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Abstract

Ternary and Hybrid Event-based Particle Filtering for Distributed State Estimation in
Cyber-Physical Systems

Somayeh Davar

The thesis is motivated by recent advancements and developments in large, distributed, au-

tonomous, and self-aware Cyber-Physical Systems (CPSs), which are emerging engineering sys-

tems with integrated processing, control, and communication capabilities. Efficient usage of avail-

able resources (communication, computation, bandwidth and energy) is a pre-requisite for produc-

tive operation of CPSs, where security, privacy, and/or power considerations limit the number of

information transfers between neighbouring sensors. In this regard, the focus of the thesis is on

information acquisition, state estimation, and learning in the context of CPSs by adopting an Event-

based Estimation (EBE) strategy, where information transfer is performed only in occurrence of

specific events identified via the localized triggering mechanisms. In particular, the thesis aims to

address the following identified drawbacks of the existing EBE methodologies: (i) At one hand,

while EBE using Gaussian-based approximations of the event-triggered posterior has been fairly

investigated, application of non-linear, non-Gaussian filtering using particle filters is still in its in-

fancy, and; (ii) On the other hand, the common assumption in the existing EBE strategies is having

a binary (idle and event) decision process where during idle epochs, the sensor holds on to its lo-

cal measurements while during the event epochs measurement communication happens. Although,

binary event-based transfer of measurements potentially reduces the communication overhead, still

communicating raw measurements during all the event instances could be very costly. To address

the aforementioned shortcomings of existing EBE methodologies, first an intuitively pleasing event-

based particle filtering (EBPF) framework is proposed for centralized, hierarchical, and distributed
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state estimation architectures. Furthermore, a novel ternary event-triggering framework, referred to

as the TEB-PF, is proposed by introducing the ternary event-triggering (TET) mechanism coupled

with a non-Gaussian fusion strategy that jointly incorporates hybrid measurements within the par-

ticle filtering framework. Instead of using a binary decision criteria, the proposed TET mechanism

uses three local decision cases resulting in set-valued, quantized, and point-valued measurements.

Due to joint utilization of quantized and set-valued measurements in addition to the point-valued

ones, the proposed TEB-PF simultaneously reduces the communication overhead, in comparison

to its binary triggering counterparts, while also improves the estimation accuracy especially in low

communication rates.
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Chapter 1

Thesis Introduction and Overview

With recent advancements in sensor technologies and significant improvements in communi-

cation and networking solutions, the amount of sensory data collected via different modalities is

exploding. Efficient and real-time processing of such large amounts of sensory signals play an

indispensable role in the technological advancements of our daily lives. The main focus of this

thesis is on information acquisition, state estimation, and learning in the context of cyber-physical

systems (CPSs) [1] which are engineering systems with integrated computational and communi-

cation capabilities that interact with humans through the cyber space. Efficient usage of available

resources (communication, computation, bandwidth and energy) is a pre-requisite for productive

operation of CPSs. Besides, such systems typically consist of both wireless and wired sensor/agent

networks with different capacity/reliability levels where the emphasis is on real-time operations

while sensing and processing tasks are performed distributively. A significant challenge in making

distributed monitoring in CPSs a reality is data collection from geographically distributed sensors

in an adaptive and intelligent fashion. To accommodate these critical aspects of CPSs, the the-

sis adopts “event-based” signal processing methodology where in order to reduce the unnecessary

processing and communication overhead and to preserve valuable resources in CPSs, each sensor

transfers its measurements only in occurrence of specific events (asynchronously) identified using

a local event-triggering mechanism. In summary, the main objective of the thesis is to develop in-

novative event-based signal processing methodologies for real-time processing and inference from

large datasets in a computationally feasible manner.
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1.1 Cyber-Physical Systems (CPS)

The CPSs are typically considered as “smart” systems interacting with humans through several

mediums to expand the capabilities of the physical world through integration of communication,

computation, and control. Intuitively speaking, the CPSs can be seen as (wireless) networked sys-

tems equipped with numerous distributed, linked, and autonomously operated nodes being moni-

tored and controlled by computer-based algorithms within the cyber domain. In the other words,

physical component, computational processes, software components, and networking technologies

are deeply integrated into CPSs, each operating on a different scale.

At one hand, CPSs interacting with networks of physical and computational components includ-

ing design and development of next-generation airplanes [2], fully autonomous vehicles [3, 4], and

hybrid vehicles [5] to name a few. On the other hand, a branch of CPS referred to as human-in-the-

loop CPSs [6] are being investigated where brain signals are used to control physical objects and

provide futuristic smart services to potentially improve our quality of life from different aspects. In

the near future, it is expected that CPSs will touch every aspect of our world and will create unmis-

takable and significant changes to our lives. The rapid advancement of the internet has changed and

transformed our lives on how we interact with information. The interactions between the physical

world and humans through CPSs will be leading to further extend boundaries of the information

technology. We can not deny the vast impact of CPSs on the social structure, economy, and society

market, as CPSs represent a new generation of systems which combine computing and communi-

cation efficiencies with the physical and engineered systems. However, all these intriguing benefits

comes with a downside, i.e., the effect in the physical work is uncertain, therefore, we face several

challenges (translating to various research opportunities) within the CPSs [7].

Recent scientific strides of distributed signal processing techniques for CPSs [8–12] rapidly

becoming an inseparable part of our everyday lives. One example of these innovations is produc-

tion of small-sized and cheap electronic devices (sensors) of different modalities being capable of

measuring various physical characteristics including but not limited to, temperature, light intensity,

optical backscatter (OBS), fluorescence, and seismic activities. These evolving sensor technologies

are also capable of communicating within themselves and/or with other devices, therefore, they
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collect and store data for further processing if needed. These sensors can communicate their ob-

servations via wired as well as wireless means depending on the given scope of the application.

The networked systems are constructed/designed by incorporation of typically a large number of

such local processing nodes (sensors), resulting in creation of Sensor Networks (SN) and/or agent

networks (AN) [13], Robotic Networks [14], Camera Networks [15], and Networks of Unmanned

aerial vehicles (UAV) [16].

1.1.1 Advantages of Cyber Physical Systems

Advent of CPS introduces several advantages such as: (i) Making safe and more efficient sys-

tems; (ii) Allowing each agent (node) to work individually and collaborate locally to form a complex

system with new capabilities, and; (iii) Reducing the cost of building and operating these systems.

Furthermore, CPSs provide the following unique advantages:

(i) Human-Machine Interaction: A CPS creates a model between humans and the underlying

physical system. An important aspect of such a model is providing a venue for interaction,

modeling, and measurement of situational human consciousness of the system and the envi-

ronmental changes affecting different model parameters.

(ii) Quick Response Time: A CPS will increase response time and early detection of a failure.

Moreover, it facilitates proper utilization of resources such as bandwidth.

(iii) System Performance: By integration of several sensors with the available cyber infrastruc-

ture, CPSs can provide better performance in terms of feedback and auto redesign. Conse-

quently, they make systems more efficient and safer.

(iv) Deal with Uncertainty: Certainty is the process of providing proof that a design is valid and

trustworthy. CPSs can evolve and operate within a new and unreliable environment in an

adaptive fashion, therefore, cope with the underlying uncertainties.

(v) Flexibility and Scalability: One of the important aspects of the CPSs is potential integration

of cloud infrastructures with SNs/ANs. A CPS can provide more facilities than wireless

sensor networks (WSN) and cloud computing alone [17].
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1.1.2 Applications of Cyber Physical Systems

As stated previously, CPSs have penetrated several applications of significant engineering im-

portance including but not limited to the following categories:

(i) Smart Grid: CPSs monitor the conditions and care for the stability of transmission and dis-

tribution networks that connect end-users to the smart grid. Generally, it will control network

connectivity as well as operational aspects of power generation. This provides two-way com-

munication between the electricity grid and consumers.

(ii) Smart Transportation Systems: A road traffic-control CPS creates a physical cyber environ-

mental system built across vast geographical area to manmade bridges across the sea/rivers,

tunnels, high-risk sub-grade slope, and urban elevated bridges, to name a few. Such CPSs can

improve operational efficiency and safety levels of the road traffic system via incorporation

of a large number of advanced, distributed, and smart sensors.

(iii) Smart Learning Environments: CPSs can be used in a smart learning environment (SLE)

to collect sufficient information about the environment, transform measured data to informa-

tion/knowledge, and ultimately provide quick and useful services for the students, staffs and

the university. The SLE is posed to change the way people learn and work in universities [19].

(iv) Medical CPS: Health monitoring, collecting and processing diagnostic information is another

emerging domain for CPSs, referred to as the Medical CPS in brief. Integration of compu-

tations and control mechanisms with vast amount of medical data provides a fundamental

prerequisite for development of future health-care systems.

(v) Green Buildings: One of the major problems in today’s world is the Greenhouse effect [20].

The old buildings consume 70% of the electricity and produce/generate the greenhouse gases

which in turn increase the greenhouse effect. By incorporation of the CPS concept, zero net

energy goal can be achieved.

(vi) Aviation CyberPhysical Systems: Cyber-Physical Systems are used for Aeronautic appli-

cations such as flight test tools; Pilot-crew communications; Structure Health Monitoring;

In-flight tests, and flight landing [21].
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1.2 Event-based State Estimation in CPSs

The focus of this thesis is on state estimation in CPSs, where a single or several sensor nodes

are scattered across the system collecting observations on the behavior of the underlying state of

the physical phenomena under control. Sensor measurements are communicated to form an overall

estimate of the state of the system. In particular, scenarios are considered where local nodes coop-

eratively estimate certain parameters (or states) of the surrounding environment based on their local

measurements/observations. Cooperation is needed as local observations are individually insuffi-

cient for obtaining reliable estimates. Generally speaking, there are three main estimation architec-

tures for cooperation in CPSs as explained below:

(1) Centralized Estimation: Traditionally, state estimation is centralized where all the participat-

ing agents/nodes communicate their observations to the fusion centre (FC) which is a central

processing unit, and responsible for performing a predefined task (e.g., tracking a target). Im-

plementation of the centralized architecture is simple but is generally unscalable to add more

sensor nodes to the system. The main disadvantage of a centralized architecture is the case

where the FC breaks down (referred to as the single point of failure) resulting in the loss of all

sensory information. An additional complexity arises with a change in the network topology

requiring the routing tables to be redesigned adding to the complexity of this architecture.

(2) Hierarchical Estimation: In a hierarchical architecture, a subset of sensor nodes is associated

with a local processing node (local FC) to which local measurements from the associated

sensor nodes are transferred. Instead of sending raw observations, local processing nodes

communicate partial or fully processed data to the central FC. The overall performance of a

hierarchical architecture still depends on the FC to combine the local processed data into a

global state estimate.

(3) Distributed Estimation: In a distributed architecture, there is no global FC, therefore, the sen-

sors and the local processing nodes do not require global knowledge of the network topology.

Furthermore, each local processing node collects data from the sensors in its communication

range and exchanges data only with other local processing nodes in its local neighbourhood.
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Such a distributed architecture offers the following three advantages over its counterparts:

(i) Each local node only knows the connections to its immediate neighboring nodes, there-

fore, global knowledge of the network topology is not needed locally.

(ii) Communication occurs on a node-to-node basis within local neighbourhoods.

(iii) Fusion occurs locally and the successful operation of the network is not dependent on

implementation of a global FC.

Independent of the architecture used for cooperation within a CPS, there exist an urgent need to

efficiently use valuable resources in CPSs. In other words, it is common in distributed estimation

algorithms that agents have a limited bit budget for communication [22–25]. Traditionally, quanti-

zation has been viewed as a fundamental element in this regard for saving bandwidth to reduce the

energy consumption which is related to the amount of data transmitted. At one extreme, harsh quan-

tization is introduced for example in Reference [22] where only one bit is communicated (based on

the sign of innovation). Emergence of CPS has further increased this urgency to reduce local bit

budget of the sensor nodes resulting in a great surge of interest for development of Event-based Es-

timation (EBE) Methodologies [26–32]. Early research in this field [33,34] was based on the send-

on-delta (SOD) triggering where the transmission is performed only when the difference between

the current measurement and the previously transmitted one is greater than a pre-defined thresh-

old. Alternative triggering mechanisms were recently proposed such as innovation-based [35, 36],

variance-based [37], KullbackLeibler divergence-based [38] and information-based [8].

This thesis aims to further advance the field of EBE. In particular, the following three CPS

application domains are the main motivation behind the EBE research performed in this thesis:

(i) Underwater Wireless Sensor Networks (UWSN): First motivating practical application for

reducing the number of communicated bits, is the UWSN technologies [39]. Underwater

communications suffer from limited bandwidth due to the temporal and spatial variability of

channels. A limited bandwidth leads to low bit rates, therefore, the data-efficiency of UWSNs

can be improved by reducing the length of data packets transmitted from the sensor to the

FC. In this domain, event-based estimation mechanisms improve data-efficiency by using a

combination of different transmission scenarios.
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(ii) Autonomous Driving: Recent advances in the application of signal processing for environ-

mental perception pave the way for development of fully automated vehicles [40]. Building

a truly autonomous system, however, requires sophisticated self-assessment capabilities in

order to be fail-operational (i.e., continue a safe operation) in all scenarios. Autonomous

vehicles must therefore possess knowledge of (formal) boundaries of their actions to avoid

catastrophic effects, which is achieved through distributed and collaborative state estimation.

In order to meet the complex requirements of autonomous vehicles, communication overhead

needs to be minimized, this is where event-based solutions can play a critical role.

(iii) Self-Awareness: Self-awareness refers to a system’s capability to recognize its own state,

possible actions, and the result of these actions on the state of the overall system and on the

environment. However, self-awareness mechanisms must be considered in combination with

all other local and global processing tasks in order to have a coherent self-aware system. This

can not be achieved without cooperation with the outer world (e.g., neighbouring agents or

processing units) to avoid conflicting decisions or even catastrophic effects. EBE is, therefore,

a critical component in making a local agent self-aware.

The thesis performs a fundamental assessment on the response of estimation algorithms (centralized,

hierarchical, and distributed) receiving event sampled measurements. Specially, the focus is on the

following research problems:

(i) It is common in EBE literature to consider a binary decision criteria, i.e., a sensor shares or

holds on to its local measurements. In practical scenarios such a binary transmission mecha-

nism will result in loss of communication resources;

(ii) In absence of an observation (idle mode), the FC can incorporate the information regard-

ing the sensor’s triggering mechanism as side information, which results in a hybrid estima-

tion problem with point and set-valued observations. In such scenarios, the posterior will be

non-Gaussian requiring nonlinear filtering approaches, however, application of such filtering

methodologies in this area is still in its infancy, and;

(iii) Event-based estimation is mainly developed for single sensor scenarios. Hierarchical and

7



distributed triggering mechanisms based on diffusive strategies have not yet been investigated

thoroughly in this context.

To summarize, event-based signal processing for distributed state estimation scenarios in CPSs and

utilization of advanced non-linear filtering in this context are still in their infancy. This thesis focuses

on potential solutions to address this gap and the above mentioned challenges.

