
PROTECTING AUDIT DATA USING

SEGMENTATION-BASED ANONYMIZATION FOR

MULTI-TENANT CLOUD AUDITING (SEGGUARD)

Momen Oqaily

A thesis in The

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

in Information Systems Security at

Concordia University

Montréal, Québec, Canada

August 2018

c© Momen Oqaily, 2018

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Momen Oqaily

Entitled: Protecting Audit Data Using Segmentation-based

Anonymization for Multi-tenant Cloud Auditing (Seg-

Guard)

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Abdessamad Ben Hamza Chair

Dr. Emad Shihab Examiner

Dr. Mohammad Mannan External Examiner

Dr. Lingyu Wang Supervisor

Dr. Mourad Debbabi Co-supervisor

Approved
Chair of Department or Graduate Program Director

2018

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Protecting Audit Data Using Segmentation-based Anonymization for

Multi-tenant Cloud Auditing (SegGuard)

Momen Oqaily

With the rise of security concerns regarding cloud computing, the importance of secu-

rity auditing, conducted either in-house or by a third party, has become evident more

than ever. However, the input data required for auditing a multi-tenant cloud environ-

ment typically contains sensitive information, such as the topology of the underlying

cloud infrastructure. Additionally, audit results intended for one tenant may unex-

pectedly reveal private information, such as unpatched security flaws, about other

tenants. How to anonymize audit data and results in order to prevent such informa-

tion leakage is a novel challenge that has received little attention. Directly applying

most existing anonymization techniques to such a context would either lead to insuffi-

cient protection or render the data unsuitable for auditing. In this thesis, we propose

SegGuard, a novel anonymization approach that protects the sensitive information in

both the audit data and auditing results, while assuring the data utility for effective

auditing. Specifically, SegGuard prevents cross-tenant information leakage through

per-tenant encryption, and it prevents information leakage to auditors through an

innovative way of applying property-preserving anonymization. We apply SegGuard

on audit data collected from an OpenStack cloud, and evaluate its effectiveness and

efficiency using both synthetic and real data. Our experimental results demonstrate

that SegGuard can reduce information leakage to a negligible level (e.g., less than

iii

1% for an adversary with 50% pre-knowledge) with a practical response time (e.g., 62

seconds to anonymize a cloud virtual infrastructure with 25,000 virtual machines).

iv

Acknowledgments

I would like first to express my special thanks of gratitude to my thesis advisor Prof.

Lingyu Wang, as well as to my co-supervisor Prof. Mourad Debbabi. They gave me

the golden opportunity and helped me in doing a lot of research and I came to know

about so many new things. Their continuous guidance, support and encouragement

helped me the most to finish this thesis work. They always understand my needs and

problems, provides me with endless help and try there best to give me generous and

wise pieces of advice. Furthermore, Prof. Lingyu Wang was my godfather during this

long journey. His way of thinking, inspiring words and kindness changed my life a lot

not only at the research level but at the personal level also. Personally speaking, I

feel very proud and unique to be one of his students.

I would also like to thank my lab mates and researchers from Ericson represented

by the Audit Cloud Ready members. Special thanks to Amir Alimohammadifar,

Suryadipta Majumdar, Meisam Mohamady and Yosr Jarraya from Ericson, who were

very cooperative with me from the very beginning of my master’s program and gave

me a lot of their time and effort. In all honesty, their invaluable support and guidance

helped me a lot for completing my master’s thesis.

I am also deeply indebted to my respected teachers and all other faculty members

of the CIISE department. My words have no bounds in expressing their professional-

ism and kindness that I felt during the courses that I attended during my master’s.

Finally, I submit my heartiest gratitude to my parents and to my family members

v

for their love, support and continuous encouragement from the beginning of my years

of study, they all kept me going. I wish that by accomplishing this achievement I

bring some of the thoughts in your minds to a reality and I promise you to do my

best to achieve more and more. I also humbly extend my thanks to all concerned

persons who supported me in this regard.

vi

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 3

1.2 Thesis Statement . 6

1.3 Contributions . 7

1.4 Thesis Organization . 8

2 Preliminaries and Related Work 9

2.1 Preliminaries . 9

2.1.1 Property Preserving Encryption (PPE) 9

2.1.2 Compositional Auditing . 10

2.2 Related Work . 11

3 Models 15

3.1 System Model and Trust Relationships 15

3.2 In-scope Threats and Adversarial Model 16

3.2.1 Adversarial Knowledge . 18

3.2.2 Out-of-Scope Threats . 18

vii

4 SegGuard System 19

4.1 Main Idea . 19

4.2 Overview . 21

4.3 Architecture . 23

4.3.1 Per-Tenant Encryption . 23

4.3.2 Data Segmentation . 24

4.3.3 Utility Preserving Anonymization 25

4.3.4 Multi-View Generation . 29

4.3.5 Per-Tenant Report Integration 31

5 Implementation 35

5.1 Background . 35

5.2 SegGuard Integration into OpenStack 36

5.3 Encryption algorithms . 38

6 Security Analysis 39

6.1 Security Analysis . 39

6.1.1 Security of the Topology Information 39

6.1.2 Security of the Sensitives Attributes 41

6.2 Utility Analysis . 43

6.3 Security of the Communications . 45

7 Discussions 46

7.1 Computational Cost and Benign Auditor 46

7.2 Colluding Adversaries . 47

7.3 Auditing Static Cloud Configurations 47

7.4 Communication and Storage Costs 48

7.5 Formal Treatment and Applicability on Different Attributes 48

viii

7.6 Use-Cases of SegGuard . 49

8 Experiments 50

8.1 Experimental Setup . 50

8.2 Information Leakage under Semantic Attacks 51

8.2.1 Impact of Varying the Number of Segments 51

8.2.2 Impact of Varying the Number of Real Segments/View 51

8.2.3 Impact of Varying the Adversary Knowledge 53

8.2.4 Impact of Varying the Number of VMs 54

8.3 Topology Preservation in Real Cloud 55

8.4 Efficiency of SegGuard . 56

8.4.1 Time Consumption . 56

8.4.2 Memory and CPU Consumption 57

8.4.3 Results Summary . 58

9 Conclusion 62

Bibliography 68

ix

List of Figures

1 An example of configuration data collected from different OpenStack

cloud services about VMs and their networks of two different tenants

(e.g., ID: 1234 and ID: 5678). The upper (resp. lower) table represents

the configuration of the tenants’ topologies (resp. VMs’ security group

rules). 4

2 A summary of trust relationships. 17

3 An overview of SegGuard approach. 22

4 Network topologies inferred from two generated views (together with

the encrypted SGR table not shown here): (a) topology related to first

view in Table 7, (b) topology related to second view in Table 8. The

gray dashed lines are fake and boldface dashed lines are real. 31

5 A high-level architecture of SegGuard. 37

6 Information leakage of SegGuard under frequency analysis attack while

varying the number of segments. The adversary knowledge to 25%, the

number of VMs to 10K and the number of real segments per view to 2. 52

7 Information leakage of SegGuard under frequency analysis attack while

varying the number of real segments/view. The adversary knowledge

to 25%, the number of VMs to 10K, the number of segments to 10. . 53

x

8 Information leakage of SegGuard under frequency analysis attack while

varying the adversary knowledge. The number of VMs to 10K, the

number of segments to 10, and the number of real segments per view

to 2. 54

9 Information leakage of SegGuard under frequency analysis attack while

varying the number of segments. The adversary knowledge to 25%, the

number of segments to 10, and the number of real segments per view

to 2. 55

10 Network topology corresponds to two different views selected randomly

from the views generated by SegGuard; where we set the Nseg to 4 and

the Nseg−view to 2. The total number of tenants in figure B is 131 while

in C it is 107, which are different from the real settings. 59

11 Efficiency of SegGuard: Measuring (a) Time while varying the num-

ber of segments and measuring (b) Time while varying the size of the

domain of the random number. 60

12 Efficiency of SegGuard: Measuring time while varying the size of the

domain of the random number. 60

13 Efficiency of SegGuard: Measuring CPU consumption consumption

while varying the number of segments. 61

14 Efficiency of SegGuard: Measuring Memory consumption while vary-

ing the number of segments. 61

xi

List of Tables

1 Summary of existing anonymization solutions and their main weaknesses. 14

2 The CSP side. 19

3 The auditor side (where shaded IPs are utility-preserving and lead to

valid auditing results). 20

4 Encrypted data corresponding to the original configuration table of

Figure 1 performed by the CSP using KT1 (unshaded rows) and KT2

(shaded rows). 24

5 SegLog corresponding to the encrypted and segmented data of Table 4

performed at the CSP side. 25

6 SegLogp after permutation. 29

7 First view generated by the auditor. Shaded segments are real segments

(between which equality or shared prefixes are preserved) and unshaded

rows are fake ones. 30

8 Second view generated by the auditor. Shaded segments are real seg-

ments and unshaded rows are fake ones. 30

9 Excerpt of ReportPrep prepared by the CSP for the integration of the

first two reports. 32

10 Final report for Tenant1. 33

11 Final decrypted report for Tenant1. Shaded cells are decrypted cells

by Tenant1. 34

xii

Chapter 1

Introduction

Cloud computing environments are becoming widely adapted, which leads to an in-

crease in the fear factor about its security and privacy concerns among its tenants.

To ensure the security of a multi-tenant cloud, a cloud service provider (CSP) usually

performs security auditing of their virtual infrastructure, either in-house by a cloud

security admin or by an appointed third-party auditor, in order to detect threats

and vulnerabilities as well as to assess the compliance of the cloud environment with

respect to security standards and regulations [24]. When done properly, security

auditing may help the CSP in remedying security breaches and compliance viola-

tions [48].

On the other hand, auditing may pose unique security challenges in a multi-tenant

cloud environment. First, most auditing tasks would require the CSP to grant audi-

tors accesses to data about both the cloud physical infrastructure and the tenants’

virtual infrastructures. Second, auditing results intended for one tenant may unwill-

ingly include data about other tenants due to the multi-tenancy nature of clouds.

In both cases, the data may carry sensitive and private information, such as private

IP addresses, virtual network topologies, and inter-tenant communication patterns.

Furthermore, such data may contain explicit tenant identifiers, which are used to

1

relate virtual resources to specific cloud customers owning those resources. Those

identifiers, used in conjunction with auxiliary knowledge (e.g., customer databases),

may be used to connect the sensitive information contained in audit data or audit

results to real world customers, leading to violation of privacy regulations (such as

the newly adopted GDPR [11]). Additionally, there exist more sensitive attributes,

e.g., routing rules, security group rules, which may be captured by an adversary to

understand the security policies used by a given tenant and abuse it to parasitize or

even disrupt services of other tenants or to take down some services supplied by the

cloud service provider [13]. On the other hand, auditing results can only be reliable

if the data provided to the auditor is accurate and complete. Thus, preserving util-

ity with respect to the security auditing tasks is of a paramount importance in the

context of cloud auditing.

To the best of our knowledge, the issue of preserving privacy for security audit-

ing in clouds has largely been ignored so far in the literature. There exist cloud

security auditng approaches, which typically ignore the privacy issues altogether and

consequently assume a trusted central auditor who does not disclose any sensitive

information about other entities and the audit outputs cannot be misused. However,

this assumption is impractical and somewhat threatening especially in the cloud en-

vironment since both virtual network infrastructure and physical resources could be

shared among different tenants with different levels of trust. On the other hand, most

existing privacy preserving techniques in the context of general purpose network traces

and data anonymization, are applying stringent privacy protection mechanisms. For

instance, they can not anonymize network topology, but only low level information,

e.g., IPs, and they cannot preserve important relationships between data attributes.

However, scarifying sensitive information from the anonymized data or intentionally

breaking the inherent relationships, are defeating the auditing purposes. Hence, any

2

loss in the data utility leads to inconsistency and incorrectness in the auditing results.

In the following, we further motivate these through an example.

In the following section, we demonstrate such threats to security and privacy

from audit data and audit results, as well as the importance of utility preservation

for auditing through an example.

