
SEMANTIC MAPPING OF SECURITY EVENTS TO

KNOWN ATTACK PATTERNS

Xiao Ma

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

August 2018

© Xiao Ma, 2018

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Xiao Ma

Entitled: Semantic Mapping of Security Events to Known Attack

Patterns

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair
Dr. Yuhong Yan

Examiner
Dr. Brigitte Jaumard

Examiner
Dr. Olga Ormandjieva

Supervisor
Dr. Leila Kosseim

Approved
Sudhir Mudur,

Chair of Department or Graduate Program Director

20

Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Semantic Mapping of Security Events to Known Attack Patterns

Xiao Ma

In order to provide cyber environment security, analysts need to analyze a large

number of security events on a daily basis and take proper actions to alert their

clients of potential threats. The increasing cyber traffic drives a need for a system to

assist security analysts to relate security events to known attack patterns. This thesis

describes the enhancement of an existing Intrusion Detection System (IDS) with the

automatic mapping of snort alert messages to known attack patterns. Our system

relies on three approaches: supplementing snort messages by adding related Common

Vulnerabilities and Exposures (CVE) entities, pre-clustering similar snort messages

before mapping them to attack patterns in Common Attack Pattern Enumeration

and Classification (CAPEC) and using Latent Semantic Analysis (LSA) to reduce

the dimension of the feature space. The module has been deployed in our partner

company and when evaluated against the recommendations of two security analysts,

it improved the F-measure of their system from 51.81% to 64.84%.

iii

Acknowledgments

First of all, I would like to express my sincere thanks to my supervisor Dr. Leila

Kosseim. Her patient guidance and excellent feedback at every step of the research

contributed inestimably to my thesis and inspired me to overcome every difficulty. It

was a great honor for me to be supervised by my supervisor, whom I profoundly ad-

mire her outstanding knowledge. I am also extremely thankful for her consideration,

kindness and understanding. I believed I have learned a lot from my supervisor and

these two years of research.

Also, I would like to thank Elnaz Davoodi and Nicandro Scarabeo. Their experienced

analysis, advice and suggestions greatly improved understanding for the project. Ev-

ery discussion with them offered me new ideas and encouraged me to move forward.

I quite enjoyed our discussions.

I also would like to express my thanks to the examining committee, Professors Brigitte

Jaumard and Olga Ormandjieva, as well as the chair Professor Yuhong Yan, for their

helpful feedback and insightful comments.

Finally, I would like to thank my fellow lab mates at the Computational Linguistics at

Concordia (CLaC). Their support, interesting discussions and valuable contributions

enriched my knowledge and boosted my research during these two years.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Research Motivation . 1

1.2 Problem Statement . 3

1.3 Contribution . 4

1.4 Thesis Outline . 5

2 Previous Work 6

2.1 Public Repositories of Known Vulnerabilities 6

2.1.1 Common Vulnerabilities and Exposures 7

2.1.2 The National Vulnerability Database 9

2.1.3 Common Attack Pattern Enumeration and Classification . . . 9

2.2 ArkAngel . 12

2.2.1 Charibdis . 14

2.3 Sentence Similarity . 22

2.3.1 String Similarity . 22

2.3.2 Semantic Similarity . 28

2.3.3 Knowledge-Based Models . 28

2.3.4 Corpus-Based Model . 32

3 Baseline System Evaluation 37

3.1 Initial Evaluation . 37

3.1.1 Snort Rule Name Description 38

v

3.1.2 Mapping Rate . 38

3.2 Gold-Standard Evaluation . 40

3.2.1 Gold-Standard . 40

3.2.2 Evaluation Metrics . 41

4 Feature Selection and Snort Messages Supplement 45

4.1 Feature Selection . 46

4.1.1 Experiments Based on Unigrams 46

4.1.2 Experiments Based on Bigrams and Trigrams 48

4.1.3 Experiments Based on a Mixture of N-Grams 50

4.1.4 Overall Conclusion on N-Gram Feature Selection 51

4.2 Snort Messages Expansion . 52

4.2.1 Snort Messages Expansion Pipeline 52

4.2.2 Results and Analysis . 55

4.2.3 Analysis of the CVE Expansion 57

5 Pre-Clustering 59

5.1 K-Means Clustering . 59

5.1.1 Introduction to K-Means . 60

5.1.2 Algorithm Pipeline . 60

5.2 Analysis of Pre-clustering . 62

5.2.1 Experiments Based on Unigrams 62

5.2.2 Experiments Based on Bigrams 64

5.2.3 Experiments Based on Mixture of Unigrams + Bigrams 64

5.2.4 Analysis of the Messages Pre-clustering 66

6 Latent Semantic Analysis Approach 69

6.1 Latent Semantic Analysis . 69

6.1.1 Algorithm Pipeline . 71

6.2 Analysis of the Latent Semantic Analysis Approach 71

6.2.1 Experiments Based on Unigrams 71

6.2.2 Experiments Based on Bigrams 72

6.2.3 Experiments Based on Mixture of Unigrams + Bigrams 73

6.2.4 Analysis of the Latent Semantic Analysis 73

vi

7 Conclusion and Future Work 76

7.1 Conclusion . 76

7.2 Future Work . 77

A Details of Experimented Results 84

vii

List of Figures

1 Examples of 7 snort messages . 2

2 Example of a CAPEC Attack Pattern 2

3 Workflow of a typical SIEM system 4

4 Example of a CVE Entity . 7

5 Example of a CWE Entity . 8

6 Impact Metrics in an NVD Feed . 9

7 Technical Details in an NVD Feed . 10

8 Categories of Attack Patterns in CAPEC 11

9 Hierarchy of Attack Patterns in CAPEC 11

10 Example of an Attack Pattern in CAPEC 12

11 Workflow of ArkAngel . 13

12 Workflow of the Intelligence Layer of ArkAngel 14

13 Flow of Charybdis System . 15

14 Example of Input Snort Alert Message 16

15 Example of an Input Attack Field From CAPEC 17

16 Example of Cosine Similarity . 21

17 A Fragment of WordNet Hierarchy 29

18 Detailed Workflow of the Original Evaluation of the Baseline System 39

19 Results of Unigram Experiment . 47

20 Number of Bigram Features . 48

21 Mapping Rate of the Bigram Experiments 49

22 Results of the Bigram Experiments 49

23 Results of Two N-Grams Mixtures 51

24 Distribution of the Length of Snort Messages and CAPEC Fields . . 52

25 Number of Correct and Acceptable Mappings with the Mixture of Un-

igrams + Bigrams . 53

viii

26 Example of a CVE Entity . 54

27 Comparison of the Length of Snort Messages with and without CVE

Expansion . 55

28 Comparison of the Mapping Quality on Unigrams with and without

CVE Expansion . 56

29 Comparison of the Mapping Quality on Bigrams with and without

CVE Expansion . 56

30 Comparison of the Mapping Quality of Mixture of Unigrams + Bigrams

with and without CVE Expansion . 57

31 Distribution of Average Snort Length with Different Numbers of Clusters 61

32 Comparison of Mapping Quality in Unigrams with DF only and TV only 63

33 Comparison of Mapping Quality in Unigrams with 20 Clusters + TV

and Baseline . 64

34 Comparison of Mapping Quality in Bigrams with 2000 Clusters + DF

and Baseline . 65

35 Comparison of Mapping Quality in Mixture of Unigrams + Bigrams

with 1000 Clusters + TV and Baseline 65

36 Analysis of the Mapping Quality Between the Baseline, the CVE Ex-

pansion and the Pre-clustering . 67

37 Comparison of the Mapping Quality of Unigrams Only Between Base-

line and LSA . 72

38 Comparison of the Mapping Quality of Bigrams Only Between Baseline

and LSA . 73

39 Comparison of the Mapping Quality of Mixture of Unigrams + Bigrams

Between Baseline and LSA . 74

ix

List of Tables

1 Example of a Term-by-Document Matrix 26

2 Example of Same Rule Name . 38

3 Example of Snort Rule Name Expansion 38

4 Extract of the Gold-Standard Dataset 41

5 Statistics of the Gold-standard Built by Two Cyber Security Analysts 42

6 Description of Input Parameters in Baseline System 43

7 Precision and Recall of the Baseline System 43

8 F-Measure of the Baseline System . 44

9 Description of the Unigram Experiments 46

10 F-Measures of the Unigram Experiments 47

11 Description of the Mixture N-Grams Experiments 50

12 Description of the Pre-clustering on Unigrams Experiments only with

Document Frequency . 62

13 Description of the Pre-clustering on Unigrams Experiments only with

Term Variance Frequency . 63

14 Results with the Mixture of Unigrams + Bigrams with Different Clus-

ter Numbers + TV Filter . 66

15 Description of the Unigram with Latent Semantic Analysis Experiments 72

16 Description of the Mixture of Unigrams + Bigrams on Latent Semantic

Analysis Experiments . 74

17 Comparison of the Mapping Quality Between Term Frequency and

TF.IDF . 75

18 Results of the Unigram Experiments 84

19 Description of the Bigram Experiments 85

20 Results of the Bigram Experiments 85

21 F-Measures of the Bigram Experiments 85

x

22 Description of the Trigram Experiments 86

23 Results of the Trigram Experiments 86

24 F-Measures of the Trigram Experiments 86

25 Results of the Mixture N-Grams Experiments 87

26 F-Measures of the Mixture N-Grams Experiments 87

27 Description of the Unigrams on CVE Extension Experiments 88

28 Results of the Unigrams on CVE Extension Experiments 88

29 F-Measures of the Unigrams on CVE Extension Experiments 88

30 Description of the Bigrams on CVE Extension Experiments 89

31 Results of the Bigrams on CVE Extension Experiments 89

32 F-Measures of the Bigrams on CVE Extension Experiments 89

33 Description of the Mixture of Unigrams + Bigrams on CVE Extension

Experiments . 90

34 Results of the Mixture of Unigrams + Bigrams on CVE Extension

Experiments . 90

35 F-Measures of the Mixture of Unigrams + Bigrams on CVE Extension

Experiments . 90

36 Results of the Unigrams on Pre-clustering Experiments with Document

Frequency . 91

37 F-Measures of the Unigrams on Pre-clustering Experiments with Doc-

ument Frequency . 91

38 Results of the Unigrams on Pre-clustering Experiments with Term

Variance Frequency . 92

39 F-Measures of the Unigrams on Pre-clustering Experiments with Term

Variance Frequency . 92

40 Description of the Bigrams on Pre-clustering Experiments with Docu-

ment Frequency . 93

41 Results of the Bigrams on Pre-clustering Experiments with Document

Frequency . 93

42 F-Measures of the Bigrams on Pre-clustering Experiments with Docu-

ment Frequency . 94

43 Description of the Bigrams on Pre-clustering Experiments with Term

Variance Frequency . 94

xi

44 Results of the Bigrams on Pre-clustering Experiments with Term Vari-

ance Frequency . 95

45 F-Measures of the Bigrams on Pre-clustering Experiments with Term

Variance Frequency . 95

46 Description of the Mixture of Unigrams + Bigrams on Pre-clustering

Experiments with Document Frequency 96

47 Results of the Mixture of Unigrams + Bigrams on Pre-clustering Ex-

periments with Document Frequency 97

48 F-Measures of the Mixture of Unigrams + Bigrams on Pre-clustering

Experiments with Document Frequency 97

49 Description of the Mixture of Unigrams + Bigrams on Pre-clustering

Experiments with Term Variance Frequency 98

50 Results of the Mixture of Unigrams + Bigrams on Pre-clustering Ex-

periments with Term Variance Frequency 98

51 F-Measures of the Mixture of Unigrams + Bigrams on Pre-clustering

Experiments with Term Variance Frequency 99

52 Results of the Unigram on Latent Semantic Analysis Experiments with

Term Frequency . 99

53 F-Measures of the Unigram on Latent Semantic Analysis Experiments

with Term Frequency . 100

54 Results of the Unigram on Latent Semantic Analysis Experiments with

TF.IDF . 100

55 F-Measures of the Unigram on Latent Semantic Analysis Experiments

with TF.IDF . 101

56 Description of the Bigram on Latent Semantic Analysis Experiments 101

57 Results of the Bigram on Latent Semantic Analysis Experiments with

Term Frequency . 102

58 F-Measures of the Bigram on Latent Semantic Analysis Experiments

with Term Frequency . 102

59 Results of the Bigram on Latent Semantic Analysis Experiments with

TF.IDF . 103

60 F-Measures of the Bigram on Latent Semantic Analysis Experiments

with TF.IDF . 103

xii

61 Results of the Mixture of Unigrams + Bigrams on Latent Semantic

Analysis Experiments with Term Frequency 104

62 F-Measures of the Mixture of Unigrams + Bigrams on Latent Semantic

Analysis Experiments with Term Frequency 104

63 Results of the Mixture of Unigrams + Bigrams on Latent Semantic

Analysis Experiments with TF.IDF 105

64 F-Measures of the Mixture of Unigrams + Bigrams on Latent Semantic

Analysis Experiments with TF.IDF 105

xiii

Chapter 1

Introduction

1.1 Research Motivation

With the increasing dependence on computer infrastructure, cyber security has be-

come an essential service for organizations, governments and individuals. Cyber se-

curity refers to the collection of tools, approaches and technologies which are used

to prevent unauthorized behaviour, hacking attacks, denial of service, malware prop-

agation and other anomalies [Schatz et al., 2017]. In order to detect and prevent

harmful behaviour, multiple sensors are typically installed in network infrastructures.

Each sensor is equipped with several security systems, such as Intrusion Detection

Systems (IDS)1 and Assert Detection Tools [Ashoor and Gore, 2011]. These systems

perform network traffic analysis in real-time, detect suspicious activities and produce

alert messages. These messages, triggered by suspicious activities, are called security

events. Snort [Roesch et al., 1999] is a widely used lightweight IDS system installed

in many sensors. By capturing and decoding suspicious Transmission Control Pro-

tocol/Internet Protocol (TCP/IP) packets, snort generates short messages regarding

network traffic data to facilitate the task of security analysts to recognize suspicious

behaviours and act accordingly [Roesch et al., 1999]. Figure 1 shows seven examples

of snort messages.

Once a software vulnerability or weakness is identified, it constitutes very useful

information for security analysts. It is therefore inventoried, classified and made pub-

licly available in large repositories such as the U.S. National Vulnerability Database

1It is a device or an application which monitors a network or system malicious activities or policy
violations, reporting to an administrator.

1

1. FILE-OTHER XML exponential entity expansion attack attempt
2. FILE-IDENTIFY RealPlayer skin file attachment detected
3. SQL generic sql exec injection attempt - GET parameter
4. FILE-OTHER XML exponential entity expansion attack attempt
5. MALWARE-OTHER Win.Exploit.Hacktool suspicious file download
6. BROWSER-PLUGINS MSN Setup BBS 4.71.0.10 ActiveX object access
7. BROWSER-IE Microsoft Internet Explorer asynchronous code execution attempt

Figure 1: Examples of 7 snort messages

Figure 2: Example of a CAPEC Attack Pattern

(NVD) [Division, 2017], Common Vulnerabilities and Exposures (CVE) [MITRE, 2017b]

and Common Attack Pattern Enumeration and Classification (CAPEC) [MITRE, 2017a].

For example, Figure 2 shows an attack pattern in CAPEC. This pattern shows the

typical scenario of a network attack via an XML Entity Expansion. The pattern is

composed of several fields that describe the vulnerability in natural language. These

software vulnerability repositories constitute vital information for security analysts as

they can be used to verity if the snort messages describing current network activities

seem to correspond to known attack patterns.

Recognizing suspicious behaviours from snort messages is a difficult task as the

messages are short and contain very little natural language. For example, the first

snort message in Figure 1 only contains 7 tokens. Thus, today this task is still mostly

performed by human security experts. After security analysts from our industrial

2

partner2 analyzed the first snort message, they associated it to the CAPEC attack

pattern of Figure 2. This allowed them to extract the corresponding solutions specified

in the Solutions and Mitigations field in the attack pattern and communicate it

to their clients.

Because of the increasing volume of network traffic, the workload of security an-

alysts has become much heavier and the possibility of not detecting a security risk

has become critical. In order to allow security analysts to better assess risks, the

automatic mapping of security events to known attack patterns is desired. The goal

of this thesis is to propose an automatic method to map snort messages,

as shown in Figure 1, to attack patterns as shown in Figure 2.

1.2 Problem Statement

This thesis is the result of an industrial collaboration with the company Above Secu-

rity. The company uses a proprietary Security Information and Event Management

(SIEM) system to assist security analysts. Figure 3 illustrates a typical SIEM system

workflow. As [Scarabeo et al., 2015] describes, the SIEM captures security events in

the so-called collection layer, and uses pre-defined rules stored in a knowledge base

through the intelligence layer. Each security event is matched by rules in the knowl-

edge base in order to identify sensitive events. Then, security analysts observe the

matching events in the analysis layer and respond to clients by writing reports in the

response layer. With the increasing volume of security events, the daily updates of

the pre-defined rules in the knowledge base has become necessary. However, this task

is usually done in an ad-hoc fashion as there is no standard basis for the definition of

these rules. Thus, a system which can recommend attack patterns to security ana-

lysts is welcome. The goal of this thesis is to assist security analysts by suggesting the

most appropriate attack patterns corresponding to snort messages using the semantic

similarity between these two natural language descriptions. After an analysis of our

partner’s prototype system, the following two research problems have been identified:

1. Evaluate the quality of their prototype system (see Chapter 3)

2. Improve the quality of their prototype system, in particular to account for the

small length of snort messages (see Chapters 4, 5 and 6).

2This thesis is the result of a MITACS Accelerate project with the company Above Security.

3

Figure 3: Workflow of a typical SIEM system

Currently, the average size of security events is quite small so that not much

information can be extracted from them to be used in building automated model

for mapping attacks; whereas attack pattern descriptions are much longer. For

instance, the first snort alert message in Figure 1 only has 7 tokens but the size

of the corresponding CAPEC entry is 268 tokens (see Figure 2). The difference

in length between snort messages and attack patterns significantly reduces the

effectiveness of standard semantic similarity measures.

1.3 Contribution

This thesis makes four major contributions:

1. We propose to use standard evaluation metrics to evaluate the quality of the

baseline system and our enhanced system. This is described in Chapter 3 and

in [Ma et al., 2018].

In addition, we investigated three approaches to address the issue of the short

size of snort messages and improve the performance of our partner’s existing

mapping system.

2. Supplementing snort messages by adding related Common Vulnerabilities and

Exposures (CVE) entities (see Chapter 4).

3. Pre-clustering similar snort messages before mapping them to attack patterns in

Common Attack Pattern Enumeration and Classification (CAPEC) (see Chap-

ter 5 [Ma et al., 2018]).

4

4. Using Latent Semantic Analysis to reduce the dimension of the feature space as

well as finding similar semantic descriptions between snort messages and attack

patterns in CAPEC (see Chapter 6).

The overall contribution of this thesis is to propose a method to decrease the

workload of security analysts via suggesting better quality attack patterns in CAPEC

for each security event. We evaluated our enhanced system against a gold-standard

created by two security analysts. The original system achieved an F-measure of only

51.81%. Through our enhancements, the F-measure improved to 64.57%. Our partner

company was satisfied with the enhanced system and deployed it into production.

1.4 Thesis Outline

In this chapter, we motivated our work and described the problems addressed by

our research. The rest of the thesis is structured as follows: Chapter 2 presents

an overview of previous work, including the three most used public vulnerability

repositories, the ArkAngel system currently used in our partner organization and

various techniques to compute sentence similarity in the field of natural language

processing. Chapter 3 introduces the evaluation metrics used to evaluate the current

system and the methodology we used to evaluate its mapping quality. Based on this

evaluation, Chapters 4, 5 and 6 respectively present our experiments to enhance the

performance of the system. Finally, Chapter 7 presents conclusions and future work.

