
Efficient Scheduling and High-Performance Graph Partitioning

on Heterogeneous CPU-GPU Systems

Bahareh Goodarzi

A Thesis

in the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

July 2018

c© Bahareh Goodarzi, 2018

Concordia University

Engineering and Computer Science

This is to certify that the thesis prepared

By: Bahareh Goodarzi

Entitled: Efficient Scheduling and High-Performance Graph Parti-

tioning on Heterogeneous CPU-GPU Systems

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Nizar Bouguila

Chair

Dr. Michel Dagenais

External Examiner

Dr. Anjali Agarwal

External to Program

Dr. Brigitte Jaumard

Examiner

Dr. Hovhannes Harutyunyan

Examiner

Dr. Dhrubajyoti Goswami

Supervisor

Approved by

Dr. Volker Haarslev, Graduate Program Director

Tuesday, August 21, 2018

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Efficient Scheduling and High-Performance Graph

Partitioning on Heterogeneous CPU-GPU Systems

Bahareh Goodarzi, Ph.D.

Concordia University, 2018

Heterogeneous CPU-GPU systems have emerged as a power-efficient platform for

high performance parallelization of the applications. However, effectively exploiting

these architectures faces a number of challenges including differences in the pro-

gramming models of the CPU (MIMD) and the GPU (SIMD), GPU memory con-

straints, and comparatively low communication bandwidth between the CPU and

GPU. As a consequence, high performance execution of applications on these plat-

forms requires designing new adaptive parallelizing methods. In this thesis, first we

explore embarrassingly parallel applications where tasks have no inter-dependencies.

Although the massive processing power of GPUs provides an attractive opportunity

for high-performance execution of embarrassingly parallel tasks on CPU-GPU sys-

tems, minimized execution time can only be obtained by optimally distributing the

tasks between the processors. In contemporary CPU-GPU systems, the scheduler

cannot decide about the appropriate rate distribution. Hence it requires high pro-

gramming effort to manually divide the tasks among the processors. Herein, we design

and implement a new dynamic scheduling heuristic to minimize the execution time

of embarrassingly parallel applications on a heterogeneous CPU-GPU system. The

scheduler is integrated into a scheduling framework that provides pre-implemented

automated scheduling modules, liberating the user from the complexities of scheduling

details. The experimental results show that our scheduling approach achieves bet-

ter to similar performance compared to some of the scheduling algorithms proposed

for CPU-GPU systems. We then investigate task dependent applications, where the

iii

tasks have data dependencies. The computational tasks and their communication

patterns are expressed by a task interaction graph. Scheduling of the task interaction

graph on a cluster can be done by first partitioning the graph into a set of compu-

tationally balanced partitions in such a way that the communication cost among the

partitions is minimized, and subsequently mapping the partitions onto physical pro-

cessors. Aside from scheduling, graph partitioning is a common computation phase in

many application domains, including social network analysis, data mining, and VLSI

design. However, irregular and data-dependent graph partitioning sub-tasks pose

multiple challenges for efficient GPU utilization, which favors regularity. We design

and implement a multilevel graph partitioner on a heterogeneous CPU-GPU system

that takes advantage of the high parallel processing power of GPUs by executing the

computation-intensive parts of the partitioning sub-tasks on the GPU and assigning

the parts with less parallelism to the CPU. Our partitioner aims to overcome some of

the challenges arising due to the irregular nature of the algorithm, and memory con-

straints on GPUs. We present a lock-free scheme since fine-grained synchronization

among thousands of GPU threads imposes too high a performance overhead. Ex-

perimental results demonstrate that our partitioner outperforms serial and parallel

MPI-based partitioners. It performs similar to shared-memory CPU-based parallel

graph partitioner. To optimize the graph partitioner performance, we describe an

effective and methodological approach to enable a GPU-based multi-level graph par-

titioning that is tailored specifically for the SIMD architecture. Our solution avoids

thread divergence and balances the load over GPU threads by dynamically assigning

an appropriate number of threads to process the graph vertices and irregular sized

neighbors. Our optimized design is autonomous as all the steps are carried out by

the GPU with minimal CPU interference. We show that this design outperforms

CPU-based parallel graph partitioner. Finally, we apply some of our partitioning

techniques to another graph processing algorithm, minimum spanning tree (MST),

that exhibits load imbalance characteristics. We show that extending these techniques

helps in achieving a high performance implementation of MST on the GPU.

iv

Acknowledgments

First and foremost, I would like to express my special gratitude to my supervisor Dr.

Dhrubajyoti Goswami for his invaluable guidance, support, patience, trust and en-

couragement during the course of my PhD. I am always indebted to him for inspiring

me in digging the new research paths and providing me with every bit of guidance,

expertise, assistance and valuable understanding. His constructive feedback and guid-

ance, steered me in the right direction throughout my research. I also learned form

him professionalism, commitment and compassion.

I would like to thank my committee members, Dr. Brigitte Jaumard, Dr. Hov-

hannes Harutyunyan and Dr. Anjali Agarwal, for their insightful comments and

encouragement, to widen my research from various perspectives.

I am grateful to Dr. Martin Burtscher, form Texas State University and Dr.

Farzad Khorasani and Dr. Vivek Sarkar from Georgia Institute of Technology for

their effective collaboration during my research work.

I gratefully acknowledge the support of NVIDIA Corporation with the donation

of two high performance GPUs used for this research.

I extend my appreciation to NSERC Strategic Grant and Concordia University

for the support of my research.

I am greatly thankful to my precious colleagues and friends, Upama, Shayan,

Shyam, Mahsa, Nazanin and Myriam for their friendship and continuous support

specially when things would get a bit discouraging.

This dissertation would not have been possible without constant support, under-

standing, patience, love and encouragement of my husband Navid.

v

I would like to express my deepest appreciation to my amazing family, my mother,

Zahra, my Father, Ramin and my lovely sister, Mahsa for their unconditional love

and support throughout my life. They have been always my brightest stars in the

darkest nights.

Last but not the least, I would like to thank my friends Shagha, Ali, Farnaz, Sya,

Shadi and Farnoush who have been always there for me and supported me in the

tough moments of this journey.

vi

x

xiii

Contents

List of Figures

List of Tables

Chapter 1 Introduction 1

1.1 Overview and Objectives . 1

1.2 Problem Statement . 6

1.3 Contribution . 10

1.4 Thesis Outline . 13

Chapter 2 Literature Review 14

2.1 The CPU-GPU System Architecture 15

2.2 CUDA Programming Model . 16

2.3 GPU Performance Constraints . 18

2.3.1 Thread Divergence . 18

2.3.2 Un-coalesced Memory Access 18

2.3.3 Limited Memory Size . 20

2.3.4 Low-Level Programming Models 20

2.3.5 Synchronization Latency . 20

2.4 Scheduling Heuristics on Heterogeneous CPU-GPU Systems 21

2.4.1 Static Heuristics . 22

2.4.2 Dynamic Heuristics . 25

2.4.3 Scheduling Frameworks . 27

vii

2.5 Graph Partitioning . 28

2.5.1 Serial Multilevel Graph partitioning 29

2.5.2 Parallel Multilevel Graph Partitioning on Distributed Systems 33

2.5.3 Parallel Multilevel Graph Partitioning on Shared-Memory Sys-

tems . 35

2.5.4 Matching Algorithms on GPU 36

2.6 Optimization Techniques on GPU 38

2.6.1 Scan . 38

2.6.2 Reduction . 40

2.6.3 Atomics . 41

Chapter 3 A Dynamic Scheduling Heuristic for Embarrassingly Parallel Appli-

cations on Heterogeneous CPU-GPU Systems 42

3.1 Motivation . 43

3.2 Scheduler Architectural Model . 44

3.2.1 Partitioner . 45

3.2.2 Load Bundler . 46

3.3 HASS : A Dynamic Scheduling Algorithm 48

3.3.1 Initialization Phase . 51

3.3.2 Execution Phase . 52

3.3.3 Adaptation Phase . 53

3.4 Experimental Evaluation . 54

3.5 Conclusion . 58

Chapter 4 A Parallel Multilevel Graph Partitioner on the CPU-GPU Archi-

tecture 59

4.1 Motivation . 60

4.2 Design Challenges . 62

4.3 A Multilevel Graph Partitioner for CPU-GPU Architectures 63

4.3.1 Data Structures for Graph Representation 65

viii

4.3.2 Coarsening. 66

4.3.3 Initial Partitioning . 75

4.3.4 Un-coarsening . 76

4.4 Comparison with mt-metis . 79

4.5 Experimental Evaluation . 80

4.6 Conclusion . 84

Chapter 5 A High Performance Multilevel GPU-based Graph Partitioner86

5.1 Motivation . 87

5.2 Multilevel GPU-based Graph Partitioning 88

5.2.1 Matching . 91

5.2.2 Contraction . 95

5.2.3 Initial Partitioning . 100

5.2.4 Un-Coarsening . 101

5.2.5 Additional Optimization: Custom Memory Allocator 104

5.3 Experimental Evaluation . 105

5.3.1 Performance Comparison . 106

5.3.2 Performance Analysis . 109

5.3.3 Sensitivity Analysis . 110

5.4 Extending the Coarsening Techniques to MST 111

5.4.1 Efficient Edge Discovery . 112

5.4.2 Experimental Evaluation . 115

1175.5 Conclusion .

Chapter 6 Conclusion and Future Work 118

6.1 Future Directions . 121

Bibliography 123

ix

List of Figures

1.1 A single-CPU multi-GPU system. 3

2.1 Heterogeneous CPU-GPU architecture. 15

2.2 CUDA thread hierarchy. 17

2.3 Two memory access patterns for a set of GPU threads. 19

2.4 Matrix multiplication experiment in a CPU-GPU system. Matrix size

is 6000. The notation “X/Y” on the x-axis means X% of work mapped

to the GPU and Y% of work mapped to the CPU [62]. 22

2.5 Training and partitioning phases of Qilin method [62]. 23

2.6 Task queue scheme for scheduling on GPU [56]. 26

2.7 An overview of multilevel graph partitioning. 30

2.8 Positive gain for vertex a and transferring from P1 to P2. 32

2.9 Intra-warp binary exclusive scan. Warp size is assumed 8. 39

2.10 Intra-warp reduction on the maximum value. Warp size is assumed 8. 40

3.1 Dynamic scheduling architecture for embarrassingly parallel applications. 45

3.2 Our designed dynamic scheduler architecture. 46

3.3 Our partitioner function. 47

3.4 Schematic showing the reduction of processing time due to load bundling. 48

3.5 Scheduler flowchart over one round. 53

3.6 Execution time comparison in a single-CPU multi-GPU system. . . . 55

3.7 The distribution of loads over the three processors in Matrix Multipli-

cation when using HASS. 56

x

3.8 Matrix Multiplication execution time comparison of HASS with the

three other scheduling algorithms in a single-CPU single-GPU system. 56

3.9 Execution time comparison of HASS and Qilin with the training size

less than 30% of the real problem size. 57

4.1 Proposed heterogeneous graph partitioning scheme. 64

4.2 Graph data structures used in our design shown for an example. CSR

format of the graph is accompanied with M and Cmap auxiliary arrays.

These arrays are constructed for every intermediate partitioning level. 66

4.3 Memory coalescing. 67

4.4 Matching array creation. 68

4.5 Cmap creation steps. 70

4.6 Contraction procedure. 76

4.7 Edge cut increment by concurrent movement of boundary vertices. . . 77

4.8 Boundary vertex movement requests insertion procedure. 79

4.9 Speedup of ParMetis, mt-metis, and CPU-GPU partitioner over Metis

(Titan GPU) . 81

4.10 Speedup of ParMetis, mt-metis, and CPU-GPU partitioner over Metis

(K40 GPU). 82

4.11 Comparison of coarsening levels for mt-metis, and CPU-GPU partitioner. 84

5.1 GPU graph partitioning flowchart. Green-colored boxes represent GPU

operations and blue-colored boxes specify the host actions. 89

5.2 Heavy edge matching process inside a warp. Warp size is assumed 8. 93

5.3 Cmap construction procedure for the graph shown in Figure 4.2. Num-

ber of vertices in the coarser graph is 4. 96

5.4 Visualizing contraction using the example graph in Figure 4.2. 97

5.5 Segmented sort on an array with four different sized segments. 98

5.6 Prefix sum code. 100

5.7 Refinement procedure with assumed k value of 2. 102

5.8 Speedup of mt-metis and GPU-partitioner relative to Metis 107

xi

5.9 Time distribution of 3 partitioning phases of mt-metis and GPU-partitioner108

5.10 Profiled average warp execution efficiency in different kernels 109

5.11 Refinement phase duration changes relative to different values of k

ranging from 8 to 16 . 110

5.12 Total graph partitioning execution time changes relative to increasing

the coefficient in the denominator of CoarsenTo formula from 20 to 100 111

5.13 Edge discovery phase scheme. 114

5.14 Execution time comparison of STM-based GPU implementation of

MST and serial implementation over random/R-MAT graphs with 30M

edges and varying number of vertices. 116

xii

List of Tables

4.1 Input graphs used for the experiments. 80

4.2 ParMetis, mt-metis, and CPU-GPU partitioner runtimes (in seconds). 82

4.3 ParMetis, mt-metis, and CPU-GPU partitioner Edge cut ratios in com-

parison to Metis. 83

5.1 Input graphs used for the experiments. 106

5.2 Edge cut ratio in comparison to Metis. 108

5.3 Input graphs used for the experiments. 115

5.4 Speedup of STM-based GPU implementation of MST (using Tesla

K40) relative to serial and multi-core STM-based implementations. . 116

xiii

Chapter 1

Introduction

1.1 Overview and Objectives

Heterogeneous multi-core systems are gradually surpassing the homogeneous systems

due to their high performance and flexibility. To respond to the high demands for

more computational power, these parallel architectures have also been integrated with

various heterogeneous technologies (e.g., powerXCell processors, DSPs or GPGPUs).

Currently the top 500-leading IBM RoadRunner machines are composed of CPUs and

accelerators [26].

The growing computational power of GPUs gives them significantly higher peak

computing power compared to other accelerators and it makes them a compelling

platform for computationally demanding tasks in a wide variety of application do-

mains. The deployment of GPUs as general purpose accelerators, which started about

a decade ago has now become mainstream. General-purpose graphics processing units

(GPGPU) allow a host CPU to offload a wide variety of scientific computing applica-

tions, not just graphics, to a GPU. The high computing power provided by many-core

processing units leverages this parallel architecture for non-graphic computations by

achieving high speedup and providing other benefits, such as power efficiency and low

cost. Modern GPU 1 processors are massively parallel, and are fully programmable.

1In the rest of this thesis we use the term GPU instead of GPGPU

1

The parallel floating point computing power of a modern GPU is orders of magnitude

higher than that of a CPU [67]. Thus, intelligently combining the best features of both

has positioned the integrated multi-core CPU and the many-core GPUs as a merito-

rious alternative to traditional heterogeneous multi-core systems in high performance

parallelization of applications.

Figure 1.1 demonstrates the general structure of a heterogeneous CPU-GPU sys-

tem with one CPU and two GPUs. As the figure shows, the CPU communicates with

GPUs through the PCI-X buses. A GPU consists of a set of Streaming Multiproces-

sors (SM), each of which is comprised of a number of Streaming Processors (SPs). In

CUDA programming model [1], which is the most common GPU programming model,

the program on the GPU is executed by launching a set of threads across the SMs.

Each set of 32 contiguous threads constitutes a warp. The GPU performs SIMD (Sin-

gle instruction-multiple data) execution at the warp level and all the threads inside

a warp execute the same instruction at any given time.

The GPU memory system provides on-chip and off-chip memories. The off-chip

memory is generally referred to as the global memory of the GPU, and all the threads

running across the SMs have the read/write access to this memory. However, in terms

of access latency this memory is slow. The on-chip memory includes the shared

memory and thread registers. The shared memory is located on each of the SMs and,

consequently is as fast as accessing a register 2.

Due to different programming paradigms of the CPU (MIMD) and GPU (SIMD),

optimizing the execution of different applications in terms of performance and effi-

ciency requires considering the characteristics of both architectures for making work-

load distribution decisions. The difference in the applications characteristics and the

proper modification of the existing parallel algorithm also need to be taken into ac-

count to fulfill the potential performance of heterogeneous platforms with single or

multiple GPUs.

A large group of parallel applications fall into embarrassingly parallel category [21,

2We discuss the details of the CPU-GPU systems in Chapter 2

2

CPU 1

GPU 1 GPU 2
Global

Memory
Global

Memory

DRAM

P
C

Ie
 b

u
s

Figure 1.1: A single-CPU multi-GPU system.

66, 83] where tasks have no inter-dependencies and their operations and memory ac-

cess patterns are regular. Simultaneous executing of these applications workloads on

the CPU and the GPUs can result in substantial performance due to the massive

computation capability of GPU in the execution of the independent parallel tasks.

The minimized execution time, however, can only be obtained if we optimally dis-

tribute the tasks over the processors and avoid the idle time for all the processing

units.

Several studies [45, 62, 71] showed that the appropriate load distribution over

the CPU and GPU raises the efficient computation resources utilization and, conse-

quently, archives better performance in comparison to executing the loads on either

the CPU or the GPU. Nonetheless, the traditional GPU scheduler cannot automatize

the distribution of workload over the CPU and GPU devices, and the programmer

should manually schedule the tasks over the available devices. Furthermore, deter-

mining the best distribution rates to ensure that the makespan is minimized is a

challenging problem.

The scheduling methods proposed for heterogeneous clusters [8, 13, 63, 87, 98]

or multi-core environments [18, 97] are not applicable to CPU-GPU systems in a

straightforward way. Unlike the traditional heterogeneous systems, where the hetero-

geneity comes from difference in the speed or network bandwidths of the processors,

in heterogeneous CPU-GPU system, the architecture and programming model of the

3

processors are different. Other challenges include the transfer latency between the

CPU and the GPU, GPU memory limitations and the high programming effort to

distribute the workloads manually.

There are several proposed static and dynamic scheduling algorithms on CPU-

GPU systems. However, these suffer either from performance or scalability limita-

tions. The static methods [33, 62, 94] are applicable only to a system integrated with

a single GPU and have a heavy and inaccurate training phase for large loads. The dy-

namic techniques [44, 89] underutilize the GPU processing cores, and some of them

are not scalable to more than one integrated GPU [84]. The other groups require

many scheduling hints from the user, and the scheduler cannot schedule the loads

over the processing devices independently and adaptively [82]. As a result, design-

ing a high performance adaptive and scalable scheduling method for embarrassingly

parallel applications which minimizes the user interference as well is non-trivial.

Task dependent applications, another category of parallel applications, have data

dependency limitations and irregular memory access patterns. In this category, the

computation is naturally expressible in the form of a static task interaction graph with

tasks of known size [55]. Each graph vertex shows a task and each edge represents a

data interaction link between two incident tasks.

Scheduling the task interaction graph on a homogeneous or heterogeneous cluster

can be done by partitioning the graph. Simply stated, a graph partitioner is an

integrated module of the scheduler. First, the graph needs to be divided into a set of

computationally balanced partitions in such a way that communication cost among

the partitions is minimized. Subsequently, the partitions are scheduled to the target

platform. Designing a high performance graph partitioner on the heterogeneous CPU-

GPU platform is compelling since the unique features of the heterogeneous CPU-GPU

system can speed up the scheduling process indirectly by performing a fast graph

partitioning. Furthermore the graph partitioning, which goes beyond the scheduling

domain, has extensive applications in various areas of computing such as data mining,

geographical information systems, social networks and VLSI design.

4

Graph partitioning is a subcategory of the clustering problem with two specific

objectives. The first is to balance the weights of the partitions, and the second is

to minimize the communication cost among the partitions. Multilevel graph parti-

tioning approach [14, 15, 39] is one of the most successful heuristics proposed for

efficient graph partitioning. The idea is to first reduce the graph size by matching

and collapsing the vertices in multiple coarsening levels until the number of vertices

is below a threshold; then, the coarsened graph is partitioned; finally, the partition-

ing is projected back through the multiple levels onto the original graph. Although

many sub-tasks of multilevel graph partitioning are serial in nature, several parallel

implementation version of it have been proposed for distributed and multi-core sys-

tems. The quality of the partitions produced by parallel algorithms is lower than that

produced by serial algorithms. Nonetheless, the parallel schemes deliver significant

speedups compared to the serial version.

Designing a graph partitioner on a heterogeneous CPU-GPU systems is a double-

edged sword. On one hand, the high processing power of GPU cores in collaboration

with a CPU can achieve higher performance compared to distributed and multi-core

graph partitioners. On the other hand, unlike data-parallel applications, irregular,

non-uniform, and data-dependent graph partitioning sub-tasks pose multiple chal-

lenges for efficient GPU utilization. These challenges include thread divergence, load

imbalance, non-coalesced memory accesses, warp execution inefficiency, and limited-

size GPU memory. Consequently the existing graph partitioning parallel algorithms

need to be modified for an efficient implementation.

In this thesis, we address the above challenges in the heterogeneous CPU-GPU

systems. First, we develop an adaptive and automated scheduler for embarrassingly

parallel applications aimed at minimizing the makespan. Then, we design and imple-

ment high performance graph partitioning methods for task dependent applications.