1.1 Motivation

Figure 1 illustrates two tables containing sample audit data collected from the con-

figuration databases of different services of OpenStack [37] in a multi-tenant cloud

environment. For simplicity, we only show data belonging to Tenant1 (Tenant-ID:

1234) and Tenant2 (Tenant-ID: 5678). As an example auditing task, we consider the

verification of reachability between all pairs of virtual machines (VMs). The upper

table of Figure 1, called the configuration data table, contains attributes about the

virtual networks and their VMs, such as the tenant identifier, the virtual network

identifier, the VM identifier, the private and public IPs corresponding to that VM,

the virtual router ID connecting the network to other subnets, and the next hop

router. The lower table of Figure 1, called the security group rule table (SGR), shows

the security group rules associated with the VMs shown in the above configuration

table. Sharing such configuration data as-is may give rise to following security and

privacy concerns.

1. Upon receiving the configuration table, an auditor can aggregate the data to

construct the entire topology of the cloud infrastructure as shown in Figure 1.

Any leakage of such information by a dishonest third party auditor or careless

insider might cause serious consequences to the CSP, including further attacks

enabled by knowledge about the topology (e.g., topology poisoning and DoS)

3

Configuration Data Table

Net-ID VM-Private-IP VM-Public-IP Next-Hop RouterTenant-ID VM-ID

AB1 27.0.1.18 1.10.10.1 RG11234 CD1

AB2 27.0.2.9 1.10.10.2 RG11234 CD2

AB4 18.1.5.66 1.10.6.4 RG25678 CD4

AB3 27.0.3.27 1.10.10.3 EF21234 CD3

AB5 18.1.1.43 1.10.6.5 RG25678 CD5

Router-ID

EF1

EF2

EF4

EF3

EF4

Security Group Rule Table

VM-IP TrafficTenant-ID VM-ID

1.10.6.5 INGRESS1234 CD1

27.0.3.27 INGRESS1234 CD2

18.1.1.43 EGRESS5678 CD4

27.0.2.9 INGRESS1234 CD3

18.1.5.66 EGRESS5678 CD5

Protocol

TCP

TCP

TCP

UDP

UDP

Comunication

Inter-Tenant

Intra-Tenant

Intra-Tenant

Intra-Tenant

Intra-Tenant

Rule

ALLOW

ALLOW

ALLOW

ALLOW

ALLOWCSP

Tenant-5678

Tenant

5678

SN-AB3 SN-AB2 SN-AB1 SN-AB5 SN-AB4

VM-CD3 VM-CD2 VM-CD1

EF4

VM-CD5 VM-CD4

RG2RG1

EF2 EF1EF3

Tenant

1234

Inferred Network

Topology

Tenant-1234

 VM-CD1 is reachable

from my VM-CD5

Auditor

Figure 1: An example of configuration data collected from different OpenStack cloud

services about VMs and their networks of two different tenants (e.g., ID: 1234 and

ID: 5678). The upper (resp. lower) table represents the configuration of the tenants’

topologies (resp. VMs’ security group rules).

4

[31].

2. The auditing results from reachability analysis intended for one tenant may also

contain sensitive information about other tenants. For example, the auditing

results may reveal that a Tenant1 VM CD1 is reachable from a Tenant2 VM

CD5 (as shown by the dashed line in Figure 1). Specifically, VM CD1 (first

record of configuration table) is associated with the security group rule (first

record of SGR table) that allows the remote connection from 1.10.6.5 (fifth

row in configuration table), which is the public IP of VM CD5. Disclosing such

information may potentially breach the service level agreement (SLA) of Tenant

1 and invite further attacks from a (malicious) user of Tenant2 by exploiting

the discovered reachability between CD1 and CD5.

3. At the same time, sufficient utility must be preserved in the data to allow an

auditor to perform the desired reachability analysis. For instance, the configura-

tion table shows that CD2 and CD3 belong to the same tenant (i.e., Tenant-ID:

1234), and the second record of the SGR table shows that CD2 is reachable by

CD3 because its security group rule allows traffic from IP 27.0.3.27. Such a

reachability analysis will be possible if the common Tenant-ID attribute can be

used to join the two tables together. For this reason, randomization or encryp-

tion techniques that destroy such an equality property will not be applicable.

On the other hand, we notice that, as long as certain properties (e.g., equality

between Tenant-IDs and shared prefixes between IP addresses) are preserved,

we would be able to perform such auditing tasks on anonymized (encrypted)

data.

To that end, many works have focused on property-preserving anonymization

of network trace data (a more detailed review of related works will be given in

5

section 2.2). For example, the so-called prefix-preserving anonymization technique

anonymizes IP addresses by replacing them with random-looking IPs, while preserv-

ing the shared prefixes such that IPs within the same subnet would remain so after

the anonymization [21]. However, such techniques are known to be vulnerable to the

so-called semantic attacks in which adversaries may expand their prior knowledge

about certain IPs to other IPs sharing the same prefixes even if all the IPs have

been anonymized. Other solutions tradeoff utility for security (e.g., suppression and

bucketization [40], and aggregation with perturbation [34]). Directly applying those

existing techniques to address the unique challenges of anonymizing audit data and

audit results, as demonstrated above, would either suffer from the same semantic

attacks or fail to meet the utility requirements of auditing (e.g., suppression, bucke-

tization, or aggregation and perturbation may all prevent the reachability analysis in

our example).

1.2 Thesis Statement

In this thesis, we present, SegGuard, a novel anonymization approach that prevents

the sensitive and private information in both audit data and audit results from being

disclosed to semi-trusted auditors and tenants, while preserving sufficient data utility

to facilitate effective security auditing. Our key ideas are twofold. First, we employ

per-tenant encryption to ensure each tenant can benefit from useful auditing results

(e.g., a VM is reachable from other tenants’ VMs) without learning details about

other tenants’ resources (e.g., the exact IDs of other tenants or their VMs). Second,

we propose an innovative segmentation-based, layered encryption technique to ensure

auditors can perform the desired auditing tasks without learning either the original

configuration data or the auditing results. Specifically, we first divide the original

audit data into multiple segments, and then let the CSP and the auditor each apply

6

a certain number of iterations of property-preserving encryption (PPE) [35] on each

segment. Our design ensures that, the total number of iterations of PPE (applied

by both the CSP and auditor) will be different for most segments (which means the

property is not preserved between those segments, namely, “fake” segments) except a

few selected segments (which receive the same number of iterations of PPE and hence

have their property preserved, namely, the “real” segments). Finally, the auditor will

perform the auditing tasks over all the segments, while s/he cannot tell which of

those segments (and hence their results) are real since the number of iterations of

PPE applied by the CSP is kept secret from him/her. On the other hand, the CSP

can secretly extract and integrate all the real auditing results and send them to the

tenants.

1.3 Contributions

Our main contributions in this work are as follows.

• To the best of our knowledge, this is the first effort addressing the unique

challenges of protecting the security and privacy of both audit data and audit

results in a multi-tenancy cloud environment.

• Our per-tenant encryption solution allows tenants to benefit from auditing re-

sults without breaching other tenants’ privacy, which may help ease the privacy

concerns of both CSP and tenants in adopting security auditing solutions.

• Our segmentation-based, layered encryption technique allows semi-trusted au-

ditors to perform auditing on anonymized data without learning either the de-

tailed configuration information or auditing results, which reduces the risk of

leaking such sensitive information and also makes it easier for CSP to outsource

the auditing tasks to specialized third party providers.

7

• We present detailed methodology, describe our implementation based on Open-

Stack, and evaluate our solution through experiments using both synthetic and

real data. The results demonstrate our solution can reduce the level of infor-

mation leakage to a negligible level with practical response time (e.g., less than

1% information leakage for adversaries armed with 50% pre-knowledge, and less

than 62 seconds required for anonymizing a cloud infrastructure with 25k VMs).

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background

information and reviews the related works. In Chapter 3 we provide our threat model.

Chapter 4 presents the proposed solution. Chapter 5 discusses the implementation

details. Chapter 6 analyzes the security, privacy, and utility, and discusses other

aspects of our approach. Chapter 8 gives our experimental results. Finally, Chapter 9

discusses the limitations and concludes this work.

8

Chapter 2

Preliminaries and Related Work

The first part of this chapter provides preliminaries of our work and the second part

discusses literature related to our work.

2.1 Preliminaries

This section provides an extensive overview and give background information about

some exisiting anonymization techniques and auditing method that we use in our

work.

2.1.1 Property Preserving Encryption (PPE)

In this work, we focus on auditing tasks that can be performed on anonymized data.

For example, as demonstrated in Chapter 1, the reachability analysis relies on the

equality (between Tenant-IDs, VM-IDs, etc.) and prefix preserving properties (be-

tween the IP addresses). The equality property can be achieved through deterministic

encryption (i.e., the same plaintext always leads to the same ciphertext under the

same key), whereas the prefix preserving property can be achieved through special

encryption techniques (detailed below). Other auditing tasks may require additional

9

properties and PPE techniques [35, 2], such as order-preserving encryption (i.e., ci-

phertext will preserve the order of the plaintext [5]). In the remainder of this work,

we will focus on the equality and prefix-preserving properties but our solution can be

adapted to incorporate other PPE techniques.

To facilitate further discussions, we briefly discuss one of the cryptography-based

PPE techniques, influenced by [51]. An anonymization function F is said to be prefix-

reserving, if, for any two IP addresses x and y originally sharing a K-bit prefix, their

anonymized versions, namely, F (x) and F (y), also share a K-bit prefix. The prefix

preserving function F is also deterministic (i.e., the same address appearing in dif-

ferent traces will be mapped to the same anonymized address under the same key,

which allows consistency in the anonymization process). Also, F must satisfy the

canonical form [51]: given that a = a1, a2 . . . a32 and F (a) = a1′, a2′ . . . a32′, we

have ai′ = ai⊕ fi−1(a1, a2, . . . , ai−1) for i ∈ {1, 2, · · · , 32}, where fi is a cryptographic

function that takes as input a bit string of length (i − 1) and returns a single bit.

That is, the ith bit is anonymized based on a key and the preceding (i − 1) bits

in order to satisfy the prefix-preserving property. This scheme is known to be im-

mune against chosen-plaintext attacks if the encryption function is either stateful or

randomized [27].

2.1.2 Compositional Auditing

As mentioned in Chapter 1, we divide the audit data into segments on which the

auditing task will be performed, which makes our work more suitable for auditing

tasks that can be performed in a divide-and-conquer manner [18]. Specifically, instead

of auditing the entire input data in one shot, the data can be divided into smaller

chunks to be audited separately, before the partial auditing results are combined to

yield the same result as if the data was audited in one shot. For example, auditing

10

the reachability between communicating devices (e.g., VMs) may be performed for

each pair in the dataset separately, then the results can be aggregated. Many other

common security properties are also compositional, such as virtual infrastructure-level

security properties (e.g., VM co-residence, cross-layer port consistency and common

ownership [26, 8, 36]), network-level security properties (e.g., loops, black-holes and

incorrect snapshot [28, 54]), and application-level properties (e.g., functional and

security-related [25]). Finally, since our divide-and-conquer approach resembles that

found in most existing parallel processing platforms (e.g., MapReduce [19]), a natural

extension is to integrate our approach with such platforms to further improve its

efficiency and scalability.

2.2 Related Work

The most widely used techniques for anonymizing network data are truncation, ran-

domization, quantization and pseudonymization. Truncation and randomization [9]

effectively destroy the semantics of the field they are applied to. One example is the

payload of packets, which might contain usernames and passwords that are removed

from the data as a standard practice. Quantization techniques [15], such as limiting

the precision of timestamps, are applied to reduce the information gained about the

identity of the workstations from timing attacks [38]. The most widely used technique,

pseudonymization [6], replaces IPs found in the data with linkable, prefix-preserving

pseudonyms. These pseudonyms preserve the hierarchical relationships found in the

prefixes of the original IPs. The underlying goal is to enable the analysis of packets

generated by hosts, or whole prefixes, without providing the actual IPs. However,

SegGuard does not replace or eliminate any data component that may affect the

auditing process. Furthermore, SegGuard preserves the utility and the relationship

in the real segments, such that their auditing results are error free.