5

Chapter 2

Previous Work

As shown in Figure 3, in a typical Security Information and Event Management

(SIEM) system, the intelligence layer is responsible for identifying suspicious be-

haviours. Typically, pre-defined rules and scripts written by experienced security

analysts are used to match security events to known risks. However, with the sig-

nificant increase of network traffic, these pre-defined rules need to be maintained on

a daily basis and the workload of security analysts has become much heavier. To

address these issues, security analysts in our partner company, Above Security, de-

veloped an intelligent system to automatically map security events to attack patterns

in the CAPEC repository (see Section 2.2.1).

In this chapter, we present three widely used public vulnerability repositories in

Section 2.1; while Section 2.2 describes the workflow of the SIEM system in our part-

ner company. Section 2.3 presents the most common sentences similarity measures

used in natural language process (NLP), based on string similarity and semantic

similarity.

2.1 Public Repositories of Known Vulnerabilities

Over the years, several public known vulnerability repositories have been developed

in the field of cyber security. This section describes three of the most widely used

vulnerability repositories: Common Vulnerabilities and Exposures (CVE), National

Vulnerability Database (NVD) and Common Attack Pattern Enumeration and Clas-

sification (CAPEC).

6

Figure 4: Example of a CVE Entity

2.1.1 Common Vulnerabilities and Exposures

In the 1990s, with the rapid development of computer infrastructure and network

facilities, the security of cyber environments became a serious concern. In order to

provide protection for their infrastructure, many organizations built their own secu-

rity vulnerability database products to record known vulnerabilities [MITRE, 2017b].

Each organization used their own regulations and patterns to record software weak-

nesses so that significant variations existed among these products. This lead to serious

issues of cross-product consistency and interoperability. In 1999, in order to address

these problems, the Common Vulnerabilities and Exposures (CVE) was launched

by the U.S. Department of Homeland Security and to standardize the recording of

security vulnerabilities [MITRE, 2017b].

In the CVE, the smallest unit is the entity. Each entity records a single known

vulnerability and all the entities in the same year are recorded in the order that they

were identified. Each entity is composed of a CVE ID, a brief description of the vul-

nerability and references to their initial announcement. Figure 4 shows an example of

a CVE entity representing the SQL Injection vulnerability. In this entity, CVE-2015-

0919 is the vulnerability ID, followed by its description and references. Currently,

CVE contains a total of 98,375 entities and each entity contains an average of 30 to-

kens. Because of its wide coverage, most computer security consulting companies use

CVE as the known vulnerability repository in order to obtain better vulnerabilities

coverage and security protection.

However, the descriptions in CVE entities have often been criticized as being

7

Figure 5: Example of a CWE Entity

too general to guide software developers in writing code without security weak-

nesses [MITRE, 2017b]. In addition, as the CVE has become quite large (with 98,375

entities), it is not easy to refer to its entities because it does not provide a categoriza-

tion of known weaknesses. In order to overcome these two issues, a CVE derivation

product called Common Weakness Enumeration (CWE) was launched by MITRE’s

CVE Team in 2005 [MITRE, 2017c]. Each entity in the CWE not only explains the

implication of each software weaknesses in terms of software design, usage of software

framework and software coding, but it also provides code examples which can cause

weaknesses. For example, Figure 5 shows the SQL Injection software weakness in

the CWE. Compared with the entity in CVE (shown in Figure 4), the CWE entity

provides several additional information, such as Relationships, Modes of Introduction,

etc., to describe the SQL Injection weakness. Currently, there are 714 CWE enti-

ties which are categorized based on a variety of criteria, such as the most frequently

searched weaknesses, different programming languages weaknesses, etc.

8

2.1.2 The National Vulnerability Database

The National Vulnerability Database (NVD) is a U.S. government vulnerability repos-

itory managed by the Computer Security Division of the National Institute of Stan-

dards and Technology (NIST) [NIST, 2017]. It was launched in 2000 under the initial

name of Internet - Categorization of Attacks Toolkit (ICAT) as an enhancement of

CVE. In the NVD, the smallest unit is called a feed and it consists of a CVE entity (see

Section 2.1.1), a ''technical details'' section which links the feed to the CWE entity and

an impact metric. The Common Vulnerability Scoring System (CVSS) [FIRST, 2018]

is an open framework which measures the security of the known vulnerabilities. For

instance, Figures 6 and 7 show the impact metrics and the ''technical details'' zone
for the SQL Injection vulnerability (see Figure 4) in an NVD feed. The integration of

CWE and CVSS into CVE entries as an NVD feed provides security analysts detailed

information for each known vulnerability.

Figure 6: Impact Metrics in an NVD Feed

2.1.3 Common Attack Pattern Enumeration and Classifica-

tion

In addition to the CVE and CWE repositories, a third vulnerability repository has

been released by MITRE, the Common Attack Pattern Enumeration and Classifica-

tion (CAPEC) [MITRE, 2017a]. CAPEC is a more recent and richer repository than

9

Figure 7: Technical Details in an NVD Feed

CVE and CWE. While the CWE only provides a list of software weaknesses, CAPEC

indicates the common steps that hackers typically use to exploit vulnerabilities, and

also provides suggested mitigations for each known software weakness. In CAPEC,

the descriptions of known software weaknesses are called attack patterns. Currently,

CAPEC contains a total of 508 attack patterns represented hierarchically in 9 high

level mechanisms of attack categories. A category in CAPEC is a collection of attack

patterns in common effects or intents. For example, the Inject Unexpected Items cate-

gory contains the Code Inclusion attack pattern, the Command Injection pattern, the

Object Injection pattern, etc. Figure 8 illustrates these 9 categories followed by the

category ID in the parenthesis, such as Collection and Analyze Information, Inject

Unexpected Items, Abuse Existing Functionality, etc. In each category, there are three

kinds of attack patterns:

Meta Attack Pattern

The meta attack pattern is an abstract description of an attack. It describes

a known vulnerability at a high level and does not provide detailed techniques

used in exploiting the vulnerabilities. For example, the Command Injection

attack pattern shown in Figure 9 is a meta attack pattern.

Standard Attack Pattern

The standard attack pattern focuses on describing specific methodologies used

in an attack. It provides details about a known vulnerability, such as detailed

descriptions, attack steps, exploiting techniques, etc. For instance, in Figure 9,

the SQL Injection and the XML Injection are standard attack patterns.

Detailed Attack Pattern

Compared with meta and standard attack patterns, detailed attack patterns

provide a more specific descriptions in the attack steps techniques, exploiting

10

Figure 8: Categories of Attack Patterns in CAPEC

prerequisites and several code segment samples. In Figure 9 shows, the Blind

SQL Injection is a detailed attack pattern.

These three types of attack patterns are the basis of the hierarchy representation in

CAPEC. For example, Figure 9 illustrates that the SQL Injection software weakness

is a type of Command Injection which itself is a type of the Inject Unexpected Items

category.

Figure 9: Hierarchy of Attack Patterns in CAPEC

In addition, as shown in Figure 10, an attack pattern is described by several

paragraphs. Each paragraph is called a CAPEC field. Each pattern is composed

of 15 fields that are described in natural language. These includes one Summary

field, five Attack Steps Survey fields, four Attack Steps Identify Functionality fields,

two Experiments and three Attack Prerequisites fields. These CAPEC fields can be

repeated in different attack patterns. Thus, in total, CAPEC contains 5,096 fields of

11

Figure 10: Example of an Attack Pattern in CAPEC

natural language descriptions. Each attack pattern contains an average of 268 tokens

and each attack field has about 15 tokens.

2.2 ArkAngel

As indicated in Section 1.1, our thesis is the result of a joint work with Above Secu-

rity. Our task was to evaluated and improve the quality of their current SIEM system,

ArkAngel, a Security Information and Event Management (SIEM) system, developed

in house. A SIEM is comprised of a Security Information Management (SIM) system

as well as a Security Event Management (SEM) system [Dobb’s, 2007]. The SIM is

a software running on a computer system to collect and aggregate suspicious secu-

rity logs by using users’ self-defined filters as well as storing logs into a centralized

repository of security events for trend analysis [Bayuk, 2007]. On the other hand,

the SEM’s purpose is to analyze and capture sensitive contextual information in each

security event stored in a repository, such as the log of usernames, timestamps, loca-

tions, etc. [ZDNet, 2006]. These sensitive contexts provide more clear clues to security

analysts in order to take defensive actions quickly.

As shown in Figure 11, the ArkAngel system first collects, selects and aggregates

security logs via pre-defined filters as well as storing security events into a central

repository. Then, security analysts view security events via a graphical interface,

12

identify suspicious events, take proper actions and respond to clients in a timely fash-

ion (within at most 2 hours in the company’s case [Scarabeo et al., 2015]). However,

with the increased demand for computer security, the volume of security logs has

increased substantially and in order to address this issue, an intelligence layer was

developed by our partner company and inserted into the ArkAngel system.

Figure 11: Workflow of ArkAngel

Figure 12 shows the workflow of the intelligence layer of ArkAngel. The correlation

rules and scripts in the knowledge base are maintained daily by security analysts in

order to recognize security risks in the filter process. However, with the substantial

increase of security events, two problems were identified:

1. There is no standard basis for defining the pre-defined rules and scripts

The pre-defined rules and scripts are written by security analysts based on

their analysis experience. Thus, significant variations of rules and scripts exist

for the same known vulnerability, which bring difficulties to security analysts

analyzing suspicious events based on the short natural language descriptions.

Also, without a standard basis for rule definitions, it is difficult to ensure that

a new rule or a script will match new security logs.

2. High Maintenance Workload for Security Analysts

With the increasing volume of logs, the workload of knowledge base maintenance

has also increased significantly. Security analysts not only need to update the

13

Figure 12: Workflow of the Intelligence Layer of ArkAngel

existing rules and scripts in the knowledge base, but also need to analyze larger

volumes of logs which are not matched by existing rules in order to identify

novel software weaknesses as well as inserting new rules into the knowledge

base. Thus, the possibility of not detecting a security risk increases.

To address these two issues, security analysts realized that they needed an intelli-

gent system able to map security events to attack patterns with standard descriptions

automatically. To address this issue, a new module called Charibdis was developed

by our partner company.

2.2.1 Charibdis

To address the two issues presented in Section 2.2, our partner company developed

a new module within ArkAngel, Charibdis, which computes the semantic similarity

between short snort messages and attack fields in CAPEC. Recall from Section 2.1.3

that CAPEC was developed and is maintained by MITRE Corporation (a non-profit

organization) and provides detailed descriptions for each known vulnerability. Thus,

the aim was that the attack fields would tackle the standard descriptions issue and

the Charibdis would decrease the high workload of security analysts.

14

Figure 13: Workflow of the Charibdis System

2.2.1.1 System Overview

Charibdis1 is a core module in the intelligence layer of ArkAngel. Its purpose is to

map security events to known attack patterns in Common Attack Pattern Enumera-

tion and Classification (CAPEC) (see Section 2.1.3) in order to reduce the workload

of security analysts. Figure 13 shows an overview of the workflow of Charibdis.

Charibdis takes as input security events and known attack patterns. Each security

event and attack field description is first pre-processed through tokenization, removal

of stop words and stemmed using the Snowball Stemmer [Porter, 2001]. Then, uni-

grams, bigrams and trigrams are used as terms. Document frequency (DF) and term

variance (TV) are then used to filter terms with a high or low frequency. Using term

frequency · inverse document frequency (TF.IDF) and the cosine measure, the simi-

larity between snort messages and each CAPEC field is then computed. Finally, the 3

most similar CAPEC fields that have a similarity greater than a threshold SimT , are

selected and recommended to security analysts. According to [Scarabeo et al., 2015],

based on these 3 best mapped CAPEC fields, analysts can easily find vulnerability

mitigations and respond to clients within 2 hours. The following describes the system

in more details.

1In the Greek mythology, Charibdis was a sea monster that lived in the Strait of Messina and
could create a huge whirlpool by swallowing huge amounts of seawater.

15

2.2.1.2 Inputs

The input of the Charibdis system consists of snort alert messages as Security Events

and CAPEC attack fields as Known Attack Patterns.

1. Snort Alert Messages

Figure 14 shows an example of a snort alert message taken as input. The snort

alert messages are split by semi-colons into three parts. The first part (number

7540 in Figure 14) is the ID of the snort alert message in our partner’s company

database. The second part is the description which is composed of the snort rule

name (e.g. SERVER-OTHER indicates that this snort alert message is about the

operations in computer servers). The next words in this snort message make

up the actual description (e.g. the attempt of uploading a large zip file can

cause a vulnerability). This attempt has been pre-defined by security analysts

in the snort framework configuration process, thus it can be captured by the

snort system. The last part of the snort alert message, "cve, 2015-2331",

indicates that the content of this snort message is highly related to the known

vulnerability in Common Vulnerabilities and Exposures (see Section 2.1.1) with

the ID 2015-2331. In the Charibdis system, only the second section (the natural

language description) is used. The first part, the snort message ID, will be used

in our work to evaluate the mapping results (see Chapter 3).

Figure 14: Example of Input Snort Alert Message

2. CAPEC Attack Fields

As described in Section 2.1.3, a CAPEC attack pattern is composed of sev-

eral fields, such as the vulnerability description, exploiting steps, solutions and

mitigations, etc. These fields provide detailed descriptions for a set of known

vulnerabilities. Instead of using the entire attack pattern in CAPEC as the

entity of known vulnerabilities, Charibdis uses individual attack fields in each

attack pattern because the descriptions in an attack pattern is too general to

match a specific security event and the difference in the length between snort

messages and attack patterns is significant. As shown in Figure 15, one attack

field contains three components separated by a semi-colon. The number 2057

16

is the attack field ID given by the our partner company which is used to evalu-

ate the mapping results (see Chapter 3); the attack step description is the

title of this attack field and the rest of words describe the exploit that hackers

may use to hack into the system. Once the attack fields are mapped, security

analysts can obtain attack patterns and take the proper actions. As indicated

in Section 2.1.3, there are 5,096 CAPEC attack fields and each field is 15 words

on average.

Figure 15: Example of an Input Attack Field From CAPEC

2.2.1.3 Baseline Algorithm

As Figure 13 shows, snort alert messages and attack fields are pre-processed through

several natural language processing techniques. Below is a brief review of each tech-

nique and an illustrative example for each step. Suppose that we have the snort

messages and CAPEC attack fields below:

Snort Messages:

d1: BROWSER-FIREFOX Mozilla Firefox IDB use-after-free attempt

d2: SQL 1 = 1 - possible sql injection attempt

CAPEC Attack Fields:

d3: This category is related to the WASC Threat Classification

2.0 item SQL Injection

d4: Use a browser to manually explore the website and analyze

how it is constructed. Many browser’s plug-in are available to

facilitate the analysis or automate the URL discover

1. Tokenization

Given a document, the tokenization process splits the document into a sequence

of tokens. In the baseline system, CAPEC fields are concatenated after the

snort messages and all of them are first split by spaces and punctuation and

17

tokens containing numerical information (e.g.Win32) are removed. The remain-

ing tokens are converted to lowercase and put into a list. In the current imple-

mentation, tokenization is made using word tokenize in the Natural Language

Toolkit (NLTK) [Loper and Bird, 2002] written in Python. For example, with

the above documents, the tokenization result would be:

[’browser’, ’firefox’, ’mozilla’, ’firefox’, ’idb’, ’use’,

’after’, ’free’, ’attempt’]

[’sql’, ’possible’, ’sql’, ’injection’, ’attempt’]

[’this’, ’category’, ’is’, ’related’, ’to’, ’the’, ’wasc’,

’threat’, ’classification’, ’item’, ’sql’, ’injection’]

[’use’, ’a’, ’browser’, ’to’, ’manually’, ’explore’,

’the’, ’website’, ’and’, ’analyze’, ’how’, ’it’, ’is’,

’constructed’, ’many’, ’browser’, ’s’, ’plug’, ’in’, ’are’,

’available’, ’to’, ’facilitate’, ’the’, ’analysis’, ’or’,

’automate’, ’the’, ’url’, ’discover’]

2. Stemming

Word stemming is the process of obtaining the base or root of a word. Sev-

eral stemmers are available publicly (e.g. the Porter Stemmer [Porter, 1980],

Lancaster Stemmer [Chris et al., 1990] and Snowball Stemmer [Porter, 2001]).

The baseline system uses Snowball Stemmer [Porter, 2001] and discards single

characters (e.g. the s in the fourth document). After stemming, the sample

documents become:

[’browser’, ’firefox’, ’mozilla’, ’firefox’, ’idb’, ’use’,

’after’, ’free’, ’attempt’]

[’sql’, ’possibl’, ’sql’, ’inject’, ’attempt’]

[’this’, ’categori’, ’is’, ’relat’, ’to’, ’the’, ’wasc’,

’threat’, ’classif’, ’item’, ’sql’, ’inject’]

[’use’, ’a’, browser’, ’to’, ’manual’, ’explor’,

’the’, ’websit’, ’and’, ’analyz’, ’how’, ’it’, ’is’,

’construct’, ’mani’, ’browser’, ’s’, ’plug’, ’in’, ’are’,

’avail’, ’to’, ’facilit’, ’the’, ’analysi’, ’or’, ’autom’,

’the’, ’url’, ’discov’]

3. N-Grams Features

18

An n-gram is a contiguous sequence of n units. In the field of NLP, unigrams

refer to single words or characters; bigrams refer to a sequence of two contiguous

words or characters, trigrams refer to a sequence of three contiguous words or

characters, etc. As we will see in Section 4, the baseline Charibdis system

transforms all the snort messages and CAPEC attack fields into a document-

by-features matrix after removing stop words (e.g. a, an, the, is, are ...) via

the CountVectorizer method in the scikit-learn library [Pedregosa et al., 2011].

A mixture of unigrams, bigrams and trigrams is then used as features. In our

example, the matrix would be:

attempt browser inject sql sql inject ... websit analyz

d1 1 1 1 0 0 ... 0

d2 1 0 1 2 1 ... 0

d3 0 0 1 1 1 ... 0

d4 0 2 0 0 0 ... 1

where the columns (di) represent documents and the rows are the mixture of

n-grams (n ranges from 1 to 3). For example, analysi is an unigram; analysi

autom is a bigram and websit analyz construct is a trigram. In total, these

four documents are converted into 85 features which are sorted in ascending

alphabetic order. Each entry in this matrix is the frequency of the n-gram in

the corresponding documents.

4. Term Variance

Term Variance (TV) is used to filter out features (n-grams) that either appear

too often or not often enough. TV measures how the frequency of each fea-

ture deviates from the mean. If a feature has a low variance, it means that

it appears in most of the documents (the snort messages and attack fields).

In this case, very few n-grams are repeated more than once, so the frequency

of most features in one document (one snort message or attack field) is one.

In the baseline system, the VarianceThreshold method in the scikit-learn li-

brary [Pedregosa et al., 2011] is used and the value of term variance (TV) is set

to 0.98 which removes features that appear in more than 98% or less than 2%

(1 - 0.98) of the documents. In our example, the features appear at least in one

document (in 25% of the documents) and none exists in all of the documents.

Thus, after term variance filtering, we obtain the same document-by-feature

19

matrix. In Chapter 3, we will measure the effect of the term variance on the

baseline system.

5. Document Frequency

Document frequency (DF) refers to the number of documents which contain a

specific feature. For instance, in our example, there are 4 documents in total

but only 2 documents contain the specific word happy. Thus, the document

frequency of the feature happy is 2 out of 4. In the baseline Charibdis system,

our partner company set the document frequency (DF) to 40 arbitrarily in the

feature filtering process.

6. Term Frequency - Inverse Document Frequency

Term frequency (TF) is the frequency of the feature which is mostly used as

term weights in the document-by-term matrix. Another most widely weighting

scheme is term frequency ∗ inverse document frequency (tf∗idf) [Salton et al., 1975].

