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Abstract

A Coherent Method for Denoising Ultrasound Data with Applications in Super Resolution
and Elastography

Parviz Khavari, M.A.Sc.

Concordia University 2018

Ultrasound (US) imaging is a widely used medical modality since it is inexpensive non-invasive

and portable. However, the quality of US is limited by physical constraints (e.g. thermal noise) and

hardware restrictions (e.g. the number of sensors in a US probe). To increase the quality and im-

prove the resolution of US images, I proposed two novel algorithms, namely COherent Denoising

for Elastography (CODE), for removing noise of RF data for elastography technique and coherent

ultrasound super-resolution to perform a novel super-resolution technique.

I first propose CODE to improve the estimation of tissue displacement in ultrasound elastogra-

phy. Ultrasound elastography computes the mechanical properties of tissues affected by an internal

of external force. The radio frequency data acquired from ultrasound is usually corrupted with noise

that leads ultrasound elastography techniques for fail. To remove this noise I proposed CODE that

despite the local denoising algorithms, keeps the information of the RF data for elastography. I in-

vestigate two state-of-the-art elastography methods, GLobal Ultrasound Elastography (GLUE), and;

(ii) Dynamic Programming Analytic Minimization elastography, and results shows the improvement

of the strain maps on both patient and phantom data.

I then introduce a super-resolution technique for improving the quality of ultrasound B-mode

images. The resolution of ultrasound images is limited by hardware constraints and physical re-

strictions. Conventionally, ultrasound machines use interpolation techniques for improving the res-

olution of the B-mode images. However, I propose a new method for coherent ultrasound super-

resolution that overcomes conventional approaches in both qualitative and quantitative measures.

In both cases, I proposed a mathematical framework that justified the behavior of the algorithms
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and tested the methods on both in-vivo, and phantom data, and discussed qualitatively and quantita-

tively.
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Chapter 1

Introduction

In this chapter, I review the basics of ultrasound and the physical rules that make the ultrasound

imaging possible. After talking about foundation of this modality, I investigate two applications

in ultrasound imaging included ultrasound elastography and ultrasound super resolution that both

have different usages in medical diagnosis. Finally at the end, I conclude the chapter by the outlines

of this thesis and the journal and conference publication that have been accepted and published

recently.

1.1 Ultrasound Physics

In this section, I review the principles of ultrasound imaging. After studying the physics of

ultrasound, I review the kind of probes that are using for ultrasound imaging. At PERFORM center,

IMPACT laboratory has two ultrasound machines, with access to raw research data that makes it

among the best well-equipped research laboratories worldwide. Ultrasound is acoustic waves with

the frequencies of above 20 KHz. The commercial ultrasound machine frequency is in the range of

1 MHz to 20 MHz. Ultrasound imaging is widely used modality since it is in-expensive, portable,

non-invasive and non-ionizing imaging modality and has numerous application in diagnostic, oper-

ations and even treatment. It consists of a probe with array of piezoelectric transducers, that each

piezoelectric can trig and receive the acoustic wave. The probe usually is place on the special sur-

face of tissue without any air gap between, to scan the tissue underneath of the probe. To remove
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the gap of air between tissue and probe, the surface of tissue is covered with ultrasound water-based

gel.

Ultrasound Probe

Medium

Object

Figure 1.1: The emitted wave (dark blue wave) from ultrasound hits the object and reflects toward
ultrasound probe (pale blue wave)

Then, an ultrasound wave is submitted through the probe and a portion of wave is reflected back

to the probe. There are three main kind of probes that ultrasound machines are using for imaging

the tissue. The reflected signals (a.k.a. echoes) are then converted to the electrical voltage and this

electrical voltage, in the literature of ultrasound is known as Radio Frequency (RF) data. The RF

data is not suitable for visualization, therefore, by computing the envelope of RF data, the B-mode

images are introduced that are the main outputs of ultrasound machines. The difference between

amplitude of B-mode images is showing the different between acoustic properties of the tissue.

In the B-mode image, each pixel is represented by the back-scatterer amplitude from that part of

tissue. Speckles Rivaz et al. (2006), are the results of interference of different back-scatterers in
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Figure 1.2: Alpinion E-cube 15R at the PERFORM Centre

the ultrasound B-mode are the main factor in grainy appearance of the B-mode. The speckles are

reproducible, that means if you scan a certain area of tissue separately, it leads to the same speckle

pattern. This property leads to a new cater gory of methods for computing the stress of the tissue

by information of speckles from RF raw data. This extracting the mechanical properties of tissue

is also known ultrasound elastography. Figure 1.2 shows that Alpinion Ultrasound machine that

provides radio frequency data that has been used in this thesis.

1.2 Ultrasound Elastography

Elastography algorithms can be categorized into two main group of dynamic and quasi-static

elstography Gao et al. (2017); Hamaluik et al. (2014); Ouared et al. (2015); Papadacci et al. (2017).

In quasi-static elastography, the tissue is deformed using an external force and the force creates

a displacement map (See Figure 1.3). But in dynamic elstography, by using the features of wave
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induced by probe, Figure 1.4, the mechanical property of tissue is deciphered.

Ultrasound Probe

Medium

Ultrasound Probe

Medium

Induced Force

External Force

Medium

Figure 1.3: Illustration of quasi-static elastography by external force of a probe

The differentiating of displacement map produce the strain field of the tissue that contains the

information of stiffness and flexibility of the tissue. In dynamic elastography, an acoustic wave,

shear wave, propagates through the tissue and the mechanical properties of tissue is calculated

quantitatively. More comprehensive study of dynamic elastography and quasi-static elastography

can be found in Doyley (2012)and Ophir et al. (1999).

As mentioned, in quasi-static elastography the displacement map is necessary for computing

the strain. A popular approach for obtaining the displacement field is to define a cost function

and based on dynamic approach, try to solve the inverse problem. This method has been used in

several publications, Hashemi and Rivaz (2017); Rivaz et al. (2011), namely GLobal Ultrasound

Elastography (GLUE) and Dynamic Programming Analytic Minimization elastography (DPAM),

respectively. The advantage of this approaches is high resolution in lateral direction, despite the

intrinsic property of ultrasound that the resolution in lateral is poor, and high computing efficiency.

But a drawback of these method is that they are vulnerable to the selecting seed line, that is a line

selected in both cases to compute the integer displacement for a line to form the displacement map.
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Ultrasound Probe

Medium

Induced Force

Figure 1.4: Illustration of dynamic elastography by induced force of probe

In very noisy applications, such as liver ablation, the noise leads algorithms to fail, because the seed

line displacement calculation is failed.

For improving elastography in ultrasound, I present a novel approach called COherent Denois-

ing for Elastography, CODE, that address this issue and improved the output RF signal in sense

of Sum of Absolute Difference (SSD), Chi Squared and Normalized Root Mean Square Error

(NRMSE) followed by mathematical frame work that explain the efficiency of CODE.

1.3 Super Resolution

Another intrisic problem of ultrasound imaging, that is poor quality of images is also addressed

in this thesis. To improve the quality, I proposed a novel iterative algorithm supported with a

Bayesian framework, that creates better B-mode images with higher quality. The method has de-

creased the residual pattern between ground truth and regenerated high resolution images by 50%

that confirms the advantage of proposed method in compare with conventional methods to increase
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the resolution of B-mode images. Some of RF data are collected at PERFORM center. Figure 1.5

shows the collection of RF data from ultrasound phantom. Figure 1.6 shows the improvement of

the resolution of a B-mode image using proposed technique.

Figure 1.5: Collection of ultrasound RF data from a commercial tissue-mimicking phantom.

Field II is a program for simulation of ultrasound imaging with setting the parameters of ultra-

sound simulation, e.g. central frequency, sampling frequency etc. The program is able to calculate

the emitted pulse and received echo of continuous wave for a variety of different transducers Wood

et al. (1999). The program is running on matlab and currently is free to use Jensen (1999).

1.4 Outline of Thesis

In Chapter 2, the author introduces a novel coherent denoising approach, CODE, for removing

the noise in ultrasound imaging. CODE can remove the noise while keeping the pattern of speckles

using for post processing algorithms, e.g. elastography algorithm. The denoised RF data of ultra-

sound is used for elastography using two different methods, GLUE Hashemi and Rivaz (2017) and

DPAM Rivaz et al. (2011). Followed by mathematical framework that confirms the effectiveness of
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Super Resolution

Figure 1.6: Proposed super resolution technique improves the resolution in B-mode ultrasound
images.