11

The problem of data outsourcing and privacy leakage has been addressed exten-

sively. Naveed et al. [35] studied the security of databases encrypted using PPE and

presented different types of attacks that allow an adversary to decrypt a large portion

of the encrypted data. The attack discussed therein was proposed by [7], where it

has been shown that an adversary with a pre-knowledge can deanonymize selected

addresses or subnets. However, we implemented and applied the same attack to test

our scheme and we found out, as shown in Chapter 8, that our solution is immune

against this type of attacks. Many information disclosure and information loss lim-

itation methods have been discussed in [20]. Samarati and Sweeney [42, 41] define

a complete framework for information disclosure control through the definition of K-

anonymity approach. Gehrke [33] proposes L-diversity approach, providing a certain

level of privacy even when the publisher does not know what kind of knowledge the

adversary possesses. However, K-anonymity and L-diversity do not prevent attribute

disclosure, especially when the table has multiple records belonging to one individ-

ual [33, 46, 50]. The (k,j)-obfuscation technique was introduced in [39]. Therein,

authors addressed the issue of sensitive data obfuscation in network flows by in-

troducing protection guarantees under realistic assumptions about the adversary’s

knowledge. In (k,j)-obfuscation, the data utility and information accuracy remain

challenging, as the shared data has been heavily sanitized (i.e., from each k flows,

having similar fingerprints, one flow is blurred). Chen et al. [12] address the problem

of privacy-preserving quantification of real network reachability across different do-

mains by preserving the privacy of access control configuration and access control lists

only (layer three devices). Ciriani et al. [49] tried to provide privacy guarantees when

sensitive information is stored, processed or shared to a second party through data

fragmentation and encryption. Their approach makes data ambiguous and unintel-

ligible using encryption. Contrary to all the above approaches, SegGuard preserves

12

the utility of the data to be audited and returns valid results.

The loss of information/accuracy in data privacy preserving approaches due to

the trade-off between privacy and utility has always been considered as a major is-

sue. However, this loss cannot be tolerated in the case of auditing since any loss in

data utility will affect the auditing results accuracy. This problem has been tackled

in [12] and [14]. However, the main problem in the solution presented in [12] is that

it only considers the access control lists and routers configuration not covering the

virtual switches and virtual machines in the cloud environment. Hence, they do not

verify the topology of the verified network. In [14] they are using data encryption to

make the data unintelligible, and fragmentation as a way to break sensitive associ-

ations between information. However, there proposed solution used in data storing

applications where the stored data is completely unavailable without accessing the

encryption key. Finally, there are several works (e.g., [32, 3, 4]) that have been pro-

posed to verify the virtual infrastructure logs in the cloud. Most of them considering

the verification without focusing on the privacy concerns resulting from such process,

or they keep the door open for future work. For instance, in [48] authors propose

a scalable system for verifying cloud-wide VM-level isolation. This system returns,

as a result, the pairs of VMs that are reachable even if they belong to different ten-

ants. While this system assumes that the verification results do not disclose tenants’

sensitive information, SegGuard builds on the assumption that audit results may dis-

close any sensitive information across parties involved in the auditing and preserves

it by performing per-tenant data anonymization. In Table 1, we summarize the main

weaknesses of the existing solutions.

To the best of our knowledge, no previous work proposed a cross-tenant privacy

preserving approach that not only preserves the privacy of the data but also of the

topology and relationships (e.g., topology of the virtual infrastructure) while ensuring

13

its utility.

Approach Limitations
Semantic Attacks Privacy Leaking sacrificing Utility

Prefix-preserving
Truncation and Randomization

Quantization and Pseudonymization
Shifting and Permutation
Hashing and Encryption

Table 1: Summary of existing anonymization solutions and their main weaknesses.

14

Chapter 3

Models

In this chapter, we define our threat model and identify the trust relationships between

different stakeholders to be achieved with our proposal.

3.1 System Model and Trust Relationships

SegGuard threat model is similar to those used in existing works [45, 43, 55, 1]. First,

we define the stakeholders involved in the cloud service model as follows:

1. The cloud service provider (CSP): This is the entity providing paid services

and has a significant interest in protecting their reputation and building trust

to attract customers. We also differentiate between the CSP and the cloud

administrators as detailed below in the trust relationships.

2. The cloud tenants: Those are customers of the CSP and are concerned with

the security of their deployed virtual resources and the privacy of their sensitive

data.

3. The cloud auditor: This can be either the cloud administrators or third-party

auditors who have the expertise and capabilities needed to perform auditing.

15

Our assumptions about the trust relationships between those stakeholders are

detailed in the following and depicted in Figure 2.

1. Tenants usually have to trust the CSP for protecting the security and privacy

related to both the audit data and the auditing results as part of the fulfillment

of the service level agreement (SLA).

2. A tenant (and CSP) does not trust other tenants with the received auditing

results (e.g., a tenant might misuse the results to launch attacks against other

tenants).

3. Tenants do not trust the auditors (cloud administrators or third-party), partic-

ularly, to have access to their sensitive data and confidential information (e.g.,

private IPs, virtual infrastructure topologies, etc.).

4. CSP does not trust the auditor to have access to non-protected audit data and

audit results as in [47, 10]. More precisely, auditors might have the technical

means and the financial motivation to misuse their privileges in order to extract

information from the audit data or from the audit results if they are allowed to

do so.

3.2 In-scope Threats and Adversarial Model

SegGuard aims at protecting information related to security and privacy that might

be extracted from the original audit data and the auditing results by an honest but

curious entity (auditor or tenant). More precisely, similar to existing works [23, 10,

47], we assume an adversary who will follow given protocols to access anonymized data

and perform audit tasks, while s/he is curious enough to infer sensitive information

16

Tenants CSP

Auditor

Analyze
 Data

Access
Data

Access
 data and audit

results

Misuse
Results

Access
 data and auditing

 results

Trust Distrust

Figure 2: A summary of trust relationships.

about the cloud infrastructures or the tenants, if the protocols provide him/her such

an opportunity. We can distinguish the following types of attacks:

1. Individual attacks: This attack can be done by either a tenant or an auditor.

The goal of such attacks is to recover individual information about a specific

tenant, e.g., an attacker can identify a particular tenant based on the cloud

tenant identifier, and infer his/her private information, such as private IPs and

tenants’ relationships. Such an attack could either cause privacy breaches or

enable further more severe attacks.

2. Aggregate attacks: This attack can be done by an auditor. The goal of such

attacks is to recover general information about a subset of (or the entire) cloud

infrastructure, e.g., tenants’ virtual network topologies, known vulnerabilities

and communication relationships between different tenants. Such an attack

17

could also have both security and privacy consequences.

3.2.1 Adversarial Knowledge

We consider adversaries with prior knowledge about the system and its data. Ex-

amples of information that may potentially be collected by the adversary include:

i) publicly available information (e.g., general information about the cloud and its

customers, system versions, current and planned usage); ii) prior resources (e.g., IPs

that have been leaked through previous breaches or attacks); iii) any information col-

lected from other resources or from the system itself (e.g., details about applications

and services to which the adversary has access to). Since a tenant or auditor may

easily possess all such information about a victim, it is mandatory to consider such

a practical adversarial model. Our methodology and experiments both take this into

consideration, and we study different cases of adversarial knowledge.

3.2.2 Out-of-Scope Threats

We do not consider malicious adversaries who deviate from given protocols. We also

consider the integrity or availability issues related to audit reports out-of-scope. We

focus on information leaked from audit data and audit report, and do not consider

attacks from other sources, e.g., side-channel attacks. Finally, we do not defend

against distrusted CSP.

18

Chapter 4

SegGuard System

This chpater details SegGuard methodology. We first present the main idea of our

approach then we provide an overview of its steps and finally we further detail each

step.

4.1 Main Idea

Before we delve into the details of SegGuard, we first build intuitions about its main

ideas by considering only three IP addresses from Figure 1. These are shown in Table 2

(second column under “Original IP”). As discussed in Chapter 1, the reachability

analysis can be performed on those IPs as long as their shared prefixes are preserved

(we will ignore other attributes for now). Roughly speaking (many details are omitted

and will be provided later in this chapter), SegGuard works as follows.

Original IP Encrypted with KT V0 Encrypted with KAn

Tenant1 1.10.10.1 93.14.36.9 1 45.17.7.9
Tenant1 1.10.10.2 93.14.15.14 2 132.6.4.66
Tenant1 1.10.6.5 93.14.22.8 3 201.47.96.23

Table 2: The CSP side.

19

Received V1 Copy1 V2 Copy2 V3 Copy3
Tenant1 45.17.7.9 2 149.118.33.23 3 57.188.165.42 1 30.11.21.17
Tenant1 132.6.4.66 1 149.118.74.35 0 132.6.4.66 2 51.18.50.55
Tenant1 201.47.96.23 3 85.50.44.118 1 57.188.34.22 1 51.18.20.25

Table 3: The auditor side (where shaded IPs are utility-preserving and lead to valid

auditing results).

1. First, the CSP encrypts the original IP addresses using a key in which s/he

agrred on it with the each tenant (KT) and a prefix-preserving encryption al-

gorithm, as shown in the third column of Table 2. Since all the later steps will

be layered upon this initial per-tenant encryption, and key KT is never shared

with other tenants, this step will ensure no cross-tenant information leakage

from the auditing results.

2. Next, the CSP generates a random integer vector V0 (fourth column), and the

second key KAn. It then encrypts each IP in third column (already encrypted

under KT) iteratively, where each element of vector V0 indicates the number

of iterations applied, e.g., the first IP is encrypted once, and the second twice,

etc. We can notice that, since the number of iterations is different for each IP,

the results (shown in the last column) no longer contain any shared prefixes.

Those IPs in the last column are then sent to the auditor together with three

new vectors, V1, V2 and V3 (generated similarly as V0, and shown in Table 3).

3. Table 3 shows what happens at the auditor side. The auditor also applies the

same prefix-preserving encryption for different iterations based on the V1, V2,

and V3 vectors, similar to how the CSP has used V0. The resultant IPs are

shown in the columns next to their corresponding vectors. As those iterations

add up, shared prefixes start to appear, as shown with the gray shade, e.g.,

in the fourth column, the first two IPs share the same prefix 149.118, since

20

they have both been encrypted three times now (i.e., 1 + 2 = 3 and 2 + 1 = 3

for the first and second IPs, respectively). We can observe that, those vectors

are chosen in such a way, that exactly one pair of IPs share prefixes in every

copy, namely, utility-preserving IPs. However, although not shown in this toy

example, real audit data would also include a larger number of other IPs which

also share prefixes here at the auditor side, while they actually do not share

prefixes in the original IP column.

4. Next, the auditor performs the auditing task on each copy and obtains the

results for all the IPs. From above discussions, we know that, since there

is only one pair of utility-preserving IPs (the shaded ones) in each copy, the

results are only valid between those IPs. However, the auditor will not have

this knowledge, since the auditor does not know V0, and there exist many other

pairs IPs that also share prefixes in each copy as mentioned above.

5. Back to the CSP side, the CSP knows which IPs are utility-preserving since

s/he knows V0, so s/he extracts only the valid results from each copy, integrates

those results, and sends them to the tenants.

6. Each tenant decrypts his/her own IPs using KT to reveal the auditing results,

with other tenants’ IPs still encrypted.

4.2 Overview

To realize the above ideas, the SegGuard approach encompasses ten steps as de-

picated in Figure 3.

Steps 1-2: Initially, each tenant shares his/her key with the CSP (Step 1),

who encrypts tenants’ data using their supplied keys (Step 2), as will be detailed in

Section 4.3.1.

21

Original
log

④Encrypt each segment
using KAn different times

② Encrypt tenants’
 data using KTi’s

③ Data
Segmentation

⑤ Sharing the Seed log, Encmatrix and KAn

 ⑦ Auditing generated views ⑥ Generating multiple views from seed log using KAn

① Tenants share their secret keys KTi with CSP

 Sending per-tenant report

…...

Seed
log

⑧ Send
analysis
 reports

⑨ Identify real audit
and generate

per-tenant report

Seed
log

Segmented
log

Encrypted
log

Integrated report

10

RT-1 RT-2 RT-M

...

Tenant-MTenant-2Tenant-1

 Report
decryption

 Report
decryption

 Report
decryption

Tenants

CSP

Auditor

Anonymization
Tool

Audit
Tool

Figure 3: An overview of SegGuard approach.

Steps 3-4: Next, the CSP aggregates all tenants’ data, divides it into segments (Step

3) and encrypts each segment (using key KAn shared between CSP and the auditor)

for different iteration based on a randomly generated vector (i.e., V0 in the previous

example). The output of this step is called the seed log (Step 4), as will be detailed

in Section 4.3.2 and Section 4.3.3.