1.3 Thesis Contributions

Inspired by the stated issues of EBE in CPSs, I have made a number of contributions [41–45]

during my thesis research work as briefly outlined below:

(1) Event-Based State Estimation with Joint Point and Set-Valued Measurements: Three

EBE methodologies are proposed for centralized, hierarchical, and distributed estimation ar-

chitectures as briefly described below:

• Event-based Particle Filtering with Joint Point and Set-valued Measurements (Cen-

tralized Architecture) [41]: An intuitively pleasing event-based particle filtering (EBPF)

framework is proposed for state estimation in CPSs with power constraints at the sensor

side. An open-loop estimation (i.e., no feedback communication is incorporated from

the FC to the local sensor) and event-based architecture is considered. Point-valued

measurements are incorporated in the estimation recursion via a conventional particle

filter formulation, while set-valued measurements are incorporated by evaluating the

probability that the unknown observation belongs to the event-triggering set based on

the estimators particles which is then used to update the corresponding particle weights.

• Multi-sensor EBE via Information-based Triggering (Hierarchical Architecture) [42]:

By considering the distributed resource management problem, a hierarchical EBE sce-

nario is considered where the events are identified using the information-based trigger-

ing mechanism without incorporation of a feedback from the FC and/or implementation

of a local filter at the sensor level. A multi-sensor triggering approach is proposed based

on the projection of each local observation into the state-space which corresponds to the
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achievable gain in the sensor’s information state vector.

• Event-Triggered Diffusion Particle Filter (Distributed Architecture) [43]: The pro-

posed EBE approaches are modified and extended to remove their dependency on the

FC. In this regard, an event-triggered distributed state estimation via diffusion strate-

gies (ET/DPF) is proposed, which is a systematic distributed state estimation algorithm

that jointly incorporates point and set-valued measurements within the particle filtering

framework.

(2) Ternary EBE with Joint Point, Quantized, and Set-Valued Measurements [44]: A novel

ternary event-based particle filtering (TEB-PF) framework is proposed by introducing the

ternary event-triggering (TET) mechanism coupled with a non-Gaussian fusion strategy that

jointly incorporates point-valued, quantized, and set-valued measurements. The proposed

TEB-PF simultaneously reduces the communication overhead, in comparison to its binary

triggering counterparts, while also improves the estimation accuracy especially in low com-

munication rates.

• Designing Optimal Thresholds for TET Mechanism via Multi Objective Particle

Swarm Optimizer [45]: To complete our previous work on ternary EBE, a novel multi-

objective approach is proposed for optimizing the threshold values used via the TET

mechanism.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 1 provides an introduction on the research area of this thesis followed by a brief

overview of the reminder of the thesis.

• Chapter 2 provides an introduction to the EBE problem. The required background as the

bases for the reminder of the thesis will also be presented in this chapter including a brief

introduction on Kalman filtering (KF) and Particle filtering (PF).
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• Chapter 3 considers the problem of event-based PF for centralized, hierarchical, and dis-

tributed architectures. Initially, the centralized approach is considered based on a single sen-

sor scenario. Then, extension to multi-sensor hierarchal setting is developed. Finally, fully

distributed scenario is discussed.

• Chapter 4 introduces our proposed Ternary EBE mechanism together with the optimal quantization-

based target tracking scheme, and explains how particle swarm optimization is utilized to

obtain the optimal thresholds for the TET mechanism.

• Chapter 5 concludes the thesis and explains some directions for future research work.
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Chapter 2

Event-based State Estimation

Statistical signal processing is concerned with situations where the values of unknown param-

eters need to be evaluated from observations made under a state of uncertainty. The overall goal is

to provide a rational framework for dealing with such situations. The Bayesian approach, the main

theme of this thesis, is a well-known framework of formulating and dealing with such statistical

estimation problems. The literature on Bayesian estimation is vast, therefore, in this chapter, I re-

strict myself to common approaches such as the KF, and Sequential Monte Carlo methods (the PF).

Traditionally, these Bayesian approaches were developed for a centralized architecture (Fig. 2.1)

based on time-driven transmission schemes (in contrary to event-based schemes) with a FC being

responsible for collecting observations from across the CPS to compute the overall state estimates.

Recent developments in hardware and advances in communication have paved the way for practical

distributed implementations of the PF for an arbitrary deployed nonlinear AN/SN within the CPS. In

this chapter, I start by formulating the EBE problem, which is the main theme of this thesis followed

by introducing the basics of Bayesian recursive estimation. Finally, a brief presentation of the KF

and PF as two Bayesian estimators for linear and non-linear systems, respectively, are included.

2.1 Event-based State Estimation: Problem Formulation

The KF [46] is considered as the classical state estimation approach for state estimation in

AN/SN systems due its simple and efficient sequential formulation. In a conventional KF-based
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(iii) The channel bandwidth is limited, another barrier in implementing time-driven distributed

estimation algorithms such as the conventional KF. In other words, limited channel bandwidth

calls for alternative transmission and scheduling schemes [49–51] other than the conventional

time-driven methodology.

These issues have resulted in a recent surge of interest in developing intelligent transmission,

scheduling, and estimation schemes [26–31, 49–51] to reduce the communication overhead of sen-

sors in order to increase their practical applicability by improving their energy efficiency.

Recent solution methodologies developed to reduce the aforementioned extra communication

overhead, associated with distributed estimation, can be generally classified into:

(a) Offline scheduling schemes [52,53], where the transmission schedule is designed in advance

of employment.

(b) Event-based estimation (EBE) Methodologies [26–32], where communication of sensor in-

formation is only triggered once the system meets a specific condition, which is identified

using a triggering mechanism at the sensor level based on real-time local observations.

While it is simpler to impalement algorithms belonging to the former category, a priori information

regarding the physical system is required and their performance is typically unacceptable in practice,

especially in hostile environments where the characteristics of the system constantly changes. This

resulted in a recent surge of interest in designing/developing event-based implementations as they

are capable of providing the possibility of maintaining the required estimation performance under

strict communication constraints.

The event-based concept emerged by the seminal work of Astrom and Bernhardsson [54] where

it was shown that Lebesgue sampling is superior for state estimation purposes in some dynamical

systems. References [33,34] are among the early event-based methodologies and proposed the send-

on-delta (SOD) triggering mechanism where the transmission is triggered only when the difference

between the current measurement and the previously transmitted one is greater than a pre-defined

threshold (delta). In such event-based estimation scenarios and in the absence of an observation

(i.e., the triggering conditions are not satisfied) the estimator still has access to side information,

i.e., the measurement belongs to the set characterized by the triggering mechanism. Incorporation
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of the side information from the event-triggering mechanism during non-event iterations results in

a hybrid update strategy, i.e., state estimation with joint set-valued and point-valued measurements

which is first considered in [32] and has recently been extended in Reference [26]. In this con-

text the mechanism used to trigger an event at the sensor side dictates the nature of the posterior

distribution at the remote estimator and consequently mandates the proper (possibly optimal) form

of the estimation/fusion algorithm at the FC. In the conventional time-driven scenario with point-

valued measurements the simple and efficient formulation of the KF comes from the Gaussianity of

conditional posterior distribution. In the hybrid scenarios described above, however, due to joint in-

corporation of set and point valued measurements, the posterior distribution becomes non-Gaussian,

therefore, the conventional KF is no longer applicable.

Next, we describe the state-space model of a CPS, which is used to develop the proposed EBE

solutions.

2.1.1 Single-Sensor Architecture

We consider an estimation problem where the physical component of the CPSs is modeled with

a set of nx state variables

x = [X1, X2, . . . , Xnx ]T , (2.1)

where nx is the number of state variables, and T denotes matrix transposition. The evolution of

states over time and the sensor observation model are represented by the following linear state-

space model

State Model:

xk = Fkxk−1 +wk (2.2)

Single-Sensor Observation Model:

zk = Hkxk + vk, (2.3)
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where k denotes iteration index; xk ∈ Rnx denotes the state vector for iteration/time k; zk ∈ Rnz

denotes the sensor’s measurement; functions Fk andHk represent the state and observation models,

respectively, and; terms wk and vk represent the uncertainties in the state and observation models,

respectively. It is assumed that wk and vk are mutually uncorrelated white Gaussian noises with

covariances Qk > 0, and Rk > 0. In the centralized architecture, we consider a single-sensor

architecture where the sensor communicates its observation zk to the FC which recursively update

the posterior distribution P (xk|Zk) based on the collective set of observations Zk = {z1, . . . , zk}

received up to and including the current iteration (k).

While the sensor has limited power sources, the FC has adequate power to perform complex

estimation algorithms. In the event-based communication/fusion framework, after making each

measurement the sensor decides on keeping or sending its observation to the remote estimator. The

local decisions are governed by a binary triggering criteria denoted by γk which is defined as follows

 γk = 1 : Event occurs, communication is triggered.

γk = 0 : Idle case, no communication.

Based on the above triggering mechanism, the collective set of observations up to and including

iteration k at the FC is defined as Z̃k = {γ1z1, . . . , γkzk}. Based on the above definitions, the

predicted state estimate (priory estimate) x̂k|k−1 and its corresponding covariance matrix at iteration

k are defined as

x̂k|k−1 , E{xk|Zk−1} (2.4)

and Pk|k−1 , E{(xk − x̂k|k−1)(xk − x̂k|k−1)T |Zk−1}, (2.5)

where T denotes transpose operator. Similarly, the posteriori estimate x̂k|k and its corresponding

error covariance matrix are defined as follows

x̂k|k , E{xk|Zk} (2.6)

and Pk|k , E{(xk − x̂k|k)(xk − x̂k|k)T |Zk}. (2.7)
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example, is connected to all other nodes, ℵ(l)
fuse = N−1. In such scenarios where more than one

sensor is used for distributed estimation, Eq. (2.2) remains the same because the underlying physical

system has not changed and only more sensors are utilized. On the other hand, Eq. (2.3) changes to

represent multi-agent estimation problem, i.e.,

Multi-Sensor Observation Model:
z

(1)
k

...

z
(N)
k


︸ ︷︷ ︸

zk

=


h

(1)T

k xk
...

h
(N)T

k xk


︸ ︷︷ ︸

Hkxk

+


v

(1)
k

...

v
(N)
k


︸ ︷︷ ︸
vk

, (2.8)

where z(l)
k denotes the local measurement made at node l, for (1 ≤ l ≤ N ), at time instant k. Terms

{ξ(·), v(l)(·)} are, respectively, the global and local possibly non-Gaussian uncertainties in the state

and observation models. MatrixHk represents the global observation dynamics.

The collective set of observations from sensor l up to and including iteration k is defined as

Z
(l)
k = {γ(l)

1 z
(l)
1 , . . . , γ

(l)
k z

(l)
k }. (2.9)

Finally, the overall collective set of observations up to and including iteration k is defined as follows

Zk = {Z(1)
k , . . . ,Z

(N)
k }. (2.10)

As sated previously in Chapter 1, in the autonomous and self-aware problem considered here, the

network is not fully connected2, besides, a local agent can not afford to communicate periodically

with its neighbours of the FC. This could be due to bandwidth, security, privacy, and/or power

considerations. Therefore, we consider an ET communication/fusion framework [8], where after

making each measurement the sensor decides on keeping or sharing its measurements with its local

neighbourhood. In an ET fusion architecture, local decisions at sensor node l is governed by a

2In a fully connected system (i.e., each agent has a direct connection to all the other agents), z(ℵ(l))
k = zk.
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binary triggering criteria denoted by γ(l)
k which is defined as follows

 γ
(l)
k = 1 : Event occurs, Sensor l communicates.

γ
(l)
k = 0 : Idle case, no communication from Sensor l.

Later on and in Section 3.5.3, we consider a fully distributed estimation architecture (Fig. 2.2)

where each agent shares its measurements within its local neighbourhood and recursively updates

the posterior distribution based on the collective set of neighbourhood measurements z(ℵ(l))
k ,

{z(i)
k : i ∈ ℵ(l)}, where ℵ(l) denotes the set of agents connected to agent l.

Finally, in estimation problems where the state dynamics of the CPS and/or the sensor model are

possibly non-linear/non-Gaussian, the overall state-space representation of the system is given by

State Model: xk = f
(
xk−1, ξk

)
(2.11)

Observation Model:


z

(1)
k

...

z
(N)
k


︸ ︷︷ ︸

zk

=


g(1)(xk)

...

g(N)(xk)


︸ ︷︷ ︸

g(xk)

+


ζ

(1)
k

...

ζ
(N)
k

 ,
︸ ︷︷ ︸

ζk

(2.12)

where ξ(·) and ζ(·) are, respectively, the global uncertainties in the process and observation models.

The state and observation functions f(·) and g(·) can possibly be non-linear, and vectors ξ(·) and

ζ(·) are not necessarily restricted to white Gaussian noise.

This completes the problem formulation. Next, I review the Bayesian recursive estimation

framework which is used to develop the proposed EBE methodologies.

2.2 Bayesian Estimation

In sequential Bayesian estimation, the evolution of the state variables (e.g., 3-dimensional or

2-dimensional location of a target within the surveillance area) is modeled as a first-order Markov

process, i.e., the current states only depends on its immediate previous values. In other words, due

to the Markovian property, the value of the state xk at time index k depends only on the value

of the immediately proceeding state xk−1 and is independent of both the observations and states
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proceeding (k − 1), i.e.,

P
(
xk|x0:k−1, z1: k−1

)
= P

(
xk|xk−1

)
. (2.13)

Conditional independence is typically considered within the Bayesian framework such that given

the current state values xk, the observation vector zk is conditionally independent of the prior states

variables, i.e.,

P
(
zk|x0:k

)
= P

(
zk|xk

)
. (2.14)

In the probabilistic form, the estimation problem formulated within the Bayesian framework is

equivalent to determining the conditional filtering density P (xk|z1:k, ), i.e., the probability of the

state variables for all time instances k > 0 given the received observations up to and including the

current iteration. Using the Bayes’ rule, the filtering density can be expressed as follows

P
(
xk|z1:k

)
=

Likelihood︷ ︸︸ ︷
P (zk|xk)

Predicted Density︷ ︸︸ ︷
P (xk|z1:k−1)

P (zk|z1:k−1)︸ ︷︷ ︸
Normalization

. (2.15)

The denominator P (zk|z1:k−1) in Eq. (2.15) is independent of the state variables and can be set as

the normalizing constant, i.e., P (zk|z1:k−1) = α. The second term P (xk|z1:k−1) in the numerator

of Eq. (2.15) can be expanded in terms of the state transition model P (xk|xk−1) and the filtering

density P (xk−1|zk−1) as follows

P
(
xk|z1: k−1

)
=

∫
P (xk|xk−1)× P (xk−1|z1: k−1)dxk−1. (2.16)

Eq. (2.15) is referred to as the observation update step, and Eq. (2.16) is referred to as the prediction

step. In the Bayesian framework, Eqs. (2.15)-(2.16) define a recursive solution to compute the

filtering density based on the following steps:

Step 1. Prediction Update: Given P (xk−1|z1: k−1) compute P (xk|z1: k−1).

Step 2. Normalization Update: Compute the normalization factor P (zk|z1:k−1).
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Step 3. Observation Update: Using the sensor model P (zk|xk) compute P (xk|z1:k).