This measure represents how discriminating a term is to represent documents

in a collection. The inverse document frequency is defined as idfi = log(N
dfi
),

where N is the total number of documents in the collection and dfi is the doc-

ument frequency of the ith term. The tf ∗ idf measures the relevance of a term

to a document. For example, if a word exists in every document, its idf value is

0 and thus the tf ∗ idf is 0. On the other hand, if a word only appears in 50%

of the documents, its idf is 0.3 (greater than 0) which means that this word is

more discriminating. Thus, tf ∗ idf is widely used as term weights in order to

represent the relevance of a term. The TF.IDF matrix in our example would

be:

attempt browser inject sql sql inject ... websit analyz

d1 0.30 0.30 0 0 0 ... 0

d2 0.30 0 0.30 0.60 0.30 ... 0

d3 0 0 0.30 0.30 0.30 ... 0

d4 0 0.60 0 0 0 ... 0.60

7. Cosine Similarity

Cosine similarity measures the similarity between two documents by calculating

the cosine value of the angle between the two document vectors (for example, one

row in the matrix above). If two documents are identical, the cosine similarity

20

Inject

sql

1

1

�

(1, 1)

(2, 1)

Figure 16: Example of Cosine Similarity

is 1 whereas if two documents are orthogonal, their similarity is 0. Thus, the

value range of the cosine similarity is within [0, 1]. In this case, the normalized

inner product of the snort message vectors and the CAPEC field vectors is the

similarity between these two documents, which is defined as:

Sim(�snort, �field) = �snort · �field =

∑n
i=1(wi snort × wi field)√∑n

i=1(w
2
i snort) +

√∑n
i=1(w

2
i field)

where wi snort and wi field are the term weights in the snort messages and the

CAPEC fields and n is the number of terms in the vocabulary. In our example,

suppose that the snort message d2 and the CAPEC field d3 are represented

using only the 2 features inject and sql and we use term frequency as term

weights, then their cosine similarity is:

Sim �snort, �field =
1× 2 + 1× 1√

5×√
2

= 0.95

Figure 16 shows the cosine similarity between the 2 documents represented by

inject and sql.

Based on these pre-processing techniques, Charibdis reads snort messages and

CAPEC fields, tokenizes them, filters unimportant features through document fre-

quency and term variance, and transforms them into a document-by-terms matrix.

21

Then, each term frequency is replaced by its TF.IDF value calculated by the Tfidf-

Transformer scikit-learn method. Finally the cosine similarity method measures the

similarity between each snort messages and attack fields and the 3 most similar

CAPEC fields are returned for each snort message. These mapping results are fi-

nally recommended to security analysts.

2.3 Sentence Similarity

The workflow and the algorithm of the baseline Charibdis system is based on sentence

similarity, a standard problem in natural language processing (NLP). Given two sen-

tences, the task of measuring their similarity follows two main approaches. One is to

consider only string similarity and the other is to consider the actual meaning of the

sentences [Gomaa and Fahmy, 2013]. In this section, we describe related works using

these these two approaches.

2.3.1 String Similarity

Computing sentence similarity at the string level is related to lexical similarity as it

does not consider the meaning of the sentences. In natural language processing, two

models can be used to represented input text: character-based models or word-based

models.

2.3.1.1 Character-based Models

Character sequence similarity is a type of lexical similarity. A sequence of characters

can be a word in natural language or a data record in a database. Since the 1960s,

several approaches have been introduced to calculate character sequence similarity.

Let us describe several well-known algorithms.

[Levenshtein, 1966] describes a method called the edit distance. It quantifies the

similarity between two character sequences by counting the minimum number of

steps which are needed to transform one string into another through insertion,

deletion and substitution of characters. The principle is that the fewer steps

are needed to transform, the more similar the two strings are. Today, the edit

22

distance is wildly used in spell checking applications (e.g. appel is more likely

to be appeal than apple).

[Allison and Dix, 1986] developed an algorithm called longest-common-subsequence

(LCS) based on dynamic programming. The method captures the longest com-

mon character sequence from two similar strings without the consecutive re-

striction. For instance, given two strings ”DACBGHZ” and ”ACBEJQGH”,

the longest common subsequence is ”ACBGH”. Similarly, [Gusfield, 1997] pro-

posed an algorithm to extract the longest common substring which is restricted

by continuity conditions. In the previous example, the longest common sub-

string is ”ACB”.

[Jaro, 1989] proposed a novel algorithm to measure the similarity between two

strings. Given two strings S1 and S2, the similarity is defined as:

simj(S1, S2) =

{
0 if m = 0
1
3
× (m

|S1| + m
|S2| + m − t

m
) otherwise

where m is the number of matching characters and t is half the number of

transpositions. In the Jaro distance, characters are considered matching only if

they are identical and not farther than
⌊
max(|S1|, |S2|)

2

⌋
- 1. For example, for the

string S1: ”MARTHA” and S2: ”MARHTA”, the value of m, t, |S1| and |S2|
are:

1. m is 6 because there are six matching characters.

2. Characters ’T’ and ’A’ need to switch position in order to match. Thus, t

is 2.

3. The length of S1 and S2 are both six.

The Jaro similarity of these two strings is therefore: 1
3
× (6

6
+ 6

6
+ 6 − 2

6
) =

0.94.

[Winkler, 1990] added a new feature to the Jaro distance measure, the prefix

scale p. In [Winkler, 1990], the similarity of two string S1 and S2 is defined as:

simw(S1, S2) = simj(S1, S2) + (l × p × (1 − simj(S1, S2)))

where simj is the Jaro similarity of the two input strings S1 and S2; l is the

length of common characters at the start of the two strings and up to four char-

acters; p is a constant scaling factor for the common prefixes score adjustment

23

which does not exceed 0.25. Normally, the value of p is 0.1. Thus, for the

previous example, the Jaro-Winkler similarity is:

0.94 + (3 × 0.1 × (1 − 0.94)) = 0.96

These algorithms score string similarity through the number of common charac-

ters. However, in natural language processing, words are more natural units than

characters. In next section, word-based similarity metrics are introduced.

2.3.1.2 Word-Based Model

Instead matching characters, words are an important respect to consider in the sim-

ilarity measurement. In this section, we describe several word-based techniques to

measure string similarity.

1. [Monge et al., 1996, Monge and Elkan, 1997] proposed a simple but effective

word similarity metric, called Monge-Elkan. The algorithm first tokenizes the

input strings into tokens and scores the token pairs from each string by some in-

ternal similarity, such as the edit distance or the Jaro-Winkler similarity. Then,

word pairs with the highest similarity score are picked out; their scores are

summed up and normalized as the similarity of these input strings. The defini-

tion in [Monge and Elkan, 1997] is as follow:

simMonge−Elkan(S1, S2) =
1

|S1|
|S1|∑
i=1

max{sim′
(S1i, S2j)}|S2|

j=1

where S1 and S2 are two input strings, |S1| and |S2| are the number of to-

kens in S1 and S2, sim
′
(S1, S2) is measured by the Smith-Waterman algo-

rithm [Smith and Waterman, 1981]. As with the previous measures, the lower

the edit distance, the more similar these strings are. Thus, the internal similarity

sim
′
(S1i, S2j) = 1 - dSmith−Waterman(S1i, S2j)

2. For instance, the Monge-Elkan

similarity of two strings I Love You and You Love Him is:

simMonge−Elkan(A, B)

= 1
3

× (max(1 − dSW (A1, B1), 1 − dSW (A1, B2), 1 − dSW (A1, B3)

+ max(1 − dSW (A2, B1), 1 − dSW (A2, B2), 1 − dSW (A2, B3)

2Here, we use dSW to represent dSmith−Waterman

24

+ max(1 − dSW (A3, B1), 1 − dSW (A3, B2), 1 − dSW (A3, B3))

= 1
3

× (max(1 − dSW (I, Y ou), 1 − dSW (I, Love), 1 − dSW (I, Him)

+ max(1 − dSW (Love, Y ou), 1 − dSW (Love, Love), 1 − dSW (Love, Him)

+ max(1 − dSW (Y ou, Y ou), 1 − dSW (Y ou, Love), 1 − dSW (Y ou, Him))

= 1
3

× (max(1 − 3
3
, 1 − 4

4
, 1 − 3

3
)

+ max(1 − 3
4
, 1 − 0, 1 − 4

4
)

+ max(1 − 0, 1 − 3
4
, 1 − 3

3
))

= 1
3

× (0 + 1 + 1) = 0.67

2. N-Grams

In natural language processing, n-grams is a sequence of n consecutive tokens.

Unigrams (n = 1), bigrams (n = 2) and trigrams (n = 3) are widely used to rep-

resent text in a linear fashion. Many NLP applications use n-grams as their basic

units, for example, automatic speech recognition, machine translation and simi-

lar sentences matching. [Lyon et al., 2001] indicates that the number of overlap-

ping bigrams or trigrams derived from two or more independent texts should be

quite small and most of the trigrams should only belong to the document which

provides them, because English follows the principle of Zipf’s law [Zipf, 2016].

Thus, if two documents contains many co-occurences of bigrams and trigrams,

they are likely to be similar. [Barrón-Cedeño and Rosso, 2009] uses n-grams,

with n ranging from 1 to 5 to represent two comparable documents, and the

containment measure [Broder, 1997] to detect plagiarism with references. The

definition of the containment measure is:

C(si | d) =
|N(si)| ∩ |N(d)|

|N(si)|
where |N(d)| is the set of n-grams in the reference document and |N(si)| is
the set of n-grams in the ith sentence of the suspicious document, C(si | d) is
the percentage of overlapping n-grams. [Barrón-Cedeño and Rosso, 2009] first

splits the suspicious documents into sentences and represents each sentence by

n-grams. On the other hand, the reference document is represented via n-grams

directly. For each sentence in the suspicious document, if the percentage of over-

lapping n-grams is greater than a given threshold, the sentence is considered

25

plagiarised from the reference documents. The best results in plagiarism detec-

tion was achieved using bigrams and trigrams because these n-grams are not

only short enough to handle text meaning but also long enough to represent

each sentences.

3. Vector-Space Models

In order to calculate the sentence similarity based on the co-occurence of n-

grams, the vector-space model [Salton and McGill, 1986] is often used. This

model converts a document into a term-by-document matrix. Each entry in

this matrix is the weight of the corresponding term. The weight of the terms

can be their frequency in each document or some other weighting scheme, such

as TF.IDF (see Section 2.2.1.3). For instance, suppose the two sentences S1

and S2:

S1: ”This robot can speak English”,

S2: ”That robot can speak French”

After tokenizing these two sentences into unigrams, Table 1 shows the corre-

sponding term-by-document matrix where each entry is the term frequency in

each sentence.

S1 S2

This 1 0
robot 1 1
can 1 1
speak 1 1
English 1 0
That 0 1
French 0 1

Table 1: Example of a Term-by-Document Matrix

4. Similarity Metrics

Based on the term-by-document matrix, a variety of similarity measures are

widely used to measure the similarity between two sentences.

(a) Euclidean Distance

The Euclidean Distance is a simple distance metrics. Given two points P

26

and Q in the n dimensions, the Euclidean distance is defined as follow.

d(P,Q) =
n∑

i=1

√
(Pi − Qi)2

where Pi and Qi are the coordinates of points P and Q in the ith dimension.

In the document similarity measure, points P and Q represents two dif-

ferent documents and the corresponding coordinates are the term weights

in the term-by-document matrix. In the previous example, the Euclidean

Distance is:

d(S1, S2)

=
√
(Thiss1 − Thiss2)

2 + (robots1 − robots2)
2 + ... + (Frenchs1 − Frenchs2)

2

=
√
1 + 0 + 0 + 0 + 1 + 1 + 1 = 2

(b) Jaccard Coefficient

The Jaccard Coefficient calculates the similarity of two sentences by the

number of common tokens divided by the union of the tokens from the two

sentences [Jaccard, 1901]. In the previous example, the Jaccard similarity

is:

Simj(S1, S2) =
1 + 1 + 1

7
=

3

7
= 0.43

(c) Cosine Similarity

When sentences are represented as vectors, their similarity can be calcu-

lated through the cosine value of the angle of two vectors. Given two

sentences S1 and S2, the cosine value is the product of the vectors �S1 and

�S1 divided by the normalized lengths of two vectors. The definition is:

Simcosine(�S1, �S2) =
�S1 · �S2

|S1||S2|

where �S1 and �S2 are n dimensional vectors over the term set T = {t1, t2, ..., tn}.
Each value of the vector is the term frequency or any other term weight.

For instance, if we use term frequency in the previous example, the cosine

similarity is:

Simcosine(�S1, �S2) =
1 × 0 + 1 × 1 + ... + 0 × 1√

5 × √
5

= 3
4

= 0.6

The Cosine Similarity is independent of document length, because it normalizes

the length of each document vector [Huang, 2008]. For example, if unigrams

27

are used to represent these two sentences

S1: I like computer science

S2: computer science is my major

the cosine similarity is 0.52. If we extend S1 to I like computer science I like

computer science and keep S2 as before, the similarity is also 0.52 even though

the S1 is much longer. Thus, the Cosine Similarity is widely used in information

retrieval.

Lexical similarity measures work very well when two documents contain many

common lexical units. In addition, in order to improve their precision, many pre-

processing methods are used, such as stemming, stop-words removal, using different

term weights. However, these lexical-based metrics do not take into account the

meaning of words. For instance, the similarity between these two sentences I own a

dog and I have an animal cannot be found by lexical similarity [Mihalcea et al., 2006].

2.3.2 Semantic Similarity

Compared to lexical similarity, semantic similarity takes into account the meaning of

two sentences. This is done through two approaches: knowledge-based and corpus-

based models [Gomaa and Fahmy, 2013].

2.3.3 Knowledge-Based Models

Knowledge-based models make use of taxonomies of concepts. By quantifying the

degree of semantic similarity of words and concepts derived from publicly avail-

able resources, for example WordNet [Miller, 1995], the relatedness between words

can be measured [Mihalcea et al., 2006]. Note that the concept of semantic relat-

edness is more general than semantic similarity as it includes similarity and dis-

similarity [Budanitsky and Hirst, 2006]. In this section, we only consider semantic

similarity and present several word-to-word similarity approaches based on WordNet.

Finally, an approach measuring sentence semantic similarity based on the aggregation

of word-to-word scores is described.

28

Figure 17: A Fragment of WordNet Hierarchy

2.3.3.1 WordNet

WordNet is a large lexical database developed by George Miller and colleagues at

Princeton University [Miller, 1995]. It includes nouns, verbs, adjectives and adverbs

which are organized in taxonomic hierarchies. From the root to the leaves, the sense

of words is increasingly specific. The basic unit in WordNet is called a synset which

groups semantic related words into distinct sets. In total, there are 117,000 synsets

interlinked with each other via several types of semantic relations. Figure 17 shows

a fragment of the WordNet hierarchical levels. In nouns and verbs synsets, the hy-

peronymy / hyponymy (also called is-a) relation and the meronymy / holonymy (also

called is-a-part-of) relation are most frequently used. As an example, Electric Car is

a Car and Car Window is a part of Car (see Figure 17). In addition, the relations

in adjective synsets induce synonymy / antonymy (e.g. beautiful and attractive, wet

and dry) and only a few adverbs are organized in WordNet which are derived from the

adjectives morphological affixation. One WordNet restriction is that synset relations

are only defined for words with the same part-of-speech. [Miller, 1995]

2.3.3.2 Word-To-Word Semantic Similarity

Based on the WordNet public lexical resource, several word-to-word similarity ap-

proaches have been proposed [Pedersen et al., 2004].

29

[Wu and Palmer, 1994] calculate the similarity between two words in the Word-

Net taxonomy through the depth of the least common subsumer (LCS). This is

defined as:

Simwup(w1, w2) =
2 × depth(LCS)

depth(w1) + depth(w2)

where w1 and w2 are two words and the depth value is the number of nodes

between a word and the least common subsumer. For instance, the similarity

between Mountain Bike and Jeep in Figure 17 is:

Simwup(Mountain Bike, Jeep) =
2 × 1

3 + 3
= 0.33

[Resnik, 1995] argues that evaluating semantic similarity through counting the

nodes in WordNet should not be used, because the real distance between two

linked nodes varies widely. For example, rabbit ears is a hyponymy of television

antenna in WordNet. To address this problem, Resnik proposes an alternative

semantic similarity metric in WordNet. He first explains the definition of infor-

mation content.

IC(w1) = − log(Pw1)

where Pw1 is the probability of encountering w1 in WordNet. [Resnik, 1995]

argues that the probability of encountering a hyperonym is larger than a hy-

ponym because the meaning of a hyperonym is more general. If only one root

node exists in the taxonomy, then Proot is 1. Based on the information content,

the definition of the similarity between two words is:

Simres(w1, w2) = IC(LCS(w1, w2))

Based on the information content and Resnik’s approach, [Jiang and Conrath, 1997]

defines word-to-word similarity as:

Simjiang(w1, w2) =
1

IC(w1) + IC(w2) − 2 × IC(LCS(w1, w2))

One year later, [Lin et al., 1998] evaluates concept similarity in WordNet based

on the information content:

30

Simlin(w1, w2) =
2 × IC(LCS(w1, w2))

IC(w1) + IC(w2)

[Leacock and Chodorow, 1998] define the similarity between two words via the

shortest path between them in the WordNet hierarchy, normalized by twice the

maximum depth of these two words.

Simlch(w1, w2) = − log(
length

2 × D
)

where w1 and w2 are two comparison words, length is the shortest path be-

tween them and D is the maximum depth of these two words in WordNet. In

the previous example, the similarity is:

Simlch(Mountain Bike, Jeep) = − log(
5

2 × 3
) = 0.08

The availability of lexical resources makes the computation of word-to-word simi-

larity metrics straightforward; whereas text-to-text similarity measure still mainly re-

lies on the conventional vector-space models (see Section 2.3.1.2). [Mihalcea et al., 2006]

introduces an approach which measures text similarity based on word-to-word simi-

larity scores. Given two input text fragments T1 and T2, these two texts are tokenized

into words after removing punctuation and stop words. Then, each word w1 in seg-

ment T1 is compared with every word that shares the same part-of-speech in T2 in

order to seek a word w2 which has the maximum similarity with word w1 through a

word-to-word similarity approaches (see Section 2.3.3.2). In this step, adjectives and

adverbs whose similarity cannot be obtained from WordNet (see Section 2.3.3.1) are

evaluated via identical occurrence. Next, the same process is used for each word in

T2 to determine the maximum similar word in T1. Finally, each word similarity in

each text fragment is weighted by the word idf value, summed up and normalized by

the sum of word idf values in each fragment. The formulation is:

sim(T1, T2) =
1

2
((

∑
w∈T1

maxSim(w, T2) ∗ idf(w)∑
w∈{T1} idf(w)

)+ (

∑
w∈T2

maxSim(w, T1) ∗ idf(w)∑
w∈{T2} idf(w)

))

where idf(w) is derived from the British National Corpus (a 100 million words cor-

pus) [Clear, 1993]. The similarity score is between 0 and 1, where 1 indicates the

two text segments are identical. To evaluate this measure, the Microsoft paraphrase

corpus [Dolan et al., 2004], which contains 5,801 tagged text pairs, were evaluated

and achieved F-measure of 81.3% compared to the vector-space model of 75.3%.

31

2.3.4 Corpus-Based Model

Vector-space models rely on words co-occurrences to determine the similarity score

between texts while knowledge-based models depend a knowledge database in order

to compute semantic similarity. However, corpus-based models extract similar words

and topics from large corpora. One of the most popular semantic similarity techniques

in corpus-based model is Latent Semantic Analysis [Landauer and Dumais, 1997].

2.3.4.1 Latent Semantic Analysis

The basic idea of latent semantic analysis (LSA) is that semantically similar words

and phrases will occur in similar meaning contexts [Gomaa and Fahmy, 2013]. Thus,

LSA focuses on weighting words based on their importance for each potential mean-

ing (also called latent topics) in a large corpus. Given a term-by-document matrix

which represents a corpus, LSA tries to convert the matrix to a term-by-latent top-

ics matrix using singular value decomposition (SVD). SVD is a well-known matrix

decomposition method. The principle of SVD is that any rectangular matrix can be

decomposed into the product of three matrices:

C = UΣV T

where C is the original term-by-document matrix, U and V T are two orthogonal

matrices and any two distinct rows in matrix U are orthogonal and any two columns in

matrix V T are orthogonal, Σ is a square diagonal matrix and each value in the diagonal

are eigenvalues, which indicate how important this latent topic is. Unimportant latent

topics (with lower eigenvalues) will be ignored and matrix dimension will be reduced.