Finally, we extend some of our developed techniques for parallelizing the other graph

processing algorithms on a CPU-GPU platform.

5

1.2 Problem Statement

Modern heterogeneous systems have evolved from the traditional heterogeneous sys-

tems with CPUs of different speeds to the new generation systems equipped with

accelerators. The massively data parallel computation and power efficiency of GPUs

have led to the collaboration between CPUs and GPUs in achieving the high-performa-

nce parallelization of the applications. However, it is important to be mindful of the

differences between the architecture and programming models of CPU (MIMD) and

GPU (SIMD) in order to fully exploit the processing power of these heterogeneous

platforms.Effectively parallelizing application on theses platforms may also require

heavy modifications to the existing parallel algorithms.

A wide range of applications fall into embarrassingly parallel category [66] in which

tasks are completely independent. In these applications, the problem is decomposed

into many identical but independent tasks that can cooperatively produce the desired

results in a parallel fashion. Although the high processing power of GPUs makes the

CPU-GPU systems excellent candidates for parallelizing the embarrassingly parallel

applications, an ideal execution time can only be achieved if the application tasks

are optimally distributed over the CPU and GPUs to minimize the underutilization

of the processing cores. This is challenging since determining the proper portion of

workload for each device is an NP-complete [43] scheduling problem.

Another problem related to scheduling of embarrassingly parallel applications in

a CPU-GPU environment is the programming effort required to distribute loads over

the CPU and GPU cores. The traditional GPU scheduler cannot automatize the

distribution of load over the CPU and GPUs, so the programmer must manually

partition the workload. This process is tedious and does not scale well beyond solving

small problems. Hence, fully automatic techniques are required to take advantage

of processing strength of heterogeneous computing. While uniform programming

environments like OpenCL have emerged, these do not give a programmer full control

over optimal task scheduling. OpenCL offers transparency to the programmer by

6

hiding most of the underlying architectural differences, but this advantage comes at

the cost of performance since the programmer does not have explicit control over

scheduling decisions.

Meanwhile, several static scheduling algorithms have been proposed to execute

embarrassingly parallel applications on CPU-GPU systems [33, 59, 94]. However, they

have significant overheads due to their extensive profiling phases and are not accurate

due to non-linear and black-box nature of GPU performance characteristics. Some

researchers have proposed dynamic scheduling heuristics [44, 82, 84, 89] for CPU-GPU

environments. A few of them have considered executing multiple applications on a

CPU-GPU system and dynamically assigning each application to one of the processors

without any load partitioning between the CPU and GPU [44, 89]. Some other works

present solutions that are not scalable to more than one integrated GPU [84]. In [24],

the authors proposed a general framework, which does not consider the distribution of

tasks and schedules the entire kernel, for scheduling applications on a heterogeneous

CPU-GPU system. StarPU [4] is a framework that requires some hints from the user

for scheduling purposes.

In summary, majority of proposed scheduling heuristics cannot take full advantage

of the computational powers of the devices in heterogeneous CPU-GPU architectures.

Most of the contemporary schedulers, in fact, are application-dependent and require

the user’s interference for scheduling decisions and low-level programming skills for

scheduling implementation. As a result, designing a high performance adaptive and

scalable heuristic for embarrassingly parallel applications while hiding the scheduling

complexities is essential.

A large domain of applications are non-embarrassingly parallel which includes

task dependent problems with data dependency. For these applications, the compu-

tational tasks and their communication patterns can be represented by a weighted

undirected graph in which the vertices represent the tasks and the edges represent

the communication costs of the tasks. Many large-scale and complex real-world prob-

lems, such as social network interactions, can be expressed as task interaction graphs.

7

Scheduling of a task interaction graph on a heterogeneous or homogeneous cluster of

processors can be done based on a primary partitioning of the graph. In other words,

the graph partitioner is an integral part of the scheduler; it divides the graph into a

set of equal weigh partitions in such a way that the communication cost (known as

edge cut) among the partitions is minimized. Subsequently, the partitions are sched-

uled over the available processors. Using an efficient graph partitioner for the parallel

implementation of these applications is non-trivial

Besides scheduling, graph partitioning has extensive application in many comput-

ing areas, including geographical information systems, VLSI design and data mining.

Graph partitioning is also a key preprocessing step in many high performance parallel

graph algorithms like Page-Rank and Breadth-First Search.

The graph partitioning problem is NP-complete. Consequently, many heuris-

tic algorithms have been proposed [47, 70, 80]. Multilevel graph partitioning tech-

niques [15, 39, 47, 77, 91] are generally preferred over other techniques such as spec-

tral partitioning [80] due to higher quality of partitions at a faster computation time.

Handrickson and Leland [39] validated this claim using extensive experiments. In the

multilevel graph partitioning, first the graph size is reduced by matching and collaps-

ing the vertices in multiple coarsening levels until the number of vertices is less than a

certain threshold; then the coarsened graph is partitioned, and finally the partitioning

is projected back iteratively onto the original graph during the un-coarsening phase 3.

The widespread applications of graph partitioning in different areas of computing

have encouraged its parallel implementation on multi-core architectures [57, 88] as

well on distributed systems [19, 40, 48, 49, 92]. Although serial graph partitioning

and its parallel implementations on distributed and multi-core systems have been

well studied, designing a graph partitioner on heterogeneous CPU-GPU systems has

yet to be investigated. As a throughput-oriented device, GPU hides the memory

access latency through high degrees of multi-threading. This indicates an excellent

opportunity to accelerate the graph partitioning task on a heterogeneous CPU-GPU

3A detailed diagram of multilevel graph partitioning is shown in Chapter 2

8

system.

In addition, some GPU applications require graph partitioning to balance the

workload among the threads and to increase the parallelism. A high performance

GPU-based graph partitioner reduces host-device high data transfer costs. For exam-

ple, Delaunay mesh refinement (DMR) [74] application requires graph partitioning

to minimize the conflicts among the cavities processed by the GPU threads and to

increase parallelism. Using a contemporary partitioning algorithm would oblige the

entire graph to be transferred to the CPU, partitioned there, and moved back to the

GPU. Designing a high-performance GPU graph partitioner can resolve this problem

while maintaining good performance in comparison with CPU-based partitioners.

GPU allows thousands of threads to be resident on its Streaming Multiprocessors.

The SIMD GPU programming paradigm demands repetitive processing patterns on

regular data which is contrary to the irregular nature of real-world graphs. There-

fore, an acceptable implementation of CPU-GPU graph partitioning must utilize the

collective computation force of threads. This prominent difference makes proposed

approaches on distributed and multi-core systems not applicable on CPU-GPU par-

titioner in a straightforward way. Furthermore, when processing an irregular appli-

cation like graph partitioning, designing an efficient parallelization strategy becomes

challenging. Particularly when dealing with large and irregular real-world graphs,

non-uniform and data-dependent graph partitioning sub-tasks result in imbalanced

load distribution among threads, consequently deteriorate the performance of the

graph-partitioning kernels executed on the GPU.

Some of the challenges we have to overcome in our design include the following:

(1) proper redesigning of the existing parallel algorithms to maximize the graph par-

titioner efficiency on a CPU-GPU architecture; (2) GPU memory constraints to hold

large graphs; (3) the irregular nature of the graph data structure, which can result

in thread divergence and poor locality in memory accesses, deteriorating the perfor-

mance of the graph-partitioning code running on the GPU; (4) synchronization costs,

which are much more pronounced on GPUs running tens of thousands of threads as

9

compared to multi-core CPUs that only run tens of threads; (5) a suitable workload

distribution strategy between the CPU and the GPU; and (6) data transfer latency

between the CPU and the GPU.

In summary, efficient parallelization of the multilevel graph partitioning in a het-

erogeneous CPU-GPU system is a challenging task. On the one hand, the highly serial

and data-dependent nature of coarsening and un-coarsening phases makes it difficult

to exploit the data parallelism within each phase. On the other hand, straightforward

porting of existing parallelization heuristics results in inefficient GPU programs, or

if the heuristic sacrifices accuracy at the expense of parallelism, it can result in poor

partition qualities. These problems determine the need for a multilevel graph parti-

ioner in a CPU-GPU platform that accelerates this task by being tailored specifically

for the SIMD architecture, and at the same time, prov

iding reasonable partition qualities compared to serial and multi-core solutions.

1.3 Contribution

In this thesis we explore the followings: 1- design and implementation of an adap-

tive and automated scheduling technique for embarrassingly parallel applications on

a heterogeneous CPU-GPU system; (2) design and implementation of efficient par-

allel multilevel graph partitioning methods for task dependent applications on het-

erogeneous systems; and (3) investigate the application of some of our partitioning

techniques to other graph processing algorithms.

The main contribution of the thesis are as follows:

• We explore the scheduling problem for embarrassingly parallel applications on

a heterogeneous environment by designing and implementing a new dynamic

scheduling heuristic for embarrassingly parallel applications, where tasks have

no inter-dependencies. The goal is to distribute the load among the proces-

sors adaptively so that the application makespan is minimized. Meanwhile, the

10

scheduler aims to take advantage of full processing powers of the GPUs’ pro-

cessing cores and to minimize user interference into the scheduling criteria. Our

proposed dynamic scheduler is scalable to any number of GPUs integrated in

the heterogeneous CPU-GPU system. We employ runtime techniques like pro-

filing and work stealing to address the efficient load distribution between the

CPU and GPUs. The scheduler is integrated into a scheduling framework that

provides pre-implemented automated scheduling modules. The user is liberated

from the complexities of scheduling details and from manually distributing the

workload over the CPU and GPU cores. The experimental results show that

our scheduling approach achieves better to similar performances compared to

some of the well-known scheduling algorithms for the CPU-GPU systems.

• We design and implement multilevel graph partitioner on a heterogeneous CPU-

GPU system that takes advantage of the high parallel processing power of GPUs

by executing the computation-intensive parts of the partitioning sub-tasks on

the GPU and assigning the parts with less parallelism to the CPU. The par-

titioner aims to overcome some of the challenges arising due to the irregular

nature of the partitioning algorithm, load imbalance, and memory constraints

on GPUs. Our design also minimizes the lock usage and does not degrade

performance through fine-grained synchronization among the threads. To miti-

gate the global memory size limitation, we use Compressed Sparse Row (CSR)

representation, which is an efficient compact format for representing large and

sparse graphs inside the limited GPU memory. Our partitioner handles the

aforementioned challenges through redesigning of the existing parallel multilevl

partitioning algorithms, considering the heterogeneity of the architecture, and

exploits special characteristics of GPUs. To the best of our knowledge, this is

the first proposed multilevel graph partitioner designed for and implemented

on a heterogeneous CPU-GPU system. Our CPU-GPU graph partitioner out-

performs the serial and distributed multilevel graph partitioners and performs

similar to mt-metis, the state-of-the-art CPU-based parallel graph partitioner .

11

• Next we identify the performance bottlenecks of our developed CPU-GPU graph

partitioner to optimize our design accordingly so that it outperforms the CPU-

based partitioner as well. We discover that our first solution is prone to load

imbalance in some of the partitioning phases. The reason for this problem is that

in the coarsening and un-coarsening phases of partitioning, the graph vertices

are distributed among the GPU threads, and each thread serially processes the

neighbor lists of its assigned vertices. Consequently, the irregular sized neighbor

lists of the graph vertices results in thread divergence and in non-coalesced

accesses to edge and vertex indices. To resolve this problem, instead of assigning

a GPU thread to process the neighbor list of a vertex, we exploit the lock-step

processing power of warps, and the warp threads process the neighbor list of a

vertex in parallel. This prevents the thread divergence and underutilization of

SIMD resources while balancing the load over the GPU threads.

Furthermore, during transferring the less computational sections of the parti-

tioning sub-tasks to the CPU, comparatively low communication bandwidth

between the CPU and GPU creates performance overhead. Therefore, we de-

sign and implement a high performance multilevel partitioner that performs all

the phases of partitioning on the GPU with minimal CPU interventions. We

develop new coarsening and un-coarsening parallel algorithms to speedup our

partitioner. Despite the irregular inter-dependency of graph partitioning sub-

tasks, our approach balances load over the SIMD threads and prevents thread

divergence.

We also mitigate recurrent GPU memory allocation overhead and optimize our

design by deploying a custom regional memory allocation technique, which re-

duces the cost for allocating data on GPU and increases the partitioning effi-

ciency. This partitioner is autonomous as all the steps are carried out by the

GPU with minimal CPU interference. Extensive experiments on our newly de-

signed GPU-based partitioner over a set of graphs from various computing areas

demonstrate better performance in terms of partitioning speed while delivering

12

a reasonable partition quality in comparison to multi-core graph partitioners.

• Finally we apply some of the techniques we developed specifically in the coars-

ening phase of our graph partitioner to another graph processing application

that exhibits such characteristics as thread divergence and imbalance load dis-

tribution. Minimum Spanning Tree (MST) is a well-known graph processing

algorithm that creates a subset of the edges of a connected, edge-weighted

undirected graph that connects all the vertices without any cycle. One of the

well-known proposed MST algorithms is that of Bor̊uvka [12], which is known to

be suitable for parallelization. This algorithm finds the minimum weighted out-

going edge at each vertex and merges the connected vertices into supervertices.

Since Boro̊uvka’s algorithm provides natural parallelism, many parallel MST

algorithms are based on this approach. In the first phase of parallel Bor̊uvka’s

algorithm, all the vertices find the minimum-weight crossing edge among their

neighbors on the other components. This phase has a similar function to the

matching process in the coarsening phase of our designed graph partitioner.

Extending our developed techniques to the first phase of Boruvka’s algorithm

helps in achieving a high-performance implementation of MST algorithm on the

GPU.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 discusses the background and

related work. Chapter 3 presents the design and implementation of a dynamic and

automated scheduler for embarrassingly parallel applications on CPU-GPUs systems.

Chapter 4 describes our solutions for enabling multilevel graph partitioning on a het-

erogeneous CPU-GPU system. Chapter 5 proposes our high performance multilevel

GPU-based graph partitioner and discusses the extension of our techniques to parallel

MST implementation on a GPU. Chapter 6 concludes the thesis by summarizing our

work and provides a discussion on potential future research.

13

Chapter 2

Literature Review

Heterogeneous CPU-GPU platforms benefit from using the combined potential of

both CPU and GPU computing power and features. GPUs have evolved significantly

in the past decade. The new generation of GPUs has thousands of cores and multiple

gigabytes of global memory. Modern GPU processors are massively parallel and are

fully programmable [76]. The emergence of these heterogeneous CPU-GPU systems

and the rapid programmability and capability of GPUs present a unique opportunity

for speeding up parallel computations. However, deep understanding of the under-

lying architecture restrictions and performance challenges of the GPU is crucial to

adapting the parallelization algorithms accordingly.

In this chapter, we first give a brief background of the heterogeneous CPU-GPU

system architecture and CUDA programming model. Then, we provide an overview of

GPU performance challenges and constraints on high-performance parallel execution

of applications. Subsequently, we review some of the proposed static and dynamic

scheduling heuristics for heterogeneous CPU-GPU environments. Afterward, we dis-

cuss the multilevel graph partitioning problem and cite contemporary and relevant

research on serial and parallel graph-partitioning algorithms. Finally we elaborate on

several parallel optimization techniques proposed for the GPUs.

14

Multi-Core CPU

RAM

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP
... ...

GPU 1

Global Memory

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP
... ...

GPU 2

Global Memory

Core 0 Core 1 Core 2 Core 3

P
C

I-
X

 B
u

s

P
C

I-
X

 B
u

s

Figure 2.1: Heterogeneous CPU-GPU architecture.

2.1 The CPU-GPU System Architecture

Figure 2.1 illustrates the general configuration of a single CPU-multiple GPU archi-

tecture consisting of two GPUs. CPU is the dominant processor (called the host) and

the GPUs are the subordinate processors (called the devices) under the control of the

CPU. CPU communicates with the GPUs through the PCI-X buses. A GPU consists

of a scalable number of Streaming Multiprocessors (SMs), each of which comprises a

number of Streaming Processors (SPs), which are also called GPU cores.

The GPU memory system provides both on-chip and off-chip memories. The off-

chip memory is generally referred as the Global Memory of the GPU, and all the

threads running across the SMs have read/write access to this memory. However, in

terms of access latency, this memory is slow [17]. The on-chip memory includes the

shared memory and thread registers. Shared memory is located on each of the SMs

and consequently is almost as fast as accessing a register. However, shared memory

size is limited to less than 100 KB per SM.

15

2.2 CUDA Programming Model

The development of GPU programming models and tools has been as important as

the advancement of the GPU as a general purpose processing unit. CUDA (Compute

Unified Device Architecture) [1] is a common GPU programming model developed by

Nvidia that provides a framework for developing parallel applications on a GPU and

enables the parallel execution of thousands of threads on the GPU. Simply stated,

CUDA is a software layer that gives direct access to the GPU parallel computation

units. CUDA provides a set of extensions to existing languages such as C and C++

that supports useful primitives and functions to interface with the GPU. A CUDA

program consists of two parts: one part is made up of the portions to be executed

on the GPU, also known as the kernel; the other part is the program that is to be

executed on the host.

CUDA supports a hierarchy of thread grouping for the execution of a program

on the GPU. The highest level is called a grid, which encapsulates all of the threads

executing an application. A grid consists of a set of thread blocks that execute a

kernel function. The blocks are organized into a one-dimensional, two-dimensional,

or three-dimensional grid of thread blocks. All threads within a block are executed

concurrently on the GPU. Each thread within a block has a thread ID that is unique

only among threads within the same block. Furthermore, each block has a block ID

that identifies its position in the thread grid. These two IDs generate a unique thread

ID for each thread at the grid level.

The threads within one block are grouped into a series of 32 threads that construct

what is called a warp. The threads within a warp are executed in locksteps, i.e., all

threads within a warp execute one common instruction at the same time. Threads

within one block can share data using shared memory and can be synchronized at

a barrier with very low latency. However, different blocks can communicate just

through the global memory with much higher access latency. Figure 2.2 shows the

CUDA thread hierarchy paradigm.

16

Host (CPU) Device (GPU)

Grid 1

Block
(1,1)

Block
(2,1)

Block
(0,1)

Block
(1,0)

Block
(2,0)

Block
(0,0)

Grid 2

Block (1,1)

Thread
(0,0)

Thread
(0,1)

Thread
(0,2)

Thread
(0,3)

Thread
(0,4)

Thread
(0,5)

Thread
(0,6)

Thread
(0,7)

Thread
(1,0)

Thread
(1,1)

Thread
(1,2)

Thread
(1,3)

Thread
(1,4)

Thread
(1,5)

Thread
(1,6)

Thread
(1,7)

Thread
(2,0)

Thread
(2,1)

Thread
(2,2)

Thread
(2,3)

Thread
(2,4)

Thread
(2,5)

Thread
(2,6)

Thread
(2,7)

Thread
(3,0)

Thread
(3,1)

Thread
(3,2)

Thread
(3,3)

Thread
(3,4)

Thread
(3,5)

Thread
(3,6)

Thread
(3,7)

Thread
(4,0)

Thread
(4,1)

Thread
(4,2)

Thread
(4,3)

Thread
(4,4)

Thread
(4,5)

Thread
(4,6)

Thread
(4,7)

Thread
(5,0)

Thread
(5,1)

Thread
(5,2)

Thread
(5,3)

Thread
(5,4)

Thread
(5,5)

Thread
(5,6)

Thread
(5,7)

Thread
(6,0)

Thread
(6,1)

Thread
(6,2)

Thread
(6,3)

Thread
(6,4)

Thread
(6,5)

Thread
(6,6)

Thread
(6,7)

Thread
(7,0)

Thread
(7,1)

Thread
(7,2)

Thread
(7,3)

Thread
(7,4)

Thread
(7,5)

Thread
(7,6)

Thread
(7,7)

Kernel 1

Kernel 2

Warp 0

Warp1

Figure 2.2: CUDA thread hierarchy.

To execute a CUDA program on a GPU the host process launches a set of kernels

on GPU the selection of which depends on the application. For each kernel, the host

process determines how many threads are required to execute the kernel and how

many thread blocks (TB) these threads should be equally divided into. The required

data for the execution should be transferred from the CPU to the GPU a priori to

be able to run a kernel. This data is copied to the global memory of the GPU. The

hardware schedules and distributes TBs to SMs with available execution capacity.

One or multiple TBs can reside concurrently on one SM, given sufficient hardware

resources such as register files and shared memory. Each thread is mapped to one SP

core.

17

2.3 GPU Performance Constraints

Understanding the GPU architecture constraints and performance bottlenecks helps

programmers exploit the full processing power of GPUs and enables the redesign of

parallel algorithms accordingly to increase productivity. Below, we review some of

the key performance constraints of the GPU architecture.

2.3.1 Thread Divergence

Generally, a GPU performs a SIMD (single instruction-multiple data) execution at

the warp level and all the threads run in lockstep. If threads within a warp diverge,

the entire warp will execute both code paths until all the threads re-converge. Simply

stated, thread divergence can happen if threads of the warp take different execution

paths, which results in the execution being serialized. For instance the presence

of conditional statements such as if-else blocks causes thread divergence because a

conditional statement may evaluate to true for some warp lanes and false for the other

lanes.