One method, referred to as the maximum a posteriori (MAP) estimation, obtains the state estimate

x̂k by determining the value of xk that maximizes P (xk|z1: k). In multisensor Bayesian estimation,

several nodes make their own observations z(l)
k . The conditional probability P (z

(l)
k |xk) then serves

the role of a sensor model and can be utilized in the distributed implementation of the Bayesian

estimation algorithms. The multisensor form of Bayes’ rule requires conditional independence,

which results in the following global likelihood function

P
(
zk|xk

)
= P

(
z

(1)
k , . . . , z

(N)
k |xk

)
=

N∏
l=1

P
(
z

(l)
k |xk

)
. (2.17)

From Eq. (2.15), we have

P
(
xk|z

(1)
k , . . . , z

(N)
k

)
= αP

(
xk|z1: k−1

) N∏
l=1

P
(
z

(l)
k |xk

)
, (2.18)

where α , P (zk|z1:k−1) is the normalizing constant. Eq. (2.18) is known as the independent

likelihood pool. This indicates that the filtering density of state variablesxk based on the observation

of individual nodes is proportional to the multiplication of the prior density P (xk|z1: k−1) with

product of the individual likelihood functions P (z
(l)
k |xk) for each sensor node. Next, I review the

KF algorithm as a classical Bayesian estimator.

2.2.1 The Kalman Filter

The KF is an optimal estimator for a large class of problems and a very effective and useful

estimator for an even larger class of practical applications of significant importance, for instance,

a common application of the KF is for guidance, navigation, and control of vehicles, particularly

aircraft and spacecraft [55]. Furthermore, the KF is a widely applied concept in time series analysis

used in fields such as signal processing and econometrics. The KFs are one of the main topics

in the field of robotic motion planning and control, and they are sometimes included in trajectory

optimization. The KF also works for modeling the central nervous system’s control of movement.

Due to the time delay between issuing motor commands and receiving sensory feedback, use of
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the KF supports a realistic model for making estimates of the current state of the motor system and

issuing updated commands.

Kalman filtering, also known as linear quadratic estimation (LQE), is based on Bayesian esti-

mation framework described in Section 2.2 that uses a set of measurements observed by sensors

over time (containing statistical noise and other inaccuracies) and produces estimates of the un-

derlying state variables that tend to be more accurate than those based on measurements alone.

This is achieved by estimating a joint probability distribution over the variables for each timeframe.

Generally speaking, the KF works in a two-step process. In the prediction step, the KF produces

estimates of the current state variables, along with their uncertainties without incorporation of the

newly observed measurement. Once the outcome of the measurement (potentially corrupted with

some amount of error, including random noise) is observed, the predicted estimates are updated

using a weighted average, with more weight being given to estimates with higher certainty. The

algorithm is recursive in nature and can run in real time, using only the present input measurements,

the previously calculated state vector, and its uncertainty matrix (no additional past information is

required).

The KF provides the optimum state estimates in the minimum mean square error (MMSE) sense,

when the system and observation dynamics are linear, and the forcing terms and the observation

noise are Gaussian. In such scenarios and by considering the state-space model given by Eqs. (2.2)-

(2.3) and its statistical properties, the posterior follows a Gaussian distribution, i.e.,

P (xk|Zk) ∼ N (x̂k|k,Pk|k), (2.19)

where x̂k|k and Pk|k are defined in Eqs. (2.6)-(2.7), respectively. The KF provides the optimal

21



solution for this Gaussian case based on the following recursions

Prediction Step:

x̂k|k−1 = Fkx̂k−1|k−1 (2.20)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk. (2.21)

Update Step:

x̂k|k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
(2.22)

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1 (2.23)

Pk|k = Pk|k−1 −KkH
T
k Pk|k−1. (2.24)

This completes a brief introduction to the KFs for linear systems with Gaussian uncertainties. Next,

I review particle filtering for nonlinear/non-Gaussian estimation problems.

2.2.2 The Particle Filter

As stated previously, for nonlinear systems with non-Gaussian uncertainties no analytic solution

can be established in general and the KF, typically, provides poor approximations. Alternatively,

one can utilize numerical Sequential Monte Carlo (SMC) solutions, also referred to as the Particle

Filters (PFs) [10,12], as approximates to the Bayesian estimators. A PF is a recursive, Bayesian state

estimator that uses discrete particles to approximate the non-Gaussian posterior distribution. Each

particle represents a discrete state hypothesis. The set of all particles is used to help determining the

final state estimate. To implement the PF, first system parameters such as the number of particles, the

initial particle locations, and the statistical properties need to be specified. Besides, when a specific

motion and sensor model is used, their associated parameters in the state transition function and

measurement likelihood function need to be identified accordingly. Fig. 2.3 details the estimation

workfellow of the PF and shows an example of how to run a PF in a loop to recursively update the

state estimates.

More specifically, the PF is developed via the principle of sequential importance sampling
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Figure 2.3: Steps for Particle Filter.

(SIS) [56], a suboptimal technique for implementing Bayesian estimator recursively (Eqs. (2.15)-

(2.16)) through Monte Carlo simulations. Importance sampling is an approach to evaluate an inte-

gral, e.g.,

EP (x|z){h(x)} =

∫
h(x)P (x|z)dx (2.25)

where E{.} denotes expectation. A numeric way to compute E{h(x)} is to draw np random samples

X(i), for (1 ≤ i ≤ np), from the probability distribution P (x|z), evaluate the function h(x) at these

samples, and then compute their statistical mean as follows

E{h(x)} ≈
np∑
i=1

h(X(i))P (X(i)|z). (2.26)
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In practice, however, the distribution P (x|z) is either unavailable, or, it is difficult to obtain particles

from this distribution. Therefore, the particles are instead derived from a proposal distribution

q(x|z). Eq. (2.25) can then be written as a function of the proposal distribution as follows

E{h
(
x
)
} =

∫
h(x)

P (x|z)
q(x|z)︸ ︷︷ ︸
W

q(x|z)dx, (2.27)

where W is called the weight function. Eq. (2.26), therefore, changes to

E{h(x)} ≈
np∑
i=1

h(X(i))W (i)P (X(i)|z) (2.28)

with weights W (i) = P (X(i)|z)/q(X(i)|z), for (1 ≤ i ≤ np), associated to the vector particles X(i).

Given the predictive particles X(i)
k−1 from the previous filtering iteration, the values of the parti-

cles X(i)
k at time instant k are updated by generating random particles from the proposal distribution

q(x0: k|z1: k). For SIS, the proposal distribution is chosen such that it satisfies the following factor-

ization

q
(
x0:k|z1:k

)
= q
(
x0:k−1|z1:k−1

)
q
(
xk|x1:k−1, z1:k

)
, (2.29)

then one can obtain particles X(i)
0 : k ∼ q

(
x0: k|z1: k

)
by augmenting each of the existing samples

X(i)
0 : k−1 ∼ q

(
x0: k−1|z1: k−1

)
with the new particles generated as follows

Prediction Step: X(i)
k ∼ q

(
xk|x0: k−1, z1: k

)
. (2.30)

The next step is to update the weights as follows

Observation Update Step: W
(i)
k ∝W

(i)
k−1

P
(
zk|X

(i)
k

)
P
(
X(i)
k |X

(i)
k−1

)
q
(
X(i)
k |X

(i)
0:k−1, z1:k

) , (2.31)

where notation ∝ stands for the proportional sign, which changes to an equality with the introduc-

tion of a constant. The accuracy of this importance sampling approximation depends on how close

the proposal distribution is to the true posterior distribution. The optimal choice [57] for the proposal
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distribution that minimizes the variance of importance weights is the filtering density conditioned

upon x0:k−1 and z1:k, i.e.,

q
(
xk|x0:k−1, z1:k

)
= P

(
xk|x0:k−1, z1:k

)
. (2.32)

Because of the difficulty in sampling Eq. (2.32), a common choice [57] for the proposal distribution

is the transition density, P (xk|xk−1), referred to as the sampling importance resampling (SIR) filter,

where the weights are pointwise evaluation of the likelihood function at the particle values, i.e.,

W
(i)
k ∝W

(i)
k−1P

(
zk|X

(i)
k

)
. (2.33)

If the weights W (i)
k are all equal from the previous iteration, then W (i)

k ∝ P (zk|X
(i)
k ). The like-

lihood function P (zk|X
(i)
k ) is derived from the observation equation (Eq. (2.12)). Finally and if

required, the overall filtering distribution of the state vector at iteration k − 1 can be expressed in

terms of the particles and their associated weights as

P (xk−1|z1:k−1) ≈
np∑
i=1

W
(i)
k−1δ

(
xk−1 − X(i)

k−1

)
, (2.34)

where δ(·) denotes the Dirac delta function. This completes the introduction of the PF.

2.3 Conclusion

In this Chapter, the problem of EBE in CPSs is formulated initially starting with single-sensor

linear systems to multi-sensor hierarchical systems and finally to fully distributed systems. The

basics of Bayesian estimation approaches were then reviewed as the required background material.

The centralized Bayesian estimation framework were introduced together with a brief introduction

to Kalman filtering and Particle filtering as two linear and non-linear Bayesian estimators.
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Chapter 3

Event-based Particle Filtering:

Centralized, Hierarchical, & Distributed

In this chapter and motivated by recent and rapid growth of CPSs and the critical necessity for

preserving restricted communication resources, we develop a systematic and intuitively pleasing

EBE framework which jointly incorporates point and set-valued measurements within the parti-

cle filtering framework. In this chapter, an open-loop event-based topology is considered, where

each sensor transfers its measurements to the FC only in the occurrence of specific events (asyn-

chronously). Events are identified using local triggering mechanisms without incorporation of a

feedback from the FC and/or implementation of a local filter at the sensor level. First, in Sec-

tion 3.1, by considering a single-sensor estimation architecture, we develop the event-based particle

filter (EBPF) framework. The EBPF incorporates point-valued measurements in the estimation

recursion via a conventional particle filter formulation, while set-valued measurements are incor-

porated by developing an observation update step similar in nature to quantized particle filtering

approach. More specifically, in the absence of an observation (i.e., having a set-valued measure-

ment), the proposed EBPF evaluates the probability that the unknown observation belongs to the

event-triggering set based on its particles, which is then used to update the corresponding particle

weights. The Single-Sensor EBPF is then extended to a hierarchal architecture in Section 3.2, where

several remotely operated sensors communicate their measurements to the FC in an event-based
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fashion. Finally, in Section 3.3 a distributed architecture is considered without incorporation of a

FC. For a distributed architecture, an event-triggered diffusive particle filter (ET/DPF) framework

is proposed where a modified version of diffusive strategies [58] is utilized to achieve cooperation

among distributed agents.

3.1 Single-Sensor Event-based Particle Filtering

In this section, an EBE framework is developed for state estimation problems where a remote

sensor communicates its measurements to the FC in an event-based fashion, and the non-linear

estimator, resided at the FC, jointly incorporates point and set-valued measurements to estimate

the non-Gaussian posterior distribution. To overcome non-Gaussianity of the posterior distribution,

some efforts have been recently considered specially by imposing a Gaussian assumption on the

posterior distribution, e.g., using single Gaussian approximation [26, 27], Gaussian sum approxi-

mation [28], and non-linear filtering scenarios [29]. However, while Gaussian-based approximation

of the event-based posterior has been investigated extensively, application of non-Gaussian filtering

using particle filters [10–12] is still in its infancy. To the best of our knowledge, only very re-

cently, EBE using non-Gaussian particle filter approximation is considered in [30] and [31], where

in the latter simply the number of particles belonging to the triggering set is used to update particle

weights, while the former uses stochastic triggering [59] which results in having a Gaussian pos-

terior. This chapter will addresses this gap. In particular, we propose a systematic and intuitively

pleasing mechanism to jointly incorporate point and set-valued measurements within the particle

filter framework. More specifically, we capitalize on the fact that in particle filtering framework the

observations’s nature (being point or set-valued) will mainly affect the likelihood function which

is used to update each particle’s weight. In the presence of an observation (point-valued measure-

ments), the likelihood function can exactly be evaluated for each particle. In the absence of an

observation (set-valued measurement case), the probability of the unknown observations belongs to

the event-triggering set will be evaluated by the proposed EBPF based on its particles which is then

used to update the corresponding particle weights. Intuitively speaking, the proposed EBPF utilizes
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Figure 3.1: Block diagram of the open-loop event-based estimation architecture.

the set-valued information similar in nature to the way that particle filter utilizes quantized observa-

tions [60–62]. In the other words, point-valued measurements are incorporated in the estimation via

a conventional particle filter while set-valued measurements are incorporated in the state estimates

using a filter similar in nature to quantized particle filter.

3.1.1 Problem Formulation

The EBPF framework is developed by considering an estimation problem represented by the

linear state-space model given by Eqs. (2.2)-(2.3). Furthermore, a single-sensor estimation archi-

tecture (Fig. 3.1) is considered where a sensor communicates its observation zk to the FC which

recursively update the posterior distribution P (xk|Zk) based on the collective set of observations

Zk = {z1, . . . , zk} received up to and including the current iteration (k). As stated previously, by

considering the state-space model given by Eqs. (2.2)-(2.3) and its statistical properties, the poste-

rior follows a Gaussian distribution, i.e. .

P (xk|Zk) ∼ N (x̂k|k,Pk|k) (3.1)

with x̂k|k = E{xk|Zk}, (3.2)

and Pk|k = E{(xk − x̂k|k)(xk − x̂Tk|k)}. (3.3)

The KF (Eqs. (2.20)-(2.24)) provides the optimal solution for this Gaussian case. While the sensor

has limited power sources, the FC has adequate power to perform complex estimation algorithms.

In the event-based communication/fusion framework, after making each measurement the sensor

decides on keeping or sending its observation to the remote estimator. The local decisions are
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governed by a binary triggering criteria denoted by γk which is defined as follows

 γk = 1 : Event occurs, communication is triggered.

γk = 0 : Idle case, no communication.

Based on the above triggering mechanism, the collective set of observations up to and including

iteration k at the FC is defined as Z̃k = {γ1z1, . . . , γkzk}. When the event-triggering condition is

satisfied (i.e., γk = 1), the exact value of the sensor measurement zk is known at the FC, referred

to as “point-valued observation information”. On the other hand, when the event-triggering con-

dition is violated (i.e., γk = 0), some information contained in the event-triggering sets is known

to the estimator instead, referred to as “set-valued information”. The main issue here comes from

the non-Gaussianity of the a posteriori distribution due to joint incorporation of point and set-valued

measurements, i.e., P (x|Z̃k) is no longer follows a Gaussian distribution. Next, we present the pro-

posed EBPF implementation which systematically uses point and set-valued observation to perform

the estimation task.

3.1.2 The EBPF Framework

Without loss of generality and for simplicity of the presentation, we consider the practical

“Send-on-Delta (SOD)” triggering criteria/condition [33] for development of the EBPF. In an open-

loop scenario, in order to decide whether or not to send new measurements, the sensor computes the

distance between its current measurement and the previously transmitted measurement based on the

following event-triggering schedule

γk =

 1, if |zk − zτk | ≥ ∆

0, otherwise,
, (3.4)

where τk denotes the time of last communication from the sensor to the FC, and ∆ denotes the

triggering threshold. Based on the above triggering mechanism, we define the hybrid observation
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vector as Yk = {y1,y2, . . . ,yk} where

yk =

 zk if γ = 1

{zk : zk ∈ (zτk −∆, zτk + ∆)} if γ = 0
.