Instead of discarding the words in the omitted dimensions, SVD projects these words

to the saved dimensions which highlights the text similarity and distinguish unrelated

corpora [Schütze et al., 2008]. For example, suppose three sentences are as following:

S1: Machine learning is super fun.

S2: Python is super super cool.

S3: Data science is fun.

32

First, these sentences are converted into a term-by-document matrix after remov-

ing stop words. Each entry in the matrix is the term frequency in the sentences.

Thus, we can have the following normalized matrix.

S1 S2 S3

cool 0 0.4 0
data 0 0 0.6
fun 0.5 0 0.6
learning 0.5 0 0
machine 0.5 0 0
python 0 0.4 0
science 0 0 0.6
super 0.5 0.8 0

After we decompose it and reduce the dimension from 8 (8 features) to 2, the

normalized latent topic matrix is:

S1 S2 S3

cool 0.2 0.3 0
data 0.2 0 0.5
fun 0.5 0.1 0.6
learning 0.3 0.2 0.1
machine 0.3 0.2 0.1
python 0.2 0.3 0
science 0.2 0 0.5
super 0.7 0.8 0

In this example, the default number of latent topics is eight because there are eight

features in these three sentences. After we reduced the dimensions to two, several

unnecessary topics are collapsed and the similarity between two similar sentences is

highlighted. If we measure the similarity between S1 and S2 in both the term-by-

document matrix and the latent topics matrix, we can easily observe the similarity

enhancement provided by LSA.

Simdefault(S1, S2)

= 0× 0.4 + 0× 0 + 0.5× 0 + 0.5× 0 + 0.5× 0 + 0× 0.4

+ 0× 0 + 0.5× 0.8 = 0.4

Simlatent(S1, S2)

= 0.2× 0.3 + 0.2× 0 + 0.5× 0.1 + 0.3× 0.2 + 0.3× 0.2

+ 0.2× 0.3 + 0.2× 0 + 0.7× 0.8 = 0.85

33

As we can see, although there are only two common words between S1 and S2

(super and is), the similarity of these two sentences has been doubled after using LSA

because both sentences express similar meaning.

2.3.4.2 Other Similarity Measures

In addition to the latent semantic analysis, other semantic similarity approaches have

been proposed. Based on large corpora, term pairwise similarity matrix and relevant

documents can be extracted and used in measuring semantic similarity.

1. [Royer, 2005] proposed an approach called Generalized Latent Semantic Anal-

ysis (GLSA) which is based on latent semantic analysis and the use of large

corpora. Given a collection of documents C with vocabulary V and a large cor-

pusW , a term-by-document matrixD is constructed based on the documents C.

Then, a word-by-word pairwise similarity matrix is build for vocabulary V using

the point-wise mutual information measure [Manning and Schütze, 1999] from

the large corpus W . Each entry in the matrix is the similarity weight between

a word in the row and a word in the column. Next, the matrix UT is obtained

through reducing the pairwise matrix dimensions to k by SVD decomposition

(see Section 2.3.4.1). Finally, the document vector D̂ is calculated through the

product of the UT matrix and the term-by-document D (D̂ = UTD). Columns

in D̂ represent documents in k dimensions which can be used to measure doc-

uments similarity using conventional metrics. Compared with LSA (see Sec-

tion 2.3.4.1), GLSA focuses on the operation of word-by-word pairwise matrix

and measures similarity over the document vectors matrix.

2. Traditional similarity metrics cannot perform well with short text snippets. For

example, the cosine similarity between artificial intelligence and AI is zero even

though their meaning is the same. To address this issue, [Sahami and Heilman, 2006]

introduced a novel method, called kernel function, where the similarity between

these two phrases is computed as 83.1%. Assume that the short snippet is x,

and the procedure is:

(a) Search for x using the Google search engine.

(b) For each retrieved document (at most n documents), extract context de-

scriptions of x and build context vectors vi with TF.IDF weight for each

34

description.

(c) Truncate each vector by selecting the m highest TF.IDF weight terms.

(d) Calculate the centroid of C(x) the L2 normalized context vectors:

C(x) =
1

n

n∑
i=1

vi
||vi||2

(e) Finally, replace the short snippets by the normalized centroid:

xnew =
C(x)

||C(x)||2
In addition, several ad-hoc parameters are used. In order to obtain precise

TF.IDF value, [Sahami and Heilman, 2006] computed documents N and df

from a large sample of web documents which are not limited to the n retrieved

documents in the algorithm. For the context description extraction, a 1,000

characters (the total number of token characters) window centered at the orig-

inal snippets is used. In the terms selection process, setting m = 50 can result

in a good trade-off between similarity value and program efficiency.

In character-based models, all the algorithms measure similarity by calculating

the number of common characters between two words or steps used to change one

word to another. Similarly, when measuring the similarity between two sentences,

the number of common tokens are used. These tokens can be represented in many

ways, such as n-grams, words, etc. The advantage of character-based models and

word-based models is that they are easy to understand and use efficiently; however

these models cannot measure the semantic similarity between sentences. In addition,

by using statistics and analyzing large quantities of corpora, several algorithms (e.g.:

LSA, GLSA) are able to estimate the semantic similarity between sentences. However,

unlike string similarity methods, these algorithms are not straightforward and need

corpora.

In this chapter, we have presented an overview of previous work on the three widely

used public vulnerability repositories. We then described the workflow of the current

Security Information and Event Management (SIEM) system and the intelligence

component, Charibdis. Finally, in Section 2.3, we described the most common similar

35

sentence mapping in terms of string similarity and semantic similarity. In Chapter 3,

we will describe the evaluation metric used to evaluate the Charibdis system.

36

Chapter 3

Baseline System Evaluation

In [Scarabeo et al., 2015], the baseline Charibdis system (see Section 2.2.1) was only

evaluated in terms of coverage. This measure, called Mapping Rating, evaluated

the number of snort messages that were matched to at least one CAPEC field. In

Section 3.1, we describe this initial evaluation metric and in Section 3.2 we explain

how we evaluated the quality of the recommended fields in terms of precision, recall

and F-Measure.

3.1 Initial Evaluation

As described in Section 2.2.1.3, the information provided in an attack pattern is too

general to be mapped to a specific security event and the difference in length between

security events (8 tokens on average) and attack patterns (268 tokens on average)

is quite significant, thus attack fields are mapped to security events in the baseline1

system. Recall from Section 2.2.1, that because the average length of security events is

8 tokens, not much information can be extracted from them to be used in building an

automated model for detecting the attacks. In addition, CAPEC attack fields have on

average 15 tokens, twice as many tokens than security events. In order to supplement

more information for security events and equalize the length of snort messages and

attack fields, two security experts in our partner company wrote descriptions for each

snort rule name (see Section 2.2.1.1). In this section, we first describes the snort rule

name expansion followed by the introduction of the mapping rate.

1We use the term baseline to refer to the original Charibdis system (see Section 2.2.1).

37

3.1.1 Snort Rule Name Description

To overcome the issue of short snort messages, security experts at Above Security an-

alyzed 32,246 different snort alert messages and identified 68 unique snort names. For

example, Table 2 shows two messages that share the same snort name (INDICATOR-

SCAN). For each snort name, two analysts wrote a description of about 7 words.

Table 3 shows the expansion of 4 such terms. By replacing snort names in the orig-

inal snort messages with their longer descriptions, the length of each snort message

increased from an average of 8 words to an average of 15 words.

Snort ID Snort Content

6790 INDICATOR-SCAN inbound probing for IPTUX messenger port
16800 INDICATOR-SCAN cybercop os PA12 attempt
796 FILE-IDENTIFY JPG file attachment detected
28342 SERVER-WEBAPP Oracle iSQLPlus username overflow attempt

Table 2: Example of Same Rule Name

Rule Name Expanded Description

INDICATOR-SCAN Indications of scanning in network traffic
FILE-IDENTIFY File extension file magic or header found in the traffic
SERVER-WEBAPP Web based applications on servers
FILE-FLASH Flash files

Table 3: Example of Snort Rule Name Expansion

3.1.2 Mapping Rate

In [Scarabeo et al., 2015], Charibdis was evaluated based on the mapping rate of

32,246 snort alert messages (see Figure 14) and 5,096 CAPEC attack fields (see Fig-

ure 15). As shown in Figure 18, 32,246 snort messages were first extended by the

snort rule name description (see Section 3.1.1). As indicated in Section 2.2.1.3, all

of the attack fields were tokenized, stemmed, and indexed into a document-by-term

matrix. After removing features whose document frequency (DF) is lower than 40,

the number of features, a mixture of unigrams, bigrams and trigrams, decreased from

192,586 to 2,213. Thus, the shape of the document-by-term matrix is 37,342 × 2,213

where 37,342 is the total number of snort messages and attack fields (32,246 + 5,096

38

32,246
Snort Messages

5,096�
Attack Fields

68�Distinct
Snort Rule Name

Description

Document-By-Term Matrix

DF = 40

Document-By-Term Matrix

TV = 0.98

Document-By-Term Matrix
Entry: TF.IDF

TF.IDF

cosine_similarity
Top 3

31995; 1285; 0.81
31995; 16813; 0.81
31995;�1278; 0.81

Figure 18: Detailed Workflow of the Original Evaluation of the Baseline System

= 37,342). Then, the term variance (TV) filtered out high and low frequency features

and only 10% of the n-grams were kept. Finally, term frequencies are replaced by

TF.IDF values in each matrix entry, the cosine similarity measured the similarity

between each snort message and each attack field and the 3 most similar fields were

chosen as results. Figure 18 illustrates an example of snort message number 31,995

mapped to CAPEC fields number 1,285, 1,278 and 16813 respectively with a cosine

measure of 0.81. The context of these four documents are given as follows.

Snort Messages

31995: FILE-FLASH Adobe Flash Player movie signed integer memory

corruption attempt

CAPEC Fields

1285: Use an automated tool to record the variables passed to a flash file.

1852: Using a browser or an automated tool an attacker records all in-

stances of HTML documents that have embedded Flash movies. If there

39

is an embedded Flash movie he lists how to pass global parameters to the

Flash movie from the embedding object.

1278: Use an automated tool to record all instances of URLs which have

embedded Flash movies and list the parameters passing to the Flash movie

In baseline system, all CAPEC fields with a positive similarity (SimMIN > 0) with

a snort message S were considered as valid mappings for message S. Otherwise, S

is not matched to any field. To measure the system, [Scarabeo et al., 2015] used a

metric called mapping rate (MR) which measures the number of snort messages that

were matched to at least one CAPEC field out of the total number of snort messages.

MR =
Number of Matched Snort Messages

Total Snort Messages

In their experiments with the baseline system, the number of snort messages that

were matched to at least one attack field is 31,906. Thus, the mapping rate (MR) of

the baseline system was calculated as:

MR =
31, 906

32, 246
= 98.94%

Although the MR is high, the quality of the recommended CAPEC fields was

not evaluated. In the next section, we describe how we evaluated the quality of the

baseline’s system’s mapping.

3.2 Gold-Standard Evaluation

3.2.1 Gold-Standard

To evaluate the mapping quality, we created a gold-standard dataset by asking two

cyber security experts to evaluate the quality of the output of the system. The gold-

standard contains the mapping of 3,165 snort messages mapped to at most 6 CAPEC

fields. This gave rise to 16,826 tagged mappings. Each mapping was annotated by

the two experts with one of three levels of quality:

40

1. Correct

If the security analysts could use the mapped CAPEC field directly as a solution,

this mapping result was evaluated as correct. In the gold-standard dataset, the

correct mappings were labelled as ’1’.

2. Acceptable

If the security analysts could generate a client solution by referring to the

mapped CAPEC field, this mapping result was considered as acceptable. In

gold-standard dataset, the acceptable mappings were tagged as ’0.5’.

3. Incorrect

If the mapped CAPEC field was not useful, this mapping result was labelled as

incorrect. ’0’ was used to represent the incorrect mappings in the gold-standard

dataset.

Table 4 shows three examples of the different mapping quality annotations in the

gold-standard dataset. The Snort Message ID and CAPEC Field ID are the sequence

number used to evaluate the mapping result (see Section 2.2.1.2). For instance, the

second example indicates that snort message number 36 was mapped to CAPEC field

16,506 and was judged as acceptable by the security experts. Table 5 shows statistics

of the gold-standard. As the table shows, 9,222 mappings were labelled as correct;

5,496 mappings were tagged as acceptable and 2,108 mappings were judged incorrect.

Based on the gold-standard dataset, several metrics were used.

Snort Message ID CAPEC Field ID Mapping Quality

167 16005 ’1’
36 16506 ’0.5’
496 16564 ’0’

Table 4: Extract of the Gold-Standard Dataset

3.2.2 Evaluation Metrics

The output generated by the baseline system was evaluated against the gold-standard

(see Section 3.2.1). As shown in Figure 5, the gold-standard only contains the evalua-

tion of 16,826 mappings. However, with 32,246 snort messages mapped to a maximum

41

Tag Number of Mappings

Correct 9,222
Acceptable 5,496
Incorrect 2,108
Total 16,826

Table 5: Statistics of the Gold-standard Built by Two Cyber Security Analysts

of 6 CAPEC fields, the total number of possible mappings is 193,476 (6 × 32,246),

therefore the evaluation of the outputs of the baseline system was made only on the

overlapping answers; mappings provided by the system that were not included in the

gold-standard were therefore not evaluated. For each overlap, three measures were

recorded: Correct Mapping, Acceptable Mapping and Incorrect Mapping, depending

on how the mapping quality was judged in the gold-standard dataset. Following the

advice of our security analysts, recall was deemed more important than precision.

Indeed, in this domain, it is preferable to alert clients too often with false alarms

than to miss potential cyber threats. To account for this, two types of precision were

computed: strict precision (P S) and lenient precision (PL) which are defined as:

Strict Precision: P S = Correct Mappings
(Correct + Acceptable + Incorrect) Mappings

Lenient Precision: PL = (Correct + Acceptable) Mappings
(Correct + Acceptable + Incorrect) Mappings

as well as two types of recall: strict recall (RS) and lenient recall (RL):

Strict Recall: RS = Correct Mappings
Correct + Acceptable + Incorrect

Lenient Recall: RL = (Correct + Acceptable) Mappings
Correct + Acceptable

Finally, we also calculated a series of F-Measures, which are a weighted combination

of precision and recall. F-Measure is defined as Fβ = (β2 + 1) × P × R
β2 × P + R

. If β = 1,

then precision and recall have the same importance; if β < 1, it means that recall

is favored; if β > 1, then precision is more important. In these experiments, we set

the weight beta to 0.5 (F0.5), 1 (F1) and 2 (F2) respectively and also computed two

versions: lenient F-Measures and strict F-Measures. These F-Measures are defined

as:

42

Strict F S
0.5 =

(0.52 + 1) × PS × RS

0.52 × PS + RS = 1.25PSRS

0.25PS + RS

Lenient FL
0.5 =

(0.52 + 1) × PL × RL

0.52 × PL + RL = 1.25PLRL

0.25PL + RL

Strict F S
1 = (12 + 1) × PS × RS

12 × PS + RS = 2PSRS

PS + RS

Lenient FL
1 = (12 + 1) × PL × RL

12 × PL + RL = 2PLRL

PL + RL

Strict F S
2 = (22 + 1) × PS × RS

22 × PS + RS = 5PSRS

4PS + RS

Lenient FL
2 = (22 + 1) × PL × RL

22 × PL + RL = 5PLRL

4PL + RL

Table 6 shows the default parameters indicated in Section 3.1.2 that we used to eval-

uate the baseline system. SimMIN represents the minimum similarity threshold to

match messages. With SimMIN = 0, this means that as long as the snort message

and attack field are not completely orthogonal, they are considered similar. Expan-

sion indicates the use of snort rule name description to extend snort messages (see

Section 3.1.1). As Table 7 shows, the number of acceptable mapping is quite high as

it accounts for 94% (5,178 / 5,496) of the total acceptable mappings, whereas only 1%

of the correct mappings were found. The PL was 97.96% because of the contribution

of acceptable mappings while the RL was only 35.22%. Table 8 shows that the FL
0.5

and FL
1 were 72.23% and 51.81% respectively.

System SimMIN DF TV Expansion Nb of Features
Baseline 0 40 0.98 Yes 140

Table 6: Description of Input Parameters in Baseline System

System Number of Mappings Lenient Strict
Correct Acceptable Incorrect PL RL PS RS

Baseline 108 5,178 6 97.96% 35.22% 0.11% 0.07%

Table 7: Precision and Recall of the Baseline System

As we can see, although the mapping rate is 98.94%, the mapping quality is low

because only 1% of the correct mappings were found. In next three chapters, we will

describe several approaches to address this problem.

43

System Lenient Strict
FL

0.5 FL
1 FL

2 FS
0.5 FS

1 FS
2

Baseline 72.23% 51.81% 40.40% 0.09% 0.08% 0.07%

Table 8: F-Measure of the Baseline System

In this chapter, we have described the workflow of the baseline system and the

attempt of [Scarabeo et al., 2015] to improve it through snort rule expansion. In

addition, we explained how the mapping rate was initially evaluated (see Section 3.1.2)

and how the measurement did not measure the quality of the mapping. We then

described our work to evaluate the quality of the baseline’s output by creating a gold-

standard and using the standard metrics of precision, recall and F-measure. In order

to enhance the performance of the baseline system, the next chapters investigate three

approaches:

1. Feature Selection and Snort Messages Supplement.

2. Pre-clustering Snort Messages.

3. Semantic Mapping by Latent Semantic Analysis.

In the next chapter, we will provide a detailed description of the snort messages

supplement methodology as well as an analysis of the evaluation of the outputs.

44

Chapter 4

Feature Selection and Snort

Messages Supplement

Table 7 in Chapter 3 showed that the recall of the baseline system was only 35%. In

order to improve the system performance, we experimented with three approaches:

1. Feature Selection and Snort Messages Supplement.

2. Pre-clustering Snort Messages.

3. Semantic Mapping by Latent Semantic Analysis.

In this chapter, we describe the first approach: n-grams feature selection to analyze

the feature distribution and snort messages supplement. Section 4.1 describes our

experiments with the use of a variety of feature sets and their effect on the evalua-

tion of the system. After analyzing the feature distribution, we noticed that many

snort messages suffered from a sparse representation. Indeed, although the snort rule

descriptions extend the length of original snort messages (see Section 3.1.1), most

of these messages are still quite short (below 15 words). To address this issue, we

investigated the use of entities in the Common Vulnerabilities and Exposures (CVE)

(see Section 2.1.1) to further supplement snort messages (see Section 4.2). The effect

of this strategy is analyzed in Section 4.2.3.

45

4.1 Feature Selection

In the baseline system (see Chapter 3), snort messages and CAPEC fields are repre-

sented by a mixture of unigrams, bigrams and trigrams. However, the contribution

of each type of n-gram was not clear. To measure the usefulness of each type of

n-gram, three experiments were performed: the use of unigrams only, bigrams only

and trigrams only. Sections 4.1.1, 4.1.2 and 4.1.3 describe these experiments; while

Section 4.1.4 provides an overall evaluation.

4.1.1 Experiments Based on Unigrams

Following the workflow of the baseline system (see Section 3.1.2), after removing

stop words and numbers, each snort message and CAPEC field were stemmed and

tokenized. Unigrams were used as the only features to represent each snort alert

messages and CAPEC fields. The document frequency (DF) and term variance fre-

quency (TV) were then used to filter terms. Using various values for the parameters

in baseline system, we ran eight experiments (see Table 9). These experiments gave

rise to a feature set from size (|F |) of 111 to 15,963 unigrams. These features were

then represented by their TF.IDF values in the document-by-term matrix whose size

was (32,246 + 5096) ×|F |. Finally, the cosine measure was used to calculate the

distance between snort messages and CAPEC fields, choosing the nearest 3 fields as

mapping results.