Steps 5-6: The CSP shares the generated vectors and seed log with the auditor (Step

5). The auditor then applies those vectors to the seed log in order to generate multiple

views (called copies in Table 3) in which “real” (i.e., utility preserving) segments are

hidden among “fake” segments (Step 6). The fake segments in those views help to

hide from the auditor not only the sensitive attributes (e.g., the IPs) but also the

virtual topology, as will be detailed later. On the other hand, the real segments

scattered among those views help to guarantee the data utility, as the auditor will

unknowingly perform the requested auditing tasks on all the real segments, whose

union is exactly a utility-preserving copy of the originally anonymized data, as will

22

be detailed in Section 4.3.4.

Steps 7-9: The auditor then performs auditing on the generated views (Step 7) and

sends the results to the CSP (Step 8). Then, the CSP identifies the real audit results

from each report, integrates them, and generates a per-tenant report (Step 9), as will

be detailed in Section 4.3.5.

Step 10: Finally, once each tenant receives the audit report, s/he decrypts his/her

own data inside the auditing report (Step 10), as will be detailed in Section 4.3.5.

4.3 Architecture

This Chapter describes the steps of SegGuard mechanism in details.

4.3.1 Per-Tenant Encryption

Steps 1-2 in Figure 3 provide the first layer of anonymization to preserve the privacy

of the sensitive attributes of each tenant. They are responsible for i) agreeing with

tenants on a secret key KT i and an initialization vector IVi from each tenant via

a trusted channel (Step 1 in Figure 3), and ii) encrypting each attribute of audit

data related to tenant Ti using (KT i, IVi) with the appropriate algorithm (Step 2 in

Figure 3) depending on the type of data (e.g., prefix-preserving encryption for IPs or

deterministic encryption for identifiers). The aggregated and encrypted data is then

passed to the next step.

Example 1. Table 4 illustrates the result of encrypted data of the configuration

table in Figure 1 using KT1 and KT2, respectively. IP addresses are encrypted while

preserving their prefixes.

23

Tenant-ID Net-ID VM-ID VM-Pri-IP VM-Pub-IP Router-ID Next-Hop
9998 X1X VVV 66.22.10.3 18.12.12.14 WW1 YSE
9998 X3C MX2 66.22.7.66 18.12.12.16 WW3 YSE
5554 ZQA SQ1 98.6.36.82 101.2.42.9 WW4 JHQ
9998 X1X GTQ 66.22.17.34 18.12.12.7 WW1 EQW
5554 CCY TT2 98.6.41.13 101.2.42.13 WW5 JHQ

Table 4: Encrypted data corresponding to the original configuration table of Figure 1

performed by the CSP using KT1 (unshaded rows) and KT2 (shaded rows).

4.3.2 Data Segmentation

Step 3 provides the second layer of anonymization to protect the relationships between

data attributes, and hence the virtual topology. It takes two inputs: i) the aggregated

encrypted audit data of all tenants from the per-tenant encryption; ii) the parameters,

i.e., the total number of segments (Nseg) and the number of real segments per view

(Nseg−view), related to segmentation as chosen by the CSP, details about selection of

these parameters are discussed in Section 7.1. The CSP then performs the following

operations:

1. Computing number of views: The CSP computes the number of views

Nviews based on the following formula:

Nviews =
Nseg!

Nseg−view!×(Nseg −Nseg−view)!
(1)

For a given value of Nseg−view, each view generated at the auditor would contain

Nseg segments in total where Nseg−view are real segments and the rests (i.e.,

Nseg−Nseg−view) are fake. For example, if we consider the case where Nseg−view =

2 and Nseg = 5 (as in Table 4), then, based on Equation 1, the auditor has to

generate 10 views.

2. Data segmentation: First, the data is sorted based on the tenant ID and

24

network ID. Then, it is parceled among the Nseg segments in a round robin

fashion [29], (Step 3 in Figure 3) to ensure that each network spreads out to

minimize data relationships (e.g., network topology) leakage in the views gen-

erated later by the auditor. In SegGuard, the (anonymized) tenant ID is used

across different steps, i.e., data segmentation, auditing and result integration

for the purpose of identifying tenant’s assets. The output of this step is the

segmented log data, denoted by SegLog.

Example 2. Table 5 shows the result of sorting and segmenting the data, SegLog,

where a record in Table 4 represents one segment.

Tenant-ID Net-ID VM-ID VM-Pri-IP VM-Pub-IP Router-ID Next-Hop
9998 X1X VVV 66.22.10.3 18.12.12.14 WW1 YSE
5554 ZQA SQ1 98.6.36.82 101.2.42.9 WW4 JHQ
9998 X3C MX2 66.22.7.66 18.12.12.16 WW3 YSE
5554 CCY TT2 98.6.41.13 101.2.42.13 WW5 JHQ
9998 X1X GTQ 66.22.17.34 18.12.12.7 WW1 EQW

Table 5: SegLog corresponding to the encrypted and segmented data of Table 4

performed at the CSP side.

4.3.3 Utility Preserving Anonymization

The CSP first generates a set of utility parameters, (i.e., V0 - V3 in the example

discussed in Chapter 5), to be used to ensure the utility of SegLog and the final

audit results while protecting the data. Then based on these parameters, the CSP

applies a third (and final) set of transformations on SegLog before transferring it to

the auditor (Step 4 in Figure 3). This is detailed in the following:

Utility Preserving Parameters. The generated utility preserving parameters can

be classified into two categories:

25

-Secret parameters: i) a random vector VRandom of dimension (Nseg ∗ 1), where ele-

ments are unique, randomly generated integer values and ii) set of vectors {V Pi}i∈Nviews

each of size (Nseg ∗ 1) where elements are integer values such that in each vector only

two elements are equal and at least one of those equal indices is different for any pair

of vectors. Algorithm 1 is used to generate vectors {V Pi}i∈Nviews
.

-Parameters shared with the auditor: i) a matrix EncMatrix of size (Nseg ×Nviews)

and ii) an encryption key KAn. Elements of the EncMatrix are computed using

VRandom, {V Pi}i∈Nviews
based on the following equation:

EncMatrix[i][j] = V P [i][j]− VRandom[j] (2)

Algorithm 1 GenerateVP
Input: Nviews, Nseg

Output: V P [Nviews][Nseg]
PtrX ← 2, P trY ← 1, intV P [][]← ∅, random[]← ∅
for (int i = 1; i <= Nviews; i++) do

for (int j = 1; j <= Nseg; j ++) do
random[j] = Rand() . Generate Random Number
if j + 1 == PtrX then

V P [i− 1][j] = random[PtrY − 1]
else

V P [i− 1][j] = random[j]
if PtrX < Nseg then

PtrX ++
else

PtrY ++
PtrX = PtrY + 1

return VP

The computed EncMatrix guarantees that in each view generated by the audi-

tor there are Nseg−view segments (called utility-preserved segments) encrypted equally

(i.e., for the same number of times) using the shared key KAn. Thus, the equality

property or shared prefixes are only preserved between those segments, and the au-

diting results of such segments will be valid. In contrast, the results for the remaining

segments are fake (i.e., invalid results that look indistinguishable from the valid re-

sults). This is meant to prevent the auditor from inferring the virtual topology of the

26

cloud infrastructure as well as the verification results. Furthermore, as the sensitive

attributes are initially encrypted with tenants’ keys (which are not shared with the

auditor), the auditor cannot decrypt the sensitive attributes unless by brute forcing

this key (which will be discussed in Chapter 6). The following example shows how

the parameters are generated.

Example 3. For a log of five segments (Nseg = 5) and two real segments per view

(Nseg−view = 2), the CSP computes the following utility preserving parameters:

1. A random vector VRandom (kept secret by CSP):

VRandom =


3

5

2

7

4



2. A set of ten vectors {V Pi}i<=Nviews
(kept secret by CSP):

V P1 =


12
12
13
17
10

 ; V P2 =


15
11
15
14
17

 ; V P3 =


18
13
11
18
14

 ; V P4 =


16
14
13
17
16

 ; V P5 =


11
19
19
18
13



V P6 =



13

14

16

14

12


; V P7 =



18

13

15

17

13


; V P8 =



11

15

18

18

13


; V P9 =



19

14

16

17

16


; V P10 =



11

14

12

19

19



27

3. An encryption matrix EncMatrix (to be sent to the auditor) calculated as

(EncMatrix[i][j] = V P [i][j]− VRandom[j]), e.g., for the first two elemnts in the

first row 9 = 12− 3 and 12 = 15− 3:

EncMatrix =


9 12 15 13 8 10 15 8 16 8
7 6 8 9 14 9 8 10 9 9
11 13 9 14 17 14 13 16 14 10
10 7 11 10 11 7 10 11 10 12
6 15 10 12 9 8 9 9 12 15



Anonymization of SegLog. The ith segment in SegLog is then encrypted VRandom[i]

times usingKAn. After that, the rows of EncMatrix and the segments of the anonymized

SegLog are permuted together randomly to hide the position of the real segments in

the generated views. The result of this stage is denoted as SegLogp. Algorithm 2

presents high-level details of this step.

Algorithm 2 UtilityPreservAnonym
VRandom=GenerateVR ()
V P=GenerateVP ()
KAn=GenerateKey()
EncMatrix=GenerateEncMatrix(VRandom,V Pi) . using Equation 2
SegLoge=EncryptSegLog(SegLog, VRandom,KAn)
EncMatrixp, SegLogp=Permute(EncMatrix, SegLoge) . permutation function
return V Pi, KAn, EncMatrixp, SegLogp

Example 4. Based on our running example, we show the encryption and permutation

steps:

1. The CSP encrypts each segment based on the values in VRandom (e.g., segment

number 1 will be encrypted 3 times using KAn).

2. After that, each row in the EncMatrix is paired with its corresponding segment

and randomly permuted (horizontal permutation). The resulting EncMatrixp

and SegLogp after permutation and encryption are shown in the following:

28

EncMatrixp =


11 13 9 14 17 14 13 16 14 10
10 7 11 10 11 7 10 11 10 12
7 6 8 9 14 9 8 10 9 9
6 15 10 12 9 8 9 9 12 15
9 12 15 13 8 10 15 8 16 8


Tenant-ID Net-ID VM-ID VM-Pri-IP VM-Pub-IP Router-ID Next-Hop

3456 X12 WSA 69.35.7.92 1.10.10.1 WDS YSQ
8745 12W W5F 34.16.5.40 1.10.10.4 W5R RDP
5684 OI1 WE2 75.81.15.34 1.10.10.4 LA4 MVZ
6571 Q4E WQ1 74.99.41.52 1.10.10.1 W3S UZQ
9865 IO1 KK2 162.2.10.12 1.10.10.1 QW1 JAQ

Table 6: SegLogp after permutation.

4.3.4 Multi-View Generation

The auditor takes as input the utility parameters shared by the CSP, namely, EncMatrixp,

SegLogp, and KAn, and generates the multiple views to be audited as follows. Based

on the number of columns in EncMatrixp (i.e., Nviews), SegLogp is cloned into Nviews

copies, called views, and in each view, the total number of segments Nseg (i.e., the

number of rows of EncMatrixp) and the content of the segments are identified. Then,

each view j is encrypted using KAn and EncMatrixp, such that each segment i in

the view j is encrypted with KAn as many times as the corresponding value at (i, j)

in the EncMatrixp (Step 6 in Figure 3).

Example 5. Table 7 and Table 8 respectively show the first and second views gener-

ated by the auditor. The shaded segments are those parts that are real such that the

equality property and shared prefixes are preserved and their auditing would lead to

valid results. The other (unshaded) segments, indistinguishable from the real ones,

would lead to fake audit results.

Once all views are generated, the auditor analyzes them (Step 7 in Figure 3), and

sends the reports for each view back to the CSP (Step 8 in Figure 3), where each report

29

Tenant-ID Net-ID VM-ID VM-Pri-IP VM-Pub-IP Router-ID Next-Hop
2478 11E I3I 63.89.65.15 1.10.10.1 KL6 MZN
5678 4F3 9KL 89.698.45.6 1.10.10.5 OP3 ASP
7231 LX2 WSA 87.65.7.2 1.10.10.1 WDS GH3
6761 CNN M8P 36.74.51.46 1.10.10.3 HN3 L4U
7231 NJ2 KFD 87.65.7.65 1.10.10.1 NW1 GH3

Table 7: First view generated by the auditor. Shaded segments are real segments

(between which equality or shared prefixes are preserved) and unshaded rows are fake

ones.