As stated previously, the posterior distribution P (xk|Yk) based on collective set of hybrid obser-

vations is no longer Gaussian, eliminating the application of linear filters such as the KF. In such a

non-Gaussian scenario, the optimal Bayesian filtering recursion for iteration k is given by

P (xk|Yk) =
P (yk|xk)P (xk|Yk−1)

P (yk|Yk−1)
, (3.5)

where

P (xk|Yk−1) =

∫
P (xk−1|Yk−1)f(xk|xk−1)dxk−1. (3.6)

In order to compute the non-Gaussian posterior distribution given by Eq. (3.5) jointly based on point

and set-valued measurements, we develop the EBPF which approximates the filtering distribution

P (xk|Yk) using a set of samples (particles) {X(i)
k }

np
i=1 derived from a proposal distribution q(xk|Yk)

with normalized weights W (i)
k =

P (X(i)
k |Yk)

q(X(i)
k |Yk)

associated with the vector particles. Note that np

denotes the number of particles used by the filter. The EBPF implements the filtering recursions by

propagating the particles X(i)
k and associated weights W (i)

k , (1 ≤ i ≤ np), as follows

X(i)
k ∼ q(X(i)

k |X
(i)
k−1,Yk−1) (3.7)

W
(i)
k ∝ W

(i)
k−1

P (yk|X
(i)
k )P (X(i)

k |X
(i)
k−1)

q(X(i)
k |X

(i)
k−1,Yk)

. (3.8)

Consequently, the EBPF computes a particle-based approximation of the conditional posterior p(xk|Yk)

as follows

p(xk|Yk) =

np∑
i=1

W
(i)
k δ
(
xk − X(i)

k

)
. (3.9)
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The minimum mean square error (MMSE) estimate at iteration (k ≥ 1) is defined as the expected

value of the posterior distribution P (xk|Yk), i.e.,

x̂k|k , E{xk|Yk}, (3.10)

and Pk|k , E{(xk − x̂k|k)(xk − x̂k|k)T |Yk}. (3.11)

The EBPF computes the state estimate and its associated covariance matrix based on the particles

as follows

x̂k|k =
1

np

np∑
i=1

X(i)
k (3.12)

and Pk|k =
1

np

np∑
i=1

(
X(i)
k − x̂k|k

)(
X(i)
k − x̂k|k

)T
. (3.13)

The required terms for computing Eqs. (3.7)-(3.13) at each iteration is the particle set {X(i)
k ,W

(i)
k }

for which we need to define the proposal distribution and form P (yk|X
(i)
k ) to compute the weight

equation. The EBPF generates np random particles from the transitional density, i.e., X(i)
k ∼

P (xk|xk−1) which is considered as the conventional choice for the proposal distribution. Choice of

the transitional density as the proposal results in the weight update equation (Eq. (3.8)) to become

W
(i)
k ∝W

(i)
k−1P (yk|X

(i)
k ). (3.14)

The second step to implement the EBPF is to evaluate the weight update equation which depends

on whether or not the current sensor measurement has been communicated.

(i) Update based on Set-valued Measurements (γk = 0): In the absence of the sensor mea-

surement and based on the triggering mechanism defined in Eq. (3.4), the estimator has the

following side information

zk ∈ (zτk −∆, zτk + ∆), (3.15)

where zτk is the previously communicated observation. In this case, the likelihood function
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can be specified as follows

P
(
yk|xk, γk = 0

)
= P

(
zτk −∆ ≤ zk ≤ zτk + ∆

)
, (3.16)

which by substituting for zk from Eq. (2.3), we have

P
(
yk|xk, γk = 0

)
(3.17)

= P
(
zτk −∆ ≤Hkxk + vk ≤ zτk + ∆

)
= P

(
[zτk −∆−Hkxk] ≤ vk ≤ [zτk + ∆−Hkxk]

)
.

Note that in the third line of Eq. (3.17), we kept the noise in the middle and moved other terms

to the sides in order to be able to compute the likelihood function based on the probability

distribution of the noise. As the observation noise vk has a zero-mean Gaussian distribution

with varianceRk, i.e., zk ∼ N (0,Rk), the likelihood function P (yk|xk, γk = 0) is given

P (yk|xk, γk = 0) (3.18)

=
1√

2πRk

∫ zτ+∆−Hkxk

zτ−∆−Hkxk

exp

{
−t2

2Rk

}
dt

= Φ

(
zτ + ∆−Hkxk√

Rk

)
− Φ

(
zτ −∆−Hkxk√

Rk

)
︸ ︷︷ ︸

h(xk)

,

where Φ(·) is the cumulative Gaussian distribution with zero mean and variance 1 as follows

Φ(x) =
1√
2π

∫ ∞
x

exp
(
− t2

2

)
dt. (3.19)

This completes the computation of the likelihood function in idle scenarios (no transmission).

(ii) Update based on Point Measurements (γk = 1): In this case, the estimator receives the sensor

measurement zk, therefore, the hybrid likelihood function P (yk|xk) reduces to the sensor
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Algorithm 1 EBPF IMPLEMENTATION

Input: {X(i)
k−1,W

(i)
k−1}

np
i=1, γk, and yk.

Output: {X(i)
k ,W

(i)
k }

np
i=1, x̂k|k and Pk|k.

EBPF updates its particle set, at iteration k, as follows:
S1. Predictive Particle Generation: Sample predicted particle from the proposal distribution i.e.,

X(i)
k ∼ P (xk|xk−1) .

S2. Hybrid Likelihood Computation:
• If γk = 0: Compute P (yk|X

(i)
k ) using Eq. (3.18).

• If γk = 1: Compute P (yk|X
(i)
k ) using Eq. (3.20).

S3. Weight Update: Compute the weights associated with X(i)
k using Eq. (3.14).

S4. State Estimates: Approximate the state estimate and its corresponding error covariance Pk|k
from {X(i)

k ,W
(i)
k }

np
i=1 using Eqs. (3.12)-(3.13).

S5. Resampling: In case of degeneracy, particles using the replacement approach [63].

likelihood function P (zk|xk). Consequently, the hybrid likelihood function is given by

P (yk|xk, γk = 1) = P (zk|xk) = Φ

(
zk −Hkxk√

Rk

)
. (3.20)

This complete the presentation of the proposed EBPF. Algorithm 1 outlines the steps of the EBPF

implementation.

3.2 Hierarchical Event-based State Estimation

The section proposes an event-triggered hierarchical state estimation framework (Fig. 3.2),

based on an open-loop architecture for multi-sensor systems with restricted local resources. Differ-

ent from Section 3.1, we focus on multi-sensor scenario with inclusion of a FC where the processing

(being the estimation) is only performed at the central node. We consider a multi – sensor estima-

tion topology [9, 10, 12] consisting of ( N > 1) sensors and a FC which collects the information

from all active sensors and performs the estimation task. We propose an efficient way to design

the local triggering mechanism without using local/global state estimates via a feedback from the

FC or implementing a local KF at the sensor level. We propose to use the information-state contri-

bution from each local observation for joint triggering and estimation update purposes. Intuitively

speaking, the information-state contribution is the projection of the observation on to the state space
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efficient fashion with reduced communication overhead. Next, we present information-based event-

triggering approach.

3.2.1 Information-based Event-Triggering

The proposed multi-sensor and event-triggered estimation framework developed here uses the

information-state contribution from a local observation and its associated information matrix for

joint triggering and fusion purposes. The proposed framework is developed based on ideas from

the information form of the KF, also referred to as inverse-covariance filter [64], which propagates

the information state vector, P−1
k|k x̂k|k, and the Fisher information matrix, P−1

k|k , instead of the state

estimate x̂k|k and its corresponding error covariance matrix Pk|k. Information form of the KF

reduces the computational complexity of update step of the KF especially for multi-sensor systems.

The update equations for the information filter are given by

Yk|k , P−1
k|k = P−1

k|k−1 + Ik (3.21)

ŷk|k , P−1
k|k x̂k|k = P−1

k|k−1x̂k|k−1 + ik, (3.22)

where, each observation contributes i(l)k to the information state and I(l)
k to the Fisher matrix, re-

spectively, defined as

i
(l)
k = [H

(l)
k ]T [R

(l)
k ]−1z

(l)
k (3.23)

and I(l)
k = [H

(l)
k ]T [R

(l)
k ]−1H

(l)
k . (3.24)

The prediction equations of the information filter are expressed in terms of ŷk|k−1 , P−1
k|k−1x̂k|k−1

and Yk|k−1 , P−1
k|k−1 as follows

ŷk|k−1 = (Inx×nx −Ωk)F
−T
k ŷk−1|k−1 (3.25)

Yk|k−1 = Mk −ΩkΣkΩ
T
k , (3.26)
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with Inx×nx denote a (nx × nx) identity matrix,

Mk = F−Tk Yk−1|k−1F
−1
k , (3.27)

Σk = Mk +Q−1, (3.28)

and Ωk = MkΣ
−1
k . (3.29)

The main advantage of the information filter over the KF is the relative simplicity of its update stage

for multi-sensor architectures. For N -sensor network, Eqs. (3.21)-(3.22) are reduced to

ŷk|k = ŷk|k−1 +
N∑
l=1

[H
(l)
k ]TR

(l)−1

k z
(l)
k , (3.30)

and Yk|k = Yk|k−1 +

N∑
l=1

H
(l)
k R

(l)−1

k [H
(l)
k ]T , (3.31)

In other words, the global information vector ik and its associated information matrix Ik can be

expressed in terms of their localized counterparts as

ik =

N∑
l=1

i
(l)
k (3.32)

and Ik =
N∑
l=1

I
(l)
k . (3.33)

From theoretical point of view for a linear Gaussian system, both the covariance-based KF and

information-based KF provide the optimum estimator but from implementation point of view they

are not the same. We design the information-based triggering mechanism based on the above quan-

tities as ik represents the new information content of a local measurement, while Ik provides the

expected information gain from making an observation based on a given sensor model.

Based on the above discussion, we define a modified form of local observation as follows

z̃
(l)
k = I

(l)
k xk + [H

(l)
k ]T [R

(l)
k ]−1v

(l)
k , (3.34)

where the equality is obtained by substituting z(l)
k from the observation model. The transformed
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observation noise ṽ(l)
k is zero mean with its covariance matrix equal to the local information matrix

I
(l)
k , i.e.,

ṽ
(l)
k ∼ N

(
0, I

(l)
k

)
. (3.35)

We note that similar to the information filter, communicating the information-form of the observa-

tions z̃k results in a simplified multi-sensor fusion at the remote estimator, i.e., the above fusion can

be extended to multi-sensor (N > 1) scenario by using the following replacements

z̃k =
N∑
l=1

z̃
(l)
k (3.36)

and Ik =
N∑
l=1

I
(l)
k , (3.37)

where z̃(l)
k and I(l)

k are, respectively, the local information vector and information matrix corre-

sponding to sensor l, for (1 ≤ l ≤ N ). After receiving new information z̃(l)
k form a local sensor, the

remote estimator only needs to sum it up with the previously received modified observations.

Based on the above developments, we design the multi-sensor triggering criteria-condition for

an open-loop scenario based on the above information-based modified observations. Because of

using the information form of local observations, neither a feedback from the remote estimator nor

a local KF co-located with the sensor is required in order to compute the triggering condition. In an

open-loop scenario, Sensor l, for (1 ≤ l ≤ N ), computes the information-based observation z̃(l)
k ∈

Rnx (which is the local information state vector i(l)k ), and the transformed observation model I(l)
k ∈

Rnz×nz (which is the information matrix I(l)
k and also is the covariance matrix of the transformed

measurement noise ṽ(l)
k ). Based on the information form of local observation and following [59],

we consider the following stochastic event-triggering scheduler

γ
(l)
k =

 0, ξ
(l)
k ≤ ϕ(z

(l)
k ,R

(l)
k ,H

(l)
k )

1, ξ
(l)
k > ϕ(z

(l)
k ,R

(l)
k ,H

(l)
k ),
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where ξ(l)
k is uniformly distributed between [0, 1], and function ϕ(z

(l)
k ,R

(l)
k ,H

(l)
k ) is defined as

ϕ(z
(l)
k ,R

(l)
k ,H

(l)
k ) , exp

(
− 1

2
[z̃

(l)
k ]TY(l)z̃

(l)
k

)
, (3.38)

where matrices Y(l) is pre-defined [59]. The reason for using stochastic triggering at this stage

is that it keeps the Gaussian property of the posterior distribution. Based on the above triggering

scheduler, the FC updates its estimates as follows

x̂k|k = x̂k|k−1 +Kk

[
N∑
l=1

{
γ

(l)
k z̃

(l)
k −

(
(1− γ(l)

k )I(l)(t) + γ
(l)
k I

(l)
k

)
x̂k|k−1

}]
(3.39)

Kk = Pk|k−1

( N∑
l=1

{
(1− γ(l)

k )[I(l)(t)]T + γ
(l)
k [I

(l)
k ]T

})
S−1
k (3.40)

Pk|k = Pk|k−1 −Kk

( N∑
l=1

{
(1− γ(l)

k )[I(l)(t)]T + γ
(l)
k [I

(l)
k ]T

})
Pk|k−1. (3.41)

Sk =
( N∑
l=1

{
(1− γ(l)

k )I(l)(t) + γ
(l)
k I

(l)
k

})
Pk|k−1

( N∑
l=1

{
(1− γ(l)

k )[I(l)(t)]T + γ
(l)
k [I

(l)
k ]T

})
+

N∑
l=1

{
(1− γ(l)

k )[I(l)(t)]T + γ
(l)
k [I

(l)
k ]T + (1− γ(l)

k )[Y(l)]−1
}
. (3.42)

Note that, term I(l)(t) is the previously known value of the information matrix corresponding to the

latest event iteration (t < k), i.e., γ(l)
t = 1. This completes the presentation of the hierarchical EBE

algorithm.