Exp. SimT DF TV Expansion Nb of Features
Exp. #1 0 40 0.98 Yes 135
Exp. #2 0 0 0.98 Yes 135
Exp. #3 0 40 0 Yes 892
Exp. #4 0 0 0 Yes 15,963
Exp. #5 0 40 0.98 No 99
Exp. #6 0 0 0.98 No 99
Exp. #7 0 40 0 No 882
Exp. #8 0 0 0 No 13,709

Table 9: Description of the Unigram Experiments

Tables 10 and 18 in Appendix A show details of the results; while Figure 19 sum-

marises the results graphically. As Figure 19 shows, the metrics values in the snort

46

Figure 19: Results of Unigram Experiment

rule extension scenario, where the RL was 40.80% with 905 features (DF = 40) fol-

lowed by the 29.12% with 140 features (TV = 0.98). Although the PL reached 99.94%

with 13,716 unigrams (without filters), its RL was only 23.83% which is the lowest

value among these three experiments. Similarly, 70.25% was the highest value of FL
0.5

with 905 features whereas 60.98% was the smallest. In contrast, the best FL
0.5 was

39.22% without snort rule name expansion (see Table 10), thus we will only focus on

the expansion scenario in the following experiments.

Exp. Lenient Strict
FL

0.5 FL
1 FL

2 FS
0.5 FS

1 FS
2

Exp. #1 66.36% 44.85% 33.87% 0.11% 0.09% 0.07%
Exp. #2 66.36% 44.85% 33.87% 0.11% 0.09% 0.07%
Exp. #3 70.25% 55.28% 45.58% 23.44% 21.52% 19.89%
Exp. #4 60.98% 38.48% 28.11% 38.46% 28.10% 22.14%
Exp. #5 0.84% 0.34% 0.21% 0.59% 0.24% 0.15%
Exp. #6 0.84% 0.34% 0.21% 0.59% 0.24% 0.15%
Exp. #7 3.59% 1.48% 0.93% 5.09% 2.13% 1.35%
Exp. #8 39.22% 20.52% 13.90% 3.20% 1.87% 1.32%

Table 10: F-Measures of the Unigram Experiments

47

4.1.2 Experiments Based on Bigrams and Trigrams

The next set of experiments focused on the use of bigrams and trigrams only. Using

the snort rule name descriptions, bigrams are used as the only features to represent

each snort message and CAPEC field and the algorithm pipeline is identical as with

unigrams. Various parameters values were used as filters. Figure 20 shows that from

a total number of possible bigrams of 72,818, filtering by document frequency (DF

= 40) reduce this number to 735, and to 77 through the TV (TV = 0.98) filter.

The significant decrease implied that the distribution of bigrams were highly sparse.

Thus, although the mapping rate was 45.38% with 77 features (see Figure 21), the

precision, recall and F-measure values reached zero (see Figure 22). By contrast,

through document frequency filtering, the number of features was ten times higher

than with term variance frequency (735 features) and the FL
0.5 was kept at almost

70% (as shown in Figure 22). Without filtering, although the number of bigrams was

72,818, many noisy features were removed which decreased FL
0.5 to 23.90%.

Figure 20: Number of Bigram Features

Due to the significant decrease in the number of bigrams, we can assume that

trigrams will suffer even more from this sparse distribution. As shown in Tables 22

and 23 (in Appendix A), although the total number of trigrams was 106,084, all values

of the mapping quality metrics were zero. This is because there are less common

trigrams between snort alert messages and attack fields in CAPEC.

48

Figure 21: Mapping Rate of the Bigram Experiments

Figure 22: Results of the Bigram Experiments

49

Based on the analysis of the use of unigrams, bigrams and trigrams respectively,

we continued conducting experiments on two kinds of n-grams mixtures: unigrams

+ bigrams and unigrams + bigrams + trigrams (which is equivalent to the baseline

Charibdis system), in the hopes of identifying a better n-grams mixture contributing

to the mapping quality.

4.1.3 Experiments Based on a Mixture of N-Grams

The purpose of this experiment is to identify if trigram can be beneficial to the

mapping quality in a mixture of n-grams model. We first used the mixture of unigrams

+ bigrams to represent each snort alert message and attack field after tokenization,

stemming and the removal of stop words. The algorithm pipeline is identical to the

baseline Charibdis system. After we evaluated the unigrams + bigrams model, we

replaced it with unigrams + bigrams + trigrams mixture model and followed the same

pipeline to obtain the evaluation values. Table 11 shows the difference in the number

of features between the two n-grams mixtures and Figure 23 illustrates the mapping

quality of Experiment #3 and Experiment #7 (with DF = 40) in Tables 25 and

26. As the result shows, trigrams did not make difference in the baseline Charibdis

system. Therefore, in the next experiments, only unigrams, bigrams and the mixture

of unigrams + bigrams are used as features to represent documents.

Exp. SimT DF TV Expansion Nb of Features
Exp. #1 0 40 0.98 Yes 209
Exp. #2 0 0 0.98 Yes 209
Exp. #3 0 40 0 Yes 1,573
Exp. #4 0 0 0 Yes 89,313
Exp. #5 0 40 0.98 Yes 260
Exp. #6 0 0 0.98 Yes 260
Exp. #7 0 40 0 Yes 2,104
Exp. #8 0 0 0 Yes 193,227

Table 11: Description of the Mixture N-Grams Experiments

50

Figure 23: Results of Two N-Grams Mixtures

4.1.4 Overall Conclusion on N-Gram Feature Selection

As in the previous analysis (see Section 4.1.3), we found that unigrams are the most

discriminating features contributing to the mapping quality, followed by bigrams;

whereas trigrams do not contribute anything. Thus, we analysed the length distribu-

tion in snort messages and attack fields. Figure 24 shows the length distribution of

snort messages and CAPEC fields for every 15 tokens. After the expansion of snort

rule name descriptions, 22,817 messages were expanded to less than 15 tokens which

accounts for 70% (22,817 / 32,246) of the total messages, while almost three quarters

of attack fields contain more than 15 tokens. Figure 25 illustrates the number of

correct and acceptable mappings with document frequency as 40 (DF = 40), snort

messages and attack fields are represented by the mixture of unigrams + bigrams.

Most of the mappings dropped in the [30, 45) tokens zone followed by the [15, 30) zone

whereas only 97 mappings generated from the first zone. Thus, the short size of the

snort alert messages is a vital factor which hinders features to yield good mapping

result.

Overall, because of the small size of the snort alert messages, unigrams are the best

choice to represent snort messages and CAPEC fields. Thus, we considered that if the

snort alert messages can be supplemented, the number of overlapping bigrams could

be increased and the lenient recall (RL) and F-measure (FL
0.5) could be improved. To

51

Figure 24: Distribution of the Length of Snort Messages and CAPEC Fields

supplement snort messages and try to decrease noisy features, we therefore used the

related CVE entities specified at the end of each snort message (see Section 2.2.1.2)

to extend snort messages. This is discussed in next section.

4.2 Snort Messages Expansion

To address the issue of the short snort alert messages, we investigated to use Com-

mon Vulnerabilities and Exposures (CVE) entities to supplement snort messages.

Section 4.2.1 describes the pipeline of this snort expansion and Section 4.2.2 gives the

analysis of the mapping results after the expansion.

4.2.1 Snort Messages Expansion Pipeline

As indicated in Section 2.2.1.2, the snort messages given to Charibdis include a ref-

erence to related CVE entity after the text of the snort message itself. For example,

the input

26312;”PROTOCOL-SCADA WellinTech Kingview HMI history server buffer over-

flow attempt”;”cve,2011-4536”

indicates that the message is related to the CVE entity 2011-4536. Thus, the brief

52

Figure 25: Number of Correct and Acceptable Mappings with the Mixture of Uni-
grams + Bigrams

description of the 2011-4536 CVE entity can be used to extend the snort message. As

described in Section 2.1.1, CVE includes 98,375 entities in total. To search a specific

entity from the large CVE dataset, we downloaded all of the CVE entities as an XML

file. Figure 26 shows the CVE-2011-4536 entity in the XML file. The text in bold

indicates the natural language description of the entity.

The descriptions in each CVE entity contains 30 tokens on average which have

been used to supplement snort messages through the pipeline indicated below:

1. The algorithm reads all of the CVE entities into memory, extracts CVE entity

IDs as keys and the natural language descriptions as values. The (key: value)

pairs are stored in a dictionary data structure in Python. The total size of the

dictionary is 98,375, which is the number of CVE entities. Although the size is

large, the time complexity of acquiring a CVE entity is O(1) because the data

structure is a hash. In our example in Figure 26, the (key: value) pair is

(2011-4536: Heap-based buffer overflow ... op-code 3 packet.)

2. After the creation of the dictionary, the program parses the CVE entity ID in

the input snort messages and use it as a key to get the associated descriptions

in the dictionary. Then, the obtained CVE entity descriptions are concatenated

at the end of the snort message to form a longer snort message. For instance,

53

Figure 26: Example of a CVE Entity

the extended snort message in our running example is:

PROTOCOL-SCADA WellinTech Kingview HMI history server buffer

overflow attempt Heap-based buffer overflow in nettransdll.dll

in HistorySvr.exe (aka HistoryServer.exe) in WellinTech KingView

6.53 and 65.30.2010.18018 allows remote attackers to execute

arbitrary code via a crafted op-code 3 packet.op-code 3 packet.

The average size of the expanded snort messages increased from 15 to 50. To anal-

yse the increase in length of the snort messages after the CVE entity expansion, we

measured the length distribution of new snort messages. Figure 27 shows a compari-

son of the length of messages with and without CVE entity expansion. As Figure 27

shows, the number of snort messages containing less than 15 tokens decreased by half

after the CVE expansion, from 22,817 to 9,353, while a third of the snort messages

(12,189 / 32,246) now contain more than 45 tokens.

After these two supplement steps, the new snort messages are also extended through

snort rule name descriptions (see Section 3.1.1) and the algorithm of mapping sen-

tences is identical as baseline system. Based on the extended snort messages, we

again conducted unigrams, bigrams experiments respectively, as well as the mixture

of unigrams + bigrams.

54

Figure 27: Comparison of the Length of Snort Messages with and without CVE
Expansion

4.2.2 Results and Analysis

Using the expanded snort messages, we re-run the three successful experiments of

Section 4.1: the use of unigrams only, the use of bigrams only and the mixture of

unigrams + bigrams.

4.2.2.1 Experiment Based on Unigrams

Following the same mapping algorithm indicated in Section 2.2.1.3, only unigrams

are used as features to represent extended snort alert messages and CAPEC attack

fields. With the document frequency filter as 40 (DF = 40), Figure 28 shows that the

values of RL, PL and FL
0.5 all improved by 10% compared to the unigram performance

in the baseline Charibdis system.

4.2.2.2 Experiment Based on Bigrams

In addition to the unigrams, bigrams also benefited from the use of CVE expansion.

Figure 29 illustrates that the RL increased from 31.30% in baseline system to 34.59%.

55

Figure 28: Comparison of the Mapping Quality on Unigrams with and without CVE
Expansion

Figure 29: Comparison of the Mapping Quality on Bigrams with and without CVE
Expansion

56

Figure 30: Comparison of the Mapping Quality of Mixture of Unigrams + Bigrams
with and without CVE Expansion

4.2.2.3 Experiment Based on the N-Gram Mixture

Finally, the mixture of unigrams + bigrams to represent messages and fields also

benefited from the CVE expansion. Figure 30 shows an improvement of PL (13%)

and a 10% increase in FL
0.5.

4.2.3 Analysis of the CVE Expansion

The CVE entity expansion increases the performance of the baseline Charibdis system

both in lenient precision and lenient recall using all feature combinations that we

experimented with. However, two thirds of the snort messages distributed at the

two sides in Figure 27, because only 47% (15,444 / 32,246) snort messages have the

related CVE entity descriptions. For example, the message

7063;”EXPLOIT-KIT Multiple exploit kit jar file retrieved on non-standard port”;

only has the snort ID and message content. Thus, the polarized length distribution

of the extended snort messages limited the improvement of mapping quality.

In this chapter, we analyzed the contribution of the unigrams, bigrams, trigrams

and two mixture feature models. Because of the small size of snort messages, unigrams

57

seemed to contribute the most of the mapping quality. To address the short size issue,

we used CVE entity descriptions to supplement snort messages and the performance

of the system improved significantly as the FL
0.5 increased from 70.49% to 80.72% with

the mixture of unigrams and bigrams. However, the polarized length distribution of

the extended snort messages seemed to prevent the increase of the mapping quality

(see Figure 27) even further because only 47% of the snort messages have a related

CVE entity. In order to supplement all of the messages, we investigated to use

similar messages pre-clustering techniques before mapping. In the next chapter, we

will describe and analyze the use of clustering.

58

Chapter 5

Pre-Clustering

In this chapter, we describe our second approach to improve the system performance:

pre-clustering snort alert messages. After analyzing snort messages and discussed

with our two security analysts, we noticed that many snort messages share similar

content, hence it would seem natural that they be mapped to similar CAPEC fields.

For example, these three example snort messages:

FILE-PDF Adobe Acrobat Reader embedded TTF bytecode memory corruption attempt

FILE-PDF Adobe Acrobat Reader TTF parsing bad cmap format attempt

FILE-PDF Adobe Reader embedded TTF interger overflow attempt

describe vulnerability exploits about Adobe reader TTF and should be mapped to

similar CAPEC fields. To ensure this, we experiment with clustering the snort mes-

sages prior to mapping them. Each snort message within a cluster is then mapped

to the same CAPEC field. Section 5.1 describes the K-Means clustering algorithm

that we used and the pre-clustering pipeline used in the enhanced system. Section 5.2

analyses the mapping quality after clustering similar snort alert messages.

5.1 K-Means Clustering

In this section, we first describe the basics of K-Means clustering in Section 5.1.1,

followed by a description of the pipeline using K-Means in the enhanced system in

Section 5.1.2.

59

5.1.1 Introduction to K-Means

K-Means [Jain and Dubes, 1988] is a widely used unsupervised clustering algorithm.

The goal of this algorithm is to group data into k clusters based on the similarity

of the data and refine the clusters iteratively until producing the final results. The

algorithm consists of four main steps:

1. The algorithm inputs are a collection of data and the number of described

clusters k.

2. K cluster centroids are generated randomly from the dataset and each centroid

represents a unique cluster.

3. Each data is assigned to its nearest centroid measured by the standard (L2)

Euclidean distance (see Section 2.3.1.2). Data which share the same centroid

are assigned to the same cluster. More specifically, the nearest centroid is

defined as:

argmin
ci∈C

dist(ci, x)2

where dist() is the the standard (L2) Euclidean distance, C is the collection of

centroids, ci is a centroid in the collection and x represents one data from the

dataset.

4. The data in the same cluster are used to update the centroid of their cluster.

Suppose that the data in the ith cluster is the set Si, then the update process

of the centroid ci is defined as:

ci =
1

|Si|
∑
xi∈Si

xi

The algorithm repeats step 3 and 4 until meeting a stopping criteria, such as

the limit on the iteration steps or the minimum distance threshold between data

and centroid. In our system, we use the K-Means algorithm as implemented in the

scikit-learn library and the stopping criteria was set to a maximum of 300 iterations.

5.1.2 Algorithm Pipeline

To try to increase the mapping quality and address the issue of the small size of

snort messages, we attempted to pre-cluster snort message before mapping them.

60

Specifically, snort messages are first expanded by the snort rule name description (see

Section 3.1.1), and the expanded snort alert messages were represented by unigrams

after the removal of the punctuation and stop words. These unigrams are used in the

document-by-matrix representation and each entry is the TF.IDF value. Messages

which share similar content are clustered in the same cluster via the K-Means algo-

rithm. Snort messages in the same cluster are then concatenated into a single long

message, and the resulting longer messages is then mapped to CAPEC fields using

the same mapping algorithm as the baseline system (see Section 2.2.1.3).

We experimented with various numbers of clusters (n) which as a side-effect also

varied the length of the resulting message to map. The trade-off is that a larger

number of clusters (n) should lead to a greater number of possible CAPEC fields

being mapped to each snort messages, but should also lead to a shorter message and

sparser representation. Figure 31 shows the average length of the new longer snort

messages when using various number numbers of clusters. As shown in Figure 31,

the length of snort messages varies from 23,539 (with 20 clusters) to 94 (with 5,000

clusters) and the length of the message is 235 (with 2,000 clusters) which is almost

equivalent to the length of CAPEC fields (see Section 2.1.3). Based on these n

clusters, we conducted the experiments and analyse the mapping quality in the next

section.

Figure 31: Distribution of Average Snort Length with Different Numbers of Clusters

61

5.2 Analysis of Pre-clustering

After clustering snort messages into n clusters using the K-Means algorithm (see

Section 5.1) and concatenating longer messages, we used document frequency (DF)

only and term variance frequency (TV) only as the filters similarly to the three

experiments of Section 4.1: using unigrams only, using bigrams only and using the

mixture of unigrams + bigrams to represent snort messages and CAPEC attack fields.

5.2.1 Experiments Based on Unigrams

Tables 12 and 13 show the number of features with document frequency (DF = 40)

only and term variance frequency only (TV = 0.98) of each cluster based on the

unigrams. These experiments gave raise to a feature set F where size ranges from

485 to 650 with the DF filter and from 650 to 1,218 with TV filter. Both the system

with DF filter and that with TV filter perform best in the condition of 20 clusters

(see Tables 38 and 39 in the Appendix). Figure 32 shows that the best FL
0.5 achieved

80.50% when using the term variance frequency filter whereas this figure reached

71.68% with document frequency. Compared to the DF system, TV system performs

better. In addition, Figure 33 shows the values of PL, RL and FL
0.5 all increased by 10%

through the use of the pre-clustering technique with term variance filter compared to

the baseline system.

Exp. SimT n DF TV Expansion Nb of Features
Exp. #1 0 20 40 0 Yes 485
Exp. #2 0 50 40 0 Yes 501
Exp. #3 0 100 40 0 Yes 522
Exp. #4 0 500 40 0 Yes 581
Exp. #5 0 1,000 40 0 Yes 591
Exp. #6 0 2,000 40 0 Yes 617
Exp. #7 0 3,000 40 0 Yes 631
Exp. #8 0 4,000 40 0 Yes 635
Exp. #9 0 5,000 40 0 Yes 650

Table 12: Description of the Pre-clustering on Unigrams Experiments only with Doc-
ument Frequency

62

Exp. SimT n DF TV Expansion Nb of Features
Exp. #1 0 20 0 0.98 Yes 1,218
Exp. #2 0 50 0 0.98 Yes 1,125
Exp. #3 0 100 0 0.98 Yes 1,078
Exp. #4 0 500 0 0.98 Yes 1,015
Exp. #5 0 1,000 0 0.98 Yes 1,019
Exp. #6 0 2,000 0 0.98 Yes 951
Exp. #7 0 3,000 0 0.98 Yes 631
Exp. #8 0 4,000 0 0.98 Yes 635
Exp. #9 0 5,000 0 0.98 Yes 650

Table 13: Description of the Pre-clustering on Unigrams Experiments only with Term
Variance Frequency

Figure 32: Comparison of Mapping Quality in Unigrams with DF only and TV only

63

Figure 33: Comparison of Mapping Quality in Unigrams with 20 Clusters + TV and

Baseline

5.2.2 Experiments Based on Bigrams

In addition to the unigram experiments, we used bigrams only to represent snort

messages and attack fields. Using the document frequency as filter, the FL
0.5 reached

73.79% with 3,000 clusters whereas the system with term variance frequency only

achieved 60.27% in the same number of clusters (see Tables 42 and 45 in the Ap-

pendix). Compared to the bigram performance in the baseline system, Figure 34

illustrates that the pre-clustering technique improved the RL from 31.30% to 36.40%

without hurting the PL (99.96%) and the FL
0.5 also increased to 73.79%.