Thread divergence can degrade the performance significantly, and this is a critical

issue in exploiting the processing power of a GPU, especially in applications with

irregular data accesses. Structuring the code to minimize divergence within warps for

high-performance GPU computing is non-trivial.

2.3.2 Un-coalesced Memory Access

Leveraging the performance of GPU applications requires streaming memory access

patterns in which threads read from and write to large consecutive blocks located

in separate regions of memory. A coalesced memory access is the combination of

multiple memory accesses into a single transaction. In modern CUDA-capable GPUs,

sets of 32 contiguous threads constitute a warp. When all threads in a warp execute a

memory instruction, the hardware checks which memory locations the threads access.

18

10 2 3 4 5 6 7

a) coalesced memory access (single memory transaction)

b) un-coalesced memory access (multiple memory transactions)

T0 T1 T2 T3

10 2 3 4 5 6 7

T0 T1 T2 T3

Figure 2.3: Two memory access patterns for a set of GPU threads.

Ideally, if all the memory accesses within a warp can be combined into a naturally-

aligned 128-byte block in the global memory, the hardware coalesces the accesses

into one transaction. Otherwise, the irregular access patterns penalize the memory

performance with crossed relations between data and threads. In such a case, multiple

memory transactions have to be issued, which reduces the efficiency and amortizes

the throughput. Figure 2.3 shows two cases for the access pattern of a set of GPU

threads.

Although regular memory access facilitates the coalescence of memory access on

the GPU, coalescing will be challenging for irregular programs with the complex data

structures such as graph and tree. Consequently, efficient parallelization of these

programs on the GPU is more challenging and requires a mechanism to hide the

latency associated with the non-coalesced memory accesses.

19

2.3.3 Limited Memory Size

Present-day high-end GPUs offer up to 16 gigabytes of global memory. This relatively

limited size of the GPU memory prevents application of the GPU to process big data

problems. This obliges the programmer to optimize memory allocations on the GPU

to be able to handle the large-sized real-world computations on the GPU and mitigate

the GPU memory bottleneck. Heterogeneous systems with multiple-GPUs are also

proposed as a solution to scale to even bigger datasets. Nonetheless, they introduce

additional latency and synchronization challenges.

2.3.4 Low-Level Programming Models

There is a trade-off between low-level access to the GPU, which accelerates the exe-

cution time, and high-level GPU programming languages, which enable productivity

and flexibility for the users. Consequently, obtaining high performance on a GPU re-

quires high programming effort to understand the low-level architecture of the GPU

including the functionality of the processing cores, memory access patterns on shared

and global memory, and the thread scheduling schemes.

Although researchers proposed several libraries for high-level programming ap-

proaches that make the data transfer between the CPU and the GPU more im-

plicit [59, 76], most of the complex parallel applications achieve better performance

through using lower-level programming models like CUDA, which are closer to hard-

ware languages.

2.3.5 Synchronization Latency

A GPU has a relatively limited global memory size of up to 16 gigabytes in the latest

generation of GPUs. While CUDA provides a barrier function to synchronize threads

within a thread block, it does not support any mechanism for communications across

thread blocks. Consequently, device level synchronization is possible through the

global memory with large access latency.

20

In order to avoid data races in GPU applications that share data on the global

memory, accesses from different thread blocks must be protected by locks. The huge

number of GPU threads exacerbates the lock-based programming challenges.

Although locking is a contemporary practical mechanism for ensuring atomic ac-

cesses to shared data on the GPU, the improper usage of locks can degrade the per-

formance. With the advent of atomic functions on GPUs, such as compare-and-swap

(atomicCAS()), it is possible to perform non-blocking synchronization techniques

among the threads. Recently, GPUs can resolve atomics within internal caches and

spin-locks are now relatively fast. Nevertheless, due to the high large access latency

of global memory, programmers consider avoiding synchronized access over the global

memory or using the fast on-chip shared memory, which enables fast synchronization

within the thread block.

2.4 Scheduling Heuristics on Heterogeneous CPU-

GPU Systems

A large number of problems can be cast to the embarrassingly parallel applica-

tions, where the computation can be divided into a number of tasks with no inter-

dependencies. Proper scheduling of these independent computational tasks on a given

set of processors is a key factor for high performance computing. The scheduling

methods proposed for heterogeneous clusters [8, 13, 63, 87, 98] or multi-core environ-

ments [18, 97] are not applicable to heterogeneous CPU-GPU systems in a straight-

forward way. The differences in the programming paradigm of the CPU and the

GPU, requires designing efficient scheduling heuristics, to maximize the performance

by optimally distributing the workload over the CPU and the GPU cores.

Although the SIMD programming paradigm of GPUs makes them excellent can-

didates for accelerating the embarrassingly parallel application, proper distribution

of parallel tasks over both the CPU and the GPU, results in better performance in

comparison to CPU-only or GPU-only execution. Figure 2.4 validate this claim by

21

7.6
8

8.7

9.7

9

7.7

6.7

5.9
5.3

7.4

10.3

4x

2x

0x

6x

8x

10x

12x

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri

a
l

Figure 2.4: Matrix multiplication experiment in a CPU-GPU system. Matrix size is
6000. The notation “X/Y” on the x-axis means X% of work mapped to the GPU and
Y% of work mapped to the CPU [62].

measuring the parallelization speedups of the matrix multiplication application in a

heterogeneous system consisted of an Intel multicore CPU and an Nvidia 8800 GTX

GPU [62].

Since the scheduling problem for heterogeneous CPU-GPU system is an NP-

complete problem, several static and dynamic scheduling heuristics and frameworks

are proposed in the literature [71]. We review some of these heuristics in the following.

2.4.1 Static Heuristics

Min-min is a well-known static heuristic proposed for task scheduling on a general

heterogeneous environment [13]. In the min-min heuristic, the next minimum sized

task is always removed from the list of tasks waiting for the execution, and it will

be executed on a device, which provides the earliest expected completion time. This

process repeats until all the task are mapped to the processors. The parallel GPU-

based implementation of min-min heuristic has been studied as well [78].

22

C
P

U
 t

im
e

Input size

G
P

U
 t

im
e

Input size

Training Phase

Bmin

N

CPU
*: 

N

GPU

*)
1(:


10

Figure 2.5: Training and partitioning phases of Qilin method [62].

There are several studies on how to statically distribute the massively parallel com-

putations over the CPU and GPU cores on a heterogeneous environment. Qilin [62]

focuses on a on a single-CPU single-GPU system. It employs an adaptive mapping

scheme that involves a training phase. The training phase interpolates a system of

linear equations based on empirical results from adaptive mappings. Adaptive map-

ping starts with a training phase in which two linear equations are built based on

calculating the execution time of different sized sub-tasks of an arbiter data parallel

problem size on CPU and GPU separately. Solution of these equations provides the

best partitioning between the CPU and the GPU.

Figure 2.5 shows the training and partitioning phases of Quilin method. If β shows

the fraction of input load assigned to CPU, (1 − β) shows the portion of the load

assigned to GPU. The intersection of the two diagrams in Figure 2.5, determines the

value of β that minimizes the makespan. If β < 0, all the input workload is mapped

to GPU. If β >= 1, all the workload is mapped to CPU and, If 0 < β < 1, the

distribution rate of actual problem size over CPU and GPU is determined according

23

to the value of β.

The most serious problem in the Qilin approach is the overhead of the training

phase. Furthermore according to the empirical results, the method is efficient when

the problem size in the training phase is at least 30% of the actual problem size. Con-

sequently, when executing a very large-size problem, implementation of the training

phase can impose a prohibitive overhead. Finally, this strategy is applicable in a

single-CPU single-GPU system and is not scalable.

Another static task partitioning scheme for heterogeneous CPU-GPU systems [33]

extracts the code features of a program at compile time by utilizing machine-learning

techniques [73] and, based on some training data, the best partitioning among the

processors is predicted using a two level predictor. In the first level, it filters the

programs which are mapped to either CPU or GPU. The remaining programs are

passed to the second level and based on their futures are classified in to 11 groups.

These prediction steps are done during the run-time when the problem input size is

known and it has a negligible overhead. However, the complexity related to designing

the predictor and lack of suitable training data could degrade the accuracy of this

approach.

Wang et al. [94] proposed a static scheduling, where task are modeled into two dif-

ferent computing and communicating categories using a hierarchical control data flow

graph. The computing-intensive subtasks are executed by GPU, and the communicati-

on-intensive subtasks are assigned to CPU. Although the authors compared the pro-

posed algorithm with the traditional scheduling algorithms, the details of implemen-

tation have not been well documented. Furthermore it is only applicable in a hetero-

geneous system equipped with a single GPU.

Boratto et al. [11] applied a static scheduling technique, to partition the workload

of the matrix computation constructed for solving the landform attributes represen-

tation, over a heterogeneous CPU-GPU systems. However, the portion of workload

delivered to each device is an input to the scheduler provided by the user manually.

24

2.4.2 Dynamic Heuristics

The greedy heuristic is a common dynamic heuristics for the heterogeneous system in

which, once a processor becomes idle it greedily picks up a task from the task pool.

Yuan et al. [95] implemented the dynamic greedy heuristic on a heterogeneous CPU-

GPU system, and showed that it achieves better speedup in comparison to GPU-only

and CPU-only policies. Choi et al. [20] discussed a similar scheduling heuristic which

maps an incoming task on the first available device.

Ravi et al. [82] developed a compiler and a runtime scheduler for heterogeneous

distributed systems, dedicated for map-reduce applications [23], which involves a

generalized reduction. Each node has a multicore CPU and a GPU; it receives a

number of chunks and partitions the chunks dynamically to the processors based on

a master-worker paradigm. However, the optimal split size has not been determined

in this work. The approach is restricted to specific application types that fit into the

map-reduce model.

V. Jiménez et al. [44] explored the scheduling in multi-programmed heterogeneous

systems based on a performance history aimed to fully utilize all the available proces-

sors in CPU-GPU devices. In the initiation phase, each application runs on different

devices and a performance history will be created which is used in the next phase to

assign the programs to the processors. Nevertheless there is not any load-partitioning

algorithm in this method and the main goal is to improve the performance where sev-

eral applications are concurrently scheduled in the system.

Scogland et al. [84] proposed several compiler and runtime strategies to schedule

the iteration-based OpenMP [16] loads across a single-CPU single-GPU architecture.

Initially a static scheduler calculates the distribution ratio of load over the devices

based on the number of cores. Then a dynamic scheduler attempts to predict the

portion of loads on each device in the upcoming rounds based on the execution time

of the load portion in the current round. Nonetheless, this approach is not scalable

to more number of GPUs and it is not accurate due to non-linear properties of the

GPU for different load sizes.

25

CPU

Persistent Kernel

GPU

...

TB(0) TB(1) TB(B-1)

Task Queue

Figure 2.6: Task queue scheme for scheduling on GPU [56].

Hamano et al. [89] considered the estimated energy consumption of the CPU and

GPU in the idle and busy states, as the criteria of the scheduling decision. According

to their energy consumption model, each task is mapped to the device that leads to

minimum energy consumption.

Some researchers have addressed the scheduling and load balancing techniques on

the GPU devices. In [56], the authors proposed a dynamic task-based load balanc-

ing technique for single and multi-GPU systems. In conventional CUDA paradigm,

multiple kernels are launched sequentially to execute several tasks. However, in this

work, they use a task-based queue scheme and instead of launching several kernels, a

persistent kernel [34] with B thread blocks (B is the maximum number of concurrent

active blocks in a GPU Device) is launched. These thread blocks dequeue the tasks in

a wait-free [41] approach and execute them concurrently according to the pre-defined

tasks information. The details of this method can be seen in Figure 2.6.

Tzeng et al. [90] employed a similar technique to schedule the irregular parallel

workloads dynamically on a single GPU. They implement a distributed work-queue

based system, but work units are inserted to the queue in the size of warp. Also a

persistent kernel model is utilized in which sufficient number of warps is launched

a priori to keep all the cores busy. Each warp worker reads as many work units as

possible from its dedicated queue and enqueues the possibly dynamic created work

units back to the queue. To balance the load among the cores, some of the workers

can steal some works from other queues or donate their work in case of queue overflow.

26

One shortcoming of this work is that all the applications are not fit in the warp-size

work units. This degrades the generality of this scheduling method. Furthermore this

technique just supports the independent work units.

In [60], the authors developed a task-based method for scheduling the loads on

GPU by grouping small tasks together and executing them on a multi-kernel sup-

porting GPU. They also proposed a methodology for executing a set of the tasks in

the most efficient sequence.

2.4.3 Scheduling Frameworks

Harmony [24] is a general runtime model for heterogeneous multi-core systems in

which each application is composed of a set of kernels with different types of de-

pendencies. Whenever the dependencies of one kernel have been resolved it will be

scheduled dynamically over the CPU and different accelerators, based on a greedy

scheduling heuristic.

StarPU [4] is a run-time framework for plugging in and executing scheduling

algorithms on a heterogeneous CPU-GPU system. The programming environment

accesses the low-level libraries indirectly by building over the framework interfaces.

Different scheduling algorithms have been proposed including greedy scheduling and

performance-based scheduling. However, the programmers have to use a new API pro-

posed by the system, because the tasks are demonstrated with codelet [25] abstraction,

which consists of tasks augmented with their input and output specifications.

In [17], the authors designed a work stealing run-time on the GPU to execute

irregular applications with dynamic task parallelism across the SMs on GPU and to

balance the workload among them. They employ a work queue in which, the tasks

are copied from the host and are executed over the SMs with the block granularity.

Since some tasks may be created dynamically the work-stealing method among the

SMs will balance the loads among the SMs on GPU.

27

2.5 Graph Partitioning

Graph partitioning and graph clustering have extensive applications in various areas

of scientific computing. While graph clustering [3, 6] identifies the groups of the

vertices in a graph that show the same behavior or similar characteristics, graph

partitioning is a sub-category of the clustering problem with two specific objectives;

The first is to decompose a graph into k sets of partitions such that communication

cost between the partitions are minimized and the second is to balance the weights

of partitions.

Formally, given an undirected graph represented by a tuple (V,E,WV ,WE), where

V is the set of vertices, E is the set of edges, Wvi is the weight of each vertex vi,

and Wei is weight of each edge ei, graph partitioning is to divide the graph G into k

partitions {p1, p2, · · · , pk} such that:

pi ∩ pj = ∅ if i 6= j and
k⋃

i=1

pi = V (2.1)

A quality approach keeps the partitions as balanced as possible with respect to their

accumulated vertex weights, i.e., if we show the total weight of all vertices in partition

pi using Wpi , then we expect:

Wpi(i=1,2,··· ,k) '
∑k

i=1Wpi

k
(2.2)

Another common expectation is to minimize the accumulated edge cut weights (total

communication cost) where an edge cut is defined as:

edge cut =
∑

e=(a,b)∈E
p(a)6=p(b)

We (2.3)

The graph partitioning problem is NP-complete. Consequently, many heuristics

28

have been proposed to quickly find a near-optimal solution [47, 70, 80]. Spectral par-

titioning methods [80] calculate the Laplacian matrix associated with the graph and,

divide the vertices of the graph into the two subgraphs by using one of the eigenvec-

tors of the Laplacian matrix. Although the spectral methods produce high quality

partitioning, they are slow, sine they need expensive computations for calculating the

eigenvector. Geometric graph partitioning methods [70] are applicable only when the

graph vertices coordinates are available and they produce the partitions with lower

quality in comparison to the spectral methods.

The most successful heuristic for partitioning large graphs used in scientific com-

putations is the multilevel graph partitioning approach [39, 47, 77, 91]. The idea

is to first reduce the graph size by matching and collapsing the vertices in multiple

coarsening levels until the number of vertices is below a threshold; then the coars-

ened graph is partitioned, and finally the partitioning is projected back through the

multiple levels onto the original graph. Multilevel graph partitioning has become the

standard approach for developing high quality and computationally efficient solutions

for graph partitioning.

2.5.1 Serial Multilevel Graph partitioning

Multilevel graph partitioning techniques [15, 39, 47, 77, 91] are generally preferred over

other techniques such as spectral partitioning [80] due to higher quality of partitions

at a faster computation time. Handrickson and Leland [39] validated this claim using

extensive experiments. Metis [47], Scotch [77], and Jostle [91] are the well-known

multilevel graph partitioning solutions.

Figure 2.7 gives an overview of the multilevel graph partitioning algorithm. The

algorithm consists of three distinct phases that we describe below.

Coarsening. In this phase, the graph is iteratively shrunk by matching and col-

lapsing vertices in order to construct a compact version of the graph. Every iteration

includes two steps commonly known as matching and contraction. The matching step

finds a set M of edges such that no pair within the set is incident on the same vertex,

29

Uncoarsening3

Init. Partitioning2

Matching Contraction

Refinement Projection

Input Graph

Partitioned Graph

Coarsening1

Figure 2.7: An overview of multilevel graph partitioning.

while the contraction step collapses all the matched vertex pairs together.

Serial algorithms find the maximal matching where it is not possible to add an-

other independent edge to the set whereas parallel algorithms usually relax this as-

sumption to avoid its overhead. Although several polynomial time algorithms have

been proposed for graph matching [27, 68], they are very slow and difficult to be

parallelized for large real-world graphs. Approximation algorithms such as Random

Matching [39], Heavy Edge Matching [50, 81], and Light Edge Matching [47] are

typically favored over polynomial time algorithms due to enabling a better trade-off

between the computation time and the quality of partitions. Heavy Edge Matching

(HEM) exhibits the best results where each vertex is searched for the neighbor con-

nected with the edge having the maximum weight since iterative application of this

procedure minimizes the edge weights in the coarser graph. Metis, Scotch, and Jostle

all employ HEM for the matching graph vertices in the coarsening phase.

For two collapsed vertices u and v, the weight of the newly created vertex c (Wc) in

the coarser graph is equal to Wu +Wv. Also, if there is one vertex z that is connected

to both u and v in the finer graph, then there will be one edge in the coarser graph

from z to c with the weight Wu,z + Wv,z. The coarsening step hierarchically creates

the successive coarser graphs until the number of vertices in the resulted graph is less

than a threshold value or equal to the number of required partitions.

The matching and contraction steps terminate based on a specific criterion. In

30

Metis and Scotch, the matching ends when the number of vertices of the coarse graph

is O(p), where p is the number of partitions, or if the difference in the number of

vertices in the coarser graph Gi+1 compared to the number of vertices in the next

finer graph Gi is less than a threshold value. Jostle terminates the matching when the

number of vertices in the coarse graph is equal to the number of required partitions.

Initial Partitioning. This phase creates a preliminary partition from the coars-

est graph. With vertices grouped together in larger entities, it is easier to reason about

the approximate partition weights and initial edge cuts. The initial partition created

in this phase drives the partitioning of the finer graphs in the next phase.

While Jostle skips initial partitioning phase by reducing the number of vertices

in the coarsening phase to the exact number of required partitions p, Metis and

Scotch apply a Greedy Graph Growing Partitioning (GGGP) algorithm to partition

the coarsest graph into p parts. In more details, GGGP starts from a random vertex

and gradually grows a region around that vertex in a breadth-first fashion. Among

the possible candidates in every step, the vertex with the largest decrease in the

edge cut is chosen first for inclusion in the region. The region continues to grow

until it includes approximately half of accumulated vertex weights. By repeating this

recursive bisection method, the required number of partitions is obtained.

Un-coarsening. Finally in the un-coarsening phase the graph is iteratively

projected back and refined onto the original graph, therefore, this phase can be viewed

as the reverse counterpart of coarsening phase. Every iteration of the un-coarsening

phase has two steps named projection and refinement. In the projection step, partition

information of the vertices in the coarser graph is projected to the vertices in the

finer graph. Then in the refinement step, boundary vertices are moved among the

partitions so as to reduce the edge cut. A vertex u in partition i, that has a neighbor

v in partition j, i! = j, is a boundary vertex. The un-coarsening process is carried

out until the original graph is formed, which includes partition information for every

vertex.

Metis and Scotch utilize a modified version [28] of the Kernighan-Lin heuristic [51]

31

for refinement, in which the boundary vertices are sorted based on their gains. The

gain of a boundary vertex is defined as the reduction in the edge cut obtained by

moving that vertex from one partition to the other partition. After the sort, boundary

vertices are moved between adjacent partitions if doing so reduces the edge cut while

maintaining the balance among the partitions.

a

b

c

d

e

f

g

1

2

7
2

3

8

a

b

c

d

e

f

g

1

2

7
2

3

8

P1 P2 P1 P2

Figure 2.8: Positive gain for vertex a and transferring from P1 to P2.

Figure 2.8 shows an example of gain calculation for vertex a when it moves from p1

to p2. The sum of the weights of interior edges (edges inside the partition) connected

to a is (2+3), while the sum of the weight of exterior connected edges (crossing edges)

is 7.

By transferring a from p1 to p2 the achieved gain is calculated as:

gain(a) =
∑
k∈p2

Wa,k −
∑
k∈p1

Wa,k (2.4)

Therefore if this movement does not make any of the two partitions unbalanced,

it reduces the edge cut by 2.