3.3 Distributed Event-based Particle Filtering

In this section, we couple the EBE frameworks developed in Sections 3.1 and 3.2 and propose

an event-triggered distributed state estimation via diffusion strategies (ET/DPF) without inclusion

of a FC. Developments of this section is motivated by recent advancements and developments in

large, distributed, autonomous, and self-aware systems such as autonomous vehicles and vehicle-

to-everything (V2X) technologies, where bandwidth, security, privacy, and/or power considerations

limit the number of information transfers between neighbouring agents. In the ET/DPF framework
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and in the absence of a measurement form a neighbouring node (i.e., having a set-valued measure-

ment), each local agent/node evaluates the probability that the unknown measurement belongs to

the event-triggering set based on its particles which is then used to update the corresponding parti-

cle weights. More specifically, in the proposed ET/DPF framework, each agent communicates its

sensor measurements only to its neighbouring nodes (no long distance or broadcast communication)

without inclusion of a FC, and only in an ET fashion (Fig. 2.2). Diffusion strategies [11, 65] are

used to fuse the ET information in a distributed fashion as these strategies are robust to changes

in the underlying network topology and outperform [58] consensus approaches for distributed esti-

mation in autonomous AN/SN systems. As stated previously, when the event-triggering condition

is satisfied (i.e., γ(l)
k = 1), the exact value of the sensor measurement zk is known at all its neigh-

bouring nodes, referred to as “point-valued observation information”. On the other hand, when

the ET condition is violated (i.e., γ(l)
k = 0), some information contained in the ET sets is known

to the neighbouring nodes instead, referred to as “set-valued information”. The main issue here

comes from the non-Gaussianity of the a posteriori distribution due to joint incorporation of point

and set-valued measurements, i.e., the posterior distribution no longer follows a Gaussian distribu-

tion. Next, we present the proposed ET/DPF implementation which systematically uses point and

set-valued observation to approximate this non-Gaussian ET posterior.

3.3.1 The ET/DPF Framework

In the proposed ET/DPF, each agent implements a localized filter to compute an intermediate

local estimate based on the ET measurements limited to its immediate neighbourhood. Local agents

then cooperate distributively in an ET fashion to improve the accuracy of their intermediate localized

state estimates. Below, we explain these steps in more details.

Local Filtering Step

The local filter at Node l computes an intermediate state estimate of the entire state vector xk by

running one localized Gaussian particle filter. In computing the localized state estimates, commu-

nication is limited to the local neighbourhoods and ET measurements. Similar to Section 3.2, SOD

triggering criteria/condition is used. In order to decide whether or not to send new measurements,
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Sensor l, for (1 ≤ l ≤ N ), computes the distance between its current local measurement and the

previously transmitted measurement based on the following ET schedule

γ
(l)
k =

 1, if |z(l)
k − z

(l)
τk | ≥ ∆(l)

0, otherwise,
, (3.43)

where τ (l)
k denotes the time of last communication from sensor l, and ∆(l) denotes its local trig-

gering threshold. Based on the above triggering mechanism, we define the following local hybrid

observation

z̃
(l)
k =


z

(l)
k if γ(l) = 1

{z(l)
k : z

(l)
k ∈ (z

(l)

τ
(l)
k

−∆(l), z
(l)

τ
(l)
k

+ ∆(l))} if γ(l) = 0

The collective set of ET measurements at node l is denoted by

y
(l)
k = {z̃(i)

k : i ∈ ℵ(l)}, (3.44)

and over time defined as Y (l)
k = {y(l)

1 , . . . ,y
(l)
k }. The local posterior distribution P (xk|Y

(l)
k ) based

on collective set of hybrid observations is no longer Gaussian, eliminating the application of linear

filters such as the KF. In such a non-Gaussian scenario, the optimal Bayesian filtering recursion

based on local information is given by

P (xk|Y
(l)
k ) =

P (yk|xk)P (xk|Y
(l)
k−1)

P (yk|Y
(l)
k−1)

, (3.45)

P (xk|Y
(l)
k−1) =

∫
P (xk−1|Y

(l)
k−1)f(xk|xk−1)dxk−1. (3.46)

In order to compute the non-Gaussian posterior distribution given by Eq. (3.45) jointly based on

point and set-valued measurements, each localized filter approximates the filtering distribution

P (xk|Y
(l)
k ) using a set of particles {X(l)

ki
}npi=1 derived from a proposal distribution q(xk|Y

(l)
k ), and
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computes their associated weights W (l)
ki

. The ET/DPF implements the filtering recursions by prop-

agating the particles X(l)
ki

and associated weights W (l)
ki

, (1 ≤ i ≤ np), as

X(l)
ki
∼ q(X(l)

ki
|X(l)
k−1i

,Y
(l)
k ) (3.47)

W
(l)
ki
∝ W

(l)
k−1i

P (y
(l)
k |X

(l)
ki

)P (X(l)
ki
|X(l)
k−1i

)

q(X(l)
ki
|X(l)
k−1i

,Y
(l)
k )

. (3.48)

Consequently, the local filter at Agent l computes a particle-based approximation of the local ET

conditional posterior as follows

P (xk|Y
(l)
k ) =

np∑
i=1

W
(l)
ki
δ
(
xk − X(l)

ki

)
. (3.49)

The local intermediate state estimate denoted byψ(l)
k at iteration (k) is defined as the expected value

of the posterior distribution, i.e.,

ψ
(l)
k = E

{
xk|Y

(l)
k

}
=

∫
xkp(xk|Y

(l)
k )dxk ≈

np∑
i=1

W
(l)
ki

X(l)
ki
. (3.50)

Node l fuses its local intermediate state estimate ψ(l)
k with those of its neighbouring nodes using

diffusive strategies to form its updated local state estimate, denoted by x̂(l)
k . Assume all local filters

are at steady-state at the end of iteration (k−1), i.e., node l, has computed x̂(l)
k and its corresponding

error covariance P (l)
k . At iteration k, the local filtering step is then completed at each node l,

(1 ≤ l ≤ N ) based on the following sub-steps:

Sub-Step L1. Observation Collection: Node l collects observations made in its neighbourhood to form y(l)
k ,

i.e., the collection of ET measurements available in the local neighbourhood ℵ(l) of node l.

Sub-Step L2. Local State Estimation: Node l computes the local state estimate ψ(l)
k by generating np par-

ticles from the transitional density p(xk|xk−1) and computes the mean µ̄(l)
k and covariance

Σ̄
(l)
k of its predictive particles as µ̄(l)

k = 1/np
∑np

i=1 X
(l)
ki

and Σ̄
(l)
k = 1/np

∑np
i=1

(
µ̄

(l)
k −

X(l)
ki

)(
µ̄

(l)
k −X(l)

ki

)T . Node l then updates the corresponding weights of its predictive particles
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as follows

W̃
(l)
ki

=
p
(
y

(l)
k |X

(l)
ki

) p(xk|xk−1)︷ ︸︸ ︷
N [X(l)

ki
; µ̄

(l)
k , Σ̄

(l)
k ]

π
(
X(l)
ki
|Y (l)
k

) , (3.51)

and normalize them as W (l)
ki

= W̃
(l)
ki
/
∑np

i=1 W̃
(l)
ki
. In Eq. (3.51), N [·] denotes the Gaussian

distribution with mean and covariance specified within its parenthesis. Further, agent l up-

dates its local intermediate state estimate and its corresponding covariance as

ψ
(l)
k =

np∑
i=1

W
(l)
ki

X(l)
ki

(3.52)

and P (l)
k =

np∑
i=1

W
(l)
ki

(
ψ

(l)
k − X(l)

ki

)(
ψ

(l)
k − X(l)

ki

)T
. (3.53)

Consequently, the localized filtering density at node l is approximated with a single Gaus-

sian as follows

P (xk|Y
(l)
k ) = N

(
xk;ψ

(l)
k ,P

(l)
k

)
. (3.54)

The final step to implement localized filters within the ET/DPF framework is to evaluate the ET

likelihood, P
(
y

(l)
k |X

(l)
ki

)
. For this purpose, we make the common assumption that measurements

are uncorrelated, i.e.,

P (y
(l)
k |xk) =

∏
j∈ℵ(l)

P (y
(j)
k |xk). (3.55)

Therefore, Agent l computes the likelihood function for each of its neighbouring nodes based on

one of the following two approaches.

(i) Update based on Set-valued Measurements (γ(j)
k = 0): In the absence of the sensor measure-

ment from agent j ∈ ℵ(l), and based on the triggering mechanism defined in Eq. (3.4), the

estimator at Node l has the following side information

z
(j)
k ∈ (z(j)

τk
−∆(j), z(j)

τk
+ ∆(j)), (3.56)
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where z(j)
τk is the previously communicated observation from node j. In this case, the likeli-

hood function can be specified as follows

P
(
y

(j)
k |xk, γ

(j)
k = 0

)
= P

(
z(j)
τk
−∆(j) ≤ z(j)

k ≤ z
(j)
τk

+ ∆(j)
)
, (3.57)

which by substituting from Eq. (2.3), we have

P
(
y

(j)
k |xk, γ

(j)
k = 0

)
(3.58)

= P
(
z(j)
τk
−∆(j) ≤ h(j)T

k xk + v
(j)
k ≤ z

(j)
τk

+ ∆(j)
)

= P
( [
z(j)
τk
−∆(j) − h(j)T

k xk

]
≤ v(j)

k ≤
[
z(j)
τk

+ ∆(j) − h(j)T

k xk

] )
.

Note that in the third line of Eq. (3.58), we kept the noise in the middle and moved other terms

to the sides in order to be able to compute the likelihood function based on the probability

distribution of the noise. As the observation noise v(j)
k has a zero-mean Gaussian distribution

with variance R(j)
k , the likelihood function reduces to

P (y
(j)
k |xk, γ

(j)
k = 0) (3.59)

=
1√

2πR
(j)
k

∫ z
(j)
τ +∆(j)−h(j)T

k xk

z
(j)
τ −∆(j)−h(j)T

k xk

exp

{
−t2

2R
(j)
k

}
dt

= Φ

z(j)
τ + ∆(j) − h(j)T

k xk√
R

(j)
k

− Φ

z(j)
τ −∆(j) − h(j)T

k xk√
R

(j)
k


︸ ︷︷ ︸

h(j)T (xk)

,

where Φ(·) is the cumulative Gaussian distribution with zero mean and variance 1. This

completes the computation of the likelihood function in idle scenarios (no transmission).

(ii) Update based on Point Measurements (γ(j)
k = 1): In this case, the estimator receives the

sensor measurement z(j)
k , therefore, the hybrid likelihood function P (y

(j)
k |xk) reduces to the
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sensor likelihood function P (z
(j)
k |xk). Consequently, the hybrid likelihood function is

P (y
(j)
k |xk, γ

(j)
k = 1) = P (z

(j)
k |xk) = Φ

z(j)
k − h

(j)T

k xk√
R

(j)
k

 . (3.60)

This complete the presentation of the localized filters of the ET/DPF. Next, we present the diffusive

fusion step where each node updates its local state estimates by collaborating with its neighbouring

nodes.

Diffusion Step

The second step is based on local collaboration, where Node l, (1 ≤ l ≤ N ), fuses its local

intermediate estimate ψ(l)
k with that of its neighbouring nodes as follows

x̂
(l)
k =

∑
j∈ℵ(l)

γ
(j)
k × α

(j,l)
k︸ ︷︷ ︸

β
(j,l)
k

×ψ(j)
k , (3.61)

such that if we collect the nonnegative weights β(j,i)
k into a N × N matrix Ak, the weights β(j,l)

k

satisfy the following properties: (i) β(j,l)
k ≥ 0; (ii) AT

k 1 = 1, and; (iii) β(j,l)
k = 0 if j /∈ ℵ(l) or

γ
(j)
k = 0. Term 1 is a vector of size N with all entries equal to one. These conditions imply that the

weights on the links arriving at a single node add up to one, which is equivalent to saying that the

matrix is left-stochastic. Moreover, if two nodes are not connected or an event is not triggered, then

their corresponding entry is zero. The ET diffusive matrix Ak can be designed using covariance

intersection [66] or updated adaptively as explained in [67]. A simple approach for choosing the ET

diffusion matrix is to assign a weigh to each node according to the cardinality of its neighbourhood

by considering the triggering variables. Through diffusive fusion, the filter implemented at node l,

(1 ≤ l ≤ N ), forms a Gaussian approximation of the posterior distribution as

p(xk|zk) = N
(
xk; x̂

(l)
k ,P

(l)
k

)
. (3.62)
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Note that, P (l)
k in Eq. (3.62) is not a representative of the covariance of the diffusive state estimate

x̂
(l)
k as the diffusion update is not performed on the covariance matrices.

3.4 Simulations

In this section, simulation experiments are developed to evaluate the performance of different

event-based estimation frameworks.

3.4.1 Evaluation of the Single-Sensor EBPF

In this sub-section, simulation experiments are developed to evaluate the performance of the

proposed EBPF (Section 3.1). Following the recent literature on event-based estimation [50], a

target tracking problem is considered where observations from a sensor are used to sequentially

estimate the state of the target denoted by xk consisting of its position and speed. Target’s dynamic

is given by

xk =

 0.8 1

0 0.95

xk−1 +wk, (3.63)

where

wk ∼ N

0,Q =

 0.1 0

0 0.1


 . (3.64)

The sensor periodically measures the position and speed of the target based on the following obser-

vation model

zk =

[
0.7 0.6

]
xk + vk. (3.65)

In this experiment, the observation noise variance is σ2
v = 0.01. The following results are computed

over Monte-Carlo (MC) simulations of 1000 runs. The object’s position and speed used in each

simulation run changes randomly to provide a fair experimental benchmark.
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Figure 3.3: The MSE comparison when ∆ = 1.2. (a) Position MSE. (b) Velocity MSE.
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Figure 3.4: Position MSE comparison over different values of ∆.

Furthermore, the following four estimators are implemented and compared for accuracy: (i) The

full-rate estimation based on KF where the sensor communicates its observation to the remote es-

timator every iteration; (ii) The full-rate estimation based on particle filter; (iii) Open-loop and

event-based KF, where SOD triggering is used, and; (iii) The proposed open-loop and event-based

estimation algorithm, where the triggering decisions at the sensor level are made based on SOD

mechanism and the fusion is performed by jointly incorporating set-valued and point-valued mea-

surements based on the proposed EBPF.

Fig. 3.3, illustrates the estimated mean-square errors (MSE) obtained from the four implemented

filters. In this experiment, the value of ∆ is set equal to 1.2. In the low communication rate
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scenario, it is observed that the proposed EBPF algorithm provides acceptable results and closely

follows its full-rate counterparts and shows significant improvements in comparison to its KF-based

counterpart. Fig. 3.4, shows the position MSE plots over varying values of ∆ which in turn results in

varying values of the communication rate. It is observed that the proposed EBPF algorithm provides

acceptable results in very low communication rates (high values of ∆) and closely follows its full-

rate counterparts in high communication rates. Besides, when the communication rate increases

(i.e., small values for ∆), the proposed event-based methodology approaches the full-rate estimator.

Finally, it is observed that the proposed EBPF provides significantly superior results in comparison

to its KF-based counterpart.

3.4.2 Evaluation of the Hierarchical EBE

In this sub-section, simulation experiments are developed to evaluate the performance of the

proposed multi-sensor and information-based triggering mechanism (Section 3.2). Following the

recent literature on event-based estimation, a target tracking problem is considered where N = 20

sensors are used to sequentially estimate the state of the target denoted by xk consisting of its

position and speed. Target’s dynamic is given by

xk =

 1 τ

0 1

xk−1 +

 τ2/2

τ

wk, (3.22)

where sampling time is selected as τ = 0.3 second, and the variance of the target acceleration is set

to 0.5. Fig. 3.5 (a) depicts the postilion of sensors and the target’s track. Each sensor periodically

measures the position and speed of the target based on the following observation model

z
(l)
k =

[
0.7 0.31

]
xk + v

(l)
k . (3.23)

In this experiment, the observation noise is considered to be state dependent such that the noise

variance σ2
vk

depends on the distance rk between the observer and target as follows

σ2
vk

= .001r2
k + 0.25rk + 0.0905. (3.24)
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Figure 3.5: (a) Target’s track and location of sensor nodes. (b) Position and velocity estimates over time
computed based on the proposed estimation algorithm when the communication rate between the sensors
and the FC averaged over all sensors and the MC runs is 0.35. (c) Monte Carlo simulations of 100 runs.
Position MSE plots over varying communication rates corresponding to the full-rate KF and the proposed
information-based triggering mechanism.