5.2.3 Experiments Based on Mixture of Unigrams + Bigrams

Finally, the mixture of unigrams + bigrams are used as features after clustering

similar snort messages. The RL reached 49.57% using the document frequency filter

with 20 clusters and the PL reached 87.42% which increased the mapping quality

in baseline. Similarly, using term variance frequency as filter, the values of RL and

PL achieved 48.79% and 97.11% respectively with 1,000 clusters and improved the

F 0.5
L to 80.99% which is the highest value so far. When comparing these two kinds

of filtering methods, the term variance frequency (TV = 0.98) seems to perform the

64

Figure 34: Comparison of Mapping Quality in Bigrams with 2000 Clusters + DF and
Baseline

best in terms of both recall and precision. Figure 35 shows the comparison of the

mapping quality with 1,000 clusters and the TV filtering and baseline in terms of all

the values of lenient recall, precision and F-measure increased by almost 10%.

Figure 35: Comparison of Mapping Quality in Mixture of Unigrams + Bigrams with

1000 Clusters + TV and Baseline

65

5.2.4 Analysis of the Messages Pre-clustering

Based on the content similarity of snort messages, the pre-clustering method enhanced

the mapping quality significantly compared to the baseline. Table 14 shows the results

of the system with and without clustering as part of the pre-processing for various

values of n when using unigrams + bigrams as features. As shown in Table 14, the

best configurations in terms of F-measure are when using clustering with values of n

between 500 and 3000 and using term variance frequency as filter. With these values,

the results are not statistically different, with FL
0.5 ≈ 80% and FL

1 ≈ 65%. Recall

itself has reached ≈ 48% from a low 35.22% in the baseline (see Section 3.2.2). The

best performance was achieved when n = 1000 and the FL
1 was 64.84%. In addition,

Table 14 shows the trade-off between the use of a smaller number of clusters (smaller

n) which leads to a smaller number of possible output CAPEC fields and the use

of a larger n which leads to a sparser snort representation. Hence leading to lower

F-measures with n ≥ 3000 and n ≤ 100.

System n PL RL FL
0.5 FL

1 Snort Length

Baseline n/a 97.96% 35.22% 72.23% 51.82% 15

Clustering 5000 86.62% 48.21% 74.71% 61.94% 94

Clustering 4000 86.41% 47.71% 74.35% 61.47% 117

Clustering 3000 97.11% 48.64% 80.97% 64.81% 157

Clustering 2000 96.82% 48.34% 80.65% 64.49% 235

Clustering 1000 97.11% 48.67% 80.99% 64.84% 470

Clustering 500 96.94% 48.51% 80.81% 64.67% 941

Clustering 100 96.00% 36.48% 72.38% 52.87% 4,707

Clustering 50 96.10% 36.58% 72.51% 52.99% 9,415

Clustering 20 96.13% 36.45% 72.42% 52.86% 23,539

Table 14: Results with the Mixture of Unigrams + Bigrams with Different Cluster

Numbers + TV Filter

Compared to the Common Vulnerabilities and Exposures (CVE) expansion (see

Section 4.2), the pre-clustering technique in the pre-processing step also performs

better. Figure 36 shows how the pre-clustering contributes to the performance in

comparison of CVE expansion (see Section 4.2) and the baseline alone, in terms of

66

lenient recall (RL) and F-measure (FL
1). As shown in Figure 36, the RL increased

to 48.79% from 46.79% with the CVE expansion and the FL
1 improved to 64.84%.

Both pre-clustering and CVE expansion improved the mapping quality significantly

compared to the baseline.

Figure 36: Analysis of the Mapping Quality Between the Baseline, the CVE Expan-

sion and the Pre-clustering

In this chapter, we introduced the K-Means clustering algorithm and the pre-

clustering algorithm pipeline used to enhance the mapping quality of the baseline

system. We experimented with unigrams only, bigrams only and the mixture of un-

igrams + bigrams as features and analyzed the contribution of the pre-clustering

technique. The mixture of unigrams + bigrams contributed most to the mapping

quality. Using document frequency as the only filter and 20 clusters, the n-grams

mixture achieved the highest lenient recall (RL) at 49.57%. Likewise, using the vari-

ance term frequency filter only, the mixture increased all the values of RL, PL and

FL
1 by 10%. However, when using a larger number of clusters (n ≥ 3000), the sparse

distribution of the snort messages seems to prevent an increase in the mapping qual-

ity. In order to tackle the sparse distribution problem, we investigated to use Latent

Semantic Analysis (LSA) to decrease the dimension of feature set before mapping. In

67

the next chapter, we will describe and analyze the use of LSA.

68

Chapter 6

Latent Semantic Analysis

Approach

In this chapter, we describe the third approach to improve the mapping quality of

the baseline system: Semantic Mapping by Latent Semantic Analysis. Recall from

Section 2.3.4.1, that Latent Semantic Analysis (LSA) is widely used to reduce the

feature size through removing unimportant latent topics. Section 6.1 introduces the

basic idea of LSA and the algorithm pipeline in our system. Then, Section 6.2 analyses

the enhanced mapping quality.

6.1 Latent Semantic Analysis

Mathematically, LSA decreases the dimension of the feature space to n topics us-

ing singular value decomposition (SVD) which is a well known matrix decomposition

method. Any rectangular matrix can be decomposed into the product of three ma-

trices:

C = UΣV T

where C is the rectangular matrix, U and V T are two orthogonal matrices and Σ is

a square diagonal matrix. Each diagonal value in Σ represents the importance of a

unique topic and those smaller values which describe unimportant topics are removed

in order to reduce the dimension of the features. The remained n topics highlight

the documents similarity. In the enhanced system, the document-by-term matrix

69

which is converted by the snort messages and CAPEC fields (see Section 2.2.1.3), is

truncated into n important topics (dimensions) using the TruncatedSVD method in

the scikit-learn library. For instance, suppose we have two snort messages and two

CAPEC fields as follow.

Snort Messages:

d1: BROWSER-FIREFOX Mozilla Firefox IDB use-after-free attempt

d2: SQL 1 = 1 - possible sql injection attempt

CAPEC Attack Fields:

d3: This category is related to the WASC Threat Classification

2.0 item SQL Injection

d4: Use a browser to manually explore the website and analyze

how it is constructed. Many browser’s plug-in are available to

facilitate the analysis or automate the URL discover

When using unigrams only as features, the converted document-by-term matrix

is:

attempt browser inject sql url ... websit

d1 1 1 0 0 0 ... 0

d2 1 0 1 2 0 ... 0

d3 0 0 1 1 0 ... 0

d4 0 2 0 0 1 ... 1

where each entry in this matrix is the term frequency in each document. In total,

there are 28 unique unigram features in these four documents and this feature matrix

suffers from a sparse distribution. After the feature dimension reduced is from 28 to 4

by using the latent semantic analysis method (TruncatedSVD method in scikit-learn

library), the document-by-topics matrix becomes:

topic1 topic2 topic3 topic4

d1 0.97 0.89 2.66 -0.36

d2 0.10 2.11 -0.15 1.58

d3 0.03 2.32 -0.96 -1.29

d4 4.06 -0.28 -0.62 0.06

70

where each entry in the document-by-topics matrix is the sum of the contribution

of each feature in the corresponding document to the topic. For example, 0.97

represents the sum of the contribution of all the features in document 1 (d1) to topic

1 (topic1). The negative values indicate that the document is strongly unrelated to

the topic.

6.1.1 Algorithm Pipeline

In the enhanced system, after the tokenizaion, the removal of stop words and stem-

ming, term frequency only and TF.IDF (see Section 2.2.1.3) only are used as term

weights separately in the document-by-term matrix. Without the filtering of docu-

ment frequency (DF) and term variance frequency (TV), the latent semantic analysis

method truncates snort messages and attack fields to n latent topics, where n varies

from 5,000 to 100. Then, the cosine measure calculates the similarity between snort

messages and attack fields represented in the document-by-topics matrix, and the 3

most similar fields are chosen as mapping result. The trade-off is that when using a

larger number of topics, the details in snort messages and attack fields are taken into

account in the similarity mapping whereas a smaller number of topics removes details

and results only the summarization of messages and fields.

6.2 Analysis of the Latent Semantic Analysis Ap-

proach

With term frequency only and TF.IDF only, we conducted the three experiments

similarly to Section 4.1: using unigrams only, using bigrams only and using the

mixture of unigrams + bigrams to represent snort messages and CAPEC attack fields.

6.2.1 Experiments Based on Unigrams

Table 15 shows that the total number of unigrams features is 15,963 without the

document frequency and term variance filtering. With 2,000 topics (Exp. #4), the

RL achieved 47.82% and FL
1 reached 64.34% with term frequency as term weight

whereas the value of RL was only 24.33% and the FL
1 achieved almost 39.15% with

TF.IDF weight (see Tables 53 and 55 in the Appendix). Figure 37 compares the best

71

performance of the baseline system and LSA methods with unigrams only. The RL

improved from 41.15% to 47.28% and the FL
1 increased by almost 10%, which is similar

to the enhancement of the CVE expansion and pre-clustering (see Sections 4.1.1 and

5.2.1).

Exp. SimT n DF TV Expansion Nb of Features
Exp. #1 0 100 0 0 Yes 15,963
Exp. #2 0 500 0 0 Yes 15,963
Exp. #3 0 1,000 0 0 Yes 15,963
Exp. #4 0 2,000 0 0 Yes 15,963
Exp. #5 0 3,000 0 0 Yes 15,963
Exp. #6 0 4,000 0 0 Yes 15,963
Exp. #7 0 5,000 0 0 Yes 15,963

Table 15: Description of the Unigram with Latent Semantic Analysis Experiments

Figure 37: Comparison of the Mapping Quality of Unigrams Only Between Baseline
and LSA

6.2.2 Experiments Based on Bigrams

With a smaller number of topics and bigrams only, the performance of the two weights

(term frequency and TF.IDF) is almost equal, with RL ≈ 35% and FL
1 ≈ 52% (see

Tables 57 and 59 in the Appendix). Compared to the baseline system, the LSA

72

method increased the mapping quality by 5%. Figure 38 shows that the RL and the

FL
1 improved to 35.69% and 52.06% respectively without hurting the value of lenient

precision.

Figure 38: Comparison of the Mapping Quality of Bigrams Only Between Baseline
and LSA

6.2.3 Experiments Based on Mixture of Unigrams + Bigrams

Similarly to the previous experiment, the mixture of unigrams + bigrams were used

as features to represent snort messages and attack fields. Table 16 shows that the

total number of unigrams + bigrams is 89,313 without document frequency and term

variance frequency filtering. When reducing these almost 90,000 features to 5,000

and using term frequency as term weights, the RL achieved 48% and the FL
1 reached

64.50%. Figure 39 shows the improvement that the latent semantic analysis method

contributed. Compared to the baseline system, the LSA method not only increased

the PL to 98.30%, but the RL also improved by 7% and the FL
1 achieved 64.50%.

6.2.4 Analysis of the Latent Semantic Analysis

Through removing unimportant topics, the latent semantic analysis method enhanced

the performance of the baseline system. Table 17 shows the best mapping quality on

73

Exp. SimT n DF TV Expansion Nb of Features
Exp. #1 0 100 0 0 Yes 89,313
Exp. #2 0 500 0 0 Yes 89,313
Exp. #3 0 1,000 0 0 Yes 89,313
Exp. #4 0 2,000 0 0 Yes 89,313
Exp. #5 0 3,000 0 0 Yes 89,313
Exp. #6 0 4,000 0 0 Yes 89,313
Exp. #7 0 5,000 0 0 Yes 89,313

Table 16: Description of the Mixture of Unigrams + Bigrams on Latent Semantic
Analysis Experiments

Figure 39: Comparison of the Mapping Quality of Mixture of Unigrams + Bigrams
Between Baseline and LSA

the unigrams only, bigrams only and the mixture of unigrams + bigrams with the

corresponding term weight and the number of topics. Compared to using TF.IDF

as term weight, the term frequency is able to achieve a better mapping quality. As

shown in Table 17, the best configurations in terms of F-measure are when using 5,000

as the number of topics, term frequency as term weight and the mixture of unigrams

+ bigrams as feature.

74

Feature Weight Nb of Features n PL RL FL
1

Unigrams TF 15,963 2,000 98.29% 47.82% 64.34%

Unigrams TF.IDF 15,963 4,000 99.97% 24.35% 39.17%

Bigrams TF 73,350 500 100.00% 35.69% 52.60%

Bigrams TF.IDF 73,350 100 100.00% 34.82% 51.65%

Mixture TF 89,313 5,000 98.30% 48.00% 64.50%

Mixture TF.IDF 89,313 3,000 100.00% 35.31% 52.19%

Table 17: Comparison of the Mapping Quality Between Term Frequency and TF.IDF

In this chapter, we have described the use of latent semantic analysis and the

pipeline used to improve the mapping quality of the baseline system. Three experi-

ments were conducted: unigrams only, bigrams only and the mixture of unigrams +

bigrams with term frequency and TF.IDF respectively and the contribution of the

LSA was analysed. With term frequency and the use of 5,000 topics, the mixture of

unigrams + bigrams performs best with an FL
1 of 64.50%. In the next chapter, we

will compare all of these three approaches and draw an overall conclusion.

75

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis described several evaluation metrics and three approaches to enhance an

existing Intrusion Detection System (IDS) for the automatic mapping of snort alert

messages to known attack patterns. After evaluating the baseline system against a

gold-standard, we found that unigrams are the most discriminating features contribut-

ing to the mapping quality, followed by bigrams; whereas trigrams do not contribute

anything.

To address the short size issue highlighted in Section 1.1, we used Common Vul-

nerabilities and Exposures (CVE) entity descriptions to supplement snort messages

and the performance of the system improved significantly as the FL
1 increased from

51.81% to 63.46% with the mixture of unigrams + bigrams. Compared to the CVE

expansion, the pre-clustering technique proposed in Chapter 5, in the pre-processing

step performs better. The n-gram mixture achieved the highest lenient recall (RL) at

49.57% and the FL
1 increased to 48.67%. Also, the latent semantic analysis method

of Chapter 6 enhanced the baseline system through reducing the feature size and the

FL
1 improved to 48.00%

Finally, the recommended configurations are using the mixture of unigrams +

bigrams as feature, clustering snort messages into 1,000 clusters and using term vari-

ance frequency as filter. With this configuration, the enhanced system performs best

with the value of RL = 48.67% and FL
1 = 64.84%.

76

7.2 Future Work

As future work, it would be interesting to investigate the use of various automatic

snort expansion methods. Currently, the snort rule name relies on hand-written

term expansions and the detail snort messages are extended only through Common

Vulnerabilities and Exposures (CVE) [MITRE, 2017b]. Because of the high work-

load restriction, hand written expansions cannot support snort rule name expan-

sion when the number of snort messages is large. Also, the entities in CVE do not

cover all snort messages, hence it cannot be used to supplement all snort messages.

Thus, by using existing knowledge bases such as the Common Weakness Enumera-

tion [MITRE, 2017c] or the Computer Security category in Wikipedia rather than

relying on hand-written term expansion and Common Vulnerabilities and Exposures

is necessary.

In addition, it would be interesting to look beyond the mapping of individual snort

messages, and try to identify and match entire patterns/groups of snort messages as

an indication of possible cyber attacks. In CAPEC, many attack patterns contain

attack fields which have similar contents whereas these attack patterns are not similar.

Thus, it could be an interesting research avenue to consider attack patterns as the

smallest unit to map to snort messages.

77

Bibliography

[Allison and Dix, 1986] Allison, L. and Dix, T. I. (1986). A bit-string longest-

common-subsequence algorithm. Information Processing Letters, 23(5):305–310.

[Ashoor and Gore, 2011] Ashoor, A. S. and Gore, S. (2011). Importance of intru-

sion detection system (IDS). International Journal of Scientific and Engineering

Research, 2(1):1–4.

[Barrón-Cedeño and Rosso, 2009] Barrón-Cedeño, A. and Rosso, P. (2009). On auto-

matic plagiarism detection based on n-grams comparison. In European Conference

on Information Retrieval, pages 696–700. Springer.

[Bayuk, 2007] Bayuk, J. L. (2007). Stepping Through the InfoSec Program. Informa-

tion Systems Audit and Control Association.

[Broder, 1997] Broder, A. Z. (1997). On the resemblance and containment of docu-

ments. In Proceedings of Compression and Complexity of Sequences 1997., pages

21–29. IEEE.

[Budanitsky and Hirst, 2006] Budanitsky, A. and Hirst, G. (2006). Evaluating

wordnet-based measures of lexical semantic relatedness. Computational Linguistics,

32(1):13–47.

[Chris et al., 1990] Chris, D. P. et al. (1990). Another stemmer. In ACM Special

Interest Group on Information Retrieval (SIGIR) Forum, volume 24, pages 56–61.

[Clear, 1993] Clear, J. H. (1993). The digital word. chapter The British National

Corpus, pages 163–187. MIT Press, Cambridge, MA, USA.

[Division, 2017] Division, N. C. S. (2017). National vulnerability database (NVD).

https://nvd.nist.gov. Site Visited: March 15, 2018.

78

[Dobb’s, 2007] Dobb’s, D. (2007). SIEM: A market snapshot. http://www.drdobbs.

com/siem-a-market-snapshot/197002909. Site Visited: March 1, 2018.

[Dolan et al., 2004] Dolan, B., Quirk, C., and Brockett, C. (2004). Unsupervised con-

struction of large paraphrase corpora: Exploiting massively parallel news sources.

In Proceedings of the 20th International Conference on Computational Linguistics,

pages 350–356. Association for Computational Linguistics.

[FIRST, 2018] FIRST (2018). Common vulnerability scoring system SIG. https:

//www.first.org/cvss/. Site Visited: March 1, 2018.

[Gomaa and Fahmy, 2013] Gomaa, W. H. and Fahmy, A. A. (2013). A survey of text

similarity approaches. International Journal of Computer Applications, 68(13).

[Gusfield, 1997] Gusfield, D. (1997). Algorithms on strings, trees and sequences:

Computer science and computational biology. Cambridge University Press.

[Huang, 2008] Huang, A. (2008). Similarity measures for text document clustering.

In Proceedings of the Sixth New Zealand Computer Science Research Student Con-

ference (NZCSRSC2008), Christchurch, New Zealand, pages 49–56.

[Jaccard, 1901] Jaccard, P. (1901). Comparative study of floral distribution in a

portion of the Alps and Jura. 37:547–579.

[Jain and Dubes, 1988] Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clus-

tering Data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Jaro, 1989] Jaro, M. A. (1989). Advances in record-linkage methodology as applied

to matching the 1985 census of Tampa, Florida. Journal of the American Statistical

Association, 84(406):414–420.

[Jiang and Conrath, 1997] Jiang, J. J. and Conrath, D. W. (1997). Semantic similar-

ity based on corpus statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008.

[Landauer and Dumais, 1997] Landauer, T. K. and Dumais, S. T. (1997). A solution

to plato’s problem: The latent semantic analysis theory of acquisition, induction,

and representation of knowledge. Psychological Review, 104(2):211.

79

[Leacock and Chodorow, 1998] Leacock, C. and Chodorow, M. (1998). Combining

local context and wordnet sense similarity for word sense identification. WordNet,

an electronic lexical database. The MIT Press.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting

deletions, insertions, and reversals. In Soviet physics doklady, volume 10, pages

707–710.

[Lin et al., 1998] Lin, D. et al. (1998). An information-theoretic definition of similar-

ity. In International Conference on Machine Learning, volume 98, pages 296–304.

[Loper and Bird, 2002] Loper, E. and Bird, S. (2002). Nltk: The natural language

toolkit. In Proceedings of the ACL-02 Workshop on Effective Tools and Method-

ologies for Teaching Natural Language Processing and Computational Linguistics -

Volume 1, ETMTNLP ’02, pages 63–70.

