT [126]) and AMD Virtualiza-

tion (AMD-V/SVM [14]). The memory encryption key is thus bound to the execution

environment, and can be released only by a proper re-authentication process.

Guessing via Hypnoguard may cause the memory content to be permanently inac-

cessible due to the deletion of the TPM-stored Hypnoguard private key, while guessing

without Hypnoguard, e.g., an attacker-chosen custom wakeup procedure, is equivalent

to brute-forcing a high-entropy key, due to TPM protection. A user-de�ned policy,

e.g., three failed attempts, or a special deletion password, determines when the pri-

vate key is deleted. As a result, either the private key cannot be accessed due to an

incorrect measurement of an altered program, or the adversary takes a high risk to

guess within the unmodi�ed environment.

58

By encrypting the entire memory space, except a few system-reserved regions,

where no OS/user data resides, we avoid per-application changes. We leverage mod-

ern CPU's AES-NI extension and multi-core processing to quickly encrypt/decrypt

commonly available memory sizes (up to 8GB, under a second), for avoiding de-

graded user experience during sleep-wake cycles. For larger memory systems (e.g.,

32/64GB), we also provide two variants, for encrypting memory pages of user selected

applications, or speci�c Hypnoguard-managed pages requested by applications.

Due to the peculiarity of the wakeup-time environment, we face several challenges

in implementing Hypnoguard. Unlike boot-time (when peripherals are initialized

by BIOS) or run-time (when device drivers in the OS are active), at wakeup-time,

the system is left in an undetermined state, e.g., empty PCI con�guration space

and uninitialized I/O controllers. We implement custom drivers and reuse dormant

(during S3) OS-saved device con�gurations to restore the keyboard and VGA display

to facilitate easy user input/output (inadequately addressed in the past, cf. [196]).

Several boot-time solutions (e.g., [134, 286, 312]) also perform system integrity

check, authenticate the user, and may release FDE keys; however, they do not consider

memory attacks during sleep-wake cycles. For lost/stolen computers, some remote

tracking services may be used to trigger remote deletion, assuming the computer can

be reached online (with doubtful e�ectiveness, cf. [69, 283]).

Contributions:

1. We design and implement Hypnoguard, a new approach that protects con�dential-

ity of all memory regions containing OS/user data across sleep-wake cycles. We

provide a defense against memory attacks when the computer is in the wrong hands,

and severely restrict guessing of weak authentication secrets (cf. [312]). Several pro-

posals and tools exist to safeguard data-at-rest (e.g., disk storage), data-in-transit

(e.g., network tra�c), and data-in-use (e.g., live RAM content); with Hypnoguard,

we �ll the gap of securing data-in-sleep.

2. Our primary prototype implementation in Linux uses full memory encryption to

avoid per-application changes. The core part of Hypnoguard is decoupled from the

underlying OS and system BIOS, for better portability and security. Leveraging

modern CPU's AES-NI extension and multi-core processing, we achieve around

8.7GB/s encryption/decryption speed for AES in the CTR mode with an Intel i7-

4771 processor, leading to under a second additional delay in the sleep-wake process

for 8GB RAM.

3. For larger memory systems (e.g., 32GB), where full memory encryption may add

59

noticeable delay, we provide protection for application-selected memory pages via

the POSIX-compliant system call mmap() (requiring minor changes in applications,

but no kernel patches). Alternatively, Hypnoguard can also be customized to take

a list of applications and only encrypt memory pages pertaining to them (no ap-

plication changes).

4. We enable wakeup-time secure processing, previously unexplored, which can be

leveraged for other use-cases, e.g., OS/kernel integrity check.

4.2 Terminologies, Goals and Threat Model

We explain the terminologies used for Hypnoguard, and our goals, threat model and

operational assumptions. We use CPU's trusted execution mode (e.g., Intel TXT,

AMD-V/SVM), and the trusted platform module (TPM) chip. We provide brief

description of some features as used in our proposal and implementation; for details,

see, e.g., Parno et al. [213], Intel [126], and AMD [14].

4.2.1 Terminologies

Hypnoguard key pair (HGpub, HGpriv): A pair of public and private keys generated

during deployment. The private key, HGpriv, is stored in a TPM NVRAM index,

protected by both the measurement of the environment and the Hypnoguard user

password. HGpriv is retrieved through the password evaluated by the TPM with the

genuine Hypnoguard program running, and can be permanently deleted in accordance

with a user-set policy. The public key, HGpub, is stored unprotected in TPM NVRAM

(for OS/�le system independence), and is loaded in RAM after each boot.

Memory encryption key (SK): A high entropy symmetric key (e.g., 128-bit), randomly

generated each time before entering sleep, and used for full memory encryption. Be-

fore the system enters sleep, SK is encrypted using HGpub and the resulting ciphertext

is stored in the small non-encrypted region of memory.

Hypnoguard user password: A user-chosen password to unlock the protected key

HGpriv at wakeup-time. It needs to withstand only a few guesses, depending on the

actual unlocking policy. This password is unrelated to the OS unlock password, which

can be optionally suppressed.

TPM �sealing�: For protecting HGpriv in the TPM, we use the TPM_NV_DefineSpace

command, which provides environment binding (similar to TPM_Seal, but stores

60

HGpriv in an NVRAM index) and authdata (password) protection. We use the term

�sealing� to refer to this mechanism for simplicity.

4.2.2 Goals

We primarily consider attacks targeting extraction of secrets through physical access

from a computer in S3 sleep (unattended, stolen, or when the owner is under coer-

cion). We want to protect memory-resident secrets against side-channel attacks (e.g.,

DMA/cold-boot attacks), but we do not consider compromising a computer in S3

sleep for evil-maid type attacks (unbeknownst to the user).

More speci�cally, our goals include: (G1) Any user or OS data (secrets or other-

wise), SK, and HGpriv must not remain in plaintext anywhere in RAM before resum-

ing the OS to make memory attacks inapplicable. (G2) The protected content (in

our implementation, the whole RAM) must not be retrieved by brute-forcing SK or

HGpriv, even if Hypnoguard is not active, e.g., via o�ine attacks. (G3) No guessing

attacks should be possible against the Hypnoguard user password, unless a genuine

copy of Hypnoguard is loaded as the only program in execution. (G4) The legitimate

user should be able to authenticate with routine e�ort, e.g., memorization of strong

passwords is not required. (G5) Guessing the user password when Hypnoguard is

active should be severely restricted by the penalty of having the secrets deleted.

An additional goal for coercion attacks during wakeup (similar to the boot-time

protection of [312]): (AG1) when deletion is successful, there should be a crypto-

graphic evidence that convinces the adversary that the RAM secrets are permanently

inaccessible.

4.2.3 Threat model and assumptions

1. The adversary may be either an ordinary person with skills to mount mem-

ory/guessing attacks, or an organization (non-state) with coercive powers, and

considerable but not unbounded computational resources. For example, the adver-

sary may successfully launch sophisticated cold-boot attacks (e.g., [108, 102]), but

cannot brute-force a random 128-bit AES key, or defeat the TPM chip and CPU's

trusted execution environment (for known implementation bugs and attacks, see

e.g., [265, 298, 248]); see also Item (f) in Section 4.7.

2. Before the adversary gains physical control, the computer system (hardware and

OS) has not been compromised. After the adversary releases physical control, or a

61

lost computer is found, the system is assumed to be untrustworthy, i.e., no further

use without complete reinitialization. We thus only consider directly extracting

secrets from a computer in sleep, excluding any attacks that rely on compromising

�rst and tricking the user to use it later, the so-called evil-maid attacks, which can

be addressed by adapting existing defenses, e.g., [97] for wakeup-time. However,

no known e�ective defense exists for more advanced evil-maid attacks, including

hardware modi�cations as in NSA's ANT catalog [98]. Note that, our AES-GCM

based implementation can restrict modi�cation attacks on encrypted RAM content.

3. The host OS is assumed to be general-purpose, e.g., Windows or Linux; a TXT/SVM-

aware kernel is not needed. Also, the Hypnoguard tool may reside in an untrusted

�le system and be bootstrapped from a regular OS.

4. We assume all user data, the OS, and any swap space used by the OS are stored

encrypted on disk, e.g., using a properly con�gured software/hardware FDE sys-

tem (cf. [193, 65]). A secure boot-time solution should be used to enforce strong

authentication (cf. [312]). The FDE key may remain in RAM under Hypnoguard's

protection. This assumption can be relaxed, only if the data on disk is assumed

non-sensitive, or in the case of a diskless node.

5. Any information placed in memory by the user/OS is treated as sensitive. With full

memory encryption, it is not necessary to distinguish user secrets from non-sensitive

data (e.g., system binaries).

6. The adversary must not be able to capture the computer while it is operating, i.e.,

in Advanced Con�guration and Power Interface (ACPI [11]) S0. We assume the

computer goes into sleep after a period of inactivity, or through user actions (e.g.,

lid-close of a laptop).

7. The adversary may attempt to defeat Hypnoguard's policy enforcement mechanism

(i.e., when to delete or unlock HGpriv during authentication). With physical access,

he may intervene in the wakeup process, e.g., by tampering with the UEFI boot

script for S3 [296], and may attempt to observe the input and output of our tool

and in�uence its logic. In all cases, he will fail to access HGpriv, unless he can defeat

TXT/SVM/TPM (via an implementation �aw, or advanced hardware attacks).

8. In the case of coercion, the user never types the correct password but provides only

deletion or incorrect passwords, to trigger the deletion of HGpriv. We have also

considered coercion as a threat during boot-time (see Chapter 2), requiring the

computer to be in a powered-o� state before the coercive situation. We consider

coercion during wakeup; ideally, both systems should be used together.

62

Figure 6: Memory layout and key usage of Hypnoguard. Shaded areas represent en-
crypted/protected data; di�erent patterns refer to using di�erent schemes/key types.

9. We require a system with a TPM chip and a TXT/SVM-capable CPU with AES-

NI (available in many consumer-grade Intel and AMD CPUs). Without AES-NI,

full memory encryption will be slow, and users must resort to partial memory

encryption.

4.3 Design

In this section, we detail the architecture of Hypnoguard, and demonstrate how it

achieves the design goals stated in Section 4.2.2. Technical considerations not speci�c

to our current implementation are also discussed.

Overview. Figure 6 shows the memory layout and key usage of Hypnoguard across

sleep-wake cycles; the transition and execution �ows are described in Section 4.4.1.

User secrets are made unavailable from RAM by encrypting the whole system memory,

63

regardless of kernel or user spaces, with a one-time random symmetric key SK before

entering sleep. Then SK is encrypted using HGpub and stored in system memory. At

this point, only HGpriv can decrypt SK. HGpriv is sealed in the TPM chip with the

measurements of the genuine copy of Hypnoguard protected by a user password.

At wakeup-time, Hypnoguard takes control in a trusted execution session

(TXT/SVM), and prompts the user for the Hypnoguard user password. Only when

the correct password is provided in the genuine Hypnoguard environment, HGpriv is

unlocked from TPM (still in TXT/SVM). Then, HGpriv is used to decrypt SK and

erased from memory immediately. The whole memory is then decrypted with SK and

the system exits from TXT/SVM back to normal OS operations. SK is not reused

for any future session.

4.3.1 Design choices and elements

Trusted execution mode. We execute the unlocking program in the trusted mode

of modern CPUs (TXT/SVM), where an unforgeable measurement of the execution

environment is generated and stored in TPM (used to access HGpriv). The use of

TXT/SVM and TPM ensures that the whole program being loaded and executed will

be re�ected in the measurement; i.e., neither the measurement can be forged at the

load time nor can the measured program be altered after being loaded, e.g., via DMA

attacks. The memory and I/O space of the measured environment is also protected,

e.g., via Intel VT-d/IOMMU, from any external access attempt.

We choose to keep Hypnoguard as a standalone module separate from the OS

for two reasons. (a) Small trusted computing base (TCB): If Hypnoguard's unlocking

program is integrated with the OS, then we must also include OS components (at least

the kernel and core OS services) in the TPM measurement; this will increase the TCB

size signi�cantly. Also, in a consumer OS, maintaining the correct measurements of

such a TCB across frequent updates and run-time changes, will be very challenging.

Unless measuring the entire OS is the purpose (cf. Unicorn [176]), a TXT/SVM-

protected application is usually a small piece of code, not integrated with the OS,

to achieve a stable and manageable TCB (e.g., Flicker [183]). In our case, only

the core Hypnoguard unlock logic must be integrity-protected (i.e., bound to TPM

measurement). The small size may also aid manual/automatic veri�cation of the

source code of an implementation. (b) Portability: We make Hypnoguard less coupled

with the hosting OS except for just a kernel driver, as we may need to work with

64

di�erent distributions/versions of an OS, or completely di�erent OSes.

TPM's role. TPM serves three purposes in Hypnoguard:

1. By working with TXT/SVM, TPM's platform con�guration registers (PCRs) main-

tain the unforgeable measurement of the execution environment.

2. We use TPM NVRAM to store HGpriv safely with two layers of protection. First,

HGpriv is bound to the Hypnoguard environment (e.g., the Intel SINIT module and

the Hypnoguard unlocking program). Any binary other than the genuine copy of

Hypnoguard will fail to access HGpriv. Second, an authdata secret, derived from

the Hypnoguard user password, is also used to protect HGpriv. Failure to meet

either of the above two conditions will lead to denial of access.

3. If HGpriv is deleted by Hypnoguard (e.g., triggered via multiple authentication fail-

ures, or the entry of a deletion password), we also use TPM to provide a quote,

which is a digest of the platform measurement signed by the TPM's attestation

identity key (AIK) seeded with an arbitrary value (e.g., time stamp, nonce). Any-

one, including the adversary, can verify the quote using TPM's public key at a later

time, and con�rm that deletion has happened.

4. For generation of the long-term key pair HGpriv and HGpub, and the per-session sym-

metric key SK, we need a reliable source of randomness. We use the TPM_GetRandom

command to get the required number of bytes from the random number genera-

tor in TPM [277] (and optionally, mix them with the output from the RDRAND

instruction in modern CPUs).

Necessity of HGpriv and HGpub. Although we use a random per sleep-wake cycle

symmetric key (SK) for full memory encryption, we cannot directly seal SK in TPM

(under the Hypnoguard password), i.e., avoid using (HGpriv, HGpub). The reason is

that we perform the platform-bound user re-authentication only once at the wakeup

time, and without involving the user before entering sleep, we cannot password-seal

SK in TPM. If the user is required to enter the Hypnoguard password every time

before entering sleep, the user experience will be severely a�ected. We thus keep SK

encrypted under HGpub in RAM, and involve the password only at wakeup-time to

release HGpriv (i.e., the password input is similar to a normal OS unlock process).

4.3.2 Unlock/deletion policy and deployment

Unlocking policy. A user-de�ned unlocking policy will determine how Hypno-

guard reacts to a given password, i.e., what happens when the correct password

65

is entered vs. when a deletion or invalid password is entered. If the policy allows

many/unlimited online (i.e., via Hypnoguard) guessing attempts, a dictionary attack

might be mounted, violating goal G5 ; the risk to the attacker in this case is that he

might unknowingly enter the deletion password. If the composition of the allowed

password is not properly chosen (e.g., di�erent character sets for the correct pass-

word and the deletion password), an adversary may be able to recognize the types of

passwords, and thus avoid triggering deletion.

Static policies can be con�gured with user-selected passwords and/or rule-based

schemes that support evaluating an entered password at run-time. Security and us-

ability trade-o�s should be considered, e.g., a quick deletion trigger vs. tolerating user

mistyping or misremembering (cf. [57]). During setup, both unlocking and deletion

passwords are chosen by the user, and they are set as the access passwords for cor-

responding TPM NVRAM indices: the deletion password protects an index with a

deletion indicator and some random data (as dummy key), and the unlocking pass-

word protects an index containing a null indicator and HGpriv (similar to Gracewipe,

as in Chapter 2). Note that, both the content and deletion indicator of an NVRAM

index are protected (i.e., attackers cannot exploit the indicator values). Multiple

deletion passwords can also be de�ned. We also use a protected monotonic counter

to serve as a fail counter, sealed under Hypnoguard, and initialized to 0. We use a

regular numeric value sealed in NVRAM (i.e., inaccessible outside of Hypnoguard);

the TPM monotonic counter facility can also be used. The fail counter is used to

allow only a limited number of incorrect attempts, after which, deletion is triggered;

this is speci�cally important to deal with lost/stolen cases.

At run-time, only when the genuine Hypnoguard program is active, the fail counter

is incremented by one, and a typed password is used to attempt to unlock the de�ned

indices, sequentially, until an index is successfully opened, or all the indices are tried.

In this way, the evaluation of a password is performed only within the TPM chip and

no information about any de�ned plaintext passwords or HGpriv is leaked in RAM�

leaving no chance to cold-boot attacks. If a typed password successfully unlocks an

index (i.e., a valid password), the fail counter is decremented by one; otherwise, the

password entry is considered a failed attempt and the incremented counter is not

decremented. When the counter reaches a preset threshold, deletion is triggered.

The counter is reset to 0 only when the correct password is entered (i.e., HGpriv is

successfully unlocked). Thus, a small threshold (e.g., 10) may provide a good balance

between security (quick deletion trigger) and usability (the number of incorrect entries

66

that are tolerated). For high-value data, the threshold may be set to 1, which will

trigger deletion immediately after a single incorrect entry.

Deployment/setup phase. With a setup program in the OS, we generate a 2048-

bit RSA key pair and save HGpub in TPM NVRAM (unprotected), and ask the user to

create her passwords for both unlocking and deletion. With the unlocking password

(as authdata secret), HGpriv is stored in an NVRAM index, bound to the expected

PCR values of the Hypnoguard environment at wakeup (computed analytically); sim-

ilarly, indices with deletion indicators are allocated and protected with the deletion

password(s). There is also certain OS-end preparation, e.g., loading and initializing

the Hypnoguard device drivers; see Section 4.4.1.

4.3.3 How goals are achieved

Hypnoguard's goals are de�ned in Section 4.2.2. G1 is ful�lled by Hypnoguard's full

memory encryption, i.e., replacement of all plaintext memory content, with corre-

sponding ciphertext generated by SK. As the OS or applications are not involved,

in-place memory encryption can be performed reliably. SK resides in memory en-

crypted under HGpub (right after full memory encryption is performed under SK).

HGpriv can only be unlocked with the correct environment and password at wakeup-

time, and is erased from RAM right after its use in the trusted execution mode.

A random SK with adequate length generated each time before entering sleep,

and a strong public key pair (HGpub, HGpriv) generated during setup guarantee G2.

TPM sealing (even with a weak Hypnoguard user password) helps achieve G3.

Without loading the correct binary, the adversary cannot forge the TPMmeasurement

and trick TPM to access the NVRAM index (cf. [126, 277]); note that, learning the

expected PCR values of Hypnoguard does not help the attacker in any way. The

adversary is also unable to brute-force the potentially weak user password, if he is

willing to program the TPM chip without Hypnoguard, as TPM ensures the consistent

failure message for both incorrect passwords and incorrect measurements.

The user is required to memorize a regular password for authentication. If the

adversary keeps the genuine environment but does not know the correct password, he

may be only left with a high risk of deleting HGpriv. The legitimate user, however,

knows the password and can control the risk of accidental deletion, e.g., via setting

an appropriate deletion threshold. Therefore G4 is satis�ed.

When the adversary guesses within Hypnoguard, the password scheme (unlocking

67

policy) makes sure that no (or only a few, for better usability) guessing attempts are

allowed before deletion is triggered. This achieves G5.

The additional goal for coercion attacks is achieved through the TPM Quote op-

eration. The quote value relies on mainly two factors: the signing key, and the

measurement to be signed. An RSA key pair in TPM called AIK (Attestation Iden-

tity Key) serves as the signing key. Its public part is signed by TPM's unique key

(Endorsement Key, aka. EK, generated by the manufacturer and never leaves the chip

in any operations) and certi�ed by a CA in a separate process (e.g., during setup).

This ensures the validity of the signature. The data to be signed is the requested

PCR values. In TXT, the initial PCR value is set to 0, and all subsequent extend

operations will update the PCR values in an unforgeable manner (via SHA1). As

a result, as long as the quote matches the expected one, the genuine copy of the

program must have been executed, and thus AG1 is achieved.

4.4 Implementation

In this section, we discuss our implementation of Hypnoguard under Linux using

Intel TXT as the trusted execution provider. Note that Hypnoguard's design is OS-

independent, but our current implementation is Linux speci�c; the only component

that must be developed for other OSes is HypnoOSService (see below). We also per-

formed an experimental evaluation of Hypnoguard's user experience (for 8GB RAM);

no noticeable latency was observed at wakeup-time (e.g., when the user sees the

lit-up screen). We assume that a delay under a second before entering sleep and

during wakeup is acceptable. For larger memory sizes (e.g., 32GB), we implement

two variants to quickly encrypt selected memory regions.

4.4.1 Overview and execution steps

The Hypnoguard tool consists of three parts: HypnoCore (the unlocking logic and

cipher engine), HypnoDrivers (device drivers used at wakeup-time), and HypnoOSSer-

vice (kernel service to prepare for S3 and HypnoCore). HypnoCore and HypnoDrivers

operate outside of the OS, and HypnoOSService runs within the OS. The approxi-

mate code size of our implementation is: HypnoCore, 7767 LOC (in C/C++/assembly,

including reused code for TPM, AES, RSA, SHA1); HypnoDrivers, 3263 LOC (in C,

including reused code for USB); HypnoOSService, 734 LOC in C; GCM, 2773 LOC (in

68

assembly, including both the original and our adapted constructions); and a shared

framework between the components, 639 LOC in assembly.

(a) (b) (c) (d) (e) (f)

Figure 7: Simpli�ed execution steps of Hypnoguard

Execution steps. Figure 7 shows the generalized execution steps needed to achieve

the designed functionalities on an x86 platform. (a) The preparation is done by Hyp-

noOSService at any time while the OS is running before S3 is triggered. HypnoCore,

HypnoDrivers, ACM module for TXT, and the TXT policy �le are copied into �xed

memory locations known by Hypnoguard (see Section 4.4.3). Also, HypnoOSSer-

vice registers itself to the OS kernel so that if the user or a system service initiates

S3, it can be invoked. (b) Upon entry, necessary parameters for S3/TXT are pre-

pared and stored (those that must be passed from the active OS to Hypnoguard),

and the kernel's memory tables are replaced with ours, mapped for HypnoCore and

HypnoDrivers. (c) Then, HypnoCore encrypts the whole memory in a very quick

manner through multi-core processing with AES CTR mode using SK. SK is then

encrypted by HGpub (an RSA-2048 key). Before triggering the actual S3 action by

sending commands to ACPI, Hypnoguard must replace the original OS waking vector

to obtain control back when the machine is waken up. (d) At S3 wakeup, the 16-

bit realmode entry, residing below 1MB, of Hypnoguard waking vector is triggered.

It calls HypnoDrivers to re-initialize the keyboard and display, and prepares TXT

memory structures (TXT heap) and page tables. (e) Then the user is prompted for

a password, which is used to unlock TPM NVRAM indices one by one. Based on

the outcome and the actual unlocking policy, either deletion of HGpriv happens right

away and a quote is generated for further veri�cation (and the system is restarted),

or if the password is correct, HGpriv is unlocked into memory. After decrypting SK,

HGpriv is erased promptly from memory. HypnoCore then uses SK to decrypt the

whole memory. (f) TXT is torn down, and the OS is resumed by calling the original

waking vector.

69

Machine con�guration. We use an Intel platform running Ubuntu 15.04 (kernel

version: 3.19.0). The development machine's con�guration includes: an Intel Core

i7-4771 processor (3.50 GHz, 4 physical cores), with Intel's integrated HD Graphics

4600, Q87M-E chipset, 8GB RAM (Kingston DDR3 4GBx2, clock speed 1600 MHz),

and 500GB Seagate self-encrypting drive. In theory, our tool should work on most

machines with TPM, AES-NI and Intel TXT (or AMD SVM) support, with minor

changes, such as downloading the corresponding SINIT module.

4.4.2 Instrumenting the S3 handler

Hypnoguard needs to gain control at wakeup-time before the OS resume process

begins. For simplicity, we follow the method as used in a similar scenario in Intel

tboot [134]. An x86 system uses ACPI tables to communicate with the system soft-

ware (usually the OS) about power management parameters. The �rmware waking

vector, contained in the Firmware ACPI Control Structure (FACS), stores the address

of the �rst instruction to be executed after wakeup; and to actually put the machine

to sleep, certain platform-speci�c data, found in the Fixed ACPI Description Table

(FADT), must be written to corresponding ACPI registers.

We must register Hypnoguard with an OS callback for replacing the wak-

ing vector, so as not to interfere with normal OS operations. In Linux, the

__acpi_os_prepare_sleep() callback can be used, which will be invoked in the kernel

space before entering sleep. However, we cannot just replace the waking vector in this

callback and return to the OS, as Linux overwrites the waking vector with its own at

the end of S3 preparation, apparently, to ensure a smooth resume. Fortunately, the

required data to be written to ACPI registers is already passed in as arguments by

the kernel, and as the OS is ready to enter sleep, we put the machine to sleep without

returning to the OS.

4.4.3 Memory considerations

To survive across various contexts (Linux, non-OS native, initial S3 wakeup and

TXT), and not to be concerned with paging and virtual memory addressing, we

reserve a region from the system memory by providing a custom version of the e820

map 1, so that Linux will not touch it afterwards. This is done by appending a

1e820 is shorthand to refer to a table with which the BIOS reports the memory map to the
operating system or boot loader.

70

kernel command line parameter memmap. In Windows, this can be done by adding

those pages to BadMemoryList. 1 MB space at 0x900000 is allocated for HypnoCore,

HypnoDrivers and miscellaneous parameters to be passed between di�erent states,

e.g., the SINIT module, original waking vector of Linux, policy data, stack space for

each processor core, and Intel AES-NI library (see Section 4.5).

Full memory coverage in 64-bit mode. To support more than 4GB memory

sizes, we need to make Hypnoguard 64-bit addressable. However, we cannot simply

compile the Hypnoguard binary into 64-bit mode as most other modules, especially

those for TXT and TPM access, are only available in 32-bit mode, and adapting them

to 64-bit will be non-trivial (if possible), because of the signi�cantly di�erent nature

of 64-bit mode (e.g., mandatory paging).

We keep HypnoCore and HypnoDrivers unchanged, and write a trampoline routine

for the 64-bit AES-NI library, where we prepare paging and map the 8GB memory

before switching to the long mode (64-bit). After the AES-NI library call, we go back

to 32-bit mode. Also, the x86 calling conventions may be di�erent than x86-64 (e.g.,

use of stack space vs. additional registers). A wrapper function, before the trampoline

routine goes to actual functions, is used to extract those arguments from stack and

save them to corresponding registers. In this way, the 64-bit AES-NI library runs as

if the entire HypnoCore and HypnoDrivers binary is 64-bit, and thus we can access

memory regions beyond 4GB, while the rest of Hypnoguard still remains in 32-bit

mode.

4.4.4 User interaction

In a regular password-based wakeup-time authentication, the user is shown the pass-

word prompt dialog to enter the password. In addition to the password input, we also

need to display information in several instances, e.g., interacting with the user to set

up various parameters during deployment, indicating when deletion is triggered, and

displaying the quote (i.e., proof of deletion). Providing both standard input and out-

put is easy at boot-time (with BIOS support), and within the OS. However, resuming

from S3 is a special situation: no BIOS POST is executed, and no OS is active. At

this time, peripherals (e.g., PCI, USB) are left in an uninitialized state, and unless

some custom drivers are implemented, display and keyboard remain nonfunctional.

For display, we follow a common practice as used in Linux for S3 resume (appli-

cable for most VGA adapters). HypnoDrivers invoke the legacy BIOS video routine

71

using �lcallw 0xc000,3� (0xc0000 is the start of the VGA RAM where the video BIOS

is copied to; the �rst 3 bytes are the signature and size of the region, and 0xc0003 is

the entry point).

For keyboard support, the S3 wakeup environment is more challenging (PS/2

keyboards can be easily supported via a simple driver). Most desktop keyboards

are currently connected via USB, and recent versions of BIOS usually have a feature

called �legacy USB support�. Like a mini-OS, as part of the power-on check, the BIOS

(or the more recent UEFI services) would set up the PCI con�guration space, perform

USB enumeration, and initialize the class drivers (e.g., HID and Mass Storage). But

when we examined the USB EHCI controller that our USB keyboard was connected

to, we found that its base address registers were all zeros at wakeup-time, implying

that it was uninitialized (same for video adapters). As far as we are aware, no reliable

mechanisms exist for user I/O after wakeup. TreVisor [196] resorted to letting the user

input in a blank screen (i.e., keyboard was active, but VGA was uninitialized). Note

that the actual situation is motherboard-speci�c, determined mostly by the BIOS.

We found that only one out of our �ve test machines has the keyboard initialized at

wakeup-time.

Loading a lightweight Linux kernel might be an option, which would increase

the TCB size and (potentially) introduce additional attack surface. Also, we must

execute the kernel in the limited Hypnoguard-reserved space. Instead, we enable USB

keyboard support as follows:

1. Following the Linux kernel functions pci_save_state() and

pci_restore_con�g_space(), we save the PCI con�guration space before en-

tering S3, and restore it at wakeup-time to enable USB controllers in Hypnoguard.

2. We borrow a minimal set of functions from the USB stack of the GRUB project,

to build a tiny USB driver only for HID keyboards operating on the �boot proto-

col� [282].

3. There are a few unique steps performed at boot-time for USB initialization that

cannot be repeated during S3 wakeup. For instance, a suspended hub port (con-

necting the USB keyboard) is ready to be waken up by the host OS driver and does

not accept a new round of enumeration (e.g., getting device descriptor, assigning

a new address). We thus cannot reuse all boot-time USB initialization code from

GRUB. At the end, we successfully recon�gure the USB hub by initiating a port

reset �rst.

With the above approach, we can use both the USB keyboard and VGA display at

72

wakeup-time. This is hardware-agnostic, as restoring PCI con�guration simply copies

existing values, and the USB stack as reused from GRUB follows a standard USB

implementation. We also implement an i8042 driver (under 100 LOC) to support

PS/2 keyboards. Our approach may help other projects that cannot rely on the

OS/BIOS for input/output support (e.g., [196, 79]).

4.4.5 Moving data around

Hypnoguard operates at di�erent stages, connected by jumping to an address without

contextual semantics. Conventional parameter passing in programming languages

and shared memory access are unavailable between these stages. Therefore, we must

facilitate binary data transfer between the stages. To seamlessly interface with the

host OS, we apply a similar method as in Flicker [183] to create a sysfs object in a

user-space �le system. It appears in the directory �/sys/kernel� as a few subdirectories

and two �les: data (for accepting raw data) and control (for accepting commands).

In HypnoOSService, the sysfs handlers write the received data to the 1MB reserved

memory region. When S3 is triggered, HypnoDrivers will be responsible for copying

the required (portion of) binary to a proper location, for instance, the real-mode

wakeup code to 0x8a000, SINIT to the BIOS-determined location SINIT.BASE and

the LCP policy to the OsMleData table, which resides in the TXT heap prepared by

HypnoDrivers before entering TXT.

4.4.6 Unencrypted memory regions

In our full memory encryption, the actual encrypted addresses are not contiguous. We

leave BIOS/hardware reserved regions unencrypted, which fall under two categories.

(a) MMIO space: platform-mapped memory and registers of I/O devices, e.g., the

TPM locality base starts at 0xfed40000. (b) Platform con�guration data: memory

ranges used by BIOS/UEFI/ACPI; the properties of such regions vary signi�cantly,

from read-only to non-volatile storage.

Initially, when we encrypted the whole RAM, including the reserved regions, we

observed infrequent unexpected system behaviors (e.g., system crash). As much as

we are aware of, no user or OS data is stored in those regions (cf. [138]), and thus

there should be no loss of con�dentiality due to keeping those regions unencrypted.

Hypnoguard parses the e820 (memory mapping) table to determine the memory re-

gions accessible by the OS. In our test system, there is approximately 700MB reserved

73

space, spread across di�erent ranges below 4GB. The amount of physical memory is

compensated by shifting the addresses, e.g., for our 8GB RAM, the actual addressable

memory range goes up to 8.7GB.

4.5 High-speed Full Memory Encryption and Decryp-

tion

The adoptability of the primary Hypnoguard variant based on full memory encryp-

tion/decryption mandates a minimal impact on user experience. Below, we discuss

issues related to our implementation of quick memory encryption.

For all our modes of operation with AES-NI, the processing is 16-byte-oriented

(i.e., 128-bit AES blocks) and handled in XMM registers. In-place memory encryp-

tion/decryption is intrinsically supported by taking an input block at a certain loca-

tion, and overwriting it with the output of the corresponding operation. Therefore,

no extra memory needs to be reserved, and thus no performance overhead for data

transfer is incurred.

4.5.1 Enabling techniques

Native execution. We cannot perform in-place memory encryption when the OS

is active, due to OS memory protection and memory read/write operations by the

OS. Thus, the OS must be inactive when we start memory encryption. Likewise,

at wakeup-time in TXT, there is no OS run-time support for decryption. We need

to perform a single-block RSA decryption using HGpriv to decrypt the 128-bit AES

memory encryption key SK. On the other hand, we need fast AES implementation to

encrypt the whole memory (e.g., 8GB), and thus, we leverage new AES instructions in

modern CPUs (e.g., Intel AES-NI). AES-NI o�ers signi�cant performance boost (e.g.,

about six times in one test [46]). Although several crypto libraries now enable easy-

to-use support for AES-NI, we cannot use such libraries, or the kernel-shipped library,

as we do not have the OS/run-time support. We use Intel's AES-NI library [232],

with minor but non-trivial modi�cations (discussed in our tech report [313]).

OS-less multi-core processing. Outside the OS, no easy-to-use parallel processing

interface is available. With one processor core, we achieved 3.3�4GB/s with AES-

NI, which would require more than 2 seconds for 8GB RAM (still less satisfactory,

74

considering 3 cores being idle). Thus, to leverage multiple cores, we develop our

own multi-core processing engine, mostly following the Intel MultiProcessor Speci�-

cation [127]. Our choice of decrypting in TXT is non-essential, as SK is generated

per sleep-wake cycle and requires no TXT protection; however, the current logic is

simpler and requires no post-TXT cleanup for native multi-core processing.

Modes of operation. Intel's AES-NI library o�ers ECB, CTR and CBC modes.

We use AES in CTR mode as the default option (with a random value as the initial

counter); compared to CBC, CTR's performance is better, and symmetric between

encryption and decryption speeds (recall that CBC encryption cannot be parallelized

due to chaining). In our test, CBC achieves 4.5GB/s for encryption and 8.4GB/s for

decryption. In CTR mode, a more satisfactory performance is achieved: 8.7GB/s for

encryption and 8.5GB/s for decryption (approximately).

When ciphertext integrity is required to address content modi�cation attacks,

AES-GCM might be a better trade-o� between security and performance. We have

implemented a Hypnoguard variant with a custom, performance-optimized AES-GCM

mode; for implementation details and challenges, see our tech report [313].

4.5.2 Performance analysis

Relationship between number of CPU cores and performance. For AES-

CTR, we achieved 3.3�4GB/s (3.7GB/s on average), using a single core. After a

preliminary evaluation, we found the performance is not linear to the number of

processor cores, i.e., using 4 cores does not achieve the speed of 16GB/s, but at most

8.7GB/s (8.3GB/s on 3 cores and 7.25GB/s on 2 cores).

A potential cause could be Intel Turbo Boost [51] that temporarily increases the

CPU frequency when certain limits are not exceeded (possibly when a single core

is used). Suspecting the throughput of the system RAM to be the primary bottle-

neck (DDR3), we performed benchmark tests with user-space tools, e.g., mbw [119],

which simply measures memcpy and variable assignment for an array of arbitrary

size. The maximum rate did not surpass 8.3GB/s, possibly due to interference from

other processes.

During the tests with GCM mode, our observation demonstrates the incremental

improvement of our implementation: 2.5GB/s (1-block decryption in C using one

core), 3.22GB/s (1-block decryption in C using four cores), 3.3GB/s (4-block decryp-

tion in C using four cores), 5GB/s (4-block decryption in assembly using four cores),

75

and 6.8GB/s (4-block decryption in assembly with our custom AES-GCM [313]). The

encryption function in assembly provided by Intel already works satisfactorily, which

we do not change further. The performance numbers are listed in Table 2.

At the end, when ciphertext integrity is not considered (the default option),

8.7GB/s in CTR mode satis�es our requirement of not a�ecting user experience,

speci�cally, for systems up to 8GB RAM. When GCM is used for ciphertext integrity,

we achieve 7.4GB/s for encryption and 6.8GB/s for decryption (i.e., 1.08 seconds for

entering sleep and 1.18 seconds for waking up, which is very close to our 1-second

delay limit). Note that, we have zero run-time overhead, after the OS is resumed.

CTR (1-core) CTR CBC GCM-C1 (1-core) GCM-C1 GCM-C4 GCM-A4 GCM-A4T
Encryption 3.7GB/s 8.7GB/s 4.5GB/s � � � � 7.4GB/s
Decryption 3.7GB/s 8.7GB/s 8.4GB/s 2.5GB/s 3.22GB/s 3.3GB/s 5GB/s 6.8GB/s

Table 2: A comparative list of encryption/decryption performance. Column headings
refer to various modes of operation, along with the source language (when applicable;
A represents assembly); the trailing number is the number of blocks processed at a
time. A4T is our adapted GCM implementation in assembly processing 4 blocks at
a time, with delayed tag veri�cation (see [313]); � means not evaluated.

4.6 Variants

For systems with larger RAM (e.g., 32GB), Hypnoguard may induce noticeable delays

during sleep-wake cycles, if the whole memory is encrypted. For example, according to

our current performance (see Section 4.5), if a gaming system has 32GB RAM, it will

take about four seconds for both entering sleep and waking up (in CTR mode), which

might be unacceptable. To accommodate such systems, we propose two variants of

Hypnoguard, where we protect (i) all memory pages of selected processes�requires

no modi�cations to applications; and (ii) selected security-sensitive memory pages of

certain processes�requires modi�cations. Note that, these variants require changes

in HypnoOSService, but HypnoCore and HypnoDrivers remain unchanged (i.e., un-

a�ected by the OS-level implementation mechanisms).

(i) Per-process memory encryption. Compared to the design in Section 4.3, this

variant di�ers only at the choice of the encryption scope. It accepts a process list (e.g.,

supplied by the user) and traverses all memory pages allocated to those processes to

determine the scope of encryption. We retrieve the virtual memory areas (VMA, of

type vm_area_struct) from task −−> mm −−> mmap of each process. Then we break

the areas down into memory pages (in our case, 4K-sized) before converting them

76

over to physical addresses. This is necessary even if a region is continuous as VMAs,

because the physical addresses of corresponding pages might not be continuous. We

store the page list in Hypnoguard-reserved memory.

Our evaluation shows that the extra overhead of memory traversal is negligible.