Jostle uses a combined balancing [36] and refinement algorithm. This approach

accepts a vertex movement from one partition to another even if it makes the par-

titions unbalanced, while in the immediately following refinement step, the vertex

movement is rejected or accepted.

32

2.5.2 Parallel Multilevel Graph Partitioning on Distributed

Systems

Here we discuss a few notable parallel multilevel graph partitioning solutions and how

their strategies need heavy revision for GPU applicability.

Several parallel multilevel graph partitioning algorithms for distributed-memory

systems have been proposed [19, 40, 48, 49, 92]. Parallelizing the coarsening and

un-coarsening phases is challenging because of their highly serial and data-dependent

nature.

ParMetis [48] implements a coarse-grained parallel graph partitioning, which im-

proves performance compared to the fine-grained parallel algorithm [49]. Initially,

each processor receives n/p vertices, where n is the number of graph vertices and p is

the number of processors in the cluster. The matching phase consists of two passes:

in the even numbered passes, each vertex v on processor p sends a match request to

its corresponding vertex u on other processors using HEM, but only if v > u. Corre-

spondingly, in the odd numbered passes, a vertex v sends its request only if v < u.

After a few passes, a maximal set is reached and the matching phase terminates. At

the end of each iteration, a synchronization step is required in which each processor

sends its match requests in one single message to the corresponding processors and

subsequently receives the requests from other processors. Based on the received in-

formation, the processors decide in parallel how to collapse the vertices to create the

next coarser graph.

The initial partitioning phase in ParMetis starts with an all-to-all broadcast of

vertices among the processors. Each processor performs a recursive bisection algo-

rithm [47], where the processor completes one branch of the bisection tree. At the end,

each processor stores the vertices that belong to its assigned part of the k partitions.

In the un-coarsening step, each processor first projects back its assigned vertices

onto the finer graph. Then the same ordering method as in the coarsening step

is applied in multiple passes. At the end of each pass, the requests for movement

33

of vertices across the partitions are communicated among the pro-cessors, and the

movements that do not violate the balance constraints are committed.

PT-Scotch [19, 40] follows a Monte-Carlo approach in the matching phase. Each

node sends its match request based on the HEM method with the probability of

0.5. The results show that, after a few iterations, a large part of the vertices are

matched. To reduce the communication overhead among the processors, a folding

technique is used after several coarsening levels in which the vertices of the coarser

graph are duplicated and redistributed to two groups, each to p/2 of the processors.

The two groups can continue the matching phase independently. This folding process

continues recursively (p/4, p/8, . . .) until each sub-graph is reduced to a single

processor. Then a serial recursive bi-sectioning is performed on each processor and

the best initial partitioning is chosen for the un-coarsening phase.

During the refinement phase of PT-Scotch, a banded diffusion technique [75] is

utilized in which the refinement phase executes on a banded graph extracted from

the initial partitioned graph. This banded graph consists of the set of vertices that

are located at a specific threshold distance from the partition separators.

Parallel Jostle [92] could face high communication overhead if it continued match-

ing until the number of vertices equals the number of required partitions. So, after

reaching a threshold in the coarsening phase, an all-to-all broadcast is executed before

each processor continues independently to coarsen down to a single vertex. During

the un-coarsening phases, each partition creates its own set of boundary vertices with

the same target partition preference, e.g., partition p1 constructs a set of its boundary

vertices with the preferred target partition p2. At the same time, partition p2 creates

a similar set of vertices for partition p1. Consequently, these two sets form an interface

region. A serial optimization technique, e.g., KL [51], is executed independently on

the different regions. This technique mitigates the communication-intensive vertex

movements by isolating different regions of the graph.

It should be noted that proposed solutions for distributed systems such as ParMetis,

34

PT-Scotch, and Parallel Jostle, suffer from high overhead posed by inter-process com-

munication. In the coarsening phase, each process scans its assigned vertices and

sends the matching requests for the non-local vertices to the corresponding proces-

sors. Also, in the refinement step, the processors have to communicate their requests

for movement of non-local vertices across the partitions. These requirements make

existing parallel solutions incur high volume of communication among processors in

both coarsening and un-coarsening phases.

2.5.3 Parallel Multilevel Graph Partitioning on Shared-Memory

Systems

The shared-memory graph partitioning in multi-core systems [57, 88] allow finer spec-

ification of parallelism. However, concurrent update of memory locations obliges

handling the new challenges like memory incoherency and race condition for the

coarsening and un-coarsening phases.

Gmetis [88] extends a version of Metis to a multi-core platform using the Galois

programming model [54], which is a sequential object-oriented programming model

that supports parallel set iterators. Each Galois iterator may add new elements to

the set. However, this approach is found to be not as efficient as ParMetis in terms

of performance.

Mt-metis [57] is a multicore graph partitioner based on the Metis algorithm which

applies the concept of ParMetis in the shared-memory system implemented using

OpenMP, and achieves better performance than MPI-based distributed graph parti-

tioners. Primarily, the n graph vertices are divided among the t threads and each

thread finds the matches for n/t vertices assigned to it. The lock-free matching step

of mt-metis is split into two rounds. In the first round, all the threads process the

neighbor list of their assigned vertices serially and read from and write to the match-

ing vector freely without any synchronization. In the second round, the matching

conflicts are resolved and each thread finalizes the matching of its assigned vertex.

35

In the initial partitioning step, each thread partitions the graph into two bisec-

tions. Then the best bi-section with the minimum edge cut is selected and half of the

threads work on one of the bisection and half of them partition the other bisection

recursively.

The refinement is performed in two steps as well, and the moving direction of

vertices among the partitions is reversed after each round. Moreover, each thread has

an assigned buffer for inserting the vertex movement requests of the other threads.

At the end of each round, the threads process their buffer and confirm or undo the

movements to meet the balance constraints.

GPU allows thousands of threads to be resident on its Streaming Multiprocessors.

Therefore, an acceptable implementation of GPU graph partitioning must utilize the

collective computation force of threads within the warps efficiently. This prominent

difference makes proposed approaches on multi-core systems not applicable on GPUs

in a straightforward way. An instance of where the GPU paradigm can be trou-

blesome is the coarsening phase where each thread finds the match for its assigned

vertex. Here, traversing irregular-sized neighbor lists by different threads decreases

warp execution efficiency. Moreover, in the refinement step, simultaneous access of

many GPU threads to the list of candidate boundary vertices for each partition not

only creates a high memory contention but also unlike mt-metis it is inefficient if

taking an action needs to be undone due to inter-partition imbalance. Above all,

non-coalesced memory loads when accessing the neighbor list of the graph vertices

impose high latency costs. Due to these GPU-specific issues, proposed parallel tech-

niques for distributed and multi-cores environments are not directly applicable onto

GPUs.

2.5.4 Matching Algorithms on GPU

A few studies address the graph matching on GPU [2, 3, 35, 64], exclusively and in

isolation with respect to other parts of graph partitioning procedure. Nevertheless,

in these solutions each thread processes the irregular sized neighbor list of vertices

36

serially which results in load-imbalance and thread divergence and consequently de-

grades the performance when employed iteratively during the graph partitioning pro-

cess. Also, such solutions do not address other challenges that arise when designing

a high-quality graph partitioner fully implemented on the GPU. Balancing the load

among the GPU threads during the contraction and refinement steps, and efficiently

keeping the intermediate graphs with minimal footprint on GPU DRAM with limited

size are among these challenges.

Fagginger Auer and Biddeling [2] propose a fine-grained parallel greedy matching

algorithm on the GPU. their solution randomly colors the graph vertices either blue

or red and it works in two phases in each iteration. In the first phase the blue

vertices propose to red neighbors. In the second phase the red vertices reply to the

proposals and choose just one of the neighbors based on the matching criteria. The

matching continues iteratively for the remaining vertices until the maximal matching

is obtained, that is, all the vertices are either matched or they have no matching

proposal.

Birn et al. [9] present another algorithm which repeatedly traverses the edge list

locating dominant edges (called local max). The algorithm starts with an empty

matching set. Every vertex tries in parallel to find the adjacent heaviest edge. If a

vertex v finds an edge vw as local maximum and the other end point w also finds

that wv as the local maximum, then the edge vw is added to the matching set and

its adjacent edges are removed from the graph. This process repeats until there is no

more edge left to be matched.

Naim et al. [72] propose a variation of heavy edge matching matching method in

which, the warp threads collaboratively process the neighbor lists of a single warp-

assigned vertex. However, each warp processes its assigned vertices in serial and if the

size of a vertex neighbor list is not a multiple of warp size, some of the warp threads

remain idle which leads to poor warp execution efficiency.

Manne et al. [64] apply a greedy matching algorithm in computation of a stable

marriage solution on GPU. In the greedy matching algorithm, first the graph edges

37

are sorted. In each iteration of the algorithm, the heaviest remaining edge u, v is

included in the matching before removing any edge incident on either u or v.

Fagginger Auer and Bisseling [3] present a multilevel graph coarsening approach

to perform agglomerative clustering using GPUs. Their matching procedure [2] can

adapt to star-like structures in the graph to avoid insufficient parallelism due to

small matchings. However they do not provide any local refinement mechanism.

Furthermore the algorithm does not save the intermediate graphs on GPU and only

keeps the first and last level graphs.

2.6 Optimization Techniques on GPU

Here we explain some of the proposed GPU-based optimization techniques for the

fast parallel execution of scan and reduce operations, which are the core primitives of

parallel computing and we employ those operations in our graph partitioning design.

We also discuss the atomics instructions on GPUs.

2.6.1 Scan

The all-prefix-sums operation on an input sequence of values is commonly known

as scan. Scan is a fundamental function that is applied as a base in many parallel

algorithms.

The new generation of Nvidia GPUs provides specific instructions [38] when the

input elements are binary, which improves the efficiency of scan and memory space

requirements by allowing the threads of a warp to operate concurrently. One of these

instructions is popc(), which counts the number of bits that are set to 1 in a 32-

bit integer and is compiled to one machine instruction. Each warp thread can call

popc and get the results of the sum for all of the 32 warp assigned bits. Another

instruction is ballot(), which collects the binary values across parallel threads,

counts the number of bits set to 1, and returns this value to every thread in the warp.

Figure 2.9 shows an example of an intra-warp exclusive binary prefix sum. In

38

B=01100101

__popc(01100101 & 00111111)= 3

34 2 2 2 1 1 0

T6

Exclusive Scan

B mask_value

T0T1T2T3T4T5T7

10 1 0 0 1 0 1

B = __ballot(bit(Ti)

T0T1T7 T2T3T5T6 T4

Initial Array

Figure 2.9: Intra-warp binary exclusive scan. Warp size is assumed 8.

the first step, all the warp threads call ballot() by passing their assigned bit to

this instruction. The returned value of ballot() is called B, and it is accessible

by all the threads. Then each thread calls popc() on the returned value of (B &

maskvalue) to count the number of bits set to 1. Maskvalue is calculated by setting

the bits in the positions lower than each thread ID to 1 and 0 in the other positions.

As figure 2.9 shows, for thread 6 the maskvalue is 00111111 since the bits 0 to 5 are

set to 1, and the bits 6 and 7 are set to 0.

The scan can be extended across an entire thread block by using an intra-warp

scan; first, the warp-level binary prefix sum is executed and one of the threads in

each warp writes the partial results to an intermediate array of length the number

of warps inside the block. Then, the first warp executes an exclusive prefix sum on

the partial results. Finally, the warp threads collect the cumulative sums from the

previous step and add them to the value they calculated in the intra-warp prefix sum.

39

2.6.2 Reduction

Reduction is an important optimization technique that is used to reduce the elements

of an array into a single result. The most common reduction operation is computing

the sum of a large array of values. Other operations are, for example, reducing on

the maximum or minimum value across an input set of values. Since reduction is

commutative and associative, the elements can be re-arranged and combined in any

order. Sequential addressing reduction is an efficient intra-warp reduction method

proposed for the GPU [37] in which, the second half of the warp assigned values are

added pairwise to the first half by a leading set of threads. Figure 2.10 shows the

3 15 2 9 4 11 7 8

4 15 7 9

7 15

15

Figure 2.10: Intra-warp reduction on the maximum value. Warp size is assumed 8.

intra-warp reduction on the maximum value using the sequential addressing method

that has log2(warp size) steps.

The new generation of Nvidia GPUs provides a shuffle instruction (SHFL) [61],

which enables the threads inside a warp to directly read a register from the other

threads inside the warp. This enables the warp to collectively exchange or broad-

cast data without requiring access to the shared memory. SHFL is a faster mecha-

nism for moving data between threads in the same warp. One intrinsic of SHFL is

40

shfl xor((variable, lane Mask), which calculates a source lane ID (thread id

within the warp) by performing a bitwise XOR of the caller’s lane ID with laneMask,

and the value of variable held by the resulting lane ID is returned. This variant can

be used to do an efficient reduction across the warps.

2.6.3 Atomics

GPU allows thousands of threads to be resident on its Streaming Multiprocessors.

Since different blocks on GPU have to communicate through global memory, hard-

ware atomic operations are crucial to keep memory consistency, when the threads

access the shared locations on the global memory. The atomic operations are em-

ployed to avoid the race condition and to ensure the order of the write and read

accesses to the memory. The atomic operations impose too high a performance over-

head by serializing the memory accesses between thousands of threads on GPU [74].

However, in the new generations of GPUs such as Kepler, the architectural support

for the atomic operations has evolved significantly. Consequently, the performance

and efficiency of the atomic instructions (atmocMax(), atmicAdd(), etc.), have been

improved substantially.

41

Chapter 3

A Dynamic Scheduling Heuristic

for Embarrassingly Parallel

Applications on Heterogeneous

CPU-GPU Systems

In this chapter we address the problem of scheduling for embarrassingly parallel ap-

plications on a heterogeneous CPU-GPU system equipped with single or multiple

GPUs. We design and implement a new, dynamic scheduling heuristic for the embar-

rassingly parallel applications, where tasks have no inter-dependencies. The scheduler

is designed to distribute the load at a suitable rate between all the available proces-

sors in such a way that the application execution time is minimized. Meanwhile, the

scheduler aims to take advantage of the full processing power of the GPU processing

cores and to minimize the user interference in the scheduling criteria. Our proposed

dynamic scheduler is scalable to any number of GPUs integrated in a heterogeneous

CPU-GPU system.

We employ several runtime techniques such as profiling and work stealing to adapt

the load distribution based on the processing power of the processors during hetero-

geneous execution and speed up the execution time of the embarrassingly parallel

42

applications.

Our developed scheduler outperforms the static min-min [78] and dynamic greedy-

[95] heuristics on a system with a single CPU and multiple GPUs. It achieves similar

performance in comparison to the Qilin [62] heuristic on a single CPU–single GPU

system. However, unlike Qilin, our dynamic scheduler is applicable to heterogeneous

CPU-GPU platforms integrated with more than one GPU, and it is also less sensitive

to the size of the training data. We integrate our dynamic scheduler into a scheduling

framework [99] that hides the scheduling complexities from the user and automatically

distributes the loads over the processors.

3.1 Motivation

Parallelizing embarrassingly parallel applications comprising large groups of indepen-

dent tasks on a heterogeneous CPU-GPU system is straightforward. However, to

achieve high performance and take advantage of the potential processing power of all

of the processors, the tasks need to be distributed over the CPU and GPUs at proper

rates.

Unlike traditional heterogeneous systems, the specific features and differences in

the programming model of the CPU and the GPU should be considered when design-

ing scheduling algorithms for heterogeneous accelerator-based systems. Consequently,

the scheduling methods proposed for heterogeneous clusters [8, 13, 63, 87, 98] or multi-

core environments [18, 97] are not applicable to CPU-GPU systems. Current GPU

programming models cannot make decisions regarding the distribution of load over

the CPU and GPU. Therefore, the programmer manually embeds in the CPU code

and the kernel the information about the ratio of loads on each device. In Chapter 2

we discussed the proposed static and dynamic scheduling algorithms on CPU-GPU

systems, which suffer either from performance or scalability issues. The static meth-

ods [33, 59, 94] are only applicable to systems integrated with a single GPU and have

43

a heavy and inaccurate training phase for large loads. The addressed dynamic tech-

niques [44, 82, 84, 89] underutilize the GPU processing cores and some of them are

not scalable to more than one integrated GPU. The other dynamic methods require

many scheduling hints from the user and the scheduler cannot schedule the loads over

the processing devices independently. As a result, it is a non-trivial task to design

a dynamic and scalable scheduling heuristic for embarrassingly parallel applications

that minimizes user programming effort.

3.2 Scheduler Architectural Model

Traditionally the software architecture of embarrassingly parallel applications can be

modeled with a work pool where a Task Generator generates a set of parallel indepen-

dent tasks to the pool, and these tasks are assigned to different workers. Technically,

the parallel tasks compute the independent output data (also known as result) set {

out(in1), out(in2), ..., out(inn)} from the input data (load) set { in1, in2, ..., inn} [83].

The workers all have identical tasks, i.e., they have the same code, but operate on

different input loads. When the workers finish the computation, they send the results

to the Result Collector. Figure 3.1 shows the software model of the embarrassingly

parallel applications scheduler.

To schedule the tasks in the work pool, two steps must be defined: the task

definition and the task assignment to the workers. The first step depends on the

application, whereas the second step is more general. Task assignment can be static,

which means each worker executes a fixed portion of the tasks in the pool that is

known a priori. In dynamic task assignment, the work-pool tasks are assigned to the

workers in a dynamic way, and workers can ask for more assignments if they finish

their original assigned portion of the load.

We employ the dynamic assignment model in our designed scheduler. The under-

lying architecture platform is composed of a single CPU and multiple GPUs. The

44

Input Load

Pool
Result Pool

Task Generator Result Collector

… ...

A Set of Workers

Figure 3.1: Dynamic scheduling architecture for embarrassingly parallel applications.

scheduler works as an intermediate layer sitting between the task pool and the work-

ers and distributes the load over the CPU and GPUs adaptively to minimize the

makespan.

Figure 3.2 shows a schematic representation of our scheduler architecture. In

addition to the main dynamic scheduler, the architecture employs two plug-in modules

as well: A partitioner module for the appropriate breaking of the input loads into

smaller chunks, and a load bundling module that bundles smaller loads assigned to

each device to reduce the transfer latency. We elaborate on these two modules in the

following sections.

3.2.1 Partitioner

The partitioner, an additional plug-in module to the scheduler, divides a given load

into smaller independent chunks. It is a function template filled in using an application-

specific partitioning strategy, and is then supplied to the scheduler. The scheduler

uses the partitioner to divide a load that has been extracted from the task pool into

ideal-sized chunks that can then be scheduled by the scheduling criteria. The sched-

uler determines this ideal size at run time based on the application and underlying

45

Set of CPU and GPU workers

… ...

Task Pool

Bundler

Partitioner

Dynamic

Scheduler

… ...

Figure 3.2: Our designed dynamic scheduler architecture.

processing system architecture.

To clarify, the partitioner function can be considered to be a matrix multiplication

problem. Depending on the implementation of the application, we can assign one row

of the first matrix and one column of the second matrix to each processing core or

assign one element in a row and one element in a column to each process. So, the

sub-load size created by the partitioner may be different.

Figure 3.3 illustrates the partitioner module. When the scheduler extracts a load

from the task pool, it calls the partitioner function to break down the load into a set

of independent sub-loads. Then the scheduling algorithm determines the sub-loads

split ratios.

3.2.2 Load Bundler

The load bundler wraps multiple small loads into a single large load and assigns

this one large load to the GPU devices. To design an efficient dynamic scheduler

for heterogeneous CPU-GPU systems, we must consider some critical features of the

CPU-GPU architecture. In contemporary CPU-GPU systems, the interconnection

bandwidth between CPU and GPU is fairly high, on the order of 12 gigabytes per

second or even more with newer interconnection technologies like the PCI-X bus

46

Task Pool

Scheduler
extracts a load

… ...

independent sub- loads
after partitioning

partitioner

Load

Figure 3.3: Our partitioner function.

and its extensions. Considering such high bandwidths, data transfer times between

CPU and GPUs are much smaller as compared to a cluster or a grid environment.

Consequently, when the data size is small, the message startup latency becomes the

predominant factor in the total data transfer cost between the CPU and GPUs.

Hence, load bundling can improve the data transfer performance.

In addition to data transfer performance, bundling can also reduce GPU execution

latency. Since the input load can be arbitrarily partitioned into independent sub-

loads, accordingly multiple independent sub-loads can also be bundled together. In

other words, CPU will offload a coarser grain load to the GPU. Load bundling achieves

a better match between the parallel computing of each GPU device and the workload

size that has been assigned to it.

There are three reasons to implement load bundling: (1) If a load is small, it

is possible that GPU will be underutilized. Considering that each GPU thread is

mapped to a core’s streaming processors (SP) to operate on a part of the load, a

smaller load could render many of the cores idle. Hence, bundling of the loads into a

single load of a suitable size will result in better utilization of the GPU. (2) Each CPU-

GPU data transfer has message startup latency that is independent of the message

size. Hence, bundling of multiple loads into a single load prior to transfer can minimize

this transfer latency. (3) Each thread invocation on the GPU has a startup latency

47

(a.k.a., kernel start-up time) that is much higher than the startup latency for a

function call on the CPU. Multiple loads will result in multiple kernels launching,

while load bundling can minimize the number of spawning operations.