Tenant-ID Net-ID VM-ID VM-Pri-IP VM-Pub-IP Router-ID Next-Hop
5143 23E 2K1 98.62.1.71 1.10.10.5 PLM GH9
7238 1W2 VCS 14.15.89.54 1.10.10.2 PP9 3KY
9651 DDF MNI 25.6.99.11 1.10.10.5 HMH IS1
3456 4TF WSA 18.2.6.12 1.10.10.1 NF5 T5R
7676 GGF WQ1 17.2.9.24 1.10.10.1 NJ1 MQF

Table 8: Second view generated by the auditor. Shaded segments are real segments

and unshaded rows are fake ones.

is identified using the column index in EncMatrix used to obtain the corresponding

view. Note that the security group rules depicted in Figure 1 is encrypted exactly

the same way (omitted due to space limitation), which is used together with Table 7

and 8 to generate Figure 4.

Example 6. Figure 4 shows the constructed virtual topologies from the first two

generated views in Tables 7 and 8. As we can see, the generated topologies are

different from the original topology shown in Figure 1 from several perspectives: e.g.,

the number of tenants, the number of gateway routers, and virtual infrastructure

identifiers. Only a portion of the original topology is preserved in each view (shown

with a boldface dashed lines). A malicious auditor trying to recover the virtual

network topology, cannot effectively distinguish the real part of the topology from

the fake one. Then, the auditor performs reachability verification between all pairs of

30

VMs in each view (e.g., using NoD [22]). The audit report includes all pairs of tuples

(i.e., Tenant-ID, VM-ID, VM-IP, Network-ID, etc.) in the view and their reachability

results (reachable/not reachable).

IF-XZ3IF-XZ2IF-XZ1 IF-XZ4 IF-XZ5

SN-CF1 SN-CF2 SN-CF3 SN-CF4 SN-CF5

VM-I3I VM-WSA VM-KFD

RO-KL6 RO-WDS RO-NW1

RO-ASPRO-GH3

VM-9KL VM-M8P

RO-L4URO-MZN

RO-OP3 RO-HN3

IF-3SDIF-2SDIF-1SD IF-4SD IF-5SD

SN-HG1 SN-HG2 SN-HG3 SN-HG4 SN-HG5

VM-1W2 VM-DDF VM-2K1

RO-PP9 RO-HMH RO-PLM

RO-MQFRO-IS1

VM-WSA VM-WQ1

RO-T5RRO-3KY

RO-NF5 RO-NJ1

RO-GH9

Tenant
7231

Tenant
2478

Tenant
5678

Tenant
6761

Tenant
7238

Tenant
9651

Tenant
5143

Tenant
3456

Tenant
7678

(a) (b)

Figure 4: Network topologies inferred from two generated views (together with the

encrypted SGR table not shown here): (a) topology related to first view in Table 7,

(b) topology related to second view in Table 8. The gray dashed lines are fake and

boldface dashed lines are real.

4.3.5 Per-Tenant Report Integration

This step runs at the CSP side and takes as input the reports received from the auditor

and their identifiers as described in the previous Chapter, recovers the correct results

from all reports for all tenants, and then prepares a per-tenant report (Step 9 in

Figure 3). The main operations performed by this step are as follows.

Real Results Extraction and Integration. Report integration (identification of

real audit results from fake) can be prepared in advance by CSP. More precisely, for

each view i, the secret vector V Pi is used to identify the number of times in total the

31

key KAn is used to encrypt each segment of this view. Such that, the positions of

equal elements in V Pi with the SegLog records are used to identify the real segments

in each view. Thus, view (report) IDs, tuples of information from SegLog, the same

tuples encrypted using KAn and the equal V Pi elements (i.e., underlined elements),

are stored locally in the ReportPrep table to be used as follows. Algorithm 3 shows

the steps of report integration.

Algorithm 3 ReportsIntegrationPreparation
Input: V P [Nviews][Nseg], SegLog
Output: ReportPrep
index← ∅, val← ∅, ReportPrep[]← ∅
for (inti = 1; i <= Nviews; i++) do

(index,val)=RepeatedElements(VP[i]) . find real segments and equal VP elements
RealSeg=ExtractRealSeg(index) . function to extract segments data assigned index
ReportPrep[i] = (i,RealSeg,val)

return ReportPrep

Example 7. Table 9 shows the example of data extracted and stored to correctly
integrate the reports.

Report-ID Tenant-ID VM-ID VM-IP Enc-Num

1 9998 VVV 66.22.10.3 129998 MX2 66.22.7.66

2 9998 VVV 18.12.12.14 155554 SQ1 101.2.42.9

Table 9: Excerpt of ReportPrep prepared by the CSP for the integration of the first

two reports.

Per-tenant Report integration and Forwarding. Once all reports are received,

the CSP uses the ReportPrep table to search in each report the encrypted results

corresponding to the real segments generated by tha auditor and discard the others.

Once the results are identified, the CSP replaces the encrypted data in the reports

with the data encrypted using tenants’ keys KT i that is the one stored in ReportPrep

Table 9, Algorithm 4 implements the preparation for report reception.

32

Algorithm 4 ReportsIntegration
Input: ReportPrep[],viewReport[]
Output: TenantReports[tenantid][report]
for (inti = 1; i <= Nviews; i++) do

EncryptedRealSeg=findEncSeg(i,ReportPrep) . function to find real encrypted
segments in view i

Result=FindInReports(EncryptedRealSeg, viewReport) . function to find real results
and discard fake

TenantReports[tenant-id][i]= ReportPerTenant(Result, i) . function to store tenants
results encrypted using their keys
return TenantReports

To avoid any leak from verification results, the CSP forwards per-tenant encrypted

report, such that each tenant can only decrypt his/her own data. Meanwhile, all data

related to other tenants, are encrypted by other tenants’ keys. Thus, SegGuard allows

each tenant to access the plain IDs and IPs for his/her own resources while s/he is

able to have an encrypted evidence about their audit breaches with other tenants,

which allows preserving the privacy of sensitive attributes of other tenants. Finally,

each tenant Ti decrypts the report using his/her key KTi (Step 10 in Figure 3).

Example 8. Table 10 shows the final auditing reports forwarded to Tenant1 (Tenant-

ID: 1234). Table 11 shows the final decrypted auditing reports of Tenant1 (Tenant-

ID: 1234) using KT1. Based on Table 11, Tenant1 can only see its assets’ IDs (e.g.,

CD1, CD2, 1234) and IPs (e.g., 1.10.10.1) while the identifiers of the other tenant

(encrypted Tenant-ID: 5554) are still encrypted using his/her key (e.g., TT2, and

101.2.42.13).

Tenant-ID VM-ID VM-IP Tenant-ID VM-ID VM-IP Result
9998 VVV 18.12.12.14 5554 TT2 101.2.42.13 Reachable
9998 MX2 66.22.7.66 9998 GTQ 66.22.17.34 Reachable
9998 GTQ 66.22.17.34 9998 MX2 66.22.7.66 Reachable

Table 10: Final report for Tenant1.

33

Tenant-ID VM-ID VM-IP Tenant-ID VM-ID VM-IP Result
1234 CD1 1.10.10.1 5554 TT2 101.2.42.13 Reachable
1234 CD2 27.0.2.9 1234 CD3 27.0.3.27 Rechable
1234 CD3 27.0.3.27 1234 CD2 27.0.2.9 Rechable

Table 11: Final decrypted report for Tenant1. Shaded cells are decrypted cells by

Tenant1.

34

Chapter 5

Implementation

In this chapter, we detail the implementation of SegGuard and its integration into

OpenStack. This chapter also provide an overview of the environment and the tools

we use to implement SegGuard.

5.1 Background

OpenStack [37] is an open-source cloud infrastructure management platform that

uses a set of software tools for managing and building large pools of compute, storage

and networking resources. OpenStack is one of the most extensively deployed infras-

tructure management platforms in today’s data centers [17]. The implementation of

SegGuard mainly involves Nova and Neutron, which are the two main management

layer services for the creation and maintenance of virtual infrastructure and network-

ing in the cloud. First, Nova is a compute service that provides tenants on-demand

self-service access to compute resources in order to create VMs. Additionally, it al-

lows the creation and maintenance of security groups that play the role of virtual

firewalls for the VMs. Second, Neutron is a networking project focused on delivering

networking services. This will allow tenants to create and maintain virtual networks

35

between their VMs and connecting their virtual infrastructures to external networks.

5.2 SegGuard Integration into OpenStack

Figure 5 illustrates a high-level architecture of SegGuard and shows how it performs

the aforementioned steps at three levels: CSP, tenants, and auditor. Our approach

interacts with OpenStack services to collect various types of audit data, and with the

CSP to obtain the parameters. Specifically, SegGuard is integrated into OpenStack

by deploying three main components:

1) Data Collector and Parser Engine: This component interacts with Nova and

Neutron OpenStack components and OpenDaylight controller to retrieve the config-

uration data stored in databases using SQL queries. For instance, VM ports, router

interfaces, router gateways and other virtual ports are collected from table ports in

Neutron database. Therein, device owner and device ID fields in these tables are used

to infer the relationship between the virtual ports and their corresponding devices.

We also collect the private and public IPs of VMs from instances table, as well as

security groups and rules from the routerrules, subnetroutes and securitygrouprules

tables, where rules are represented by IP destination-nexthop data pairs. Also, Open-

Daylight defines a unique flow-ID for each virtual network and maintains its current

flow states. The collected data is duplicated in the SegGuard database to facilitate

more efficient local processing. Then, as the data is scattered over different tables,

the engine performs several data pre-processing and filtering steps, such as removing

unnecessary data, aggregating relevant data and sorting it based on tenants’ identi-

fiers.

2) Data Anonymizer Engine: This component performs SegGuard operations at

the CSP side, where it takes as input the tenants and CSP keys, the number of seg-

ments and real segments per view, and data collected and parsed by the data collector

36

and parser engine as detailed in Chapter 4. The output of this module is the seed log

and EncMatrixp.

3) Anonymization Evaluator Engine: This component performs two main steps.

First, it plays the role of data auditor and takes as input the seed log and the

EncMatrixp to generate the multiple views. Second, the engine evaluates the topol-

ogy changes between the original data and generated views by the analyst by pro-

viding a summary statistics of these differences. This engine is used to evaluate the

effectiveness of our approach and build up experiments detailed in Chapter 8.

SegGuard
Database

Reports
 Reception

Utility
Preserving

Anonymization

Multi-View
GeneratorKeys

Generation

SegGuard Module Operation

AuditorTenants
Cloud

Neutron
Database

Nova
Database

OpenVswitch
Database

OpenDaylight
Database

Provider

Data Anonymizer Engine

Anonymization Evaluator Engine

.

Per-Tenant
Report

 Integration

Data Collector and Parser Engine

Key
Generation

Auditing

Data
Segmentation

Per-Tenant
Encryption

Data
collection

Data
Parsing

Cloud
Infrastructure

Figure 5: A high-level architecture of SegGuard.

37

5.3 Encryption algorithms

There are two main types of processed data to be anonymized: infrastructure IDs

(256 bits) and network components IPs (32 bits). We use two types of data encryp-

tion algorithms: To encrypt infrastructure IDs, we use the deterministic Advanced

Encryption Standard (AES) [16], and we use the Prefix-Preserving Anonymization,

influenced by [51], to encrypt the infrastructure IPs, with 256-bit encryption keys

for both algorithms. In order to demonstrate the effectiveness, applicability and effi-

ciency of SegGuard, we conduct experiments of SegGuard based on both synthetic

and real data provided by anonymous sources as discussed in Chapter 8.

38

Chapter 6

Security Analysis

In the following, we first analyze the security and the utility of our solution.

6.1 Security Analysis

We analyze the level of security offered by SegGuard to protect the topology infor-

mation and sensitive attributes, respectively (all the communications are assumed to

be over secure channels).

6.1.1 Security of the Topology Information

Generally speaking, existing anonymization techniques would leak important topology

information, if we were to apply them directly to our case. For example, directly

applying the deterministic encryption and prefix-preserving encryption will preserve

both the equality between identifiers and shared prefixes between IPs. As a result,

the relationships between virtual resources, e.g., whether two VMs are reachable,

will also be preserved in the anonymized audit data. Therefore, the auditor still can

potentially construct the real topology of the entire cloud infrastructure based on the

anonymized audit data.