This holds with the assumption that the selected apps are allocated a small fraction of

a large memory; otherwise, the full memory or mmap-based variant might be a better

choice. For smaller apps such as bash (38 VMAs totaling 1,864 pages, approximately

7MB), it takes 5 microseconds to traverse through and build the list. For large apps

such as Firefox (723 VMAs totaling 235,814 pages, approximately 1GB), it takes no

more than 253 microseconds. Other apps we tested are Xorg (167 microseconds)

and gedit (85 microseconds). We are yet to fully integrate this variant into our

implementation (requires a more complex multi-core processing engine).

(ii) Hypnoguard-managed memory pages via mmap(). There are also situations

where a memory-intensive application has only a small amount of secret data to

protect. Assuming per-application changes are acceptable, we implement a second

variant of Hypnoguard that exposes a �le system interface compliant with the POSIX

call mmap(), allowing applications to allocate pages from a Hypnoguard-managed

memory region.

The mmap() function is de�ned in the �le_operations structure, supported by

kernel drivers exposing a device node in the �le system. An application can request

a page to be mapped to its address space on each mmap call, e.g., instead of calling

malloc(). On return, a virtual address mapped into the application's space is gen-

erated by Hypnoguard using remap_pfn_range(). An application only needs to call

mmap(), and use the returned memory as its own, e.g., to store its secrets. Then

the page is automatically protected by Hypnoguard the same way as the full memory

encryption, i.e., encrypted before sleep and decrypted at wakeup. The application

can use multiple pages as needed. We currently do not consider releasing such pages

(i.e., no unmap()), as we consider a page to remain sensitive once it has been used

to store secrets. Note that, no kernel patch is required to support this variant. We

tested it with our custom application requesting pages to protect its arti�cial secrets.

We observed no latency or other anomalies.

77

4.7 Security Analysis

Below, we discuss potential attacks against Hypnoguard; see also Sections 4.2.3 and

4.3.3 for related discussion.

(a) Cold-boot and DMA attacks. As no plaintext secrets exist in memory after

the system switches to sleep mode, cold-boot or DMA attacks cannot compromise

memory con�dentiality; see Section 4.3.3, under G1. Also, the password evaluation

process happens inside the TPM (as TPM receives it through one command and com-

pares with its precon�gured value; see Section 4.3.2), and thus the correct password

is not revealed in memory for comparison. At wakeup-time, DMA attacks will also

fail due to memory access restrictions (TXT/VT-d).

(b) Reboot-and-retrieve attack. The adversary can simply give up on waking

back to the original OS session, and soft-reboot the system from any media of his

choice, to dump an arbitrary portion of the RAM, with most content unchanged (the

so-called warm boot attacks, e.g., [55, 288, 287]). Several such tools exist, some of

which are applicable to locked computers, see e.g., [82]. With Hypnoguard, as the

whole RAM is encrypted, this is not a threat any more.

(c) Consequence of key deletion. The deletion of HGpriv severely restricts guess-

ing attacks on lost/stolen computers. For coercive situations, deletion is needed so

that an attacker cannot force users to reveal the Hypnoguard password after taking

a memory dump of the encrypted content. Although we use a random AES key SK

for each sleep-wake cycle, simply rebooting the machine without key deletion may

not su�ce, as the attacker can store all encrypted memory content, including SK

encrypted by HGpub. If HGpriv can be learned afterwards (e.g., via coercion of the

user password), the attacker can then decrypt SK, and reveal memory content for the

target session.

If a boot-time anti-coercion tool, e.g., Gracewipe (cf. Chapter 2), is integrated

with Hypnoguard, the deletion of HGpriv may also require triggering the deletion of

Gracewipe secrets. Hypnoguard can easily trigger such deletion by overwriting TPM

NVRAM indices used by Gracewipe, which we have veri�ed in our installation. From

a usability perspective, the consequence of key deletion in Hypnoguard is to reboot

and rebuild the user secrets in RAM, e.g., unlocking an encrypted disk, password

manager, or logging back into security-sensitive websites. With Gracewipe integra-

tion, triggering deletion will cause loss of access to disk data.

(d) Compromising the S3 resume path. We are unaware of any DMA attacks

78

that can succeed when the system is in sleep, as such attacks require an active pro-

tocol stack (e.g., that of FireWire). Even if the adversary can use DMA attacks to

alter RAM content in sleep, bypassing Hypnoguard still reveals no secrets, due to

full memory encryption and the unforgeability of TPM measurements. Similarly, re-

placing the Hypnoguard waking vector with an attacker chosen one (as our waking

vector resides in memory unencrypted), e.g., by exploiting vulnerabilities in UEFI

resume boot script [138, 296] (if possible), also has no e�ect on memory con�dential-

ity. Any manipulation attack, e.g., insertion of malicious code via a custom DRAM

interposer, on the encrypted RAM content to compromise the OS/applications after

wakeup is addressed by our GCM mode implementation (out of scope for the default

CTR implementation).

(e) Interrupting the key deletion. There have been a few past attacks about

tapping TPM pins to detect the deletion when it is triggered (for guessing without

any penalty). Such threats are discussed elsewhere (e.g., [312]), and can be addressed,

e.g., via redundant TPM write operations.

(f) Other hardware attacks. Ad-hoc hardware attacks to sni� the system bus

for secrets (e.g., [37]) are generally inapplicable against Hypnoguard, as no secrets

are processed before the correct password is entered. For such an example attack on

Xbox, see [121], which only applies to architectures with LDT (HyperTransport) bus,

not Intel's FSB.

However, more advanced hardware attacks may allow direct access to the DRAM

bus, and even extraction of TPM secrets with an invasive decapping procedure

(e.g., [265], see also [111] for more generic physical attacks on security chips). Note

that the PC platform (except the TPM chip to some extent) cannot withstand such

attacks, as components from di�erent manufactures need to operate through com-

mon interfaces (vs. more closed environment such as set-top boxes). With TPMs

integrated into the Super I/O chip, and speci�cally, with �rmware implementation of

TPM v2.0 (fTPM as in Intel Platform Trust Technology), decapping attacks may be

mitigated to a signi�cant extent (see the discussion in [223] for discrete vs. �rmware

TPMs). Hypnoguard should be easily adapted to TPM v2.0.

4.8 Related Work

In this section, we primarily discuss related work on memory attacks and preven-

tions. Proposals for addressing change of physical possession (e.g., [250, 83]) are not

79

discussed, as they do not consider memory attacks.

Protection against cold-boot and DMA attacks. Solutions to protecting keys

exposed in system memory have been extensively explored in the last few years, ap-

parently, due to the feasibility of cold-boot attacks [108]. There have been proposals

based on relocation of secret keys from RAM to other �safer� places, such as SSE regis-

ters (AESSE [192]), debug registers (TRESOR [194]), MSR registers (Amnesia [251]),

AVX registers (PRIME [86]), CPU cache and debug registers (Copker [103]), GPU

registers (PixelVault [285]), and debug registers and Intel TSX (Mimosa [104]).

A common limitation of these solutions is that speci�c cryptographic operations

must be o�oaded from the protected application to the new mechanism, mandat-

ing per-application changes. They are also focused on preventing leakage of only

cryptographic keys, which is fundamentally limited in protecting RAM content in

general. Also, some solutions do not consider user re-authentication at wakeup-time

(e.g., [86, 103]). Several of them (re)derive their master secret, or its equivalent, from

the user password, e.g., [192, 194]; this may even allow the adversary to directly guess

the master secret in an o�ine manner.

Memory encryption. An ideal solution for memory extraction attacks would be

to perform encrypted execution: instructions remain encrypted in RAM and are

decrypted right before execution within the CPU; see XOM [169] for an early proposal

in this domain, and Henson and Taylor [113] for a comprehensive survey. Most

proposals for memory encryption deal with data in use by an active CPU. Our use

of full memory encryption involves the sleep state, when the CPU is largely inactive.

Most systems require architectural changes in hardware/OS and thus remain largely

unadopted, or designed for specialized use cases, e.g., bank ATMs. Using dedicated

custom processors, some gaming consoles also implement memory encryption to some

extent, e.g., Xbox, Playstation. Similar to storing the secrets in safer places, memory

encryption schemes, if implemented/adopted, may address extraction attacks, but

not user re-authentication.

Forced hibernation. YoNTMA [140] automatically hibernates the machine, i.e.,

switch to S4/suspend-to-disk, whenever it detects that the wired network is discon-

nected, or the power cable is unplugged. In this way, if the attacker wants to take

the computer away, he will always get it in a powered-o� state, and thus memory

attacks are mitigated. A persistent attacker may preserve the power supply by us-

ing o�-the-shelf hardware tools (e.g., [180]). Also, the attacker can perform in-place

80

cold-boot/DMA attacks.

BitLocker. Microsoft's drive encryption tool BitLocker can seal the disk encryption

key in a TPM chip, if available. Components that are measured for sealing include:

the Core Root of Trust Measurement (CRTM), BIOS, Option ROM, MBR, and NTFS

boot sector/code (for the full list, see [189]). In contrast, Hypnoguard measures

components that are OS and BIOS independent (may include the UEFI �rmware in

later motherboard models). In its most secure mode, Microsoft recommends to use

BitLocker with multi-factor authentication such as a USB device containing a startup

key and/or a user PIN, and to con�gure the OS to use S4/suspend-to-disk instead

of S3/suspend-to-RAM [187]. In this setting, unattended computers would always

resume from a powered-o� state (cf. YoNTMA [140]), where no secrets remain in

RAM; the user needs to re-authenticate with the PIN/USB key to restore the OS.

BitLocker's limitations include the following. (1) It undermines the usability of

sleep modes as even with faster SSDs it still takes several seconds to hibernate (approx.

18 seconds in our tests with 8GB RAM in Windows 10 machine with Intel Core-i5

CPU and SSD). Wakeup is also more time-consuming, as it involves the BIOS/UEFI

POST screen before re-authentication (approx. 24 seconds in our tests). On the other

hand, RAM content remains unprotected if S3 is used. (2) It is still vulnerable to

password guessing to some extent, when used with a user PIN (but not with USB

key, if the key is unavailable to the attacker). Based on our observation, BitLocker

allows many attempts, before forcing a shutdown or entering into a TPM lockout

(manufacturer dependent). A patient adversary can slowly test many passwords.

We have not tested if o�ine password guessing is possible. (3) BitLocker is not

designed for coercive situations, and as such, it does not trigger key deletion through

a deletion password or fail counter. If a user is captured with the USB key, then the

disk and RAM content can be easily accessed. (4) Users also must be careful about

the inadvertent use of BitLocker's online key backup/escrow feature (see e.g., [23]).

Recreating trust after S3 sleep. To re-establish a secure state when the system

wakes up from S3, Kumar et al. [162] propose the use of Intel TXT and TPM for

recreating the trusted environment, in the setting of a VMM with multiple VMs.

Upon noti�cation of the S3 sleep, the VMM cascades the event to all VMs. Then

each VM encrypts its secrets with a key and seal the key with the platform state.

The VMM also encrypts its secrets and seals its context. Thereafter, the VMM

loader (hierarchically higher than the VMM) encrypts the measurement of the whole

memory space of the system with a key that is also sealed. At wakeup-time, all

81

checks are done in the reversed order. If any of the measurements di�er, the secrets

will not be unsealed. This proposal does not consider re-authentication at wakeup-

time and mandates per-application/VM modi�cations. More importantly, sealing and

unsealing are performed for each sleep-wake cycle for the whole operating context:

VMM loader, VMM, VMs. Depending on how the context being sealed is de�ned, this

may pose a severe performance issue, as TPM sealing/unsealing is time-consuming;

according to our experiment, it takes more than 500ms to process only 16 bytes of

data.

Unlocking with re-authentication at S2/3/4 wakeup. When waking up from

one of the sleep modes, a locked device such as an FDE hard drive, may have already

lost its security context (e.g., being unlocked) before sleep. Rodriguez and Duda [231]

introduced a mechanism to securely re-authenticate the user to the device by replacing

the original wakeup vector of the OS with a device speci�c S3 wakeup handler. The

user is prompted for the credential, which is directly used to decrypt an unlock key

from memory to unlock the device (e.g., the hard drive). This approach does not

use any trusted/privileged execution environment, such as Intel TXT/AMD SVM.

Without the trusted measurement (i.e., no sealed master key), the only entropy comes

from the user password, which may allow a feasible guessing attack.

Secure deallocation. To prevent exposure of memory-bound secrets against easy-

to-launch warm-reboot attacks, Chow et al. [55] propose a secure deallocation mech-

anism (e.g., zeroing freed data on the heap) to limit the lifetime of sensitive data

in memory. This approach avoids modi�cations in application source, but requires

changes in compilers, libraries, and OS kernel in a Linux system (and also cannot ad-

dress cold-boot attacks). Our solution is also e�ective against warm-reboot attacks,

but requires no changes in applications and the OS stack.

Relevant proposals on mobile platforms. Considering their small sizes and

versatile functionalities, mobile devices are more theft-prone and more likely to be

caught with sensitive data present when the user is coerced. CleanOS [264] is proposed

to evict sensitive data not in active use to the cloud and only retrieve the data back

when needed. Sensitive information is pre-classi�ed and encapsulated into sensitive

data objects (SDOs). Access to SDOs can be revoked in the case of device theft

and audited in normal operations. TinMan [301] also relies on a trusted server, but

does not decrypt con�dential data in the device memory to avoid physical attacks.

Keypad [87], a mobile �le system, provides �ne-grained access auditing using a remote

82

server (which also hosts the encryption keys). For lost devices, access can be easily

revoked by not releasing the key from the server. All these proposals require a trusted

third party. Also, under coercion, if the user is forced to cooperate, sensitive data

will still be retrieved. Moreover, the protected secrets in Hypnoguard might not be

suitable for being evicted as they may be used often, e.g., an FDE key.

Gracewipe. For handling user secrets in the trusted execution environment, we fol-

low the methodology from Gracewipe (cf. Chapter 2), which operates at boot-time

and thus can rely on BIOS and tboot. In contrast, Hypnoguard operates during the

sleep-wake cycle, when no BIOS is active, and tboot cannot be used for regular OSes

(tboot assumes TXT-aware OS kernel). Gracewipe assumes that the attacker can get

physical possession of a computer, only when it is powered-o�, in contrast to Hypno-

guard's sleep state, which is more common. Gracewipe securely releases sensitive

FDE keys in memory, but does not consider protecting such keys against memory

extraction attacks during sleep-wake. Gracewipe addresses an extreme case of coer-

cion, where the data-at-rest is of utmost value. We target unattended computers in

general, and enable a wakeup-time secure environment for re-authentication and key

release.

Intel SGX. Intel Software Guard Extensions (SGX [16]) allows individual appli-

cations to run in their isolated context, resembling TXT with similar features but

�ner granularity (multiple concurrent secure enclaves along with the insecure world).

Memory content is fully encrypted outside the CPU package for SGX-enabled appli-

cations. Considering the current positioning of Hypnoguard, we believe that TXT is

a more preferable choice, as running either the protected programs or the entire OS

in SGX would introduce per-application/OS changes. TXT also has the advantage of

having been analyzed over the past decade, as well as its counterpart being available

in AMD processors (SVM).

4.9 Concluding Remarks

As most computers, especially, laptops, remain in sleep while not actively used,

we consider a comprehensive list of threats against memory-resident user/OS data,

security-sensitive or otherwise. We address an important gap left in existing solutions:

comprehensive con�dentiality protection for data-in-sleep (S3), when the attacker has

physical access to a computer in sleep. We design and implement Hypnoguard, which

encrypts the whole memory very quickly before entering sleep under a key sealed in

83

TPM with the integrity of the execution environment. We require no per-application

changes or kernel patches. Hypnoguard enforces user re-authentication for unlocking

the key at wakeup-time in a TXT-enabled trusted environment. Guessing attacks

bypassing Hypnoguard are rendered ine�ective by the properties of TPM sealing;

and guessing within Hypnoguard will trigger deletion of the key. Thus, Hypnoguard

along with a boot-time protection mechanism with FDE support (e.g., BitLocker,

Gracewipe) can enable e�ective server-less guessing resistance, when a computer with

sensitive data is lost/stolen. We plan to release the source code of Hypnoguard at a

later time, and for now it can be obtained by contacting the authors.

84

Chapter 5

Trusted Write-protection Against

Privileged Data Tampering

In this chapter, we move our focus from data con�dentiality to data integrity, driven

by the frequent recent incidents about ransomware. Our proposed approach is ap-

plicable to privileged unauthorized data alteration in general, with an emphasis on

rootkit ransomware.

5.1 Introduction and Motivation

The �rst known crypto-ransomware dates back to 1989 (only �le/directory names were

encrypted [173]; see also [269]). Crypto-based attack vectors were formally introduced

by Young and Yung in 1996 [306] (see also [307]). After the CryptoLocker attack in

2013, robust crypto-ransomware families have been growing steadily, with a large

number of attacks in 2016 (see the F-Secure ransomware �tube-map� [77]). Examples

of recent high-impact ransomware attacks, include [172, 274, 110, 21, 2, 244], a�ecting

individuals and enterprise/government systems alike. An IBM X-Factor survey of 600

business leaders and 1021 consumers in the US reveals the e�ectiveness of current

ransomware attacks: 70% of a�ected businesses paid the ransom (46% of businesses

reported to have been infected); individual users are less willing to pay (e.g., 39% users

without children may pay ransom for family photos vs. 55% users with children).

Early-day ransomware had the (symmetric) �le encryption keys embedded in their

obfuscated binaries, or stored in a C&C server. Keys could be recovered by reverse-

engineering their code or intercepting C&C tra�c. Ransomware now generally uses a

public key to encrypt a random �le encryption key, and the private key remains only at

85

the attacker's machine (cf. [306]), and thus much more resilient than before; however,

even well-designed ransomware may also have �aws [295] that can be leveraged to

recover encryption keys. An exemplary umbrella solution is NoMoreRansom [6],

clustering �le recovery e�orts from several public and industry partners. However,

relying on ransomware authors' mistakes is a non-solution, and �nding such exploits

may be too late for early victims.

As public-key based modern ransomware renders data recovery more di�cult, a

legacy defense venue is detection techniques. Common anti-malware approaches re-

lying on binary signatures are largely ine�ective against ransomware (see e.g., [239]).

Some solutions rely on system/user behavior signatures, exempli�ed by �le system

activity monitoring, e.g., [150, 239, 60, 149]. To complement detection based so-

lutions (or assuming they may be bypassed), recovery-based mechanisms may also

be deployed, e.g., Paybreak [159] stores (suspected) �le encryption keys on-the-�y,

right after generated but before encrypted with the ransomware's public key. Several

countermeasures against generic rootkit attacks have also been proposed, focusing on

intrusion-resiliency and forensics (e.g., S4 [261]), and preventing persistent infection

(e.g., RRD [45]). FlashGuard [122] is the only proposal focusing on rootkit ran-

somware, which leverages the out-of-place write feature of modern SSDs, providing

an implicit backup. It requires modifying SSD �rmware and a trusted clock within

the SSD (currently unavailable). We discuss academic proposals in more detail in

Section 5.7.

Another obvious countermeasure against ransomware is to make o�ine backup

of important data regularly (on media disconnected from the computer). Although

simple in theory, e�ective deployment/use of backup tools could be non-trivial, e.g.,

determining frequency of backups, checking integrity of backups regularly (see Laszka

et al. [167] for an economic analysis of paying ransom vs. backup strategies). More

problematically, the disconnected media must be connected (online) during backup,

at which point, ransomware can encrypt/delete the �les (see [122, 181]). For cloud-

based backup systems, such as Dropbox (centralized) and Syncthing.net (peer-to-

peer), a common issue is the size of a bloated TCB (includes a full OS with multiple

network-facing servers), which may lead to large-scale data loss, if compromised.

Leveraging widely-available hardware security features in modern CPUs and hard

drives, we shift the focus from detection/prevention/recovery to data immunization

against rootkit ransomware. If user �les could remain unmodi�able by ransomware

86

Syncthing.net

even after the system compromise,1 no reactive defense would be necessary�enabling

data immunization. Separating read/write accesses of a self-encrypting drive (SED,

see Appendix A for background) is an intuitive option, as �les in a read-only partition

cannot be encrypted. However, when write access is enabled, rootkit ransomware can

make malicious changes to the protected �les. Therefore, to allow controlled write-

access, we also need a trusted execution environment (TEE, see Appendix A).

We design Inuksuk,2 combining security features from SEDs and TEEs to protect

existing user �les from being deleted or encrypted by malware. Inuksuk functions as

a secure data vault : user-selected �les are copied to a write-protected SED partition,

and the secret to allow write-access is cryptographically sealed to the machine state

(i.e., the genuine intact Inuksuk and the correct hardware platform), and hence,

allowing �le writes to the data vault only from the trusted environment. Meanwhile

access to the read/writable original copy is not a�ected, and will be synced at the

next commit.

We must consider three common scenarios: adding new �les, updating and deleting

existing �les. We treat �le updates as new �les (i.e., new versions of an existing

�le). Thus for new �les and �le updates, we commit the changes in the protected

partition using our updater program in TEE, without mandating user consent. We

limit the number of versions by committing changes in batch, e.g., once every 8-12

hours. Deletion is enabled only in the trusted environment (deleting �les outside

the environment will fail due to the hardware write-protection), through a mini �le

browser (manual deletion) or by policy (e.g., automatically delete versions older than

a year). Users must be careful when manually deleting (older versions of) a �le, to

make sure that the kept ones are not encrypted by ransomware, and set the auto-

deletion duration with care. Long-running attacks (e.g.,stealthy on-the-�y decryption

for the user to hide encryption until ransom is demanded) have limited impact as long

as �le versions are retained for enough long, e.g., the adversary must delay his ransom

for a year; for more discussion, see Section 5.6. Note that, most existing ransomware

asks for ransom within minutes after infection [122].

Our assumption is that deletions are done only occasionally and preferably in

batch (disk space is relatively cheap). In contrast, �le additions (updates included) are

more common, but handled without user intervention. No user-level secret is needed

1Note: read-only folders/�les enforced by the OS (e.g., Windows 10 �controlled folder ac-
cess� [186]), only prevents unprivileged access.

2Inuksuk is an Inuit word with multiple meanings, including: a (food) storage point/marker.

87

for controlling the write-protection. All original �les stay as is and the protected

copies can be available (optionally) as read-only in the regular OS.

We choose to instantiate the TEE using Trusted Platform Module (TPM) chips,

and Intel TXT CPUs (see Section 5.3.3 for reasons, and Appendix A for background).

Due to the exclusive nature (which is also a great security bene�t) of the TXT envi-

ronment, during �le operations on the protected partition, the system is unavailable

for regular use; as a mitigation, Inuksuk is triggered during idle periods (akin to

Windows updates). Also note that over the past few years a series of SMM (System

Management Mode) attacks have been identi�ed, some even a�ecting Intel TXT [297].

All these attacks assume a standard bootloader, hypervisor, or OS being loaded in

TXT, where SMI (SMM Interrupts) must be enabled. In our case, we merely load a

tiny custom binary with SMI disabled all the time, and TXT being exclusive ensures

in hardware that no other code can run in parallel to stealthily trigger SMIs, and

thus Inuksuk is apparently immune to these attacks (discussed more in Section 5.6).

While Inuksuk can provide strong security guarantees, its implementation faces

several technical challenges. For example, the TXT environment lacks run-time sup-

port and we must directly communicate with the SED device (for security) and parse

the �le system therein (which also involves performance considerations). Note that

the use of Intel SGX is infeasible for Inuksuk, as SGX allows only ring-3 instructions,

i.e., cannot access the disk without the underlying OS. Also, the user OS is unaware

of the TXT sessions, so the devices (i.e., keyboard/display for secure user interface)

are left in an unexpected state (see Section 5.4).

Contributions.

1. We design and implement Inuksuk against root-privileged data tampering, in a

radical shift in threat model from all existing academic/industry solutions. We

target immunization of existing data, instead of detection/prevention of mal-

ware/ransomware.

2. Inuksuk's design is tied to established and standardized hardware-enforced secu-

rity mechanisms of SED disks and TEE-enabled CPUs (in our case Intel TXT

with the TPM chip). Integrating Intel TXT, TPM, and SED/OPAL together in

a seamless way with a regular OS (Windows/Linux) is non-trivial, but o�ers a

signi�cant leap in the ransomware arms-race. Our solutions, which will be open-

sourced, to several engineering/performance problems within TXT (e.g., handling

CPU caching, DMA, disk/�le access, keyboard/display) can also be useful for

88

other TXT applications.

3. We implement Inuksuk on Windows 7 and Linux (Ubuntu). The core design

is OS-agnostic, which is important as ransomware today a�ects all major OSes.

Our prototype achieves decent disk access performance within the OS-less TXT

environment (around 32MB/s read and 42MB/s write), when committing �les to

the protected partition, e.g., once every 8�12 hours. The regular disk access to

original �les from the user OS remains una�ected, i.e., all applications perform as

before.

4. Beyond ransomware protection, Inuksuk can be used as a generic secure storage

with �ne-grained access control, enabling read/write operations and data encryp-

tion (with Inuksuk-stored keys), if desired. Inuksuk is locally accessible without

any network dependency, and operates with a small TCB. To provide users with

a centralized option, we also brie�y discuss a generalized Inuksuk design (in Sec-

tion 5.3.5), which shifts the TXT/TPM/SED complex to a central location, and

protects cloud/enterprise storage against ransomware attacks.

5.2 Threat Model and Assumptions

1. We assume that ransomware can acquire the highest software privileges on a sys-

tem (e.g., root access or even ring-0 on x86), through any traditional mechanisms

(often used by rootkits), including: known but unpatched vulnerabilities, zero-

day vulnerabilities, and social-engineering. Root-level access allows ransomware

to control devices (e.g., keyboard, network interface), GUI, installation/removal

of device drivers.

2. Before deployment of Inuksuk, the user system is not infected by any malware.

We primarily protect preexisting data at the time of ransomware infection, and

provide best-e�ort protection thereafter for later added/updated �les until the

ransomware is detected (or a ransom is demanded).

3. We do not detect/stop the execution of ransomware, or identify its actions. In-

stead, we protect integrity of user data on a protected partition and ensure data

accessibility. If the OS is completely corrupted or inoperable, the user can install

a new OS copy or boot from another media (e.g., USB) to access her data.

89

4. We deal with the most common ransomware variants (i.e., cryptoviral extortion),

and exclude those that simply lock access to system resources without using en-

cryption (non-encrypting ransomware [217]) or deletion, and those that threaten

to publish information stolen from the user (doxware or leakware [204]).

5. We assume all hardware (e.g., the CPU, TPM and the secure drive) and

architecture-shipped (e.g., the Intel authorized code module) primitives are prop-

erly implemented by the manufactures, and the user is motivated to choose a

system with no known �aws.

6. Attacks requiring physical access are excluded (e.g., no evil-maid attacks). We

only consider a computer system potentially infected by malware/ransomware

from the network or a removable drive. The system is attended by a user who is

motivated to protect her data.

7. We assume that after infection, ransomware will act immediately ; i.e., it will �nd

target user �les, encrypt them, and then demand a ransom without much delay

(e.g., few minutes/hours, cf. [122] vs. months). If the attacker waits, he risks losing

control, e.g., through an OS/anti-malware update, although users may not always

promptly apply patches (vendors may also delay a �x). However, with every

patched computer, the attacker loses money, and thus cannot remain hidden for

long. To accumulate �le updates, the attacker may wait for some time (i.e., long

enough to collect su�cient content that the user may care), before asking for the

ransom. We term such attacks as persistent ransomware, and discuss them more

in Section 5.6, item (d).

8. We target user-attended personal computers. Since on PC platforms, ransomware

is more of a threat to Windows users [76], we thus consider supporting Windows

to be more preferable albeit challenging (we also have a Linux prototype).

5.3 Design

We �rst list our design goals, then systematically consider design choices and me-

thodically discuss their bene�ts and drawbacks, and provide a relatively generalized

design and work�ow. We discuss technical challenges/choices in Section 5.4. The

terms ransomware and malware in our setting of unauthorized data alteration can be

interchangeably used. We may stick with the use of ransomware hereinafter.

90

5.3.1 Design goals

We list our goals, and brie�y sketch the key ideas to ful�ll such goals in Inuksuk.

a) Trusted write-protection. Ransomware must not be able to modify or delete

protected �les. We place the user �les in a write-protected mode (read-only) all the

time in the user OS. Write operations to the protected �les are only allowed inside

a trusted environment. The trusted environment treats all changes as new versions

(retaining historical versions) and interacts with the user for infrequent (batch) dele-

tions.

b) Hardware enforcement. Rootkit ransomware should not be able to bypass the

write-protection, enforced by the disk, where the protected partition resides, instead

of any software on the host. Thus without the appropriate authentication key, the

partition cannot be unlocked, even if the OS is compromised (ransomware gains all

software permissions). The authentication key (a high-entropy random value, e.g.,

256-bit long) is protected by, and bound to, the trusted environment (inaccessible

from outside).

c) Minimal application interference. Applications (including the user OS) should

operate as is. As the original �les are untouched and accessed the same way by

applications, normal application I/O is not hindered (even for direct I/O as in disk

utilities). File copies on the protected partition are available as read-only, which

should not concern regular applications.

d) Minimal user involvement. User experience should not be signi�cantly a�ected.

A normal user experience is preserved in Inuksuk with the separation of the original

and protected copies. To reduce system unavailability, the update/commit process

should be scheduled during idle hours, and all updates to a protected �le are cached

to be committed as a new version periodically (e.g., every 8�12 hours). The user is

involved only when �les must be deleted (including, removal of old versions of updated

�les), and manually triggering Inuksuk (for immediate commitment of cached �les,

when the important �les are just edited/added).

Non-goals. Inuksuk is designed to act more like a data vault than a traditional

backup system; e.g., we commit user data a few times a day in batches, instead of

syncing updates instantly. OS/application binaries should not reside on the protected

partitions. We do not target data loss due to system failure or accidental deletion.

We provide robust data integrity against advanced attacks at the expense of losing

some data due to ransomware attacks (e.g., user updates to a �le during the commit

91

period). Also, data con�dentiality is currently a non-goal (to facilitate unhindered

operations of common applications); i.e., the ransomware can read all protected user

data, and read/modify the OS/unprotected partitions. However, con�dentiality and

controlled read access can be easily supported; e.g., encrypting data under Inuksuk-

protected keys, and enabling password-based access control for read operations on

selected �les.

5.3.2 Trusted �le versioning

We treat all write operations outside the trusted environment as adding new �les

(automatically approved, similar to S4 [261]), which poses no threat to existing �les,

and leaving only �le deletion with user intervention. Any committed update to an

existing �le creates a new version, instead of overwriting the current version (the

latest one being under the original �le name) so that historical changes committed

are all retained in the protected partition. We do not set a limit for the number of

versions but leave it to the user to clean up in the mini �le browser we developed (see

Section 5.5.4 for details), or to con�gure an auto-deletion policy (e.g., after 1�2 years).

Our simple versioning may not impose a signi�cant burden on the storage space,

considering: a) We commit changes to the protected partition through scheduled

invocation of Inuksuk; users can explicitly trigger the updater to commit important

changes immediately, which we believe would be very infrequent. So the number of

versions that will be stored for a continuously updated �le would still be limited, e.g.,

1�4 times a day. Auto-save in applications or �le access-time change do not trigger

an update (it is only on the original copy). b) Nowadays, disk storage is less costly

and user computers are usually over-provisioned. To improve storage utilization,

speci�cally for large �les, more aggressive versioning may be adopted (e.g., S4 [261]).

User consent is needed when �les are to be deleted. We allow �le deletion in

the mini �le browser within the trusted environment. Users can also set a policy for

automatic deletion of old versions (e.g., after 1�2 years). Direct deletion of �les in the

protection partition outside the trusted environment will be ignored;3 deletion of the

original copy in the unprotected partition will not be synchronized to the protected

partition. Regular deletion from the user is also consolidated in the same manner

as deleting old versions. Both requires the user to select which �le(s) to delete. We

also hide old versions from the user OS to help usability. When a new version is

3Ransomware sometimes deletes the original �le and outputs the encrypted content to a new �le,
instead of doing in-place encryption.

92

committed, we rename the previous copy by appending its timestamp with the �le

name, and keep the new version with the original name.

Automatic stale version deletion. To relieve users from deleting unnecessary

old versions of the same �le, Inuksuk can be con�gured to automatically delete such

versions after a certain time. The retention duration should be long enough to hurt

ransomware's business model. For example, if an attacker needs to wait more than a

year to monetize his ransomware, it might become much less attractive than now. De-

fenders are likely to generate reliable detection mechanisms (e.g., signatures) within

the wait period, and even be able to identify the attackers. Calculation of the time

duration must be done appropriately, as there is no trusted time source available

within TXT. As rootkits can change system time, �le creation/update time as avail-

able from the user OS �le system cannot be trusted. A simple solution could be to use

digitally signed time values from an NTP service,4 where the signature veri�cation is

done within TXT. The signed value can be obtained through the user OS, and must

be sent for each �le commit session. The trusted updater must store the last accepted

signed value along with NTP veri�cation keys, and check the new timestamp to detect

replay (the time value should always be increasing).

File content veri�cation. Before proceeding to manual �le deletion, the user must

verify the content integrity of the kept version (for versioning), or the correctness

of the �le selection (for regular deletion). Note that manual deletion may only be

necessary if protected storage becomes almost full. Checking meta-data in the mini

browser might be easily bypassed by malware, since it only relies on �le structures

(in addition to magic numbers). The mini browser is trusted but the �le content

was taken from the untrusted OS. Namely, malicious modi�cation (e.g., encryption)

may be concealed and the user is tricked to commit it (e.g., encrypting only selected

chunks of a �le). A more comprehensive content veri�cation mechanism in the trusted

environment may be achieved by using analytic/machine-learning techniques, at the

expense of increased TCB, as well as the risk of false negatives and false positives.

We also discuss this issue more under �Delayed attacks after deletion� in Section 5.6.

A simple but e�ective solution is to boot a separate trusted OS (e.g., a freshly down-

loaded OS image) to check the content (cf. RRD [45]).

4See Section 6.2.2 at http://www.ntp.org/ntpfaq/NTP-s-config-adv.htm. Alternatively,
time-stamping services, implemented by several CAs (following RFC 3161), can also be used.

93

http://www.ntp.org/ntpfaq/NTP-s-config-adv.htm

5.3.3 Design choices

Trusted environment. As we assume ransomware to acquire the highest software

privilege, write operations in the protected partition must be performed in a trusted

environment, meeting the following requirements: 1) No other applications (includ-

ing the OS) should be able to manipulate or even observe what is running in this

environment. Additionally, this environment should be exclusive and isolated, with

anything else suspended, to avoid side-channel attacks. 2) Code running in this envi-

ronment must have access to I/O (disk, keyboard, video), as it is not safe to delegate

operations to untrusted processes outside. 3) The integrity of this environment must

be attestable, i.e., it cannot be tampered with, or any tampering would be detected,

causing execution to abort.

Intel TXT/AMD SVM (see Appendix A) satisfy all three requirements. The more

recent Intel SGX fails requirement 2 as it does not run privileged code for I/O access.

Also, as SGX is non-exclusive unlike TXT, SGX su�ers from numerous side-channel

attacks, including the recent Spectre/Meltdown attacks.5 Potential hypervisor-based

solutions (e.g., running in VMM or a dedicated VM) are susceptible to side-channel

attacks [171], failing requirement 1; hypervisors also su�er from zero-day vulnerabil-

ities (e.g., [139]). Therefore, our discussion hereinafter will refer to Intel TXT as our

TEE.

Minimal TCB. Although a full-�edged OS in TXT (e.g., tboot with Ubuntu) can be

used to perform trusted operations, it is preferable to keep a minimal trusted comput-

ing base (TCB), for both auditability (e.g., avoiding numerous complex components)

and maintainability (e.g., avoiding measuring large and varying �les). It is even not

technically feasible, because the trusted operations occur in the midst of an active

user OS execution (considering the time/e�ort needed to save and restore various OS

states). In the best-case scenario, such switching will be time-consuming, equivalent

to using two OSes �alternately� (as TXT is exclusive). Therefore, we develop our own

logic as a small-footprint, native program in TXT with no external dependencies.

Hardware write-protection with API. We need to expose write access to the

protected partition only inside the trusted environment. The write-protection has

to be hardware-enforced, as rootkit ransomware is able to manipulate any program

running in the system. Some o�-the-shelf secure USB drives o�er write-protection [4].

5See e.g., https://github.com/lsds/spectre-attack-sgx and more discussion at:
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-

sgx/topic/754168.

94

https://github.com/lsds/spectre-attack-sgx
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/754168
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/754168

However, it is either in the form of a hardware switch/button to be pressed by the

user, or a key pad on the USB device itself, where a password can be typed. There is

no way for the trusted environment to interact with the write-protection mechanism

programmatically.

An ideal construction would be that the hardware write-protection can be en-

abled/disabled programmatically but with a secret/password. This way, by making

that secret only available in TXT, we can limit the exposure of the write access within

TXT as well. The self-encrypting drive (SED) satis�es this requirement. Also, to our

knowledge, SED is the only technology that supports �ne-grained protection ranges

with separate read/write permissions, which is important as we always allow read

access, and deny write access from the user OS. Fine protection granularity also al-

lows the protected partition to coexist with the unprotected OS and other �les in

the same drive, instead of requiring a dedicated disk. The legacy ATA Security [263]

password can also be considered hardware-enforced write-protection (without me-

dia encryption). However, it is a non-solution for Inuksuk, because only one-way

locked-to-unlocked transition is allowed (SEC4:SEC5), i.e., relocking requires hard-

ware reset, whereas Inuksuk needs the ability to switch back and forth. No support

for co-location of unprotected/protected partitions is another disadvantage.

Separation of the protected partition from the original. Technically, we

can write �le updates immediately in the protected partition. However, unso-

licited/frequent write attempts, such as updates from the automatic save feature in

text editors (i.e., not initiated by the user clicking on the �Save� button), will create

too many versions in the protected partition and make the system unusable due to

frequent back and forth between regular and trusted environments; note that, TXT

is exclusive, and writing �le updates may also take noticeable time. Therefore, we

leave user-selected �les for protection where they are, and make a copy into the pro-

tected partition on SED. All subsequent updates happen to the original �les without

write-protection. The user can then decide when to commit changes to the pro-

tected partition (no versioning in the original partition), manually, or automatically

at certain intervals (e.g., every 8-12 hours).

File-system in TXT. For protected write operations, we cannot simply pass the raw

sector information (sector number, o�set, number of bytes and the bu�er) to TXT as

we perform �le-based operations, and the user also must select �les (not sectors) for

deletion. Therefore, the TXT program must be equipped with a �le system.

95

Data mobility. The SED can also contain an unprotected partition where the OS

resides, because of the �ne granularity of protection ranges, while sometimes users

may treat it as a stand-alone data drive. In either case, when data recovery is needed

(e.g., the user OS is corrupted or compromised), the user can simply reboot from

di�erent media on the same machine or mount the SED on a di�erent machine. The

data will be readily accessible as read-only, hence aiding data mobility, thanks to the

separation of read and write accesses. In case the user needs to update the �les, a

rescue USB, where all intact Inuksuk binaries are stored as well as a portable OS can

be used to boot the same computer (where Inuksuk was provisioned). After booting

with the rescue drive, the user can invoke the same updater in TXT for deprovisioning

(to remove write-protection) or regular �le access.