CODE, the results of clinical patients (in a noisy environment of liver ablation) and phantom data af-

firms the superiority of CODE in compare with other denoising algorithms on RF data and B-mode

images. However, further clinical study is needed to support the results of CODE to investigate

more aspects of proposed algorithm in this chapter for real-world application.

The results of this chapter have been published as an invited research journal paper in Journal

of Healthcare Engineering, 2018.

In Chapter 3, a novel algorithm for ultrasound super resolution imaging is proposed. The algo-

rithm is supported by a Bayesian framework for more insight of performance of the algorithm. The

proposed algorithm is compared with conventional methods for enhancing the resolution of ultra-

sound B-mode images, and the results of studying clinical patient data and phantom data demon-

strate the advantages of the proposed algorithm in contrast with other established method. This

chapter is concluded by addressing future works and remarks. This Chapter has been published as

a research conference article in IEEE MultiMedia Signal Processing (MMSP 2018).
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1.5 Publications

The results of this master’s thesis are accepted for a journal and conference which are listed as

items below.

• P. Khavari, A. Asif, M. Boily and H. Rivaz,”Non-Local Coherent Denoising Of RF Data

For Ultrasound Elastography”, Invited Paper to Hidawi Journal of Healthcare Engineer-

ing Khavari et al. (2018)

• P. Khavari, A. Asif and H. Rivaz, ”Non-Local Super Resolution in Ultrasound Imaging”,

IEEE Multimedia Signal Processing Conference (MMSP), Aug 2018
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Chapter 2

Coherent Nonlocal Filtering for

Elstography

2.1 Overview

Ultrasound elastography infers mechanical properties of living tissues from ultrasound radio

frequency (RF) data recorded while the tissues are undergoing deformation. A challenging yet

critical step in ultrasound elastography is to estimate the tissue displacement (or, equivalently the

time delay estimate) fields from pairs of RF data. The RF data is often corrupted with noise, which

causes the displacement estimator to fail in many in-vivo experiments. To address this problem, I

present a non-local, coherent denoising approach based on Bayesian estimation to reduce the impact

of noise. Despite incoherent denoising algorithms that smooth the B-mode images, the proposed

denoising algorithm is used to suppress noise while maintaining useful information such as speckle

patterns. I refer to the proposed approach as COherent Denoising for Elastography (CODE) and

evaluate its performance when CODE is used in conjunction with two state-of-art elastography

algorithms, namely: (i) GLobal Ultrasound Elastography (GLUE), and; (ii) Dynamic Programming

Analytic Minimization elastography (DPAM). Our results show that CODE substantially improves

the strain result of both GLUE and DPAM.
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2.2 Introduction

Ultrasound elastography determines the viscoelastic properties of tissues, and is useful for di-

agnosis of pathology and for aiding surgeons in the operating room. Broadly speaking, ultrasound

elastography can be grouped into two categories Ophir et al. (1999)-Tang et al. (2015): dynamic

elastography and quasi-static elastography. In this chapter, I focus on two state-of-art free-hand pal-

pation, quasi-static elastographic approaches, namely Global Time-Delay Estimation in Ultrasound

Elastography (GLUE) Hashemi and Rivaz (2017) and Real-Time Regularized Ultrasound Elastog-

raphy (DPAM) Rivaz et al. (2011). Both approaches use successive pairs of frames of ultrasound

RF data to estimate the tissue displacement (also referred to as time delay estimates (TDE)). The

derivative of TDE provides an estimate of the induced strain that represents the stiffness or softness

of the tissue being imaged. Figure 2.1 illustrates the steps involved in quasi-static ultrasound elas-

tography with the hand-held device shown on the left hand-side and the displacement field estimates

defined using the two frames on the right.

At the heart of both GLUE and DPAM is an energy minimization approach to determine TDE’s

. A dynamic programming approach is used in both cases to compute TDE’s first at a coarse pixel

level. The resolution of the TDE’s is then enhanced to the finer sub-pixel level through analytical

minimization. Given that RF ultrasound data can be corrupted by several factors such as thermal

and electronic noise, there is a need to compensate for noise in the RF data. Traditional filtering

techniques, such as the convolution with a Gaussian kernel, use local continuity in the images to

reduce noise. A new class of denoising algorithms, referred to as non-local means (NLM) Buades

et al. (2005), considers data from a much larger “non-local” region for denoising. NLM relies on

redundancy in images and uses the weighted average of most similar intra-frame pixels within a

large non-local neighbourhood to eliminate noise.

Most NLM based denoising approaches Coupé et al. (2009); Kervrann et al. (2007); Khodadadi

et al. (2015) remove noise from processed output of the RF data, which is referred to as B-mode

images in ultrasound literature. NLM denoising reduces speckle pattern and generates smooth B-

mode images. Ultrasound speckle is useful in several image analysis techniques, such as ultrasound

elastography Ophir et al. (2002); Rivaz et al. (2014), freehand sensor-less 3D ultrasound Afsham

10



et al. (2014); Rivaz et al. (2007) and quantitative ultrasound Oelze and Mamou (2016). In this work,

I focus on ultrasound elastography.

In this chapter, I present an alternate approach wherein NLM denoising algorithm is applied

directly to raw RF data instead of processed B-mode images. I refer to the proposed approach as

COherent Denoising for Elastography (CODE) and evaluate its performance on in-vivo liver ab-

lation data when used in conjunction with two commonly used elastography algorithms, namely:

(i) GLobal Ultrasound Elastography (GLUE) Hashemi and Rivaz (2017), and; (ii) Dynamic Pro-

gramming Analytic Minimization elastography (DPAM) Rivaz et al. (2011). CODE exploits the

complete set of information in the RF domain, some of which is likely to be lost in the processing

steps used to generate the B-mode images. It is, therefore, our intuition that CODE would result in

superior denoising results. Using information in RF data to generate visually informative B-mode

images is challenging Wachinger et al. (2012). To illustrate the superiority of CODE, both mathe-

matical analysis and experimental results are included in the chapter. Our comparisons corroborate

our intuition and verify the usefulness of CODE.

The rest of this chapter is organized as follows. In Section 2.3, I review GLUE and DPAM

as representative quasi-static elastography approaches. Section 2.4 provides background on non-

local denoising and introduces CODE as a Bayesian estimator. In Section 4, I explore the ability

of CODE on simulation data. Experimental results using phantom and in-vivo data are included in

Section 5. Finally, I conclude the chapter in Section 6.

2.3 Quasi-static Elastography: GLUE and DPAM

Both DPAM and GLUE are quasi-static approaches based on the optimizing a regularized cost

function to determine tissue displacements. They both aim at finding the axial and lateral displace-

ments (a and l) of all samples of RF data as shown in Figure 2.1. DPAM uses dynamic programming

(DP) to first estimate the integer displacement of a seed-line in terms of the number of pixels and

then applies analytical minimization (AM) to fine tune the estimated displacement to the sub-pixel

level. The strain image is obtained using the spatial differentiation of the displacement field. GLUE

also uses DP for estimating the integer tissue displacements and refines the estimates to sub-pixels
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Ultrasound probe
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Before deformation After deformation𝐼1 𝐼2

Figure 2.1: Illustration of ultrasound elastography. The left figure shows a hand-held device that
induces an external stimulus into the tissues. The pair of figures on the right include two succes-
sive frames I1 and I2 of RF data. The goal of ultrasound elastography is to find the displacement
(ai,j , li,j) for each pixel (i, j) in the I1 RF frame.

for the entire image simultaneously. In other words, GLUE solves an optimization function where

both axial and lateral displacement of every sample of the RF frame are unknowns, i.e. in the order

of a million variables. This is in contrast to DPAM, which refines the estimates line-by-line. The

strain image again is calculated based on the differentiation of displacement map similar to DPAM.

Although GLUE and DPAM perform well in most cases, they may not converge to the correct so-

lution in the presence of excessive noise. In the next section, I present our denoising approach used

to reduce the impact of noise in the RF domain.

2.4 The NON-local Denoising Approach

The central idea behind this chapter is to apply coherent denoising on RF data. Unlike inco-

herent denoising approaches that process the B-mode images to remove noise (resulting in spatial

averaging and significant loss of speckle patterns), the proposed approach retains speckle patterns. I

first outline NLM, which followed by a description of the CODE algorithm, including an analytical

justification of why CODE provides better denoising results.
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Figure 2.2: Illustration for the patch and vectorized indices used in the proposed CODE approach
for n = 9.