Figure 3.4: Schematic showing the reduction of processing time due to load bundling.

Figure 3.4 illustrates the impact of load bundling on the overall GPU processing

time. The processing time is reduced due to the combination of reductions from the

message start-up latency and kernel start-up time.

3.3 HASS : A Dynamic Scheduling Algorithm

Our proposed dynamic scheduling algorithm operates on a set of loads deposited to

the task pool. The main purpose is to distribute the loads over the CPU (pc) and a

set of GPUs { pg1 , pg2 , ..., pgn} in such a way that minimizes the total execution time.

To reach this goal, the distribution ratio sets { ratiopc , ratiopg1 , ratiopg2 , ..., ratiopgn}

ideally need be determined such a way all the processing devices complete their work

at almost the same time:

T (ratiopc × L) ≈ T (ratiopg1 × L) ≈ T (ratiopg2 × L)... ≈ T (ratiopgn × L) (3.1)

In Equation 3.1, (ratiopgi × L) represents the fraction of the total load size (L)

that will be assigned to pgk (the kth) GPU), and (ratiopc ×L) represents the fraction

48

of the load that will be assigned to the CPU.

The dynamic scheduling algorithm operates iteratively. In each round, a divis-

ible load is extracted from the task pool and is divided into a set of independent

sub-loads by calling the partitioner function. Then, a scheduling algorithm HASS

(Heterogeneous Architecture Scheduling Strategy) is invoked.

The HASS function distributes the sub-loads to the CPU and GPUs dynamically

based on the information recorded from the previous rounds. HASS employs a pro-

filing process to estimate the initial fraction of loads needed to be assigned to each

processing device. In other words, the profiling procedure determines the initial rate

of load execution on each device based on the characteristics of the workload.

In our profiling approach, we calculate the execution time of a small portion of

the load on each device and based the collected date determine an initial distribution

of actual load size over the devices. The overhead of our profiling approach is much

lighter than Qilin [62], and it can be performed online at run time.

After the initial distribution of the sub-loads over the available processors, if a

GPU device has finished the execution of its assigned sub-loads, it applies a work

stealing technique [10, 17] to ask for more work in such a way to prevent performance

degradation from underutilization of the processors. At the end of each round, the

final distribution ratio for all of the devices are recorded to be used in subsequent

rounds. This adaptive information helps in improving the load partitioning as rounds

continue. Repetition of work stealing and ratio adaptation in the subsequent rounds

finally reaches the ideal distribution rates over the CPU and GPUs. The algorithm

terminates when the task pool becomes empty.

Algorithm 3.1 illustrates the HASS which operates in three phases: initialization

phase, execution phase and adaptation phase. In the rest of this section, we elaborate

on details of each phase.

49

Algorithm 3.1 HASS Algorithm.

1: procedure HASS

2: input = A set of equal size sub-loads d1, d2, ...du with the total size of m. The

loads are to be executed on processors {pc, pg1 , pg2 , ..., pgn}
3: output = Loads executed with minimized makespan

4: round = 0

5: while loads are still generated by the task generator do

6: Extract a load li from the pool and partition it into u independent sub-loads

according to the partitioner criteria

7: /*initialization phase*/

8: if round = 0 call profiling procedure

9: initialize i to ratiopc // i is the CPU split ratio: refer to equation 3.4

10: for k = 1 to n do

11: initialize jk to ratiopgk // jk is GPUk split ratio: refer to equation 3.5

12: /*execution phase*/

13: for k = 1 to n do

14: put jk ∗m sub-loads (PRTpgk
) into pgk buffer (bgk)

15: bundle all sub-loads in bgk to a single load Dgk

16: assign Dgk to pgk

17: endfor

18: put i ∗m sub-loads (PRTpc) into pc buffer (bc)

19: while bc is not empty do

20: if pc is idle then

21: remove a sub-load di from bc and assign it to pc

22: for k = 1 to n do

23: if pgk is idle then

24: /*Steal work from CPU’s buffer*/

25: remove a sub-load di from bc, and assign it to pgk

26: /*adaptation phase*/

27: update ratiopc

28: foreach pg,k

29: update ratiopgk
30: round+ +

31: endwhile

50

3.3.1 Initialization Phase

In the first round of HASS, for a balanced estimation of the initial load distribution,

we profile a small (arbitrary) fraction of the load on each device. From this sample

profile, we decide how to initially distribute the total input load over the CPU and

GPUs based on the measured execution rates on each processing device. We indi-

vidually execute the partial size of the load on the available set of processors, P = {

pc, pg1 , pg2 , ..., pgn}, and calculate the makespan for each processor.

Determining the proper size of the initial profiling is a crucial factor. On one

hand, if a large load volume is assigned to the GPUs, the CPU threads may finish

their assigned load early and become idle. On the other hand, if the initial proportion

of load that is assigned to the GPUs is too small, it may result in underestimating the

processing power of the GPUs due to the lack of sufficient workload. Also, an increase

in the work stealing rate requested by the GPUs to the CPU imposes overhead to the

performance.

Ideally, the initial load size should be large enough to fully utilize the GPU cores.

To minimize the profiling overhead, the load size can be set to the maximum number

of streaming processors (SP) of the available GPUs. This load will then be executed

on different devices and the makespans are measured.

The makespan of execution of an arbitrary problem size (arbitrary size) is used

to calculate parameter S, which represents the load size that a processor can execute

per second (i.e., Spc for the CPU, Spgk
for the kth CPU)(Equations 3.2 and 3.3 in

the following).

Spgk
=
arbitrary size

makespanpgk

(3.2)

Spc =
arbitrary size

makespanpc

(3.3)

Then, the load split ratios are computed for each processing device according to

Equations 3.4 and 3.5:

51

ratiopgk =
Spgk∑n

k=1 Spgk
+ Spc

(3.4)

ratiopc =
Spc∑n

k=1 Spgk
+ Spc

(3.5)

Finally, the above profiling information is used to determine the portions of the

total load size (PRT) assigned to each device using Equations 3.6 and 3.7. PRTpc

represents the portion of the total load that will be assigned to the CPU, and PRTpgk

represents the portion of the total load size(L) that will be assigned to Pgk (the kth

GPU).

PRTpgk = ratiopgk ∗ realproblemsize (3.6)

PRTpc = ratiopc ∗ realproblemsize (3.7)

3.3.2 Execution Phase

In the execution phase, loads are transferred from the processors’ individual buffers

(in CPU memory) to the processors. Prior to transmission to a GPU, the loads inside

the GPU’s buffer are bundled together by the load-bundling module and are assigned

to the GPU as a whole for reasons discussed in the previous subsection.

During the execution phase, a work stealing mechanism [10, 17] is employed for

balancing loads between the CPU and the GPUs. If one or more GPUs finish their

work, they steal loads from the CPU’s buffer, if available.

It should be mentioned that in the original scheduler model for embarrassingly

parallel applications, an idle worker pulls work from the task pool. However, since a

GPU is a subordinate processor of the CPU, its workload needs to be pushed (by the

CPU) rather than transferred by a pull.

52

GPU2

A divisible Load

GPU1CPU

GPU2 bufferGPU1 bufferCPU buffer

Work

Stealing

Updating the

distribution rates

Bundling

HASS

Partitioning

Figure 3.5: Scheduler flowchart over one round.

3.3.3 Adaptation Phase

The work stealing mechanism during the execution phase changes the initial ratio of

load distribution. Therefore at the end of one round an adaptation phase is employed,

during which the load distribution to the processors is adjusted based on the final

portion of load executed by any of the processors in the execution phase. The use

of the adaptation phase improves the performance in the subsequent rounds. If the

load distribution ratio remains the same for two consecutive rounds, the scheduling

distribution is finalized. Figure 3.5 shows the flowchart of our designed scheduler over

one round.

53

3.4 Experimental Evaluation

In this section, we discuss the performance results of HASS compared to three of the

contemporary static and dynamic heuristics: Qilin [62] and min-min [78], which are

static heuristics and greedy [95], which is a dynamic heuristic. We use two benchmarks

for our experiments: a string search application that finds all strings that match

certain patterns in a text file and a dense matrix multiplication application. In order

to eliminate this anomaly of small loads, the loads chosen for these experiments have

the size that is not less than the number of SPs of the GPU with the most number

of SPs.

The system we performed experiments on is equipped with an Intel Xeon E5540

processor with 4 cores; 6 gigabytes of main memory; one Nvidia Tesla C1060 GPU,

which has 30 Stream Multiprocessors (SM) with each having 8 Streaming Processors

(SP) (i.e., 240 SPs in total); and one Nvidia Quadro600 GPU, which has 12 SMs

each comprising 8 SPs (i.e., 96 SPs in total). We used the STL (Standard Template

Library) [79] of C++ on the CPU and CUDA on the GPU.

Figure 3.6 shows the execution time comparison of HASSwith min-min and greedy

heuristics for the search and matrix multiplication applications, respectively. We were

not able to compare the HASS performance with the Qilin heuristic in a heterogeneous

system with 2 GPUs, because Qilin works only on a single-CPU single-GPU system.

In each round of the execution, the same amount of load is scheduled to the system

and three scheduling strategies are applied.

As Figure 3.6 shows HASS outperforms the greedy and min-min scheduling heuris-

tics for both applications, and its performance improves over successive rounds due to

adaptive scheduling. According to Figure 3.6, we achieve the best distribution rates

at round 6, and, consequently, the load distribution rates over the processors remain

the same in the subsequent rounds.

We also measure the load distribution rates in each round for a one CPU and

two GPU system configuration. Figure 3.7 shows the load distribution among the

54

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

E
x
e

cu
ti

o
n

 T
im

e
 (

S
e

co
n

d
)

Round Number

HASS greedy min-min Search

(a) Search application on a text file with size of 50 MB.

0

4

8

12

16

20

24

0 1 2 3 4 5 6 7 8 9

E
x
e

cu
ti

o
n

 T
im

e
 (

S
e

co
n

d
)

Round Number

HASS greedy min-min Matrix

Multiplicatoon

(b) Matrix Multiplication application with matrix size of 6000*6000.

Figure 3.6: Execution time comparison in a single-CPU multi-GPU system.

processors for the matrix multiplication benchmark in this system configuration. As

shown in the Figure, the load distribution improves over successive rounds until it

reaches to an optimal rate in the 6th round.

Next, we consider a heterogeneous system with one integrated GPU to be able to

compare our scheduler performance with Qilin as well. Figure 3.8 shows a execution

time comparison between HASS, Qilin, greedy and min-min in a single CPU-single

GPU configuration (Nvidia Tesla C1060). As shown in the Figure 3.8, HASS has

significantly better performance in comparison to the greedy and min-min heuristics.

Also with increasing round number, the makespan given by HASS improves and

55

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

P
ro

p
e

rt
io

n
 o

f
Lo

a
d

 (
%

)

Round Number

CPU GPU1 GPU2

Figure 3.7: The distribution of loads over the three processors in Matrix Multiplica-
tion when using HASS.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

E
xe

cu
ti

o
n

 t
im

e
 (

S
e

co
n

d
)

Round Number

 greedy min-min Qilin HASS

Figure 3.8: Matrix Multiplication execution time comparison of HASS with the three
other scheduling algorithms in a single-CPU single-GPU system.

approaches that given by Qilin.

As discussed in Chapter 2, one main drawback of the Qilin method is its distri-

bution precision dependency to the training data size. If the load size in the training

phase is less than 30% of the actual problem size, the scheduling policy is likely to be

sub-optimal. To compare the sensitivity of HASS to the problem size in the train-

ing phase, we consider the training size less than 30% of the actual input size for

both HASS and Qilin and evaluate their makespans for the matrix multiplication

application with the input matrix size of 10000*10000. Figure 3.9 demonstrates the

normalized execution time comparison. HASS outperforms the Quilin after round 5,

56

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

(S
e

co
n

d
)

Round Number

Qilin HASS Search

(a) Search application on a text file with size of 50 MB.

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

(S
e

co
n

d
)

Round Number

Qilin HASS
Matrix

Multiplication

(b) Matrix Multiplication application with matrix size of 10000*10000.

Figure 3.9: Execution time comparison of HASS and Qilin with the training size less
than 30% of the real problem size.

which show it is less sensitive to the profiling problem size than is the Qilin heuristic.

In summary, for a single-CPU single-GPU environment, HASS gives approxi-

mately the same performance as Qilin, and it begins to perform better than Qilin if

the problem size in the training phase is less than 30% of the input load. Moreover,

Qilin in its current form cannot be applied to multiple-GPU environments. Conse-

quently, HASS is more scalable in comparison to Qilin.

In our paper [99], a prototype framework had been implemented by the other

student worked on this research, that integrates our designed dynamic scheduler for

57

embarrassingly parallel applications on a single-CPU multi-GPU system. The frame-

work is implemented using C++ and CUDA and sits between the task pool and the

workers as an intermediate layer that applies HASS to schedule the tasks over the

CPU and GPUs.

This framework provides the programmer with pre-implemented building blocks

and template functions that need to be filled with application-specific code. In this

framework, there is a clear separation between application-specific and application-

independent details abstracted by the scheduling framework. Application-specific

components are interfaced with the programmer. At the same time, a programmer is

liberated from the complexities of scheduling-related details, which are implemented

into the framework’s core.

3.5 Conclusion

In this chapter, we presented a dynamic scheduling heuristic for parallelizing embar-

rassingly parallel applications on a single-CPU multiple-GPU system. The heuristic

employs (1) a learning and adaptation phase to improve load distribution over succes-

sive rounds; (2) a partitioner to divide the input workloads into a set of independent

sub-loads; (3) a task-bundling technique to minimize data transfer latency between

the CPU and GPUs and to prevent the underutilization of GPU cores due to idling

and kernel startup latencies; and (4) a work-stealing technique for dynamic load bal-

ancing among the CPU and GPU cores. The proposed heuristic is found to perform

better or similar to some of the contemporary heuristics for CPU-GPU systems. It

is also scalable to any number of integrated GPUs. We embedded our scheduling

algorithm into a scheduling framework in which the scheduling complexities are hid-

den from the user, and the distribution of the load over the available processors are

performed automatically.

58

Chapter 4

A Parallel Multilevel Graph

Partitioner on the CPU-GPU

Architecture

In this chapter, we discuss the design and implementation of a parallel multilevel

graph partitioner on a CPU-GPU system. Graph partitioning has extensive appli-

cations in the scheduling of task dependent applications as well as different areas of

scientific computing such as data mining and VLSI design. Parallel development of

an efficient graph partitioner on a CPU-GPU platform faces several challenges includ-

ing the difficulty in the parallel sub-tasks distribution due to different programming

paradigm of the CPU and GPU, irregular nature of partitioning algorithm and un-

predictable memory access patterns.

We design efficient parallel partitioning methods to enable multilevel graph par-

titioning on a single-CPU single-GPU platform. We take advantage of the high par-

allel processing power of the GPU by executing the computation-intensive parts of

our partitioner on the GPU and assigning the parts with less parallelism to the CPU

to prevent underutilization of the GPU threads. Our partitioner aims to overcome

some of the challenges arising due to the irregular nature of the algorithm, thread

59

divergence, and memory constraints on GPUs. Furthermore, it ameliorates the uti-

lization of GPU threads through load-balancing schemes. We present a lock-free

scheme since fine-grained synchronization among thousands of threads imposes too

high a performance overhead.

To the best of our knowledge, this is the first proposed multilevel graph parti-

tioner designed for and implemented on a heterogeneous CPU-GPU system. Experi-

mental results on two different GPUs demonstrate that the partitioner, implemented

in CUDA, outperforms serial Metis [47] and parallel MPI-based ParMetis [48]. It

performs similar to the shared-memory CPU-based parallel graph partitioner mt-

metis [57].

4.1 Motivation

Many parallel applications with sparse data structures and data-dependency patterns

can be represented by a task interaction graph [55]. This graph may be regularly

shaped (e.g., a mesh) or irregular (e.g., a sparse graph). The computational tasks

and their communication patterns are shown by a weighted undirected graph in which

the vertices represent the tasks and the edges represent the communication cost of

the tasks. Scheduling of the task interaction graph on a heterogeneous or homoge-

neous cluster of processors can be performed based on primary partitioning of the

graph. In other words, the graph partitioner is an integral part of the scheduler

which partitions the graph into a set of equal weigh partitions in such a way that

the total communication cost among the partitions is minimized. Subsequently, the

partitions are scheduled over the available processors. Aside from scheduling, graph

partitioning has numerous applications in other areas of computing, including social

networks, data mining and parallel processing.

The graph partitioning problem is NP-complete. Consequently, many heuristics

have been proposed to quickly find a near-optimal solution [47, 70, 80]. The most

successful heuristic for partitioning large graphs used in scientific computations is the

60

multilevel graph partitioning approach which was elaborated in Chapter 2 .

The extensive applications of graph partitioning in different areas of computing

have stirred its multilevel parallel implementation for multi-core architectures [57,

58, 88] as well as distributed systems [19, 40, 48, 49, 92]. Although serial graph

partitioning and its parallel implementation in the distrusted and multi-core systems

have been well studied, designing a parallel graph partitioner on heterogeneous CPU-

GPU systems is yet to be investigated.

GPUs have become widely used for accelerating data-parallel applications with

regular behavior because of their high computational power, energy efficiency, and

low cost. As throughput-oriented devices, GPUs hide the memory access latency

through high degrees of multi-threading. This indicates an excellent opportunity to

accelerate the graph partitioning task using GPUs.

However, when processing an irregular application like graph partitioning, design-

ing an efficient parallelization strategy becomes challenging. Particularly when deal-

ing with large and irregular real-world graphs, non-uniform and data-dependent graph

partitioning computation sub-tasks result in imbalanced load distribution among the

threads and consequently deteriorate the performance of the graph-partitioning ker-

nels executed on the GPU. Hence, achieving high performance requires keeping the

majority of GPU threads busy, minimizing the communication between the CPU

and the GPU, minimizing non-contiguous memory accesses, and preventing thread

divergence.

In addition, some GPU applications require graph partitioning to balance the

workload among the threads and to increase the parallelism, e.g., Delaunay mesh

refinement (DMR) [74] application, requires the graph partitioning to minimize the

conflicts among the cavities processed by GPU threads and to increase the parallelism.

Using a contemporary partitioning algorithm would oblige the entire graph to be

transferred to the CPU, partitioned there, and moved back to the GPU. Designing

a high-performance graph partitioner on a heterogeneous CPU-GPU system, can

61

resolve this problem while maintaining good performance in comparison with CPU-

based partitioners.

4.2 Design Challenges

We address the following four challenges to design and implement a graph partitioner

on a CPU-GPU architecture:

1. The GPU threads communicate through global memory. Hence, to keep the

memory consistent, we need to synchronize concurrent writes. Using atomics

or locks for synchronization imposes high overheads and degrades performance.

This overhead is much more pronounced on GPUs than on multicore systems

because a GPU executes tens of thousands of concurrent threads as compared

to a multicore CPU, which only executes tens of concurrent threads.

• Our designed graph partitioner is lock-free and does not degrade perfor-

mance through fine-grained synchronization among the threads.

2. The irregularity of the graph structure and the serial nature of the partitioning

algorithm deteriorate the performance of the graph-partitioning code running

on the GPU. This is because of poor locality in the memory accesses and im-

balanced load distribution among the threads, which is particularly harmful to

performance on GPUs due to their SIMD architecture.

• We employ memory coalescing and GPU optimization techniques in dif-

ferent phases of the graph partitioning process to distribute the workload

evenly among the threads.

3. Memory constraints (GPUs tend to have less memory than CPUs) in storing

all the coarsening levels graphs and the transfer latency between the CPU and

GPU make the implementation more challenging.

62

• We apply an efficient graph representation method (CSR) to mitigate the

global memory overhead and reuse the allocated memory space as much as

possible. We also minimize the data transfers between the CPU and the

GPU.

4. Heterogeneous systems combine a SIMD and a MIMD architectural model.

Thus, the partitioner needs to be decomposed properly to fully exploit the

CPU and the GPU architectures at the same time.

• Our partitioner executes the parallel computation-intensive parts on the

GPU and assigns the parts with lower levels of parallelism to the CPU to

prevent the underutilization of GPU cores.

4.3 A Multilevel Graph Partitioner for CPU-GPU

Architectures

In this section, we discuss the design and CUDA implementation of our parallel

multilevel graph partitioner for heterogeneous CPU-GPU environments [29]. We

exploit the massive parallel processing power of the GPU cores by executing the

computation-intensive sub-tasks of our partitioner on the GPU and assigning the

subtasks with less parallelism to the CPU.

We start the coarsening on GPU and employ Heavy Edge Matching (HEM) tech-

nique to match the GPU threads assigned vertices. Then the matched vertices are

collapsed together to construct the coarser graph. High-computational levels of coars-

ening are performed on the GPU and when the graph size is lower than a threshold

value, the coarsening levels with less computation are transfered to the CPU. We avoid

the fine-grained synchronization among the threads by developing lock-free matching

and contraction methods on the GPU.