5.3.4 System components and work�ow

Refer to Figure 8 for an overview of our design. The system consists of the following

components at a higher level (more technical details are discussed in Section 5.4):

• Trusted updater. This is the core component of Inuksuk, and runs inside TXT. It

is responsible for copying �les from the original partition to the protected partition

(in SED write access mode) as new versions, �le listing (in a mini �le browser),

and showing �le meta data to the user.

• TPM. In conjunction with TXT, TPM makes sure that the secret (the SED pass-

word) is securely stored in its NVRAM storage, and can be unsealed only if the

unmodi�ed trusted updater is executed (as measured in TPM's platform con�gu-

ration registers).

• Secure drive. An SED drive hosts the protected partition. Without the high-

entropy key/password, its protection (i.e., write-protection in our case) cannot be

bypassed. Note that even with physical access to the drive, reinitializing the drive

with the PSID (physical secure ID) printed on it will have all data lost.

• OS drivers. A few OS-dependent modules are needed to bridge the user, OS and

the trusted updater, such as preparing the TXT environment. These modules do

not have to be trusted after initial deployment, as the worst case is a DoS attack;

see also Section 5.6, item (a).

96

Firmware

CPU and chipset TXT

OS kernel and device drivers Flicker

TPMSED

Inuksuk

Updater
Browser

APP1 APP2

Flicker and Inuksuk services

untrusted trusted TXT coverage

protected
partition(s)

APP3

system and
other partitions

OPAL SED interface

... APPn

ATA

Password

Figure 8: System overview of Inuksuk

Work�ow. The generalized work�ow of Inuksuk is as follows: (a) At deployment

time, a high-entropy secret is generated as the SED password and sealed into the TPM

(can only be unsealed in the genuine trusted updater). (b) The protected partition

is created with the write-protection of SED. The user also selects the folders to be

protected, which are then copied to the protected partition in the �rst invocation

of the trusted updater. After the �rst-time copying, the user still interacts directly

with her �les in the original partition. (c) In everyday use, the protected partition is

never touched (except for read-only access). As with certain cloud storage services,

we use an icon on the original �les to indicate which ones are under the protection of

Inuksuk. (d) If the user adds or updates �les in the original partition and ready to

commit her changes, she triggers the trusted updater, and without involving her to

verify, changes are committed as new �les/versions on the protected partition. The

updater is triggered either manually, or automatically, e.g., via scheduled tasks, when

the updating-application is closed, or when the system is restarting or shutting down.

(e) When the user wants to delete �les or old �le-versions, she can manually trigger

the updater to open a mini �le browser, and make the selections (she should be shown

necessary �le information).

5.3.5 A remote data vault

The functionality of Inuksuk does not rely on any third parties (except the device

manufacturer), as the trust is anchored in hardware and all its components are local.

Although we primarily present Inuksuk as a stand-alone solution, there is no funda-

mental barrier in the design for it to be deployed as a remote/networked data vault.

97

To provide users with a centralized option, as well as extending for enterprise and

cloud storage services, we brie�y explore a variant of Inuksuk (only the high-level

design) where the key components, i.e., TXT CPU, TPM and SED, are shifted to a

network location, forming a remote service. Users' data will remain protected at a

central, Inuksuk-backed storage service, and users can keep using any device of their

choice (i.e., with or without TEE, mobile or desktop). We believe that this variant

can be used to protect security-sensitive/user �les stored in cloud storage services

like Dropbox and OneDrive, or enterprise storage services. Although such services

are possibly backed by robust backup measures and strict security policies/tools, if

infected, consequences can be high.

The construction goes as follows: any desktop/laptop/mobile device serves as the

front-end directly used by the user. Through an account, the front-end is connected to

a storage back-end, which plays the role of the �original partition� in our stand-alone

setup, caching �le updates. Eventually, an Inuksuk-equipped backup server, which

has the TXT-capable CPU and chipset, as well as the SED (or more likely, an SED

array), is connected with the storage back-end. The Inuksuk-server will periodically

copy new/updated �les from the storage server, and become unavailable during this

period, which should not a�ect functionality, assuming the Inuksuk-server is not used

for other purposes. The storage back-end and user devices remain available all the

time.

Note that, in addition to introducing a new trusted party (an enterprise), we

do not bloat the Inuksuk TCB, except that the Inuksuk updater must now handle

networking (from within TXT) to connect with the storage back-end. Once deployed

correctly, without the high-entropy key sealed in TPM, no remote attacker can turn

o� the write-protection and update/delete the protected �les. Our threat model

now assumes that the remote attacker can infect the storage and Inuksuk servers, in

addition to user devices. As before, only the uncommitted �les remain vulnerable,

and after written to the Inuksuk protected storage, user �les become safe against any

data modi�cation attacks. Content on the Inuksuk-equipped server can be maintained

by enterprise IT administrators (e.g., deleting old versions). The whole process is

transparent to end-users/employees, and the �les that need ransomware protection

can be identi�ed by enterprise policies.

98

5.4 Implementation

We implement Inuksuk for both Windows and Linux using existing techniques/tools

discussed below. Implementation issues regarding CPU/disk performance are dis-

cussed in Section 5.5.

5.4.1 Using Flicker to handle TXT sessions

Since Inuksuk's secure �le operations occur alongside the user OS, a mechanism is

required for jumping back and forth between the trusted updater and the user OS.

It can be implemented as a device driver (in the user OS) dealing with parameters,

saving the current OS state, processing TXT logic, and restoring the saved OS state

when returned from the trusted updater. Several such operations are already handled

in Flicker [183] (also refer to Appendix A), which we use as the base of our prototype.

We discuss performance issues related to Flicker in Section 5.5.2.

5.4.2 OPAL access to SED inside TXT

All software outside TXT, including the user OS and all its device drivers, is un-

trusted in Inuksuk. However, inside the TXT environment, there is no run-time

device support, i.e., devices including any SED drive cannot be accessed by default.

Therefore, we must implement standalone (and preferably lightweight, to limit the

TCB) custom driver for accessing SED devices inside TXT. Various SED protocols

rely eventually on the SATA interface (ATA Command Set [270]), with two options

to choose: 1) ATA Security password [263]: most SEDs support a user password

for compatibility with regular mechanical drives, usually prompted in the BIOS be-

fore OS. The entire drive is in a binary state of either unlocked (fully accessible) or

locked (fully inaccessible). In this option, SEDs only di�er with regular hard drives

in that user data is always stored encrypted on the media. 2) The use of dedicated

security protocols: such protocols include Seagate DriveTrust [242], IEEE 1667 [124]

and Microsoft eDrive (all based on TCG OPAL/OPAL2). They implement support

for multiple roles/users corresponding to multiple ranges, with separate passwords for

write/read access. They use ATA Trusted Computing features (command TRUSTED

SEND/RECEIVE) to transfer protocol payloads.

Granularity in both protection ranges, and separate read/write permissions is

important in our design. The same drive can host both protected and unprotected

99

partitions (which cannot be achieved in Option 1). Thus Option 2 is more suited for

our needs, and we choose to use TCG OPAL to communicate with SED, as it is an

open standard and widely supported by most devices.

There are a few open-sourced tools that can manipulate SED devices with OS

support (in addition to proprietary tools for vendor-speci�c protocols); we have tested

msed [222] (now merged into DTA sedutil [71]) and topaz-alpha [3]. They mainly rely

on the I/O support from the OS, e.g., SCSI Generic I/O, in the ATA passthrough

mode. However, our TXT piece of application logic (PAL, the payload in Flicker) is

OS-less with no run-time support. We decide to port functions from topaz-alpha [3]

as needed. The porting process faces several engineering challenges, see Section 5.4.4.

More details about the OPAL protocol can be found in the TCG speci�cation [276].

Overall, OPAL communication involves level0/1 discovery (protocol handshake to

agree on version and parameters), logging into a session using the corresponding

password, and manipulating the tables in SED to set permissions (locking/unlocking).

5.4.3 Secure user interface

For �le selection, we must provide UI for the user to interact within the trusted

environment; note that, during this time, the entire user OS remains suspended.

Providing secure UI is critical as the user may make wrong selection based on false

information (if the TXT-to-user channel is compromised), or simply the user selection

is forged (if the user-to-TXT channel is compromised), leading to arbitrary data of

the adversary's choice deleted from the protected partition. As we assume hardware

is always trusted (see Section 5.2), we discuss only the software part of these UI

channels. We consider the following options for using the frozen display (from the

user OS):

1. Switching back to 16-bit real mode and resuming 32-bit protected mode after

calling Video BIOS for display. This simple approach is ideal for small footprint

and for infrequent switching. However, Intel TXT works only with protected

mode, making this approach infeasible.

2. Using the Virtual 8086 (v86) mode to invoke Video BIOS. The v86 mode is sup-

ported by the CPU (providing separate TSS for tasks) but the software developer

must write a v86 monitor (like a VMM) and corresponding components handling

interrupts, I/O, and so on. We exclude this considering its complexity and com-

patibility issues.

100

3. Developing a custom (preferably, universal) display driver for the TXT session.

This involves porting only I/O operations, and does not have the two drawbacks

above. But it would be inevitably vendor-speci�c, as before entering TXT, the OS

has already set the video card in a state unknown to us (we tried a few sequences

but could not reset it to the legacy VGA mode). It may be technically possible

on certain models but not guaranteed to work.

4. With the aforementioned three options ruled out, we propose to use a di�erent

but e�ective method. We ask the entity that knows well the video card (which

is Windows in our case) to reset it to the legacy VGA mode, without trusting it

(other than the possibility of a DoS attack), and then use our own logic inside TXT

to take it over and display the content. This approach preserves both compatibility

and compactness.

To realize Option 4, we resort to a set of (less-used) Windows kernel APIs, e.g.,

the x86 BIOS emulator [50], and develop an OS driver. These APIs use the v86

mode (as in Option 2) to call BIOS functions. We modify the Flicker Windows driver

for loading PAL, so that right before entering TXT, the display is reset to legacy

VGA using x86BiosCall(), and after exiting TXT, we restore it to the previous

high resolution via the same function. This way, inside TXT we can manipulate

the display as if the system is just freshly booted. In our Linux prototype, we use

vbetool and mode3 that can make use of the Video BIOS to set VBE modes similar

to Windows. We use a custom sequence of commands to resume display (details

omitted for brevity).

DMA in TXT. Currently, USB keyboards are the norm, but they are non-trivial to

support within TXT. Unlike other simpler protocols, the controller (e.g., EHCI [281])

requires several host-allocated bu�ers in the main memory (DMA chunks) for basic

communication with the host (e.g., the periodic frame list). The controller accesses

the bu�ers without the CPU's intervention, hence, Direct Memory Access. However,

the fundamental protection of TXT (like all other trusted execution environments)

must prevent autonomous access from peripherals. The MLE memory is included

in either the DMA Protected Range (DPR) or Protected Memory Regions (PMRs),

which is mandatory (cf. [130]).

Consequently, since we cannot (and do not want to) exclude the MLE from DMA

protection, we have to allocate the USB DMA chunks outside. We do not consider

possible security implications of exposing DMA regions outside the MLE in general;

101

however, in our speci�c case where physical attacks are excluded and no other code is

running in parallel, doing so does not pose a threat. We also support PS/2 keyboard.

In Flicker, the PAL program is assigned Ring 3 with con�ned memory access only

to the MLE (TXT-measured region), justi�ed for security reasons. The base address

in its GDT descriptor is set to the start of the MLE region and addressing in it will be

o�set by the MLE start. To preserve this design, we adapt all MMIO access functions

(such as reading/writing EHCC registers) with in-line assembly to temporarily switch

the data segment (DS) to a global one, covering the whole address space. With the

small tweak, USB with DMA can work transparently in Inuksuk.

5.4.4 OPAL implementation challenges

From C++ to C. All OPAL projects are written in C++, possibly to support

complex data structures. However, Flicker PAL provides only an environment in C.

We weigh the di�culty between adding C++ support to Flicker and porting a few

topaz functions to TXT in C, and eventually choose to go with porting.

However, it is not a straightforward syntactical conversion process. For instance,

C++ provides built-in heap management (new, delete), and it is ubiquitously used

in topaz-alpha. Flicker comes with basic malloc()/free() but lacks other essential

functions. We had to implement malloc_size() by counting adjacent slots so that

the size of a dynamic object can be known, which is critical for OPAL structures, e.g.,

current packet/vector size. Also, malloc() in Flicker uses a �xed range of memory

(to be measured in TXT) to avoid a�ecting the suspended OS, and thus we had to

regularly reset the heap due to space constraint (discarding all allocated objects and

setting heap utilization to zero).

Moreover, the C++ constructor/destructor mechanism invokes custom initializa-

tion/cleanup automatically, while we cannot manually trace the life cycle of all ob-

jects, especially when they are hierarchical/recursive. So we made quite some trade-

o�s such as calling an init() function after each declaration, and where a next-level

pointer (e.g., in the case of a member vector in a struct) is potentially de-referenced.

We also need a C equivalent to std::vector in C++, and an important criterion

is the support for continuous element addressing, e.g., a packet received into a byte

bu�er will form a byte vector with each byte becoming an element. For this purpose,

we use SCV [123].

OPAL data stores. OPAL communication is in a human-readable format (instead

102

of binary, like ATA/TPM commands), and thus requires complex parsing and packet

construction. For example, it has the notion of atoms (used to encode data of various

sizes and types, in the form of tiny, short, medium, long or empty). Two constructs,

Named (e.g., `MaxPacketSize' = 66028) and List (e.g., [e1,e2,...,ei]), can be used to

represent bytes, integers, and even parameter structures; at the storage level, these

constructs are composed of atoms. Fortunately, we were able to borrow certain logic

from topaz-alpha for data parsing and packet construction.

5.5 Performance Considerations

In this section, we discuss certain performance issues for Inuksuk; our solution tech-

niques can also be useful for other OS-less I/O intensive TXT applications. We

perform our development and evaluation on an Intel Core i7-2600 @3.40GHz, 16GB

RAM (3GB is usable in 32-bit mode), and Seagate ST500LT025 SED disk. We im-

plement Inuksuk for both Windows 7 and Linux/Ubuntu 12.04.

5.5.1 File system e�ciency

As discussed in Section 5.3, we choose to handle updates to the protected partition

at �le-level instead of raw sectors. This requires at least basic �le system functionali-

ties implemented within TXT. As a �rst step, we explore several open-source FAT32

projects for easy portability to TXT, instead of implementing the entire speci�cation

on our own. We exclude FAT32 projects that are tightly coupled with external de-

pendencies, e.g., the FAT driver in Linux interfaces with inodes (Linux VFS). FAT32

implementations targeting embedded systems are more �tting for our purpose, but

several other factors must be considered. For instance, ThinFAT32 [262] appeared to

be a good �t, as it is lightweight, written purely in C, and requires no dynamic mem-

ory allocation; nevertheless, it lacks support for the deletion �ag 0xE5 (i.e., deleted

entries are not recognized, which we patch easily), and more critically, bu�ering (re-

sulting low performance). Important features that we need in a lightweight FAT32

implementation, include:

1. Bu�ering support. Usually, FAT32 access is sector-wise, and most block devices

are also accessed in sectors. However, an I/O request can involve multiple sec-

tors (specifying start sector and number of sectors to read/write), o�oading I/O

processing from CPU to the DMA controller. For PIO modes, it does not make

103

much di�erence to send one bulk request vs. many one-sector requests, as the

CPU handles all sectors one by one. It is essential for DMA (see Section 5.5.3)

to handle a certain number of sectors for performance. If only one sector is re-

quested, the overhead will be signi�cantly high, and thus no performance is gained

with DMA (as in the case of ThinFAT32). Usually the FAT32 implementation

exposes the low-level read/write interface to the developer, and if it does not sup-

port bu�ering, the read/write functions we implemented will always receive one

sector to read/write. Note that hardcoded pre-fetching for reads is an overkill

(reading data never needed), and hardcoded write bu�er will hang (waiting for

enough number of sectors).

2. Multi-cluster support for space allocation. At the �le creation time, and when

a �le grows in size, FAT32 must traverse all clusters to �nd free clusters to be

appended to the cluster chain of the �le. Interestingly, with all FAT32 projects

targeted for embedded systems that we tested, only one cluster is allowed to be

added (we do not see any performance problem for allowing multiple). Therefore,

for a 50MB �le taking 6400 clusters (8KB cluster-size) and the partition having

131072 free clusters (1GB), it takes more than 800 million iterations. In the end,

with DMA enabled but no support for multi-cluster allocation, the time needed

for �le creation is about 80 times slower than overwriting an existing �le (requires

no searching).

Our solution. We tested several libraries, including fat_io_lib [1], ThinFAT32 [262],

fedit [78], efsl [308], etc. Unfortunately, none of them support both features; e.g.,

fat_io_lib has bu�ering but no support for multi-cluster allocation, and efsl supports

multiple clusters but is deeply rooted in single-sector disk read/write. We choose

fat_io_lib [1] for adaptation, because of its good bu�ering performance. For each

iteration, we start with the cluster where we left o�, instead of the �rst cluster of the

partition. We emphasize that Inuksuk is not dependent on any speci�c �le system,

and thus FAT32 can be replaced with a more e�cient one.

5.5.2 CPU slowdown in Flicker PAL

Our initial prototype was extremely slow: it took more than 23 minutes just to copy

a 50MB �le. This �rst led us to doubt the performance of the FAT32 library we

used. However, when tested with only a 1-million-iteration loop with NOPs (i.e.,

104

no operations), we found it to be about 500 times slower within Flicker, compared

to Ubuntu/Windows. By putting this loop in di�erent places in both the Windows

Flicker driver and the PAL, we �nally found that the slowdown starts right after the

Flicker driver updates the Memory Type Range Registers (MTRRs) in preparation

for the PAL. MTRRs control the caching properties of the speci�ed RAM regions,

i.e., whether caching is allowed for a memory range and how speci�cally, e.g., un-

cachable or writeback/writethrough.6 The SINIT module for TXT mandates that

there is a dedicated MTRR entry for it (WB for writeback), and the rest of the

memory must be set to one of the supported memory types returned from GET-

SEC[PARAMETERS] [130]; otherwise, TXT will crash.

Flicker �rst saves all MTRRs for Windows, creates the SINIT-only entry overwrit-

ing the MTRRs, and after the PAL execution �nishes, Flicker restores the Windows

MTRRs. This sequence is similar to Intel tboot, i.e., tboot saves the boot-time default

MTRRs before it runs the TXT MLE, and restores MTRRs before loading the OS

(e.g., Ubuntu) so that the OS still sees the boot-time MTRR state; in between within

the MLE, policy enforcement is executed, which is not CPU-intensive. In Flicker,

its PAL replaces the tboot MLE, and the MTRR values saved/restored are those of

Windows. It is not possible to restore the values earlier (before resuming Windows)

although the actual payload resides in the PAL. We suspect that at the time Flicker

was designed, caching may have not played a major role in the processor's perfor-

mance for the tasks tested, and thus the slowdown was not as noticeable as ours now

(more than 500 times). We veri�ed this behavior by contacting a Flicker author.

Our solution. The �rst attempt was to keep the same MTRR save/restore sequence,

and explore the supported memory types in parallel with SINIT. However, on our test

machine, the returned memory type �ags corresponded to UC (uncacheable) and WC

(writecombining); WC is still extremely slow (as per the 1-million-iteration loop:

WB=0.57ms vs. WC=295.61ms). Even if other machines support better types, it

will still be machine-speci�c. Since the restriction on supported memory types is

relaxed after SINIT execution (but still before the PAL starts in MLE), we de�ne a

second MTRR entry with WB after the SINIT one, to cover the region of the PAL,

where our trusted updater resides. Thereafter, the performance is restored, i.e., the

execution of the NOP loop takes almost the same time as in Ubuntu (or even faster,

because of no multitasking).

6See Section 11.11 at: https://software.intel.com/sites/default/files/managed/7c/f1/
253668-sdm-vol-3a.pdf

105

https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf
https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf

5.5.3 Adding support for DMA disk access

After addressing the CPU slowdown issue in Flicker, we have a throughput at roughly

0.5�1MB/s, as we perform disk data transfer through regular port I/O (i.e., with-

out DMA). This speed is expected according to the theoretical speed of ATA PIO

modes [7] (also with the overhead of FAT32 logic). However, this is unacceptable

from the user-experience perspective, e.g., taking 3�4 minutes to write a 100MB �le.

To improve disk access performance, we implement ATA DMA access support in-

side the PAL. The e�ort is mainly twofold: (1) setting up the Physical Region Descrip-

tor Table (PRDT) so that the ATA DMA controller knows where to place/retrieve

data blocks; and (2) issuing the DMA-version of the SEND (25h) and RECEIVE

(35h) ATA commands, and especially accommodating them to the lightweight FAT32

library source code. Usually, DMA relies on interrupts, i.e., when the transfer is done,

the interrupt handler will be noti�ed to proceed to the next request (e.g., to maxi-

mize CPU time utilization in a multitasking environment). In our case, Flicker is not

supposed to work with an interrupt-enabled workload (technically possible with some

complex adaptation), and we merely need the performance boost through DMA, i.e.,

no multi-tasking and thus, requiring no interrupt support. In the end, with DMA

enabled, we made �le transfer in our trusted updater 50�100 times faster than using

just PIO (see Section 5.5.4).

Again, pertaining to the discussion in Section 5.4.3 (DMA in trusted environ-

ments), we also need to allocate the PRD tables (DMA regions) outside the MLE (no

measurement or I/O protection) for the ATA DMA controller to be able to access

them. For the same reason, there is no risk in doing so within our threat model.

5.5.4 Usage scenarios and performance

In this section, we discuss several human factors considered for usability in the design

of Inuksuk, and our approach to keep the user experience at an acceptable level in

di�erent usage scenarios. Then, we provide performance statistics of the implemented

prototype.

Disrupting regular usage. In a regular usage scenario, we have a major source of

disruption: the unavailability of the computer for regular tasks. Depending on the

�le size (and number), for some time the user cannot use her computer during �le

106

copying (from original to protected partition), since the TXT session is exclusive.7 We

consider the following �le operations, and explain how they are a�ected by Inuksuk

from a usability perspective.

• Adding new �les. New �les can be added by a user or ransomware. However,

maliciously creating new �les poses merely a DoS attack on storage. Thus, no user

consent is needed for new �les; they are simply copied to the protected partition

when Inuksuk is triggered by the user or after a certain interval (e.g., once every

8�12 hours). Similar to Windows Updates, the user can de�ne her idle/busy hours

so that the trusted updater can execute during idle hours.

• Updating existing �les. With versioning, each update is treated as adding a new �le,

and requires no user consent. Note that the frequency of triggering the trusted up-

dater must be set with care: it a�ects both system unavailability, and the number of

versions saved for existing �les. We group several save events (auto/user-triggered)

from applications in the original partition to reduce switching back and forth from

TXT; see also Sections 5.3.2, 5.3.3.

• Deleting existing �les. We have developed a light-weight �le browser inside the

trusted updater that allows the user to choose multiple �les for deletion; see Fig. 9.

With more engineering e�ort, a graphical interface can also be created. There

is no technical limitation of creating custom UI within TXT. Also, deletion may

involve only �agging the �les as deleted in the �le system, and thus should be quick.

Note that users can manually delete �les in the protected partition only from our

mini browser; also regular Recycle Bin functionality is preserved. Any deletion

attempt from the user OS will fail (read-only access to the protected partition), or

be ignored, if edited �les are removed from the original partition (the updater only

copies existing �les from the original to the protected partition). Older versions

of an existing �le can also be scheduled for auto deletion (e.g., after a year). For

regular home use with a decent disk size (e.g., 2TB), we believe users may need to

manually delete �les only very infrequently.

Performance evaluation. The �le transfer speed determines the unavailability of

the user computer, and a�ects user experience. However, we argue that the way we

implemented DMA and our choice of the FAT32 library (as well as our adaptation to

7We also cannot simply initiate the copying process in TXT and return to the normal OS (to
complete the bulk copy), as that will expose the protected partition to ransomware.

107

Figure 9: A screenshot of the mini �le browser inside the trusted updater. Selected
�les are designated with ���; group selection can be speci�ed by the �rst and last �les.
Metadata includes full �le path.

it) are con�ned by the engineering e�ort and time. Therefore, the numbers we show

here should be just the lower bounds.

We executed 10 measurements on the �les we selected with typical sizes; see

Table 3. 50MB represents common media �les (the same order of magnitude) and

500KB represents miscellaneous �les of trivial sizes. Note that without our adaptation

to enable multi-cluster allocation support, the creation of a 50MB �le can be done

only between 0.5�1MB/s, while overwriting of an existing �le of the same size runs

at about 40MB/s.

To demonstrate Inuksuk's performance in a realistic usage scenario, we invoke the

trusted updater to copy 50 random photos (JPG �les, size ranging from 1009KB to

2416KB, totaling 85.6MB) from the original partition to the protected partition. We

measured the duration for 10 times, and the performance seems reasonable (mean:

23.3853 seconds), and relatively stable (standard deviation: 0.58989). This is a com-

bination of read, write, �le opening/closing, accumulating space fragments, etc. We

also evaluated only the transition time between the OS and trusted updater. It varies

between 2�4 seconds, including screen mode switching.

If we take into account any extra processing during �le transfer, the time needed

may also be a�ected. The basic versioning Inuksuk uses is not incremental, i.e.,

the whole of the source �le in the original partition is copied over to the protected

partition as a new version. We may consider some open-source version control systems

like SVN/Git (or even the simple diff command) for incremental versions to save

108

Write/Existing Write/New Read

50MB �le
Mean (MB/s) 43.93 41.69 32.17
Standard deviation 3.40 0.31 0.09
Mean (MB/s) 26.46 8.09 16.67

500KB �le Standard deviation 1.18 0.43 5.26

Table 3: File transfer performance in the trusted updater from 10 measurements. For
small �les (e.g., 500KB), other overhead predominates the transfer time.

disk space. However, in that case, each time new �les/updates are committed, the

updater must scan the whole of both �les for di�erences and then perform the transfer.

Moreover, deletion is supposed to be very quick with non-incremental versioning (just

�agging the �le); with di�-like versioning, for each �le the updater has to reassemble

from all previous versions to form the latest one to be kept. The overhead could be

signi�cant in our setting (considering batch-deletion of versions). Also, for common

�le types such as images, videos, and rich documents (e.g., PDF, Word), incremental

versioning may not save much disk space.

5.6 Security Analysis

In this section, we list various potential attack vectors, and discuss how they are

addressed, or why they do not pose a threat (see Section 5.2 for our assumptions).

Since we shift the defense from detection/prevention to data immunization, we

avoid common attacks such as whether new ransomware can evade detection, whether

it does privilege escalation, how the encryption keys are generated and so on. There

are two basic questions in evaluating Inuksuk's e�ectiveness: 1) Outside the trusted

environment, can ransomware update �les in the protected partition? No, without

the high-entropy key sealed in TPM, software on the host system cannot break the

write-protection enforced by SED. 2) Inside the trusted environment (updater), can

the ransomware trick the user or the updater to write arbitrary content of his choice?

The updater does not synchronize any �le deletion from the original partition but only

adds �les from it. With the updater's integrity ensured by TXT, user I/O cannot be

in�uenced by any external software.

(a) Malicious termination, modi�cation or removal of Inuksuk. A simple

but e�ective attack against Inuksuk is terminating its kernel driver in the OS, or

even completely removing it. Similar to rootkit malware's termination of host-based

109

anti-malware defenses, rootkit ransomware can easily launch this attack against Inuk-

suk.8 The pre-existing �les in the protected partition remain immune to this attack;

however, newly created or updated �les thereafter are not protected. However, un-

like anti-malware defenses, which run mostly transparent to users, users are expected

to interact with Inuksuk, albeit infrequently (e.g., manually triggering Inuksuk for

committing new/updated �les, and �le deletion), and thus may notice when Inuk-

suk cannot be launched. When the ransomware's presence is apparent, users can

take other mitigating actions, e.g., reinstallation of OS/software, updating OS/anti-

malware signatures. Note that modifying the Inuksuk updater's binary, which may

reside in the unprotected partition, does not help the attacker; the SED unlock secret

can only be accessed by the genuine Inuksuk updater (TPM unsealing).

(b) Known attacks against SEDs. Müller et al. [193] show that SEDs are also

vulnerable to known attacks against software FDEs (e.g., cold boot, warm boot,

DMA, and evail-maid). They also found a simple attack called hot plug, enabled by

the fact that SEDs are always in a binary state of locked or unlocked. Once it becomes

unlocked in a legitimate manner (e.g., user-supplied unlock passwords), the adversary

can connect the disk to another attacker-controlled machine without cutting power,

and can get access to protected data. In addition to these attacks, an adversary may

also capture the cleartext SED secret/password from the SATA interface, e.g., by

tapping the connection pins with a logic analyzers. Since all such attacks require

physical access, they are not viable for a scalable ransomware attack. However, if

a software-only attack can bypass SED protection (e.g., unlock a partition without

supplying the corresponding secret), Inuksuk will be defeated. No such attacks exist

thus far.

(c) Attacks on TXT/TPM.Although TPMs o�er some physical tamper-resistance,

TPMs and similar security chips have been successfully attacked in the past (e.g., [147,

266, 255, 164, 294]); see also Nemec et al. [203]. However, with physical access ex-

cluded, we do not need to consider these attacks; also note that tapping TPM pins and

DMA attacks require a malicious device to be connected. Regarding known software-

only attacks against TXT, most such attacks are ad-hoc (e.g., the SINIT module

�aw [299]), or version-speci�c; Intel has purportedly patched them in the subsequent

versions, or at least the user is motivated to choose one that has no known �aws.

8Malicious termination can be made di�cult by registering Inuksuk as a Windows Early Launch
Antimalware (ELAM) driver.

110

There are also attacks against TXT (e.g., [297]) that exploit the System Man-

agement Mode (SMM), an intrinsic part of the Intel x86 architecture, referred to as

Ring -2. Normally if we assume anytime before entering TXT, the system (including

BIOS) is compromised, and SMI (SMM interrupt) is left enabled when entering MLE,

a malicious SMI handler can always preempt the TXT execution and intercept any

trusted operations. However, there must be certain code triggering SMI (manipulat-

ing physical SMI# pin is out of scope), e.g., writing to port 0xB2. This could be from

an OS, hypervisor or bootloader loaded in TXT, which must have SMI enabled but

has compromised/vulnerable code. In the case of Inuksuk, neither of the two factors

satisfy: 1) SMI is not needed in our custom code � the trusted updater. So we just

do not trigger it. Because of TXT's exclusiveness, no other code can trigger it either.

2) We can also disable SMI upon entry, leaving no time for any triggering. Another

possible (powerful) attack avenue similar to SMM is vulnerable Intel Management

Engine �rmware [75]. Unless there is a pressing need for ME, we suggest to disable

it in a rigorous manner (for e�orts and di�culties, see [236]).

(d) Delayed attacks after deletion. Persistent ransomware can stay hidden for

a long period (ranging from weeks to months), during which it just transparently

decrypts encrypted data when accessed [120]. This can trick the user to believe that

her data is intact (when viewed from within the OS). At some point, if she removes

older versions to save space, then the ransom can be demanded (i.e., no more showing

the decrypted version).

The root cause of this problem is that OS-based �le viewers (e.g., Microsoft Word),

run outside the trusted environment and can be manipulated by rootkit ransomware

arbitrarily, such as performing decryption before displaying a �le to the user, or sim-

ply feeding a cached, unencrypted copy of the �le. A straightforward countermeasure

is to perform veri�cation inside the updater before removing previous versions, e.g.,

by porting advanced �le viewing tools in TXT, which can require signi�cant e�ort. A

simpler approach is to use (imperfect) encryption detectors and other ad-hoc mech-

anisms (e.g., [5]) as used in other solutions (e.g., [149, 150]). Another possible way

would be to boot from a trusted OS image (e.g., USB) to check �les before dele-

tion (ine�cient, but needed only occasionally). If auto-deletion of old versions is

enabled, we suggest the duration should be long, e.g., a year or two, depending on

the size of the protected partition. Note that, delayed attacks risk being discovered

and mitigated by anti-malware vendors, and thus we do not consider them a serious

threat.

111

(e) Hiding/locking access to �les. Inuksuk defends against ransomware based

on data inaccessibility (e.g., erase or encryption). However, another variant of ran-

somware, which is more prevalent in mobile platforms, is locking-based (non-crypto).

It simply blocks the user's access to computer resources, e.g., by switching to a

blank desktop using CreateDesktop(), or by showing a persistent HTML page [151].

Since it mainly targets non-computer-savvy users, simply showing a screen PIN

lock on the mobile phone may lock the user out and su�ce for demanding ran-

som. This can also be done on top of encryption, to make locating �les non-trivial

(e.g., overwriting the master boot record). Such ransomware, although still worri-

some for non-computer-savvy users, is relatively easier to cope with. With proper

tools, recovering data is highly possible (e.g., by reverting the system changes),

as the original data is preserved.

(f) Forged user interface. Due to human users' inability to authenticate machines

(cf. Stark [195]), a common means of attack by rootkit malware is to mimic the

appearance of the intended program/tool, where the user can be tricked to leak

secrets. However, the adversary will not bene�t from it, as there is no UI in Inuksuk

for prompting for the SED unlock secret (in fact, the unlock secret is unknown to

users). Also, for manual deletion, there is no way to specify which �les to delete from

outside the trusted updater (�les are selected in TXT right before they are deleted).

In the end, without the genuine updater in TXT, the adversary cannot manipulate

any �le in the protected partition.

(g) Attacking auto-deletion. If auto-deletion is enabled, i.e., older �le versions

are automatically deleted after a preset threshold (e.g., 365 days), a straightforward

threat is clock source manipulation. Rootkit ransomware can adjust the system time

(to a far future date) to fool Inuksuk to believe the versions are already too old to

be kept. To address this, Inuksuk can be con�gured to only trust a signed NTP time

from a remote server, absence of which will stop auto-deletion (see Section 5.3.2).

5.7 Related Work

There are many solutions dealing with user-level ransomware; only FlashGuard [122]

targets rootkit-level ransomware. However, some solutions against data manipulation

by rootkit malware (not speci�c to rootkit-level ransomware) are close to Inuksuk in

spirit. We discuss several examples from each category.

Rootkit-level solutions. S4 [261] is proposed as a self-securing storage entity be-

hind a security perimeter, which records all �le operations (like journaling or auditing)

112

and retains old versions of user �les. It is implemented as a network service (similar

to NFS), and assumed to be resistant to compromise by a remote party (due to S4's

limited outward interface). The usage scenario is focused on intrusion survival and

forensics collection, in the case of an admin account compromise in a client machine.

As S4 promptly stores all changes made to the client machine, as soon as possible, its

storage overhead can be signi�cant. To address this challenge, S4 makes use of novel

compression and di�erential versioning techniques, which can bene�t Inuksuk as well.

Also, relying on a network service is problematic for various reasons; e.g., it can be

made unreachable from the client machine by the rootkit, not easily deployable for

home users, and involves a large TCB, including a full OS and network-reachable

servers. Moreover, if the admin account of S4 (or any similar backup system) is

compromised, large volumes of data may be lost at once.

FlashGuard [122] proposes to modify the garbage collection mechanism of SSD

�rmware (assuming vendor support), so that for suspicious overwrites (i.e., �rst read

and then written in a quick succession), a copy of the original data block is kept for

a preset amount of time (e.g., 20 days). FlashGuard leverages a unique out-of-place

write feature of modern SSDs (in contrast to regular hard drives), which provides an

implicit backup of recently overwritten data blocks. The user is expected to detect

any attack before the preset time elapses and perform the recovery from a separate

machine; otherwise the data will be lost. The detection of suspicious overwrites can

be an issue; e.g., ransomware can read and encrypt the �le, and at some later point

(i.e., not immediately to avoid being �agged), delete the �le. However, this can solved

by retaining all deleted data blocks, at the expense of increased storage overhead.

FlashGuard authors also do not specify the clock source to measure the preset time;

SSDs do not o�er any trusted clock, and relying on OS/BIOS could be fatal.

Rootkit-resistant disks (RRD [45]) are designed to resist rootkit infection of sys-

tem binaries, which are labelled at installation time, and write operations to protected

binaries are mediated by the disk controller. System binaries are updated by boot-

ing into a safe state in the presence of a security token. While e�ective against

rootkit infection, RRD is infeasible against ransomware that targets regular user �les

(adding/updating will require reboot). Inuksuk's goals are complementary to RRD's

and exclude protecting system binaries.

User-level solutions. Defenses are usually implemented as system services, kernel

drivers (unprivileged adversary), or even user-land applications. For instance, Re-

demption [150] explicitly mentions that their TCB includes the display module, OS

113

kernel, and underlying software. Redemption claims to provide real-time ransomware

protection, by inspecting system-wide I/O request patterns. Its detection approach

involves a comprehensive list of features, with both content-based (entropy, overwrit-

ing and deletion) and behavior-based (e.g., directory traversal). In the end, a malice

score is calculated to facilitate decisions. Redemption creates a protected area, called

re�ected �le, which caches the write requests during inspection; the �le is periodically

�ushed to disk (if no anomaly is identi�ed). This ensures data consistency in case of

false positives, i.e., if the suspicious operations is con�rmed by the user to be benign,

there is still the chance to restore the discarded data.

In an e�ort to achieve better universality and robustness, some proposals are

purely data-centric (i.e., agnostic to program execution, checking just the outcome).

E.g., CryptoDrop [239] focuses on �le transformation information for individual �les,

regardless of where those transformations come from. It also claims to achieve early

detection. It employs three novel indicators to detect suspicious �le operations. Low

�le similarity before and after may indicate encryption but legitimate operations can

also cause it (e.g., a blurred JPG �le). Shannon entropy can be used in detecting

encryption although compression also leads to high entropy. Last, �le type changes

(through content parsing) might not be robust enough with format-preserving en-

cryption [257].

Although most ransomware mitigation techniques aim to detect/prevent ran-

somware as the primary goal, very few also focus on recovery, e.g., PayBreak [159].

Symmetric keys used by ransomware to encrypt user data are captured through crypto

function hooking before they are encrypted with the adversary's public key, and then

stored in a secure key vault. When infection is detected or a ransom is demanded,

the user can retrieve the keys for decryption without paying the ransom. PayBreak's

crypto function hooking works for both statically and dynamically linked binaries,

but only if the ransomware uses known third-party crypto libraries. Also, it is sub-

ject to evasion by obfuscation for statically linked ransomware. The key vault, even

though encrypted with the user's public key and protected by the admin privilege,

can still be easily erased by rootkit ransomware.

ShieldFS [60] is a copy-on-write shadowing �lesystem reactive to ransomware de-

tection, which is also based on I/O requests (I/O Request Packets - IRPs). Its

methodology �ts in the intersection of recovery-based solutions and immunization,

and thus is similar to Inuksuk in positioning. The detection portion also makes use of

114

numerous behavioral features re�ected from the IRPs. Speci�cally, ShieldFS's cryp-

tographic primitives detection, di�erent from PayBreak's, does not rely on hooking

known crypto libraries, but captures inevitable properties of crypto primitives, such

as the key schedule pre-computation of block ciphers. To achieve the claimed self-

healing, on the �rst write attempt, ShieldFS keeps a copy of the original �le in a

protected location (only from userland processes); once an anomaly is detected, the

changes made can be reverted with this copy, or otherwise it can be deleted at any

time.