39

In contrast, SegGuard provides strong protection of such topology information

from the auditor through its segmentation-based, layered encryption technique, as

introduced in the previous chapter. Specifically, recall that, as demonstrated in Chap-

ter 5, the seed log does not preserve either the equality property or the shared prefixes,

which means the auditor cannot recover any topology information from the seed log.

In addition, since the auditor cannot identify the few real segments from a much

larger number of fake segments, s/he only has a slim chance to recover such infor-

mation from the generated views, as will be detailed below and evaluted in the next

chapter.

Specifically, as the secret utility parameters are keys to SegGuard’s security, we

consider a brute force attack performed by an adversary to guess the secret utility

parameters in an attempt to recover the utility preserved segments from all views and

identify the topology. To this end, the adversary has two choices: to guess either i)

VRandom and use Equation 2 with EncMatrix to compute all V Pi or ii) all V Pi in

order to recover the original data from all views. In the following, we show that the

likelihood of an adversary to succeed in recovering either vector is very low.

The probability of an adversary guessing VRandom depends on the size of the domain

D for the random number generation (which is only known by the CSP) and the size

of the vector, namely, Nseg. It can be computed as follows:

P (VRandom) =
1

D
∗ 1

(D − 1)
∗ ... ∗ 1

D −NSeg

(3)

The probability of an adversary guessing one of the V Pi depends on the size of the

domain for the random number generation D, the size of the vectors Nseg, and the

number of views to be generated by the auditor Nviews, and can be computed as

40

follows:

P (V Pi) = (
D ∗ 1 ∗ (D − 1) ∗ (D − 2) ∗ ... ∗ (D − (NSeg − 2)

DNSeg
) ∗ 1

(NV iews!−i)
(4)

For instance, for Nseg = 4 and D = 200, the probability to guess the correct VRandom

is less than 1 ∗ 10−9. Note that, the probability to guess one V Pi (for example, with

Nviews = 6) is even smaller and the adversary needs to recover all of the six V Pis to

recover all real segments. Thus, even with a reasonable domain size, it is relatively

difficult for an adversary to recover the original topology.

Finally, the EncMatrix is generated randomly using a uniform distribution over

X, so the probability to generate any value in the matrix would be 1
X
, which is

not considered as information leakage according to the theory of secure multiparty

computation [53] since it can be simulated in a polynomial time.

6.1.2 Security of the Sensitives Attributes

To protect the confidentiality of the sensitive attributes, SegGuard leverages sym-

metric key encryption and prefix preserving anonymization techniques in a special

manner and rely on the security of the symmetric key encryption algorithms [16].

We use 256-bit encryption keys for both encryption algorithms used in SegGuard.

Furthermore, it is well known that generally for any key K and plaintext X, it’s

computationally infeasible to compute K given (X)K . We are assuming that the gen-

erated tenants keys and the shared key between CSP and auditor are shared through

a secure channel (e.g., publick key infrastructure).

On the other hand, all prefix preserving schemes are subject to a special type of

attacks known as the semantic attacks to the same degree. Semantic attacks allow

the attackers to infer a prefix or the whole unanonymized addresses by exploiting the

41

cryptanalysis techniques and the prefix preserving semantics. Semantic attacks can

be categorized into two forms:

1. Injection attack: In this type of attacks, the adversary injects original data with

arbitrary source and destination IP addresses or forging the IP addresses so

that they become distinguishable in its anonymized form for later recognition

purposes [44]. However, this attack is less likely to be achieved in the cloud

infrastructure environment. Whereas, cloud configuration data are based on

real cloud operations and tenants can only perform operations based on the

capabilities assigned to them by CSP (e.g., create VM, create SGR). So that,

a malicious tenant can only inject records into his configuration data (e.g., by

generating legitimate operations in his domain within the permissions assigned

to him), but cannot inject such data into other tenants’ configuration data

without compromising the cloud infrastructure.

2. Frequency analysis attack: The frequency analysis attack [7], is performed based

on adversary has a certain level of knowledge on the attacked data. This attack

returns all possible matches between original and prefix-preserved anonymized

IP addresses. It builds a probabilistic model based on the prefixes in data that

are within his knowledge and another model for those IPs in the anonymized

version of the data, then it starts a matching process between these two models

and ends up with a set of deanonymized IP addresses. Moreover, the adversary’s

knowledge is gained from a carefully designed injection attack [7], inferring the

most popular IP addresses with high frequency of occurrence or from adversary’s

prior knowledge of the traffic distribution [44]. Nevertheless, if the adversary

manages to have a certain level of knowledge, namely pre-knowledge, about

other tenants’ infrastructures (e.g., IP, virtual resources, etc.), our approach

hides the real semantic of the configuration data in the anonymized data which

42

makes launching frequency attacks useless for the attacker. More precisely,

SegGuard encrypts tenants’ data with their respective own keys, distributes

the records among different segments, and re-encrypts these segments different

times using the key KAn such that the IP addresses within the same subnet

and located in different segments will have different prefixes. Consequently, the

IPs belonging to the same tenants will not share the same prefixes if they are

not in the utility preserved segments. In summary, our approach preserves the

relationships for each tenant in the utility preserving segments. Meanwhile, in

other segments it is not preserved. This is demonstrated in Chapter 8, where

we verify the impact of this type of attacks by implementing and testing the

frequency analysis attack with some adaptations. We define the information

leakage resulting from this attack as follows: Information Leakage: The number

of deanonymized IP addresses after applying the frequency analysis attack on

the anonymized log generated by the SegGuard approach over the total number

of the original IP addresses.

6.2 Utility Analysis

Our solution can be shown to be utility preserving based on the following four prop-

erties:

1. The use of deterministic encryption guarantees that encrypting the same mes-

sage with the same initialization vector and key returns always the same cipher-

text, for the same tenant. Thus, the same messages before encryption will be

mapped to the same messages after encryption (e.g., resources identifiers and

their relationships). For example, the tenant-ID allows identifying the owner

of a resource. If the same tenant-ID is not mapped consistently, it might affect

43

the auditing process and cause an incorrect auditing result.

2. The use of per-tenant encryption using tenants specific keys KT i guarantees

that private IP addresses from different tenants will be mapped to different IP

addresses to prevent collision. Note that, different tenants can have the same

value for different sensitive attributes. For example, the same private IP address

10.5.10.10 in both tenants T1 and T2 is converted to two different IP addresses

124.13.10.12 and 73.48.15.12. after per-tenant encryption.

3. The use of the prefix-preserving anonymization guarantees that IP addresses

belong to the same subnet will belong to the same subnet in the anonymized

trace. This ensures the utility of data for an audit task that relies on IP ad-

dresses and their relationships (e.g., sharing the same prefix). However, the lack

of this kind of anonymization results in unusable logs [30, 52]. For instance, the

IP addresses of different VMs in the same network should share the same length

of prefix after anonymization.

4. The multi-view approach guarantees that the original data can be completely

and undistorted audited by verifying the generated views individually. The

generated utility preserving parameters in are the key in ensuring this compo-

sitionally auditing.

In summary, the aforementioned discussion shows how the utility of the data will

be preserved by SegGuard in a multi-tenant environment where resources can have

the same identifiers/addresses.

44

6.3 Security of the Communications

All shared keys that involved different parties are assumed to be agreed and dis-

tributed among secure channels. Furthermore, the EncMatrix and seed log are

transmitted from CSP to the auditor. As discussed earlier, this matrix solely cannot

be used to leak any information useful for the adversary. Furthermore, as the equality

property and the shared prefixes are both not preserved in the seed log using seg-

mentation and layered encryption, an adversary cannot infer any information about

neither the attributes nor their relationships. Additionally, the reports generated by

the auditors are encrypted using the secret key KAn agreed between the auditor and

the CSP to prevent any MiTM. Furthermore, the report integration module provides

a second layer of protection as it generates per-tenant reports to prevent a tenant

obtains a copy of other tenants’ auditing results. Additionally, all sensitive attributes

in the retrieved reports are encrypted either using the key of the receiving tenant

or using the other tenants’ keys to prevent information leakage across tenants. The

per-tenant encryption ensures that if all reports fall within adversary hands, they can-

not disclose any information related to the sensitive attributes and their respective

tenants.

45

Chapter 7

Discussions

This chapter discusses several aspects of SegGuard.

7.1 Computational Cost and Benign Auditor

By preserving data utility, our solution essentially imposes a tradeoff between security

and computational cost. Specifically, the selection of the utility parameters (i.e.,

Nseg and Nseg−view) in Section 4.3.2 determines the level of security and privacy

protection provided by our approach, as well as its computational cost. These two

parameters determine the number of views to be generated and audited by the auditor.

A larger number of views certainly implies a higher level of security and privacy but

a higher computational cost as well. In practice, the CSP can select the values of

these parameters based on the security and privacy requirements and the amount of

computation cost s/he can afford. If the CSP has ahigher level of trust in a given

auditor, e.g., its own employees such as cloud administrators, s/he can reduce the

computation cost by decreasing the number of views to be generated. To do so, CSP

can either decrease the number of utility segments per view or choose a small number

of segments in the first place. In contrast, for less trusted third-party auditors, the

46

CSP can increase those parameters to improve the security.

7.2 Colluding Adversaries

If two or more adversary tenants collaborate to infer information about other benign

tenants, the CSP can react in two ways. First, if two or more tenants choose the same

key accidentally or intentionally, the CSP should detect and revoke those keys, since

failing to do so would allow a higher proportion of its topology to be disclosed to

those adversaries. Second, if a tenant and an auditor collude, it would be equivalent

to an adversary having more prior knowledge about the data (i.e., the data of the

colluding tenant) launching the frequency analysis attack. As we have shown through

experiments, SegGuard is robust against such adversaries as we will discuss in the

experimental results chapter 8.

7.3 Auditing Static Cloud Configurations

SegGuard supports auditing on cloud configurations collected as snapshots through

our data collection engine (as described in Chapter 5). Through our experimental

results (in Chapter 8), we show that our approach is practical for auditing large-sized

clouds, e.g., 62 seconds to anonymize data related to 26 thousand VMs. However,

an incremental approach of SegGuard will allow collecting, processing and auditing

a small amount of configuration changes more efficiently, which we consider as an

interesting future work.

47

7.4 Communication and Storage Costs

SegGuard supports both third party and in-house auditors. In the third party au-

diting case, transmitting the anonymized audit data and other necessary parameters

may involve certain communication cost. However, note that our design of the seed

log means only one copy of the audit data will need to be sent over the network in such

a case, even though the auditor will need to generate multiple views later on his/her

site. On the other hand, if the auditor is a cloud administrator or the third party

auditor remotely logins to perform in-cloud auditing, then no data would need to be

sent over the network. In both cases, the storage cost for storing the multiple views

could be a concern especially when the number of views is large. One easy way to

mitigate this issue is to generate, audit, and then delete each view before generating

the next view, assuming the auditing results have lower storage requirements.

7.5 Formal Treatment and Applicability on Differ-

ent Attributes

This work mainly leverages existing crypto primitives such as PPE, permutation and

RNG, which allows preserving the prefixes and equality properties for utility purposes.

Consequently, the security of our solution is depending on those techniques. These

primitives are known to have some weaknesses, but we overcome their weaknesses

using the segmentation, where there is a partial preservation of these properties in

each view (each view mixed with real and fake segments). We have focused on the

system aspect of the solution rather on the formal analysis of the security. That is said,

we have performed an informal analysis in the security analysis Chapter 6 and the

experimental results Chapter 8, where we measured the information leakage caused

by attacks against PPE such as fingerprinting and injection that we implemented

48

and run over our datasets. Our solution can employ any PPE techniques (equality-

preserving, prefix-preserving, order-preserving, format preserving, etc.) on any data

attribute (e.g., Timestamp, string, integer) with little modification. As such, the IP

addresses and the identifiers (e.g., tenant id, network id) are only meant as examples

of property preservation encryption (PPE) techniques.