The following results are computed over MC simulations of 100 runs. The object’s position and

speed used in each simulation run changes randomly to provide a fair experimental benchmark.

Fig. 3.5 (b) illustrates the estimated target position and velocity when the proposed open-loop and

event-based estimation developed in Section 3.2.1 is used to estimate the targets’ state and the

triggering decisions at the sensor level are made based on the information vector. In this experiment,

the communication rate between the sensors and the FC averaged over all sensors and the MC runs

is 0.35. It is observed that the information-based triggering mechanism provides acceptable results

48



0 0.2 0.4 0.6 0.8 1 1.2
X-Coordinate

0

0.2

0.4

0.6

0.8

1

1.2

Y
-C

oo
rd

in
at

e 1
2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

(a)

0.6 1.2 1.8 2.8 3.8 4.8 5.8 6.8
Delta ( )

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Po
si

tio
n 

M
SE

 C
om

pa
ris

io
ns

True
Full-rate PF
Distributed ET/DPF

(b)

Figure 3.6: (a) Sensor placements. (b) Agent networks and connections. (c) Position MSE comparison over
different values of ∆(l).

in such a low communication rate scenario. Fig. 3.5 (c), shows the position mean-square error

(MSE) plots over varying values of the communication rate based on the proposed event-triggered

estimation algorithm and its full-rate counterpart. It is observed that the proposed information-based

triggering algorithm closely follows its full-rate counterpart. As the communication rate increases

to one, the proposed event-based methodology approaches the full-rate estimator.

3.4.3 Evaluation of the Distributed EBPF

In this sub-section, simulation experiments are developed, as proof-of-concept, to evaluate the

performance of the proposed ET/DPF (Section 3.3). Following the recent literature on ET estima-

tion [50], a tracking problem is considered where observations from an agent network of N = 20

nodes is used to sequentially estimate the state of the target denoted by xk consisting of its posi-

tion and speed. Sensors are distributed randomly in a square region and each sensor communicates

with its neighbours within a connectivity radius of
√

2 log(N)/N units. Target’s dynamic and mea-

surement models are given by Eqs. (3.63)-(3.65). The following results are computed over MC

simulations of 100 runs. The object’s position and speed used in each simulation run changes ran-

domly to provide a fair experimental benchmark. Furthermore, the following three estimators are

implemented and compared for accuracy: (i) The full-rate diffusion-based KF where each sensor
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communicates its measurements to its neighbouring nodes every iteration; (iii) Event-based dif-

fusive KF, where SOD triggering is used, and; (iii) The proposed ET/DPF algorithm, where the

triggering decisions at the sensor level are made based on SOD mechanism and the fusion is per-

formed distributively using diffusive strategies by jointly incorporating set-valued and point-valued

measurements.

A realization of the sensor placement is shown in Fig. 3.6 (a). Fig. 3.6 (b), shows the position

MSE plots over varying values of ∆(l) without inclusion of the KF-based curve for better clarity. It is

observed that the proposed ET/DPF algorithm provides acceptable results in very low communica-

tion rates (high values of ∆(l)) and closely follows its full-rate counterparts in high communication

rates. Besides, when the communication rate increases (i.e., small values for ∆(l)), the proposed

event-based methodology approaches the full-rate estimator.

3.5 Conclusion

In this section we proposed an EBPF framework for distributed state estimation in systems

with communication/power constraints at the sensor side. An event-based and open-loop estima-

tion architecture (i.e., no feedback communication is incorporated from the FC to local sensors) is

considered.

3.5.1 Concluding Remarks on Single-Sensor EBPF

In Section 3.1, a centralized architecture is considered based on a single remote sensor. Local

sensor uses practical SOD event triggering mechanism resulting in availability of side information

at the FC in the absence of an observation. Utilization of this side information results in estimation

with joint set-valued and point-valued measurements which consequently translates in to a non-

Gaussian state estimation problem. The proposed EBPF is a systematic and intuitively pleasing

non-Gaussian estimation algorithm which jointly incorporates point and set-valued measurements

within the particle filter framework by capitalizing on the fact that particle filters only require new

measurements to evaluate the likelihood function during the weight update step. In presence of an

observation (point-valued measurement), the likelihood function can exactly be evaluated for each
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particle. In the absence of an observation, the likelihood becomes the probability that the observa-

tion belongs to the triggering set which is derived in the thesis to utilize set-valued measurements

in the proposed EBPF framework.

3.5.2 Concluding Remarks on Hierarchical EBE

In Section 3.2, a hierarchical architecture is considered and a multi-sensor and information-

based event-triggering estimation framework is proposed. In the proposed multi-sensor and information-

based framework, a triggering mechanism is developed based on the projection of local observations

into the state-space which in turn is a measure of the achievable gain in the local information state

vector. Incorporation of the modified measurement model at the sensor level results in an event-

based information (inverse-covariance) filter at the FC. The event-triggered information filter im-

plemented at the FC is capable of fusing multi-sensor measurements in an adaptive and efficient

manner with reduced communication overhead.

3.5.3 Concluding Remarks on Distributed EBE

In Section 3.3, we proposed an event-triggered particle filter (ET/DPF) framework for dis-

tributed state estimation in autonomous agent-sensor systems without incorporation of a FC. Each

sensor uses practical SOD event triggering mechanism resulting in availability of side information at

its neighbouring nodes in the absence of an observation. Utilization of this side information results

in estimation with joint set-valued and point-valued measurements which consequently translates

in to a non-Gaussian state estimation problem. The proposed ET/DPF uses diffusion strategies for

distributed implementations.
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Chapter 4

Ternary Event-based State Estimation

The chapter proposes a novel ternary event-based particle filtering (TEB-PF) framework by in-

troducing the ternary event-triggering (TET) mechanism coupled with a non-Gaussian fusion strat-

egy that jointly incorporates point-valued, quantized, and set-valued measurements. In contrary to

the existing binary event-triggering solutions, the TEB-PF is a distributed state estimation architec-

ture where the remote sensor communicates its measurements to the estimator, resided at the FC, in

a ternary event-based fashion, i.e., holds on to its observation during idle epochs, transfers quantized

ones during the transitional epochs, and; only communicates raw observations during event epochs.

Due to joint utilization of quantized and set-valued measurements in addition to the point-valued

ones, the proposed TEB-PF simultaneously reduces the communication overhead, in comparison

to its binary triggering counterparts, while also improves the estimation accuracy especially in low

communication rates.

4.1 Problem Formulation

As stated previously, in the EBE approaches, measurements from a sensor to the estimator are

communicated only in occurrence of specific events identified based on a local triggering mecha-

nism implemented at the sensor level. The basic motivation behind development of EBE algorithms

is to reduce the communication overhead by avoiding periodic transfer of measurements. In this

chapter, we focus on an alternative solution with the goal to simultaneously address the following
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three potential shortcomings of recently developed EBE strategies:

(i) It is commonly assumed that during the event epochs, sensor communicates its raw mea-

surement. Although, EB transfer of measurements potentially reduces the communication

overhead, still communicating raw measurements during all the event instances could be very

costly;

(ii) Another common assumption in the EBE strategies is having a binary (idle and event) decision

process where during idle epochs, the sensor holds on to its local measurements while during

the event epochs measurement communication happens, and;

(iii) The EB posterior distribution is inherently non-Gaussian, it is expected that stochastic triggers

(proposed in part to cope with this non-Gaussian posterior) under-perform in comparison

to their deterministic counterparts as the side-information at the estimator side is not used

efficiently [8].

The chapter addresses these drawbacks and makes the following main contributions:

• A novel ternary event-triggering (TET) mechanism is proposed that instead of using a binary

decision criteria, uses three local decision cases resulting in set-valued, quantized, and point-

valued measurements, and;

• A systematic fusion mechanism is proposed to jointly incorporate ternary hybrid measure-

ments within the particle filtering framework.

The TEB-PF framework is developed by considering an estimation problem represented by the

linear state-space model given by Eqs. (2.2)-(2.3). When sensor’s observation zk is communicated

in an EB fashion (i.e., not at all iterations k > 1 and based on the senor’s triggering methodology),

the posterior distribution Pr(xk|{z1, . . . , zk}) becomes non-Gaussian. It is a common assumption

in the EBE literature (except our recent work in Chapter 3) to consider that the remote estimator

knows whether or not the received signal at its communication channel at each time is signal bearing

or not. We consider this case, referred to as the supervised EBE [8], because the main focus of this

chapter is on introduction of the TET mechanism and its particle-based fusion. Similar to the EBPF
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Figure 4.1: The TET mechanism.

and ET/DPF, here we consider the well-known and widely used supervised triggering criteria based

on the SOD concept, which is a deterministic scheduler where the transmission is triggered when the

difference between the new measurement and the previously transmitted one becomes greater than

a pre-defined threshold (denoted by ∆). The decision variable in the SOD approach is binary in the

sense that it translates to two modes (idle or event) and results in availability of set and point-valued

measurements. To the best of our knowledge, this is the case in all of the recently proposed EBE

algorithms [8, 26, 27, 30, 35–38, 59]. Next, we present the proposed TET mechanism, which is an

alternative and intuitively pleasing counterpart to such binary event-triggering schedulers. As will

be shown in the next section, incorporation of the TET mechanism, results in having access to three

decision levels, referred to as idle (Case 1), transitional (Case 2), and event (Case 3) epochs which in

turn provides three different information contents (point, quantized, and set-valued measurements).

4.2 The TEB-PF Framework

The TET mechanism, and its EB particle filtering fusion are, respectively, described below in

Sub-sections 4.2.1 and 4.2.2.

4.2.1 Ternary Event-Triggering (TET) Mechanism

As stated previously, the TET mechanism is a deterministic and ternary scheduler (i.e., there are

three decision levels instead of conventional binary decisions) and is similar in nature to the SOD
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concept. More specifically, in the TET mechanism, the sensor computes the distance between each

of its current observations and the previously transmitted ones, and decides based on the following

ternary criteria

γk =


0, if |zk − zτ | < ∆1

1, if ∆1 ≤ |zk − zτ | < ∆2

2, if |zk − zτ | ≥ ∆2

, (4.1)

where zτ denotes the observation value of the last transfer from the sensor to the FC, and ∆1

and ∆2 denote the two triggering thresholds identifying the ternary levels. The block diagram in

Fig. 4.1 illustrates the TET mechanism and transmission process of the sensor’s observation. At

each iteration, the TET first computes the triggering condition (TC) and then compares it with two

thresholds, resulting in three possible cases:

Case 1: Observation is discarded;

Case 2: Observation is quantized and then communicated to the FC, and;

Case 3: The TET communicates raw observation and also updates the buffer based on the

current sensor measurement (i.e., zτ is updated with the current observation value).

We define the resulting hybrid observation as follows

yk =



zk if γk = 2

z
(Q)
k ∧

{
zk : zk ∈ (zτ + ∆1, zτ + ∆2)⊕

zk ∈ (zτ −∆2, zτ −∆1)
}

if γk = 1

{zk : zk ∈ (zτ −∆1, zτ + ∆1)} if γk = 0

(4.2)

where symbols ∧, ⊕, and ∈ denote logical “and”, “xor”, and “set membership”, respectively.

Eq. (4.2) represents the information that is available at the FC at iteration (k) depending on the

triggering mechanism adopted at the sensor level. For example, when γk = 0, the FC does not
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receive any data at its communication channel, which means that the sensor has not transmitted at

this particular iteration. Absence of data at the FC results in a side information, i.e., the value of the

current sensor measurement belongs to the set (zτ −∆1, zτ + ∆1), this is referred to as set-valued

information. In other words, the FC does not know/use the exact value of zk when γk ∈ {0, 1}. The

TET mechanism results in the availability of the following hybrid measurements at the FC:

1. Set-Valued Information (γk = 0): As stated previously, in this case the FC does not know the

exact value of the current sensor observation but instead knows the set to which it belongs

based on the previously received observation (zτ ).

2. Joint Quantized and Set-Valued Information (γk = 1): Similar to the previous case, during

the transitional epochs, remote estimator does not know the exact value of current observation

(zk) but instead now has access to its quantized version (z(Q)
k ) together with the set over which

the quantization is performed. In this case, not only quantized information z(Q)
k is available at

the FC, but additional set-valued information is also available, i.e., the observation zk belongs

to either of the following two sets (zτ + ∆1, zτ + ∆2) or (zτ −∆2, zτ −∆1). In this case, the

quantization is performed around the previously communicated observation from the sensor

node to the FC (denoted by zτ ), which is already available at the FC, therefore, the interesting

point here is that there is no need for extra communication in this regard for transferring the

quantization point to the FC.

3. Point-Valued Information (γk = 2): The event-triggering condition is satisfied and the exact

value of the current sensor observation (zk) is known at the FC. The FC uses this exact value

instead of a substitute quantity to both update its buffer (similar to the triggering mechanism),

and to complete the update from prediction to estimation in the particle filter.

Such a TET mechanism has the potential to reduce the event epochs (reduce the communication of

raw measurements) which in turn reduces the communication overhead (achieved by using quan-

tized measurements) without compromising the accuracy. A very interesting and intuitively pleasing

feature of the proposed TET is availability of joint quantized and set-valued measurements which

can provide improved accuracy with lower number of quantization levels. As stated previously,

here we focused on supervised EBE [8], one difficulty may arise when an unsupervised EBE is
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considered. In this case, differentiating between the three event-triggered scenarios without extra

information could be more complicated than the case we considered in [8].

4.2.2 Event-based Particle Filters with TET

The posterior distribution Pr(xk|Yk) based on point, quantized, and set-valued measurements

(Yk = {y1,y2, . . . ,yk}) is no longer Gaussian, therefore, linear filters such as the KF are not appli-

cable. The proposed TEB-PF approximates Pr(xk|Yk) using a set of np particles {X(i)
k }

np
i=1 derived

from the transitional density, i.e., X(i)
k ∼ Pr(xk|xk−1) which is the conventional proposal distribu-

tion. This choice of the proposal results in the following weight update W (i)
k ∝W

(i)
k−1Pr(yk|X

(i)
k ),

which is the conventional weight update equation within the context of particle filtering [10, 63].

The key step to implement the TEB-PF is to evaluate the weight update equation separately based

on quantized, set-valued, and point-valued measurements. We capitalize on the fact that in particle

filtering [61,62], the observations’ nature (being point-valued, quantized, or set-valued) will mainly

affect the likelihood which is used to update each particle’s weight. In the presence of an obser-

vation (event case), the likelihood can exactly be evaluated for each particle. In the absence of an

observation (idle case), we evaluate the probability that the unknown measurement belongs to the

event-triggering set. In the transitional case, the TEB-PF combines quantized information with set-

valued information to evaluate the probability that the quantized observation belongs to the event

set.