Microsoft BitLocker [300] is a widely-used (enterprise) data protection tool inte-

grated with the Windows OS. BitLocker provides strong con�dentiality guarantees

through TPM-bound encryption. However, when a BitLocker-protected partition is

unlocked after a successful boot (i.e., accessible to the OS and applications), there is

no way to distinguish a malicious write attempt from legitimate ones, and thus making

the protected data vulnerable to even user-level malware/ransomware attacks.

For advanced data protection in iOS, Apple's secure enclave co-processor

(SEP [175]) is also a form of hardware-enforced security feature, enabling memory

encryption and credentials management (among other functions). The SEP commu-

nicates with the application processors (APs) via a mechanism called Secure Mailbox.

From the limited public documentation, it appears that per-application access control

is possible with SEP, therefore, decryption (and thus updates) can be only exposed

to the right application.

5.8 Conclusions

In summary, we propose the notion of data immunization, in an e�ort to ad-

dress rootkit-level data alteration as exempli�ed by ransomware, a signi�cant threat

that remains largely unaddressed in current state-of-the-art solutions. We leverage

both trusted execution environments in modern CPUs and hardware-enforced write-

protection in self-encrypting drives. Inuksuk leaves original user �les in use with

applications and exposes the protected copies as read-only all the time, and silently

accepts creation/modi�cation of the �les by preserving previous versions. Users are

only involved in �le deletion occasionally in the trusted environment (e.g., once every

year or so, in case the protected partition becomes full). Although our current pro-

totypes are less than ideal (�le transfer performance, Flicker and Windows speci�c

issues), we believe Inuksuk is a solid step towards countering rootkit ransomware.

115

Chapter 6

COTS One-Time Programs

Protecting data (e.g., con�dentiality and integrity) has been our primary goal. Using

also trusted execution techniques, in this chapter we explore options for ensuring

execution integrity and contribute to the practicality of one-time programs (referred

to as OTP hereinafter).

Co-authorship. Parts of this chapter have been co-written with other students

and professors from Concordia University, University of Florida, and Case Western

Reserve University.

6.1 Introduction

Consider the well-studied scenario of two-party computation: Alice and Bob want

a function computed that includes their own inputs, but they do not want to dis-

close these inputs to each other (only what can be inferred about them from the

output of the computation). This is traditionally handled by an interactive protocol

between Alice and Bob and much cryptographic literature has been devoted to its

study (see [109] for a recent textbook). In this chapter, we study a variant of this

protocol that is non-interactive. Alice prepares a device for Bob with the function

and her input included. Once Bob obtains this device, he can supply his input and

learn the outcome of the computation. Alice might be a company selling the device

in a retail store, and Bob is the customer; the two never interact directly. Bob uses

the device o�ine, and thus is assured that his input is private.

Some immediate issues arise. The �rst is: how can Alice be sure her input, which

must be somehow encoded into the device, cannot be extracted by Bob? Second,

116

even if Bob cannot directly extract it, he could indirectly infer her input by running

the computation on many di�erent inputs. We provide a practical implementation

of a device that resists attempts at removing Alice's input and can only be executed

by Bob on a single input. We also note that one-time programs can be realized with

a much simpler primitive, called one-time memory or OTM (as pointed out in the

cryptographic literature [92]), whose essentials are also rooted in one-timeness. We

are inspired by the intuition that 1) one-timeness is still a form of execution logic;

and 2) if we can make use of hardware primitives to enforce such execution logic,

we will have one-timeness. Therefore, we shift from cryptography (where interaction

is inevitable for OTP) to trusted computing technologies. Trusted Execution Envi-

ronments (TEEs) are hardware-assisted secure modes on modern processors, where

execution integrity and secrecy are ensured [182] (see Section 6.2.2 for further expla-

nation). We propose two con�gurations for one-time programs built on TEEs: (1)

deployed directly in the TEE and (2) deployed indirectly via TEE-backed one-time

memory and garbled circuits (Frigate [190]) outside of the TEE.

Intuitively, the use of a TEE may appear to provide a trivial solution. TEEs

provide desirable qualities for realizing a one-time program, including platform state

binding and protection of secrets. However, OTP faces a stronger adversarial model

(e.g., Bob's physical possession of the device), whereas TEE usually provides less

protection against physical attacks. Therefore our design and implementation require

substantial care. For example, in-memory secrets must be taken care of, as a naïve

exposure in RAM can cause the system to be vulnerable to the cold-boot attack. An

adversary may extract sensitive information through a successful attack with which

one-timeness could be broken.

On an application-speci�c basis, performance needs to be taken into account. As

the principle goes, security that is not usable is valueless. Our pragmatic methodol-

ogy for building a more practical solution to OTP is expected to outperform purely

cryptographic OTP and OTM solutions which may still remain prohibitively expen-

sive.

Contributions In this chapter, we consider how to realize one-time programs in a

practical way using trusted computing technologies.. Our system, built using Intel

TXT and TPM, is available today (as opposed to custom OTP/OTM implementa-

tions using FPGA [143], PUF [153], quantum mechanisms [41] or online services [155])

117

and could be built for less than $500.1 We discuss in Section 6.2.2 other TEE pos-

sibilities and why we choose TXT instead of SGX or ARM TrustZone; nevertheless,

if we were to choose TrustZone, which we do not consider for reasons discussed in

Section 6.2.2, the cost will be even lower, given that the custom-built devices with

minimal components are cheap, for as low as a few dollars. Our system is designed to

defend against the cold-boot attack by carefully exposing a minimal amount of the

input in RAM. To illustrate the generality of our solution, we also map the following

application into our proposed OTP paradigm: a company selling devices that will

perform a private genomic test on the customer's sequenced genome. The device

contains certain proprietary algorithms as the company's private input and the cus-

tomer's genome should also be kept secret from the company. For this use case in one

of our two variants (TXT-only), the company can initialize the device in 5.6 seconds

and the customer can perform a test in 34 seconds.

6.2 Preliminaries

We �rst state the design goals for the OTP system, especially requirements for a TEE

to realize the general design. We then list any design assumptions and analyze several

popular TEEs as candidates for the prototype implementation.

6.2.1 Design goals

A one-time program (OTP) is intended to run on a single input and disallow sub-

sequent runs on any di�erent input, as proposed by Goldwasser et al. [92]. The

creation of an OTP is generally dependent on the instantiation of a one-time mem-

ory (OTM), although recent work [155] has shown how to achieve OTP using secret

sharing without OTMs. OTMs allow one of two keys to be returned without ever

revealing the other. More details on what constitutes a one-time program are given

in Section 6.2.5, alongside previously proposed techniques for instantiating an OTM.

Increasingly, processors are providing hardware-enforced isolation in the form of a

trusted execution environment to ensure operation integrity. Intuitively, using a TEE

to replace the OTM or more straightforwardly the whole OTP becomes an appealing

solution for us.
1An example could be Intel STK2mv64CC, which is a Compute Stick that supports both TXT

and TPM, priced at $459.00 USD on Amazon.com (as of January, 2018).

118

One-time programs can be conceived of as a non-interactive version of a two party

computation: y = f(a, b) where a is Alice's private input, b is Bob's, f is a public

function or program, and y is the output. Alice hands to Bob an implementation

of fa(·) which Bob can evaluate on any input of his choosing: yb = fa(b). Once he

executes on b, he cannot compute fa(·) again on a di�erent input.

Properties We informally consider an OTP to be secure if the following privacy

conditions are met:

1. The privacy of Alice's input a with respect to Bob.

2. No more than one b can be executed in f(a, b) per device.

3. The privacy of Bob's input b with respect to Alice.

We argue the security of our systems in Section 6.7 but provide a synopsis here �rst.

We use property 2 in de�ning property 1, so we will start with property 2.

Enforcing property 2 is the key bene�t by using TEEs, which is mostly about

execution (logic) integrity. Upon checking a certain protected �ag (as opposed to

relying on cryptographic techniques), the program logic determines if it should execute

or abort. This property of TEEs can either be applied directly to achieve OTP (see

Section 6.3) or indirectly via making a one-time memory device (see Section 6.4) as

per the Goldwasser et al. construction.

Given property 2, we consider property 1 to be satis�ed if an adversary learns at

most negligible information about a when choosing b and observing 〈OTP, f(a, b), b〉
as opposed to simply 〈f(a, b), b〉, where OTP is the entire instantiation of the system,

including all components of the device and system details. Note that since f is a

public function (or program), learning a breaks property 2 at the same time (i.e.,

with both f and a, the adversary can compose fa(·)).
Property 3 concerns the privacy of Bob's input b. As Bob is provisioned a device

that can compute fa(b) without online interaction with Alice, Bob's privacy is uncon-

ditionally secure. This speci�cally refers to Alice's lack of both physical possession of

the device and network connectivity. There is, however, a possibility that the device

surreptitiously stores Bob's input and tries to leak it back to Alice. We discuss this

systems-level attack in Section 6.7.

119

Requirements for TEE Based on the aforementioned desired system properties,

we now look at what requirements a candidate TEE needs to satisfy. To achieve

property 2, isolated execution with integrity (R1) usually su�ces, which is the fun-

damental feature of a TEE. However, particular to OTP, such one-timeness implies

statefulness and must be determined by a non-volatile �ag. Therefore, we also require

non-volatile secure storage (formally termed as Secure Element, R2) for the TEE.

Property 1 involves two aspects: I) secrecy of the stored a, and II) secrecy of the a

in execution. For I, we need the capability to bind the secret to the exact machine

state (program being executed) and hardware. Sealing (R3) achieves this with the

assistance of R2. Moreover, II is trickier, as COTS processors have not supported

encrypted execution (see XOM [169], and a comprehensive survey [113]), which means

secrets in use are exposed in main memory. With that in mind, we consider two types

of exposure: if the RAM content can be exposed to other code on the same device, and

if the RAM content can be exposed physically to the outside. We require the TEE to

have no same-device memory exposure (R4), and no physical leakage (R5). Even if

not all the outlined requirements (R1 - R5) can be satis�ed by a particular TEE, we

would like to see which is best-positioned to realize OTP and what additional steps

can be taken to compensate for the missing.

A potential generalized construction with a TEE follows:

1. An existing program is converted into or a new program is written in plain C

(or another designated language). To minimize the Trusted Computing Base

(TCB), we do not intend to support a rich language environment.

2. A key is generated in the TEE and, together with an initial value of �0� as the

�ag, sealed in the Secure Element (SE).

3. Alice's input, optionally with the program is then sealed, or encrypted (with

the key), in the SE or other non-volatile storage, depending on its size.

4. When the system is shipped to Bob, the execution starts in the TEE, reading

in Bob's input either from �le or the command line. The program unseals the

�ag to check if it is already �1�; if so, it aborts. Otherwise, the program sets

the �ag to �1� and seals it back. Then the key, Alice's input, and optionally the

program are unsealed/decrypted.

5. Taking the inputs of Bob and Alice, the program produces a certain output

following execution. Thereafter, Alice's input can be securely wiped from the

SE (even if it is not, future unsealing attempts will be prevented).

6. Bob retains the ability of attesting to the integrity of this execution by either

120

contacting the IAS server (in the case of Intel SGX, see below) or matching

with known good values (for other TEEs).

6.2.2 Trusted execution environments

Trusted computing (where TEEs belong) already has a history of more than a decade

(cf. an earlier endeavor of Texas Instrument M-Shield [26] on OMAP). TEEs are

usually architecture-shipped, with a primary focus on securing processor execution.

They can be categorized as follows: 1) Exclusive. Exempli�ed by Intel TXT, this type

of TEE suspends all other operations on the processor and owns all resources before

it exits. The advantage is less attack vectors exposed; or 2) Concurrent. Represented

by Intel SGX and ARM TrustZone, this type creates secure enclaves or worlds that

exist alongside other processes. There might be multiple instances at the same time.

These are more suitable for application-level logic. In the following, we discuss a few

typical TEE options in the context of OTP, and see their suitability for matching

each of our stated requirements. All TEEs satisfy R1, without mentioning.

Intel TXT and AMD SVM. TXT and SVM are simply counterparts on their

respective vendor's platform, with nearly the same properties (slight di�erences).

They are exclusive by nature and rely on a security chip called TPM (Trusted Plat-

form Module), corresponding to R2. When the secure session is started anytime,

TXT/SVM measures the loaded binaries and stores the results in the TPM. Two

primitives are important: 1) Measured launch. TXT/SVM can compare the measure-

ments with the �good� values in the TPM and aborts execution if mismatch occurs.

2) Sealing (platform binding, satisfying R3). Sealed data can only be accessed in the

intact, genuine program and correct platform. Their exclusiveness naturally meets

R4, as no other code can be run simultaneously. As desktop processors, detachable

RAM modules are inevitable, so the cold-boot attack fails R5. We will discuss a

workaround in Section 6.3.

ARM TrustZone [206]. TrustZone introduces the notion of secure world and nor-

mal world. The secure world coexists with the normal world, with everything (in-

cluding I/O) separated. The two can communicate through a special monitor. This

leaves it questionable for R4, as there might be potential side-channel attacks from

code running in the normal world (cf. [166]). Since it is coupled with the ARM

architecture, we can use it on mobile platforms or a dedicated device other than a

desktop. This intrinsically satis�es R5 as it should be di�cult (if not impossible) to

121

physically extract RAM secrets, e.g., probing or detaching memory modules. Trust-

Zone also supports sealing satisfying R3. An obvious advantage of TrustZone is its

secure peripheral communication (enabled by the AMBA3 AXI to APB Bridge). For

example, if a small region of the screen is allocated to the secure world, user input

there cannot be intercepted by the normal world OS. However, in our OTP, we have

no need to involve a regular full-blown OS. Moreover, one of its disadvantages is that

the essential secure element (where secrets are stored, like TPM) is not standardized

and always vendor-speci�c [292], thus failing R2. This means for any OTP we de-

velop, we have to collaborate closely with the device manufacturer, whereas for TXT,

we can buy COTS devices. Nevertheless, if such collaboration became possible for a

speci�c organization, making use of TrustZone on mobile platforms can signi�cantly

lower the cost (from approximately $500 to a few dollars) per device.

Intel SGX [16]. More recent than TXT, SGX (Software Guard Extensions) can

also be utilized to achieve one-timeness. Intel SGX provides �ner-grained isolated

environment (measurement-based like TXT) where individual secured apps (called

enclaves) coexist with the untrusted operating system (thus failing R4). The in-

tegrity of the program logic (e.g., refusing to run a second time) is guaranteed by the

measurement of enclaves before loading. However, what was missing has been secure

persistent storage for the �ag (to ensure one-timeness) and Alice's input (SGX did

not use TPM in the �rst place); without secure storage, Bob can simply make a copy

of both before execution/evaluation, hence defeating one-timeness. To bring back

freshness with SGX-sealed data, Intel recently added support for non-volatile on-chip

monotonic counters (similar to TPM), see [179]. Therefore, SGX-sealing the �ag and

key pairs with replay attack resistance is feasible now (R2 and R3). With respect to

R5, unlike TXT, enclave memory remains encrypted and thus is not susceptible to

the cold-boot attack.

There have been also other TEEs around not discussed here, for the reason that

either they are less used or obsoleted (e.g., M-Shield [26]) or no su�cient public

information is available to support development (e.g., Apple Secure Enclave Co-

processor [19]). We decide to implement our engineering prototype with Intel TXT

with the following considerations (compared with SGX). Note that since TrustZone

requires vendor collaboration, we skip it for now.

1. Fewer known �aws. TXT has been time-tested and known �aws are al-

ready stable public information (see Section 6.7). For SGX, there have

122

been multiple reports regarding various side-channel attacks mounted by ma-

licious/compromised OS or even peer apps [302, 241]. What is worse, Intel

admits it as a known �aw that will remain, leaving the closing of side-channels

as a responsibility of enclave developers [144].

In other words, side-channels are explicitly out of the threat model of SGX.

Such a �aw allows potential multiple or even unlimited number of executions

of the protected program, which Bob is motivated to do. On the other hand,

although TXT used to have a few system/hardware-level �aws [297, 299] (as

no other software can coexist), there are no recent such reports, and previous

ones have been patched or not-applicable any more with newer CPU versions.

Note that certain attacks based on SMM (System Management Mode) have

also been targeting TXT, but does not pose as much threat here as explained

in Section 6.7, Item (i).

2. Meltdown [170]/Spectre [158]. The lately identi�ed �aws in modern pro-

cessors make side-channel attacks potentially ubiquitous. An exclusive trusted

environment (where no other OS/entities/processes exist) is more preferable in

achieving one-timeness, which is the case for TXT.

3. Dedicated environment. SGX is positioned di�erently than TXT and does

not replace it, in the sense that the former allows multiple user-space instances

for cloud applications, whose attestation requires contacting Intel's IAS server

each time. In contrast, TXT is a dedicated environment, with reduced attack

vectors, that also allows local attestation.

6.2.3 Threat model

In the following, we list certain conditions and assumptions for our prototype OTP.

As the design can be generalized, more assumptions can be relaxed in a speci�c OTP

application.

• We assume that Alice is semi-honest and Bob is malicious. In addition, Alice

can be computationally unbounded. Alice is curious about Bob's input and Bob

is always interested in stealing Alice's input and executing the program with

his di�erent inputs multiple times.

• Both Alice and Bob have to trust the hardware manufacturer (in our case, Intel

and the TPM vendor) for their own purposes: For Alice, the circuit can only

be evaluated once on a given input from Bob; for Bob, the received circuit is

123

genuine and the output results are trustworthy.

• For the majority of the chapter, we assume no parties other than the aforemen-

tioned ones are involved/malicious. Speci�cally, the OTP machine delivered

to Bob is not compromised. We add discussion of a third-party adversary in

Section 6.7.

• Bob has only bounded computational power (e.g., cracking with a few PCs for

days), and may go for some lab e�orts, such as tapping pins on the motherboard

and cloning a hard drive, but not as complicated as imaging a chip.

• More speci�cally, components on the motherboard cannot be manipulated easily

(e.g., forwarding TPM tra�c from a forged chip to a genuine one by desolder-

ing). Even if it is possible, neither of the parties gain anything, as without

tampering the TPM chip, changes to the genuine chip are still irreversible and

one-timeness is enforced.

6.2.4 Terminology

Below, we de�ne the parties and phases (in the context of their supporting technolo-

gies) presented in the remainder of the chapter.

• Vendor (Alice): The vendor is both the provider and owner of the one-time

program to be evaluated.

• Client (Bob): The client will receive the one-time program from Alice, evaluat-

ing it on its own input.

• Sealing: This term, rather than referring to just the speci�c TPM or SGX oper-

ation, is used to refer to any environment-binding encryption or access-control.

Any change to the loaded program causes the environment's measurement to

change, thus preventing sealed data from being unsealed.

• Trusted selection: This refers to the key selection process that happens inside

TEE, whose integrity and con�dentiality are protected. This is the part of

OTP that enforces one-timeness. It comprises two modes: provisioning mode

and execution mode, as sealing must be done in the same measured program

(i.e., if Alice uses a di�erent program to seal the data, Bob will not be able to

unseal it).

124

6.2.5 Additional background

We provide additional background helpful for understanding one-time programs, gar-

bled circuits, and one-time memories.

One Time Programs A one-time program (OTP), as introduced by Gold-

wasser [92], is an implementation of a deterministic function which is provided by

Alice to Bob. We describe it here with less generality than it was presented origi-

nally (but see Section 6.2.3 for a reconciliation of both approaches). Consider the

implementation as containing the function itself (unprotected) and Alice's input to

the function (cryptographically protected). Bob can choose a single input and eval-

uate the function (with Alice's input) on it. With the output, he may be able to

infer something about Alice's input (depending on the exact function), but he can-

not infer anything about her input beyond this. Since Bob is operating the device

autonomously from Alice, his input is unconditionally private from Alice. The core

requirement of OTP is that while Bob is able to receive the evaluation on a single

input of his choosing, he is unable to obtain an evaluation of any other input. The

mechanism to enforce this is the topic of this chapter.

The term `one-time program' is a slight misnomer. One might equate it with a

form of copy protection or digital rights management. It is worth illustrating the

di�erence with a simple example. Consider a DRM scenario: Alice providing Bob

with a media player (the function) and a movie (Alice's input). The movie will play

if Bob inputs a correct access code. In this case, the stream of the movie is the output

of the function and once Bob learns the output, he can replay it as many times as he

wants. Therefore this is not a valid application of OTP; instead consider the following:

Alice provides Bob with a game of Go (the function) programmed with the latest in

arti�cial intelligence (Alice's input). Bob's moves are his input to function. He can

`replay' the game with the exact same moves (resulting in the exact same game and

outcome) as many times as he wants (so it is not strictly `one-time'), however as soon

as he deviates with a di�erent move, the program will not continue playing. In this

sense, he can only play `once'.

OTPs can be realized in a straightforward way with trusted execution. From here,

we will describe the alternative approach [92] of realizing one-time programs via a

simpler primitive called one-time memory (OTM), and composing OTM with garbled

circuits.

125

Garbled Circuits Garbled circuits (GC) were �rst proposed by Yao [303] as a

technique for achieving secure multiparty computation by at least two parties, a

generator (Alice) and an evaluator (Bob). A program is �rst converted into its Boolean

circuit representation. For each of the i wires in the circuit, Alice chooses encryption

keys k0
i and k1

i . Each gate of the circuit takes on the form of a truth table, and entries

of the truth table are permuted to further conceal whether any particular entry holds

a 0- or 1-value. The keys received on each input wire unlocks a single entry of the

truth table, itself a key that is released on the output wire and fed into the next gate.

Bob receives the garbled circuit from Alice, together with Alice's garbled inputs. Bob

garbles its own inputs through oblivious transfer (OT) with Alice. During evaluation,

an output key is iteratively unlocked, or decrypted, from each of the garbled gates

until arriving at the �nal output, which is revealed to all participants.

One Time Memory In summary, one-time programs extend garbled circuits where

the oblivious transfer phase is replaced with a special purpose physical device called

one-time memory (OTM). The protocol proceeds as in garbled circuits with Bob given

the circuit, encoded with Alice's input under encryption. Instead of interacting with

Alice to learn the keys that correspond to his input, Alice provisions a device with

all keys on it. However when Bob reads a key o� the device (say for input bit 0) the

corresponding key (for input bit 1) is erased. The end result is the same as oblivious

transfer: Bob receives exactly one key for each input bit while not learning the other

key, whereas Alice learns which keys Bob selected. The main di�erence is that the

key-selection is non-interactive, meaning Alice can be completely o�ine.

6.3 System 1: TXT-only

The fundamental feature of most Trusted Execution Environments (e.g., TXT in our

case) is isolation, integrity protection, and platform state binding. Therefore, the

program logic and data secrecy can be guaranteed in TEE. We propose to achieve

one-timeness by running the protected program in TEE only once (relying on logic

integrity) and storing its persistent state (including both the payload secret and the

one-time indicator) in a way that it is only accessible from within the TEE. During

execution, all secrets are also protected because of the isolation. The platform state

binding ensures that any modi�ed logic (software) or attempt to run on a di�erent

device (hardware) will fail.

126

We name this design TXT-only, since we use Intel TXT as the TEE. To achieve

minimal TCB and simplicity, we choose native C programming in TXT (as opposed to

running an OS/VM). Therefore, per-application adaptation is required as the appli-

cation logic might be existent in various programming languages (cf. similar porting

e�ort is needed for the GC-based variant, see Section 6.4).

A one-time indicator (�ag) is sealed into the TPM NVRAM to prevent replay

attacks (i.e., neither readable nor writable outside the correct environment). The

indicator is checked and then �ipped upon entry of the OTP. Without network con-

nection, the device shipped to the client can no longer leak any of the client's secrets

to the vendor. For this reason, only the vendor's secret input has to be protected. We

TPM-seal the vendor input on hard drive for better scalability, and there is no need

to address replay attacks as sealed vendor input can only be unsealed in the correct

environment where one-timeness is enforced.

Considering cold boot attacks (may reveal in-memory data to an adversary but

only once), we expose the unsealed vendor input in very small chunks during execu-

tion. For example, if the vendor input has 100 records, we would unseal one record

into RAM each iteration for processing the whole user input. This way, the destruc-

tive cold boot attack only learns one-hundredth of the vendor's secret, and no more

attempts are possible (the indicator is already updated). There are two limitations:

1) Performance might be a�ected. 2) The protected operation must support itera-

tive processing, or at least produce no intermediate sensitive output that cannot be

pre-sealed but leaks information.

6.3.1 TXT-only provisioning at Alice's site

At �rst, Alice is tasked with setting up the box, which will be delivered to Bob. Alice

performs the following: (1) Write the integrity-protected payload/logic in C adapted

to the native TXT environment, e.g., static-linking any external libraries and reading

input data in small chunks. We name it the TXT program. (2) In provisioning

mode of the TXT program, initialize the �ag to 0 and seal.2 The one-timeness �ag is

stored in an NVRAM index with permissions AUTHREAD|AUTHWRITE and PCR

selection (17, 18) for read and write. Instead of depending on a password and regular

2A �ag is more straightforward to implement than a TPM monotonic counter, as the
NVRAM index access can be directly bound to PCRs via TPM_PCR_SELECTION of
TPM_NV_DATA_PUBLIC, whereas a counter would involve extra steps (such as attesting to
the counterAuth password).

127

Vendor
Input

[sealed]
Vendor
Input TPM

Client
Input TXT Logic

Output

ABORT

1

2

Vendor

Client

1

0
1TXT TPM

0-flag set
and sealed

0

Figure 10: Our realization of One Time Programs spans two phases when relying on
TXT alone for the entire computation. Alice is only active during phase 1, while Bob
is only active during phase 2.

sealing, we rely on a stronger access-controlled ciphertext. (3) Seal Alice's input onto

the hard-drive in the provisioning mode.

6.3.2 TXT-only evaluation at Bob's site

Once Bob receives the computation box from Alice, Bob performs the following: (1)

Place the �le with Bob's input on the hard drive. (2) Load the TXT program, which

will read in Bob's input and unseal Alice's input to compute on. (3) Receive the

evaluation result (e.g., from the screen or hard drive).

As long as it is Bob's �rst attempt to run the TXT program, the computation will

be permitted and the result will be returned to Bob. Otherwise, the TXT program

will abort upon loading in step (2), as shown in Figure 10.

6.3.3 Trusted execution

We design the program running inside TXT to be loaded by the Intel o�cial project

tboot [134] and GRUB. It complies with the Multiboot speci�cation [91], and for

accessing the TPM, we reuse part of the code from tboot and developed our own

functions for commands that are unavailable elsewhere, e.g., reading/writing indices

with PCR binding (sealing-equivalent access control). Since we do not load a whole

OS into TXT with tboot (to minimize TCB), we cannot use OS services for disk I/O

access; instead, we implement raw PATA logic and directly access disk sectors with

128

DMA.

Before running the provisioning mode of the TXT program, both tboot and our

program must be measured and the resulted policy placed in TPM NVRAM indices.

We choose to include PCRs 17 and 18 in the policy, corresponding to DRTM (i.e.,

measuring the CPU-speci�c Intel ACM module, tboot, and our trusted selection pro-

gram). Then each time the system boots, Bob/Alice has the option of entering either

the provisioning mode or normal execution mode. However, re-provisioning will al-

ways erase everything so that security is not undermined. Entering the provisioning

mode (multiple times) is di�erent from resetting TPM where all sealed data is auto-

matically invalidated. Once the normal execution mode is entered, the program will

refuse to run a second time.

6.3.4 Performance evaluation

We perform our evaluation on a machine with a 3.50 GHz i7-4771 CPU, In�neon TPM

1.2, 8 GB RAM, 320 GB primary hard-disk, additional 1 TB hard-disk 3 functioning

as a one-time memory (dedicated to storing client input and sealed vendor input),

running Ubuntu 14.04.5 LTS.

We perform experiments to determine the e�ects of varying either client or vendor

input size. Our upcoming case study in Section 6.5 gives the vendor 880 bits and

the client 22.4M bits of input, so we use 224 and 880 as the base numbers for our

evaluation. We multiply by multiples of 10 to show the e�ect of order-of-magnitude

changes on inputs. We start with 224 for client and 880 for vendor inputs. When

varying client input, we �x vendor input at 880 bits. When varying vendor input, we

�x client input at 224K bits.

Varying Client Input Table 4 shows the timing results for TXT-only provisioning

and execution when keeping vendor input constant and varying only the size of client

input. During provisioning, only the vendor input is sealed, so the provisioning time

is constant in all cases. As client input size increases, so does execution time, but

the change is moderate. Performance is insensitive to client input size up through

the 224K case. Even for the largest (22M) test case, we see that increasing the client

input size by two orders of magnitude results only in a slowdown by a factor of 3.5x.

3The additional hard-disk only needs to be large enough to store client input and sealed vendor
input. It needs not be larger than the primary hard-disk.

129

Client Input (bits) Prov. (ms) Exec. (ms)

22M 5640.17 33427.50
2M 5640.17 11078.19
224K 5640.17 9426.56
22K 5640.17 9388.27
2K 5640.17 9393.88
224 5640.17 9394.58

Table 4: TXT-only results with �xed vendor input size (880 bits) and varying client
input size, averaged over 10 runs. Though runtime increases with client input size,
the change is gradual and suggests that TXT-only OTP is e�ective at supporting
large client inputs.

Vendor Input (bits) Prov. (ms) Exec. (ms)

88000 527026.89 921338.53
8800 53515.75 92551.43
880 5640.17 9426.56

Table 5: TXT-only results with �xed client input size (224K bits) and varying vendor
input size, averaged over 10 runs. The performance of TXT-only is linear and time
taken is proportional to vendor input sizes.

Varying Vendor Input Table 5 shows the timing results when keeping varying

vendor input size while keeping client input constant. Although we only tested against

three con�gurations, we immediately see that an order-of-magnitude increase in ven-

dor input size is accompanied by an order-of-magnitude increase in both provisioning

and execution times.

6.4 System 2: GC-based

As our TXT-only approach to OTP (System 1) involves sealing Alice's input, and

sealing is the most time-consuming operation, it is a good choice when Alice's input

is relatively small and Bob's input is substantially larger. However the linear increase

in execution time with increases in Alice's input size raises a new question. Is there

a construction that complements TXT-only and is less sensitive to the size of Alice's

input?

The answer may lie in garbled circuits. During garbled circuit execution, randomly

generated strings (or keys) are used to iteratively unlock each gate until arriving at

the �nal output. For more details regarding garbled circuits and their use, refer to

Section 6.2.5.

130

To adapt garbled circuits for OTP, we separate out the key-generation and key-

selection steps. As long as we limit key-selection to occur a single time, and the

unchosen key of each keypair is never revealed, we can prevent the running of a

particular circuit on a di�erent input.

To prevent keys from being selected more than once, we need to instantiate a One

Time Memory (OTM), which reveals the key corresponding to each input bit and

e�ectively destroys the unchosen key in the keypair. OTM is left as a theoretical

device in the original OTP paper [92]. We realize it using Intel TXT and the TPM.

As in our original construction, we seal a one-time �ag into the TPM NVRAM and

minimize the TXT logic to just handle key-selection, in preparation for GC execution.

Alice will seal (in advance) keypairs for garbling Bob's inputs. Bob may then boot

into TXT to receive the keys corresponding to his input. When Bob reads a key o�

the device (say for input bit 0), the corresponding key (for input bit 1) is erased.4 By

instantiating an OTM in this manner, we can replace interactive oblivious transfer

(OT) and perform the rest of the garbled circuit execution o�ine, passing in the keys

output from trusted selection. By combining TXT and garbled circuits in this way,

sealing complexity is now tied to Bob's inputs, as the key pairs (whose size is twice

the size of his inputs) need to be sealed into (for provisioning) and unsealed from (for

key selection) the TPM. We name this alternate construction GC-based (System 2).

Performance overhead with TPM sealing According to our measurement, each

TPM sealing/unsealing operation takes about 500ms and therefore 1 GB of key pairs

would need about 1000 hours, which is infeasible. So instead, we generate a random

number as an encryption key (MK) at provisioning time and the GC key pairs are

encrypted with MK. We only seal MK. This way, MK becomes per-deployment, and

reprovisioning the system will not make the sealed key pairs reusable due to the

change of MK (i.e., the old MK is replaced by the new key). Note that we could also

apply the same approach to TXT-only (i.e., encrypting Alice's input with MK and

sealing only MK), as needed by the application. In our chosen scenario, Alice's input

is a few orders of magnitude smaller than Bob's key pairs in GC.

4Unselected keys remain sealed/encrypted and are still erased from storage for better security.

131

6.4.1 The Frigate GC compiler

Frigate Frigate [190] is a modern Boolean circuit compiler that outperforms several

other garbled-circuit compilers (e.g., PCF [160], Kreuter et al. [161], CBMC [118])

by orders of magnitude. Frigate is also extensively validated and found to produce

correct and functioning circuits where other compilers fail [190]. For these reasons,

we decide to use Frigate for implementing the garbled circuit components of our

GC-based OTP.5

Battleship Battleship is developed by the same group behind Frigate and separates

out the interpreter and execution functionalities of Frigate. Battleship reads in and

interprets the circuit �le produced by Frigate. Battleship is originally designed to be

run interactively by at least two parties, a generator and an evaluator. The generator

is able to independently garble its own inputs, whereas the evaluator depends on OT

to garble its inputs. At each gate of the garbled circuit, a single value is decrypted

from the associated truth table containing encrypted entries. Garbled gates are iter-

atively decrypted until arriving at the �nal output, which is released to either party.

Output need not be the same for both parties.

We make the following modi�cations to Battleship to support one-time programs:

• Split execution in Battleship into two standalone phases. In the �rst phase, a

fresh set of random keys (0- and 1-keys for encoding each bit of the client's

input) is generated and written out to a �le. The keypairs contained in this �le

will be used during TXT provisioning, after which the �le is discarded. The

second phase reads in another �le containing the subset of keys chosen (during

trusted selection) according to the client's input bits and performs evaluation

of the circuit. Battleship did not originally require these �le operations since

inputs were garbled and immediately usable without needing to interrupt the

system, while we rely on Intel TXT.

• Remove the oblivious-transfer step. In our setting, vendor and client do not

perform interactive computation in real time. Instead, the client receives the

garbled representation of its input during the trusted selection process inside

Intel TXT. The client's input chosen in this way is not exposed to the vendor,

who no longer has access to the system after sending it to the client.

5Although we choose to go with Frigate, it is possible to instantiate our OTP system with other
garbled circuit compilers.

132

Frigate
Compiler

Battleship
(key gen mode)

Wire
File

Vendor
Input

Boolean
Circuit

TXT Logic
0 1 0 0 …

Key Pairs for
Client Input

Battleship
(evaluation mode) Output

1

2

3

Vendor

ClientTXT

0-flag set
and sealed

0

ABORT

Key Pairs for
Client Input

[sealed]

TPM

1

TPM

0
1 Client Keys

Actual
Client Input

Figure 11: Our GC-based approach to OTP spans three phases. Alice is only active
during phase 1, while Bob is only active during phases 2 and 3.

• Remove dependency on the full set of 0- and 1- keys in the second phase. In the

original Battleship design, generator and evaluator would be separate parties,

so the full set of keys were not visible to the evaluator even though it remained

available to the generator over the course of evaluation. In our setting, both

generator and evaluator functions run on the same machine, so it is imperative

that we make the full keyset unavailable. We achieve this by instead supplying

both the chosen subset of keys and the raw binary input of the client into the

second phase of our modi�ed Battleship. In this way, individual keys can be

identi�ed as either 0- or 1-keys without needing to examine the full keyset.

6.4.2 Execution steps

Our GC-based approach to OTP relies on TXT for trusted key selection and leaves

the computation for garbled circuits, as shown in Figure 11. In our setting, Alice

represents the vendor and Bob represents the client.

133

Provisioning at Alice's site Alice sets up the OTP box by performing the fol-

lowing:

1. Initialize �ag to 0 and seal in the TXT program's provisioning mode.

2. Write and compile, using Frigate, the wire program (.wir), together with Alice's

input, into the circuit.

The wire program may be written and compiled on a separate machine from that

which will be shipped to Bob. If Alice chooses to use the same machine, the (no

longer needed) raw wire code and Frigate executable should be removed from the box

before provisioning continues.

3. Load the compiled .mfrig and .�rig �les, vendor's input, and the Battleship

executable onto the box.

4. Write the TXT program (for key selection) in the same way as in TXT-only.

5. Run Battleship in key-generation mode to generate the k0
i and k1

i key-pairs

corresponding to each of the i bits of Bob's input. These are saved to �le.

6. Seal the newly generated keypairs onto the hard-drive in provisioning mode of

the TXT program.

Alice is able to generate the correct number of key pairs, since garbled circuit programs

take inputs of a predetermined size, meaning Alice knows the size of Bob's input. As

opposed to our TXT-only construction, costly sealing of all key pairs could be switched

out for sealing of the master key (MK) used to encrypt the key pairs.

Evaluation at Bob's site Bob, upon receiving the OTP box from Alice, performs

the following:

1. Place the �le with Bob's input bits on the hard drive.

2. Load the TXT program in normal (non-provisioning) mode for key selection.

3. Receive selected keys corresponding to Bob's input bits; these are output to

disk in plaintext.

As long as it is Bob's �rst attempt to select keys, the TXT program will return the

keys corresponding to Bob's input. Otherwise, the TXT program will abort upon

loading in step (2), as shown in Figure 11. After Bob's inputs have been successfully

garbled (or converted into keys) and saved on the disk, Bob can continue with the

evaluation properly. TXT is no longer required.

134

4. Reboot the system into the OS (e.g., Ubuntu).

5. Launch Battleship in circuit-evaluation mode.

6. Receive the evaluation result from Battleship.

When Battleship is launched in circuit-evaluation mode, the saved keys corresponding

to Bob's input are read in. Battleship also takes vendor input (if not compiled into the

circuit) before processing the garbled circuit. The Boolean circuit is read in from the

.mfrig and .�rig �les produced by Frigate. Evaluation is non-interactive and o�ine.

The evaluation result is available only to Bob.

6.4.3 Enhanced security: GC-based Plus

Similarly to the TXT-only OTP, our GC-based approach is vulnerable to the cold-

boot attack. Unlike TXT-only, where the protected vendor input is exposed in RAM

in chunks, the use of MK in GC-based becomes a single point of failure in face of

cold-boot attack. Once the MK inevitably shows up in RAM and is seen by the

adversary, all key pairs can be decrypted and one-timeness lost.

To address this, for smaller-sized client input, we can apply the same approach as

in TXT-only: seal the key pairs directly and only unseal into RAM in small chunks:

• When the key pairs are in kilo bytes, sealing into TPM NVRAM will ensure no

ciphertext access is possible outside the correct environment.

• When the key pairs are larger (only constrained by a tolerable sealing time), we

can seal all key pairs and store them on the hard drive. This way the adversary

has access to the sealed data (ciphertext) but cannot unseal it. Keep in mind

that sealing/unsealing of every 200 bytes takes about one second each.