2.4.1 Non-local means

Let v(i) be the observed value of the discretized image for pixel i and u(i) be its true value.

Due to the presence of noise n(i), I have

v(i) = u(i) + n(i). (1)

To simplify our explanation, I focus on 1D signals but our results are generalizable to 2D images.

In fact, the experimental results included in Section 4 are for 2D phantom and in-vivo liver ablation

data. To denoise the image for each pixel i, NLM searches a reference area of the image within a

rectangular search window ∆i, which is centered around pixel i (see Figure 3.2). A neighbourhood

Ni of known dimension is selected around pixel i and compared to neighbourhood Nj around pixel

j for all j ∈ ∆i. For pixel i, weight w(i, j) is assigned to each pixel j. The value of pixel i is then

replaced by

NLM[v](i) =
∑

j∈∆i

w(i, j) ∗ v(j). (2)

The distance metric is proportional to the square of Euclidian distance between the two patches.

The weight is then calculated as

w(i, j) =
1

Zi
exp

{
−
||v(Ni)− v(Nj)||22,a

h2

}
. (3)
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Based on (3), it is clear that the weight is the convolution of a Gaussian with standard deviation

a > 0 and the squared Euclidean distance between two neighbourhoods ||v(Ni)− v(Nj)||22, for Ni

and Nj . The smoothing parameter h controls the contribution of the Gaussian-Euclidean distance

exponent in the weights. The normalization factor Zi for pixel i is given by

Z(i) =
∑

j∈∆i

exp

{
−
||v(Ni)− v(Nj)||22,a

h2

}
, (4)

where the weight is normalized to ensure that the dynamic range of the NLM[v](i) is the same as

that of its counterpart v(i).

2.4.2 The proposed Bayesian CODE framework

Noise in ultrasound B-mode images originates from piezoelectric sensors and data acquisition

card. Depending on the application, the level of noise can even be higher. For example, ablation

treatment generates heat and micro-bubbles that severely deteriorate RF data Jiang et al. (2009);

Rivaz et al. (2008); Varghese et al. (2003). Both logarithmic compression and envelope detection

steps, applied to derive the B-mode image, are non-linear operations that complicate measurement

noise added by sensors and acquisition card. Our CODE approach eliminates noise introduced by

sensors and acquisition card before the non-linear logarithmic compression and envelope detection

by applying NLM directly to RF ultrasound data.

I now provide an analytical explanation of why NLM denoising is adapted for the RF domain.

Let g(x) and o(x) be vectorized ground truth and observed patches of size n centered at pixel xi of

RF data (Figure 3.2). I define them as g(x) := g(xk) with xk ∈ Ng(x) and o(x) := o(xk), where

xk ∈ No(x) and {No, Ng} are the neighbourhoods (patches) of size (
√
n×√

n) around the central

pixel x in ground truth and observed images. Our goal is to derive the Bayesian estimator ĝ(x)

for patch g(x) based on the observed patch o(x). Defining the optimal estimator by minimizing the

posterior expected loss as

E[L(g(x), ĝ(x))] =
∑

g(x)∈Γ
[L(g(x), ĝ(x))]p(g(x)|o(x)), (5)
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where Γ constitutes all possible outcomes of g(x), the loss function is given by

L(g(x), ĝ(x)) = ∥g(x) − ĝ(x)∥2 . (6)

Substituting (6) in (5), the optimal Bayesian estimator is

ĝ(x)opt = argmin
ĝ(x)

∑

g(x)

∥g(x) − ĝ(x)∥2 p(g(x)|o(x))

=
∑

g(x)

g(x)p(g(x)|o(x)).
(7)

Equation (7) can be expressed as

ĝ(x)opt =
∑

g(x)

g(x)
p(g(x), o(x))

p(o(x))
=

∑
g(x) g(x)p(o(x)|g(x))p(g(x))∑

g(x) p(o(x)|g(x))p(g(x))
. (8)

Only a subset of Γ is accessible in the search region of central pixel xi. I refer to this subset as the

search region, SR(x)) = {g1(x), g2(x), g3(x), ..., gK(x)}. Assuming that cardinality of SR is K,

and p(g(x)) is uniformly distributed, i.e., p(gi(x)) = 1/n. Equation (8) simplifies to

ĝ(x) =
∑K

j=1 g(xj)p(o(xi)|g(xj))
∑K

j=1 p(o(xi)|g(xj))
, (9)

where ĝ(x) is the optimal estimator based on the uniform distribution assumption. Given the ground

truth is not accessible, I substitute the observed value of the neighbourhood patches to get

ĝ(x) =
∑K

j=1 o(xj)p(o(xi)|o(xj))
∑K

j=1 p(o(xi)|o(xj))
. (10)

Given that the noise in the RF data is modelled as an additive Gaussian noise Teixeira et al. (2017);

Viola and Walker (2003), I have

o(x) = g(x) + v(x), (11)

where v(x) is the additive white Gaussian noise with variance σ2. By assuming that the likelihood
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can be factorized as

p(o(xi)|o(xj)) =
n∏

k=1

p(o(xi,k)|o(xj,k)), (12)

where xi,k ∈ N(xi) and xj,k ∈ N(xj) are the counterpart pixels in the patches with central

pixels xi and xj . Therefore, p(o(xi)|o(xj)) is multivariate normal distributed p(o(xi)|o(xj)) ∼

N (o(xj), σ2In). Notation In is the identity matrix. Thus, the filter in (10) can be adapted to remove

the noise of RF data as

ĝ(x) =
1

C(xi)

K∑

j=1

exp−
∥o(xi)−o(xj)∥2

h2 o(xj),

with C(xi) =

K∑

j=1

exp−
∥o(xi)−o(xj)∥2

h2 .

(13)

Equation (13) is also known as NLM algorithm. By considering the normal distributed assumption,

equation (13) can be adapted for denoising the RF data by replacing h2 = 2σ2. Therefore, the

adapted filter for denoising the RF data (CODE) is

ĝ(x) =
1

C(xi)

K∑

j=1

exp−
∥o(xi)−o(xj)∥2

2σ2 o(xj),

with C(xi) =
K∑

j=1

exp−
∥o(xi)−o(xj)∥2

2σ2 .

(14)

This filter is based on the noise statistics of RF data. CODE is, therefore, the optimal denoising

approach for removing noise in model (11) within the RF domain.

Kevrann et al. Kervrann et al. (2007) and Coupe et al. Coupé et al. (2009) have developed

similar Bayesian estimators but for reducing the speckles pattern in the B-mode image. Aligned

with the mathematical Bayesian estimator, the properties of noise in RF data show the usefulness of

CODE for removing noise from the RF ultrasound data.
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Table 2.1: Values of Chi squared and SSD for reconstructed images. The ground truth was obtained
from a Field II simulation.

Scatterers Chi2 SSD
NLM Gaussian CODE NLM Gaussian CODE

5/mm3 9702.33 167.78 95.49 76250.03 2240.55 2119.90
10/mm3 86361.68 253.65 60.18 7482.55 2242.51 1909.44
15/mm3 6108.31 294.90 27.63 7961.00 2300.42 1536.20

Table 1. Values of Chi squared and SSD for reconstructed images. The ground truth was obtained from a Field II simulation.
Scatterers Chi2 SSD

NLM Gaussian CODE NLM Gaussian CODE
5/mm3 9702.33 167.78 95.49 76250.03 2240.55 2119.90
10/mm3 86361.68 253.65 60.18 7482.55 2242.51 1909.44
15/mm3 6108.31 294.90 27.63 7961.00 2300.42 1536.20

(a) Ground-truth (b) Noisy (c) NLM (d) Gaussian on RF (e) CODE

Fig. 3. Field II simulation results. The noisy input has substantially less contrast than the ground-truth image. NLM is designed
to remove speckle and therefore substantially reduces image detail. CODE output is closest to the ground-truth.

Fig. 4. (a) is histograms of NLM, ground truth and noisy data. (b) is histograms of Guassian denoising, ground truth and noisy
data. Finally, (c) is same as figure (b) except the histogram of NLM is replaced by that of CODE.
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Fig. 5. Denoising results for phantom data: (a) DPAM alone; (b) DPAM with CODE; (c) DPAM with Gaussian (d) DPAM with
NLM. For CODE, the dimensions of the search window is (11× 11), size of the neighbourhood is (3× 3), and the smoothing
parameter h is set to 11. For (c), the kernel size is (3× 3) and smoothing parameter is 1. For (d), the NLM properties is set as
(b) but it is applied on B-mode.