7.6 Use-Cases of SegGuard

We believe that our solution can be applied to any system has different actors with

different trust level. For example, in the Central Authentication Services (CAS)

applications which involve three parties: client browser, web application and CAS

server that has a DB server which communicates with the web application through

it. Another use-case could the foreign network firewalls where roaming users are

using encrypted channels to protect the security and privacy of their communication,

but their data cannot be examined and regulated by foreign networks firewalls. This

problem can be relieved if users reveal their data or if the foreign networks reveal their

firewalls rules to the tunnels endpoints. With these conflicting security and privacy

requirements, it is very difficult to regulate the encrypted tunnels using conventional

firewall techniques, because they all require a single entity to possess knowledge on

both the connection characteristics and the firewall rules. However, using our solution,

the firewall will play the rule of the auditor and the users can play the rule of the

CSP and the tenants together. Furthermore, our solution can be applied to encrypted

and secure storage DB in order to hide the hierarchy and relationships between data

attributes in a database storage system. Finally, we will leave the discussions of

these use-cases as a future work, whereas they require further security analysis and

experimental investigation.

49

Chapter 8

Experiments

This chapter presents experimental results measuring the effectiveness and efficiency

of SegGuard.

8.1 Experimental Setup

In the following experiments, we use both real and synthetic data. Real data consists

of two different datasets provided by two major telecommunication companies. The

first dataset contains 10K distinct IP addresses, and is used to validate our approach

against the frequency analysis attack. The second one is virtual network configuration

data from a real cloud environment with 22 physical machines, 37 tenants and 4,377

VMs, and used to study the applicability of our approach as discussed. Furthermore,

we used a synthetic dataset collected from our testbed deployment of OpenStack

(version Kilo) cloud environment in order to simulate a large cloud deployment of

1.2K virtual routers, 3.2K subnets, 25.2K different VMs and 43K IP addresses.1

Finally, our scripts for the experiments implemented in C++ and bash were run on

a PC with Debian 13.6 64-bits, Intel Core i7 CPU, and 16GB memory.
1This is considered a large cloud according to [39] as 94% of OpenStack deployments have less

than 10K distinct IP addresses.

50

8.2 Information Leakage under Semantic Attacks

In this chapter, we evaluate the effectiveness of SegGuard by examining the informa-

tion leakage (Chapter 2) of our solution under the Frequency Analysis Attack defined

in Chapter 6, based on the data generated by both the CSP (seed log) and the auditor

(all views), while varying four main parameters: the number of segments (Nseg), the

number of real segments per view (Nseg−view), the adversary knowledge and the num-

ber of VMs deployed in the cloud. In the following, we discuss the obtained results

in detail.

8.2.1 Impact of Varying the Number of Segments

In this experiment, we analyze the information leakage for a 10K VMs log against

an adversary with 25% knowledge of the original data while varying the number of

segments. Figure 6 shows that the information leakage decreases abruptly when the

number of segments increases. As expected, while increasing the number of segments,

the IP addresses with the same prefixes are distributed further among these segments,

which causes the information leakage to decrease. Indeed, applying different layers

of anonymization for different segments results in IP addresses that were originally

sharing the same prefix to have different prefixes. Thus, when the adversary calculates

the frequencies of the original log based on his/her pre-knowledge, s/he is not able to

find them on the anonymized version of the log.

8.2.2 Impact of Varying the Number of Real Segments/View

In this experiment, we analyze the information leakage for 10 segments and 25% of

adversary knowledge while varying the number of real segment per view. Figure 7

shows that the information leakage increases steadily when the number of real (utility

51

10 20 30 40 50
Adversary Knwoldge (%)

0.1

0.2

0.3

0.4

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

1 2 3 4 5 6 7 8 9 10
Number of Segments

2

4

6

8

10

12

14

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

2345678910
00.511.5

1 2 3 4 5 6 7 8 9 10
Number of VM in 1000s

0.1

0.2

0.3

0.4

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

2 3 4 5 6 7 8 9 10
Number of Real Segments/View

2

4

6

8

10

12

14

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

Figure 6: Information leakage of SegGuard under frequency analysis attack while

varying the number of segments. The adversary knowledge to 25%, the number of

VMs to 10K and the number of real segments per view to 2.

preserving) segments increases per view. This is expected because, having a large

number of utility preserving segments per view increases the chances that the IPs

that were originally sharing the same prefixes are also sharing again the same prefixes

in the same view. This makes it easier for the adversary to deanonymize them. In the

worst case, when we have 10 real segments out of 10 segments, the whole log is prefix-

preserved (and the equality property holds) and thus an adversary can deanonymize

1.2K of the IPs, which represents 12% of the whole log. However, when the number

of real segments is only two, the adversary can only deanonymize 22 IPs from the

whole log, which represents 0.22%. Note that this leakage percentage is computed

over all IPs of all tenants in the data center that are within the adversary knowledge.

Our data segmentation approach ensures that the utility preserving segments related

to a single tenant are spread over multiple views. Thus, relatively to a given tenant,

this percentage is even smaller. We also note as discussed in Chapter 7, for a given

52

number of utility-preserved segments per view, the larger number of segments, the

lower the level of information leakage is and thus the higher would be the auditing

cost (as the number of views to be audited increases).

10 20 30 40 50
Adversary Knwoldge (%)

0.1

0.2

0.3

0.4

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

1 2 3 4 5 6 7 8 9 10
Number of Segments

2

4

6

8

10

12

14

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

2345678910
00.511.5

1 2 3 4 5 6 7 8 9 10
Number of VM in 1000s

0.1

0.2

0.3

0.4

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

2 3 4 5 6 7 8 9 10
Number of Real Segments/View

2

4

6

8

10

12

14

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

Figure 7: Information leakage of SegGuard under frequency analysis attack while

varying the number of real segments/view. The adversary knowledge to 25%, the

number of VMs to 10K, the number of segments to 10.

8.2.3 Impact of Varying the Adversary Knowledge

In this experiment, we analyze the information leakage whan we have 10 segments and

two real segments per view, while varying the adversary knowledge from 10% to 50%

of the 10K VMs. Figure 8 shows the information leakage increases slightly with the

adversary knowledge (e.g., when adversary knowledge increases from 10% to 50%, the

information leakage increases by 0.1%) but stays under a maximum of 0.23%. Such

a small percentage of information leakage results from the data segmentation which

parcels the data records with the same IP prefixes over several segments, and thus

make same IP sharing the same prefixes to be encrypted with different number of

53

layered encryption. Therefoe, when an adversary builds the probabilistic model for

both original and anonymized logs, he cannot find matches across segments. Finally,

for the retrieved deanonymized IPs, there could be distinct IPs that are within the

adversary knowledge and appear once in the anonymized log.

10 20 30 40 50
Adversary Knwoldge (%)

0.1

0.2

0.3

0.4

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

1 2 3 4 5 6 7 8 9 10
Number of Segments

2

4

6

8

10

12

14

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

2345678910
00.511.5

1 2 3 4 5 6 7 8 9 10
Number of VM in 1000s

0.1

0.2

0.3

0.4

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

2 3 4 5 6 7 8 9 10
Number of Real Segments/View

2

4

6

8

10

12

14

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

Figure 8: Information leakage of SegGuard under frequency analysis attack while

varying the adversary knowledge. The number of VMs to 10K, the number of seg-

ments to 10, and the number of real segments per view to 2.

8.2.4 Impact of Varying the Number of VMs

Figure 9 shows the information leakage as a function of the number of VMs in the log

for a fixed adversary knowledge of 25%, 10 segments and two real segments/view. The

figure shows that the percentage of information leakage is independent of the size of

the log. Thus, for different number of VMs, the adversary can only gain a relatively

small amount of knowledge. For instance, for the largest dataset, the information

leakage is 0.20%. The maximum information leakage is 0.21% that is achieved for a

54

log size of 6K VMs. Thus, there is no real impact of different sizes of the log on the

level of security and privacy offered by our approach.
10 20 30 40 50

Adversary Knwoldge (%)

0.1

0.2

0.3

0.4

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

1 2 3 4 5 6 7 8 9 10
Number of Segments

2

4

6

8

10

12

14

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

2345678910
00.511.5

1 2 3 4 5 6 7 8 9 10
Number of VM in 1000s

0.1

0.2

0.3

0.4

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

2 3 4 5 6 7 8 9 10
Number of Real Segments/View

2

4

6

8

10

12

14

In
fo

rm
at

io
n

le
ak

ag
e

(%
)

Information leakage
 Under Frequency Attack

Figure 9: Information leakage of SegGuard under frequency analysis attack while

varying the number of segments. The adversary knowledge to 25%, the number of

segments to 10, and the number of real segments per view to 2.

8.3 Topology Preservation in Real Cloud

For this experiment, we used the dataset provided from a real cloud data center

to show the applicability of SegGuard to anonymize the network topology in real

cloud deployment. Particularly, we show how these relationships change between

different views generated by SegGuard. Figure 10.(A) illustrates the actual structure

of this data center, where it is composed of two racks, Rack1 and Rack2, connected to

two edge switches, namely Edg11 and Edg12, which are connected to two aggregate

switches, namely Agg11 and Agg12. Each rack consists of 11 physical servers and

hosts assets from 37 tenants.

55

We anonymize the configuration data corresponding to this setup using SegGuard,

where we set the number of segments to four and the number of real segments per

view to two. After that, we selected two random views generated by the auditor

and visualized their corresponding topology as illustrated in Figure 10.(B) and Fig-

ure 10.(C). As we can see, the total number of tenants in the former figure is 131 while

in latter it is 107, which are different from the real settings. This is due to the fact

that since the tenants’ identifiers are spread over the four segments and encrypted

different number of times using the key. Particularly, the same tenant identifier will

be mapped to different values depending on the segment index and the generated

view. Thus, it will appear as a different tenant in each view. The same scenario

happens with the identifiers of the virtual resources, the physical servers, the racks,

as well as the edge and aggregation switches.

8.4 Efficiency of SegGuard

To measure the performance of our approach, we run our approach on a large dataset

of 25.2K VMs and their associated security group policies and measured the time as

well as memory and CPU consumptions while varying the number of segments and

the range of random values, respectively.

8.4.1 Time Consumption

Figure 11 shows that the time required to prepare the seed log linearly increases with

the number of segments. The time difference between having one segment and 20

segments is about 36 seconds.

Figure 12 shows the time consumption when varying the domain of the random

generator used to set the values of the vector VRandom and the set of vectors V Pi.

56

It shows that by increasing the random number domain, the required time increases

exponentially. However, the security-level offered by our solution is considered suf-

ficient even for a reasonably chosen random domain size. For instance, the required

time to generate the seed log by the CSP is about 62 seconds for a domain of 102. For

the adversary, if the random number domain is 200 and the NSeg = 3, then based on

Equation 3 there are (200 ∗ 199 ∗ 198) candidates vectors VRandom that the adversary

has to consider to deanonymize the log. This roughly translates into 15.5 years for

the adversary to find the correct V Random, with a machine having the same speci-

fication as the one described in the experimental setup. Note that, we consider the

computation consumption at the cloud provider as the latter is more concerned with

the amount of resources s/he needs to put in place for the anonymization process

before actually transmitting the information to the analyst. We consider the more

detailed evaluation of this issue as future work.

8.4.2 Memory and CPU Consumption

Figure 13 shows that the CPU consumption increases almost linearly from 32.6% to

34.93%, while varying the number of segments from 1 to 20, due to the encryption

operations applied to each segment based on the value of VRandom.

Figure 14 reports memory consumption, the slope of the memory consumption

increases linearly with the number of segments due to the multiple read/write oper-

ations on each segment to encrypt its records. However, it reaches 3.93% when the

number of segments is equal 20. This shows the efficiency of our solution from CPU

and memory consumptions perspectives.

57

8.4.3 Results Summary

In summary, our experiments show the efficiency of our solution in terms of computa-

tional cost. SegGuard can anonymize data belonging to a large-scale cloud environ-

ment in 62 seconds with a high-level of security and privacy protection guarantees.

58

Edg12

Agg12

Tenant2Tenant37

...

Rack1

Edg12

Agg12 Agg11

Edg11

Tenant1Tenant36 Tenant3Tenant38 Tenant2

Rack2 Rack1Edg13

Agg13

Rack3

Tenant40 Tenant39

Edg13

Agg14

Rack4

Tenant131 Tenant41 Tenant37

Edg12

Agg12 Agg11

Edg11

Tenant1Tenant36 Tenant3Tenant38 Tenant2

Rack2 Rack1Edg13

Agg13

Rack3

Tenant40 Tenant39

Edg14

Agg14

Rack4

Tenant107 Tenant41 Tenant37

(A)

(B)

(C)

Tenant36

Rack2 Edg11

Agg11

Tenant1

Figure 10: Network topology corresponds to two different views selected randomly

from the views generated by SegGuard; where we set the Nseg to 4 and the Nseg−view

to 2. The total number of tenants in figure B is 131 while in C it is 107, which are

different from the real settings.