Joint Update based on Set-valued and Quantized Measurements (γk = 1)

In this case, the sensor communicates a quantized version z(Q)
k to the remote estimator based on

the following model

z
(Q)
k = Q

(
hTk xk + vk

)
, (4.3)

where Q(·) is the quantization operator. The quantizer Q(·) is a nonlinear mapping from obser-

vation zk to the quantized observation z(Q)
k . We consider an NL-bit quantization scheme, where

a quantized observation can take any discrete values from 0 to 2NL − 1. We define L = 2NL ,
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therefore, the set of quantization thresholds is denoted by q = {q0, q1, . . . , qL}. In a general sce-

nario without having access to side information, the first and last thresholds are set to q0 = −∞

and qL = ∞. The advantage of such a quantization approach is that we only need to compute the

quantization thresholds once, which can be done in an offline fashion. However, to have an accept-

able and high resolution, typically, a higher order quantization is required. On the other hand, the

proposed TEB-PF has access to both the quantized measurement (z(Q)
k ) and extra side-information

(i.e., zk ∈ (zτ + ∆1, zτ + ∆2) or zk ∈ (zτ − ∆2, zτ − ∆1)), therefore, higher resolutions can

be achieved with low order quantization as now only the range between ∆1 and ∆2 needs to be

quantized and not the whole observation space. In this scenario, a quantized observation takes the

following values

z
(Q)
k =



0 if zτ −∆2 < zk ≤ q1

...
...

L/2− 1 if qL/2−1 < zk < zτ −∆1.

L/2 if qL/2 = zτ + ∆1 < zk ≤ qL/2+1

...
...

L− 1 if qL−1 < zk ≤ zτ + ∆2.

(4.4)

where {zτ −∆2, zτ −∆1, zτ + ∆2, q1, . . . , qL−1} is the set of quantization thresholds. The discrete

probability density for qi ≤ zk ≤ qi+1 is given by

Pr
(
z

(Q)
k = qi|x(k)

)
= Pr

(
qi <

[
hTk xk + vk

]
≤ qi+1

)
= Pr

( [
qi − hTk xk

]
< vk ≤

[
qi+1 − hTk xk

] )
, (4.5)

where superscript T denotes the transpose operator. Eq. (4.5) represents the likelihood function

for the received quantized observation z(Q)
k , which is the probability that the quantized observation

z
(Q)
k takes a specific value (qi in this case) given the state vector at iteration k. Note that, except the

boundary levels, z(Q)
k = qi means that qi < zk ≤ qi+1 which is used to further expand Eq. (4.5).

In the second line of Eq. (4.5), we kept the noise in the middle and moved other terms to the sides

to compute the likelihood based on the probability distribution of the noise. Considering that the
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observation noise model (Eq. (2.3)) is Gaussian, the likelihood in Eq. (4.5) reduces to

Pr(yk|xk, γk = 1) = Φ

(
qi − hTk xk√

Rk

)
− Φ

(
qi+1 − hTk xk√

Rk

)
, (4.6)

where Φ(·) is cumulative Gaussian distribution with zero mean and variance 1, and Rk denotes

observation noise variance.

Update based on Set-valued Measurements (γk = 0)

In the absence of the sensor measurement and based on the triggering mechanism defined in

Eq. (4.1), the estimator has only access to the side information that observation belongs to (zτ −

∆1, zτ + ∆1). The likelihood, therefore, is specified as

Pr
(
yk|xk, γk = 0

)
= Pr

(
zτ −∆1 ≤ zk ≤ zτ + ∆1

)
, (4.7)

which by substituting for zk from Eq. (2.3), we have

Pr
(
yk|xk, γk = 0

)
= Pr

(
zτ −∆ ≤ hTk xk + vk ≤ zτ + ∆

)
= Pr

( [
zτ −∆− hTk xk

]
≤ vk ≤

[
zτ + ∆− hTk xk

] )
. (4.8)

The likelihood, therefore, is given by

Pr(yk|xk, γk = 0) = Φ

(
zτ + ∆1 − hTk xk√

Rk

)
− Φ

(
zτ −∆1 − hTk xk√

Rk

)
. (4.9)

Update based on Point Measurements (γk = 2):

The FC receives the actual sensor observation zk, therefore, the hybrid likelihood function

P (yk|xk) reduces to the sensor likelihood function Pr(yk|xk, γk = 2) = Φ(
zk−hTk xk√

Rk
).

4.2.3 Concluding Remarks on the TET Mechanism

Algorithm 2 outlines the TEB-PF implementation. Following [68], the computational complex-

ity of the TEB-PF in Algorithm 2, which is implemented at the FC, is of O(nxnp). It is common in
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distributed estimation algorithms that agents have a limited bit budget for communication [22–24].

Quantization has been viewed as a fundamental element in this regard for saving bandwidth to re-

duce the energy consumption which is related to the amount of data transmitted. At one extreme,

harsh quantization is introduced for example in Reference [22] an interesting distributed KF-based

estimation algorithm is developed where only one bit is communicated (based on the sign of inno-

vation). It is also common to determine the encoding/quantization of sensor measurement by the

information available at the encoder/observer at each time [25] as is the case in the proposed TET-

PF. We can analyze the achievable benefits of the proposed TET-PF via the reduction in the energy

consumption, which is related to the amount of data (bits) transmitted. Local energy consumption is

mainly associated with the required energy by the sensor for transmitting the (quantized) measure-

ments to the FC. For clarification purposes, let us assume that the channel between the sensor and

the FC experiences a path loss proportional to the transmission distance between the sensor and the

FC. Then the consumed energy of the sensor at time step k is given by [69]

Ek = β
(
2bk−1

)
(4.10)

where bk-bit message at iteration k is transmitted, β = ρdα ln(2/Pb) is the energy density, in which

d is the distance between the sensor and FC; ρ is a constant depending on the noise profile, and Pb

is the target bit error rate. Therefore, reducing number of communicated bits (which is achieved via

the TET mechanism) will lead to energy (resource) savings.

Regarding the two thresholds used within the TET mechanism, these coefficients determine the

communication rate/bandwidth requirements of the overall EBE algorithm. One of the main param-

eters that describe the SOD concept is the mean communication rate of messages transferred from

the sensor node to the remote estimator, which is a function of the two thresholds. Unfortunately,

the mean communication rate cannot be evaluated analytically. In the next section, we consider an

optimization framework to find the two required thresholds. Later on, Monte Carlo simulations will

be used to evaluate/compare the communication rate of the overall system.

Bandwidth partitioning among ternary communications can be implemented through modifica-

tion of the medium access control (MAC) layer. To accommodate intermittent node activities of
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Algorithm 2 TEB-PF IMPLEMENTATION

Input: {X(i)
k−1,W

(i)
k−1}

np
i=1, γk, and yk.

Output: {X(i)
k ,W

(i)
k }

np
i=1, x̂k|k and Pk|k.

At iteration k, TEB-PF updates its particle set as follows:
S1. Predictive Particle Generation: X(i)

k ∼ P (xk|xk−1) .
S2. Hybrid Likelihood Computation:
• If γk = 0: Compute Pr(yk|X

(i)
k , γk = 0) using Eq. (4.9).

• If γk = 1: Compute Pr(yk|X
(i)
k , γk = 1) using Eq. (4.6).

• If γk = 2: Evaluate Φ(
zk−hTk X

(i)
k√

Rk
).

S3. Weight Update: Update the weights.

the event-triggered traffic, the link layer medium access coordination is typically required to be

in the form of a random access protocol. Generally speaking, the TET mechanism correlate well

to the event-triggered nature of such protocols, where the sensor determines to transmit in an au-

tonomous fashion. The TET mechanism can be used, e.g., with different variations/modifications of

the carrier-sense multiple access (CSMA/CA), which has been effectively used for event-based esti-

mation/control. As a final note, we would also like to mention one motivating practical application

for reducing the number of communicated bits, which is the underwater wireless sensor network

(UWSN) technologies [39]. Underwater communications suffer from limited bandwidth due to the

temporal and spatial variability of channels. A limited bandwidth leads to low bit rates, therefore,

the data-efficiency of UWSNs can be improved by reducing the length of data packets transmitted

from the sensor to the FC. In this case, similarly, the proposed TET mechanism improves data-

efficiency by using a combination of quantized, raw and no transmission scenarios.

4.3 Optimized Ternary Event-based Estimation

In Section 4.2, we proposed an alternative solution, the TET mechanism, with the goal of simul-

taneously addressing the aforementioned issues. In Section 4.2, however, we used a deterministic

triggering mechanism (the SOD) via thresholding, instead of using a stochastic triggering approach,

which reduces the non-Gaussian posterior to its Gaussian counterpart. The main rational behind this

choice is that through non-linear/non-Gaussian filtering [10] we can provide a better approximation

of the event-based posterior in comparison to a Gaussian approximation that stochastic triggering
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Figure 4.2: General steps of the PSO.

provides. However, the main problem with a deterministic triggering method (such as the SOD) is

its dependence on a predefined threshold. The motivation behind this section is development of a

multi objective approach, referred to as the TEB-PSO, to optimize the two threshold values used

by our recently proposed TET mechanism. In other words, the goal in this section is to reduce the

communication overhead by using optimized values for the thresholds using multi objective particle

swarm optimization (MOPSO) technique. The MOPSO is designed to maximize the transfer rate

of quantize measurements (QM) while tries to transfer minimum periodic measurements within the

idle epochs, which preserves restricted power resources.
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Figure 4.3: Concept of modifying the positions of particles in PSO.

4.3.1 Multi Objective Particle Swarm Optimization

Nowadays, there are various challenges in solving engineering problems in CPSs. One of the

most important characteristics of such real practical problems, which makes them challenging, is

their multi-objective nature. Multi objective optimization refers to finding the optimum solution

for problems where more than one objective is of paramount importance and one needs to satisfy

all the objectives simultaneously. There is no single solution for such problems, therefore, a set of

optimum solutions representing the best trade-offs between the underlying multiple objectives are

the answer to these problems.

In this subsection, we develop a multi-objective approach for optimizing the threshold values

in the TET mechanism within event-based estimation architecture. In particular, the MOPSO is

employed as the optimization technique considering three objectives, i.e., the maximization of the

rate of communicating quantized measurements together with the minimization of the number of

idle and event epochs. In addition, the optimization process is subject to three constraints in order to

guarantee the feasibility of the overall structure. The proposed method, referred to as the TEB-PSO,

is capable of identifying a set of optimal values for the two thresholds within the TET to reduce the

communication overhead. The simulation results confirm the effectiveness of the proposed method

with the TET mechanism.
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The PSO approach [70, 71] is an evolutionary computation technique inspired by the social

behavior of bird flocking and was proposed initially by Kennedy and Eberhart [72]. The PSO

uses a number of particles (candidate solutions) which fly around in the search space to find the best

solution. Meanwhile, each particle traces the best location (best solution) in its path. In other words,

particles consider their own best solutions as well as the best solution the swarm has obtained so

far. Each particle in the PSO should consider the current position, the current velocity, the distance

to its personal best solution, denoted by PBest, and the distance to the global best solution, denoted

by GBest, to modify its position. The PSO is mathematically modeled as follows

v(i)(t+ 1) = wv(i)(t) + c1r1

(
P

(i)
Best − x

(i)(t)
)

+ c2r2

(
G

(i)
Best − x

(i)(t)
)

(4.11)

x(i)(t+ 1) = x(i)(t) + v(i)(t+ 1), (4.12)

where v(i)(t+1) is the velocity of particle i, for (1 ≤ i ≤ Nsp) at iteration t. Term w is a weighting

function, cj and rj , for (1 ≤ j ≤ 2), represent, respectively, an acceleration coefficient, and a

random number uniformly distributed between 0 and 1. Furthermore, x(i)(t) is the current position

of particle i at iteration t, P (i)
Best is the best solution that the ith particle has obtained so far, and

GBest indicates the best solution the swarm has obtained so far. The concepts of position updating

are illustrated in Fig. 4.2. The first part (i.e., wv(i)(t)) on the right hand side (RHS) of Eq. (2.2),

provides exploration ability for PSO, while the second and third parts (i.e., c1r1(P
(i)
Best − x(i)(t))

and c2r2(G
(i)
Best − x(i)(t))) represent private thinking and collaboration of particles, respectively.

The PSO starts with randomly placing the particles in the problem space and over the course of the

iterations, the velocities of particles are calculated using Eq. (2.2). After defining the velocities, the

position of particles can be calculated using Eq. (2.3). The process of changing particles’ positions

continues until a predefined completion criterion is satisfied.

As stated previously, we consider an open-loop state estimation problem where a remote sensor

communicates its measurements to the FC, only in occurrence of specific events. We define a set of
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thresholds, acting as our variable range, i.e.,

∆L = ∆1,∆2,∆3,∆4,∆5,∆6

and ∆W = ∆7,∆8,∆9,∆10,∆11,∆12,

where the range of each ∆k is defined between (0.01 and 10). By considering these thresholds, the

goal of the TEB-PSO is to maximize the number of quantized measurement, which constitute the

joint and set-valued measurement component of the hybrid observation set, while minimizing the

point-valued and set-valued measurements [44]. We would like to point out that the solution to the

problem at hand needs to satisfy some constraints for prevention of band-mixing in the set of the

threshold, which is describe as follow

γk =

 1 : ∆L(k) > ∆L(k − 1) and ∆W (k) > ∆W (k − 1)

2 : ∆W (k) > ∆L(k)
.

According to the first constraint the amounts of ∆L(k) should be greater than ∆L(k − 1) and

the amounts of ∆W (k) should be greater than ∆W (k − 1). In the second constraint, the set of

thresholds within the whole set of ∆W (k) should be greater than ∆L(k).

Now, our objective function is receiving these values of ∆L(k− 1), ∆W (k− 1) as an input and

adopt our TEB-PSO framework in order to maximize the quantized measurement and minimize the

point-valued and set-valued measurements. By sending more quantized measurement, we reduce

the amount of communication rate which in turn reduces the communication rate, as well as, the

total cost. The multi-objective PSO is used to solve this problem.

4.4 Simulations

In the following two subsections, we evaluate the performance of the TEB-PF and the TEB-PSO

frameworks, respectively.
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4.4.1 Evaluation of the TEB-PF Framework

Following the recent literature on the EBE [50], a target tracking problem is considered to

evaluate performance of the proposed TEB-PF framework. Target’s dynamic and measurement

models are given by Eqs. (3.63)-(3.65). The following results are computed over Monte-Carlo

(MC) simulations of 100 runs with np = 500 particles. Four filters are compared: (i) Full-rate KF;

(ii) Event-based KF, which disregards the set-valued information; (iii) Binary event-based PF, and;

(iv) The proposed TEB-PF. The results are computed over varying communication rates. The mean

communication rate depends on the values of the two thresholds ∆1 and ∆2 defined in Eq. (4.1). To

provide fair comparison with the conventional SOD approaches, we fixed the value of ∆ (used by

Filters (ii)-(iii)) and consider three scenarios for Filter (iv): Scenario 1: ∆1 = ∆/2, ∆2 = 3∆;

Scenario 2: ∆1 = ∆/4, ∆2 = 2∆, and; Scenario 3: ∆1 = ∆/8, ∆2 = 1.5∆.