5

Figure 2.3: Field II simulation results. The noisy input has substantially less contrast than the
ground-truth image. NLM is designed to remove speckle and therefore substantially reduces image
detail. CODE output is closest to the ground-truth.

2.5 Validation of Code Using Simulation Experiments

To assess the performance of CODE approach, the Field II Jensen (1996) software is used to

simulate RF data from a lesion phantom of size 60, 50 and 10mm in axial, lateral and out-of-

plane directions respectively. The size of RF is 1476 ∗ 50. The phantoms consist of two classes

of background and target tissues. To determine the precision and sensitivity of the CODE, three

different setups with 5, 10, and 15 scatterers per resolution cell distributed randomly within the

phantom are used. Different realizations for each group of scatterers are generated. The RF output

of Field II is corrupted by adding additive white Gaussian noise with a SNR of 5dB.

Figure 2.3 shows the results of NLM applied to B-mode images. As expected, NLM performs

incoherent averaging and removes speckle pattern. This is desired for many applications such as

segmentation and registration Zhou and Rivaz (2016), but not in elastography. Figure 2.3 also
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shows the results of applying a Gaussian kernel to the RF data. Since averaging is performed in the

RF domain, the speckle pattern is retained. Finally, the results of CODE denoising is also shown

in this figure, which visually outperforms other methods in terms of similarity to the original B-

mode image. Figure 2.4 compares the histogram of the B-mode of these three images. Since the

distribution of noise-free image (ground truth) is known, I used the following chi-square test as a

quantitative parameter for comparison

χ2 =

m∑

t=1

(Ot − Et)
2

Et
, (15)

where Ot is the observed value, Et the expected value and m number of bins (256 bins of grey

levels for simulated images). The Chi squared criterion for distribution and sum of squared differ-

ence (SSD) between original and filtered images using NLM, Gaussian with kernel width of 5 and

smoothing parameter 1, and CODE with search region 21, kernel width 5 and smoothing parameter

5, are compared in Table 2.1. In both cases (Chi squared and SSD), CODE outperforms the con-

ventional NLM approach and Gaussian denoising applied directly on RF data, as demonstrated in

theory in Section 2.4.2.

Moreover, with respect to simulations in Field II, the ground truth is available to study error

variance of all 3 distributions of scatterers. The error variance is measured using Normalized Root

Mean Square Error (NRMSE), defined as

NRMSE(G, Id) =

√∑n
i=1

∑m
j=1(Id(i,j)−G(i,j))2

m∗n
Max(G)−Min(G)

, (16)

where G is ground truth of Field II, Id is either noisy image or denoised version using NLM or

Gaussian denoising. Table 2.2 shows the error variance for the CODE method is minimum in

compare with other denoising.
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similarity to the original B-mode image. Figure 4 compares
the histogram of the B-mode of these three images. Since the
distribution of noise-free image (ground truth) is known, we
used the following chi-square test as a quantitative pa-
rameter for comparison:

χ2 �∑
m

t�1

Ot −Et( )2

Et
, (15)

where Ot is the observed value, Et is the expected value, and
m is the number of bins (256 bins of grey levels for simulated
images). �e chi-squared criterion for distribution and sum
of squared di�erence (SSD) between original and �ltered
images using NLM, Gaussian with kernel width of 5 and
smoothing parameter 1, and CODE with search region 21,
kernel width 5, and smoothing parameter 5, are compared in
Table 1. In both cases (chi-squared and SSD), CODE out-
performs the conventional NLM approach and Gaussian
denoising applied directly on RF data, as demonstrated in
theory in Section 3.2.

Moreover, with respect to simulations in Field II, the
ground truth is available to study error variance of all 3 dis-
tributions of scatterers. �e error variance is measured using
normalized root mean square error (NRMSE) de�ned as

NRMSE G, Id( ) �

��������������������������������
∑ni�1∑

m
j�1 Id(i, j)−G(i, j)( )2( )/(m∗ n)

√

max(G)−min(G)
,

(16)

where G is ground truth of Field II, Id is either noisy image
or denoised version using NLM or Gaussian denoising.
Table 2 shows that the error variance for the CODE method
is minimum in comparison with other denoising.

5. Phantom and In Vivo Elastography

We study 3 di�erent cases of phantom data, in vivo liver
ablation data, and tendon data for both GLUE and DPAM.
�e results are provided in Figures 5–10. �e window size of
3 provides correct strainmap, for CODEmeanwhile requires
the minimum computational budget. To be fair in com-
parison, the window size is the same for both NLM and
Gaussian denoising.

Phantom data in Figures 5 and 6 are obtained from
a CIRS breast phantom (Norfolk, VA) under free-hand
palpation. �ere is excessive out-of-plane motion between
the two processed images, and therefore, the DP step fails.
�is leads to failure in both DPAM and GLUE, which is
apparent as black horizontal artifacts in (a), (c) and black
artifact at right down corner of (d) for both mentioned
�gures. However, CODE removes the noise from the RF data
and leads to a strain image with low noise and high contrast.
�e phantom contains a cyst in the middle with certain
elasticity surrounded by another tissue. �ose artifacts as
described are failing to depict the tissue around the cyst or
the cyst elasticity by showing di�erent elasticities.

Patient data in Figures 7 and 8 were acquired from
a patient undergoing open-surgical radiofrequency thermal
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Figure 4: (a) Histograms of NLM, ground truth, and noisy data. (b) Histograms of Gaussian denoising, ground truth, and noisy data.
Finally, (c) is the same as (b) except the histogram of NLM replaced by that of CODE.

Table 1: Values of chi-square and SSD for reconstructed images..

Scatterer
Chi2 SSD
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10/mm3 86361.68 253.65 60.18 7482.55 2242.51 1909.44
15/mm3 6108.31 294.90 27.63 7961.00 2300.42 1536.20
�e ground truth was obtained from a Field II simulation

Table 2: Using Field II ground truth for evaluation of NRMSE for
di�erent denoising and noisy images.

Method 5/mm3 10/mm3 15/mm3

Noisy 0.1501 0.1298 0.1284
NLM 0.3210 0.3208 0.3182
Gaussian 0.1595 0.1478 0.1442
CODE 0.1354 0.1216 0.1203
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Figure 2.4: (a) Histograms of NLM, ground truth, and noisy data. (b) Histograms of Gaussian
denoising, ground truth, and noisy data. Finally, (c) is the same as (b) except the histogram of NLM
replaced by that of CODE.
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Table 2.2: using Filed II ground truth for evaluation of NRMSE for different denoising and noisy
image.

Method 5/mm3 10/mm3 15/mm3

Noisy 0.1501 0.1298 0.1284
NLM 0.3210 0.3208 0.3182

Gaussian 0.1595 0.1478 0.1442
CODE 0.1354 0.1216 0.1203

2.6 Phantom and In-vivo Elastography

I study 3 different cases of phantom data, in-vivo liver ablation data and tendon data for both

GLUE and DPAM. The results are provided in Figs. 2.5-2.10. The window size of 3 provide cor-

rect strain map, for CODE meanwhile requires the minimum computational budget. To be fair in

comparison, the window size is the same for both NLM and Gaussian denoising.

Phantom data in Figure 2.7 and Figure 2.6 is obtained from a CIRS breast phantom (Norfolk,

VA) under freehand palpation. There is excessive out of plane motion between the two processed

images, and therefore, the DP step fails. This leads to failure in both DPAM and GLUE, which is

apparent as black horizontal artifacts in (a), (c) and black artifact at right down corner of (d) for

both mentioned Figures. However, CODE removes the noise from the RF data and leads to a strain

image with low noise and high contrast. The phantom contains a cyst in the middle with certain

elasticity surrounded by another tissue. Those artifacts as describe, are failing to depict the tissue

around the cyst or the cyst elasticity by showing different elasticities.