The initial partitioning has a small design space for parallelization. Therefor this

phase is performed on the CPU. The un-coarsening iterative process initiates on the

63

Input Graph

one level of

coarsening

phase on GPU

level # <

threshold

finalizing

coarsening

phase

No

initial

Partitioning

one level of

un-coarsening

graph size = graph

size at threshold level

Yes

copy

partitioned

graph to

GPU

one level of

un-coarsening

graph size=

original graph size

Stop

No

Yes

CPU Side

GPU Side

copy

coarsest

graph to

CPU

No

Yes

Figure 4.1: Proposed heterogeneous graph partitioning scheme.

CPU and the graph is projected back and refined during multiple levels till it reaches

to the threshold level again. Subsequently the partitioned graph is transfered to the

GPU and the remaining levels of un-coarsening are completed on GPU.

Figure 4.1 shows the proposed graph partitioning scheme for CPU-GPU archi-

tectures. The coarsening phase starts on GPU by distributing the graph vertices

among the threads. Each thread scans its assigned vertices and finds their potential

matched vertices using HEM. However, due to the possibility of the matching conflicts

resulting from parallel execution of GPU threads, another GPU kernel is launched to

resolve them before the contraction begins. The coarsening continues level-by-level

until reaching the threshold beyond which coarsening is faster on the CPU due to

the lack of sufficient parallel tasks. Thus, at the threshold level, the coarse graph

is transferred to the CPU and the remaining iterations of the coarsening phase are

performed on the CPU. Since the coarse graph’s size is by definition small, the initial

partitioning of the graph has a low level of parallelism. Hence, the initial partitioning

phase is also completed on the CPU along with the initial refinement steps until the

threshold level is again reached. At this point, the partitioned graph is transferred

back to the GPU. The remaining iterations of the un-coarsening phase are executed

on the GPU.

64

4.3.1 Data Structures for Graph Representation

In our graph partitioner, we use the Compressed Sparse Row (CSR) representation,

which is a well-known compact format for representing large and sparse graphs ap-

propriate for graph storage inside the limited GPU memory. We store the initial,

intermediate, and final graphs all in the CSR form in order to minimize the memory

footprint and maximize the size of the graph that the GPU DRAM can hold. CSR

is preferred over the adjacency matrix representation method, since it reduces the

memory occupancy significantly.

The adjacency matrix representation takes O(|V |2) memory space and wastes a big

fraction of the memory specially for sparse graphs (most real-world graphs are sparse;

thus |E| << |V |2). CSR packs all the adjacency lists of each vertex contiguously. This

format not only optimizes the memory usage but also helps coalescing the accesses in

the neighbor lists of vertices on the GPU.

Figure 4.2 shows the graph data structure in one level of coarsening in CSR format

which consists of 4 arrays: an adjacency array (adjcny) of length 2 × |E| 1, which

stores the adjacency list of the graph vertices, and an adjacency pointer array (adjp)

of length |V | + 1, which points to the adjacency set of each vertex in the adjacency

array. In addition, the adjacency weight (adjwgt) of length 2 × |E| and the vertex

weight (vwgt) of length |V | contain the weights of the edges and vertices, respectively.

In all levels of coarsening, we augment the CSR data structures with two other

arrays allocated in global memory: a matching array M of length |V | that includes

the matched pairs to be collapsed in the coarser graph, and a mapping array (Cmap)

of length |V | that stores the vertex labels in the coarser graph. We construct and

store all these 6 arrays permanently at each level of coarsening. This enable us to

project back and retrieve the information of the finer graphs during un-coarsening

levels.

1Since the graph is undirected and vertices at both end of an edge must easily be able to access
their set of edges, an edge appears at two locations in the adjacency array.

65

3 1 5 0 4 2M

0 1 2 0 3 2Cmap

4 7 3 6 5 8vwgt 0 3 5 8 1114adjp

1 3 4 0 2 1adjncy

2 9 5 2 3 3adjwgt

3 5 0 2 4 0

5 7 9 5 1 5

3 5 4 2

1 2 2 7

1

2

0

3

5

4
1

53

2 9

5

2

7

0 1 2 3 4 5

0 1 2 3 4 5

Figure 4.2: Graph data structures used in our design shown for an example. CSR
format of the graph is accompanied with M and Cmap auxiliary arrays. These arrays
are constructed for every intermediate partitioning level.

The different phases of the graph partitioning are discussed in detail in the fol-

lowing subsections.

4.3.2 Coarsening.

During the coarsening phase, the vertices of the graph are collapsed to construct the

next coarser level of the graph using a lock-free approach. The coarsening phase

consists of two steps: matching and contraction. As we mentioned before, at each

level of coarsening, two arrays are allocated in the global memory on the GPU: a

matching array (M) of length |V | that includes the matched pairs to be collapsed

in the finer graph (Gi) and a mapping array (Cmap) of length |V | that stores the

vertices’ labels in the coarser graph (Gi+1).

Matching. At the beginning of the matching step, the graph vertices are di-

vided among the threads on the GPU. We are mindful of memory coalescing when

distributing the vertices to the threads to improve the memory accesses efficiency.

A coalesced memory access is the combination of multiple memory accesses into a

single transaction. In modern CUDA-capable GPUs, sets of 32 contiguous threads

constitute a warp. When all threads in a warp execute a load instruction, the hard-

ware checks which memory locations the threads access. If all the threads in a warp

access locations within a naturally-aligned 128-byte block in the global memory, the

66

1 2 3 K-1 K K+1 K+2 n0

T0 T1 T2 T3 Tk-1 T0 T2T1

Figure 4.3: Memory coalescing.

hardware coalesces the accesses into one transaction. Otherwise, multiple memory

transactions have to be issued, resulting in reduced throughput.

Figure 4.3 illustrates the memory coalescing technique. If thread 0 accesses vertex

n, thread 1 accesses vertex n + 1 and Thread tk−1(the last thread) accesses vertex

n+(k−1), then all memory requests issued by a warp fall into the same 128-byte block.

Therefore, they are coalesced, which improves the memory bandwidth significantly.

To maximize the parallelism in the matching step, we use a lock-free approach

since fine-grained synchronization incurs too much overhead due to the high number

of threads running on a GPU. At the beginning of the matching step, each thread goes

over its assigned vertices in the graph and finds their matches using the heaviest edge

matching technique (HEM), i.e., it searches the neighbor connected to its assigned

vertex with the maximum weight edge. As a result HEM reduces the sum of weights

of the edges in the coarser graph. If we assume that EM is the set of edges which are

removed from graph in level i of coarsening by applying a matching M . Then the

weight of edges in the coarser graph is WEi+1
= WEi

−WEM
. So if we increase the

WEM
by collapsing the heavier edges, the weight of the edges in the coarser graph is

reduced, which consequently decreases the edge cut by a great amount

If all the edges have the same weight, a random matching (RM) [39] method is

used in an iterative fashion where, for each vertex, one of its unmatched neighboring

vertices is chosen randomly to be collapsed with it in the coarser graph.

All the threads write to the shared matching array (M) in a lock-free fashion.

Hence, there is a possibility that vertex a assumes it has been matched with vertex

b while vertex b finds vertex c as its match. Therefore, we need to launch another

kernel to resolve these conflicts. In this kernel, each thread goes over its assigned

67

1 (1,1)

2 (2,6)

4 (4,4)

5 (5,7)

7 (7,5)6 (6,2)

3

3

11

3

7 6

4

0

7

7

6

5

(0,3) (3,0)

3

6

10

3 4 6 0 5 7 2 5

Step 1

Step 2

3 1 6 0 4 7 2 5

(Conflicts Resolution)

Figure 4.4: Matching array creation.

vertices again and checks the match values; if it finds any cases in which M(a) = b,

but M(b)! = a, it matches vertex a to itself, i.e., (M(a) = a). This means that vertex

a has another chance to find a match in the following coarsening levels.

Figure 4.4 illustrates the steps needed to create the final matching array for a

graph with eight vertices. In this example, vertices 1 and 4 are matched to themselves

because M(1) = 4 but M(4) = 5. However, M(5) = 7 and M(7) = 5. Consequently,

vertices 5 and 7 are matched to each other. Although such conflicts impose some

overhead in the matching phase due to a decrease in the number of matched vertices

and consequently an increase in the required number of matching iterations, the

overhead is significantly lower than using fine-grained locks to resolve conflicts.

Cmap Creation. The matching array (M) facilitates the creation of the map-

ping array Cmap, which contains the collapsed vertices’ labels in the coarser graph.

68

To fully parallelize the Cmap creation and to minimize the memory usage, we use a

parallel prefix sum method and execute all the required computations in-place.

Cmap is constructed by launching the following four kernels on the GPU:

1. Creating the initial Cmap: Initially, the Cmap array of length |V | is allocated

in the GPU’s global memory. Then, a kernel is launched in which each thread

executes the following function for all the vertices assigned to it.

foreach (vertex vi: assigned vertices to thread Tk) do

if (vi <= M [vi]) then

Cmap[vi] = 1

else

Cmap[vi] = 0

In this kernel, the Cmap entries are initialized to zero or one depending on the

vertices’ labels of the matched vertices in the finer graph Gi.

2. Creating a helper array: An inclusive prefix sum is computed on the Cmap

array to create the helper array PV. To maximize the performance, we use the

parallel inclusive-scan from the CUB library [69], which currently is the highest-

performing parallel implementation of prefix sums on GPUs. The last element

in the PV array indicates the number of vertices in the coarser graph, Cgraph.

3. Subtraction: All the threads subtract one from every entry of the PV array

resulting in the SV array.

4. Creating the final Cmap: The final Cmap array is created through the following

kernel:

foreach (vertex vi: assigned vertices to the thread Tk) do

if (vi > M [vi]) then

Cmap[vi] = SV [M [vi]]

69

3 1 6 0 4 7 2 5M

1 1 1 0 1 1 0 0
Initial

Cmap

1 2 3 3 4 5 5 5PV

0 1 2 2 3 4 4 4SV

0 1 2 0 3 4 2 4Final Cmap

Vertex Number 0 1 2 3 4 5 6 7

Figure 4.5: Cmap creation steps.

It should be noted that the steps needed to create the final Cmap array are

computed in-place and we do not need any auxiliary memory space. In addition, all

steps are fully parallelized. Figure 4.5 illustrates the four steps for creating the final

Cmap array. In this example, the number of vertices in Cgraph is 5.

Contraction. In the contraction step, with the help of the Cmap and Matching

arrays, the matched vertices are collapsed to form the coarser graph. This step is

more complex since distributing the contraction sub-task over the GPU threads is

not straightforward; in the ideal parallelization, each thread calculates a part of the

adjacency array cadjncy and the adjacency weight array cadjwgt of the coarser graph.

However different sized adjacency lists of the coarser graph vertices should be created

in a parallel fashion and the exact size of each segment containing the neighbors of

collapsed vertices in the cadjncy and the cadjwgt array is unknown at the beginning

of the contraction step.

70

Algorithm 4.1 Contraction Method

1: kernel 1

2: /* Vuw is the vertex label of two collapsing vertices u and w in the cgraph */

3: foreach (vertex Vuw: assigned to thread Tk) in parallel do

4: if u = w then

5: Temp[Vuw]← |adjncy(u)|
6: else

7: Temp[Vuw]← |adjncy(v)|+ |adjncy(w)|
8: kernel 2

9: exclusive parallel prefix sum on Temp to compute the initial start index of neigh-

bor lists of each vertex in tcadjncy and tcadjwgt

10: kernel 3

11: allocate two hash tables tb1 and tb2 for Tk

12: foreach (vertex Vuw: assigned to thread Ti) in parallel do

13: foreach vertex x ∈ adjncy(u) do

14: m = f(Cmap[x])

15: search for Cmap[x] in bucket m of tb1

16: if Cmap[x] exists then

17: Add the edge-weight (x,u) to the edge-weight of m in tb2

18: else

19: Add Cmap[x] to tb1 , Add the (x, u) corresponding edge weight to tb2

20: Endfor

21: foreach vertex x ∈ adjncy(w) do

22: m′ = f(Cmap[x])

23: search for Cmap[x] in bucket m′ of tb1

24: if Cmap[x] exists then

25: Add the edge-weight (x,w) to the edge-weight of m in tb2

26: else

27: Add Cmap[x] to tb1 , Add the (x, u) corresponding edge weight to tb2

28: Endfor

29: copy the values of tb1 and tb2 to tcadjncy and tcadjwgt

30: Temp′[Vuw] = total number of vertices in the tb1

31: Endfor

71

32: kernel 4
33: exclusive prefix sum on Temp′

34: kernel 5
35: foreach (vertex Vuw: assigned to thread Tk) in parallel do
36: copy the elements from tcacadjncy and tcadjwgt to cadjncy and cadjwgt ac-

cording to the indices in Temp and Temp’

To parallelize the contraction procure, first, we estimate the initial size of the

neighbor list for each vertex u matched with vertex w. The number of entries in the

coarser graph’s adjacency array for the pair is the accumulated number of neighbors

in the adjacency set of u and w (the maximum possible). However some of the vertices

in the collapsed vertices neighbor lists may also be matched together in the coarser

graph. Also there is a possibility that some of the vertices are the neighbors of both

matched vertices. But they should appear just once in the merged neighbor list of

new label vertex in the coarser graph. Therefore the final size of neighbor list in the

coarser graph shrinks. This requires additional work to calculate the final size of the

neighbor list of each vertex in the coarser graph.

To implement the contractions step on GPU, first the vertices of the coarser graph

are distributed among the threads. Then, each thread finds the start and end indices

of its assigned vertices neighbor list in the cadjncy and cadjwgt arrays. These indices

need to be calculated beforehand and passed to the threads. To accomplish this, an

auxiliary arrays (Temp) is allocated on the GPU, of length equal to the number of

vertices in the coarser graph to hold the estimated start indices of different neighbor

lists in the coarser graph adjacency array.

Algorithm 4.1 shows the designed parallel kernels for the contraction step:

kernel 1. In this kernel, each thread calculates the maximum number of entries

that it needs for neighbor lists of any of its assigned vertices in the cadjncy and cadjwgt

arrays by scanning all vertices assigned to it. For each vertex u, which is matched

with vertex w, the maximum number of entries in the coarser graph’s adjacency array

is the sum of the number of vertices in the adjacency set of u and w. In other words,

it is equal to the total number of neighbors of u and w. If the vertex u is matched

72

to itself, then the required number of entries will be equal to the size of its adjacency

set. Each thread applies the same logic to each of its assigned vertices and inserts

the final number of required entries in the corresponding entries of the Temp array.

kernel 2. Next, an exclusive parallel prefix sum (using CUB library [69]) is

calculated on Temp to compute the initial start index of neighbor lists of each vertex

in the coarser graph’s adjacency list and adjacency weight arrays.

kernel 3. As mentioned before, the number of neighbors of two collapsed vertices

is usually less than the initial calculated value, which can be due to either matched

pairs having a neighbor in common or two distinct neighbors of the merged set being

matched as well. This necessitates preventing the occurrence of the duplicate vertex

labels in the adjacency list of the coarser graph.

To merge the neighbor lists of matched vertices, a hash table can be allocated for

each thread. The length of this table is equal to the number of vertices in the coarser

graph. Then, in the case of a collision, a linear scan is performed by each thread on the

edge list to prevent the vertex duplication in the adjacency list of its assigned vertices

in the coarser graph. However, this method poses heavy GPU memory overhead since

the size of hash table allocated for each thread will be equal to number of vertices

in the coarser graph. Therefore, we use a compact-hash table for each thread and a

hash function is applied to the Cmap values of all the vertex numbers in the neighbor

list of each pair of collapsing vertices. The hash function maps the neighbors to the

entries in the hash table and constructs the adjacency list of the newly created vertex

in the coarser graph. Hash-compact table reduces the memory space required for the

hash tables, which ideally should be equal to the number of vertices in the coarser

graph.

Since the graph edges are weighted, we require two compact-hash tables to store

the adjacency list labels and the corresponding edges. According to kernel 3, in the

compact-hash approach , two hash tables (tb1 and tb2) are allocated for each thread.

One of the hash tables is used to create the neighbor list of the vertices in the coarser

graph and the other one (tb2) stores the corresponding edge weights.

73

For each vertex Vuw assigned to a thread, we apply a hash function ”f” to the

Cmap values (new label numbers of collapsed vertices) of all neighbors of collapsing

vertices u and w, which are represented by Vuw in the coarser graph. This function

maps the neighbors to the buckets of tb1 and tb2, aimed to construct the final neigh-

bors list and its corresponding edge-weights for Vuw in the coarser graph. Since the

length of hash tables are much less than the number of vertices in the coarser graph,

to avoid collisions, chaining [31] is used where each bucket of the hash tables stores

multiple elements. When the Cmap value of a neighboring vertex is mapped to one

of the buckets in tb1, we search this value in the bucket. If this value is not found, it

will be added to the tb1 and the corresponding edge weight is also added to tb2. But

if this value already exists it shows that two neighbors have been paired together. In

this case, just their edge weights incident on the collapsed vertices are added together

in tb2.

At the end of outer loop of kernel 3 (line 29 of algorithm 4.1), each thread copies

the values from the hash tables of the current vertex to the tcadjncy and tcadjwgt ar-

rays allocated on GPU, respectively. These intermediate arrays facilitate the parallel

execution of the threads working on different sets of vertices by determining the final

size of coarser graph arrays (cadjncy and cadjwgt).

Finally each thread counts the total number of entries in the hash tables, which

gives the precise size of the neighbor list of its assigned vertex in the coarser graph.

This value is saved in Temp′[Vuw] which is an auxiliary array allocated on the GPU,

of length equal to the number of vertices in the coarser graph.

kernel 4. This kernel performs another parallel exclusive prefix sum on Temp′

to calculate the start index of the neighbor list of each vertex in the final cadjncy and

cadjwgt arrays.

kernel 5. When kernel 5 is launched, each thread copies the calculated elements

from the tcadjncy and tcadjwgt arrays to the cadjncy and cadjwgt arrays with the help

of the indices in Temp and Temp′. Therefore the next coarse graph is constructed.

Figure 4.6 demonstrates the procedure of contraction and merging the adjacency

74

lists for two matched vertices (0, 3)) of the graph shown in Figure 4.4. According to

Figure 4.6, two matched vertices 0 and 3 are collapsed to construct the new vertex 0

in the coarser graph. Vertex 0 is connected to the 4 neighbor vertices while vertex 3

has five neighbors. The hash function used in this example maps the Cmap values of

all the neighbor lists of two matched vertices to the buckets of compact-hash table of

size 100. Finally the adjacency list of vertex 0 is copied to the corresponding locations

of cadjncy in the coarser graph.

The new neighbor list has a size of 5; Since vertices 0 and 3 are contracted, they

are removed from the merged neighbor list. Furthermore, vertex 1 is the neighbor of

both vertices 0 and 3. Finally some of their neighbors (e.g., 2 and 6) are also matched

together in the coarser graph. Consequently, the final adjacency list of two matched

vertices in the coarser graph has a smaller size than the total number of vertices in

the neighborhood of each of the two vertices.

The matching and contraction process are repeated through multiple coarsening

levels until the number of graph vertices is below a threshold. Then the graph is

transfered to the CPU and the remaining levels of coarsening are executed on the

CPU by employing the multi-core partitioner mt-metis [57].

4.3.3 Initial Partitioning

Initial partitioning is always performed on a small problem size since it is applied to

the coarsest graph. Although the initial partitioning does not need a high level of

parallelism, to maximize the performance we use mt-metis to parallelize this phase on

a multi-core CPU. Mt-metis has been shown to be faster than other parallel partition-

ers [57]. Mt-metis employs a parallel k-sectioning approach for the initial partitioning,

where each thread independently generates an initial partitioning (with k partitions)

of the coarsest graph using recursive bisectioning. Then the best partition with min-

imum edge cut is selected as the final input to the un-coarsening phase.

75

New label (Cmap Value)

 in the coarser graph

0

1

2

3

4

1 2 3 4

0 1 4 5 7

1 2 3 6

Neighbor list of vertex 0

Matched Vertices

0 <–> 3

1 <–> 1

2 <–> 6

4 <–> 4

5 <–> 7

neighbor list of
vertex 0

in Cgraph

merging the

Cmap values of

neighbor lists

using compact-

hash table

Hash Function (f) =

Cmap(vertex_number)%100

99

0

1

2

3

4

1

2

3

4
.
.
.

.

.

.

Neighbor list of vertex 3

6
2 4

3

0

1

8

97

6

10

7

Coarser Graph

Figure 4.6: Contraction procedure.

4.3.4 Un-coarsening

The un-coarsening phase starts on the CPU by employing the mt-metis un-coarsening

method and continues until the threshold level is again reached. At this point, the

partitioned graph is transferred back to the GPU and the remaining steps of the

un-coarsening phase are executed on the GPU.

Un-coarsening comprises two steps: Projection and refinement. During the pro-

jection step, the coarser graph at level i+1 is projected back to the finer graph at

level i. This step can easily be parallelized on the GPU by dividing the vertices of

the finer graph among the threads and having each thread specify the partition labels

of the projected vertices in the finer graph by considering the Cmap array and saved

pointer arrays from the coarsening phase.