6.4.4 Performance evaluation

We use the same experimental setup as used in Section 6.3.4 for evaluating System

1. The vendor and client input sizes are also kept the same.

Varying vendor input We are interested in whether our GC-based OTP is less

sensitive to the size of Alice's input than TXT-only OTP. Our results are shown

in Table 6. Since provisioning (Prov.) involves the sealing of a constant number of

keypairs, and selection (Sel.) is dependent on the unsealing of these keypairs to output

one key from each, there is no change. Both Battleship gen and evl mode timing is

135

Vendor
Input (bits)

gen (ms) Prov. (ms) Sel. (ms) evl (ms)

88000 3286.9 4244.03 2508.73 32000.9
8800 3198.7 4244.03 2508.73 32200.4
880 2323.7 4244.03 2508.73 31815.4

Table 6: GC-based results with �xed client input size, varying vendor input size, and
encryption of keys by a sealed master key, averaged over 10 runs.

Client
Input (bits)

gen (ms) Prov. (ms) Sel. (ms) evl (ms)

22M � 346606.87 283704.57 �
2M 16842.8 33934.54 19188.31 305362.8
224K 2323.7 4244.03 2508.73 31815.4
22K 1659.7 991.91 724.24 3643.7
2K 1318.9 906.70 688.62 1631.8
224 1503.7 843.64 600.55 1350.8

Table 7: GC-based results with �xed vendor input size, varying client input size, and
encryption of keys by a sealed master key, averaged over 10 runs. Provisioning- and
execution-mode times were measured separately. Dashes indicate tests not run due
to insu�cient memory on our testing setup.

largely invariant, as well. Whereas System 1 performance was linearly dependent on

vendor input size, we observe that GC-based OTP (System 2) is indeed less sensitive

to vendor input.

Varying client input For completeness, we also examine the e�ects of varying

client input size on runtime. Our results are shown in Table 7. Prov. and sel.

stages both increase as client input size increases, since more keypairs must be

sealed/unsealed. gen and evl times are also a�ected by an increase in client in-

put bits. Most notably, evl demonstrates a near order-of-magnitude slowdown from

the 224K case to the 2M case. We indeed �nd that TXT-only OTP is complemented

by GC-based OTP, where performance is sensitive to client input size.

6.5 Case Study

In this section, we implement our proposed system on a concrete use case based on

genomic testing. We provide additional use cases in Section 6.6.

Background The genetic instructions that determine development, growth and

certain functions are carried on Deoxyribonucleic acid (DNA) [256]. DNA is in the

136

form of double helix, which means that DNA consists of two polymer chains that com-

plement each other. These chains consist of four nucleotides: Adenine (A), Guanine

(G), Cytosine (C), and Thymine (T). Genetic variations are the reason that approx-

imately 0.5% of an individual's DNA is di�erent from the reference genome. Single

nucleotide polymorphism (SNP) is one of the most common form of these variations.

SNP de�nes a position in the genome referring to a nucleotide that varies between

individuals. Each person has approximately 4 million SNPs. Each SNP contains two

alleles, which correspond to nucleotides. Certain sets of SNPs determine the suscep-

tibility of an individual to speci�c diseases. If an individual's set of SNPs is analyzed,

it may pose a threat to privacy, as this analysis may reveal what kind of diseases a

person may have.

Indeed, advancements in genomics research have given rise to concerns about

individual privacy and led to a number of related work in this space. Genomic data not

only gives information about a person's association with diseases, but also about the

individual's relatives [201]. Furthermore, genomic data can uniquely identify a person,

hence the need for taking precautions regarding privacy emerges. Di�erent studies in

the literature address the privacy of the genomic and health related data. Canim et

al. [47], propose a framework that utilizes a tamper-resistant hardware that provides

secure storage and processing for clinical genomic data. Naveed et al. [200] introduce

a cryptographic tool that is called controlled functional encryption, in which a service

provider has to send a fresh key request to an authority whenever he wants to evaluate

a function on an individual's encrypted genomic data. Their proposed scheme is

used to determine patient similarity, paternity, and kinship. In [291], several private

edit distance protocols, which provide high e�ciency and precision, are proposed to

determine similar patients across di�erent hospitals.

There are several works on privacy-preserving genomic testing that are realized

by using cryptographic tools. Baldi et al. worked on e�cient techniques for privacy-

preserving testing on fully sequenced genomes [28]. In [25], a privacy-preserving

system for storing and processing genomic data is proposed. The proposed system is

based on homomorphic encryption and privacy-preserving integer comparison. Fisch

et al. create a functional encryption based system using Intel SGX [81] . They con-

sider a scenario in which a genetics researcher collects public-key encrypted genomes

from individuals and the researcher requests an analysis on these genomes from an

authority.

While a number of di�erent techniques have been proposed for privacy-preserving

137

Non-interactive One-timeness Pattern-hiding
Our technique X X X

Homomorphic Encryption - X X
Functional Encryption - X -

Table 8: Comparison of our technique with existing methods for genomic testing.

genomic testing, ours is the �rst work to address this using one-time programs

grounded in secure hardware. Moreover, whereas the schemes based on homomorphic

encryption lack non-interactivity and the schemes based on functional encryption lack

non-interactivity and pattern-hiding, our technique provides all three properties, as

shown in Table 6.5. We did not speci�cally implement these techniques and compare

our solution with them. However, from the performance results that are reported in

the original papers, we can argue that the proposed scheme provides comparable (if

not better) e�ciency compared to these techniques.

In this work, our aim is to prevent the adversary (the client or Bob) that uses the

device for genomic testing, from learning which positions of his genome are checked

and how they are checked, speci�cally for the genomic testing of the breast cancer

(BRCA) gene. BRCA1 and BRCA2 are tumor suppressor genes. If certain mutations

are observed in these genes, the person will have an increased probability of having

breast and/or ovarian cancer [290]. Hence, genomic testing for BRCA1 and BRCA2

mutations is highly indicative of individuals' predisposition to develop breast and/or

ovarian cancer throughout their lives.

We aim to protect the privacy of the vendor (company) that provides the genomic

testing and prevent the case where the adversary extracts the test, learns how it

works, and consequently, tests other people without having to purchase the test. We

aim to protect both the locations that are checked on the genome and the magnitude

of the risk factor corresponding to that position. Note that the client's input is secure,

as Bob is provided the device and he does not have to interact with the vendor (Alice)

to perform the genomic test.

6.5.1 Genomic test

In order to perform our genomic testing, we obtained the SNPs related with BRCA16

along with their risk factors from SNPedia [49], an open source wiki site that provides

6Similarly, we can also list the SNPs for BRCA2 and determine the contribution of the observed
SNPs to the total risk factor.

138

SNP Reference Number Position Alleles Risk Factor

rs41293463
43051071

AT 6
GG 6
GT 6

rs28897696
43063903

AA 7
AC 6

rs55770810
43063931

CT 5
TT 5

rs1799966
43071077

GG 2
AG 1.1

rs41293455
43082434

CG 5
CT 5
TT 2

rs1799950
43094464

GG 2
AG 1.5

rs4986850 43093454 AA 2
rs2227945 43092113 GG 2

rs16942 43091983
AG 2
GG 2

rs1800709 43093010 TT 2
rs4986852 43092412 AA 2

rs28897672 43106487
GG 4
GT 4

Table 9: SNPs on BRCA1 and their corresponding risk factors for breast cancer.

the list of these SNPs. The magnitude of risk factors ranges from 0 to 10 [253]. A

risk factor greater than 3 indicates a signi�cant contribution of that particular allele

combination to the overall risk of contracting breast cancer. The SNPs that are

observed on BRCA1 and their corresponding risk factors for breast cancer are listed

in Table 9.

We obtain genotype �les of di�erent people from the openSNP website [100]. The

genotype �les contain the extracted SNPs from a person's genome. At a high level, for

each SNP of the patient that is on a gene linked to BRCA1, we add the corresponding

risk factor to the overall risk. For instance, assume the SNP with ID rs1799950 is

observed in the patient's genotype �le with alleles A and G. From Table 9, we observe

that the contribution of this allele combination to the total risk factor is 1.5 and hence

add this value to the overall risk of the patient.

The details of our genomic algorithm is shown in Algorithm 1, where RF corre-

sponds to the total risk factor for developing breast cancer. The "risk factors" �le

contains the associations in Table 9 while the "patient SNPs" �le contains a patient's

extracted SNPs. If a SNP on BRCA1 is observed in the patient SNPs �le, we check

the allele combination and add the corresponding risk factor to the total amount. In

139

order to prevent a malicious client from discovering which SNPs are checked, we check

every line in the patient SNPs �le. If a SNP related to breast cancer is not observed

at a certain position, we add zero to the risk factor rather than skipping that SNP.

By doing this, we prevent the client from inferring checked SNPs using side-channel.

Algorithm 1 Genetic Algorithm
Input: RiskFactors, Patient SNPs
Output: RF
1: procedure Genetic Algorithm(RiskFactors, Patient SNPs)
2: RF = 0
3: for line in Patient SNPs do

4: SNP_ID = SNP ID in line

5: ALLELES = two alleles in line

6: for line_rf in Risk Factors do

7: SNP_ID_rf = SNP ID in line_rf

8: ALLELES_rf = two alleles in line_rf

9: if SNP_ID = SNP_ID_rf then

10: if ALLELES = ALLELES_rf then

11: RF = RF + risk factor in line_rf
12: else

13: RF = RF + 0
14: end if

15: else

16: RF = RF + 0
17: end if

18: end for

19: end for

20: return RF
21: end procedure

Let i denote the reference number of a SNP and sji be the allele combination of

SNP i for individual j. Also, Si and Ci are two vectors keeping all observed allele

combinations of SNP i and the corresponding risk factors, respectively. Then, the

equation to calculate the total risk factor for individual j can be shown as follows:

RFj =
∑
i

f(sji), (1)

where

f(sji) =

Ci(`) if sji = Si(`) for ` = 0, 1, . . . , |Si|

0 otherwise

For instance, for the SNP with ID i = rs28897696, Si =< AA,AC > and Ci =<

7, 6 >. If the allele combination of SNP rs28897696 for individual j corresponds to

one of the elements in Si, we add the corresponding value from Ci to the total risk

140

factor.

6.5.2 GC-Based OTP implementation

The garbled circuit program is written as wire (.wir) code accepted by the Frigate

garbled circuit compiler. The program closely follows Algorithm 1. For each SNP

of Bob's (client's) input, the SNP ID is compared to that of each entry of Alice's

(vendor's) input. If the SNP IDs match, the allele-pairs are compared. If the allele-

pairs also match, the overall risk factor increases by the associated value. If there is

a mismatch at any step, a zero-value is added to the overall risk factor in order to

not leak side information.

We choose Bob's input from AncestryDNA �les available on the openSNP web-

site [100]. We perform preprocessing on these �les in order to arrive at a compact

representation of the data contained within. Speci�cs are available in Section 6.5.3.

Alice's input is hard-coded into the circuit at compile-time. This is done by initializ-

ing an unsigned int of vendor input size; we use Frigate's wire operator to individually

assign values to each bit of the unsigned int structure.

Final input representation Following the original design of Battleship, inputs

are accepted as a single string of hex digits, with each digit represented by 4 bits.

Each digit is treated separately, and the input is parsed byte by byte (e.g., 4116 is

represented as 100000102).

We use 7 hex digits (28 unsigned bits) for the SNP reference number and a single

hex digit (4 unsigned bits) to represent the allele pair out of 16 possible combinations

of A/T/C/G. Alice's input additionally contains 2 hex digits (8 signed bits) of risk

factor, allowing us to support individual risk factor values ranging from -128 to 127.

We chose to keep risk factor a signed value, since some genetic mutations can result

in a lower risk of disease. Although we did not observe any such mutations pertaining

to BRCA1, our representation gives extensibility to tests for other diseases.

Output representation The output of the garbled circuit program is 16 signed

bits, allowing us to support a cumulative risk factor ranging from -32,768 to 32,767.

This can easily be adjusted for other applications, but is accompanied by substantial

changes in the resulting circuit size. For example, for the same functionality, an 11

GB circuit that outputs 16 bits grows to 18 GB by doubling the output size to 32

bits.

141

OTP Type Mode Timing (ms)

TXT-only
Prov. 5640.17
Exec. 33427.50

GC-based

gen �
Prov. 346606.87
Sel. 283704.57
evl �

Table 10: Performance numbers for our TXT-only and GC-based OTP implementa-
tion of the BRCA1 genomic test, averaged over 10 runs. Vendor input is 880 bits,
while client input is 22,447,296 bits. Dashes indicate modes not run due to insu�cient
memory.

6.5.3 GC-based case study setup

Client input To arrive at a compact representation of Bob's input, we employ a

simple bash shell script to:

• Remove unused chromosome and position �elds.

• Remove comment lines at the start of �le and the line containing �eld headings.

• Remove the �rs� pre�x from each SNP reference #.

• Remove all spaces between �elds and line breaks between entries, making the

entire input one line.

• Convert SNP reference numbers into hexadecimal format, and zero-pad the

result to length 7 (hex format allows us to reduce 4 keys per entry for a more

e�cient representation).

• Merge Allele 1 and Allele 2 �elds, and assign a 1-digit hex value to each possible

allele pair.

The removal of all spaces and line breaks caters to the original Battleship design, which

expects inputs to be read in as a single line. It is especially important that reference

numbers be padded with zeroes (e.g., 0x3DE2 (15842), becomes 0x0003DE2), given

that we merge all inputs into a single line, so entries can be parsed using �xed indices.

7 hex digits is su�cient to support all reference numbers, which have at most 8 decimal

digits.

142

Vendor input If a particular SNP has more than one (allele pair, risk factor)

mapping, then each of these is treated as a separate input (with SNP reference num-

ber repeated). Although this leads to increased circuit size, specifying Alice's input

in this manner is necessary in order to avoid subtle timing disparities which may

leak information about the test being performed. The alternative is to make the if

condition at line 10 of Algorithm 1 iterate over the mappings associated with each

SNP. While it would result in less I/O time, �xing the loop bound according to the

maximum number of mappings decreases performance if the majority of SNPs have

few associated mappings. This would also complicate distinguishing between entries

in our compact representation.

6.5.4 TXT-only OTP implementation

In TXT-only, the same comparison (of the SNP ID and allele pairs) logic is ported

in pure C. Alice's input is in the form of 7 hex digits of the SNP ID, 1 hex digit for

the allele pair and 2 digits for the risk factor. Bob's input is 2 digits shorter without

the risk factor.

Where we pay special attention is that, to minimize RAM exposure of Alice's

input, we have to perform all operations per one single record of Alice's, and delete

it before moving on to the next. We also seal Alice's one record (10 bytes) into one

sealed chunk (322 bytes), which consumes more space. In each iteration, we unseal

one Alice's record and compare with all Bob's records.

6.5.5 Evaluation

Our case study aligns with the 22M con�guration in Sections 6.3 and 6.4. We pull

from those results here.

We see in Table 10 the results for both our OTP systems. Even at �rst glance, we

see that TXT-only OTP vastly outperforms GC-based OTP. Alice's input comprises

the 22 SNPs associated with BRCA1, as shown in Table 9. Each SNP entry takes up

40 bits, so Alice's input takes up 880 bits. Bob's input comprises the 701478 SNPs

drawn from his AncestryDNA �le, each of which is represented with 32 bits, adding

up to a total size of 22,447,296 bits.

Provisioning is two orders of magnitude slower in GC-based OTP, and trusted

selection itself is an order of magnitude slower than the entire execution mode of

TXT-only OTP.

143

Small Vendor +
Small Client

Small Vendor +
Large Client

TXT-only TXT-only

Large Vendor +
Small Client

Large Vendor +
Large Client

GC-based TXT-only

Table 11: Depending on the input sizes of vendor and client, one system may be
preferred to the other. GC-based OTP is favorable when large vendor input is paired
with small client input; TXT-only OTP otherwise.

Choosing one OTP We already saw in Section 6.3 that TXT-only OTP is less

sensitive to client input, whereas we saw in Section 6.4 that GC-only OTP is less

sensitive to vendor input. We illustrate the four cases in Table 11. In this speci�c

use-case of genomic testing, we are in the upper-right quadrant and thus TXT-only

OTP dominates. However, other use cases, like the Database Queries in Section 6.6,

are in the lower-left quadrant where GC-based OTP will outperform TXT-only. What

do we do if both inputs are �small� or both are �large�? A safe bet is to stick with

TXT-only OTP. Even though GC technology continues to improve, garbled circuits

will always be less e�cient than running the code natively.

6.5.6 Porting e�ort

To get started with an application based on our OTP (either variant), the very �rst

step is always creating the payload program, or if existent, porting it to a designated

programming language. In the case of the GC-based, rewriting in the Frigate-speci�c

limited-C language is necessary. For the TXT-only, the few technical tweaks such as

PATA I/O with our added DMA support are seamlessly transparent to the applica-

tion developer, since they are only exposed like POSIX-like �le operations, similar

to fopen, fread and fwrite. We argue that regarding the status quo of most exist-

ing OTP solutions, this process has to be (quasi-)manual in terms of programming

language. Therefore, we hope, as future work, to either have an automated frame-

work for OTP-speci�c conversions or (in the case of TXT-only) include a lightweight

language environment.

144

6.6 Other Use Cases

Database Queries Another application in a medical setting can be the case where

the protocol is between two parties, namely a company that owns a database con-

sisting of patient data and a research center that wants to utilize patient data. The

patient data held at the company contains both phenotypical and genotypical prop-

erties. The research center wants to perform a test to determine the relationship

of a certain mutation (e.g., a SNP) with a given phenotype. There may be three

approaches for this scenario:

1. Private information retrieval [54]: PIR allows a user to retrieve data from

a database without revealing what is retrieved. Moreover, the user also does

not learn about the rest of the data in the database (i.e., symmetric PIR [235]).

However, it does not let the user compute over the database (such as calculating

the relationship of a certain genetic variant with a phenotype among the people

in the database).

2. Database is public, query is private: The company can keep its database

public and the research center can query the database as much as it wants. How-

ever, with this approach the privacy of the database is not preserved. Moreover,

there is no limit to the queries that the research center does.

As an alternative to this, database may be kept encrypted and the research

center can run its queries on the encrypted database (e.g., homomorphic en-

cryption). The result of the query would then be decrypted by the data owner

at the end of the computation [146]. However, this scheme introduces high

computational overhead.

3. Database is not public, query is exposed: In this approach, the company

keeps its database secret and the research center sends the query to the company.

This time the query of the research center is revealed to the company and the

privacy of the research center is compromised.

In order to address all of these challenges, we propose a system in which a one-time

program is used on a device. The company stores its database into the device and

the research center purchases the device to run its query on it. This system enables

both parties' privacy. The device does not leak any information about the database

and also the company does not learn about the query of the research center, as the

145

research center purchases the device and gives the query as an input to it. In order

to determine the relationship of a certain mutation to a phenotype, chi-squared test

can be used to determine the p-value, that helps the research center to determine

whether a mutation has a signi�cant relation to a phenotype.

To demonstrate the workings of our OTP system, we designed and implemented a

genomic test for BRCA1 genes. Our OTP construction can also be adapted to other

uses for one-time programs; we provide the intuition below. We must also consider

the monetary costs associated with adapting programs into OTP boxes according to

our design. If non-interactivity is not required, interactive garbled circuit protocols

may su�ce.

Additional genomic tests Other tests are possible that operate on a sequenced

genome. Further, Bob may have multiple inputs to evaluate on a single function. For

instance, an individual may input two or more genomes for a paternity test or a disease

predisposition test that may also involve other family members. This functionality

can be easily added to the proposed scheme by treating multiple sets of test data

as single input, although it does not provide privacy between family members (but

provides privacy of the set from the vendor).

Temporary transfer of cryptographic ability OTP lends itself naturally to the

situation when one party must delegate to another the ability to encrypt/decrypt or

sign/verify messages [92]. In this case, individual OTP boxes must be provisioned

and given in advance to the designee, with each box only capable of performing a

single crypto-operation. The cost could easily add up, but it might be acceptable for

time-sensitive or infrequent messages of high importance (such as military commu-

nications). If messages are more frequent, then it may be worthwhile to consider a

k-time extension (k > 1) to OTP. In either case, the designee is never given access

to the raw private key. Care must be taken to restrict the usable time of each box,

which can be realized by sealing an end date in addition to the one-timeness �ag.

One-time proofs As suggested by [92], OTP allows witness-owners to go o�ine

after supplying a proof token to the prover. This proof token can be presented

to a veri�er only once, after which it is invalidated. We can certainly realize this

functionality using our OTP boxes, since proofs produced by our OTP are invalidated

by nature of interactive proof systems and may not be reused. Depending on the

146

usage environment, using our OTP box may or may not be cost-e�ective. While our

implemented system may be too costly to serve as subway tickets, the cost may be

justi�ed if our box is used as an access-control mechanism to a restricted area.

Digital cash As a one-time program, this was investigated by [155], which used

Shamir's secret sharing in place of OTMs. We borrow their three-party scenario to

reason about our own OTP system.

1. The bank supplies OTP boxes with set dollar values.

2. To make a payment, the user provides to the OTP box the shop's hash of a

newly generated random number.

• In TXT, the corresponding keys are selected.

• After reboot, the selected keys are input into the garbled circuit program,

which outputs a signature of the dollar-value concatenated with the shop's

hash value.

3. The shop veri�es the signature.

4. The shop requests cash from the bank using the signature.

Unlike [155], we have a proper OTM in the form of the TPM. A sealed �ag value

could enforce the one-timeness, preventing the user from giving valid signatures for

more than one shop input. However, our scheme requires further modi�cation to

prevent double-spending, as it is possible for two independent shop hash-values to be

the same, in which case the user can reuse the associated signature. Furthermore,

OTP for digital cash would not be feasible if the held dollar value is less than the

cost of the OTP box itself, unless the bank customer's goal is untraceability.

6.7 Security analysis

a) Replay attacks. A major threat for OTP is the reuse of data from a previous

state (e.g., before execution). This is sometimes even possible without compromising

the one-time logic in TXT. For instance, if there is no freshness in the key pairs, as

they are large and have to reside on the hard drive, the adversary may be able to make

a copy of the sealed/encrypted key pairs and re-deploy the OTP and evaluate on a

147

di�erent input of his choice. There are two possibilities of re-deployment: either the

adversary resets TPM and sets his own owner password, or he enters the provisioning

mode (as Alice does). For the �rst possibility, resetting the TPM causes all sealed

data to be invalidated (due to changed SRK), which means the loss of the sealed

MK/vendor input (or sealed key pairs in GC-based Plus). To counteract re-entering

the provisioning mode, where the genuine TXT program is still in control, we simply

use a per-deployment nonce appended to all sealed/encrypted items (or XOR'ing

with it). For the MK-encryption variant, since MK itself is re-generated each time

the provisioning mode is entered, all the encrypted key pairs have freshness and

no replay is possible.

b) A third-party adversary. We prioritize the enforcement of one-timeness as

the main goal. However, in light of comprehensiveness, we also discuss a threat that

harms the genuineness/correctness of the evaluation results: system compromise by

a third-party adversary, e.g., during shipping. If the OS is compromised so that the

output from the Battleship evaluation is modi�ed, Bob might be mislead (in favor of

the adversary), e.g., showing a disease that Bob does not have.

Secure delivery of the OTP box might be infeasible (assuming in-person handover

between Alice and Bob is also very unlikely). To ensure Battleship evaluation's code

integrity we may refer to ROTI [56] for trusted installation. But in our case, since the

TXT phase already guarantees one-timeness, Bob only needs to measure the shipped

garbled circuit and resort to his own machine for execution. There is no necessity to

ensure Battleship evaluation's process integrity (for which execution in TXT seems

a straightforward option). This is because Bob has motivation not to interfere with

this process for his own correct result.

c) Memory side-channel attacks. Despite the hardware-aided protection from

TXT+TPM, the TXT program must, at certain points, operate on sensitive plaintext

data. For instance, MK is needed for encrypting/decrypting key pairs and the key

pairs when being selected must also be in plaintext. There are generally two categories

of memory attacks: one relies on software/�rmware vulnerabilities such as DMA

attacks [246]; and one is purely physical exempli�ed by the cold-boot attack where

the RAM modules are mounted to another machine to be accessed after the content

is preserved using liquid nitrogen due to the remanence e�ect.

In TXT, DMA is properly disabled and there is no other software (hence the

exclusiveness) running in parallel (no OS/hypervisor). Therefore, generally the �rst

category of memory attacks can be excluded (cf. previous reports [297, 299]). We

148

also assume that Alice has the motivation to select a hardware model with no known

public �aws, to ensure one-timeness of her program.

However, the cold-boot attack is e�ective as long as plaintext content is in RAM.

For small-sized secrets like MK, we reduce the time MK is exposed but due to its

constant presence in RAM (for decryption/encryption) if an adversary gains access

to memory contents his chance of getting MK is still high. As mitigations, existing

academic/industrial solutions can be used (e.g., [194, 103, 285, 251]); especially, in

our case MK is as small as a few bytes which �ts perfectly into the alternative loca-

tions (other than RAM) such solutions propose to use, e.g., CPU registers, caches,

GPU registers. Oblivious RAM (ORAM) is another potential countermeasure to hide

memory access patterns. For larger secrets, like the key pairs/vendor input, we per-

form block-wise processing so that at any time during the execution, only a very small

fraction is exposed. Also, as cold-boot attack is destructive (only one attempt), the

adversary will not learn enough to reveal the algorithm or reuse the key pairs.

d) Input credibility/correctness. In genomics scenario, one may not want a third

party to run a test on his genome without his consent. Similarly, an attacker should

not run several tests using fake genomes to infer the protected function. As future

work, we will add a mechanism to verify (i) credibility of the input data (i.e., that data

indeed belongs to a real individual), and (ii) ownership of the input data (that data

indeed belongs to the individual that is running the test, or the test is being conducted

with his consent). To achieve this, we can utilize digital signatures and biometric

attributes together. The input data to the device, which is the sequenced DNA, may

be signed together with a biometric factor like �ngerprint, by an authority (sequencing

facility). Along with his input, Bob should also provide a fresh biometric input to the

device so that it can be checked against the signed biometric attribute. While the

signature over the input provides credibility, the biometric factor ensures ownership.

e) Attack cost. Similar to the above item, Bob may try to infer the protected

function and vendor inputs by trying di�erent inputs in multiple instances. Of course,

this attack may incur a high cost as Bob will need to order the OTP from Alice several

times (if he can a�ord and is willing to pay). This is a limitation of any o�ine OTP

solution, which can only guarantee one query per box.

f) Inference attacks. Even though Bob is only allowed to run a single test on

Alice's function, he may (probabilistically) infer outputs of other correlated tests by

observing the output of the test on his selected input. For instance, there may be two

149

genetic disorders that are highly correlated with each other. For instance, the SNP

with ID rs429358 has in�uence on the risk of having both Alzheimer's disease and

heart disease [254]. Moreover, di�erent psychiatric disorders are also correlated [64].

This relation is determined according to the SNPs observed. The SNPs associated

with schizophrenia and bipolar disorder are also highly correlated. Then, it means

that the output of the �rst genomic test will enable a person to make inferences

about the result of the second test. Bob might also infer details of Alice's input to

the function depending on how the circuit is designed. Care should be taken to design

the circuit with the same circuit depth, independent of Alice and Bob's input values.

g) Adaptive attacks. For one-time programs, the privacy guarantee of garbled

circuits alone is too weak against anything beyond honest-but-curious adversaries, as

highlighted in [92]. Unless a (projective) garbling scheme is carefully transformed into

one that provides adaptive privacy, the resulting scheme used to realize an OTP opens

up room for adaptive attacks [31].7 In a coarse-grained adaptive attack, the adversary

selects inputs after inspecting the circuit. Further, the adversary may choose some

key pairs, decrypt part of the circuit, and use intermediate information to decide what

keys to choose next in a �ne-grained adaptive attack. There are several mechanisms

for stopping these attacks:8

• Allow the adversary to decrypt the circuit but not learn the output of the circuit

until all keys have been chosen [92]. The output is blinded with a random value,

distributed into n shares, where n is the number of keys. Each time a key is

chosen, it is returned together with a corresponding share of the random value.

Only after choosing all keys is the random value revealed for unmasking the

output.

• Encrypt the circuit using either a one-time-pad or random-oracle-based encryp-

tion and reveal the decryption key together with the garbled input in the online

phase [31]. A somewhere-equivocal encryption scheme, where a small subset of

message bits are equivocal, may also be used [112].

• Place a �holdo�� gate into each output wire that cannot be evaluated until all

keys are learned [143].

For our approach, we draw inspiration from [31] and choose to seal the entire circuit

7For certain classes of circuits, [142] claims that garbled circuits are adaptively secure without
further modi�cation, with security loss tied to pebble complexity of the circuit.

8Note that this is not an issue in the fully-online, interactive garbled circuit setting where the
circuit is sent over to the evaluator only after the evaluator's inputs have been garbled using OT.

150

and only unseal it after all keys have been selected, enforcing this using TXT. Alter-

natively, we may seal a master key used to encrypt the circuit, similarly to our ENC

variant approach for protecting the keypairs. The security reduces to the security of

TXT, which we already assume. Additionally, if we assume AES is an ideal cipher,

then looking at an AES encryption of the circuit is the same as not being given the

circuit (in any form) at all for a computationally bounded adversary.

h) Cryptographic attacks. The security of one-time programs (and garbled cir-

cuits) is proven in the original paper [92] (updated after caveat [31]), so we do not

repeat the proofs here.

i) Clonability. Silicon attacks can reveal secrets (including the Endorsement-Key),

but chip imaging/decapping requires high-tech equipment. Thus, cloning a TPM or

extracting an original TPM's identity/data to populate a virtual TPM (vTPM) is

considered unfeasible. Sealing achieves platform-state-binding without attestation,

so non-genuine environments (including vTPM) will fail to unseal.

j) SMM attacks. The System Management Mode (SMM) is a special execution

mode in modern x86 CPUs and considered having (informally) the Ring minus 2

privilege, preempting virtually any other modes. Therefore, although not recently,

it was exploited [297] to interfere with TXT execution. This attack assumes the

compromise of the SMI (SMM Interrupt) handler (which is di�cult, but feasible in an

ad-hoc manner), and during TXT execution an SMI is triggered and the compromised

handler comes in to manipulate anything of the adversary's choice. However, in the

case of our OTP, we do not load any standard code that needs SMI and has it enabled

(like an OS or hypervisor); instead, our custom program for key selection or OTP

execution has SMI disabled from the �rst line of code (not to mention containing

any SMI trigger, e.g., writing to port 0xb2), and thus is not a�ected by such attacks.

Since TXT is exclusive, no other code can run in parallel.

Note that Alice no longer bene�ts from any attacks (e.g., stealing Bob's input)

due to loss of physical possession and network connectivity. We exclude, for now, any

potential threats from Intel ME (Management Engine) which is referred to as Ring

minus 3 and has a dedicated processor, in the consideration that all rely on ad-hoc

vulnerabilities and this topic is still under open discussion [75]. We will follow up on

this.

k) TPM relay attack [80]. A man-in-the-middle (MitM) attack speci�cally tar-

geting TPM-like devices impersonates and forwards requests to a (remote) legitimate

151

device, pretending its proximity or co-location on the same machine, to either learn

the secrets or forge authentication/attestation results. In the case of our OTP, only

Bob has physical possession and is motivated for such attacks. However, since he

cannot clone the TPM chip, whatever real tra�c directed to the legitimate one will

cause irreversible e�ect (e.g., �ipping the �ag) Note that his intension is not merely

mimicking, which does not help. Also, we do not send TPM commands in plaintext,

except for ordinals and certain metadata. Our ultimate argument is that, regardless

of the lab e�ort we already exclude in Section 6.2.3, the integration of TPM in other

microchips (e.g., SuperIO) or an equivalent method will avoid exposing TPM pins for

potential probing.

6.8 Related Work

OTP implementations In the original OTP paper [92], OTM is left as a theoret-

ical device. In the ensuing years, there have been some design suggestions based on

quantum mechanisms [41], physically unclonable functions, and FPGA circuits [143].

The latter is the closest to a practical design so we expand on it. The authors provide

an FPGA-based implementation for GC/OTP, with a GC evaluation of AES, as an ex-

ample of a complex OTP application. They conclude that although GC/OTP can be

realized, their solution should be used only for �truly security-critical applications�

due to high deployment and operational costs. They also provide a cryptographic

mechanism for protecting against a certain adaptive attack with one-time programs

(see Section 6.2.3); it is tailored for situations where the output size is larger than

a typical security parameter. Kitamura et al. [155] realize OTP without OTM by

proposing a distributed protocol, based on secret sharing, between non-colluding en-

tities to realize the `select one key; delete the other key' functionality. This introduce

further interaction and entities. Our approach is in the opposite direction: removing

all interaction (other than transfer of the device) from the protocol. Prior to OTP

being proposed, Gunupudi and Tate [105] proposed count-limited private key usage

for realizing non-interactive oblivious transfer using a TPM. Their solution requires

changes in the TPM design. By contrast, we utilize unmodi�ed TPM 1.2.

152

6.9 Concluding Remarks

Until now, one-time programs have been theoretical or required highly cus-

tomized/expensive hardware. We shift away from crypto-intensive approaches to

the emerging but time-tested trusted computing technologies, for a practical and af-

fordable realization of OTPs. With our proposed techniques, which we will release

publicly, anyone can build a one-time program today with o�-the-shelf devices that

will execute quickly at a moderate cost. The cost of our proposed hardware-based

solution for a single genomic test can be further diluted by extension to support

multiple tests and multiple clients on a single device (which our current construc-

tion already does). The general methodology we provide can be adapted to other

trusted execution environments to satisfy various application scenarios and optimize

the performance/suitability for existing applications.

153

Chapter 7

Explicit Authentication Response

Considered Harmful

The aforementioned research topics mainly concern no online third parties, such as

a service provider. In this chapter, based on similar defense philosophy (P2), we

address guessing/dictionary attacks against passwords where an online trusted party

is involved.

7.1 Introduction

Automated online password guessing is a long-standing problem for password-based

authentication. Nowadays, this problem is possibly getting worse for reasons includ-

ing the following. (a) The growth of underground market for stolen credentials; i.e.,

attackers can turn stolen passwords into tangible pro�ts; see e.g., Holz et al. [117].

(b) The value of user accounts increases over time, e.g., long-standing Facebook pro-

�les, Gmail accounts, highly-reputed Paypal accounts. In many cases, user accounts

are not as readily replaceable as in the past�i.e., create a new account if the old one

is compromised. (c) User chosen passwords are not getting better in terms of com-

plexity. New services requiring passwords are emerging, causing password fatigue or

sharing across sites. Also, the increasing number of online participants (e.g., see [125])

makes the use of common passwords more possible. (d) Attackers are getting more

organized than before, and have access to better tools and crackers; for example,

they now maintain more robust botnets, and can use better techniques than just

brute-forcing, e.g., optimized dictionary attacks [198].

154

Common countermeasures include: rate-limiting the number of allowed login at-

tempts in a given period of time; the use of captchas to restrict automated attacks, see

e.g., Pinkas and Sander [219]; and triggering a two-step authentication, e.g., one-time

PIN sent to a pre-registered mobile phone, and personal challenge questions. In most

cases, attackers can bypass the countermeasures, at least to a limited extent. For

example, assuming a three-strike account locking technique is used, an attacker can

still employ a large botnet (e.g., million-node) to test the most common passwords

and possibly compromise some accounts; here, the attacker is successful if her goal

is to access a few accounts (e.g., to use as intermediate money-transfer accounts),

instead of compromising a targeted account. Captchas are mostly detested by hu-

man users as they are becoming increasingly di�cult to decipher (see e.g., [43]); as a

side-e�ect, login times also increase as legitimate users sometimes need to try more

than one captcha for an exact match. Several real-world captcha schemes have been

defeated by improved image recognition algorithms (see e.g., [44]). As a result, service

providers often leave with no option but to deploy more complex captchas. These

limitations are known and several proposals in the past attempted to address the

security-usability trade-o� in captcha schemes (e.g., [219, 13]).

The fundamental problem here, as we see is that the attacker can learn the out-

come of her guess with 100% certainty, using fully automated attacks or involving

some trivial human help. Human-assisted captcha breaking services are available, for

cheap (see e.g., [191]). As we are aware, veri�ers in all known authentication schemes

output a success or failure message after a trial, and we argue that such explicit

messages aid online guessing attacks. Explicit messages may include return codes

from an authentication API, protocol data from the veri�er, text string, or even the

continuation/discontinuation of the attempted session.

We introduce here Uvauth (user-veri�able authentication) to reduce the attacker's

con�dence on the outcome of her guessed password by granting her access for any

password she enters. For a given userid, the correct password will lead to the real

user account, and all other passwords will provide fake sessions (i.e., with fake user

data). To avoid detection by re-logging into the same account, same userid-password

pair will always result in the same session. Likewise, di�erent userid-password pairs

should also lead to di�erent sessions in order that the legitimate session cannot be

distinguished from fake ones. The underlying assumption is that real users will im-

plicitly understand the outcome of their authentication attempt by the presented

data; i.e., an unfamiliar account will indicate that the entered password is incorrect,

155

and they need to try again. On the other hand, a random attacker may have little

or no idea what to expect as user data after being logged in, even if she launches a

human-assisted attack. Attackers can perform di�erent operations to discover a fake

session, and our goal is to raise the bar for such attacks to succeed�e.g., by requiring

non-trivial e�orts from the attacker beyond simply solving a captcha. By increasing

the attack cost, we choose to tolerate the attacks, instead of addressing them head-on.

Users are also freed from �solving� captchas, or going through other reverse Turing

tests as part of their authentication.

Note that Uvauth is di�erent than implicit authentication (see e.g., [249]), where

a user is authenticated by her usual traits/actions. An explicit outcome is provided

at the end of such an authentication attempt, which we would like to avoid. Our

proposal is also independent of whatever secrets, features or tokens are used to verify

a user; it is the outcome of an authentication attempt that we would like to protect,

where online guessing is a concern.

Uvauth's fake sessions can be seen as a form of deception, which has been in

use for centuries in traditional wars and con�icts; see e.g., �All warfare is based on

deception� [90]. Deception as a cognitive defensive technology has been extensively

studied by many researchers for years; see e.g., [233, 310, 59, 27]. In current computer

security techniques, this methodology is well demonstrated in honeypots, where de-

ception is used to in�uence the behavior of attackers, or to collect data for future use,

e.g., to understand the attackers and their target systems and network resources (see

e.g., [259, 53, 221, 202]).

Our use of deception is not to gain more insights into the attackers' behaviors, but

simply to raise the di�culty of online guessing attacks against weak authentication

secrets. The following analogy may further clarify the di�erence. Consider a virtual

building with several locked rooms. Honeypots protect access to a room by generating

a fake room on-the-�y or claiming that the room is unavailable. In contrast, we

create a fake room to protect the lock of a room, assuming the lock is weak�i.e.,

given enough time, a lock-picker can easily open it. Our use of fake sessions can also

be viewed as the no-information leakage property of a perfect one-time pad (OTP)

encryption: attackers have no way of verifying a guessed key for an OTP scheme, as

a valid key exists for every candidate plaintext, i.e., attackers do not know when they

succeed.