Patient data in Figure 2.7 and Figure 2.8 was acquired from a patient undergoing open surgi-

cal radio-frequency thermal ablation for primary or secondary liver cancer. This data is available

online Rivaz et al. (2011). The Institutional Ethical Review Board at Johns Hopkins University

approved all experimental procedures involving human subjects. For the patient data, ablation pro-

cedure generates substantial amount of noise in the RF data Jiang et al. (2009); Rivaz et al. (2008);

Varghese et al. (2003). As a result of excessive noise, DP fails, which generates the horizontal black

and white band in the top left of (a), (c) and (d). Although the environment is extremely noisy, the

well-adapted CODE method denoises the RF data in a way that both algorithms are able to get the

correct strain map for patient data. The ablation operation coagulates the tissue, which makes the
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tissue stiffer. The coagulated tissue is often referred to as ablation lesion, and its size should be big-

ger than the tumor to ensure that the entire tumor is ablated. The strain images in Figure 2.7.(b) and

Figure 2.8.(b) clearly show the ablation lesion as a dark region with low strain (i.e. hard). CODE

helps remove noise in RF data, which leads to less noisy strain images. Such strain images can help

the surgeon to minimize the cancer recurrence rate. However, NLM and Gaussian fail to reconstruct

the strain map and show sudden changes in tissue that are misleading and violate tissue continuity.

I also evaluate CODE on data collected from patellar tendon. This data was collected at the PER-

FORM Centre at Concordia University. Ethics approval was obtained for this study from Quebec’s

Ministere de la Sante et des Services Sociaux and all subjects signed a consent form to participate.

Data is collected using an Alpinion E-Cube ultrasound machine (Bothell, WA) with a L3-12 linear

transducer and at the center frequency of 11MHz with sampling frequency of 40MHz. The results

are shown in Figure 2.9 and Figure 2.10. The probe is held stationary, and the subject flexes his

knee joint during data collection. CODE removes the noise in the RF data and results in a more

meaningful strain image. Some of the data used in this chapter are available online Rivaz et al.

(2011).

2.7 Conclusions

In this chapter, I have proposed a denoising algorithm, referred to as the CODE (COherent De-

noising for Elastography) approach for ultrasound elastography. CODE is applied directly to the RF

data, and has the ability to eliminate noise, while retaining relevant speckle patterns. This is demon-

strated using phantom and experiments based on in-vivo clinical data. The results of CODE are

used for GLUE and DPAM, which verifies the effectiveness of the proposed CODE. More clinical

studies are needed to fully verify the benefits of the CODE algorithm.
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ablation for primary or secondary liver cancer. �ese data
are available online [8]. �e Institutional Ethical Review
Board at Johns Hopkins University approved all experi-
mental procedures involving human subjects. For the pa-
tient data, ablation procedure generates substantial amount
of noise in the RF data [19–21]. As a result of excessive noise,
DP fails, which generates the horizontal black and white
bands in the top left of (a), (c), and (d). Although the en-
vironment is extremely noisy, the well-adapted CODE
method denoises the RF data in a way that both algorithms

are able to get the correct strain map for patient data. �e
ablation operation coagulates the tissue, which makes the
tissue sti�er. �e coagulated tissue is often referred to as
ablation lesion, and its size should be bigger than the tumor
to ensure that the entire tumor is ablated. �e strain images
in Figures 7(b) and 8(b) clearly show the ablation lesion as
a dark region with low strain (i.e., hard). CODE helps to
remove noise in RF data, which leads to less noisy strain
images. Such strain images can help the surgeon to minimize
the cancer recurrence rate. However, NLM and Gaussian fail
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Figure 5: Denoising results for phantom data: (a) DPAM alone; (b) DPAMwith CODE; (c) DPAMwith Gaussian; (d) DPAMwith NLM. For
CODE, the dimension of the search window is (11 × 11), size of the neighbourhood is (3 × 3), and the smoothing parameter h is set to 11. For
(c), the kernel size is (3 × 3) and smoothing parameter is 1. For (d), the NLM properties are set as (b), but they are applied on B-mode.
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Figure 6: Denoising results for phantom data: (a) GLUE alone; (b) GLUE with CODE; (c) GLUE with Gaussian; (d) GLUE with NLM. For
CODE, the dimension of the search window is (11 × 11), size of the neighbourhood is (3 × 3), and the smoothing parameter h is set to 11.
For (c), the kernel size is (3 × 3) and smoothing parameter is 1. For (d), the NLM properties are set as (b), but it is applied on B-mode.
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Figure 2.5: Denoising results for phantom data: (a) DPAM alone; (b) DPAM with CODE; (c) DPAM
with Gaussian (d) DPAM with NLM. For CODE, the dimensions of the search window is (11×11),
size of the neighbourhood is (3× 3), and the smoothing parameter h is set to 11. For (c), the kernel
size is (3 × 3) and smoothing parameter is 1. For (d), the NLM properties is set as (b) but it is
applied on B-mode.
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ablation for primary or secondary liver cancer. �ese data
are available online [8]. �e Institutional Ethical Review
Board at Johns Hopkins University approved all experi-
mental procedures involving human subjects. For the pa-
tient data, ablation procedure generates substantial amount
of noise in the RF data [19–21]. As a result of excessive noise,
DP fails, which generates the horizontal black and white
bands in the top left of (a), (c), and (d). Although the en-
vironment is extremely noisy, the well-adapted CODE
method denoises the RF data in a way that both algorithms

are able to get the correct strain map for patient data. �e
ablation operation coagulates the tissue, which makes the
tissue sti�er. �e coagulated tissue is often referred to as
ablation lesion, and its size should be bigger than the tumor
to ensure that the entire tumor is ablated. �e strain images
in Figures 7(b) and 8(b) clearly show the ablation lesion as
a dark region with low strain (i.e., hard). CODE helps to
remove noise in RF data, which leads to less noisy strain
images. Such strain images can help the surgeon to minimize
the cancer recurrence rate. However, NLM and Gaussian fail
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Figure 5: Denoising results for phantom data: (a) DPAM alone; (b) DPAMwith CODE; (c) DPAMwith Gaussian; (d) DPAMwith NLM. For
CODE, the dimension of the search window is (11 × 11), size of the neighbourhood is (3 × 3), and the smoothing parameter h is set to 11. For
(c), the kernel size is (3 × 3) and smoothing parameter is 1. For (d), the NLM properties are set as (b), but they are applied on B-mode.
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Figure 6: Denoising results for phantom data: (a) GLUE alone; (b) GLUE with CODE; (c) GLUE with Gaussian; (d) GLUE with NLM. For
CODE, the dimension of the search window is (11 × 11), size of the neighbourhood is (3 × 3), and the smoothing parameter h is set to 11.
For (c), the kernel size is (3 × 3) and smoothing parameter is 1. For (d), the NLM properties are set as (b), but it is applied on B-mode.
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Figure 2.6: Denoising results for phantom data: (a) GLUE alone; (b) GLUE with CODE; (c) GLUE
with Gaussian (d) GLUE with NLM. For CODE, the dimensions of the search window is (11×11),
size of the neighbourhood is (3× 3), and the smoothing parameter h is set to 11. For (c), the kernel
size is (3 × 3) and smoothing parameter is 1. For (d), the NLM properties is set as (b) but it is
applied on B-mode.
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to reconstruct the strain map and show sudden changes in
tissue that are misleading and violate tissue continuity.

We also evaluate CODE on data collected from patellar
tendon. )ese data were collected at the PERFORM Centre
at Concordia University. Ethics approval was obtained for
this study from Quebec’s Ministere de la Sante et des Ser-
vices Sociaux, and all subjects signed a consent form to
participate. Data are collected using an Alpinion ECube
ultrasound machine (Bothell, WA) with a L3-12 linear
transducer at the centre frequency of 11MHz with sampling

frequency of 40MHz.)e results are shown in Figures 9 and
10. )e probe is held stationary, and the subject flexes his
knee joint during data collection. CODE removes the noise
in the RF data and results in a more meaningful strain image.

6. Conclusions

In this paper, we have proposed a denoising algorithm,
referred to as the CODE (COherent Denoising for Elas-
tography) approach for ultrasound elastography. CODE is
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Figure 7: Same as Figure 5 except in vivo liver ablation, patient data are used: (a) DPAM alone; (b) DPAM with CODE; (c) DPAM with
Gaussian; (d) DPAM with NLM.
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Figure 8: Same as Figure 6 except in vivo liver ablation, patient data are used: (a) GLUE alone; (b) GLUE with CODE; (c) DPAM alone;
(d) DPAM with CODE.
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Figure 2.7: Same as Fig. 2.5 except in-vivo liver ablation patient data is used: (a) DPAM alone; (b)
DPAM with CODE; (c) DPAM with Gaussian (d) DPAM with NLM.
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to reconstruct the strain map and show sudden changes in
tissue that are misleading and violate tissue continuity.