76

a

b

c

d

e

f

1

15

7

2
10

P1 P2

9

7

a

b

c

d

e

f

1

15

7

2 10P1

P2

9

7

Figure 4.7: Edge cut increment by concurrent movement of boundary vertices.

The refinement step attempts to improve the graph edge cut by moving the bound-

ary vertices between partitions. This step is more challenging because the concurrent

movement of vertices among the partitions may increase the edge cut.

Figure 4.7 shows an example, where concurrent movement of vertices results in

increasing the edge cut, while each individual move decreases the edge cut. Consider

two vertices a and f belonging to partition 1 (P1) and partition 2 (P2) respectively.

In a situation like this, moving vertex a from P1 to P2 reduces the edge cut by 12.

Similarly, moving vertex f from P1 to P2 reduces the edge cut by 13. However if

these two vertices were assigned to different threads, and each thread performed the

move, then the overall edge cut will increase by 5.

Concurrent movement of vertices among the partitions may also violate the bal-

ance constraints and some of the partition weights become smaller than the minimum

allowable partition weight, or larger than the maximum allowable partition weight.

To avoid such refinement problems, the boundary vertex movements should be

ordered using locks. However with thousands of threads working concurrently on

the GPU, applying lock-based methods for moving vertices between partitions would

impose a high synchronization cost and degrade the performance. To overcome this

challenge, we use a coarse-grain approach for refinement which consists of two kernels.

Kernel 1. In the first refinement kernel, the vertices in the finer graph are dis-

tributed among the threads and each thread determines the boundary vertices among

77

its assigned vertices. Then it finds the best destination partition for migration of each

boundary vertex, if possible. A destination partition is selected for moving a vertex

if this move results in the maximum reduction of the edge cut and does not under-

weight the source or overweight the destination partition. In addition, an ordering

method [48] is used that divides each refinement step into two iterations. During each

step, vertices can move between the partitions only in one direction (decreasing or

increasing). This prevents concurrent exchanges of two vertices between two neighbor

partitions, which may result in increasing the edge cut.

To process the threads’ concurrent requests for migrating vertices, we allocate a

buffer to each graph partition where the threads insert their movement requests. A

request contains the source partition’s vertex labels and potential gain. Each buffer

has a counter S that indicates the current size of the buffer. To prevent race conditions

among the threads, when one thread wants to put a request on a specific buffer, it

atomically increments the counter S by one. Thus, multiple threads are able to write

to exclusive slots of the buffer concurrently without resorting to locks.

Figure 4.8 visualizes the parallel insertion of the boundary vertex movement re-

quests during the refinement. If we assume the number of graph partitions is k, then,

k buffers are allocated during the refinement. As Figure 4.8 shows, vertex 3 is a

boundary vertex with positive movement gain assigned to T0. This vertex is cur-

rently located in partition 0 (p0). However if this vertex moves to partition 1, the

graph edge cut is reduced by 5. Therefor, T0 inserts this request including all the

required information to the buffer allocated for partition 1. All the threads also insert

their requests to the corresponding buffers in a parallel fashion.

Kernel 2. Next an exploitive kernel is launched with a number of threads equal

to the number of partitions where each thread processes the incoming requests in the

buffer of its assigned partition. It initially sorts the relocation requests based on their

gain. Then it accepts the moves that do not overweigh the partition’s (say pi) weight,

e.g., for each vertex j, weight(pi) +weight(vi) will be less than the maximum allowed

weight for this partition. The refinement terminates when all boundary vertices have

78

boundary vertices

assigned to T0

T0 T1 Tn

.

.

partition 0

buffer

partition 1

buffer

partition k

buffer

movement

requests

3 7 ...

0 5 ...

Corresponding

partition numbers

vertex: 3

source: p0

gain: 5

Figure 4.8: Boundary vertex movement requests insertion procedure.

been explored.

The refinement at each level repeats for a specified number of passes to improve

the edge cut while keeping the partitions balanced. However, it can be terminated

earlier if no move is committed in the current pass. Although the concurrent updates

of a partition may unbalance it, the balance of partitions is guaranteed by continuing

the refinement at the finer graph levels.

4.4 Comparison with mt-metis

It should be noted that CPU-GPU partitioner requires a higher amount of redundant

information in the coarsening and refinement phases than mt-metis, i.e., in some of

the launched kernels we need to record more information. The reason is that mt-metis

employs a persistent thread paradigm, where data ownership is given to the threads

at the beginning of the program and stays the same until the end of the execution. In

contrast, the data ownership in CPU-GPU partitioner is not persistent throughout

the execution. In particular, the kernels are launched with a variable number of

threads. The rationale behind this is to balance the load among the threads as much

79

as possible and to maximize the performance.

4.5 Experimental Evaluation

In this section, we evaluate the performance of our CPU-GPU partitoner imple-

mented using CUDA, on a CPU-GPU architecture. We compare the performance

of this partitioner with Metis 5.1.0 (a serial partitioner), Par-Metis 4.0.3 (a par-

allel distributed-memory partitioner) and mt-metis 0.4.4 (a parallel shared-memory

partitioner).

We ran all implementations on two different systems. The first one is equipped

with an Intel Xeon E5540 processor with 8 cores and one Nvidia GeForce GTX Titan

GPU and the other is equipped with the same CPU and one Nvidia Kepler K40 GPU.

Experiments were performed using eight different graphs arising in various areas of

computation, which were obtained from DIMACS10 [6]. Table 4.1 shows the size and

specification of these graphs.

Graph |V | |E| Description

delaunay 1,048,576 3,145,686 Delaunay triangulation of
random points

er-fact 1,048,576 10,904,496 Erdös-Rényi Graphs

co-papers 540,486 15,245,729 Co-author and Citation
Networks

idoor 952,204 22,785,143 Sparse matrix from UFC

af-shell 1,508,065 25,582,130 Sparse matrix from UFC

USA Roads 23,947,347 28,947,347 Road network

Hugebubble 21,198,119 31,790,179 2D dynamic simulation

nlpkkt120 3,542,400 46,651,696 Sparse matrix from UFC

Table 4.1: Input graphs used for the experiments.

For all implementations, we partitioned the input graph into 64 partitions and

the imbalance tolerance for each partition was set to 3% (as in Metis [47]). The

graphs edge weights added as equal numbers with value of 1 at the beginning of the

partitioning process.

Figure 4.9 shows the speedup achieved by our CPU-GPU graph partitioner using a

80

0

1

2

3

4

5

S
p

e
e

d
U

P
 R

e
la

ti
ve

 t
o

 M
e

ti
s

ParMetis mt-metis CPU-GPU Partitioner Titan GPU

Figure 4.9: Speedup of ParMetis, mt-metis, and CPU-GPU partitioner over Metis
(Titan GPU) .

Titan GPU, ParMetis and mt-metis (with 8 threads) over the serial Metis. Figure 4.10

demonstrates the comparison when we use a K40 GPU. The speedup is the runtime

of the parallel graph partitioners relative to the runtime of serial Metis. In each case,

we use the minimum runtime of three experiments to compute the speedup.

As Figures 4.9 and 4.10 illustrate, our CPU-GPU graph partitioner outperforms

Metis and ParMetis on all tested inputs, and its performance is also quite reasonable

in comparison to mt-metis (i.e., somewhat better on the larger graphs and somewhat

worse on the smaller graphs). On average the CPU-GPU graph partitioner using the

Titan GPU performs 2.57× and 1.52× faster than Metis and ParMetis respectively.

When using K40 GPU, our partitioner performs 2.63× faster than Metis and 1.57×

faster than ParMetis. The CPU-GPU partitioner achieves better speed up when we

use K40 GPU du to higher parallel processing power of this GPU. The irregularity of

the input graph affects the performance of CPU-GPU partitioner, since it increases

the workload imbalance between the GPU threads on some of the GPU kernels, which

hurts performance.

Table 4.2 show the absolute runtimes of the four parallel graph partitioners. For

81

0

1

2

3

4

5

6

S
p

e
e

d
U

P
 R

e
la

ti
ve

 t
o

 M
e

ti
s

ParMetis mt-metis CPU-GPU Partitioner K40 GPU

Figure 4.10: Speedup of ParMetis, mt-metis, and CPU-GPU partitioner over Metis
(K40 GPU).

CPU-GPU partitioner, this time includes the time to transfer the graph between the

CPU and the GPU. However, I/O times on the CPU are excluded from all timing

measurements.

To validate the comparison of our partitioner with the other parallel partitioners,

we also evaluate the ratio of the edge cut achieved by each parallel partitioner relative

to Metis. Table shows the edge cut scaled relative to Metis for the three partitioners.

The results show that our CPU-GPU partitioner is able to produce partitions of

Graph ParMetis mt-metis CPU-GPU
partitioner (Titan)

CPU-GPU
partitioner (K40)

delaunay 0.65 0.22 0.25 0.24

er-fact 28.35 22.05 22.55 22.12

co-papers 2.75 2.65 2.73 2.68

idoor 0.77 0.48 0.69 0.75

af-shell 2.05 1.51 1.54 1.43

USA Roads 11.24 5.09 4.95 4.63

Hugebubble 8.40 5.89 4.36 4.36

nlpkkt120 8.00 7.63 7.69 7.67

Table 4.2: ParMetis, mt-metis, and CPU-GPU partitioner runtimes (in seconds).

82

Graph ParMetis mt-metis CPU-GPU
partitioner (Titan)

CPU-GPU
partitioner (K40)

delaunay 1.033 1.027 1.059 1.045

er-fact 1.064 1.02 1.053 1.023

co-papers 1.181 1.14 1.157 1.125

idoor 1.059 1.057 1.068 1.053

af-shell 1.078 1.062 1.067 1.066

USA Roads 1.177 1.121 1.120 1.09

Hugebubble 1.134 1.103 1.108 1.105

nlpkkt120 1.028 1.018 1.018 1.016

Table 4.3: ParMetis, mt-metis, and CPU-GPU partitioner Edge cut ratios in com-
parison to Metis.

comparable quality to mt-metis and ParMetis and the partitioning quality does not

diverge from that of ParMetis and mt-metis. The quality degradation for some of

the graphs is due to the finer-grain implementation of CPU-GPU partitioner. In the

coarsening and un-coarsening phases of CPU-GPU partitioner, thousands of threads

are working concurrently, making the conflict rate much higher in comparison to

mt-metis, which only runs a few threads (8 threads in our experiments).

We also compare the number of coarsening levels required on GPU for the CPU-

GPU partitioner, with the number of coarsening levels for mt-metis. Figure 4.11

demonstrates the comparison results over different graphs. As the figure shows, the

number of coarsening iterations are higher for the CPU-GPU partitioner than that

of the met-metis. This is due to higher rate of conflicts among the GPU threads in

the matching step. The number of coarsening levels also increases by increasing the

irregularity of the graphs since the graph size reduces with lower coarsening ratio.

Although the number of coarsening levels on our CPU-GPU partitioner is higher,

fast parallel processing of GPU threads in each coarsening level results in achieving

the comparable results with mt-metis.

83

0

2

4

6

8

10

12

14

16

18

delaunay er-fact co-papers ldoor af-shell USA Roads Hugebubble nlpkkt

N
u

m
b

e
r

o
f

C
o

a
rs

e
n

in
g

Le
v

e
ls

CPU-GPU partitioner mt-metis

Figure 4.11: Comparison of coarsening levels for mt-metis, and CPU-GPU parti-
tioner.

4.6 Conclusion

In this chapter, we described and evaluated a multilevel graph partitioner for het-

erogeneous CPU-GPU systems. Some of the challenges we had to overcome on the

GPU are: (1) memory constraints to hold large graphs; (2) the irregular nature of the

graph data structure that can degrade GPU performance; (3) synchronization costs,

which are much more pronounced on GPUs running tens of thousands of threads as

compared to multi-core CPUs that only run tens of threads; (4) a suitable work-load

distribution strategy between the CPU and the GPU; (5) an appropriate modification

to the parallel partitioning algorithm to optimally distribute the sub-tasks between

the CPU and GPU; (6) data-transfer latencies between the CPU and the GPU; and

(7) differences in the architectural models between CPUs and GPUs (e.g., MIMD

versus SIMD).

Our designed graph partitioner assigns the sub-tasks with high parallelism to

GPU and transfers the less-computational based sub-tasks to the CPU. It also avoid

the heavy overhead of fine synchronization among the GPU threads by performing a

84

lock-free coarsening phase.

To the best of our knowledge, this is the first graph partitioner for hybrid CPU-

GPU environments that efficiently takes advantage of the processing power of the

GPU in the coarsening and the un-coarsening phases. The experimental results show

that our implementation outperforms both Metis and ParMetis and is comparable in

performance and quality of the partitions with mt-metis.

85

Chapter 5

A High Performance Multilevel

GPU-based Graph Partitioner

In this chapter, we optimize our partitioning strategy and describe an effective and

methodological approach to enable multi-level graph partitioning on GPUs. Our solu-

tion avoids thread divergence and balances the load over GPU threads by dynamically

assigning appropriate number of threads to process the graph vertices and irregular

sized neighbors. Our design is autonomous as all the steps are carried out by the

GPU with minimal CPU interference. We also employ a custom regional-memory al-

locator which results in better performance in comparison to the contemporary GPU

allocator and increases the efficiency of partitioning. We show that our design out-

performs state-of-the-art CPU-based parallel graph partitioner (mt-metis) in terms

of partitioning speed.

In addition, we apply some of the techniques we developed specifically in the

coarsening phase of our graph partitioner to another graph processing application that

exhibits such characteristics as thread divergence and imbalance load distribution.

Minimum Spanning Tree (MST) is a well-known algorithm that arises in many real

world applications. Extending our partitioning techniques to MST results in a high-

performance parallel implementation of MST on GPU, that outperforms the serial

and multi-core implementations.

86

5.1 Motivation

According to the experimental evaluation in Chapter 4, our designed CPU-GPU par-

titioner performs similar to the multi-core partitioner mt-metiss. We identify the

performance bottlenecks in different phases of the parallel partitioning algorithm, to

extract the factors that degrade the performance. This helps us optimize our parallel

graph partitioning algorithm accordingly so that it outperforms the mt-metis parti-

tioner. The main factors that deteriorate the performance of our CPU-GPU graph

partitioner are as follows:

• During the matching process in the coarsening phase, the graph vertices are

distributed among the GPU threads and each thread finds the match for its

assigned vertex serially. Here, traversing irregular-sized neighbor lists by differ-

ent threads decreases warp execution efficiency and results in thread divergence

and non-coalesced accesses to the vertex indices. Furthermore, high number of

conflicts among thousands of GPU threads during the matching, slows down

the coarsening rate of the graph.

• In the contraction step, using compact-hash table for merging the neighbor lists

of matched vertices leads to load imbalance among the GPU threads. The reason

is that each thread is responsible for constructing the neighbor list of its assigned

collapsing vertices in the coarser graph. Since the number of neighbors varies

from one vertex to another, the threads in the warp cannot finish processing

the neighbors of their assigned vertices at the same time. Consequently, the

threads diverge due to processing non-uniformly sized lists, which deteriorate

the performance.

• In the refinement step, simultaneous access of many GPU threads to the list

of vertex movements requests in each partition allocated buffer, creates a high

memory contention.

• Transferring the less computational sections of the partitioning sub-tasks to

87

the CPU in the coarsening phase and moving back the coarsened graph to the

GPU in the un-coarsening phase, creates some performance overhead due to

comparatively low communication bandwidth between the CPU and GPU.

Such shortcomings, motivate the need for an end-to-end high-performance mul-

tilevel GPU-based graph partiioner, that accelerates the partitioning sub-tasks by

being tailored specifically for the SIMD architecture while avoid the load imbalance

and thread divergence.

5.2 Multilevel GPU-based Graph Partitioning

In this section, we introduce the mechanics of our multilevel GPU graph parti-

tioner [30]. In this design we balance the load across the GPU threads in the critical

steps of graph partitioning. Similar to Chapter 4 , we use the Compressed Sparse

Row (CSR) representation to store the graph on the GPU, which consists of 4 arrays:

an adjacency array (adjcny) of length 2× |E|, which stores the adjacency list of the

graph vertices, and an adjacency pointer array (adjp) of length |V |+ 1, which points

to the adjacency set of each vertex in the adjacency array. In addition, the adjacency

weight (adjwgt) of length 2× |E| and the vertex weight (vwgt) of length |V | contain

the weights of the edges and vertices, respectively. A matching array M of length |V |

that includes the matched pairs to be collapsed in the coarser graph, and a mapping

array (Cmap) of length |V | that stores the vertex labels in the coarser graph, are also

augmented to the CSR data structure.

In the matching step the load is balanced by dynamically assigning appropriate

number of the SIMD threads to process a vertex with irregular-sized neighbors. Each

warp processes a set of consecutive vertices while warp threads cooperate and explore

the neighbor list of each warp-assigned vertex in order to find the matching candidates.

Concurrent collaboration of all the threads in the warp in processing the neighbors

of the warp-assigned vertices eliminates the intra-warp load imbalance and hence the

thread divergence. We also parallelize the contraction step by simultaneous merging of

88

the neighbor lists of the matched vertices and applying a parallel load-balanced sorting

followed by a duplicate-removal method to create the coarser graph. In addition,

for the refinement step we propose a roll-back free approach where SIMD threads

collaboratively find the potential boundary vertex movements among the partitions

that improve the edge cut. A combination of movements which results in the highest

reduction in the edge cut is selected iteratively and the weights of involving partitions

are updated accordingly.

input graph

noyes

yes

coarsening

un-coarsening

graph size<=

threshold

exploring the destination

partitions for boundary

vertices and inserting the

requests to the central

buffer

partitioned

graph

finding the k highest gain

requests iteratively and

apply the best combination

which maximizes the total

gain

 load-balanced HEM

to find the matching

candidate for each

warp-assigned vertex

yes

 Unmatched

vertices=0

no

a

b

c
no

yes

yes

no

 finalizing the

matching of eligible

vertices

Collecting the

unmatched vertices

merging new labels in

neighbor list of

matched vertices

segmented sort on

the merged neighbor

lists

duplicate removal Initial partitioning

Projection

number of

committed

moves==0

refinement

pass =max

partitioned

graph size=

input graph

size

no

Figure 5.1: GPU graph partitioning flowchart. Green-colored boxes represent GPU
operations and blue-colored boxes specify the host actions.

Figure 5.1 shows the flowchart of our proposed GPU graph partitioning scheme.

Starting from the coarsening phase (box a), for a warp-efficient Heavy Edge Matching

(HEM) [50] implementation we assign each warp to a group of 32 (i.e., warp width)

consecutive vertices and cache associated neighbor lists inside the fast warp-specific

shared memory.

Inside each warp, threads process the neighbor list of the warp-assigned vertices

89

collaboratively and perform a parallel reduction to find the edge with the maximum

weight incident on each vertex within the group collectively. These matching candi-

dates are written to a buffer on global memory. Then, in a uniform manner, each

thread inside the warp explores the matching candidate for one of the vertices inside

the group. If the candidate has a better matching suggestion, this vertex remains

unmatched and it is explored in the following iterations of matching. On the other

hand, if this vertex has a heavier edge incident on the candidate in comparison to the

previous suggestion from another neighbor of the candidate, the thread overwrites

it, but the warp will be responsible for finding the matching pair for the candidate

neighbor in the following iterations. The remaining unmatched vertex are collected

on the warp’s designated shared memory region and warp threads continue processing

the vertices iteratively until all of the warp assigned vertices are either matched or

cannot find any pair.

Moreover, in the contraction step, in order to construct the new neighbor list

for matched vertex pairs, new labels of the adjacency list of each pair are merged

together. Then we perform an efficient parallel segmented sort [7, 93] followed by

a parallel duplicate elimination routine. This is necessary since not only collapsed

pairs may have common neighbors but also two neighbors of a pair may have collapsed

themselves. We iteratively apply the coarsening phase until the number of vertices in

the coarsest graph is less than a threshold hyper-parameter 1.

Initial partitioning (Figure 5.1 box b) is performed on the coarsest graph with a

much smaller number of vertices compared to the original graph. This phase contains

a small fraction of the overall partitioning time.

To implement this phase, we use a graph growing partitioning algorithm[47] by

starting from a random vertex and bisecting the graph through a parallel Breadth-

First Search (BFS) on GPU and refinement of the bisected partitions. We keep

bisecting the created partitions until the number of required partitions is obtained.

Finally box c in Figure 5.1 demonstrates the un-coarsening phase that contains

1We will discuss and analyze the effect of this threshold in later sections.

90

the projection and refinement steps. Using vertex mapping information preserved

from the coarsening phase, we parallelize the projection by dividing the vertices of

the finer graph among the threads and having each thread specify the partition label

for the projected vertex in the coarser graph. In the refinement step each thread finds

the best possible destination partition for migration of its assigned boundary vertex

if the move results in the edge cut reduction. All the threads insert their movement

request in a central buffer allocated on global memory using efficient warp-aggregated

atomics. Then we find the k highest gain requests using a custom parallel reduction

kernel. k is a design hyper-parameter and obtained empirically. We assign each

of 2k permutations (two possible states for each move: committed or rejected) of

these movement requests to 2k warps, making each warp responsible for verifying

one permutation. The warp threads collaboratively apply the committed moving

requests based on the permutation bits and update the partition weights locally.