Several challenges must be addressed for Uvauth. Generating fake sessions would

156

require additional resources from the veri�er, and non-trivial e�orts to mimic a le-

gitimate session. Protected accounts should have enough personal content so that

legitimate users will easily learn whether they have logged in with the correct pass-

word. To address less-/non-personal accounts, we propose the use of distorted images

/ modi�ed captchas as a communication channel for the authentication result from

the veri�er to a client. The crucial di�erence with existing captcha here is that:

we do not require users to solve captchas verbatim (i.e., character-by-character) and

type the result. Instead, users are expected to use the captcha messages as a second

channel to verify their login (i.e., in addition to the content they can see). More

challenging captcha schemes can be used in our setting, as users are not required to

decipher each character in the exact form.

In summary, our contributions include:

1. In user-level authentication, we introduce the idea of programmatically leaving

the result of authentication on the server (veri�er). Such hiding of authentica-

tion results may enable e�ective protection against online guessing attacks.

2. We propose the use of adapted distorted image as a computer-cipher/human-

decipher channel to communicate short messages in human-machine interaction.

3. Our proposal requires no changes on the client side software or existing password

input UI, and can be used with any authentication scheme vulnerable to online

guessing attacks.

7.2 Threat Model and Assumptions

In this section, we describe our goals, the conditions under which Uvauth works, and

list situations that are considered out-of-scope.

Goals. The objective of our proposal is to make both machine-only and human-

assisted attacks signi�cantly more di�cult than using the current state-of-the-art

captchas. The level of di�culty can be set by the depth of deception in Uvauth's fake

sessions.

157

Assumptions.

a) User-level authentication. We address authentication scenarios where a human

user is the claimant and a computer is the veri�er. We do not include machine-to-

machine authentication, e.g., automated script for connecting to a database server.

b) Weak-secret-based, single-factor authentication. Uvauth can be used in-

dependent of any existing authentication technique, e.g., text or graphical password

schemes, certi�cate-based schemes. However, Uvauth's protection is intended for

situations where weak-secrets are used that can be e�ciently guessed through on-

line attacks (e.g., a human-chosen password vs. a random 128-bit key). Multi-factor

schemes that use an additional token or biometrics also may not need protection

against guessing attacks, assuming the additional factors provide enough entropy.

However, single-factor multi-stage schemes (e.g., SiteKey or personal questions with

passwords) may bene�t from Uvauth; e.g., the fake session can start right at the end

of �rst-stage of authentication. However, most of our discussion here considers only

commonly-used single-stage password authentication.

c) Data-oriented sessions. We focus on accounts that mostly deal with user data

(e.g., banking, email), instead of providing some generic services to the user (e.g.,

Internet access). Implementing fake sessions for service-oriented accounts could be

quite challenging, if not impossible. For instance, if simply non-working Internet

access is provided, the adversary can easily detect it; or otherwise he can remain

using the Internet (if working) regardless of the authentication result.

d) Separate machines. The user/attacker software has no means of accessing

the veri�er's running environment other than via the network channel used for au-

thentication. Otherwise, authentication results may leak from the veri�er through

side-channels (e.g., [42, 230]).

e) Random attacker. Attackers in our model are assumed to be random individuals,

i.e., unrelated to a target user. If the user is known to the attacker, fake sessions in

Uvauth may be detected by known information (e.g., Facebook pro�le information,

email contacts). However, the attacker may know all valid userids of a target service.

f) No o�ine attacks. We assume that data at rest is safe, e.g., password databases

are inaccessible to attackers. Otherwise, simpler o�ine attacks can be mounted to

reveal the passwords (if hashed or encrypted under a weak key).

g) Other password-unrelated security issues. Our proposal only addresses on-

line password guessing; so, if a website or application is vulnerable to other types of

158

attacks such as SQL injections, Uvauth's protection may not help. We also do not

address several other threats, including: phishing, malicious software on the client or

veri�er, and session hijacking attacks.

7.3 Uvauth: User-veri�able Authentication

In this section, we discuss Uvauth and the underlying self-evidence of authentication

that may make the scheme feasible. By analyzing some account properties, we also

provide a list of considerations for designing fake sessions, and discuss scenarios where

Uvauth may be more applicable.

Figure 12: Overview of user-veri�able authentication

Overview. Figure 12 shows an overall architecture of Uvauth. Legitimate users

and potential attackers are treated equally, in terms of authentication results. A

transaction gateway accepts all incoming authentication requests; the gateway is also

con�gured to authenticate users (e.g., it has access to user credentials). When a

correct userid-password pair is received, processing is handed over to the transaction

center and a legitimate session is established. Otherwise, when the given password

is incorrect, the user/attacker is redirected to a sandbox-enabled environment that

hosts fake user sessions. The established sessions in both cases appear to be (almost)

the same to a machine. A random human attacker may also be unable to judge the

content of the fake account without performing some non-trivial tasks.

159

7.3.1 Implicit detection of an authentication outcome

We �rst consider authentication sessions where users can distinguish success/failure

without explicit messages from the veri�er. This is the basic type of authentication

considered in Uvauth, and requires user-knowledge of the target account. In Sec-

tion 7.4, we discuss less-personal accounts where some explicit hints from the veri�er

are needed.

Self-veri�cation

If the data fed to end users after a login request is personal and of relatively high-

entropy, the presented data itself may be enough for a straightforward and e�ortless

decision by the real data owner. In this case, the authentication result is implicit,

i.e., requires no indication of failure or success. Consider the following as examples

of this type of authentication. For most active users of a social networking site (e.g.,

Facebook), users can (possibly) easily identify their own accounts after a successful

login�e.g., from the pro�le info, page layout, friends list and messages. The same

is possibly also true for online banking login, identi�ed by e.g., user info, account

balance, transaction history and registered bills. These types of accounts are highly

personal and quite unique to a user. More importantly, these accounts can be popu-

lated with fake information to make them indistinguishable even to non-owner human

users (in addition to automated bots).

User-veri�ability obviously requires that the same user experience is provided for

a speci�c credential used. Therefore, to implement a user-veri�able authentication

scheme that is both user-acceptable and attacker-indistinguishable, we must consider

the following issues. First, each fake session generated for a speci�c userid-password

pair (even if the userid is non-existent), must appear to be the same for a certain

period of time. If randomness of fake sessions is distinguishable for login attempts with

the same userid with di�erent passwords, attackers can easily detect the di�erence,

and then learn the authentication outcome. On the other hand, the fake session for a

speci�c userid must change with time, as is the case for many user accounts (e.g., new

messages and friends in a Facebook account; updated balance and new transactions

in a banking account).

160

Additional login help for legitimate users

To aid users and help identify a successful login, a combination of the following

methods can also be used.

a) Customized messages. A user customized welcome message may be used for

the identi�cation of a valid session. During account registration, a user can set up

some personalized information so that when a correct password is entered, it will

be displayed; otherwise, a random message is displayed. Such customized messages

may be an image, or excerpts from a book. Note that, our use of customized mes-

sage/image is di�erent than existing anti-phishing solutions such as SiteKey [29], and

Veri�ed-by-Visa personal message [289]. We do not address phishing, and security

of Uvauth is not dependent on users' noticing the messages correctly or all the time.

If the user does not pay heed to the displayed image/message, they may be mislead

into believing a successful login, which eventually will be detected when they check

carefully their account information. In contrast to known vulnerabilities in SiteKey

(e.g., [305]), no authentication secrets are leaked for the user's mistake in Uvauth.

b) Secondary channels. An out-of-band signalling, e.g., SMS/twitter/email mes-

sages can also be used to notify when a login is successful. Mobile SMS is widely used

for user status indication in many businesses, such as successful credit card trans-

actions (see e.g., MasterCard inControl [178]). We assume here that the secondary

channels are not compromised; otherwise, an attacker can use such a channel for ver-

i�cation. Periodically, users may also be noti�ed about failed login attempts through

secondary channels (e.g., in the form of a daily digest).

c) Warning messages. A warning message may be displayed so that the user is

reminded that Uvauth is in place, and verify whether they can access their data. An

example message is as follows: �Please check your account data; in case you do not

see your expected data, try again with the correct password.�

d) Dynamic security skins. Anti-phishing techniques such as synchronized random

dynamic boundary [304] and dynamic security skins [68] can be used as a means to

identify an authentic server, and to communicate success/failure messages to a client

browser. Note that, Uvauth's security does not require these visual cues to be 100%

reliable, or always correctly matched by users; they simply provide an additional

channel for session veri�cation.

e) Limiting fake sessions for known devices. Authentication attempts from

known devices with prior successful logins for a speci�c userid can be exempted from

161

fake sessions when an incorrect password is entered, and given directly a traditional

failure message (e.g., incorrect userid or password). User devices may be whitelisted

by IP addresses, cookies, geolocation services as enabled in popular browsers including

Google Chrome1 and Mozilla Firefox,2 or through other web-based device �ngerprint-

ing mechanisms (see e.g., [208]). Assuming that most legitimate users access their

accounts from a relatively �xed set of devices (computers at home or o�ce, or mobile

devices), such exemptions from fake sessions may aid usability; similar mechanisms

have been explored in prior work (see e.g., [219, 13]; more in Section 7.6). However,

to counter guessing attacks from infected whitelisted devices and cookie theft, such

exemptions must be limited (e.g., by the number of allowed attempts without fake

sessions).

7.3.2 Designing fake sessions

Uvauth's e�ectiveness depends on attackers being unable to detect fake sessions ef-

�ciently. Below, we discuss few considerations and account properties for designing

e�ective fake sessions.

Account properties

Here we list four factors that may be used to categorize account types. We also

discuss how these factors may be considered during the generation of fake sessions.

a) Server-side data retention. Here we consider whether the user is allowed to

make changes after logged in and to what extent the changes are kept and accessible

when she logs back in at a later time. This feature of a user account could be

resource-intensive, as fake sessions may also need to store attacker-initiated changes.

If no changes are stored, inconsistent fake sessions may still be useful to some extent;

cf. Neagoe and Bishop [202]. For read-only accounts (e.g., call logs of a pre-paid

phone card), generating fake sessions could be much easier. However, most online

accounts generally allow at least some changes (e.g., pro�le parameters). If the size

of updateable data is small, the cost of consistent fake session generation may still

remain a�ordable.

b) Client-side data representation. For most account types, users get access

to some data after logged in. How much an attacker can understand the meaning of

1https://support.google.com/chrome/answer/142065
2http://www.mozilla.org/en-US/firefox/geolocation/

162

https://support.google.com/chrome/answer/142065
http://www.mozilla.org/en-US/firefox/geolocation/

user data, determines how easily she can detect a fake session. For highly-personalized

data (e.g., photos, blogs, and calendars), fake session detection would be signi�cantly

di�cult for an attacker, even if human assistance is used; the attacker has no obvious

means to distinguish between fake and real data. For impersonal, human-readable

data (e.g., magazine subscriptions), fake sessions should be populated with context-

aware, meaningful data. For impersonal data with machine semantics (e.g., protocol

tra�c or command responses), it may be more di�cult to generate fake sessions, and

sometimes speci�c restrictions should be applied to limit the cost of fake sessions

(e.g., running processor-intensive jobs in a fake ssh session).

c) Update types. Some accounts are update-driven, i.e., frequently updated directly

by both the account owner and others for the purpose of communication; examples

include email and social networking accounts. Some accounts are activity-driven, i.e.,

indirectly updated by user transactions; examples include credit card accounts. Some

accounts may be of mixed type; e.g., a seller's Paypal account is updated by Paypal

(e.g., transaction logs) and other users (e.g., comments). These di�erent account

types should be modeled correctly to design realistic fake sessions.

d) Externally-modi�able data. If anyone can in�uence the content of a tar-

get account, the account is considered externally-modi�able; examples include email

accounts (e.g., anyone can send an email), social networking accounts (e.g., public

posts). These accounts are susceptible to the post-and-check attack as discussed in

Section 7.5.

Considerations for fake session generation

a) Verisimilitude. There is a trade-o� between the deployment of more realis-

tic/consistent fake sessions with more functionality and resource consumption on the

server. We de�ne the depth of verisimilitude as the levels of operation a fake ses-

sion would allow, before it may be detected by an automated attacker. Also, not all

functions are equal in terms of costs�e.g., allowing the update of a pro�le parameter

vs. searching for a transaction. As an example, consider a fake session at an online

banking portal; an automated attempt can be performed by an attacker to transfer

a certain amount of money to an account that directly/indirectly belongs to him,

as such tasks are not far down in the operations hierarchy. A countermeasure is to

output deceptive statements such as �Transfer-out is not activated for this account�,

�USB token is required for this transaction�. See e.g., Rowe [233] for an in-depth

163

discussion on how to design good deceptions for intruders with a probabilistic model

of belief and suspicion. Moreover, text strings (e.g., names and messages) used in fake

sessions should meet certain criteria; existing work on generating (somewhat mean-

ingful) random words/phrases may be used (see e.g., [61, 24]). Note that, for Uvauth

to be e�ective, detection of fake sessions must be non-trivial, but it is non-essential

to deploy highly complex fake sessions to make detection very di�cult.

b) Timing characteristics. Sometimes due to network delay or processing on the

server side, logging in or operations on a website are subject to di�erent levels of

responsiveness. Fake sessions should insert lags when required to simulate timing

characteristics of di�erent operations in the operations hierarchy, hours of the day, or

even seasons in a year. This may also help confuse intruders as they cannot detect

fake sessions by pro�ling timing characteristics. The freed time slots can be used for

scheduling more fake sessions.

c) Data sanitization. Data sanitization (also known as redaction for printed docu-

ments) is to hide or transform con�dential information before publishing. Examples

include erasing customer names, randomizing �gures, or disrupting the order of user

behaviors. In some scenarios, it may be necessary to reuse parts of the real pro-

duction/user data for generating fake sessions, especially accounts with a lot of user

data. Up-to-date operating data from a real system may be sanitized by remov-

ing all privacy/security-sensitive parts, while retaining interrelated rationality (see

e.g., [34, 211]). For instance, in the case of a web portal of a mobile phone subscriber,

the pre�x of a login phone number may indicate some regional information; therefore,

the presented information, such as, the numbers in the call log and the address of

residence must also appear legitimate after sanitization. The account balance can be

randomized to some extent, but the call/message logs could be pulled, sanitized and

mixed from a group of real users (i.e., individual identi�ers are removed but group

characteristics are preserved). However, special care must be taken to sanitize data

to avoid exposure of sensitive data (see e.g., [199, 33]). For Uvauth, a signi�cant

amount of fake data can be mixed with user data before applying sanitization, which

may reduce the risk of privacy exposure.

d) Virtualization. As Uvauth may need to deal with a large number of fake sessions

(e.g., when under guessing attack from a botnet), virtualization technologies can be

used for creating and hosting those sessions e�ciently. We have not tested generating

such large-scale VM deployment for evaluating Uvauth; cf. CLAMP [214]. Virtual-

ization may also help limit resources allocated to fake sessions, especially when under

164

heavy-load (e.g., due to DoS attack).

7.4 Distorted Image as a Communication Channel

In this section, we discuss the possibility of using captchas as a one-way communica-

tion channel (server-to-user), and propose few variations of existing captchas for this

purpose. These captcha variants may be considered when techniques in Section 7.3.1

are not preferred (e.g., for deployability or usability reasons). Less personalized ac-

counts (e.g., movie streaming websites), and managed-systems in batch (e.g., remote

administration), may bene�t from the proposed methods. We assume that these ac-

counts would be attacked primarily by bots (i.e., no human assistance), as they may

be less valuable compared to personal/�nancial accounts.

7.4.1 Captchas as a cipher

Most current captcha techniques are based on the use of distorted images (or similar

methods), and are used before authentication, to verify the presence of a human user.

In contrast, we propose a post-authentication use of captchas. The idea is to utilize

the generation and recognition of distorted images to communicate the authentication

result back to end users. End users will not be tested with our schemes below, and no

user response is needed; users simply become recipients of the ciphered information.

Note that, similar use of captchas has been proposed earlier for di�erent purposes,

e.g., veri�cation of message integrity in an untrusted terminal [152], and NSA-proof

fonts [197].

Using captchas to communicate messages is relatively immune to relay attacks (as

compared with regular captchas). A machine adversary can still make use of exploited

popular websites, and have a large number of innocent users to solve the distorted

images. However, for Uvauth captchas, only recognizing all characters is not enough,

and semantic interpretation is required to learn whether the feedback is positive or

negative. We discuss few captcha variants in Section 7.4.2 that may make regular

captchas more di�cult for machine attackers.

165

7.4.2 Adaptation of regular captchas

For regular captchas, the content can be arbitrary and randomized, without carrying

any meaningful information, e.g., an irrelevant mix of letters and numbers. How-

ever, for Uvauth, we need to transmit messages in natural languages with prede�ned

meanings for conveying authentication results. Existing captcha breaking techniques

(e.g., [85]) would perform even better against Uvauth captchas due to the limited

entropy of our messages (resulting mostly from the �xed nature of the messages). To

address this, the captcha generation may be adapted as follows.

a) Randomized padding. Humans have the ability to semantically interpret a mes-

sage even if the message is garbled to some extent. Most people do not read all the

characters in a word, or even all the words in a sentence (see e.g., [225]). As an exam-

ple, consider the following sentences: �hke It uu is qKd k9l2 �ne vMab weather.�, �If

You Can Raed Tihs, You Msut Be Raelly Smrat�; in most cases, humans can under-

stand the meaning without much di�culty, but for machines it is not straightforward

to extract the meaning from these sentences, especially when such messages appear

in a distorted image. As an example, see Figure 13.

Figure 13: Distorted image with random padding

b) Indirect expression. Emotional tones in indirect positive or negative expressions

such as �Everything goes well!� (correct password entry), or �Your password makes

me angry!� (incorrect password entry) are quite self-evident for humans, but not so

straightforward for machines. Existing work shows that machines can also learn to

identify emotions in text (e.g., [260]), but requires non-trivial resources (e.g., a large

knowledge database).

c) Display anywhere. Automated attacks on a captcha somewhat depends on the

ability to locate the captcha on a screen. In regular usage, captchas are generally

placed in a deterministic location, to facilitate the ease of processing by human users.

As Uvauth's communication channel is one-way (i.e., no response back from the user),

the distorted image can be placed anywhere on the screen (as long as it is visible to the

user). It can also be embedded into a larger bitmap (e.g., banners, ads, backgrounds)

to make automated identi�cation di�cult. Random delays (e.g., few seconds) may

also be added before displaying the message (after the authentication phase), to

frustrate the attacker even further.

166

7.4.3 An example with VNC

We now discuss how adapted distorted images may be used with a Virtual Network

Computing (VNC [229]) application for remote desktop management.3 When the

remote machine is not personal to the user (e.g., accessed as a sysadmin), login

feedback via distorted images may be used. Figure 14 shows a VNC session when an

adapted distorted image (with �display anywhere�) is used for authentication feedback.

Here a legitimate user may expect such a string to be displayed anywhere on the

screen. In contrast, for a machine attacker, it may be di�cult to identify the distorted

message from a screen-capture, speci�cally, when the message is blended with the

background. Additionally, there is no need to display the distorted image right after

login; e.g., a short, random delay can be added to confuse the attacker even further.

The attacker may need to forward a video clip to a human solver to perform a relay

attack, which would increase the cost of such an attack.

Figure 14: A VNC session with an adapted distorted image

7.5 Limitations and Attacks

In this section, we evaluate Uvauth from an attacker's perspective and list possible

attacks. Some of these attacks can be mitigated if special care is taken, while others

are limitations of our current design.

a) Post-and-check attacks. For certain accounts, attackers can �rst post a message

to the target account, and then check for the posted message when launching a

guessing attack on that account. For example, an attacker can post a comment on

the target's Facebook account, and by checking whether this speci�c post is seen, the

detection of a fake session becomes easier. Similarly, an email can be sent to a victim's

Gmail account for the same purpose, and the attacker then just checks whether the

email has been received when in the fake session. We term these attacks as post-

and-check attacks, which can be automated and can make designing fake sessions

3jrDesktop, see: http://jrdesktop.sourceforge.net

167

http://jrdesktop.sourceforge.net

signi�cantly di�cult. Application-speci�c defenses can be designed. For example,

for a fake Facebook session, the target user's publicly-visible content, including posts

from non-friends should be used. Assuming the attacker is not socially-connected to

the user (i.e., not a Facebook friend), post-and-check attacks can be restricted.

Designing a similar mechanism for email is less straightforward, as no explicit

social connections exist in email. However, email services (e.g., Gmail) are currently

quite e�ective against spam email accounts; recently-received spam emails for a tar-

geted account can be used in fake sessions (albeit with the risk of some information

leakage, as sometimes legitimate emails are labelled as spam). Attackers also must

send an email to the target account immediately before launching the guessing attack;

otherwise, they would not know whether the target user has deleted the unwanted

email, or they are in a fake session. Emails received from �rst-time contacts in a

recent period (e.g., in the last �ve minutes) may be included in fake sessions. This

can restrict post-and-check attacks for email accounts, at the expense of occasional

information leakage. Email contacts as displayed in a fake session could also be prob-

lematic. If fake email addresses are used, by sending emails to these addresses, an

attacker may identify the fake session (e.g., if an immediate delivery failure message

is received). On the other hand, the use of real email addresses would cause obvious

privacy exposure (e.g., harvesting of emails).

b) Targeted attacks. If an attacker knows a victim in person (real-world or online-

only), she may also know one or more contacts in the victim's Facebook friend list,

or the account number / address for online banking. When such information can be

expected by the attacker, a fake session can be easily detected. We focus on restricting

large-scale automated guessing attacks, and exclude targeted attacks (although these

attacks may also be signi�cant in some scenarios; see e.g., [157]).

c) New denial-of-service attacks. Uvauth fake sessions may be exploited to launch

algorithmic/complexity-based DoS attacks (e.g., [63]). An adversary can initiate

many fake sessions with resource-intensive operations on the server-side to overload

the server, e.g., text search in an email account. So fake sessions must be designed

carefully, and the allowed activities therein should not consume too much resources;

i.e., the trade-o� between verisimilitude and resource consumption must be chosen

with care.

d) Adapted relay attacks. Paid human solver services (e.g., as discussed in [191])

can be used to attack Uvauth messages that rely on adapted captchas. We can

alleviate such risk by applying �Display Anywhere�, so that the attacker has to forward

168

the whole screen or even a video clip to the human solvers which incurs more e�ort.

e) Inconsistency attacks. If states in fake sessions are not saved, then the attacker

may detect a fake session by making some changes to it, and checking for those changes

after a re-login. This is a known problem in deception, and referred as inconsistency

of deception. Neagoe and Bishop [202] argue that even inconsistent deception can

still e�ectively confuse an attacker.

f) Acquired targeted attacks.4 Assume that a random attacker wants to guess the

password for a speci�c account A and the attacker has already compromised another

account B from the same user (on the same or a di�erent website). Also assume

that the password for A is di�erent than that of B. Now, similar to the targeted

attacks discussed above, the attacker can use extracted information from B to detect

fake sessions for A. Note that, the attacker may need only temporary / one-time

access to B. If the attacker can successfully guess the password for A, she can now

use information from both accounts to brute-force other accounts from the same user

(even when password reuse is avoided). As users generally maintain several password-

protected accounts, this attack may be quite realistic�e.g., through the compromise

of a large-scale, popular service provider (for some recent incidents, see e.g., [205]).

g) Legitimate users in a honeypot.4 If an attacker succeeds in compromising an

account (e.g., through password guessing), she could then (maliciously) change the

password, e.g., to keep the account in her control and deny access to the legitimate

user. Now, when the user tries to log in with the old password, he will be confused;

by not seeing his data, the user might assume that he has mistyped the password,

and keep trying several times before realizing the attack. Without Uvauth, the user

will be denied access, and possibly try account recovery methods immediately.

A similar issue arises even when the account password remains uncompromised.

If an incorrect password is tried (e.g., due to typos), users must detect the resulting

fake session, and then log out for another attempt. Such wrong password entries

would cost more time for users due to the additional step of detecting fake sessions.

This usability issue is a side-e�ect of Uvauth, and does not happen with an explicit

feedback, as in regular authentication. Note that typos can be avoided by displaying

the password in cleartext (cf. [207]), speci�cally when shoulder-sur�ng is not an issue

(e.g., the user sitting alone in her o�ce). However, misremembered passwords may

not be readily detected by such password unmasking, and the user may still be delayed

in discovering the situation, partly due to Uvauth's fake sessions.

4An anonymous NSPW2013 reviewer pointed us this attack.

169

Other limitations include: we have not evaluated the server-side load for generating

and running a large number of fake sessions. We also have not tested how e�ectively

users can detect implicit results from an authentication attempt, or whether messages

via adapted distorted images can be used in practice.

7.6 Related Work

Uvauth falls in the intersection of password security and deception techniques. Here

we highlight a few related projects from both areas.

Pinkas and Sander [219] �rst proposed the use of Reverse Turing Tests (RTTs,

e.g., captchas) to restrict large-scale online password dictionary attacks. The proto-

col challenges users with RTTs for a small fraction (e.g., 5%) of all possible userid-

password pairs to reduce the server-load (of generating RTTs) and usability impact

(of answering RTTs), while keeping the cost of launching a large-scale guessing attack

signi�cantly high. Correct passwords always require an RTT, unless a valid cookie

from past successful login is found. In Uvauth, deploying fake sessions only for a small

fraction of all login attempts, will also signi�cantly reduce server-side load. However,

if attackers use a small password dictionary (e.g., top 500 words), the number of

fake sessions they must process may be too small to provide any signi�cant protec-

tion. Assuming many users use common/weak passwords that may be found in small

dictionaries, we recommend the use of fake sessions for all failed login attempts.

Later RTT-based proposals further improved security and usability aspects of

the original Pinkas and Sander [219] scheme. For example, the password guessing

resistant protocol (PGRP [13]), where more RTTs are imposed on unknown (possibly

attack) machines than known (possibly legitimate) ones; machines are categorized

using source IP addresses and cookies. As discussed in Section 7.3.1, item (e), the use

of known devices may reduce the number of fake sessions for legitimate users. Unlike

RTT-based schemes, Uvauth does not provide explicit authentication feedback, and

avoids challenging users with RTTs. Recall that, even for our use of distorted images

as a communication channel, we do not require a response from the user.

Goyal et al. [99] extend the pricing via processing paradigm (introduced by Dwork

and Naor [73]) to address online password guessing; the proposed protocol (Com-

pChall) imposes a signi�cant amount of computation for the client on each authen-

tication attempt. CompChall would not adversely a�ect legitimate users since their

170

authentication attempts are expected to be limited. In contrast, the scheme may neg-

atively impact an attacker when a large number of attempts are made from a single

machine. However, CompChall may not be e�ective against attacks from a botnet.

The idea of closely monitored network decoys (honeypots), to distract/deceive ad-

versaries from real targets and to collect analytical information about an attack, has

more than two decades of history (see e.g., [259, 53]). Our methodology resembles

honeypots in the sense that the attacker is also given deliberate access, and fed with

false information. However, in contrast to honeypots, our use of deception focuses on

hiding the result of an authentication attempt, instead of detecting/analyzing mali-

cious activities. Similar to the generation of fake sessions in Uvauth, the deployment

of a honeypot is also time-consuming and resource-intensive. Provos designed Hon-

eyd [221], a framework for virtual honeypots that simulates virtual computer systems

at the network level. It saves physical resources in terms of resource consolidation

and tolerance of high destructiveness. Additionally, it is more �exible to con�guration

changes, and thus allows more complicated behaviors to be implemented. Uvauth's

fake session generation may bene�t from such existing honeypot work.

Herley and Florêncio [114] propose the use of honeypot credentials to restrict

brute-force guessing attacks on online banking accounts. During account creation,

for each userid, a large number of honeypot passwords (n, a subset of all possible

passwords) are also registered along with the correct password. The userid with

honeypot passwords are considered honeypot credentials, and all such credentials will

lead to honeypot sessions, which are especially tracked by the bank server for money

transfer attempts. To reduce the probability of mistyping by a real user, all honeypot

passwords are chosen to be more than two characters apart from the correct password;

however, a brute-force attacker is still n times more likely to try a honeypot password.

Honeypot sessions are created from real user data (e.g., attributes, transactions) with

fake identi�cation information such as names and addresses. In comparison, Uvauth's

scope is broader, and it considers the use of small password dictionary with known

userids (instead of trying all possible entries from the userid-password space).

Pavlovic [216] re-visits the idea of security by obscurity, assuming attackers, like

defenders, also have limited logical or programming resources. It is argued that

the behaviour of defenders can also be hidden to gain tangible security advantages.

Uvauth's use of deception is limited to hiding only the defenders' veri�cation outcome

from attackers.

Most work on deception focuses on maintaining consistency of the false reality as

171

presented to attackers. Neagoe and Bishop [202] explore inconsistent deception for

defending computer resources, and argue that these techniques may still be e�ectively

used to track and monitor attackers. Forgoing consistency may also make the design

of deception techniques simpler and less resource-intensive. Such techniques may

signi�cantly reduce the cost of deploying fake sessions in Uvauth.

Clark and Hengartner introduced panic password [57], where a separate password

is used to indicate a duress situation to the server without soliciting an authentication

failure; the primary goal is to protect both the victim's safety and sensitive informa-

tion residing on the server. On the entry of a panic password, the observable response

is to deceive the adversary with panic responses that are indistinguishable from the

real response. While panic passwords are proposed to be used by a legitimate user

under duress, Uvauth is targeted towards protecting passwords from being guessed

using a botnet, or by (random) human-assisted attackers.

Juels and Rivest recently proposed honeywords [145] (false passwords) to address

o�ine attacks against hashed password databases. For each account, the legitimate

password is mixed with several honeywords; thus, when an attacker cracks a hashed

password, she cannot be sure if it is the real password or a honeyword. Also, the use

of a honeyword will trigger an alarm on the server-side (cf. panic password).

7.7 Conclusion

We propose Uvauth to hide authentication results from attackers to mitigate the risk

of online password guessing. It can e�ectively deceive an attacker assuming fake ses-

sions can be e�ciently generated (as an attacker may launch many authentication

attempts from a large-scale botnet). Most current authentication schemes would fail

to an adversary who is willing to use human help to break into existing techniques

that are designed to limit only automated attacks. As user accounts generally become

more and more valuable with the duration of use, it may be worthwhile for attack-

ers to invest in cheap human labor as a means to compromise user credentials. In

designing Uvauth, we explicitly consider such threats and provide limited protection

(possibly signi�cantly more than existing technologies). Implementing Uvauth fake

sessions would require server-side support, but no changes are needed on the client-

side software or existing password input UI (including browser mechanisms such as

�keep me logged in� and cookies). However, Uvauth, as presented, has not been fully

172

evaluated, and has a number of limitations. Our goal is to attract attention to an im-

portant drawback of existing authentication schemes that enables large-scale guessing

attacks.

173

Chapter 8

Further Discussion

8.1 Onto Mobile Platforms

Following up on Gracewipe and Hypnoguard and in considering an increasing amount

of invaluable personal/business data is now being stored on mobile devices, we have

also started porting Gracewipe over to mobile platforms, i.e., ARM-based devices,

which we name Gracewipe Mobile. Likewise, selected user data is protected with

full-disk encryption or �le-based encryption (starting from Android 7.0) [94], and at

boot-time or when a speci�c �le is accessed, the user should be brought to a secure

interface where she can type the (deletion/unlocking) password as in Gracewipe.

Any (system) processes or even the �rmware should not be able to see/access the

protected �les outside the secure world (i.e., of ARM TrustZone [206]) or without the

user passwords.

In practice, there does not exist an actual distinction of data-at-rest and data-

in-sleep, as many services require constant execution (e.g., as with Push Mail) so

that the Android wake locks [95] are intensively used (or abused). In consequence, a

mobile device is very rarely in a real sleep state. Moreover, the ARM processor has

multiple sleep levels (e.g., WFI or WFE [165]), with SoC-speci�c implementation,

causing user data protection to be more complicated. Therefore, in the end it will

be a mix of Gracewipe and Hypnoguard with more adaptations for categorized use

scenarios.

We have veri�ed our primitive design with certain experimentation. The e�ort

mainly involves two aspects:

174

1. Porting the core Gracewipe logic over to the secure world of the ARM proces-

sor. Di�erent from TXT on the x86 platform, ARM TrustZone merely provides

the processor support with certain interfacing speci�cations (de�ned by Glob-

alPlatform, e.g., TEE_OpenPersistentObject). We need a special OS running

in the secure world eventually provding access to the SE for sealing secrets (e.g.,

KH). There are very few available secure TEE OSes in the open community

(we used OP-TEE [292]). Many commercial ones are proprietary and unavail-

able to the public developers/researchers, such as Trustonic [32], TrustKernel

(Pingbo) [218], BeanPod ISEE (Beanpodtech) [267], TEE-WatchTrust (Watch-

Data) [101], TCore (Nutlet Technology) [268], and iTrustee (Huawei). See the

discussion on SE below. With OP-TEE, we are currently only able to verify the

functionality by emulation.

2. Porting the Gracewipe interface to the Android OS (normal world).

With FDE, we opt to instrument CryptKeeper.java by replacing

DecryptTask().execute(password) with our Gracewipe.UI.logic. Upon

successful authentication, we continue with DecryptTask().execute(KH).

In this way, the original user password (strength needed) is replaced with

Gracewipe's platform binding with a relative weak password. This partial pro-

totype implementation can serve as a starting point for future work.

8.2 Open Problems

Among other potential paradigms for addressing our identi�ed unconventional threats,

we pursue hardware-software orchestration, where trusted computing is the primary

focus (but not alone). In a broader sense, it is like a privilege race, e.g., a hypervisor-

level (-1) mechanism should be e�ective against guest kernel-level (0) threats and so

forth. Therefore, undoubtedly hardware can attain the lowest protection level (highest

privilege) in the battle with various adversaries. Existing hardware-enforced mecha-

nisms still have room for improvements in the following aspects: 1) Trust anchor. In

trusted computing, the �rst link of the trust chain is usually an immutable and pro-

tected secret that binds to the hardware (the place storing the unique secrets, which

is called Secure Element in certain terminology). On mobile platforms (e.g., Trust-

Zone), SE is always individual vendor's proprietary design and implementation [292]

(for example, Huawei has their unique inSE solution [148] on the Kirin 960 SoC, with

175

HiSEC V100 as its security core and an OS there called HiCOS), which is inaccessible

to the open community and lacks auditability. In reality, a bigger issue is that the

root of trust is often a combination, e.g., �rmware, multiple levels of bootloader, and

other vendor components (e.g., Intel's ACM) depending on how the trusted execution

is launched. 2) Ecosystem. For both desktop and mobile platforms, the application

of trusted computing still remains rare or only by certain manufacturers (e.g., Sam-

sung). Intel SGX is an exception as mentioned above; but its attestation process is

highly dependent on Intel. In this direction, closer collaboration with device manu-

facturers is unavoidable. This becomes a signi�cant barrier for the academic research

due to lack of access to hardware primitives or public documentation. The aforemen-

tioned status quo might not be all research problems, but the academic community

can help with further formalization and standardization of TEEs, in terms of at least

public validation (if open-source hardware is still yet to come) of hardware security

primitives.

8.3 Concluding Remarks

In this thesis, we propose the notion of unconventional threats (or a strong adversarial

model) to represent a series of realistic attack vectors which have not been thoroughly

addressed in the literature or industry. To demonstrate the feasibility and actuality

thereof, a number of representative scenarios are selected, distributed in di�erent

aspects of the cyber-world. We admit that it is nontrivial to address them and there

might not be even quasi-ideal solutions. More speci�cally for example, we have to

make unconventional assumptions sometimes to come up with a solution, whereas

�normal� assumptions are usually enough for addressing conventional threats.

We introduce two major principles, i.e., hardware assistance and passive defense,

in the battle with such threats; design and implement several solution prototypes

corresponding to the selected scenarios. Although certain limitations are still per-

sistent (as discussed in individual chapters), the prototypes serve as a showcase of

the e�ectiveness of hardware primitives and the philosophy of passive defense. Our

research points to a direction where the improvements can be made based on the two

principles for coping with more unconventional threats in the future.

176

Bibliography

[1] FAT16/32 �le system library. http://ultra-embedded.com/releases/fat_

io_lib.zip.

[2] The history of Cryptowall: a large scale cryptographic ransomware threat.

https://www.cryptowalltracker.org/.

[3] Library and utilities for manipulating TCG Opal compliant self-encrypting hard

drives. https://github.com/tparys/topaz-alpha.

[4] List of USB �ash drives with hardware write protection. https:

//www.fencepost.net/2010/03/usb-flash-drives-with-hardware-

write-protection/.

[5] magic - �le command's magic pattern �le. https://linux.die.net/man/5/

magic.

[6] The no more ransom project. https://www.nomoreransom.org/en/index.

html.

[7] Programmed I/O (PIO) modes. http://www.pcguide.com/ref/hdd/if/ide/

modes_PIO.htm.

[8] TrouSerS: The open-source TCG software stack. Version: 0.3.8. http://

trousers.sourceforge.net/.

177

http://ultra-embedded.com/releases/fat_io_lib.zip
http://ultra-embedded.com/releases/fat_io_lib.zip
https://www.cryptowalltracker.org/
https://github.com/tparys/topaz-alpha
https://www.fencepost.net/2010/03/usb-flash-drives-with-hardware-write-protection/
https://www.fencepost.net/2010/03/usb-flash-drives-with-hardware-write-protection/
https://www.fencepost.net/2010/03/usb-flash-drives-with-hardware-write-protection/
https://linux.die.net/man/5/magic
https://linux.die.net/man/5/magic
https://www.nomoreransom.org/en/index.html
https://www.nomoreransom.org/en/index.html
http://www.pcguide.com/ref/hdd/if/ide/modes_PIO.htm
http://www.pcguide.com/ref/hdd/if/ide/modes_PIO.htm
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/

[9] 16s.us. TCHunt. Tool for detecting encrypted hidden volumes (version: 1.6,

release date: Jan. 29, 2014). http://16s.us/software/TCHunt/.

[10] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier,

R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert. Intel virtu-

alization technology for directed i/o. Intel technology journal, 10(3), 2006.

[11] ACPI.info. Advanced con�guration and power interface speci�cation. Revision

5.0a (Nov. 13, 2013). http://www.acpi.info/spec.htm.

[12] G. Alendal, C. Kison, and modg. got hw crypto? on the (in) security of a

self-encrypting drive series. IACR Cryptology ePrint Archive, 2015:1002, 2015.

[13] M. Alsaleh, M. Mannan, and P. van Oorschot. Revisiting defenses against large-

scale online password guessing attacks. IEEE Transactions on Dependable and

Secure Computing (TDSC), 9(1):128�141, 2012.

[14] AMD. AMD64 architecture programmer's manual volume 2: System program-

ming. Technical article (May 2013). http://developer.amd.com/wordpress/

media/2012/10/24593_APM_v21.pdf.

[15] AMD.com. AMD64 architecture programmer's manual volume 2: System pro-

gramming. Revision 3.25 (June 2015). http://support.amd.com/TechDocs/

24593.pdf.

[16] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative technology

for CPU based attestation and sealing. In Hardware and Architectural Support

for Security and Privacy (HASP'13), Tel-Aviv, Israel, June 2013.

[17] R. Anderson, R. Needham, and A. Shamir. The steganographic �le system. In

International Workshop on Information Hiding (IH'98), Portland, OR, USA,

1998.