We also evaluate CODE on data collected from patellar
tendon. )ese data were collected at the PERFORM Centre
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this study from Quebec’s Ministere de la Sante et des Ser-
vices Sociaux, and all subjects signed a consent form to
participate. Data are collected using an Alpinion ECube
ultrasound machine (Bothell, WA) with a L3-12 linear
transducer at the centre frequency of 11MHz with sampling

frequency of 40MHz.)e results are shown in Figures 9 and
10. )e probe is held stationary, and the subject flexes his
knee joint during data collection. CODE removes the noise
in the RF data and results in a more meaningful strain image.

6. Conclusions

In this paper, we have proposed a denoising algorithm,
referred to as the CODE (COherent Denoising for Elas-
tography) approach for ultrasound elastography. CODE is
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Figure 7: Same as Figure 5 except in vivo liver ablation, patient data are used: (a) DPAM alone; (b) DPAM with CODE; (c) DPAM with
Gaussian; (d) DPAM with NLM.
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Figure 8: Same as Figure 6 except in vivo liver ablation, patient data are used: (a) GLUE alone; (b) GLUE with CODE; (c) DPAM alone;
(d) DPAM with CODE.
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Figure 2.8: Same as Fig. 2.6 except in-vivo liver ablation patient data is used: (a) GLUE alone; (b)
GLUE with CODE; (c) DPAM alone; (d) DPAM with CODE.
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applied directly to the RF data and has the ability to
eliminate noise, while retaining relevant speckle patterns.
�is is demonstrated using phantom and experiments based
on in vivo clinical data. �e results of CODE are used for
GLUE and DPAM, which veri�es the e�ectiveness of the
proposed CODE. More clinical studies are needed to fully
verify the bene�ts of the CODE algorithm.
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Figure 9: Same as Figure 5 except in vivo liver ablation, patient tendon data are used: (a) DPAM alone; (b) DPAM with CODE; (c) DPAM
with Gaussian; (d) DPAM with NLM.
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Figure 10: Same as Figure 6 except in vivo liver ablation, patient tendon data are used: (a) GLUE alone; (b) GLUE with CODE; (c) GLUE
with Gaussian; (d) GLUE with NLM.
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Figure 2.9: Same as Fig. 2.5 except in-vivo patient tendon data is used: (a) DPAM alone; (b) DPAM
with CODE; (c) DPAM with Gaussian; (d) DPAM with NLM.
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Figure 9: Same as Figure 5 except in vivo liver ablation, patient tendon data are used: (a) DPAM alone; (b) DPAM with CODE; (c) DPAM
with Gaussian; (d) DPAM with NLM.

20100

3

2

1

D
ep

th
 (m

m
)

Width (mm)

0

0.01

0.005

0.015

0.02

(a)

20100

3

2

1

D
ep

th
 (m

m
)

Width (mm)

0

0.01

0.005

0.015

0.02

(b)

200 10

3

2

1

D
ep

th
 (m

m
)

Width (mm)

0

0.01

0.005

0.015

0.02

(c)

200 10

3

2

1

D
ep

th
 (m

m
)

Width (mm)

0

0.01

0.005

0.015

0.02

(d)

Figure 10: Same as Figure 6 except in vivo liver ablation, patient tendon data are used: (a) GLUE alone; (b) GLUE with CODE; (c) GLUE
with Gaussian; (d) GLUE with NLM.
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Figure 2.10: Same as Fig. 2.6 except in-vivo patient tendon data is used: (a) GLUE alone; (b) GLUE
with CODE; (c) GLUE with Gaussian; (d) GLUE with NLM.
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Chapter 3

Coherent Super Resolution in

Ultrasound

3.1 Overview

The resolution of ultrasound (US) images is limited by physical constraints and hardware re-

strictions, such as the frequency, width and focal zone of the US beam. Different interpolation

methods are often used to increase the sampling rate of ultrasound images. However, interpolation

methods generally introduce blur in images. Herein, I present a super resolution (SR) algorithm for

reconstruction of the B-mode images using the information from the envelope of radio frequency

(RF) data. Our method is based on utilizing repetitive data in the non-local neighborhood of sam-

ples. The performance of the proposed approach is determined both qualitatively and quantitatively

using phantom and in-vivo data.

3.2 Introduction

Ultrasound is a commonly used medical imaging modality since it is non-invasive, real-time,

portable, and inexpensive. However, US images are intrinsically noisy and, therefore, numerous

methods are used to increase the quality of the data. These procedures are applied to improve the

quality of ultrasound (US) images, or, as a preprocessing step to perform high-level image analysis
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tasks Coupé et al. (2009); Montaldo et al. (2009); Ramos-Llordén et al. (2015). Extensive previous

work exists on the enhancement of US images and on the impact it has on image analysis techniques,

such as image segmentation Cunningham et al. (2017); Stevenson et al. (2015) and registration Rivaz

et al. (2015); Shams et al. (2018). Various interpolation approaches have been proposed to increase

the number of samples in US images Housden et al. (2006); Kortbek et al. (2005).

Several factors such as physical hardware, limitation on the processing time, and poor signal

to noise ratio limit the quality of the images in medical imaging modalities such as US. Interpola-

tion techniques are therefore applied in the aforementioned scenarios to improve the quality of the

images Lehmann et al. (1999); Thévenaz et al. (2000).

Interpolation methods assume that high resolution (HR) patches can be represented by a polyno-

mial function under some smoothing assumptions. However, in US imaging, the pattern of B-mode

images is very variable and may invalidate these assumptions. An alternative approach to improve

the resolution in the B-mode images of US is based on the super resolution (SR) techniques. In the

SR process, one or more HR patches are reconstructed based on corresponding one or more low

resolution (LR) observations Ledig et al. (2016); Nasrollahi and Moeslund (2014). Multi image

SR techniques try to restore the HR images based on samples of LR patches in the temporal do-

main Protter et al. (2009), or using machine learning techniques Dong et al. (2016). Nevertheless,

due to scarcity of ground truth and training data sets in the US images, I choose the single image

SR path. In the single image SR, which can be classified as interpolation- and recursion-based, the

process often attempts to recreate the HR images from information in LR observations of a single

image.

In this chapter, I propose a recursive image reconstruction on the envelope of US images that

preserves delicate structure while maintaining the margin between different issues. The rest of

the chapter is organized as follows. In Section 3.3, I explore the proposed method in detail and

provide a mathematical framework that validates the proposed approach as a Bayesian estimation.

In Section 3.4, I evaluate the performance of the proposed method using different measures on

both in-vivo and phantom data, and I conclude the chapter in Section 3.5. This chapter has been

accepted as a paper to Multimedia Signal Processing Conference (MMSP 2018), but has not been

published yet.
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3.3 Super Resolution

In US imaging, interpolations for upsampling the US images are based on an assumption that

HR pixels can be expressed in terms of LR pixels. To simplify our explanation, I focus on 1D signals

but our results are generalizable to 2D images. Mathematically speaking, let yn be a LR noisy pixel

in the image. Assume pixels in the HR image are denoted as xi, then yn can be expressed as:

yn =
1

N

N∑

i=1

xi + n, (17)

where in RF data, n can be consider as Gaussian noise and N is the size of the averaging filter.

Within neighborhoods of LR pixels, the interpolation algorithm can be used to reconstruct the HR

pixels by assigning the weights to them as follows:

xi =

⎧
⎪⎪⎨
⎪⎪⎩

∑
j∈Ωwijyj if i ̸= j

yj if i = j

(18)

where symbol Ω is a neighborhood of pixels in the HR image. The weights, ωij , are calculated as a

function based on the distance between the location of HR pixel and LR ones. If the location of the

pixels are the same, the value of LR pixel yj is kept for HR pixel xi.

The goal of SR or interpolation algorithms is to find values for xi using the eq. (17). This

problem is an ill-posed problem because there are infinite values for xi that satisfy eq. (17). In

the next section, a new algorithm is proposed for upsampling the US images using information in a

non-local neighborhood of pixels.