59

10 2 10 3 10 4 10 5 10 6

Random Number Generator Domain

1

2

3

4

5

Ti
m

e
(S

) X
 1

00
0

Time consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

25

30

35

40

45

50

55

60

65

Ti
m

e
(S

)

Time consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

30

31

32

33

34

35

36

C
PU

 (%
)

Memory consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

0

0.5

1

1.5

2

2.5

3

3.5

M
em

or
y

(%
)

CPU consumption
 of SegGuard

(a)

(a)

(b)

(b)

Figure 11: Efficiency of SegGuard: Measuring (a) Time while varying the number

of segments and measuring (b) Time while varying the size of the domain of the

random number.

10 2 10 3 10 4 10 5 10 6

Random Number Generator Domain

1

2

3

4

5

Ti
m

e
(S

) X
 1

00
0

Time consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

25

30

35

40

45

50

55

60

65

Ti
m

e
(S

)

Time consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

30

31

32

33

34

35

36

C
PU

 (%
)

Memory consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

0

0.5

1

1.5

2

2.5

3

3.5

M
em

or
y

(%
)

CPU consumption
 of SegGuard

(a)

(a)

(b)

(b)

Figure 12: Efficiency of SegGuard: Measuring time while varying the size of the

domain of the random number.

60

10 2 10 3 10 4 10 5 10 6

Random Number Generator Domain

1

2

3

4

5

Ti
m

e
(S

) X
 1

00
0

Time consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

25

30

35

40

45

50

55

60

65

Ti
m

e
(S

)

Time consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

30

31

32

33

34

35

36

C
PU

 (%
)

CPU consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

0

0.5

1

1.5

2

2.5

3

3.5

M
em

or
y

(%
)

Memory consumption
 of SegGuard

(a)

(a)

(b)

(b)

Figure 13: Efficiency of SegGuard: Measuring CPU consumption consumption

while varying the number of segments.

10 2 10 3 10 4 10 5 10 6

Random Number Generator Domain

1

2

3

4

5

Ti
m

e
(S

) X
 1

00
0

Time consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

25

30

35

40

45

50

55

60

65
Ti

m
e

(S
)

Time consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

30

31

32

33

34

35

36

C
PU

 (%
)

CPU consumption
 of SegGuard

2 4 6 8 10 12 14 16 18 20
Number of Segments

0

0.5

1

1.5

2

2.5

3

3.5

M
em

or
y

(%
)

Memory consumption
 of SegGuard

(a)

(a)

(b)

(b)

Figure 14: Efficiency of SegGuard: Measuring Memory consumption while varying

the number of segments.

61

Chapter 9

Conclusion

In this thesis, we presented a novel anonymization approach that limited the leakage

of sensitive and private information from either the audit data or audit results in a

multi-tenancy cloud, while preserving sufficient utility for effective security auditing.

Our solution, SegGuard, could allow cloud server provider and tenants to benefit

from security auditing done by a semi-trusted auditor without leaking sensitive in-

formation about the Cloud server provider, including topology information, to the

auditor, or leaking such information across tenants. We evaluated both the effective-

ness and efficiency of our solution. Also, we showed the efficiency of our approach

since SegGuard can anonymize data consisting of 25.2K VMs in an acceptable time

as well as memory and CPU consumptions are acceptable. The main limitations of

our work and corresponding future directions are as follows. First, we do not consider

the integrity of audit data and audit results, which could potentially be addressed

with existing integrity mechanisms; we also fully rely on the CSP and assume an

honest but curious adversary model, so to what extent can those assumptions be

weakened will need to be studied. Second, we have mainly focused on prefix pre-

serving encryption, and a future direction is to expand our scope by incorporating

other property-preserving anonymization techniques, and also by studying whether

62

the segmentation-based approach can even be used to hide original data to facilitate

auditing tasks that require such data (e.g., the payload). Third, to preserve data util-

ity, our approach basically imposes a trade-off between privacy and computational

cost, so optimizing such a trade-off is also an interesting future topic.

63

Bibliography

[1] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and
R. Venkatesan. Orthogonal security with cipherbase. In CIDR. Citeseer, 2013.

[2] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently search-
able encryption. In Annual International Cryptology Conference, pages 535–552.
Springer, 2007.

[3] S. Bleikertz, T. Groß, M. Schunter, and K. Eriksson. Automated information
flow analysis of virtualized infrastructures. Computer Security–ESORICS 2011,
pages 392–415, 2011.

[4] S. Bleikertz, C. Vogel, and T. Groß. Cloud Radar: near real-time detection of
security failures in dynamic virtualized infrastructures. In Proceedings of the
30th annual computer security applications conference. ACM, 2014.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric
encryption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 224–241. Springer, 2009.

[6] T. Brekne and A. Årnes. Circumventing ip-address pseudonymization. In Com-
munications and Computer Networks, pages 43–48, 2005.

[7] T. Brekne, A. Årnes, and A. Øslebø. Anonymization of ip traffic monitoring
data: Attacks on two prefix-preserving anonymization schemes and some pro-
posed remedies. In PET, pages 179–196. Springer, 2005.

[8] M. Broy, S. Chakraborty, D. Goswami, S. Ramesh, M. Satpathy, S. Resmerita,
and W. Pree. Cross-layer analysis, testing and verification of automotive control
software. In Proceedings of the ninth ACM international conference on Embedded
software, pages 263–272. ACM, 2011.

[9] M. Burkhart, D. Brauckhoff, M. May, and E. Boschi. The risk-utility tradeoff
for ip address truncation. In NDA, pages 23–30. ACM, 2008.

[10] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy. Self-service
cloud computing. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 253–264. ACM, 2012.

64

[11] P. Carey. Data protection: a practical guide to UK and EU law. Oxford University
Press, Inc., 2009.

[12] F. Chen, B. Bruhadeshwar, and A. X. Liu. Privacy-preserving cross-domain
network reachability quantification. In ICNP, pages 155–164. IEEE, 2011.

[13] T.-S. Chou. Security threats on cloud computing vulnerabilities. International
Journal of Computer Science & Information Technology, 5(3), 2013.

[14] V. Ciriani, S. D. C. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Fragmentation and encryption to enforce privacy in data storage.
In ESORICS, pages 171–186. Springer, 2007.

[15] S. E. Coull, F. Monrose, M. K. Reiter, and M. Bailey. The challenges of effectively
anonymizing network data. In CATCH. IEEE, 2009.

[16] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media, 2013.

[17] Data center knowldge. One-third of cloud users clouds are private, 2015. Available
at: http://www.datacenterknowledge.com.

[18] W.-P. De Roever. Concurrency Verification: Introduction to Compositional and
Non-compositional Methods, volume 54. Cambridge University Press, 2001.

[19] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[20] G. T. Duncan, S. E. Fienberg, R. Krishnan, R. Pad-man, and S. F. Roehrig. Dis-
closure limitation methods and information loss for tabular data. Confidentiality,
Disclosure and Data Access: Theory and Practical Appli-cations for Statistical
Agencies, pages 135–166, 2001.

[21] J. Fan, J. Xu, and M. H. Ammar. Crypto-pan: Cryptography-based prefix-
preserving anonymization. Computer Networks, 46(2), 2004.

[22] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan,
and T. D. Millstein. A general approach to network configuration analysis. In
NSDI, pages 469–483, 2015.

[23] O. Goldreich. Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press, 2009.

[24] I. Gul, A. ur Rehman, and M. H. Islam. Cloud computing security auditing. In
ICNIT, pages 143–148. IEEE, 2011.

[25] L. A. Gunawan and P. Herrmann. Compositional verification of application-level
security properties. In ESSoS, pages 75–90. Springer, 2013.

65

[26] Y. Han, J. Chan, T. Alpcan, and C. Leckie. Using virtual machine allocation
policies to defend against co-resident attacks in cloud computing. IEEE Trans-
actions on Dependable and Secure Computing, 14(1):95–108, 2017.

[27] J. Katz and Y. Lindell. Introduction to modern cryptography: principles and
protocols. cryptography and network security, 2008.

[28] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and S. Whyte.
Real time network policy checking using header space analysis. In NSDI, pages
99–111, 2013.

[29] L. Kleinrock. Queueing systems, volume 2: Computer applications, volume 66.
wiley New York, 1976.

[30] B. Krishnamurthy and J. Wang. On network-aware clustering of web clients.
ACM SIGCOMM Computer Communication Review, 30(4), 2000.

[31] H. Liu. A new form of dos attack in a cloud and its avoidance mechanism. In
CCSW, pages 65–76. ACM, 2010.

[32] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese. Checking
beliefs in dynamic networks. In NSDI, 2015.

[33] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Ven-kitasubramaniam. l-
diversity: Privacy beyond k-anonymity. In ICDE, pages 24–24. IEEE, 2006.

[34] F. McSherry and R. Mahajan. Differentially-private network trace analysis. SIG-
COMM Comput. Commun. Rev., 40(4):123–134, Aug. 2010.

[35] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-
preserving encrypted databases. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, pages 644–655. ACM, 2015.

[36] P. Nikander. Ip address ownership verification mechanism, Dec. 26 2006. US
Patent 7,155,500.

[37] OpenStack oraganization. Openstack, 2017. Available at: https://www.
openstack.org/.

[38] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace
anonymization. ACM SIGCOMM Computer Communication Review, 36(1):29–
38, 2006.

[39] D. Riboni, A. Villani, D. Vitali, C. Bettini, and L. V. Mancini. Obfuscation of
sensitive data in network flows. In INFOCOM, 2012.

[40] D. Riboni, A. Villani, D. Vitali, C. Bettini, and L. V. Mancini. Obfuscation
of sensitive data for incremental release of network flows. IEEE/ACM Trans.
Netw., 23(2):672–686, Apr. 2015.

66

[41] P. Samarati. Protecting respondents identities in microdata release. IEEE trans-
actions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[42] P. Samarati and L. Sweeney. Protecting privacy when disclosing information:
k-anonymity and its en-forcement through generalization and suppression. Tech-
nical report, SRI International, 1998.

[43] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed data: A
new abstraction for building trusted cloud services. In USENIX security sympo-
sium, pages 175–188, 2012.

[44] A. Slagell andW. Yurcik. Sharing computer network logs for security and privacy:
A motivation for new methodologies of anonymization. In SECURECOMM,
pages 80–89. IEEE, 2005.

[45] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the hypervisor attack
surface for a more secure cloud. In CCS, pages 401–412. ACM, 2011.

[46] T. M. Truta and B. Vinay. Privacy protection: p-sensitive k-anonymity property.
In ICDEW, pages 94–94. IEEE, 2006.

[47] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing
for data storage security in cloud computing. In Infocom, 2010 proceedings ieee,
pages 1–9. Ieee, 2010.

[48] Y. Wang, T. Madi, S. Majumdar, Y. Jarraya, A. Alimohammadifar,
M. Pourzandi, L. Wang, and M. Debbabi. Tenantguard: Scalable runtime veri-
fication of cloud-wide vm-level network isolation. In NDSS, 2017.

[49] A. Wool. A quantitative study of firewall configuration errors. Computer,
37(6):62–67, 2004.

[50] X. Xiao and Y. Tao. Personalized privacy preservation. In SIGMOD/PODS,
pages 229–240. ACM, 2006.

[51] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and performance of
prefix-preserving ip traffic trace anony-mization. In IMW, 2001.

[52] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon. Prefix-preserving ip address
anonymization: Measurement-based security evaluation and a new cryptography-
based scheme. In ICNP, pages 280–289. IEEE, 2002.

[53] A. C.-C. Yao. How to generate and exchange secrets. In Foundations of Computer
Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[54] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and A. Vah-
dat. Libra: Divide and conquer to verify forwarding tables in huge networks. In
NSDI, volume 14, pages 87–99, 2014.

67

[55] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: retrofitting protection
of virtual machines in multi-tenant cloud with nested virtualization. In SOSP,
pages 203–216. ACM, 2011.

68