178

http://16s.us/software/TCHunt/
http://www.acpi.info/spec.htm
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

[18] Apple.com. iOS remote wipe. Available at https://www.apple.com/

business/docs/iOS_Security_Guide.pdf. Accessed: 2016-11-01.

[19] Apple.com. ios security guide, 2018. White Paper. Available at https://www.

apple.com/business/docs/iOS_Security_Guide.pdf.

[20] T. W. Arnold and L. P. V. Doorn. The IBM PCIXCC: A new cryptographic

coprocessor for the IBM eServer. IBM J. RES. & DEV, 48(3/4), MAY/JULY

2004.

[21] ArsTechnica. New and improved CryptXXX ransomware rakes in $45,000

in 3 weeks. News article (June 27, 2016). https://arstechnica.

com/information-technology/2016/06/new-and-improved-cryptxxx-

ransomware-rakes-in-45000-in-3-weeks/.

[22] ArsTechnica.com. Drug dealer: Cops leaned me over 18th �oor balcony to get

my password. News article (Apr. 22, 2015).

[23] ArsTechnica.com. Microsoft may have your encryption key; here's how to take

it back. News article (Dec. 29, 2015).

[24] J. Aycock. Transformitt. Leonardo, 46(5):482�483, Oct. 2013.

[25] E. Ayday, J. L. Raisaro, M. Laren, P. Jack, J. Fellay, and J.-P. Hubaux. Privacy-

preserving computation of disease risk by using genomic, clinical, and environ-

mental data. In Proceedings of USENIX Security Workshop on Health Informa-

tion Technologies (HealthTech" 13), number EPFL-CONF-187118, 2013.

[26] J. Azema and G. Fayad. M-Shield mobile security technology: making wireless

secure. Technical report, Texas Instruments, 2008.

179

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://arstechnica.com/information-technology/2016/06/new-and-improved-cryptxxx-ransomware-rakes-in-45000-in-3-weeks/
https://arstechnica.com/information-technology/2016/06/new-and-improved-cryptxxx-ransomware-rakes-in-45000-in-3-weeks/
https://arstechnica.com/information-technology/2016/06/new-and-improved-cryptxxx-ransomware-rakes-in-45000-in-3-weeks/

[27] G. Bakos and S. Bratus. Ubiquitous redirection as access control response. In

Annual Conference on Privacy, Security and Trust (PST'05), St. Andrews, NB,

Canada, October 2005.

[28] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Counter-

ing gattaca: e�cient and secure testing of fully-sequenced human genomes.

In Proceedings of the 18th ACM conference on Computer and communications

security, pages 691�702. ACM, 2011.

[29] Bank of America. SiteKey authentication: An additional layer of online and

mobile banking security. https://www.bankofamerica.com/privacy/online-

mobile-banking-privacy/sitekey.go.

[30] G. V. Bard. Spelling-error tolerant, order-independent pass-phrases via the

damerau-levenshtein string-edit distance metric. In Australasian Information

Security Workshop (AISW'07), Ballarat, Australia, 2007.

[31] M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with

applications to one-time programs and secure outsourcing. In ASIACRYPT,

2012.

[32] J. Bennett. Devices with trustonic tee, 2015.

[33] M. Bishop, R. Crawford, B. Bhumiratana, L. Clark, and K. Levitt. Some

problems in sanitizing network data. In IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE

2006), Manchester, UK, June 2006.

[34] M. Bishop, J. Cummins, S. Peisert, A. Singh, B. Bhumiratana, D. Agarwal,

D. Frincke, and M. Hogarth. Relationships and data sanitization: A study

180

https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/sitekey.go
https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/sitekey.go

in Scarlet. In New Security Paradigms Workshop (NSPW'10), Concord, MA,

USA, Sept. 2010.

[35] E.-O. Blass and W. Robertson. TRESOR-HUNT: Attacking CPU-bound en-

cryption. In ACSAC'12, Orlando, FL, USA, Dec. 2012.

[36] B. Böck. Firewire-based physical security attacks on windows 7, EFS

and BitLocker. Secure Business Austria Research Lab. Technical re-

port (Aug. 13, 2009). https://www.helpnetsecurity.com/dl/articles/

windows7_firewire_physical_attacks.pdf.

[37] A. Boileau. Hit by a bus: Physical access attacks with Firewire. Rux-

con 2006. http://www.security-assessment.com/files/presentations/

ab_firewire_rux2k6-final.pdf.

[38] H. Bojinov, D. Sanchez, P. Reber, D. Boneh, and P. Lincoln. Neuroscience

meets cryptography: Designing crypto primitives secure against rubber hose

attacks. In USENIX Security Symposium, Bellevue, WA, USA, Aug. 2012.

[39] T. Bonaci, J. Herron, C. Matlack, and H. J. Chizeck. Securing the exocortex:

A twenty-�rst century cybernetics challenge. In IEEE Conference on Norbert

Wiener in the 21st Century, Boston, MA, USA, June 2014.

[40] D. Boneh and R. J. Lipton. A revocable backup system. In USENIX Security

Symposium, San Jose, CA, USA, July 1996.

[41] A. Broadbent, G. Gutoski, and D. Stebila. Quantum one-time programs. In

CRYPTO, pages 344�360, 2013.

[42] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer

Networks, 48(5):701�716, Aug. 2005.

181

https://www.helpnetsecurity.com/dl/articles/windows7_firewire_physical_attacks.pdf
https://www.helpnetsecurity.com/dl/articles/windows7_firewire_physical_attacks.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf

[43] E. Bursztein, S. Bethard, J. C. Mitchell, D. Jurafsky, and C. Fabry. How

good are humans at solving CAPTCHAs? A large scale evaluation. In IEEE

Symposium on Security and Privacy, Oakland, CA, USA, May 2010.

[44] E. Bursztein, M. Martin, and J. C. Mitchell. Text-based CAPTCHA strengths

and weaknesses. In ACM Computer and Communications Security (CCS'11),

Chicago, IL, USA, Oct. 2011.

[45] K. R. B. Butler, S. McLaughlin, and P. D. McDaniel. Rootkit-resistant disks. In

ACM Computer and Communications Security (CCS'08), Alexandria, Virginia,

USA, 2008.

[46] Calomel.org. AES-NI SSL performance: A study of AES-NI acceleration using

LibreSSL, OpenSSL. Online article (Feb. 23, 2016). https://calomel.org/

aesni_ssl_performance.html.

[47] M. Canim, M. Kantarcioglu, and B. Malin. Secure management of biomedical

data with cryptographic hardware. volume 16, pages 166�175, 2012.

[48] R. Carbone, C. Bean, and M. Salois. An in-depth analysis of the cold boot

attack: Can it be used for sound forensic memory acquisition?, Jan. 2011.

Technical Memorandum (TM 2010-296), Defence Research and Development

Canada (DRDC), Valcartier.

[49] M. Cariaso and G. Lennon. Snpedia, 2010.

[50] G. Chappell. The x86 BIOS emulator, 2010. http://www.geoffchappell.

com/studies/windows/km/hal/api/x86bios/index.htm?tx=7.

[51] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova. Evaluation of

the Intel R© coreTM i7 Turbo Boost feature. In IEEE International Symposium

on Workload Characterization (IISWC'09), Austin, TX, USA, Oct. 2009.

182

https://calomel.org/aesni_ssl_performance.html
https://calomel.org/aesni_ssl_performance.html
http://www.geoffchappell.com/studies/windows/km/hal/api/x86bios/index.htm?tx=7
http://www.geoffchappell.com/studies/windows/km/hal/api/x86bios/index.htm?tx=7

[52] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart. Cracking-resistant pass-

word vaults using natural language encoders. In IEEE Symposium on Security

and Privacy, San Jose, CA, USA, May 2015.

[53] B. Cheswick. An evening with Berferd, in which a cracker is lured, endured,

and studied. In Winter USENIX Conference, San Francisco, CA, USA, Jan.

1992.

[54] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information

retrieval. In Foundations of Computer Science, 1995. Proceedings., 36th Annual

Symposium on, pages 41�50. IEEE, 1995.

[55] J. Chow, B. Pfa�, T. Gar�nkel, and M. Rosenblum. Shredding your garbage:

Reducing data lifetime through secure deallocation. In USENIX Security Sym-

posium, Baltimore, MD, USA, Aug. 2005.

[56] L. S. Clair, J. Schi�man, T. Jaeger, and P. McDaniel. Establishing and sustain-

ing system integrity via root of trust installation. In Proceedings of the 2007

Annual Computer Security Applications Conference, pages 19�29, Dec. 2007.

[57] J. Clark and U. Hengartner. Panic passwords: Authenticating under duress.

In USENIX Workshop on Hot Topics in Security (HotSec'08), San Jose, CA,

USA, July 2008.

[58] CNet.com. Turkish police may have beaten encryption key out of TJ Maxx

suspect. News article (Oct. 24, 2008). http://news.cnet.com/8301-13739_3-

10069776-46.html.

[59] F. Cohen. The use of deception techniques: Honeypots and decoys. The Hand-

book of Information Security, 3:646�655, 2006.

183

http://news.cnet.com/8301-13739_3-10069776-46.html
http://news.cnet.com/8301-13739_3-10069776-46.html

[60] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi,

S. Zanero, and F. Maggi. ShieldFS: A self-healing, ransomware-aware �lesys-

tem. In Annual Conference on Computer Security Applications (ACSAC'16),

Los Angeles, CA, USA, 2016.

[61] H. Crawford and J. Aycock. Kwyjibo: automatic domain name generation.

Software: Practice and Experience, 38(14):1561�1567, 2008.

[62] G. D. Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to

forget a secret (extended abstract). In Symposium on Theoretical Aspects of

Computer Science (STACS'99), Trier, Germany, Mar. 1999.

[63] S. A. Crosby and D. S. Wallach. Denial of service via algorithmic complexity

attacks. In USENIX Security Symposium, Washington, DC, USA, Aug. 2003.

[64] Cross-Disorder Group of the Psychiatric Genomics Consortium et al. Genetic re-

lationship between �ve psychiatric disorders estimated from genome-wide snps.

Nature genetics, 45(9):984�994, 2013.

[65] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno, and

B. Schneier. Defeating encrypted and deniable �le systems: TrueCrypt v5.1a

and the case of the tattling OS and applications. In USENIX HotSec'08, San

Jose, CA, USA, 2008.

[66] Dban.org. Darik's boot and nuke. Open-source tool for hard-drive disk wipe

and clearing. http://www.dban.org.

[67] Dell.com. Dell remote data delete service. Available at http:

//www.dell.com/downloads/global/services/Dell_ProSupport_Laptop_

Tracking_and_Recovery_and_Remote_Data_Delete_ABU-EMEA_FINAL.pdf.

Accessed: 2016-11-01.

184

http://www.dban.org
http://www.dell.com/downloads/global/services/Dell_ProSupport_Laptop_Tracking_and_Recovery_and_Remote_Data_Delete_ABU-EMEA_FINAL.pdf
http://www.dell.com/downloads/global/services/Dell_ProSupport_Laptop_Tracking_and_Recovery_and_Remote_Data_Delete_ABU-EMEA_FINAL.pdf
http://www.dell.com/downloads/global/services/Dell_ProSupport_Laptop_Tracking_and_Recovery_and_Remote_Data_Delete_ABU-EMEA_FINAL.pdf

[68] R. Dhamija and J. D. Tygar. The battle against phishing: Dynamic security

skins. In Symposium on Usable Privacy and Security (SOUPS'05), Pittsburgh,

PA, USA, July 2005.

[69] S. M. Diesburg and A.-I. A. Wang. A survey of con�dential data storage and

deletion methods. ACM Computing Surveys (CSUR), 43(1):2:1�2:37, 2010.

[70] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Trans-

actions on Information Theory, 29(2), Mar. 1983.

[71] Drive Trust Alliance. DTA sedutil self encrypting drive software. https://

github.com/Drive-Trust-Alliance/sedutil.

[72] Dropbox.com. Dropbox remote wipe. Available at https://www.dropbox.com/

help/4227. Accessed: 2016-11-01.

[73] C. Dwork and M. Naor. Pricing via processing or combating junk mail. In

Advances in Cryptology - CRYPTO'92, Santa Barbara, CA, USA, August 1992.

[74] Elcomsoft.com. Elcomsoft forensic disk decryptor: Forensic access to en-

crypted BitLocker, PGP and TrueCrypt disks and containers. https://www.

elcomsoft.com/efdd.html.

[75] M. Ermolov and M. Goryachy. How to hack a turned-o� computer, or running

unsigned code in Intel management engine. To be presented at Blackhat Europe

2017 in December.

[76] F-Secure. 2017 F-Secure state of cyber security. https://www.f-secure.com/

documents/996508/1030743/cyber-security-report-2017.

185

https://github.com/Drive-Trust-Alliance/sedutil
https://github.com/Drive-Trust-Alliance/sedutil
https://www.dropbox.com/help/4227
https://www.dropbox.com/help/4227
https://www.elcomsoft.com/efdd.html
https://www.elcomsoft.com/efdd.html
https://www.f-secure.com/documents/996508/1030743/cyber-security-report-2017
https://www.f-secure.com/documents/996508/1030743/cyber-security-report-2017

[77] F-Secure. The state of cyber security 2017. Technical report (Feb.

16, 2017). https://www.f-secure.com/documents/996508/1030743/cyber-

security-report-2017.

[78] S. Feaster. FAT32-implementation. https://github.com/ShamariFeaster/

FAT32-Implementation.

[79] A. Filyanov, J. M. McCuney, A.-R. Sadeghiz, and M. Winandy. Uni-directional

trusted path: Transaction con�rmation on just one device. In IEEE/IFIP

Dependable Systems and Networks (DSN'11), Hong Kong, June 2011.

[80] R. A. Fink, A. T. Sherman, A. O. Mitchell, and D. C. Challener. Catching

the cuckoo: Verifying tpm proximity using a quote timing side-channel. In

J. M. McCune, B. Balache�, A. Perrig, A.-R. Sadeghi, A. Sasse, and Y. Beres,

editors, Trust and Trustworthy Computing, pages 294�301, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg.

[81] B. A. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov. Iron: Functional

encryption using intel sgx. 2016.

[82] Forensicswiki.org. Tools:memory imaging. http://www.forensicswiki.org/

wiki/Tools:Memory_Imaging.

[83] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song. Touchalytics: On

the applicability of touchscreen input as a behavioral biometric for continuous

authentication. IEEE TIFS, 8(1):136�148, Jan. 2013.

[84] M. Frank, T. Hwu, S. Jain, R. Knight, I. Martinovic, P. Mittal, D. Perito,

and D. Song. Subliminal probing for private information via EEG-based BCI

devices. Tech-report (Dec. 20, 2013). http://arxiv.org/abs/1312.6052.

186

https://www.f-secure.com/documents/996508/1030743/cyber-security-report-2017
https://www.f-secure.com/documents/996508/1030743/cyber-security-report-2017
https://github.com/ShamariFeaster/FAT32-Implementation
https://github.com/ShamariFeaster/FAT32-Implementation
http://www.forensicswiki.org/wiki/Tools:Memory_Imaging
http://www.forensicswiki.org/wiki/Tools:Memory_Imaging
http://arxiv.org/abs/1312.6052

[85] Futurity.org. Gotcha! captcha security �aws revealed. Avail-

able at: http://www.futurity.org/science-technology/gotcha-captcha-

security-flaws-revealed/.

[86] B. Garmany and T. Müller. PRIME: Private RSA infrastructure for memory-

less encryption. In ACSAC'13, New Orleans, LA, USA, 2013.

[87] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M. Levy. Keypad: an

auditing �le system for theft-prone devices. In EuroSys'11, Salzburg, Austria,

2011.

[88] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish: Increasing data

privacy with self-destructing data. In USENIX Security Symposium, Montreal,

Canada, Aug. 2009.

[89] D. Genkin, I. Pipman, and E. Tromer. Get your hands o� my laptop: physical

side-channel key-extraction attacks on PCs. Journal of Cryptographic Engineer-

ing, 5(2):95�112, Jun 2015.

[90] L. Giles. Sun Tzu on the Art of War: The Oldest Military Treatise in the World.

London Luzac, 1910. Chapter 1: verse 18.

[91] Gnu.org. The multiboot speci�cation. http://www.gnu.org/software/grub/

manual/multiboot/multiboot.html.

[92] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-Time Programs. In

CRYPTO, pages 39�56, 2008.

[93] Google.com. Android remote wipe. Available at https://support.google.

com/a/answer/173390?hl=en. Accessed: 2016-11-01.

187

http://www.futurity.org/science-technology/gotcha-captcha-security-flaws-revealed/
http://www.futurity.org/science-technology/gotcha-captcha-security-flaws-revealed/
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://support.google.com/a/answer/173390?hl=en
https://support.google.com/a/answer/173390?hl=en

[94] Google.com. Android full disk encryption, 2018. Available at https://source.

android.com/security/encryption/.

[95] Google.com. Keep the device awake, 2018. Available at https://developer.

android.com/training/scheduling/wakelock.

[96] J. Götzfried and T. Müller. Mutual authentication and trust bootstrapping

towards secure disk encryption. ACM Transactions on Information and System

Security (TISSEC), 17(2):6:1�6:23, 2014.

[97] J. Götzfried and T. Müller. Mutual authentication and trust bootstrapping

towards secure disk encryption. ACM TISSEC, 17(2):6:1�6:23, Nov. 2014.

[98] Gov1.info. NSA ANT product catalog. https://nsa.gov1.info/dni/nsa-

ant-catalog/.

[99] V. Goyal, V. Kumar, M. Singh, A. Abraham, and S. Sanyal. Compchall: Ad-

dressing password guessing attacks. In International Symposium on Information

Technology: Coding and Computing (ITCC'05), Las Vegas, NV, USA, April

2005.

[100] B. Greshake, P. E. Bayer, H. Rausch, and J. Reda. Opensnp�a crowdsourced

web resource for personal genomics. PLoS One, 9(3):1�9, 2014.

[101] W. Group. Watchdata presents its highlight watchtrust and sharkey solutions

at mwc 2015, 2015. Available at http://www.watchdata.com/newsshow.php?

cid=336&id=76.

[102] M. Gruhn and T. Müller. On the practicability of cold boot attacks. In Confer-

ence on Availability, Reliability and Security (ARES'13), Regensburg, Germany,

Sept. 2013.

188

https://source.android.com/security/encryption/
https://source.android.com/security/encryption/
https://developer.android.com/training/scheduling/wakelock
https://developer.android.com/training/scheduling/wakelock
https://nsa.gov1.info/dni/nsa-ant-catalog/
https://nsa.gov1.info/dni/nsa-ant-catalog/
http://www.watchdata.com/newsshow.php?cid=336&id=76
http://www.watchdata.com/newsshow.php?cid=336&id=76

[103] L. Guan, J. Lin, B. Luo, and J. Jing. Copker: Computing with private keys

without RAM. In NDSS'14, San Diego, CA, USA, Feb. 2014.

[104] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting private keys against

memory disclosure attacks using hardware transactional memory. In IEEE

Symposium on Security and Privacy, San Jose, CA, USA, May 2015.

[105] V. Gunupudi and S. R. Tate. Generalized non-interactive oblivious transfer us-

ing count-limited objects with applications to secure mobile agents. In Financial

Cryptography and Data Security, FC'08, pages 98�112, 2008.

[106] P. Gupta and D. Gao. Fighting coercion attacks in key generation using skin

conductance. In USENIX Security Symposium, Washington, DC, USA, Aug.

2010.

[107] P. Gutmann. Secure deletion of data from magnetic and solid-state memory.

In USENIX Security Symposium, San Jose, CA, USA, July 1996.

[108] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.

Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember:

Cold boot attacks on encryption keys. In USENIX Security Symposium, San

Jose, CA, USA, 2008.

[109] C. Hazay and Y. Lindell. E�cient Secure Two-Party Protocols. Springer, 2010.

[110] HealthcareITNews. Ransomware: See the 14 hospitals attacked so far in 2016.

News article (Oct. 5, 2016). http://www.healthcareitnews.com/slideshow/

ransomware-see-hospitals-hit-2016.

[111] C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. Krissler, C. Boit, and J.-P.

Seifert. Breaking and entering through the silicon. In ACM CCS'13, Berlin,

Germany, Nov. 2013.

189

http://www.healthcareitnews.com/slideshow/ransomware-see-hospitals-hit-2016
http://www.healthcareitnews.com/slideshow/ransomware-see-hospitals-hit-2016

[112] B. Hemenway, Z. Jafargholi, R. Ostrovsky, A. Scafuro, and D. Wichs. Adap-

tively Secure Garbled Circuits from One-Way Functions. In CRYPTO, pages

149�178, 2016.

[113] M. Henson and S. Taylor. Memory encryption: A survey of existing techniques.

ACM Computing Surveys (CSUR), 46(4):53:1�53:26, Mar. 2014.

[114] C. Herley and D. Florencio. Protecting �nancial institutions from brute-force

attacks. In Proceedings of The I�p Tc 11 23rd International Information Secu-

rity Conference, volume 278, pages 681�685. Springer US, 2008.

[115] HGST.com. Data center and enterprise storage solutions. https://www.hgst.

com/sites/default/files/resources/DC-Ent-StorageSolutions-BR.pdf.

[116] G. Ho�mann. Intel AMT SoL client + tools. Available at https://www.kraxel.

org/cgit/amtterm. Accessed: 2016-11-01.

[117] T. Holz, M. Engelberth, and F. Freiling. Learning more about the underground

economy: A case-study of keyloggers and dropzones. In European Symposium

on Research in Computer Security (ESORICS'09), Saint Malo, France, Sept.

2009.

[118] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure Two-party Com-

putations in ANSI C. In CCS, pages 772�783, 2012.

[119] A. Horvath and J. M. Slocum. Memory bandwidth benchmark. Open source

project. https://github.com/raas/mbw.

[120] HTBridge.com. RansomWeb: emerging website threat that may outshine

DDoS, data theft and defacements? News article (Jan. 28, 2015). https:

//www.htbridge.com/blog/ransomweb_emerging_website_threat.html.

190

https://www.hgst.com/sites/default/files/resources/DC-Ent-StorageSolutions-BR.pdf
https://www.hgst.com/sites/default/files/resources/DC-Ent-StorageSolutions-BR.pdf
https://www.kraxel.org/cgit/amtterm
https://www.kraxel.org/cgit/amtterm
https://github.com/raas/mbw
https://www.htbridge.com/blog/ransomweb_emerging_website_threat.html
https://www.htbridge.com/blog/ransomweb_emerging_website_threat.html

[121] A. Huang. Keeping secrets in hardware: The Microsoft XboxTM case study. In

Workshop on Cryptographic Hardware and Embedded Systems (CHES'02), San

Francisco, CA, USA, Aug. 2002.

[122] J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi. FlashGuard: Leveraging

intrinsic �ash properties to defend against encryption ransomware. In ACM

Computer and Communications Security (CCS'17), Dallas, TX, USA, 2017.

[123] J. Ibsen. Simple C vector. https://github.com/jibsen/scv.

[124] IEEE.org. 1667-2015 - IEEE standard for discovery, authentication, and au-

thorization in host attachments of storage devices. https://standards.ieee.

org/findstds/standard/1667-2015.html.

[125] Imod Digital. Social network numbers, May 2012. http://www.imoddigital.

com/iD-Social-Network-Statistics-2012-eBook.pdf.

[126] Intel. Intel Trusted Execution Technology (Intel TXT): Measured

launched environment developer's guide. Technical article (July 2015).

http://www.intel.com/content/dam/www/public/us/en/documents/

guides/intel-txt-software-development-guide.pdf.

[127] Intel. The MultiProcessor speci�cation (MP spec), May 1997. http://www.

intel.com/design/archives/processors/pro/docs/242016.htm.

[128] Intel.com. Intel active management technology start here guide (intel AMT 9.0).

Available at https://software.intel.com/sites/default/files/article/

393789/amt-9-start-here-guide.pdf. Accessed: 2016-11-01.

[129] Intel.com. Intel manageability commander. Available at https:

//downloadcenter.intel.com/download/26375/Intel-Manageability-

Commander. Accessed: 2016-11-03.

191

https://github.com/jibsen/scv
https://standards.ieee.org/findstds/standard/1667-2015.html
https://standards.ieee.org/findstds/standard/1667-2015.html
http://www.imoddigital.com/iD-Social-Network-Statistics-2012-eBook.pdf
http://www.imoddigital.com/iD-Social-Network-Statistics-2012-eBook.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://www.intel.com/design/archives/processors/pro/docs/242016.htm
https://software.intel.com/sites/default/files/article/393789/amt-9-start-here-guide.pdf
https://software.intel.com/sites/default/files/article/393789/amt-9-start-here-guide.pdf
https://downloadcenter.intel.com/download/26375/Intel-Manageability-Commander
https://downloadcenter.intel.com/download/26375/Intel-Manageability-Commander
https://downloadcenter.intel.com/download/26375/Intel-Manageability-Commander

[130] Intel.com. Intel TXT software development guide, measured launched environ-

ment developer's guide. https://www.intel.com/content/dam/www/public/

us/en/documents/guides/intel-txt-software-development-guide.pdf.

[131] Intel.com. Intel vPro use case reference design - remote drive erase. Available

at https://downloadcenter.intel.com/download/20971/Intel-vPro-Use-

Case-Reference-Design-Remote-Drive-Erase. Accessed: 2016-11-03.

[132] Intel.com. Remote secure erase with intel AMT. Available at

https://software.intel.com/en-us/blogs/2016/04/18/intel-amt-

remote-secure-erase. Accessed: 2016-11-03.

[133] Intel.com. SMI transfer monitor (STM) user guide. Revision

1.00 (Aug. 2015). https://firmware.intel.com/sites/default/files/

STM_User_Guide-001.pdf.

[134] Intel.com. Trusted boot (tboot). Version: 1.8.0. http://tboot.sourceforge.

net/.

[135] Intel.com. Using Intel AMT serial-over-LAN to the fullest. Avail-

able at https://software.intel.com/en-us/articles/using-intel-amt-

serial-over-lan-to-the-fullest. Accessed: 2016-11-01.

[136] Intel.com. Intel 64 and IA-32 Architectures Software Developer's Manual, June

2014. Volume 2C: Instruction Set Reference.

[137] Intel.com. Intel TXT Software Development Guide - Measured Launched Envi-

ronment Developer's Guide, May 2014.

[138] IntelSecurity.com. Technical details of the S3 resume boot script vulnerabil-

ity. Technical report (July 2015). http://www.intelsecurity.com/advanced-

threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf.

192

https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://downloadcenter.intel.com/download/20971/Intel-vPro-Use-Case-Reference-Design-Remote-Drive-Erase
https://downloadcenter.intel.com/download/20971/Intel-vPro-Use-Case-Reference-Design-Remote-Drive-Erase
https://software.intel.com/en-us/blogs/2016/04/18/intel-amt-remote-secure-erase
https://software.intel.com/en-us/blogs/2016/04/18/intel-amt-remote-secure-erase
https://firmware.intel.com/sites/default/files/STM_User_Guide-001.pdf
https://firmware.intel.com/sites/default/files/STM_User_Guide-001.pdf
http://tboot.sourceforge.net/
http://tboot.sourceforge.net/
https://software.intel.com/en-us/articles/using-intel-amt-serial-over-lan-to-the-fullest
https://software.intel.com/en-us/articles/using-intel-amt-serial-over-lan-to-the-fullest
http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf
http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf

[139] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Fine grain cross-vm

attacks on Xen and VMware. In IEEE Conference on Big Data and Cloud

Computing, Washington, DC, USA, 2014.

[140] iSECPartners. YoNTMA (you'll never take me alive!). https://github.com/

iSECPartners/yontma.

[141] ISO.org. ISO/IEC FDIS 27040: Information technology � security techniques

� storage security. Target publication: Apr. 21, 2015. http://www.iso.org/

iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=44404.

[142] Z. Jafargholi and D. Wichs. Adaptive Security of Yao's Garbled Circuits. In

TCC, pages 433�458, 2016.

[143] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Garbled circuits

for leakage-resilience: Hardware implementation and evaluation of one-time

programs. In CHES, CHES'10, pages 383�397, 2010.

[144] S. Johnson. Intel R© SGX and Side-Channels. https://software.intel.com/

en-us/articles/intel-sgx-and-side-channels, 2017.

[145] A. Juels and R. L. Rivest. Honeywords: Making password-cracking de-

tectable. Technical report (May 2, 2013). http://people.csail.mit.edu/

rivest/pubs/JR13.pdf.

[146] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin. A cryptographic approach to

securely share and query genomic sequences. IEEE Transactions on information

technology in biomedicine, 12(5):606�617, 2008.

[147] B. Kauer. OSLO: Improving the security of trusted computing. In USENIX

Security Symposium, Boston, MA, USA, Aug. 2007.

193

https://github.com/iSECPartners/yontma
https://github.com/iSECPartners/yontma
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=44404
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=44404
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
http://people.csail.mit.edu/rivest/pubs/JR13.pdf
http://people.csail.mit.edu/rivest/pubs/JR13.pdf

[148] K. Kee. Huaweiâ��s kirin 960 summarized: What you need to know, 2016.

Available at https://nasilemaktech.com/huaweis-kirin-960-summarized-

need-know/.

[149] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda. UNVEIL: A

large-scale, automated approach to detecting ransomware. In USENIX Security

Symposium, Austin, TX, 2016.

[150] A. Kharraz and E. Kirda. Redemption: Real-time protection against ran-

somware at end-hosts. In Research in Attacks, Intrusions and Defenses

(RAID'17), Atlanta, GA, USA, 2017.

[151] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda. Cutting the

Gordian knot: A look under the hood of ransomware attacks. In Detection of

Intrusions and Malware, and Vulnerability Assessment (DIMVA), Milan, Italy,

2015.

[152] J. King and A. dos Santos. A user-friendly approach to human authentication

of messages. In Financial Cryptography and Data Security (FC'05), Roseau,

Dominica, February 2005.

[153] M. S. Kirkpatrick, S. Kerr, and E. Bertino. Puf roks: A hardware approach

to read-once keys. In Proceedings of the 6th ACM Symposium on Information,

Computer and Communications Security, ASIACCS '11, pages 155�164, Hong

Kong, China, 2011.

[154] W. K. Kit. The complete book of tai chi chuan: A comprehensive guide to the

principles and practice, 1998.

[155] T. Kitamura, K. Shinagawa, T. Nishide, and E. Okamoto. One-time Programs

with Cloud Storage and Its Application to Electronic Money. In APKC, 2017.

194

https://nasilemaktech.com/huaweis-kirin-960-summarized-need-know/
https://nasilemaktech.com/huaweis-kirin-960-summarized-need-know/

[156] P. Kleissner. Stoned bootkit. Black Hat USA (July 2009). http:

//www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-

Kleissner-StonedBootkit-PAPER.pdf.

[157] Knowthenet.org.uk. More teenagers are being hacked by friends online but

did you know it could be illegal? News article (Jan. 6, 2012). http://www.

knowthenet.org.uk/.

[158] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative

execution. CoRR, 2018.

[159] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele. PayBreak: Defense

against cryptographic ransomware. In ACM Asia Conference on Computer and

Communications Security (ASIACCS'17), pages 599�611, Abu Dhabi, UAE,

2017.

[160] B. Kreuter, A. Shelat, B. Mood, and K. Butler. PCF: A Portable Circuit Format

for Scalable Two-Party Secure Computation. In USENIX Security Symposium,

pages 321�336, 2013.

[161] B. Kreuter, A. Shelat, and C. Shen. Billion-Gate Secure Computation with

Malicious Adversaries. In USENIX Security Symposium, pages 285�300, 2012.

[162] A. Kumar, M. Patel, K. Tseng, R. Thomas, M. Tallam, A. Chopra, N. Smith,

D. Grawrock, and D. Champagne. Method and apparatus to re-create trust

model after sleep state, 2011. US Patent 7,945,786.

[163] K. S. Kuppusamy, S. R, and G. Aghila. A model for remote access and pro-

tection of smartphones using short message service. International Journal of

195

http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-Kleissner-StonedBootkit-PAPER.pdf
http://www.knowthenet.org.uk/
http://www.knowthenet.org.uk/

Computer Science, Engineering and Information Technology (IJCSEIT), 2(1),

2012.

[164] K. Kursawe, D. Schellekens, and B. Preneel. Analyzing trusted platform com-

munication. In ECRYPT Workshop, CRASH � CRyptographic Advances in

Secure Hardware, Leuven, Belgium, Sept. 2005.

[165] T. Lanier. Exploring the design of the cortex-a15 processor. Avail-

able at http: // www. arm. com/ files/ pdf/ atexploring the design of

the cortex-a15. pdf , 2013.

[166] B. Lapid and A. Wool. Cache-attacks on the ARM TrustZone implementations

of AES-256 and AES-256-GCM via GPU-based analysis. In Selected Areas in

Cryptography (SAC) 2018, Edmonton, Alberta, Canada, 2018.

[167] A. Laszka, S. Farhang, and J. Grossklags. On the economics of ransomware.

CoRR, abs/1707.06247, 2017.

[168] M. D. Leom, K. K. R. Choo, and R. Hunt. Remote Wiping and Secure Deletion

on Mobile Devices: A Review. Journal of Forensic Sciences, 61(6):1473�1492,

nov 2016.

[169] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and

M. Horowitz. Architectural support for copy and tamper resistant software.

In Architectural Support for Programming Languages and Operating Systems

(ASPLOS-IX), Cambridge, MA, USA, Nov. 2000.

[170] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,

D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. CoRR, 2018.

196

http://www.arm.com/files/pdf/atexploring the design of the cortex-a15.pdf
http://www.arm.com/files/pdf/atexploring the design of the cortex-a15.pdf

[171] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-

channel attacks are practical. In IEEE Symposium on Security and Privacy,

pages 605�622, San Jose, CA, USA, May 2015.

[172] LogRhythm Labs. A technical analysis of WannaCry ransomware. Tech-

nical report (May 16, 2017). https://logrhythm.com/blog/a-technical-

analysis-of-wannacry-ransomware/.

[173] T. Longsta�. Information about the PC CYBORG (AIDS) trojan horse.

US DOE Computer Incident Advisory Capability (CIAC) information bul-

letin (Dec. 19, 1989). Wayback link: https://web.archive.org/web/

20060610040400/http://ciac.org/ciac/bulletins/a-10.shtml.

[174] C. Maartmann-Moe. Inception. PCI-based DMA attack tool. https://github.

com/carmaa/inception.

[175] T. Mandt, M. Solnik, and D. Wang. Demystifying the secure enclave processor.

Technical report, Azimuth Security and O�Cell Research, 2016. Black Hat Las

Vegas.

[176] M. Mannan, B. H. Kim, A. Ganjali, and D. Lie. Unicorn: Two-factor attestation

for data security. In ACM CCS'11, Chicago, IL, USA, Oct. 2011.

[177] N. Marketing. Departing employees and data theft, 2010.

[178] MasterCard. MasterCard inControl service now available from Barclaycard.

News release (Jan. 21, 2010). http://www.mastercard.com/us/company/en/

newsroom/pr_mc_incontrol_service.html.

[179] S. Matetic, K. Kostiainen, A. Dhar, D. Sommer, M. Ahmed, A. Gervais,

A. Juels, and S. Capkun. Rote: Rollback protection for trusted execution.

Technical report, ETH Zurich, 2017.

197

https://logrhythm.com/blog/a-technical-analysis-of-wannacry-ransomware/
https://logrhythm.com/blog/a-technical-analysis-of-wannacry-ransomware/
https://web.archive.org/web/20060610040400/http://ciac.org/ciac/bulletins/a-10.shtml
https://web.archive.org/web/20060610040400/http://ciac.org/ciac/bulletins/a-10.shtml
https://github.com/carmaa/inception
https://github.com/carmaa/inception
http://www.mastercard.com/us/company/en/newsroom/pr_mc_incontrol_service.html
http://www.mastercard.com/us/company/en/newsroom/pr_mc_incontrol_service.html

[180] Maximintegrated.com. Switching between battery and external power sources,

2002. http://pdfserv.maximintegrated.com/en/an/AN1136.pdf.

[181] McAfee Labs Threat Advisory. Ransomware-SAMAS. Technical arti-

cle (Mar. 17, 2017). https://kc.mcafee.com/resources/sites/MCAFEE/

content/live/PRODUCT_DOCUMENTATION/26000/PD26873/en_US/McAfee_

Labs_Threat_Advisory-Ransomware-SAMAS_v3.pdf.

[182] J. M. McCune. Reducing the trusted computing base for applications on com-

modity systems. PhD thesis, Carnegie Mellon University, 2009.

[183] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker:

An execution infrastructure for TCB minimization. In EuroSys'08, Glasgow,

Scotland, Apr. 2008.

[184] A. D. McDonald and M. G. Kuhn. StegFS: A steganographic �le system for

Linux. In International Workshop on Information Hiding (IH'99), Dresden,

Germany, 1999.

[185] R. C. Merkle. Secure communications over insecure channels. Communications

of the ACM, 21(4):294�299, 1978.

[186] Microsoft. Enable controlled folder access. Online documentation

(Aug. 25, 2017). https://docs.microsoft.com/en-us/windows/threat-

protection/windows-defender-exploit-guard/enable-controlled-

folders-exploit-guard.

[187] Microsoft.com. BitLocker frequently asked questions (FAQ). Online ar-

ticle (June 10, 2014). https://technet.microsoft.com/en-ca/library/

hh831507.aspx.

198

http://pdfserv.maximintegrated.com/en/an/AN1136.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/26000/PD26873/en_US/McAfee_Labs_Threat_Advisory-Ransomware-SAMAS_v3.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/26000/PD26873/en_US/McAfee_Labs_Threat_Advisory-Ransomware-SAMAS_v3.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/26000/PD26873/en_US/McAfee_Labs_Threat_Advisory-Ransomware-SAMAS_v3.pdf
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-exploit-guard/enable-controlled-folders-exploit-guard
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-exploit-guard/enable-controlled-folders-exploit-guard
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-exploit-guard/enable-controlled-folders-exploit-guard
https://technet.microsoft.com/en-ca/library/hh831507.aspx
https://technet.microsoft.com/en-ca/library/hh831507.aspx

[188] Microsoft.com. Intune data wipe. Available at https://docs.microsoft.

com/en-us/intune/deploy-use/use-remote-wipe-to-help-protect-

data-using-microsoft-intune. Accessed: 2016-11-01.

[189] Microsoft.com. ProtectKeyWithTPM method of the

Win32_EncryptableVolume class. Online reference. https://msdn.

microsoft.com/en-us/library/windows/desktop/aa376470(v=vs.85)

.aspx.

[190] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor. Frigate: A Validated,

Extensible, and E�cient Compiler and Interpreter for Secure Computation. In

Euro-SP, 2016.

[191] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and S. Sav-

age. Re: CAPTCHAs � understanding CAPTCHA-solving services in an eco-

nomic context. In USENIX Security Symposium, Washington, DC, USA, Au-

gust 2010.

[192] T. Müller, A. Dewald, and F. C. Freiling. AESSE: A cold-boot resistant im-

plementation of AES. In European Workshop on System Security (EuroSec'10),

Paris, France, Apr. 2010.