Intuitively speaking, when ∆1 becomes smaller than ∆, the TEB-PF sends more quantized ob-

servations instead of staying idle. On the other hand, when ∆2 becomes larger than ∆, the TEB-PF

sends fewer raw data. The two thresholds determine the bandwidth requirements of the TEB-PF.

Fig. 4.4(a) illustrates the position mean-square errors (MSE) over varying values of ∆ which in turn

results in varying values of the communication rate. We note that, in general, analytical evaluation

of the communication rate cannot be achieved. It is observed that the TEB-PF has the potential to

significantly reduce the overall estimation error especially in low communication rates. Fig. 4.4(b)

illustrates mean communication rate comparison between the proposed TEB-PF (Filter (iv), Sce-

narios 2 and 3) and Filter (iii) where binary decision criteria is used. It is observed that the TEB-PF

not only reduces the MSE in low communication rates but also reduces the total number of com-

municated raw observations. We analyze the achievable benefits of the TEB-PF via the reduction in

the energy consumption [69], which is related to the amount of transmitted bits. Having a limited

bit budget to reduce the energy consumption [22–24] is common for agents in distributed estima-

tion, e.g., at one extreme, harsh quantization is introduced [22] where only one bit is communicated

(based on the sign of innovation). It is also common to perform encoding/quantization of sensor

measurement at each time [25] as is the case in the proposed TEB-PF. One motivating practical ap-

plication for reducing the number of communicated bits is the underwater wireless sensor network
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Figure 4.4: (a) The Position MSE comparison over varying communication rate obtained from the
four implemented filters (two scenarios for TEB-PF).(b) Distribution of the decision variable (γk)
among the ternary levels of Filter (iv), and among the binary levels of Filter (iii).

(UWSN) technologies [39], which extensively suffers from limited bandwidth. Table 4.1 provides

comparison between the total number of communicated bits by the proposed TEB-PF framework

(Filter (iv), Scenarios 1-3) and Filter (iii). A 4-bit quantizer (i.e., L = 16) is considered together

with requiring 32 bits (4 Bytes) per raw observation. For instance, when ∆ = 2.8, the TEB-PF

reduces the total number of communicated bits by factors of 2.5, 1.6, and 1.2, for Scenarios 1-3,
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Table 4.1: Comparison between total numbers of communicated bits.

Items ∆ = 0.3 ∆ = 0.6 ∆ = 0.9 ∆ = 1.2 ∆ = 1.8 ∆ = 2.8

Binary PF- # Bits 754.7 719.4 681.8 638.5 558.9 445.1
S1: TEB-PF- # Bits 678.7 586.1 493.3 415.4 282.1 174.1
S2: TEB-PF- # Bits 726.4 654.4 585.2 501.4 403.3 278.7
S3: TEB-PF- # Bits 746.8 688.1 638.6 594.3 504.9 378.8

respectively. This is while the overall MSE is reduced by factors of 1.8, 2.5 and 3, respectively for

Scenarios 1-3. Results corroborate the effectiveness of the TET mechanism.

4.4.2 Evaluation of the TEB-PSO Framework

In this section, we perform different simulations to evaluate the performance of the proposed

TEB-PSO framework. Following the recent literature on EBE [50], a target tracking problem is

considered where position and speed of the target are given by Eqs. (3.63)-(3.65). The following

results are computed over Monte-Carlo (MC) simulations of 100 runs with np = 200 particles.

The following four filters are compared in the TET part: (i) Full-rate KF; (ii) Open-loop and event-

based KF; (iii) Open-loop and event-based PF with binary decision variable, and; (iv) The TEB-PSO

algorithm. For the TEB-PSO, we consider C1 = 1.4962, C2 = 1.4962, and the number of particles

within the swarm is consider to be 60. Our multi-objective problem consists of 3 objectives and

the maximum number of iterations for this simulation is set to 251. The results reported below are

computed over varying communication rates.

We consider a matrix consisting of a set of ∆1 and ∆2, each of which include a set of numbers

that can be chosen randomly from 0.001 to 10 (0.01 =< ∆ <= 10). One of the constraints

which is satisfied by the proposed TEB-PSO is that the values in the second set of the ∆s should

be greater that first set of the ∆s. Another constraint is all of the numbers in each set should be

sorted ascending. So we have the first 6 numbers as the set of ∆1, and the second 6 numbers

as the set of ∆2. As mentioned previously, there is no single solution for such a multiobjective

problem, therefore, we will face the set of optimal solutions not just one solution. It is worth

mentioning here that all the members of the set of optimal solutions are considered as acceptable

designs. The Proposed TEB-PSO algorithm will find the optimal set of solutions (optimal threshold
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Figure 4.5: Search history of MOPSO with some highlighted designs

values). Fig. 4.5 shows the search history of the TEB-PSO where the marked red points are the

optimum solutions. The position mean squared error (MSE) comparison over varying of the (∆)

among the ternary levels of the TEB-PSO can be inferred from Fig. 4.6. It is observed that our

proposed model has the potential to significantly reduce the (∆) rates in comparison with the other

filters. The Position MSE comparison over varying communication rate has shown in the Fig. 4.7.

As can be seen, it is apparent that the proposed approach results in lower communication rate and

can outperform its counterparts. Table 4.2 illustrates the comparison between the Point, Quantized,

and Set-valued Measurements over varying values of ∆ which is shown the results in nine best

optimum solutions. It is observed that the proposed approach has the potential to significantly

reduce the overall communication rates by transferring more quantized measurement and reducing

69



0 20 40 60 80 100 120 140 160 180 200
Delta ( )

0

1

2

3

4

5

6

7

Po
si

tio
n 

M
SE

 C
om

pa
ris

io
ns

Full-rate KF
Event-based KF
Full-rate PF
Event-based PF

Figure 4.6: The Position MSE comparison over varying of the (∆) among the ternary levels of the TEB-PSO.
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Figure 4.7: The Position MSE comparison over varying communication rate obtained from the proposed
TEB-PSO

Table 4.2: Comparison between total number of transmitted measurements in Idle (IE), transient (QE), &
row (RM) Epochs.

Items 1 2 3 4 5 6 7 8 9
IE 20 3 46 22 48 4 0 27 20
QM 166 170 145 166 145 181 160 162 166
RM 14 27 9 12 7 15 40 11 14

the transfer of measurement during the event epochs.
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4.5 Conclusion

In this chapter, we proposed a ternary event-based particle filtering (TEB-PF) framework where

a novel ternary event-triggering (TET) mechanism is proposed coupled with a non-Gaussian fusion

strategy that jointly incorporates point, quantized, and set-valued measurements. Furthermore, in

order to compute the optimum threshold values for the TET mechanism, we developed a multi

objective approach (MOPSO) which results in an overall systematic and intuitively pleasing non-

Gaussian distributed event-based estimation algorithm. The proposed framework is applicable to

any (TET) mechanism. This method does not require human involvement to provide an initial

threshold value to start the optimization. Instead, there is the possibility for this strategy to add

set of threshold value in order to achieve a wide range of optimal designs. Finally, the proposed

multi-objective framework opens up an effective way which uses hybrid set of information in an

intelligent fashion resulting in simultaneous reduction in both MSE and communication overhead.

71



Chapter 5

Summary and Future Research

Directions

The chapter concludes the thesis with a list of important contributions made in the dissertation

and some proposed directions for future work.

5.1 Summary of Thesis Contributions

The research work performed in this thesis is motivated by recent advancements and devel-

opments in large, distributed, autonomous, and self-aware Cyber-Physical Systems (CPSs) such as

autonomous vehicles and vehicle-to-everything (V2X) technologies, where bandwidth, security, pri-

vacy, and/or power considerations limit the number of information transfers between neighbouring

agents. In short, there exists a critical necessity for preserving restricted communication resources

in such CPS application domains. The focus of the thesis is on addressing the identified drawbacks

of the existing open-loop (i.e., no feedback communication is incorporated from the FC to local

sensors) and event-based estimation (EBE) strategies (i.e., communication is only performed in oc-

currence of specific events identified via the localized triggering mechanism at the sensor side). In

this regard, the thesis made a number of contributions [41–45] as briefly outlined below:

(1) Event-Based State Estimation: In the thesis, three EBE frameworks for Centralized, Hierar-

chical, and Distributed architectures are proposed as briefly outlined below:
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• Event-based Particle Filtering with Joint Point & Set-valued Measurements (Central-

ized Architecture) [41]: A centralized state estimation architecture (distributed in the

sense that the sensor is not co-located with the remote estimator) is considered where

a remote sensor communicates its measurements to the FC in an event-based fashion.

Referred to as the event-based particle filter (EBPF), point-valued measurements are

incorporated in the estimation recursion via a conventional particle filter formulation,

while set-valued measurements are incorporated by developing an observation update

step similar in nature to quantized particle filtering approach. More specifically, in the

absence of an observation (i.e., having a set-valued measurement), the proposed EBPF

evaluates the probability that the unknown observation belongs to the event-triggering

set based on its particles which is then used to update the corresponding particle weights.

The simulation results show that the proposed EBPF outperforms its counterparts, and

confirms the effectiveness of the proposed hybrid estimation algorithm.

Pros and Cons: The proposed EBPF is a systematic and intuitively pleasing distributed

state estimation algorithm, which jointly incorporates point and set-valued measure-

ments within the particle filtering framework. The EBPF considers a single-sensor

scenario and depends on a remote estimator (FC) to form the global state estimates.

Besides, binary event triggering (the common existing approach) is utilized.

• Multi-Sensor EBE with an Information-Based Triggering Mechanism (Hierarchi-

cal Architecture) [42]: A multi-sensor and open-loop estimation algorithm with an

information-based triggering mechanism is proposed based on a hierarchical architec-

ture. In the open-loop topology considered, each sensor transfers its measurements to

the FC only in occurrence of specific events (asynchronously). Events are identified

using the information-based triggering mechanism without incorporation of a feedback

from the FC and/or implementation of a local filter at the sensor level. We propose a

multi-sensor triggering approach based on the projection of each local observation into

the state-space which corresponds to the achievable gain in the sensor’s information state

vector. The simulation results show that the proposed multi-sensor information-based

triggering mechanism closely follows its full-rate estimation counterpart.
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Pros and Cons: The proposed information-based multi-sensor triggering approach is

developed based on the projection of each local observation into the state-space which

corresponds to the achievable gain in the sensor’s information state vector. Therefore, it

is expected to have a more accurate representation of the estimator’s performance and,

consequently, a better criteria for sensor selection. Although, in contrary to the EBPF,

multi-sensors are incorporated, still the overall performance of the algorithm depends

on the remote estimator implemented at the FC. Besides, the multi-sensor settings came

with the cost of using Gaussian approximation for the event-based posterior distribution

(a drawback in comparison to the EBPF).

• Event-Triggered Diffusion Particle Filter (ET/DPF) (Distributed Architecture) [43]:

An event-triggered distributed state estimation via diffusion strategies is proposed re-

ferred to as the ET/DPF. Each sensor uses a deterministic SOD event triggering mecha-

nism resulting in availability of side information at its neighbouring nodes in the absence

of an observation. Utilization of this side information results in distributed estimation

with joint set-valued and point-valued measurements, which consequently translates in

to a non-Gaussian state estimation problem. The proposed ET/DPF is an intuitively

pleasing non-Gaussian estimation framework within the particle filter framework and

uses diffusion strategies for distributed implementations. Through proof-of-concept

simulations, it is shown that the proposed ET/DPF outperforms its counterparts.

Pros and Cons: The proposed ET/DPF is a systematic distributed state estimation al-

gorithm without the need for the FC that jointly incorporates point and set-valued mea-

surements within the particle filtering framework. The ET/DPF is multi-sensor and does

not require implementation of a FC, which addresses the drawbacks of the previous two

algorithms. However, similar to the previous two algorithms and in par with existing

literature a binary triggering approach is used where sensors either share or hold on to

their local measurements.
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(2) Ternary-Event-based State Estimation: The thesis addresses the identified issue of using

a binary triggering mechanism within the EBE approaches. The proposed solution is out-

lined below:

• Ternary-Event-Triggering Mechanism (TET) with Joint Point, Quantized, and Set-

Valued Measurements [44]: We proposed a novel ternary event-based particle filter-

ing (TEB-PF) framework by introducing the ternary event-triggering (TET) mecha-

nism coupled with a non-Gaussian fusion strategy that jointly incorporates point-valued,

quantized, and set-valued measurements. Due to joint utilization of quantized and set-

valued measurements in addition to the point-valued ones, the proposed TEB-PF simul-

taneously reduces the communication overhead, in comparison to its binary triggering

counterparts, while also improves the estimation accuracy especially in low communi-

cation rates.

Pros and Cons: The proposed TEB-PF is a systematic and intuitively pleasing non-

Gaussian distributed estimation algorithm which jointly uses such hybrid set of infor-

mation in an intelligent fashion resulting in simultaneous reduction in both MSE and

communication overhead. The performance of the proposed TET mechanism depends

on the values of two pre-defined thresholds, which need to be computed in advance.

• Designing Optimal Thresholds for TET Mechanism via Multi Objective Particle Swarm

Optimizer [45]: To complete our previous work on ternary EBE, we designed a multi-

objective approach for optimizing the threshold values used via the TET mechanism. In

order to achieve the optimum threshold values in a TET mechanism the Multi-Objective

Particle Swarm Optimization (MOPSO) is utilized. The proposed method is capable of

finding an optimal set of threshold values to reduce the communication overhead. The

developed optimization framework is comprehensive and is able to find a significantly

wide range of optimal threshold for a TET mechanism.
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5.2 Future Research

Below, potential future research directions are discussed to further improve the proposed con-

tributions made throughout this thesis:

• EBE with Joint Point, and Set-Valued Measurements: The proposed centralized, hierarchi-

cal and distributed EBPF approaches can be further improved along the following directions:

(1) The fusion rule in the proposed multi-sensor EBE with an information-based triggering

mechanism is based on Kalman filtering. Extensions to incorporate particle filtering can

be a direction for future research.

(2) In the proposed EBPF framework, we used the SOD triggering mechanism, utilization

of other triggering mechanisms can be an interesting future research direction.

• Ternary EBE with Joint Point, Quantized, and Set-Valued Measurements: The proposed

TET mechanism can be further improved along the following directions:

(1) In the current form, only two thresholds are considered resulting in a three level (hence

ternary) triggering. One can extend the proposed solution by considered more decision

levels, i.e., development of a multi-level triggering mechanism. In such a multi-level

triggering, e.g., the number of quantization bins used within each interval can be in-

creased as the difference between the current observation and the previously transmitted

one increases.

(2) The objective function used to find the optimum values of the threshold values can be

further improved. For instance, implementation of an optimization algorithm based on

energy consumption can be considered.

(3) The proposed TET mechanism is developed for a single remote sensor, extension to

other distributed architectures and multi-sensor scenarios is another direction for the

future research.
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