3.3.1 Non-local Super Resolution Approach

The proposed method (illustrated by the block diagram in Figure 3.1) is based on denoising

the noisy data first and then applying the SR method on the denoised data. The input RF data is

denoised using the non-local means (NLM) based approach on RF data. The output of the denoising
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filter will be y that is the denoised version of yn.

y =
1

N

N∑

i=1

xi. (19)

The eq. (19) can be rewritten as

y − 1

N

N∑

i=1

xi = 0. (20)

This equation enforces the upscaled image to be consistent and is referred to as the subsampling

consistency Banerjee and Jawahar (2008). I used this equation as the stopping criterion for the SR

algorithm.

In the next step, an iterative process is exploited to extract the information of LR patches. It

consists of two separate blocks, used to: (i) smooth the image without losing edges (non-local

means), and (ii) update the HR part from the LR denoised pixels. The input to the algorithm is the

preprocessed LR image y and the stopping criterion sc for the algorithm. sc is set to 0.01% for err

function output value and algorithm halts in cases when the err function returns a value less than

sc. The err function gives the average of absolute value difference between its arguments 21.

err(a, b) = 1/N

N∑

n=1

abs(a− b). (21)

The upsampling and downsampling operations are used in the SR algorithm for making the

number of computations and comparisons equal. Firstly, y is upsampled to the desire aspect ratio

and dimensions. In our case, the upscaling factor is set to 2 and has been done using bicubic

interpolation. Assuming that x′ is the approximation output of x and considering the interpolation

operation as U , the output will be

x′ = U(y). (22)

The other blocks of this figure (fig. 3.1) are elaborated in the next subsections. I investigate

the NLM algorithm for assuring smoothing in the neighborhood of pixel and then by using the

subsampling consistency of eq. (20). The error of difference between y and downsampled version

of x′ is used to refine the algorithm output x′.
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Patch-wise Smoothing

Let x′(i) be the observed value of the discretized image for pixel i and x(i) be its true value.

Due to the presence of noise n(i), I have

x′(i) = x(i) + n(i). (23)

To remove the distortion present in image for each pixel i, NLM searches a reference area of the

image within a rectangular search window Ωi, which is centered around pixel i. A neighborhood

Ni of known dimensions is selected around pixel i and compared to neighborhood Nj around pixel

j for all j ∈ Ωi. For pixel i, weight w(i, j) is assigned to each pixel j. The value of pixel i is then

replaced by

NLM[x′](i) =
∑

j∈Ωi

w(i, j) ∗ x′(j). (24)

The distance metric is proportional to the square of Euclidean distance between the two patches.

The weight is then calculated as

w(i, j) =
1

Zi
exp

{
−
||x′(Ni)− x′(Nj)||22,a

h2

}
. (25)

Based on (25), it is clear that the weight is the convolution of a Gaussian with standard deviation

a > 0 and the squared Euclidean distance between two neighborhoods ||x′(Ni)− x′(Nj)||22, for Ni

and Nj . The smoothing parameter h controls the contribution of the Gaussian-Euclidean distance

exponent in the weights. The normalization factor Zi for pixel i is given by

Z(i) =
∑

j∈∆i

exp

{
−
||x′(Ni)− x′(Nj)||22,a

h2

}
, (26)

where the weight is normalized to ensure that the dynamic range of the NLM[x′](i) is the same as

that of its counterpart x′(i). The NLM is applied to the envelope of RF data. More details of the

NLM implementation are presented in Section 3.3.2.
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end

output
𝑥′

Figure 3.1: The flowchart for the proposed method. The inputs are the LR patch and stopping
criterion (y and sc), and the output is x′ that is the HR patch. The operator U stands for upsampling
using bicubic interpolation. The err function returns the mean of absolute value difference between
its arguments.

Retrieving Low Resolution Pixels

The LR pixels, y, are observations that are assumed to be the ground truth for reconstruction

of the HR image. For retrieving the pixels in the LR patch, the algorithm upsamples the difference

between LR patch and corresponding pixels in the upsampled image, x′ using a downsampling

operation. This difference is upsampled using interpolation and added to the existing x′ to create

the updated x′:
x′ = x′ + U(y −D(x′)), (27)

where D and U are downsampling and upsampling operations, respectively. Finally, the error is

evaluated based on the upsampled image x′ and upsampled version of the LR patch y. If the stopping

criterion is met, the algorithm halts. Fig. 3.1 shows the flowchart of the proposed algorithm. Similar

to Coupe et al. Coupé et al. (2009) and Kevrann et al. Kervrann et al. (2007), next I suggest a

Bayesian framework that provides the mathematical foundation of the proposed algorithm.

3.3.2 Bayesian Framework

This framework is similar to the framework that I have followed in the Chapter 2. Suppose g(x)

and o(x) are vectorized ground truth and upscale of observed version patches of size n centered at

x of the radio frequency data, defined as g(x) := g(xk) and xk ∈ Ng(x) and o(x) := o(xk), where

xk ∈ No(x) (No and Ng are the neighborhoods (patch) of size
√
n by

√
n around the central pixel

x in the ground truth and observed images.) The goal is to get the Bayesian estimator, ĝ(x), of patch
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Figure 3.2: An example of illustration patches of an observed radio frequency image. Patches and
corresponding vectorized indices are presented in this figure for n = 9.

g(x) based on the observed patch o(x). Let’s define optimal estimator by minimizing the posterior

expected loss as follows

E[L(g(x), ĝ(x))] =
∑

g(x)∈Γ
[L(g(x), ĝ(x))]p(g(x)|o(x)), (28)

where Γ is all possible configurations of g(x). The loss function is defined as

L(g(x),ĝ(x)) = ∥g(x) − ĝ(x)∥2 . (29)

If eq. (29) is substituted in eq. (28), the optimal Bayesian estimator, ĝ(x)opt, is given by

ĝ(x)opt = argmin
ĝ(x)

∑

g(x)

∥g(x) − ĝ(x)∥2 p(g(x)|o(x))

=
∑

g(x)

g(x)p(g(x)|o(x)).
(30)

Then eq. (30) can be expressed as

ĝ(x)opt =
∑

g(x)

g(x)
p(g(x), o(x))

p(o(x))
=

∑
g(x) g(x)p(o(x)|g(x))p(g(x))∑

g(x) p(o(x)|g(x))p(g(x))
. (31)
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Note that only a subset of Γ is accessible in the search region of central pixel xi. I refer to this subset

as the search region, SR(x)) = {g1(x), g2(x), g3(x), ..., gK(x)}. Assuming that K is number of

samples in the SR (the number of members in, I get the mentioned subset) and p(g(x)) is uniformly

distributed

p(gi(x)) =
1

n
. (32)

Based on these assumptions, eq. (31) leads to

ĝ(x) =
1
K

∑K
j=1 g(xj)p(o(xi)|g(xj))

1
K

∑K
j=1 p(o(xi)|g(xj))

=

∑K
j=1 g(xj)p(o(xi)|g(xj))
∑K

j=1 p(o(xi)|g(xj))
,

(33)

where ĝ(x) is the optimal estimator based on assumption (32). However, there is only the upscaled

of observed values and the ground truth is not accessible. Consequently, I substitute the observed

values of the neighborhood patches to get.

ĝ(x) =
∑K

j=1 o(xj)p(o(xi)|o(xj))
∑K

j=1 p(o(xi)|o(xj))
. (34)

By assuming that the likelihood can be considered as (see Fig. 3.2)

p(o(xi)|o(xj)) ∝ exp−∥o(xi)−o(xj )∥2 , (35)

the estimator for ĝ(x) can be rewritten as

ĝ(x) =
1

C(xi)

K∑

j=1

exp−∥o(xi)−o(xj )∥2 o(xj);

C(xi) =
K∑

j=1

exp−∥o(xi)−o(xj )∥2 .

(36)
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Figure 3.3: The flowchart for comparison of the proposed method.

For smoothing the similarities, the parameter h is introduced and final estimator for ĝ(x) is

ĝ(x) =
1

C(xi)

K∑

j=1

exp−
∥o(xi)−o(xj)∥2

h2 o(xj);

C(xi) =
K∑

j=1

exp−
∥o(xi)−o(xj)∥2

h2 .

(37)

The pixels of upsampled image can be grouped into two kinds of pixels, the synthesized pixels cre-

ated by upsampling operation and the input pixels to upsampling algorithm. The Bayesian estimator

can be used for the former group and the value of pixels in the latter group are retrieved from the

output of SR algorithm as discussed in the algorithm illustrated in Fig. 3.1.