[193] T. Müller and F. C. Freiling. A systematic assessment of the security of full

disk encryption. 12(5):491�503, September/October 2015.

[194] T. Müller, F. C. Freiling, and A. Dewald. TRESOR runs encryption securely

outside RAM. In USENIX Security Symposium, San Francisco, CA, USA, Aug.

2011.

199

https://docs.microsoft.com/en-us/intune/deploy-use/use-remote-wipe-to-help-protect-data-using-microsoft-intune
https://docs.microsoft.com/en-us/intune/deploy-use/use-remote-wipe-to-help-protect-data-using-microsoft-intune
https://docs.microsoft.com/en-us/intune/deploy-use/use-remote-wipe-to-help-protect-data-using-microsoft-intune
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376470(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376470(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376470(v=vs.85).aspx

[195] T. Müller, H. Spath, R. Mäckl, and F. C. Freiling. STARK tamperproof au-

thentication to resist keylogging. In Financial Cryptography and Data Security

(FC'13), Okinawa, Japan, Apr. 2013.

[196] T. Müller, B. Taubmann, and F. C. Freiling. TreVisor: OS-independent

software-based full disk encryption secure against main memory attacks. In

Applied Cryptography and Network Security (ACNS'12), Singapore, June 2012.

[197] S. Mun. Making democracy legible: A de�ant typeface. Blog post

(June 20, 2013). http://blogs.walkerart.org/design/2013/06/20/sang-

mun-defiant-typeface-nsa-privacy/. Project website: http://z-x-x.org.

[198] A. Narayanan and V. Shmatikov. Fast dictionary attacks on passwords us-

ing time-space tradeo�. In ACM Computer and Communications Security

(CCS'05), Alexandria, VA, USA, November 2005.

[199] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse

datasets. In IEEE Symposium on Security and Privacy, Oakland, CA, USA,

May 2008.

[200] M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux,

and C. Gunter. Controlled functional encryption. In CCS, pages 1280�1291.

ACM, 2014.

[201] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P. Hubaux,

B. Malin, X. Wang, et al. Privacy and security in the genomic era. In CCS,

2014.

[202] V. Neagoe and M. Bishop. Inconsistency in deception for defense. In New

Security Paradigms Workshop (NSPW'06), Dagstuhl, Germany, Sept. 2006.

200

http://blogs.walkerart.org/design/2013/06/20/sang-mun-defiant-typeface-nsa-privacy/
http://blogs.walkerart.org/design/2013/06/20/sang-mun-defiant-typeface-nsa-privacy/
http://z-x-x.org

[203] M. Nemec, M. Sys, P. Svenda, D. Klinec, and V. Matyas. The return of Cop-

persmith's attack: Practical factorization of widely used RSA moduli. In (to

appear) ACM Computer and Communications Security (CCS'17), Dallas, TX,

USA, 2017. https://crocs.fi.muni.cz/public/papers/rsa_ccs17.

[204] NetworkWorld.com. The latest ransomware threat: Doxware. News ar-

ticle (Feb. 27, 2017). https://www.networkworld.com/article/3174678/

security/the-latest-ransomware-threat-doxware.html.

[205] NewYorker.com. The inevitable downfall of your password. News article

(July 17, 2013). http://www.newyorker.com/online/blogs/elements/2013/

07/tumblr-vulnerability-how-to-secure-your-passwords.html.

[206] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. Trustzone ex-

plained: Architectural features and use cases. In Collaboration and Internet

Computing (CIC), 2016 IEEE 2nd International Conference on, pages 445�451.

IEEE, 2016.

[207] J. Nielsen. Stop password masking. Online article (June 23, 2009). http:

//www.nngroup.com/articles/stop-password-masking/.

[208] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vi-

gna. Cookieless monster: Exploring the ecosystem of web-based device �nger-

printing. In IEEE Symposium on Security and Privacy, San Francisco, CA,

USA, May 2013.

[209] not1337. amtterm patches. Available at http://senseless.info/downloads.

html. Accessed: 2016-11-01.

201

https://crocs.fi.muni.cz/public/papers/rsa_ccs17
https://www.networkworld.com/article/3174678/security/the-latest-ransomware-threat-doxware.html
https://www.networkworld.com/article/3174678/security/the-latest-ransomware-threat-doxware.html
http://www.newyorker.com/online/blogs/elements/2013/07/tumblr-vulnerability-how-to-secure-your-passwords.html
http://www.newyorker.com/online/blogs/elements/2013/07/tumblr-vulnerability-how-to-secure-your-passwords.html
http://www.nngroup.com/articles/stop-password-masking/
http://www.nngroup.com/articles/stop-password-masking/
http://senseless.info/downloads.html
http://senseless.info/downloads.html

[210] P. Oberoi and S. Mittal. Review of CIDS and techniques of detection of mali-

cious insiders in cloud-based environment. Cyber Security: Proceedings of CSI

2015, 729:101, 2018.

[211] S. R. M. Oliveira and O. R. Zaiane. Protecting sensitive knowledge by data

sanitization. In IEEE International Conference on Data Mining (ICDM 2003),

Melbourne, FL, USA, November 2003.

[212] E. T. Pancoast, J. N. Curnew, and S. M. Sawyer. Tamper-protected DRAM

memory module, December 2012. US Patent 8,331,189.

[213] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in Modern Com-

puters. Springer, 2011.

[214] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Perrig. Clamp:

Practical prevention of large-scale data leaks. In IEEE Symposium on Security

and Privacy, Oakland, CA, USA, May 2009.

[215] M. Patyal, S. Sampalli, Q. Ye, and M. Rahman. Multi-layered defense architec-

ture against ransomware. International Journal of Business & Cyber Security,

1(2):52�64, Jan. 2017.

[216] D. Pavlovic. Gaming security by obscurity. In New Security Paradigms Work-

shop (NSPW'11), Marin County, CA, USA, Sept. 2011.

[217] PCWorld. Alleged ransomware gang investigated by Moscow police. News

article (Aug. 31, 2010). http://www.pcworld.com/article/204577/article.

html.

[218] S. Pingbo. vtz: Trustzone and tee virtualization, 2017. Available at https:

//www.trustkernel.com/en/products/hypervisor/vtz.html.

202

http://www.pcworld.com/article/204577/article.html
http://www.pcworld.com/article/204577/article.html
https://www.trustkernel.com/en/products/hypervisor/vtz.html
https://www.trustkernel.com/en/products/hypervisor/vtz.html

[219] B. Pinkas and T. Sander. Securing passwords against dictionary attacks. In

ACM Computer and Communications Security (CCS'02), Washington, DC,

USA, November 2002.

[220] J. E. Pixley, S. A. Ross, A. Raturi, and A. C. Downs. A survey of computer

power modes usage in a university population, 2014. California Plug Load

Research Center and University of California, Irvine. http://www.energy.ca.

gov/2014publications/CEC-500-2014-093/CEC-500-2014-093.pdf.

[221] N. Provos. A virtual honeypot framework. In USENIX Security Symposium,

San Diego, CA, USA, Aug. 2004.

[222] r0m30. msed - manage self encrypting drives. https://github.com/NP-

Hardass/msed/tree/master/msed.

[223] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner,

K. Kinshumann, J. Loeser, D. Mattoon, M. Nystrom, D. Robinson, R. Spiger,

S. Thom, and D. Wooten. fTPM: a �rmware-based TPM 2.0 implementation.

Technical Report MSR-TR-2015-84, Microsoft Research, Nov. 2015.

[224] M. J. Ranum. Cryptography and the law... Newsgroup post at

sci.crypt (Oct. 16, 1990). https://groups.google.com/forum/#!msg/sci.

crypt/W1VUQlC99LM/ANkI5zdGQIYJ.

[225] K. Rayner, S. J. White, R. L. Johnson, and S. P. Liversedge. Raeding wrods

with jubmled lettres: There is a cost. Psychological Science, 17(3):192�193,

Mar. 2006.

[226] J. Reardon, D. Basin, and S. Capkun. SoK: Secure data deletion. In IEEE

Symposium on Security and Privacy, San Francisco, CA, USA, May 2013.

203

http://www.energy.ca.gov/2014publications/CEC-500-2014-093/CEC-500-2014-093.pdf
http://www.energy.ca.gov/2014publications/CEC-500-2014-093/CEC-500-2014-093.pdf
https://github.com/NP-Hardass/msed/tree/master/msed
https://github.com/NP-Hardass/msed/tree/master/msed
https://groups.google.com/forum/#!msg/sci.crypt/W1VUQlC99LM/ANkI5zdGQIYJ
https://groups.google.com/forum/#!msg/sci.crypt/W1VUQlC99LM/ANkI5zdGQIYJ

[227] J. Reardon, S. Capkun, and D. Basin. Data node encrypted �le system: E�cient

secure deletion for �ash memory. In USENIX Security Symposium, Bellevue,

WA, USA, Aug. 2012.

[228] E. Rescorla. Protecting your encrypted data in the face of coercion. Blog post

(Feb. 11, 2012). http://www.educatedguesswork.org/2012/02/protecting_

your_encrypted_data.html.

[229] T. Richardson, Q. Sta�ord-Fraser, K. R. Wood, and A. Hopper. Virtual network

computing. IEEE Internet Computing, 2(1):33�38, 1998.

[230] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get o� of

my cloud: exploring information leakage in third-party compute clouds. In

ACM Computer and Communications Security (CCS'09), Chicago, IL, USA,

November 2009.

[231] F. Rodriguez and R. Duda. System and method for providing secure au-

thentication of devices awakened from powered sleep state, 2008. US Patent

20080222423.

[232] J. Rott. Intel AESNI sample library. Source code (May 11, 2011), available

at: https://software.intel.com/en-us/articles/download-the-intel-

aesni-sample-library.

[233] N. C. Rowe. Designing good deceptions in defense of information systems. In

the Annual Computer Security Applications Conferencen (ACSAC'04), Tucson,

AZ, USA, December 2004.

[234] J. Rutkowska. Evil maid goes after TrueCrypt! Online report (Oct.

16, 2009). http://theinvisiblethings.blogspot.ca/2009/10/evil-maid-

goes-after-truecrypt.html.

204

http://www.educatedguesswork.org/2012/02/protecting_your_encrypted_data.html
http://www.educatedguesswork.org/2012/02/protecting_your_encrypted_data.html
https://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library
https://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library
http://theinvisiblethings.blogspot.ca/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.ca/2009/10/evil-maid-goes-after-truecrypt.html

[235] F. Saint-Jean. Java Implementation of a Single-Database Computationally

Symmetric Private Information Retrieval (cSPIR) Protocol. Technical report,

Yale University Department of Computer Science, 2005.

[236] Sakaki. Sakaki's EFI install guide/disabling the intel management engine.

Wiki post (April 4, 2018). https://wiki.gentoo.org/wiki/Sakaki%27s_EFI_

Install_Guide/Disabling_the_Intel_Management_Engine.

[237] Salon.com. James Holmes and the ethics of �truth serum�: Putting the Aurora

shooter through a narcolanalytic interview won't provide truth or prove san-

ity. News article (Mar. 13, 2013). http://www.salon.com/2013/03/13/james_

holmes_the_ethics_efficacy_of_truth_serum/.

[238] A. Saxena and M. PAUL. System and method for deletion of data in a remote

computing platform.

[239] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler. Cryptolock (and drop

it): Stopping ransomware attacks on user data. In International Conference

on Distributed Computing Systems (ICDCS'16), pages 303�312, Nara, Japan,

June 2016.

[240] G. W. Scales, J. Elliott, and J. Norton. Systems and methods for the remote

deletion of pre-�agged data.

[241] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware Guard

Extension: Using SGX to Conceal Cache Attacks. In DIMVA, 2017.

[242] Seagate. DriveTrust technology: A technical overview. http://www.seagate.

com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf.

[243] Seagate.com. Protect your data with Seagate secure self-encrypting drives.

http://www.seagate.com/tech-insights/.

205

https://wiki.gentoo.org/wiki/Sakaki%27s_EFI_Install_Guide/Disabling_the_Intel_Management_Engine
https://wiki.gentoo.org/wiki/Sakaki%27s_EFI_Install_Guide/Disabling_the_Intel_Management_Engine
http://www.salon.com/2013/03/13/james_holmes_the_ethics_efficacy_of_truth_serum/
http://www.salon.com/2013/03/13/james_holmes_the_ethics_efficacy_of_truth_serum/
http://www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf
http://www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf
http://www.seagate.com/tech-insights/

[244] SecurityWeek. LeChi�re ransomware hits Indian banks, pharma company.

News article (Jan. 26, 2016). http://www.securityweek.com/lechiffre-

ransomware-hits-indian-banks-pharma-company.

[245] SecurStar.com. DriveCrypt Plus Pack. http://www.securstar.com/disk_

encryption.php.

[246] R. Sevinsky. Funderbolt: Adventures in Thunderbolt DMA attacks. Black Hat

USA, 2013.

[247] SFGate.com. Stockton mayor was brie�y detained on return �ight from China.

News article (Oct. 2, 2015). http://www.sfgate.com/bayarea/article/

Stockton-mayor-was-briefly-detained-on-return-6546419.php.

[248] J. Sharkey. Breaking hardware-enforced security with hypervisors. Black Hat

USA, 2016.

[249] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit authentication through

learning user behavior. In Information Security Conference (ISC'10), Boca

Raton, FL, USA, Oct. 2010.

[250] T. Sim, S. Zhang, R. Janakiraman, and S. Kumar. Continuous veri�cation using

multimodal biometrics. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(4):687�700, Apr. 2007.

[251] P. Simmons. Security through Amnesia: A software-based solution to the cold

boot attack on disk encryption. In ACSAC'11, Orlando, FL, USA, 2011.

[252] M. M. G. Slusarczuk, W. T. May�eld, and S. R. Welke. Emergency destruction

of information storing media. Institute for Defense Analyses Report R-321 (Dec.

1987). http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA202147.

206

http://www.securityweek.com/lechiffre-ransomware-hits-indian-banks-pharma-company
http://www.securityweek.com/lechiffre-ransomware-hits-indian-banks-pharma-company
http://www.securstar.com/disk_encryption.php
http://www.securstar.com/disk_encryption.php
http://www.sfgate.com/bayarea/article/Stockton-mayor-was-briefly-detained-on-return-6546419.php
http://www.sfgate.com/bayarea/article/Stockton-mayor-was-briefly-detained-on-return-6546419.php
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA202147

[253] SNPedia. Magnitude. https://www.snpedia.com/index.php/Magnitude,

2014.

[254] SNPedia. rs429358. https://www.snpedia.com/index.php/Rs429358, 2017.

[255] E. R. Sparks. A security assessment of trusted platform modules. Technical

report, Dartmouth College, 2007. http://www.cs.dartmouth.edu/reports/

TR2007-597.pdf.

[256] H. C. C. D. M. K. S. C. N. A. Spivey and R. Smith. Essentials of Genetics.

NPG Education, 2009.

[257] W. Stallings. Format-preserving encryption: Overview and NIST speci�cation.

Cryptologia, 41(2):137�152, 2017.

[258] P. Stewin. Detecting Peripheral-based Attacks on the Host Memory. PhD thesis,

Technischen Universität Berlin, July 2014.

[259] C. Stoll. The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer

Espionage. Doubleday, 1989.

[260] C. Strapparava and R. Mihalcea. Learning to identify emotions in text. In

ACM Symposium on Applied Computing (SAC 2008), Fortaleza, Brazil, March

2008.

[261] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and G. R.

Ganger. Self-securing storage: protecting data in compromised systems. In

Foundations of Intrusion Tolerant Systems, 2003 [Organically Assured and Sur-

vivable Information Systems], pages 195�209, Los Alamitos, CA, USA, 2003.

[262] R. Sturmer. A lightweight implementation of the FAT32 �lesystem for embed-

ded systems. https://github.com/ryansturmer/thinfat32.

207

https://www.snpedia.com/index.php/Magnitude
https://www.snpedia.com/index.php/Rs429358
http://www.cs.dartmouth.edu/reports/TR2007-597.pdf
http://www.cs.dartmouth.edu/reports/TR2007-597.pdf
https://github.com/ryansturmer/thinfat32

[263] T13 Technical Committee. ATA Security feature Set Clari�cations. May 24,

2006.

[264] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and N. Sarda.

CleanOS: Limiting mobile data exposure with idle eviction. In USENIX Op-

erating Systems Design and Implementation (OSDI'12), Hollywood, CA, USA,

Oct. 2012.

[265] C. Tarnovsky. Hacking the smartcard chip. Black Hat DC, 2010.

[266] C. Tarnovsky. Security failures in secure devices. Black Hat

DC (Feb. 2008). https://www.blackhat.com/presentations/bh-dc-08/

Tarnovsky/Presentation/bh-dc-08-tarnovsky.pdf.

[267] B. Technology. ISEE trusted execution environment platform (secure os), 2016.

Available at http://www.beanpodtech.com/en/products/.

[268] N. Technology. Nutlet technology passed tee authentication via gp, 2016. Avail-

able at http://www.whty.com/news220.html.

[269] The Atlantic. The computer virus that haunted early AIDS researchers. News

article (May 10, 2016). https://www.theatlantic.com/technology/

archive/2016/05/the-computer-virus-that-haunted-early-aids-

researchers/481965/.

[270] The T13 Technical Committee. Information technology - ATA command set -

4 (ACS-4). http://www.t13.org/Documents/UploadedDocuments/docs2016/

di529r14-ATAATAPI_Command_Set_-_4.pdf.

[271] TheGuardian.com. Revealed: how us and uk spy agencies defeat internet pri-

vacy and security, 2013. Available at http://www.theguardian.com/world/

2013/sep/05/nsa-gchq-encryption-codessecurity/print.

208

https://www.blackhat.com/presentations/bh-dc-08/Tarnovsky/Presentation/bh-dc-08-tarnovsky.pdf
https://www.blackhat.com/presentations/bh-dc-08/Tarnovsky/Presentation/bh-dc-08-tarnovsky.pdf
http://www.beanpodtech.com/en/products/
http://www.whty.com/news220.html
https://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-that-haunted-early-aids-researchers/481965/
https://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-that-haunted-early-aids-researchers/481965/
https://www.theatlantic.com/technology/archive/2016/05/the-computer-virus-that-haunted-early-aids-researchers/481965/
http://www.t13.org/Documents/UploadedDocuments/docs2016/di529r14-ATAATAPI_Command_Set_-_4.pdf
http://www.t13.org/Documents/UploadedDocuments/docs2016/di529r14-ATAATAPI_Command_Set_-_4.pdf
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codessecurity/print
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codessecurity/print

[272] TheRegister.co.uk. Computing student jailed after failing to hand over crypto

keys. News article (July 8, 2014).

[273] TheRegister.co.uk. Ex-Microsoft bug bounty dev forced to decrypt laptop for

Paris airport o�cial. News article (Jan. 6, 2015).

[274] TheRegister.co.uk. South Korean hosting co. pays $1m ransom to end eight-

day outage. News article (June 20, 2017). https://www.theregister.co.uk/

2017/06/20/south_korean_webhost_nayana_pays_ransom/.

[275] TrueCrypt.org. Free open source on-the-�y disk encryption software. Version

7.1a (July 2012). http://www.truecrypt.org/.

[276] Trusted Computing Group. TCG storage architecture core speci�-

cation. https://trustedcomputinggroup.org/wp-content/uploads/TCG_

Storage_Architecture_Core_Spec_v2.01_r1.00.pdf.

[277] Trusted Computing Group. TPM Main: Part 1 Design Principles. Speci�cation

Version 1.2, Level 2 Revision 116 (March 1, 2011).

[278] Trusted Computing Group. TCG Storage Security Subsystem Class: Opal,

February 2012.

[279] E. TS. At command set for user equipment, 2011. Available

at http://www.etsi.org/deliver/etsi_ts/127000_127099/127007/10.03.

00_60/ts_127007v100300p.pdf.

[280] S. Türpe, A. Poller, J. Ste�an, J.-P. Stotz, and J. Trukenmüller. Attacking the

BitLocker boot process. In Technical and Socio-economic Aspects of Trusted

Computing (Trust'09), Oxford, UK, Apr. 2009.

209

https://www.theregister.co.uk/2017/06/20/south_korean_webhost_nayana_pays_ransom/
https://www.theregister.co.uk/2017/06/20/south_korean_webhost_nayana_pays_ransom/
http://www.truecrypt.org/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage_Architecture_Core_Spec_v2.01_r1.00.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage_Architecture_Core_Spec_v2.01_r1.00.pdf
http://www.etsi.org/deliver/etsi_ts/127000_127099/127007/10.03.00_60/ts_127007v100300p.pdf
http://www.etsi.org/deliver/etsi_ts/127000_127099/127007/10.03.00_60/ts_127007v100300p.pdf

[281] USB.org. Enhanced host controller interface speci�cation for universal serial

bus. http://www.usb.org/developers/resources/.

[282] Usb.org. Universal serial bus (USB), device class de�nition for human interface

devices (HID). Firmware Speci�cation (June 27, 2001). http://www.usb.org/

developers/hidpage/HID1_11.pdf.

[283] A. S. Uz. The e�ectiveness of remote wipe as a valid defense for enterprises

implementing a BYOD policy. Master's thesis, University of Ottawa, 2014.

[284] J. van Hoboken, A. Arnbak, and N. van Eijk. Cloud computing in higher

education and research institutions and the usa patriot act, 2012. Available at

SSRN: https://ssrn.com/abstract=2181534.

[285] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis. Pixel-

Vault: Using GPUs for securing cryptographic operations. In ACM CCS'14,

Scottsdale, AZ, USA, Nov. 2014.

[286] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta. De-

sign, implementation and veri�cation of an eXtensible and modular hypervisor

framework. In IEEE Symposium on Security and Privacy, Berkeley, CA, USA,

2013.

[287] T. Vidas. AfterLife: USB based memory acquisition tool targeting �warm boot�

machines with 4GB of RAM or less. http://sourceforge.net/projects/

aftrlife/.

[288] T. Vidas. Volatile memory acquisition via warm boot memory survivability.

In Hawaii International Conference on System Sciences (HICSS'10), Honolulu,

HI, USA, Jan. 2010.

210

http://www.usb.org/developers/resources/
http://www.usb.org/developers/hidpage/HID1_11.pdf
http://www.usb.org/developers/hidpage/HID1_11.pdf
https://ssrn.com/abstract=2181534
http://sourceforge.net/projects/aftrlife/
http://sourceforge.net/projects/aftrlife/

[289] Visa. Veri�ed by Visa FAQ & credit card security. Online

FAQ. http://usa.visa.com/personal/security/visa_security_program/

vbv/verified_by_visa_faq.html#anchor_15.

[290] T. Walsh, M. K. Lee, S. Casadei, A. M. Thornton, S. M. Stray, C. Pennil,

A. S. Nord, J. B. Mandell, E. M. Swisher, and M.-C. King. Detection of inher-

ited mutations for breast and ovarian cancer using genomic capture and mas-

sively parallel sequencing. Proceedings of the National Academy of Sciences,

107(28):12629�12633, 2010.

[291] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu. E�cient

genome-wide, privacy-preserving similar patient query based on private edit

distance. In CCS, pages 492�503. ACM, 2015.

[292] J. Wiklander. Secure storage in OP-TEE. Available at https://github.com/

OP-TEE/optee_os/blob/master/documentation/secure_storage.md.

[293] A. Winter. The making of �truth serum,� 1920-1940. Bulletin of the History of

Medicine, 79(3):500�533, 2005.

[294] J. Winter and K. Dietrich. A hijacker's guide to communication interfaces of

the trusted platform module. Computers and Mathematics with Applications,

65(5):748�761, Mar. 2013.

[295] Wired. How an accidental `kill switch' slowed Friday's massive ransomware

attack. News article (May 13, 2017). https://www.wired.com/2017/05/

accidental-kill-switch-slowed-fridays-massive-ransomware-attack/.

[296] R. Wojtczuk and C. Kallenberg. Attacking UEFI boot script, 2014.

http://events.ccc.de/congress/2014/Fahrplan/system/attachments/

2566/original/venamis_whitepaper.pdf.

211

http://usa.visa.com/personal/security/visa_security_program/vbv/verified_by_visa_faq.html#anchor_15
http://usa.visa.com/personal/security/visa_security_program/vbv/verified_by_visa_faq.html#anchor_15
https://github.com/OP-TEE/optee_os/blob/master/documentation/secure_storage.md
https://github.com/OP-TEE/optee_os/blob/master/documentation/secure_storage.md
https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/
https://www.wired.com/2017/05/accidental-kill-switch-slowed-fridays-massive-ransomware-attack/
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf

[297] R. Wojtczuk and J. Rutkowska. Attacking Intel trusted execution technology.

Black Hat DC (Feb. 2009). http://www.blackhat.com/presentations/bh-

dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-

Intel-TXT-slides.pdf.

[298] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. Another way to circumvent

Intel Trusted Execution Technology: Tricking SENTER into miscon�guring

VT-d via SINIT bug exploitation. Technical article (Dec., 2009). http://

theinvisiblethings.blogspot.com/2009/12/another-txt-attack.html.

[299] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. Another way to circum-

vent Intel trusted execution technology. Technical report, Invisible Things

Lab, 2009. http://invisiblethingslab.com/resources/misc09/Another%

20TXT%20Attack.pdf.

[300] A. Woodward. Bitlocker - the end of digital forensics? In Australian Digital

Forensics Conference, page 38, Perth, Western Australia, 2006.

[301] Y. Xia, Y. Liu, C. Tan, M. Ma, H. Guan, B. Zang, and H. Chen. TinMan:

Eliminating con�dential mobile data exposure with security oriented o�oading.

In EuroSys'15, Bordeaux, France, Apr. 2015.

[302] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: Determinis-

tic Side Channels for Untrusted Operating Systems. In IEEE Symposium on

Security and Privacy, 2015.

[303] A. C. Yao. Protocols for secure computations. In FOCS, 1982.

[304] Z. E. Ye, S. Smith, and D. Anthony. Trusted paths for browsers. ACM Trans-

actions on Information and System Security (TISSEC), 8(2):153�186, 2005.

212

http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Wojtczuk_Rutkowska/BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.pdf
http://theinvisiblethings.blogspot.com/2009/12/another-txt-attack.html
http://theinvisiblethings.blogspot.com/2009/12/another-txt-attack.html
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

[305] J. Youll. Fraud vulnerabilities in SiteKey security at Bank of America. Technical

article (July 18, 2006). http://www.cr-labs.com/publications/SiteKey-

20060718.pdf.

[306] A. Young and M. Yung. Cryptovirology: Extortion-based security threats and

countermeasures. In IEEE Symposium on Security and Privacy, Oakland, CA,

USA, May 1996.

[307] A. Young and M. Yung. Cryptovirology: The birth, neglect, and explosion of

ransomware. Communications of the ACM, 60(7):24�26, July 2017.

[308] L. Ysboodt and M. D. Nil. Embedded �lesystems library. https://

sourceforge.net/projects/efsl/?source=typ_redirect.

[309] X. Yu, Z. Wang, K. Sun, W. T. Zhu, N. Gao, and J. Jing. Remotely wiping

sensitive data on stolen smartphones. In Proceedings of the 9th ACM Symposium

on Information, Computer and Communications Security, ASIA CCS'14, pages

537�542, Kyoto, Japan, 2014.

[310] J. Yuill, D. Denning, and F. Feer. Using deception to hide things from hackers:

Processes, principles, and techniques. J. Information Warfare, 5(3):26�40, 2006.

[311] L. Zhao and M. Mannan. Gracewipe: Secure and veri�able deletion under

coercion. In NDSS'15, San Diego, CA, USA, Feb. 2015.

[312] L. Zhao and M. Mannan. Gracewipe: Secure and veri�able deletion under

coercion. In NDSS'15, San Diego, CA, USA, Feb. 2015.

[313] L. Zhao and M. Mannan. Hypnoguard: Protecting secrets across sleep-wake

cycles. Technical Report 981477, Concordia University, Aug. 2016. http://

spectrum.library.concordia.ca/981477/.

213

http://www.cr-labs.com/publications/SiteKey-20060718.pdf
http://www.cr-labs.com/publications/SiteKey-20060718.pdf
https://sourceforge.net/projects/efsl/?source=typ_redirect
https://sourceforge.net/projects/efsl/?source=typ_redirect
http://spectrum.library.concordia.ca/981477/
http://spectrum.library.concordia.ca/981477/

Appendix A

Glossary and Additional Information

In this appendix, we provide the de�nition or explanation of certain technical terms

that are used across chapters to facilitate understanding of the implementation of

individual prototype systems.

Trusted Execution Environment (TEE).Modern CPUs usually support a special

secure mode of execution, which ensures that only pre-con�gured unaltered code can

be executed, with integrity, secrecy and attestability; and provides a form of isolation

from both other software/�rmware and physical tampering. TEE can be exclusive,

preempting and suspending other code (as in Intel TXT), or concurrent, co-existing

with other processes (as in Intel SGX and ARM TrustZone).

Technically, TEEs cannot function alone. For the purpose of storing measurements

(to be matched with that of the code being loaded) and secure storage of execution

secrets, a secure element is used in conjunction. It can be part of the processor die,

an integrated chip, or a discrete module.

Intel TXT. Trust Execution Technology is Intel's �rst �late launch� technique, aim-

ing at establishing trusted execution any time after system recycle, without relying

on what has been already loaded (e.g., BIOS). It is exclusive, removing software

214

side-channel attack vectors and with the help of VT-d [10], largely defending against

violations from the I/O space. The TXT session must be �rst bootstrapped by an

Intel authorized code module (ACM or SINIT), which performs the actual loading of a

user-deployed program. TXT works with TPM (Trust Platform Module) as the secure

element.

The volatile secure storage on the TPM chip includes PCRs (Platform Con�gu-

ration Registers) where the run-time measurement can be stored. They can not be

directly accessed but only extended (i.e., replaced with the cryptographic hash value

of its original value concatenated with the new measurement). The non-volatile se-

cure storage on the TPM chip is called NVRAM, which is accessible in the form of index

(a numeric identi�er). NVRAM indices can be allocated and deallocated and there

can be multiple of them. They can be con�gured in di�erent protection modes, e.g.,

by a password (called AuthData), or only when speci�c PCR values are present, or a

combination thereof.

Sealing. Short for cryptographic sealing, it is a special mode of encryption, provided

by TEEs, where the key is derived (in many ways) largely from the machine state,

in the form of measurement. Measurement is the chaining of the loaded programs

in sequence, e.g., concatenation of hashed values (for the TPM, residing in PCRs).

Any single bit of change in loaded programs will cause a mismatch of measurement,

making the derived key di�erent, and thus render the decryption (unsealing) to fail.

In this way, platform binding is achieved.

Tboot. Tboot [134] is an open-source project by Intel that uses the trusted execution

technology (TXT) to perform a measured late-launch of an OS kernel (currently

only Linux) or VMM (e.g., Xen). It can reload the platform dynamically (with

the instruction GETSEC[SENTER]) and chain the measurement (through the TPM

extend operation) of the whole software stack for attestation, including the ACM,

215

tboot itself, and any other binaries de�ned in the launch policy. The measurement

outcome is checked against pre-established known values, and if di�erent, the booting

process may be aborted. Thereafter, the run-time environment is guaranteed to be

isolated by TXT, with external DMA access restricted by VT-d (MMIO). Tboot can

load (multiboot) ELF image and Linux bzImage. Note that it must be preceded by

GRUB as tboot cannot be chainloaded (see below).

Multiboot. The multiboot speci�cation [91] is an open standard for multi-

stage/coexistent booting of di�erent operating systems or virtual machine monitors

(VMMs); it has been implemented in several tools, e.g., GRUB,1 kexec tools,2 and

tboot [134]. It enforces deterministic machine state and standardized parameter pass-

ing so that each stage (e.g., bootloader) knows what to expect from the previous stage

and what to prepare for the next stage.

Chainloading. Chainloading 3 involves loading an OS/VMM as if it is being loaded

at system boot-up (which may be actually from another running OS/VMM). The tar-

get image is loaded at a �xed memory address in real-mode (usually at 0x0000:0x7C00).

The system jumps to the �rst instruction of the image without parsing its structure

(except for the recognition of an MBR). At this time, machine state is like after a

system reset, e.g., real-mode, initialized I/O, default global/interrupt descriptor table

(GDT/IDT). Windows does not support the multiboot speci�cation, so it is chain-

loaded by Gracewipe. We use GRUB as the bootloader for Gracewipe, as GRUB

supports both multiboot and chainloading.

Flicker [183]. Before the advent of Flicker, Intel TXT was mostly applied with

the pilot project tboot, which deals with boot-time trusted execution. The ability

to switch between the regular OS environment and the trusted execution had always

1http://www.gnu.org/software/grub/
2https://www.kernel.org/pub/linux/utils/kernel/kexec/
3https://www.gnu.org/software/grub/manual/html_node/Chain_002dloading.html

216

http://www.gnu.org/software/grub/
https://www.kernel.org/pub/linux/utils/kernel/kexec/
https://www.gnu.org/software/grub/manual/html_node/Chain_002dloading.html

been desired. Flicker enables such transitions, e.g., interrupting and saving states

for the OS, initiating the TXT session, performing trusted operations and resuming

the OS. The trusted operations are encapsulated in what is called a PAL (piece of

application logic) and thus OS-agnostic. It satis�es what is needed in Inuksuk.

TrueCrypt. The TrueCrypt on-the-�y full-disk encryption (FDE) utility is possibly

the most popular choice in its kind at the time. It supports plausibly deniable encryp-

tion (PDE) in the form of a hidden volume, which appears as free space of another

volume. In the regular mode, an encrypted volume is explicitly mounted through

TrueCrypt, on demand, after the OS is already booted up. We use its PDE-FDE

mode (available only in Windows), where the OS volume is also encrypted and the

original Windows MBR is replaced with the TrueCrypt MBR, which prompts for a

password and loads the next 40�60 sectors (termed TrueCrypt modules) to decrypt

the system volume.

Self-Encrypting Drives (SEDs). SEDs [12] o�er hardware-based FDE as opposed

to software-only FDE solutions. A major bene�t of an SED is its on-device encryption

engine, which always keeps disk data encrypted. A media encryption key (MEK) is

created at provisioning time and used to encrypt all data on the drive. MEK never

leaves an SED (similar to the SRK of a TPM), and is only accessible to the on-device

encryption engine (i.e., not exposed to RAM/CPU). An authentication key (AK)

derived from a user-chosen password is used to encrypt the MEK. Several storage

manufacturers now o�er SED-capable disks. Trusted Computing Group (TCG) also

has its open standard named Opal/Opal2 [278] for SEDs. SEDs provide various

features such as instant secure erase and multiple user management.

With regard to the user interface for password entry, SEDs are usually shipped

with an ATA security compliant interface as in regular drives. This is the interface we

choose to use for Gracewipe. When a drive is powered up, it is by default in a locked

217

state, until the user enters the correct password to switch it over to an unlocked state.

The drive falls back to locked state at power loss. Unlocking involves using AK to

decrypt MEK and, thus enabling decryption of disk data.

Also, SEDs come with certain additional vendor-speci�c interfaces for richer func-

tionalities (e.g., TCG Opal and Seagate DriveTrust). With such interfaces, most

SEDs o�er �ne-grained protection, such as dividing media space into ranges and

splitting read/write accesses. This is the interface we choose to use for Inuksuk. The

several design �aws or �rmware bugs identi�ed by researchers mostly rely on phys-

ical access, i.e., desoldering a microchip, manipulating the connector or evil maid

attacks. Inuksuk is not a�ected by such attacks, as only software adversaries are

considered. Also what we need is merely the write-protection enforcement, which is

a lower requirement than ensuring data secrecy.

218

	List of Figures
	List of Tables
	Introduction
	Unconventional Attack Capabilities
	Methodology
	Hardware security primitives – P1
	Passive but resilient defense – P2

	Thesis Statement
	Main Contributions
	Related Publications
	Outline

	Deceptive Deletion Triggers under Coercion
	Introduction and Motivation
	Goals and Threat Model
	Goals and terminology
	Threat model and assumptions

	Gracewipe Design
	Overview and disk layout
	Execution steps
	Sealing in NVRAM
	Password management

	Implementation with TrueCrypt
	Implementing the wiper
	Adapting TrueCrypt
	Orchestrating components
	Windows and TPM issues

	Extended Unlocking Schemes
	Existing panic password schemes
	Counter-based deletion trigger
	Edit-distance-based password scheme
	Other possible schemes

	Performance Overhead
	Generalized Workflow and Comparison
	Security Analysis
	Related Work
	Concluding Remarks

	Extending Gracewipe to Network-based Environments
	Introduction
	Threat Model and Assumptions
	An Analysis and Status-quo of Remote Secure Erase
	End-to-end Verifiable Secure Deletion
	Design considerations

	A Proof-of-concept on x86 PCs
	Assumptions and terminology
	Design overview
	Implementation of Gracewipe Remote
	Adapting for server-coordinated remote wipe

	Related Work
	Conclusion

	Hypnoguard: Protecting Secrets across Sleep-wake Cycles
	Introduction
	Terminologies, Goals and Threat Model
	Terminologies
	Goals
	Threat model and assumptions

	Design
	Design choices and elements
	Unlock/deletion policy and deployment
	How goals are achieved

	Implementation
	Overview and execution steps
	Instrumenting the S3 handler
	Memory considerations
	User interaction
	Moving data around
	Unencrypted memory regions

	High-speed Full Memory Encryption and Decryption
	Enabling techniques
	Performance analysis

	Variants
	Security Analysis
	Related Work
	Concluding Remarks

	Trusted Write-protection Against Privileged Data Tampering
	Introduction and Motivation
	Threat Model and Assumptions
	Design
	Design goals
	Trusted file versioning
	Design choices
	System components and workflow
	A remote data vault

	Implementation
	Using Flicker to handle TXT sessions
	OPAL access to SED inside TXT
	Secure user interface
	OPAL implementation challenges

	Performance Considerations
	File system efficiency
	CPU slowdown in Flicker PAL
	Adding support for DMA disk access
	Usage scenarios and performance

	Security Analysis
	Related Work
	Conclusions

	COTS One-Time Programs
	Introduction
	Preliminaries
	Design goals
	Trusted execution environments
	Threat model
	Terminology
	Additional background

	System 1: TXT-only
	TXT-only provisioning at Alice's site
	TXT-only evaluation at Bob's site
	Trusted execution
	Performance evaluation

	System 2: GC-based
	The Frigate GC compiler
	Execution steps
	Enhanced security: GC-based Plus
	Performance evaluation

	Case Study
	Genomic test
	GC-Based OTP implementation
	GC-based case study setup
	TXT-only OTP implementation
	Evaluation
	Porting effort

	Other Use Cases
	Security analysis
	Related Work
	Concluding Remarks

	Explicit Authentication Response Considered Harmful
	Introduction
	Threat Model and Assumptions
	Uvauth: User-verifiable Authentication
	Implicit detection of an authentication outcome
	Designing fake sessions

	Distorted Image as a Communication Channel
	Captchas as a cipher
	Adaptation of regular captchas
	An example with VNC

	Limitations and Attacks
	Related Work
	Conclusion

	Further Discussion
	Onto Mobile Platforms
	Open Problems
	Concluding Remarks

	Glossary and Additional Information