[Lyon et al., 2001] Lyon, C., Malcolm, J., and Dickerson, B. (2001). Detecting short

passages of similar text in large document collections. In Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing, pages 118–125.

[Ma et al., 2018] Ma, X., Davoodi, E., Kosseim, L., and Scarabeo, N. (2018). Se-

mantic mapping of security events to known attack patterns. In International

Conference on Applications of Natural Language to Information Systems, pages

91–98. Springer.

[Manning and Schütze, 1999] Manning, C. D. and Schütze, H. (1999). Foundations

of Statistical Natural Language Processing, volume 1:e25. Cambridge, MA, USA.

[Mihalcea et al., 2006] Mihalcea, R., Corley, C., Strapparava, C., et al. (2006).

Corpus-based and knowledge-based measures of text semantic similarity. In Asso-

ciation for the Advancement of Artificial Intelligence, volume 6, pages 775–780.

[Miller, 1995] Miller, G. A. (1995). Wordnet: A lexical database for English. Com-

munication of the ACM, 38(11):39–41.

[MITRE, 2017a] MITRE (2017a). Common attack pattern enumeration and classi-

fication (CAPEC) (2017). https://capec.mitre.org/. Site Visited: February 1,

2018.

80

[MITRE, 2017b] MITRE (2017b). Common vulnerabilities and exposures (CVE).

https://cve.mitre.org/. Site Visited: March 1, 2018.

[MITRE, 2017c] MITRE (2017c). Common weakness enumeration (CWE) (2017).

https://cwe.mitre.org/index.html. Site Visited: March 1, 2018.

[Monge and Elkan, 1997] Monge, A. and Elkan, C. (1997). An efficient domain-

independent algorithm for detecting approximately duplicate database records. In

The Proceedings of the Special Interest Group on Management of Data (SIGMOD)

1997 Workshop on Data Mining and Knowledge Discovery.

[Monge et al., 1996] Monge, A. E., Elkan, C., et al. (1996). The field matching prob-

lem: Algorithms and applications. In Knowledge Discovery and Data Mining, pages

267–270.

[Pedersen et al., 2004] Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004).

Wordnet:: Similarity: measuring the relatedness of concepts. In Demonstration

papers at HLT-NAACL 2004, pages 38–41. Association for Computational Linguis-

tics.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duch-

esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830.

[Porter, 1980] Porter, M. F. (1980). An algorithm for suffix stripping. Program,

14(3):130–137.

[Porter, 2001] Porter, M. F. (2001). Snowball: A language for stemming algo-

rithms. http://snowball.tartarus.org/texts/introduction.html. Site Vis-

ited: March 1, 2018.

[Resnik, 1995] Resnik, P. (1995). Using information content to evaluate semantic

similarity in a taxonomy. arXiv preprint cmp-lg/9511007.

[Roesch et al., 1999] Roesch, M. et al. (1999). Snort: Lightweight intrusion detection

for networks. In Large Installation System Administration (LISA), volume 99,

pages 229–238.

81

[Royer, 2005] Royer, C. (2005). Term representation with generalized latent seman-

tic analysis. Proceedings of Recent Advances in Natural Language Processing IV:

selected papers from RANLP, 292:45.

[Sahami and Heilman, 2006] Sahami, M. and Heilman, T. D. (2006). A web-based

kernel function for measuring the similarity of short text snippets. In Proceedings

of the 15th International Conference on World Wide Web, pages 377–386. ACM.

[Salton and McGill, 1986] Salton, G. and McGill, M. J. (1986). Introduction to Mod-

ern Information Retrieval. McGraw-Hill, Inc., New York, NY, USA.

[Salton et al., 1975] Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space

model for automatic indexing. Communications of the ACM, 18(11):613–620.

[Scarabeo et al., 2015] Scarabeo, N., Fung, B. C., and Khokhar, R. H. (2015). Mining

known attack patterns from security-related events. PeerJ Computer Science, 1:e25.

[Schatz et al., 2017] Schatz, D., Bashroush, R., and Wall, J. (2017). Towards a more

representative definition of cyber security. Journal of Digital Forensics, Security

and Law, 12(2):8.

[Schütze et al., 2008] Schütze, H., Manning, C. D., and Raghavan, P. (2008). Intro-

duction to information retrieval, volume 39. Cambridge University Press.

[Smith and Waterman, 1981] Smith, T. and Waterman, M. (1981). Identification of

common molecular subsequences. Molecular Biology, 147:195–197.

[NIST, 2017] NIST (2017). Information technology laboratory(ITL) (2017). https:

//www.nist.gov/itl/about-itl. Site Visited: March 1, 2018.

[Winkler, 1990] Winkler, W. E. (1990). String comparator metrics and enhanced

decision rules in the fellegi-sunter model of record linkage.

[Wu and Palmer, 1994] Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical

selection. In Proceedings of the 32nd annual meeting on Association for Computa-

tional Linguistics, pages 133–138. Association for Computational Linguistics.

[ZDNet, 2006] ZDNet (2006). Novell buys e-security. http://www.zdnet.com/

article/novell-buys-e-security/. Site Visited: March 1, 2018.

82

[Zipf, 2016] Zipf, G. K. (2016). Human behavior and the principle of least effort: An

introduction to human ecology. Ravenio Books.

83

Appendix A

Details of Experimented Results

Unigrams on Baseline

Table 18 shows the lenient and strict measures when using unigrams only as the

feature to represent snort alert messages and CAPEC attack fields.

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 98.95% 6 4,280 108 97.54% 29.12% 0.14% 0.07%

Exp. #2 98.95% 6 4,280 108 97.54% 29.12% 0.14% 0.07%

Exp. #3 99.40% 1.746 4,259 1,001 85.71% 40.80% 24.92% 18.93%

Exp. #4 99.42% 1,789 1,718 2 99.94% 23.83% 50.98% 19.40%

Exp. #5 98.18% 11 14 10 71.43% 0.17% 31.43% 0.12%

Exp. #6 98.18% 11 14 10 71.43% 0.17% 31.43% 0.12%

Exp. #7 99.40% 100 10 38 74.32% 0.75% 67.57% 1.08%

Exp. #8 99.42% 102 1,581 1 99.94% 11.43% 6.06% 1.11%

Table 18: Results of the Unigram Experiments

84

Bigrams on Baseline

Table 19 shows the number of bigrams representing the snort messages and attack

fields when using different combinations of document frequency (DF) and term vari-

ance filter (TV). Tables 20 and 21 show the mapping quality of bigrams.

Exp. SimT DF TV Expansion Nb of Features

Exp. #1 0 40 0.98 Yes 74

Exp. #2 0 0 0.98 Yes 74

Exp. #3 0 40 0 Yes 681

Exp. #4 0 0 0 Yes 73,350

Table 19: Description of the Bigram Experiments

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 45.38% 0 0 2 0.00% 0.00% 0.00% 0.00%

Exp. #2 45.38% 0 0 2 0.00% 0.00% 0.00% 0.00%

Exp. #3 63.35% 1,539 3,068 2 99.96% 31.30% 33.39% 16.69%

Exp. #4 66.16% 1,783 1,734 5 99.86% 23.90% 50.62% 19.33%

Table 20: Results of the Bigram Experiments

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Exp. #2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Exp. #3 69.48% 47.67% 36.29% 27.82% 22.25% 47.67%

Exp. #4 61.05% 27.98% 28.18% 38.25% 27.98% 22.06%

Table 21: F-Measures of the Bigram Experiments

85

Trigrams on Baseline

Tables 22, 23 and 24 demonstrate the number of trigrams and the related mapping

quality.

Exp. SimT DF TV Expansion Nb of Features

Exp. #1 0 40 0.98 Yes 51

Exp. #2 0 0 0.98 Yes 51

Exp. #3 0 40 0 Yes 531

Exp. #4 0 0 0 Yes 103,914

Table 22: Description of the Trigram Experiments

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 0% 0 0 0 0.00% 0.00% 0.00% 0.00%

Exp. #2 0% 0 0 0 0.00% 0.00% 0.00% 0.00%

Exp. #3 4.71% 0 0 0 0.00% 0.00% 0.00% 0.00%

Exp. #4 5.33% 0 0 1 0.00% 0.00% 0.00% 0.00%

Table 23: Results of the Trigram Experiments

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Exp. #2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Exp. #3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Exp. #4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 24: F-Measures of the Trigram Experiments

86

Mixture of N-Grams on Baseline

After measuring each n-gram, Tables 25 and 26 show the mapping results and F-

measure values when using the mixture of unigrams and bigrams and trigrams.

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 98.95% 6 5,178 107 97.97% 35.22% 0.11% 0.06%

Exp. #2 98.95% 6 5,178 107 97.97% 35.22% 0.11% 0.06%

Exp. #3 99.40% 1,781 4,276 1,002 85.80% 41.15% 25.22% 19.31%

Exp. #4 99.42% 1,781 2,519 0 100.00% 29.22% 41.42% 19.31%

Exp. #5 98.95% 6 5,178 108 97.96% 35.22% 0.11% 0.07%

Exp. #6 98.95% 6 5,178 108 97.96% 35.22% 0.11% 0.07%

Exp. #7 99.40% 1,781 4,276 1,004 85.78% 41.15% 25.22% 19.31%

Exp. #8 99.43% 1,744 2,516 2 99.95% 28.94% 40.92% 18.91%

Table 25: Results of the Mixture N-Grams Experiments

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 72.23% 51.81% 40.40% 0.10% 0.08% 0.07%

Exp. #2 72.23% 51.81% 40.40% 0.10% 0.08% 0.07%

Exp. #3 70.49% 55.62% 45.93% 23.77% 21.88% 20.26%

Exp. #4 67.36% 45.22% 34.03% 33.70% 26.34% 21.62%

Exp. #5 72.23% 51.81% 40.40% 0.10% 0.08% 0.07%

Exp. #6 72.23% 51.81% 40.40% 0.10% 0.08% 0.07%

Exp. #7 70.49% 55.62% 45.93% 23.77% 21.88% 20.26%

Exp #8 67.36% 45.22% 34.03% 33.70% 26.34% 21.62%

Table 26: F-Measures of the Mixture N-Grams Experiments

87

Unigrams on Common Vulnerabilities and Expo-

sures Extension

Tables 27 and 28 show the number of unigrams and the mapping results, in terms of

lenient and strict values. Table 29 indicates the F-measure after the CVE extension.

Exp. SimT DF TV Expansion Nb of Features

Exp. #1 0 40 0.98 Yes 337

Exp. #2 0 0 0.98 Yes 341

Exp. #3 0 40 0 Yes 1,383

Exp. #4 0 0 0 Yes 22,221

Table 27: Description of the Unigrams on CVE Extension Experiments

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 99.16% 1,624 4,312 176 97.12% 40.33% 26.57% 17.61%

Exp. #2 99.16% 1,624 4,312 176 97.12% 40.33% 26.57% 17.61%

Exp. #3 99.45% 1,735 5,149 139 98.02% 46.77% 24.70% 18.81%

Exp. #4 99.47% 1,743 1,738 1 99.97% 23.65% 50.05% 18.90%

Table 28: Results of the Unigrams on CVE Extension Experiments

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 75.78% 56.99% 45.67% 24.11% 21.18% 18.88%

Exp. #2 75.78% 56.99% 45.67% 24.11% 21.18% 18.88%

Exp. #3 80.40% 63.32% 52.23% 23.24% 21.36% 19.75%

Exp. #4 60.75% 38.25% 27.91% 37.64% 27.44% 21.58%

Table 29: F-Measures of the Unigrams on CVE Extension Experiments

88

Bigrams on Common Vulnerabilities and Exposures

Extension

Tables 30, 31 and 32 show the mapping quality and F-measure when using bigrams

to represent CAPEC attack fields and extended snort messages.

Exp. SimT DF TV Expansion Nb of Features

Exp. #1 0 40 0.98 Yes 217

Exp. #2 0 0 0.98 Yes 222

Exp. #3 0 40 0 Yes 2,312

Exp. #4 0 0 0 Yes 113,180

Table 30: Description of the Bigrams on CVE Extension Experiments

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 76.94% 0 0 0 0.00% 0.00% 0.00% 0.00%

Exp. #2 76.94% 0 0 0 0.00% 0.00% 0.00% 0.00%

Exp. #3 83.88% 1,708 3,384 3 99.94% 34.59% 33.52% 18.52%

Exp. #4 85.31% 1,712 1,693 4 99.88% 23.13% 50.22% 18.56%

Table 31: Results of the Bigrams on CVE Extension Experiments

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Exp. #2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Exp. #3 72.53% 51.40% 39.80% 28.84% 23.85% 20.34%

Exp. #4 60.04% 37.56% 27.33% 37.44% 27.10% 21.24%

Table 32: F-Measures of the Bigrams on CVE Extension Experiments

89

Mixture of Unigrams + Bigrams on Common Vul-

nerabilities and Exposures Expansion

Compared with using unigrams only and bigrams only, the mixture of unigrams and

bigrams performs best.

Exp. SimT DF TV Expansion Nb of Features

Exp. #1 0 40 0.98 Yes 554

Exp. #2 0 0 0.98 Yes 563

Exp. #3 0 40 0 Yes 3,695

Exp. #4 0 0 0 Yes 135,401

Table 33: Description of the Mixture of Unigrams + Bigrams on CVE Extension

Experiments

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 99.16% 1,693 5,145 174 97.51% 46.46% 24.14% 18.35%

Exp. #2 99.16% 1,693 5,145 174 97.51% 46.46% 24.14% 18.35%

Exp. #3 99.45% 1,743 5,144 98 98.59% 46.79% 24.95% 18.90%

Exp. #4 99.47% 1,732 2,524 1 99.97% 28.91% 40.68% 18.78%

Table 34: Results of the Mixture of Unigrams + Bigrams on CVE Extension Exper-

iments

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 79.94% 62.93% 51.89% 22.71% 20.85% 19.28%

Exp. #2 79.94% 62.93% 51.89% 22.71% 20.85% 19.28%

Exp. #3 80.72% 63.46% 52.28% 23.45% 21.50% 19.86%

Exp. #4 67.03% 44.85% 33.70% 32.99% 25.69% 21.04%

Table 35: F-Measures of the Mixture of Unigrams + Bigrams on CVE Extension

Experiments

90

Unigrams on Pre-clustering Experiments

Using document frequency (DF) and term variance frequency (TV) separately and

unigrams as features, Tables 36, 37, 38 and 39 show the mapping quality values and

F-measures when clustering similar snort messages into one cluster.

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 100.00% 1,860 4,498 1,049 85.83% 43.19% 25.11% 20.16%

Exp. #2 100.00% 1,859 4,424 1,249 83.41% 42.68% 24.68% 20.15%

Exp. #3 100.00% 1,858 4,357 1,054 85.50% 42.22% 25.56% 20.14%

Exp. #4 100.00% 1,841 4,386 1,003 86.12% 42.30% 25.46% 19.96%

Exp. #5 100.00% 1,832 4,376 1,009 86.01% 42.17% 25.38% 19.86%

Exp. #6 100.00% 1,829 4,381 1,007 86.04% 42.19% 25.34% 19.83%

Exp. #7 100.00% 1,831 4,378 1,003 86.09% 42.18% 25.38% 19.85%

Exp. #8 100.00% 1,819 4,334 997 86.05% 41.80% 25.44% 19.72%

Exp. #9 100.00% 1,809 4,338 995 86.06% 41.76% 25.32% 19.61%

Table 36: Results of the Unigrams on Pre-clustering Experiments with Document

Frequency

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 71.68% 57.47% 47.96% 23.93% 22.37% 20.99%

Exp. #2 70.05% 56.47% 47.30% 23.62% 22.19% 20.92%

Exp. #3 70.95% 56.53% 46.98% 24.25% 22.53% 21.03%

Exp. #4 71.34% 56.74% 47.10% 24.13% 22.38% 20.86%

Exp. #5 71.21% 56.60% 46.96% 24.04% 22.28% 20.76%

Exp. #6 71.23% 56.62% 46.98% 24.00% 22.25% 20.73%

Exp. #7 71.25% 56.62% 46.97% 24.04% 22.28% 20.75%

Exp. #8 71.02% 56.27% 46.59% 24.04% 22.22% 20.65%

Exp. #9 71.00% 56.23% 46.55% 23.93% 22.10% 20.54%

Table 37: F-Measures of the Unigrams on Pre-clustering Experiments with Document

Frequency

91

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 100.00% 1,859 5,385 324 95.71% 49.21% 24.56% 20.15%

Exp. #2 100.00% 1,849 5,363 327 95.66% 49.00% 24.52% 20.05%

Exp. #3 100.00% 1,845 5,296 337 95.49% 48.51% 24.67% 20.01%

Exp. #4 100.00% 1,841 5,281 317 95.74% 48.39% 24.75% 19.96%

Exp. #5 100.00% 1,827 5,281 317 95.73% 48.29% 24.61% 19.81%

Exp. #6 100.00% 96 5,268 337 94.08% 36.44% 1.68% 1.04%

Exp. #7 100.00% 94 5,269 308 94.56% 36.43% 1.65% 1.02%

Exp. #8 99.78% 49 4,339 1,198 78.55% 29.81% 0.87% 0.53%

Exp. #9 99.56% 50 4,329 1,190 78.63% 29.75% 0.89% 0.54%

Table 38: Results of the Unigrams on Pre-clustering Experiments with Term Variance

Frequency

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 80.50% 65.00% 54.51% 23.53% 22.14% 20.90%

Exp. #2 80.35% 64.80% 54.30% 23.47% 22.06% 20.80%

Exp. #3 80.00% 64.34% 53.81% 23.57% 22.09% 20.79%

Exp. #4 80.06% 64.28% 53.70% 23.61% 22.09% 20.76%

Exp. #5 80.01% 64.20% 53.60% 23.47% 21.94% 20.61%

Exp. #6 71.47% 52.53% 41.53% 1.49% 1.28% 1.12%

Exp. #7 71.69% 52.60% 41.54% 1.47% 1.26% 1.10%

Exp. #8 59.19% 43.22% 34.03% 0.77% 0.66% 0.57%

Exp. #9 59.18% 43.17% 33.97% 0.79% 0.67% 0.58%

Table 39: F-Measures of the Unigrams on Pre-clustering Experiments with Term

Variance Frequency

92

Bigrams on Pre-clustering Experiments

Tables 40, 41, 42, 43, 44 and 45 show the results in using bigrams only as feature to

represent snort messages and attack fields.