3.4 Experiments and results

In our experiments, phantom and in-vivo data have been studied. Phantom data in Fig 3.10 is

obtained from a CIRS breast phantom (Norfolk, VA). Patients’ data were acquired from patients un-

dergoing open surgical radio frequency thermal ablation for primary or secondary liver cancer. The

Institutional Ethical Review Board at Johns Hopkins University approved all experimental proce-

dures involving human subjects. All data was collected using a Siemens Antares ultrasound machine

(Issaquah, WA) with a VF10-5 linear probe.
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Method Patient 1 Patient 2 Patient 3 Phantom

NN 0.0538 0.1358 0.1232 0.1078
Bilinear 0.0472 0.1224 0.1085 0.0985
Bicubic 0.0461 0.1188 0.1057 0.0940

Proposed 0.0225 0.0597 0.0544 0.0481
decreased 48.80% 50.25% 51.46% 51.70%

Table 3.1: Sum of Absolute Differences (SAD) results of proposed method versus conventional
interpolation methods

For the sake of comparison, three upsampling interpolations are used: the nearest neighbor in-

terpolation, bilinear interpolation, and bicubic interpolation. First, I apply NLM for denoising the

RF data and afterwards, by envelope detection and log compression, the HR image for comparison

is constructed (as depicted in Fig. 3.3), called x of size Rn∗m. The denoised RF data is then fed to

a downsampler followed by an envelope detector to construct the LR image, y. I used the downsam-

pling with a factor of 2. The LR image is upsampled using different interpolations and proposed

method and after logarithmic compression the outputs are used for comparison, or equivalently x′0

to x′3 of size Rn∗m. The parameters values for proposed algorithm are Ωi = 7, Ni = 3, h = 1 and

sc = 0.01%. Fig. 3.3 highlights the steps used to compare the outputs.

The output of the proposed algorithm is compared using two different measures. I used Sum of

Absolute Difference (SAD) between each x′i, 0 ≤ i ≤ 3, and x using

SAD(x′i, x) =
1

m ∗ n
n∑

k=1

m∑

t=1

|x′i(k, t)− x(k, t)|. (38)

The results for this comparison are shown in Table 3.1. The proposed algorithm outperforms the

conventional interpolation methods and produce the least SAD error. Another measure for compar-

ing the results is the Peak Signal to Noise Ratio or PSNR computed as

PSNR(x′i, x) =

10 log10(
Max(x′i)−Min(x′i)√

1
m∗n

∑n
k=1

∑m
t=1|x′i(k, t)− x(k, t)|2

).
(39)

The higher PSNR implies the more accurate reconstruction of the LR image. Table 3.2 shows the
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Table 3.2: Peak Signal-to-Noise Ratio (PSNR) results of proposed method versus conventional
interpolation methods in dB.

Method Patient 1 Patient 2 Patient 3 Phantom

NN 13.0904 11.5248 14.0850 11.6921
Bilinear 13.9813 11.8812 14.4330 12.2291
Bicubic 14.9000 13.0660 15.4788 13.4417

Proposed 17.2063 15.5290 18.0046 15.3727
improvement 2.36 dB 2.463 dB 2.53 dB 1.85 dB

PSNRs for different interpolations. The proposed algorithm surpasses other interpolation methods

there were considered in our experiments. To present the qualitative improvement, different US im-

ages and the LR and HR counterparts obtained from different interpolation approaches are shown in

Figs. 3.4 - 3.10 for patients and phantom data. The residual pattern for each interpolation and pro-

posed method is displayed by calculating the SAD between the upsampled images and HR image.

The residual patterns in each upsampled patient data using existing interpolation techniques contain

substantial information from the HR image. In contrast, the SAD of the proposed algorithm is un-

correlated and does not show any pattern, which confirms the superiority of the proposed method in

reconstructing the pattern of HR image.

3.5 Conclusions

In this chapter, I proposed an iterative SR approach for US imaging. The proposed method is

applied to the envelope of RF data and has the ability to enhance the resolution of the image while

retaining fine structures of tissue. This is demonstrated using phantom data and experiments based

on in-vivo data. The results of the proposed algorithm are compared with interpolation approaches,

which verifies the effectiveness of the proposed method. More studies are needed to fully verify

the benefits of the algorithm method in US medical applications, such as US image registration and

segmentation.
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Figure 3.4: B-mode of different interpolation patient1.
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Figure 3.6: B-mode of different interpolation patient2.
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Figure 3.7: Corresponding residual patterns of patient2.
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Figure 3.8: B-mode of different interpolation patient3.
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Figure 3.9: Corresponding residual patterns of patient3.
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Figure 3.10: B-mode of different interpolation Phantom.
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Figure 3.11: Corresponding residual patterns of Phantom.
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Chapter 4

Conclusion and Future Work

4.1 Conclusions

In the first chapter of thesis, I review the basics for ultrasound and provide an overview of the

thesis. I also recall the basics of ultrasound elastography and super-resolution representation to give

more insights about following chapters.

In the second chapter, I present a novel non-local denoising algorithm for ultrasound elastogra-

phy, CODE, that removes noise from ultrasound radio frequency data, also known as RF data, while

keeps the speckles patterns constant. A Bayesian framework is proposed that studies the mathemat-

ical aspects of CODE. The performance of CODE is evaluated by comparing common quantitative

parameters such as PSNR and MSE of the output of the CODE processed images. The input to

CODE is a set of noisy RF field images obtained by adding noise to both synthetic data obtained

from Field II as well as in-vivo data.

CODE is used for improving the performance of ultrasound elastography techniques, namely

DPAM and GLUE, which are relying on the RF data of tissue for extracting the information about

the mechanical properties of tissue. The aforementioned algorithms are based on optimizing a cost

function using a numerical pipeline approach based on speckle pattern of RF data. At one stage of

this pipeline, GLUE and DPAM are using a dynamic programming (DP) algorithm for calculation

the integer displacement of the tissue. This step is vulnerable to noise. Applying CODE, GLUE and

DPAM produces the strain map of the tissue without any failure. The results of CODE are compared
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with other denoising methods. The performance measures in all results show the superiority of

CODE in both in-vivo and phantom data. However, additional clinical studies are needed to perform

a more comprehensive evaluation of CODE.

In ultrasound imaging, the probes with different number of piezoelectric are responsible for both

transmitting and receiving the RF data. The resolution of ultrasound images has a direct relationship

with number of piezoelectric and the price of probes also rises with the number of piezoelectric.

ability of super-resolution methods for generating high resolution B-mode images can be used for

making more affordable probes used in ultrasound machines.

In the third chapter, a novel technique for increasing the resolution of ultrasound images is pro-

posed. The method uses non-local information in an ultrasound frame to substitute the desired pixel

in enlarged image based on an iterative method using RF data. The results are compared with three

conventional methods where the proposed non-local method outperforms the other approaches.

The super resolution method is tested on both in-vivo and phantom data with several accuracy

measures. With respect to calculated residual pattern between the ground truth and enlarged im-

ages, the proposed method produce lower residual pattern in comparison with other methods. A

mathematical framework is also presented in this chapter that explains the advantage of proposed

method.

4.2 Future works

There are various possible ways to improve the algorithms of this thesis or transform the appli-

cations for both CODE and non-local super resolution. I have listed some of them in the followings:

• Non-local algorithms presented in chapters two and three are computationally expensive.

There are several method to increase the non-local step in the both super resolution and CODE

algorithms Bhujle and Chaudhuri (2014); Maruf and El-Sakka (2015); Vignesh et al. (2010).

These algorithms store the repetitive computations, only compute the additional values for

the non-local algorithms and can improve the proposed algorithms in this thesis to speed up.

• The proposed algorithm can be expanded to temporal domain. In this thesis, I only investigate

the spatial domain of the images; however with advancements in ultrasound technologies, for
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instance ultra-fast ultrasound imaging Tanter and Fink (2014) or plane-wave imaging Gar-

cia et al. (2013), imaging in higher frame rate is now possible. With more frames, more

information can be used for both CODE and non-local super resolution

• Retaining the speckles in both CODE and non-local super resolution can be used in other

multimedia applications. For example ultrasound to MRI registration Rivaz et al. (2015),

can use the CODE for denoising the ultrasound images and non-local super resolution for

increasing the quality of ultrasound images and consequently, improving the performance of

the registration.
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