Exp. SimT n DF TV Expansion Nb of Features

Exp. #1 0 20 40 0 Yes 87

Exp. #2 0 50 40 0 Yes 89

Exp. #3 0 100 40 0 Yes 91

Exp. #4 0 500 40 0 Yes 181

Exp. #5 0 1,000 40 0 Yes 218

Exp. #6 0 2,000 40 0 Yes 274

Exp. #7 0 3,000 40 0 Yes 309

Exp. #8 0 4,000 40 0 Yes 332

Exp. #9 0 5,000 40 0 Yes 348

Table 40: Description of the Bigrams on Pre-clustering Experiments with Document

Frequency

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 83.07% 423 0 0 100.00% 2.87% 100.00% 4.58%

Exp. #2 78.48% 299 0 0 100.00% 2.03% 100.00% 3.24%

Exp. #3 78.13% 383 0 0 100.00% 2.60% 100.00% 4.15%

Exp. #4 76.26% 1,895 1,746 2 99.94% 24.73% 52.01% 20.54%

Exp. #5 75.56% 1,832 3,471 2 99.96% 36.03% 34.53% 19.86%

Exp. #6 74.48% 1,809 3,475 2 99.96% 35.90% 34.22% 19.61%

Exp. #7 73,61% 1,828 3,477 2 99.96% 36.04% 34.44% 19.82%

Exp. #8 72.27% 1,741 3,438 2 99.96% 35.18% 33.60% 18.87%

Exp. #9 71.56% 1,742 3,447 2 99.66% 35.25% 33.55% 18.88%

Table 41: Results of the Bigrams on Pre-clustering Experiments with Document

Frequency

93

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 12.88% 5.58% 3.56% 19.37% 8.77% 5.66%

Exp. #2 9.39% 3.98% 2.52% 14.35% 6.28% 4.02%

Exp. #3 11.78% 5.07% 3.23% 17.80% 7.97% 5.13%

Exp. #4 62.15% 39.66% 29.12% 39.82% 29.45% 23.37%

Exp. #5 73.77% 52.96% 41.31% 30.09% 25.22% 21.71%

Exp. #6 73.67% 52.82% 41.17% 29.78% 24.93% 21.44%

Exp. #7 73.79% 52.98% 41.32% 30.01% 25.16% 21.66%

Exp. #8 73.06% 52.05% 40.42% 29.06% 24.17% 20.69%

Exp. #9 73.12% 52.12% 40.49% 29.04% 24.17% 20.69%

Table 42: F-Measures of the Bigrams on Pre-clustering Experiments with Document

Frequency

Exp. SimT n DF TV Expansion Nb of Features

Exp. #1 0 20 0 0.98 Yes 1,838

Exp. #2 0 50 0 0.98 Yes 1,721

Exp. #3 0 100 0 0.98 Yes 1,656

Exp. #4 0 500 0 0.98 Yes 1,528

Exp. #5 0 1,000 0 0.98 Yes 1,494

Exp. #6 0 2,000 0 0.98 Yes 1,313

Exp. #7 0 3,000 0 0.98 Yes 1,125

Exp. #8 0 4,000 0 0.98 Yes 993

Exp. #9 0 5,000 0 0.98 Yes 905

Table 43: Description of the Bigrams on Pre-clustering Experiments with Term Vari-

ance Frequency

94

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 93.91% 1,812 1,753 2 99.94% 24.22% 50.79% 19.64%

Exp. #2 88.10% 1,800 1,742 2 99.94% 24.06% 50.79% 19.51%

Exp. #3 85.82% 1,797 1,737 2 99.94% 24.01% 50.82% 19.48%

Exp. #4 81.71% 1,741 1,731 2 99.94% 23.59% 50.11% 18.87%

Exp. #5 80.28% 1,708 1,702 2 99.94% 23.16% 50.05% 18.52%

Exp. #6 77.93% 1,700 1,694 2 99.94% 23.06% 50.05% 18.43%

Exp. #7 77,35% 1,716 1,712 2 99.94% 23.29% 50.03% 18.60%

Exp. #8 75.82% 1,685 1,682 2 99.94% 22.87% 50.01% 18.27%

Exp. #9 74.61% 1,129 1,129 2 99.91% 15.34% 49.95% 12.24%

Table 44: Results of the Bigrams on Pre-clustering Experiments with Term Variance

Frequency

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 61.49% 38.99% 28.54% 38.56% 28.33% 22.39%

Exp. #2 61.29% 38.79% 28.37% 38.46% 28.19% 22.25%

Exp. #3 61.22% 38.72% 28.31% 38.45% 28.17% 22.22%

Exp. #4 60.66% 38.17% 27.84% 37.65% 27.42% 21.56%

Exp. #5 60.10% 37.61% 27.37% 37.34% 27.03% 21.19%

Exp. #6 59.96% 37.47% 27.25% 37.27% 26.94% 21.10%

Exp. #7 60.27% 37.77% 27.51% 37.39% 27.12% 21.28%

Exp. #8 59.71% 37.23% 27.04% 37.11% 26.76% 20.92%

Exp. #9 47.52% 26.59% 18.46% 30.91% 19.66% 14.41%

Table 45: F-Measures of the Bigrams on Pre-clustering Experiments with Term Vari-

ance Frequency

95

Mixture of Unigrams + Bigrams on Pre-clustering

Experiments

When using the mixture of unigrams and bigrams as feature, Tables 46, 47, 48, 49,

50 and 51 indicate the mapping results.

Exp. SimT n DF TV Expansion Nb of Features

Exp. #1 0 20 40 0 Yes 572

Exp. #2 0 50 40 0 Yes 590

Exp. #3 0 100 40 0 Yes 613

Exp. #4 0 500 40 0 Yes 763

Exp. #5 0 1,000 40 0 Yes 809

Exp. #6 0 2,000 40 0 Yes 891

Exp. #7 0 3,000 40 0 Yes 940

Exp. #8 0 4,000 40 0 Yes 967

Exp. #9 0 5,000 40 0 Yes 998

Table 46: Description of the Mixture of Unigrams + Bigrams on Pre-clustering Ex-

periments with Document Frequency

96

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 100.00% 1,859 5,437 1,049 87.42% 49.57% 22.27% 20.15%

Exp. #2 100.00% 1,858 5,363 1,249 85.25% 49.06% 21.93% 20.14%

Exp. #3 100.00% 1,857 5,296 997 87.76% 48.60% 22.78% 20.13%

Exp. #4 100.00% 1,838 5,328 1,027 87.46% 48.68% 22.43% 19.93%

Exp. #5 100.00% 1,836 4,483 1,006 86.26% 42.93% 25.06% 19.90%

Exp. #6 99.99% 1,839 4,459 1,004 86.25% 42.79% 25.18% 19.94%

Exp. #7 99,94% 1,838 4,397 1,004 86.13% 42.36% 25.39% 19.93%

Exp. #8 99.77% 1,816 4,337 997 86.05% 41.80% 25.39% 19.69%

Exp. #9 99.55% 1,824 4,344 994 86.12% 41.90% 25.46% 19.77%

Table 47: Results of the Mixture of Unigrams + Bigrams on Pre-clustering Experi-

ments with Document Frequency

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 75.84% 63.27% 54.27% 21.81% 21.16% 20.54%

Exp. #2 74.29% 62.28% 53.61% 21.55% 21.01% 20.48%

Exp. #3 75.58% 62.55% 53.36% 22.20% 21.37% 20.61%

Exp. #4 75.44% 62.55% 53.42% 21.88% 21.11% 20.38%

Exp. #5 71.77% 57.33% 47.72% 23.83% 22.19% 20.76%

Exp. #6 71.68% 57.20% 47.58% 23.92% 22.25% 20.81%

Exp. #7 71.38% 56.79% 47.15% 24.07% 22.33% 20.82%

Exp. #8 71.02% 56.27% 46.59% 24.01% 22.18% 20.61%

Exp. #9 71.11% 56.38% 46.70% 24.08% 22.26% 20.70%

Table 48: F-Measures of the Mixture of Unigrams + Bigrams on Pre-clustering Ex-

periments with Document Frequency

97

Exp. SimT n DF TV Expansion Nb of Features

Exp. #1 0 20 0 0.98 Yes 2,825

Exp. #2 0 50 0 0.98 Yes 2,638

Exp. #3 0 100 0 0.98 Yes 2,536

Exp. #4 0 500 0 0.98 Yes 2,373

Exp. #5 0 1,000 0 0.98 Yes 2,330

Exp. #6 0 2,000 0 0.98 Yes 2,084

Exp. #7 0 3,000 0 0.98 Yes 1,838

Exp. #8 0 4,000 0 0.98 Yes 1,648

Exp. #9 0 5,000 0 0.98 Yes 1,516

Table 49: Description of the Mixture of Unigrams + Bigrams on Pre-clustering Ex-

periments with Term Variance Frequency

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 100.00% 1,859 3,507 216 96.13% 36.45% 33.30% 20.15%

Exp. #2 100.00% 1,848 3,537 218 96.10% 36.58% 32.98% 20.03%

Exp. #3 100.00% 1,843 3,527 224 96.00% 36.48% 32.94% 19.98%

Exp. #4 100.00% 1,835 5,306 225 96.94% 48.51% 24.91% 19.89%

Exp. #5 100.00% 1,834 5,330 213 97.11% 48.67% 24.86% 19.88%

Exp. #6 99.99% 1,839 5,277 233 96.82% 48.34% 25.02% 19.94%

Exp. #7 99,94% 1,836 5,323 213 97.11% 48.64% 24.90% 19.91%

Exp. #8 99.77% 1,805 5,217 1,104 86.41% 47.71% 22.21% 19.57%

Exp. #9 99.55% 1,824 5,272 1,096 86.62% 48.21% 22.26% 19.77%

Table 50: Results of the Mixture of Unigrams + Bigrams on Pre-clustering Experi-

ments with Term Variance Frequency

98

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 72.42% 52.86% 41.62% 29.46% 25.11% 21.88%

Exp. #2 72.51% 52.99% 41.76% 29.20% 24.93% 21.74%

Exp. #3 72.38% 52.87% 41.64% 29.16% 24.87% 21.69%

Exp. #4 80.81% 64.67% 53.90% 23.71% 22.12% 20.73%

Exp. #5 80.99% 64.84% 54.06% 23.67% 22.09% 20.71%

Exp. #6 80.65% 64.49% 53.72% 23.81% 22.19% 20.78%

Exp. #7 80.97% 64.81% 54.03% 23.71% 22.12% 20.74%

Exp. #8 74.35% 61.47% 52.40% 21.62% 20.80% 20.04%

Exp. #9 74.71% 61.94% 52.90% 21.71% 20.94% 20.23%

Table 51: F-Measures of the Mixture of Unigrams + Bigrams on Pre-clustering Ex-

periments with Term Variance Frequency

Unigrams on Latent Semantic Analysis Experiments

Similarly the clustering experiments, unigrams only is chosen as feature to represent

snort messages and CAPEC attack fields. Tables 52, 53, 54 and 55 show the mapping

quality in terms of term frequency and tf.idf.

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 99.46% 106 4,243 110 97.53% 29.54% 2.37% 1.15%

Exp. #2 99.46% 100 5,246 110 97.98% 36.32% 1.83% 1.08%

Exp. #3 99.46% 1,796 5,241 110 98.46% 47.81% 32.94% 25.12%

Exp. #4 99.48% 1,797 5,242 122 98.29% 47.82% 25.09% 19.48%

Exp. #5 99.49% 1,797 5,236 122 98.29% 47.78% 25.11% 19.48%

Exp. #6 99.50% 1,797 5,233 122 98.29% 47.76% 25.12% 19.48%

Exp. #7 99.52% 1,797 5,233 122 98.29% 47.76% 25.12% 19.48%

Table 52: Results of the Unigram on Latent Semantic Analysis Experiments with

Term Frequency

99

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 66.79% 45.35% 34.33% 1.95% 1.54% 1.28%

Exp. #2 73.14% 52.99% 41.55% 1.61% 1.36% 1.18%

Exp. #3 81.24% 64.36% 53.29% 23.75% 21.94% 20.39%

Exp. #4 81.16% 64.34% 53.29% 23.72% 21.93% 20.39%

Exp. #5 81.14% 64.30% 53.25% 23.74% 21.94% 20.40%

Exp. #6 81.12% 64.28% 53.23% 23.75% 21.94% 20.40%

Exp. #7 81.12% 64.28% 53.23% 23.75% 21.94% 20.40%

Table 53: F-Measures of the Unigram on Latent Semantic Analysis Experiments with

Term Frequency

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 99.46% 4 3,448 108 96.96% 23.45% 0.11% 0.04%

Exp. #2 99.46% 1,702 895 1,093 70.38% 17.64% 46.12% 18.45%

Exp. #3 99.46% 1,764 1,796 21 99.41% 24.18% 49.25% 19.12%

Exp. #4 99.48% 1,787 1,795 2 99.94% 24.33% 49.86% 19.37%

Exp. #5 99.49% 1,788 1,795 1 99.97% 24.34% 49.88% 19.38%

Exp. #6 99.50% 1,790 1,795 1 99.97% 24.35% 49.91% 19.41%

Exp. #7 99.52% 1,790 1,795 1 99.97% 24.35% 49.91% 19.41%

Table 54: Results of the Unigram on Latent Semantic Analysis Experiments with

TF.IDF

100

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 59.65% 37.82% 27.69% 0.08% 0.06% 0.05%

Exp. #2 44.04% 28.21% 20.75% 35.48% 26.36% 20.97%

Exp. #3 61.29% 38.90% 28.50% 37.45% 27.55% 21.79%

Exp. #4 61.64% 39.14% 28.67% 37.92% 27.90% 22.07%

Exp. #5 61.66% 39.15% 28.68% 37.94% 27.92% 22.08%

Exp. #6 61.67% 39.17% 28.69% 37.97% 27.95% 22.11%

Exp. #7 61.67% 39.17% 28.69% 37.97% 27.95% 22.11%

Table 55: F-Measures of the Unigram on Latent Semantic Analysis Experiments with

TF.IDF

Bigrams on Latent Semantic Analysis Experiments

Besides using unigrams as the feature, Tables 56, 57, 58, 59 and 60 below show the

results when using bigrams only with latent semantic analysis.

Exp. SimT n DF TV Expansion Nb of Features

Exp. #1 0 100 0 0 Yes 73,350

Exp. #2 0 500 0 0 Yes 73,350

Exp. #3 0 1,000 0 0 Yes 73,350

Exp. #4 0 2,000 0 0 Yes 73,350

Exp. #5 0 3,000 0 0 Yes 73,350

Exp. #6 0 4,000 0 0 Yes 73,350

Exp. #7 0 5,000 0 0 Yes 73,350

Table 56: Description of the Bigram on Latent Semantic Analysis Experiments

101

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 99.44% 1,809 3,418 0 100.00% 35.51% 34.60% 19.61%

Exp. #2 99.45% 1,793 3,460 0 100.00% 35.69% 34.13% 19.44%

Exp. #3 99.45% 1,793 3,460 3 99.94% % 35.69% 34.11% 19.44%

Exp. #4 99.47% 1,794 3,418 1 99.98% 35.41% 34.41% 19.45%

Exp. #5 99.47% 1,793 3,418 0 100.00% 35.41% 34.41% 19.44%

Exp. #6 99.49% 1,793 3,418 0 100.00% 35.40% 34.40% 19.44%

Exp. #7 99.50% 1,791 3,417 1 99.98% 35.38% 34.38% 19.42%

Table 57: Results of the Bigram on Latent Semantic Analysis Experiments with Term

Frequency

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 73.35% 52.41% 40.77% 30.01% 25.03% 21.47%

Exp. #2 73.50% 52.60% 40.95% 29.65% 24.77% 21.27%

Exp. #3 73.49% 52.60% 40.95% 29.64% 24.77% 21.27%

Exp. #4 73.26% 52.30% 40.66% 29.82% 24.85% 21.30%

Exp. #5 73.26% 52.29% 40.65% 29.81% 24.84% 21.29%

Exp. #6 73.26% 52.29% 40.65% 29.81% 24.84% 21.29%

Exp. #7 73.24% 52.27% 40.63% 29.79% 24.82% 21.27%

Table 58: F-Measures of the Bigram on Latent Semantic Analysis Experiments with

Term Frequency

102

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 99.44% 1,708 3,417 0 100.00% 34.82% 33.32% 18.52%

Exp. #2 99.45% 1,793 1,575 0 100.00% 22.88% 53.23% 19.44%

Exp. #3 99.45% 1,576 3,277 1 99.97% 32.97% 32.46% 17.08%

Exp. #4 99.47% 1,740 1,577 0 100.00% 22.53% 52.45% 18.86%

Exp. #5 99.47% 1,763 1,735 0 100.00% 23.76% 50.40% 19.11%

Exp. #6 99.49% 1,780 1,728 0 100.00% 23.83% 50.74% 19.30%

Exp. #7 99.50% 1,780 1,746 1 100.00% 23.95% 50.48% 19.30%

Table 59: Results of the Bigram on Latent Semantic Analysis Experiments with

TF.IDF

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 72.76% 51.65% 40.04% 28.73% 23.81% 20.32%

Exp. #2 59.73% 37.24% 27.05% 39.50% 28.48% 22.26%

Exp. #3 71.08% 49.59% 38.07% 27.51% 22.39% 18.87%

Exp. #4 59.26% 36.78% 26.66% 38.68% 27.75% 21.63%

Exp. #5 60.91% 38.40% 28.04% 37.97% 27.72% 21.82%

Exp. #6 61.00% 38.49% 28.11% 38.27% 27.96% 22.03%

Exp. #7 61.16% 38.65% 28.25% 38.15% 27.92% 22.02%

Table 60: F-Measures of the Bigram on Latent Semantic Analysis Experiments with

TF.IDF

103

Mixture of Unigrams + Bigrams on Latent Seman-

tic Analysis Experiments

Lastly, the mixture of unigrams and bigrams is used to represent snort messages and

attack fields. With the latent semantic analysis (LSA). Tables 61, 62, 63 and 64

indicate the mapping quality.

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 99.46% 105 4,317 109 97.59% 30.04% 2.31% 1.14%

Exp. #2 99.46% 1,811 4,359 999 86.06% 41.92% 25.26% 19.63%

Exp. #3 99.48% 1,808 5,254 1,017 87.41% % 47.98% 22.37% 19.60%

Exp. #4 99.47% 1,794 3,418 1 99.98% 35.41% 34.41% 19.45%

Exp. #5 99.47% 1,810 5,254 109 98.48% 47.99% 25.23% 19.62%

Exp. #6 99.50% 1,812 5,254 122 98.30% 48.00% 25.20% 19.64%

Exp. #7 99.52% 1,811 5,254 122 98.30% 48.00% 25.19% 19.63%

Table 61: Results of the Mixture of Unigrams + Bigrams on Latent Semantic Analysis

Experiments with Term Frequency

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 67.32% 45.94% 34.87% 1.91% 1.52% 1.26%

Exp. #2 71.09% 56.38% 46.71% 23.89% 22.09% 20.55%

Exp. #3 66.47% 50.57% 40.82% 26.17% 23.25% 20.91%

Exp. #4 73.26% 52.30% 40.66% 29.82% 24.85% 21.30%

Exp. #5 81.36% 64.53% 53.47% 23.86% 22.07% 20.53%

Exp. #6 81.27% 64.51% 53.48% 23.85% 22.08% 20.55%

Exp. #7 81.27% 64.50% 53.47% 23.84% 22.07% 20.54%

Table 62: F-Measures of the Mixture of Unigrams + Bigrams on Latent Semantic

Analysis Experiments with Term Frequency

104

Exp. MR MQ Lenient Strict

Correct Acceptable Incorrect PL RL PS RS

Exp. #1 99.46% 6 3,462 111 96.89% 23.56% 0.16% 0.07%

Exp. #2 99.46% 65 3,431 958 78.49% 23.75% 1.45% 0.70%

Exp. #3 99.46% 1,771 927 97 96.52% 18.33% 63.36% 19.20%

Exp. #4 99.48% 1,740 3,271 3 99.94% 34.04% 34.70% 18.86%

Exp. #5 99.49% 1,745 3,452 0 100.00% 35.31% 33.57% 18.92%

Exp. #6 99.50% 1,747 3,437 0 100.00% 35.22% 33.69% 18.94%

Exp. #7 99.50% 1,752 2,554 0 100.00% 29.25% 40.68% 18.99%

Table 63: Results of the Mixture of Unigrams + Bigrams on Latent Semantic Analysis

Experiments with TF.IDF

Exp. Lenient Strict

FL
0.5 FL

1 FL
2 FS

0.5 FS
1 FS

2

Exp. #1 59.72% 37.90% 27.76% 0.12% 0.09% 0.07%

Exp. #2 53.72% 36.46% 27.60% 1.20% 0.95% 0.79%

Exp. #3 52.08% 30.81% 21.87% 43.40% 29.47% 22.31%

Exp. #4 72.05% 50.79% 39.21% 29.71% 24.44% 20.76%

Exp. #5 73.18% 52.19% 40.55% 29.07% 24.20% 20.73%

Exp. #6 73.10% 52.09% 40.46% 29.15% 24.25% 20.76%

Exp. #7 67.40% 45.26% 34.07% 33.12% 25.90% 21.26%

Table 64: F-Measures of the Mixture of Unigrams + Bigrams on Latent Semantic

Analysis Experiments with TF.IDF

105