If the warp assigned movements do not violate the balance constrains, the warp

writes the total gain of that specific permutation to global memory. Finally the valid

move set permutation with the highest gain is selected for committing onto partition

weights. Partition labels for vertices that are affected by this move set are updated

as well.The refinement process continues iteratively until the maximum number of

passes has been reached or none of the move combinations can be committed.

In the rest of this section, we elaborate on details of our design.

5.2.1 Matching

Matching step constitutes the inner-most loop of coarsening phase (3 top most green

boxes in Figure 5.1) where the goal is to pair up each vertex with its most suitable

neighbor for merging. Heavy-Edge Matching (HEM) is our algorithm of choice for

matching.

Algorithm 5.1 demonstrates our parallel matching which consists of two phases as

follows:

Matching Candidate Discovery. In order to match the vertices using HEM,

91

Algorithm 5.1 Parallel Matching.

1: procedure Matching
2: parallel for warp w{
3: fetch the neighbor lists of 32 vertices into the shared memory
4: neighbor list length = total length of adjncy lists of 32 vertices
5: while (there are vertices that can be matched) {
6: /*Matching Candidate Discovery*/
7: for(i= laneId; i< neighbor list length; i+ = warpsize) {
8: Map the laneId to the proper position in the
9: neighbor lists of collected vertices

10: Reduce inside segment
11: }
12: Write the index and corresponding edge weight of the candidate
13: neighbor on Candidate array
14: /*Candidate Cross-examination*/
15: Finalize the Matching on M
16: Collect unmatched vertices
17: Calculate the new neighbor list length
18: }
19: }

each warp processes the adjacency list of 32 consecutive vertices of the graph. Note

that these vertices may have neighbor list segments with different lengths.

The threads of the warp also fetch 32 corresponding elements of adjp into a des-

ignated shared memory buffer. Using the adjp array’s starting and ending element,

warp threads can recognize the regions within adjcnywgt and adjncy arrays that are

assigned to the group of vertices.

After the fetch, all threads in a warp explore the neighbor list of warp-assigned

vertices collectively and find the heaviest edge candidate of matching in the neighbor

list of each vertex.

For an efficient implementation of parallel matching candidate discovery, we uti-

lized a modified version of Warp Segmentation (WS) technique [52] as follows. Warp

threads perform a fast binary search over adjp elements for their assigned edge in-

dex to find the source vertices that are currently processed by warp threads. Then

the warp threads perform an intra-warp parallel reduction over the corresponding

92

0 0 0 1 1 1 1 1belonging vertex

Ti index inside the

segment
0 1 2 0 1 2 3 4

2 4 1 4 8 11 15 3adjwgt

index 0 1 2 3 4 5 6 7

reduction inside

segment 0 =>

heaviest edge

weight incident on

vertex 0 =4

reduction inside

the segment 1 =>

heaviest edge

weight incident on

vertex 1=15

0 1

adjp

Vertex id 2 3 4

30 8 9 11 13 ...

5

binary search of index 4

over adjp:

start=0;

end=warp_size=8

(0,8)

(0,4)

(0,2)

(1,2)=> belonging vertex =1

T4:
3 5 7 2 5 6 9 10adjncy

T0 T1 T2 T3 T4 T5 T6 T7

Vertex 0 Vertex 1

Figure 5.2: Heavy edge matching process inside a warp. Warp size is assumed 8.

edge weights of neighbor list of each warp-assigned vertex to calculate the maximum-

weight. Finally, threads write the index and corresponding edge weight of the can-

didate neighbor on an array (called Candidates) in the global memory. This design

keeps all warp threads busy during matching candidate discovery regardless of the

irregularities of the neighbor list lengths, maximizing warp utilization.

Figure 5.2 shows an example of a heavy edge matching process using warp seg-

mentation (the warp size is assumed 8). The threads 0 to 2 (T0 to T2) process the

neighbor list of vertex 0 and the threads 3 to 7 (T3 to T7) process the neighbor list of

vertex 1. Each warp thread is assigned to one edge and performs a binary search over

adjp to find the source vertex incident on its assigned edge. For example according

to Figure 5.2, T4 processes the neighbor vertex 5 at index 4 with the corresponding

edge weight of 8. T4 performs a binary search of index 4 over adjp which results

in calculating vertex 1 as the source vertex incident on the edge (1, 5). As Figure

5.2 shows, after calculating the thread indices inside each segment, the warp threads

reduce on the heaviest edge value of adjwgt elements in each segment. Since the warp

93

threads process the neighbor lists of warp assigned vertices concurrently, the load is

balanced over the warp threads, and thread divergence is avoided.

Iterative Candidate Cross-examination. Here, GPU threads work in par-

allel to examine the validity of matching candidates produced in the previous step.

Threads uniformly map to vertices; for its assigned vertex, each thread retrieves the

index and the incident edge of the current matching candidate from the Candidates

array and then examines the edge weight stored in the corresponding element for this

candidate in the Matching array M . If the thread’s assigned vertex has heavier inci-

dent edge weight on the candidate, the thread succeeds in overwriting the old value

written in M and sets its assigned vertex index as the new pair for the candidate ver-

tex. If so, the warp will be responsible to match the evicted vertex in the following

iterations. For a safe replacement in presence of concurrent threads, we utilize the

eight-bytes-long atomicMax() to ensure the selection of the neighbor with the heav-

iest edge. Inspecting the return of the atomic specifies the success of the operation.

Conversely, if the thread is unsuccessful in this iteration, its remaining candidates in

the following iterations will be verified.

The set of matching steps described above is recursive, i.e., warp threads collect

all the remaining unmatched vertices using intra-warp prefix sum on the warp shared

memory and perform candidate discovery and cross-examination again. The collection

of unmatched vertices in our matching step is inspired by the technique used by [72].

However our technique provides a better warp efficiency. During the matching process

in [72], warp threads process the collected vertices serially. On the contrary we use

an augmented version of WS named CTE [53] that efficiently maps threads within

the warp to the elements of the neighbor lists belonging to the collected vertices

and similar to the first iteration all the warp threads collaboratively process the

disjointly-located neighbor lists of the collected warp-assigned vertices in a parallel

load-balanced fashion.

A warp finishes its matching process when no unmatched vertex is left for match-

ing. This means either all of them are matched, or some are matched and some could

94

find no matching candidate.

5.2.2 Contraction

Contraction step collapses matched vertices in order to form the coarser graph. This

step pertains to the 3 right most green boxes in the second row in Figure 5.1. In

contraction, the main challenge for every matched pair is to discover the exact location

in the cadjcny and the cadjwgt arrays in which their set of neighbors reside. This is

necessary for making the CSR representation for the next coarsening iteration.

Algorithm 5.2 Parallel Cmap Construction.

1: procedure Cmap creation
2: foreach (vertex V i: assigned to thread Ti) in parallel do
3: if V i > M [V i] then
4: M.state[V i]← 0
5: else
6: M.state[V i]← 1

7: PV ← Parallel Binary Prefix Sum(M.state)
8: foreach (vertex V i: assigned to thread Ti) in parallel do
9: if V i > M [V i] then

10: Cmap[V i]← PV [M [V i]]

Cmap Construction. After finalizing the matching array M , we construct the

mapping array Cmap that stores the vertex labels in the coarser graph. Algorithm

1 shows our proposed parallel process for creating Cmap. First, we linearly assign

vertices to threads (line 2). If the assigned vertex has bigger label compared to its

match, the thread resets (zeros) the vertex’s corresponding M.state bit. However, if

the vertex has smaller label compared to its match or it is matched to itself, then

the thread sets the vertex corresponding bit in M.state. Then an exclusive binary

prefix sum is computed on M.state to create the intermediate PV array (line 7).

PV array essentially demonstrates the range of vertex labels in the coarser graph.

Therefore, the new label of each matched pair of vertices in the coarser graph is the

corresponding value of the one with the smaller vertex number in the PV array. This

process is demonstrated using lines 8 to 10 in Algorithm 5.3.

95

1 1 1 0 1 0 3 1 5 0 4 2M.state M

0 1 2 2 3 3PV 0 1 2 0 3 2Cmap

Exclusive Binary Prefix Sum Parallel Cmap Construction

Figure 5.3: Cmap construction procedure for the graph shown in Figure 4.2. Number
of vertices in the coarser graph is 4.

Similarly, Figure 5.3 illustrates an example of creating the Cmap based on the

matching array for the graph shown in Figure 4.2.

Merging Adjacency Lists. At the start of the contraction step, we conserva-

tively assume that for each vertex u matched with vertex w, the number of entries in

the coarser graph’s adjacency array for the pair is the accumulated number of neigh-

bors in the adjacency set of u and w (the maximum possible). Also, for a vertex u

matched to itself, the required number of entries will be equal to the size of its adja-

cency set. We allocate and utilize an auxiliary array named T.cadjp with the length

equal to the number of vertices in the coarser graph in order to hold the temporary

length of neighbor lists for matched vertices.

Figure 5.4 shows the contraction step using an example. First, within a kernel,

we uniformly map vertices in the coarser graph to kernel threads and allow threads

to calculate the maximum possible number of entries in the adjacency list (cadjcny)

and adjacency weight (cadjwgt) of matched pairs in parallel. The results are saved

in T.cadjp array. Then an exclusive parallel prefix sum on T.cadjp array gives the

initial start index of neighbor lists of each vertex in the coarser graph’s adjacency

list and adjacency weight arrays. Two temporary arrays tcadjcny and tcadjwgt are

then allocated on GPU global memory, which store temporary adjacency lists and

temporary adjacency weights respectively.

Then we distribute the vertices of the coarser graph in groups of 32 to the warps.

using Cmap and M arrays, the warp threads copy the content of Cmap (labels of

vertices in the coarser graph) and edge weights into the tcadjcny and tcadjwgt arrays.

96

1

2

0

3

5

4

2

3

1

0

1

2

3

1

2

0

3

5

4

0

(a) Matched vertices in the finer graph are relabeled and represented with
one vertex in the coarser graph.

1 3 4

0 2 4

Nbr List for Vertex 0

Nbr List for Vertex 3

1 32 31 3 2 3 1 2 3

M
e

rg
e

+

L
a

b
e

l
A

s
s

ig
n

m
e

n
t

S
e

g
m

e
n

te
d

 S
o

rt

D
u

p
li

c
a

te

R
e

m
o

v
a

l

(b) Contraction steps shown for two matched vertices.

Figure 5.4: Visualizing contraction using the example graph in Figure 4.2.

After merging, there can be duplicate entries in the merged neighbor list of the

matched vertices, which can be due to either matched pairs having a neighbor in

common or two distinct neighbors of the merged set being matched as well. This

necessitates a duplicate elimination step in order to represent matched pairs or their

common neighbors as only one entity in the coarse graph. To remove the duplicated

values, we sort the tcadjncy within each neighbor group and then remove the consecu-

tive repeated elements. In more details we apply a parallel GPU segmented-sort [7, 93]

on the tcadjncy, which takes the unsorted array with different sized segments (each

segment is the neighbor list of one vertex) and returns the array with sorted segments.

Figure 5.5 shows an example of the segmented sort. Parallel segmented sort builds

on a modified merge sort algorithm for GPUs, which is load-balanced. Efficient

execution of merge sort on GPU cores needs segments of equal length. But variation

in the length of segments degrades the performance of merge sort. To resolve this

problem the segmented sort works as follows.

In the first step, the tcadjncy array is divided into equal sized chunks and each

chunk is sorted in parallel on the GPU. The segmented merging algorithm is based

on the Merge Path approach [32], which proposes an efficient fully parallel lock-free

merging algorithm for GPUs. In this method, the workload of the merge sorted arrays

97

9 5 8 12 3 17 6 25 21 14 33 21 10 23 7 18

5 8 9 12 3 6 17 25 21 14 21 33 10 7 18 23

3 6 4 3
sorting inside the

blocks

Block 0 Block 1 Block 2 Block 3

5 8 9 3 6 12 17 25 21 10 14 21 33 7 18 23

Merging

block 0 and

block 1

Merging

block 2 and

block 3

Merging block 0

and block 1

5 8 9 3 6 12 17 21 25 10 14 21 33 7 18 23

Block 0 Block 1

Segmented Sorted Array

Figure 5.5: Segmented sort on an array with four different sized segments.

is partitioned among the threads evenly and the threads complete the merging step by

comparing the elements in their assigned path and conduct a diagonal binary search

to find the starting point in their assigned path and construct a partial part of the

final sorted array independently.

To consider the segments’ various lengths in the merging of two consecutive seg-

ments, the merging is just applied on the elements of the segments that cross the

boundary on neighboring chunks. The other elements included in the merging are

just copied to the output array unchanged. The borders that contain the spanned

segments are called active boundaries. For example in Figure 5.5, there are two active

98

boundaries in the first round and one in the second round. According to the merge

rules in each round the number of boundaries is divided by 2 and the same logic is

applied for merging in each round.

Note that based on the rearrangement of the indices after applying the segmented

sort, tcadjwgt entries are also rearranged such that weights are in accordance with

their associated neighbor list indices. With tcadjcny array that sorted within each

neighbor list, we can remove similar adjacent items in and sum their corresponding

edge weights in the tacadjwgt. Algorithm 5.3 summarizes our parallel duplicate

removal process. The algorithm starts by assigning one vertex of tcadjcny to each

thread. A zero-initialized bit array (Dup.state) of length tcadjcny.length is allocated

on GPU to specify the duplicates. Each thread compares its assigned vertex with the

previous one in tcadjcny, and if they are different, it sets the corresponding Dup.state

bit (lines 3 and 4 in Algorithm 5.3). Then an exclusive binary prefix-sum is performed

on Dup.state in parallel (line 5) to find the location of non-duplicated vertices in the

final adjacency lists of the coarser graph. To implement the binary prefix sum, we

augmented efficient intra-warp binary prefix sum described in [38] by scaling it across

multiple thread-blocks.

Figure 5.6 shows our prefix sum implementation using CUDA. In the first round

(init prefix sum kernel), each warp lane reads 32 bits from Dup.state and counts

the number of bits that are set to 1 (using popc()). Calculated values are further

reduced within the warp using iterative butterfly shuffle instruction [96]. Next we

store the partial sums into an intermediate array on the global memory (warp sum in

Figure 5.6) and apply an exclusive prefix sum on this array using CUB primitive [69].

Then we perform a prefix sum across thread-blocks (1024 threads per thread-block)

while threads within the block collect the cumulative sums from the previous step.

Next, using the results constructed from previous step stored in (Par.statet),

and also using Dup.state bitmask, we finalize the construction of two arrays cadjcny

and cadjwgt. According to lines 6 to 11 of Algorithm 5.3, for the elements with

corresponding bit of 1 in Dup.state the vertex and accordingly the edge weight is

99

Device:

1 __device__ unsigned int intrawarp(uint *Dup.state) {

2 int global_T_id=threadIdx.x+blockIdx.x*blockDim.x;

3 return __popc(Dup.state[global_T_id]); }

4

5 __global__ void init_prefix_sum(uint *Dup.state, uint * partial_sum) {

6 const int tid = threadIdx.x;

7 const uint global_T_id =threadIdx.x + blockIdx.x * blockDim.x;

8 const uint global_W_id = global_T_id & (~(warp_size-1));

9 int mySum = intrawarp(Dup.state);

10 mySum += __shfl_xor(mySum, 16);

11 mySum += __shfl_xor(mySum, 8);

12 mySum += __shfl_xor(mySum, 4);

13 mySum += __shfl_xor(mySum, 2);

14 mySum += __shfl_xor(mySum, 1);

15 if (global_T_id & 31 == 0)

16 partial_sum[global_W_id] = mySum; }

17

18 __global__ void dev_prefix_sum(uint *Dup.state, uint * dev_prefix_res, uint * partial_sum){

19 uint Intra_block_ prefix ;

20 uint laneidx;

21 uint global_T_id=threadIdx.x+blockIdx.x*blockDim.x;

22 const uint global_W_id = global_T_id & (~(warp_size-1));

23 uint pos=threadIdx.x & (warp_size-1);

24 uint *ptr=&Dup.state[global_W_id];

25 c = getBitmapAt(ptr, pos);

26 intra_block_ prefix = block_binary_prefix_sum (c);

27 dev_prefix_res[global_T_id]= intra_block_prefix + partial_sum[blockIdx.x]; }

(a) Device side

Host:

1 init_prefix-sum <<<partial_sum_size, nthreads >>>(Dup.state, partial_sum);

2 cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes, partial_sum,

3 partial_sum, partialsum_size+1);

4 dev_prefix-sum <<< partial_sum_size, 1024, 1000*sizeof(int) >>> (Dup.state,

5 dev_prefix_result, partial_sum);

(b) Host side

Figure 5.6: Prefix sum code.

copied to coarser graph arrays. However the vertices with the value of 0 in the

Dup.state are the duplicated elements and only their corresponding weight are added

to weight saved in the location of their first occurrence.

5.2.3 Initial Partitioning

The initial partitioning is performed on the coarsest graph so as to have a much

smaller problem size. This makes initial partitioning take only a small fraction of the

total execution time. To create a k-way partition of the coarsest graph we employ a

graph growing partitioning algorithm [47] in which we grow an area around a random

selected vertex using Breadth-First Search (BFS) and expand this area with more

vertices until accumulated vertex weights reaches half of the total weight of graph

vertices. We repeat this process dlog2(p)e times to create p different partitions. We

100

Algorithm 5.3 Parallel Duplicate Removal

1: procedure duplicates Removal
2: foreach (vertex V i in tcadjcny: assigned to thread Ti) in parallel do
3: if tcadncy[V i]! = tcadjcny[V i− 1] then
4: Dup.state[V i]← 1

5: Parallel exclusive prefix sum on bitarray and save the results on Par.state
6: foreach (vertex V i: in tacadjcny assigned to thread Ti) in parallel do
7: if Dup.state[V i] = 1 then
8: cadjcny[Par.state[V i]]← tcadjcny[V i]
9: cadjwgt[Par.state[V i]]← tcadjwgt[V i]

10: else
11: cadjwgt[Par.state[V i− 1]]← cadjwgt[Par.state[V i− 1] + tcadjwgt[V i]

parallelize this phase by implementing a parallel BFS on GPU executed for each

bisectioning step.

5.2.4 Un-Coarsening

Un-coarsening consists of projection and refinement. During the projection, the

coarser graph constructed at level i + 1 is projected back onto the finer graph at

level i. We parallelize this step by dividing the vertices of the finer graph among

the threads of a new kernel. We assign threads to realize the partition labels of the

projected vertices in the finer graph (Gi) by visiting the Cmap array and the partition

labels of vertices in the coarser graph (Gi+1). Since this step is straightforward, the

rest of this section discusses the refinement step, which is more challenging from the

load distribution perspective.

Refinement step attempts to improve the graph edge cut by moving some of the

boundary vertices between projected partitions. As graphs get finer, the weight dis-

tribution resolution across vertices increases. Therefore, applying refinement after

every level of un-coarsening provides higher partitioning precision. Figure 5.7 gives

an overview of the refinement procedure. The parallel implementation of the refine-

ment consists of 3 steps as we discuss below.

Migration Request Insertion. In this step, we distribute the vertices in the

101

src_p# dst_p# v_label gain

•

•

•

•

Top 2 gains

(k=2)

4 permutations

(2^k)

.

best_gain

update

corresponding

vertices labels and

partitions weights

T0 T1 T31
00 1001 11

warp 0

Total gain

atomicMax()

Central Buffer for

boundary move requests

warp 1

Total gain

warp 2

Total gain
warp 3

Total gain

Figure 5.7: Refinement procedure with assumed k value of 2.

finer graph among the threads and each thread determines if its assigned vertex is

boundary. If the vertex is boundary, the thread finds the best destination partition

for migration for the vertex. A destination partition for moving a vertex is chosen

between candidate partitions if this move results in the maximum reduction of the

edge cut and does not underweight the source or overweight the destination partition.

A central buffer shared among the threads inside the global memory accepts move

requests coming from different warps. Each entry of the central buffer contains 4

fields: source vertex label, source partition number, destination partition number

and potential improved value of edge cut (gain). We utilize a variable (incremented

using atomics) inside the DRAM to specify the next location inside the buffer the

threads need to write. We utilized warp-aggregated atomics to reduce the contention

over this variable.

Top Gain Selection. This step involves finding the top k highest potential gains

among the requests in the central buffer. To this aim, we perform a custom parallel

102

reduction kernel iteratively as follows. We execute a parallel two-pass reduction [96]

with a custom reduction function. In the first round a reduction is performed within

the blocks where each thread reads k entries of the central buffer and sorts them.

During the reduction, k entries with the bigger gain values are returned (by applying

the merge function on sorted arrays of threads) and the block results (k for each

block) are saved on an intermediate array. In the second pass, we perform the same

reduction function on the intermediate array within a single block. As a result, the

final outcome is the top k entries with the highest gain.

Parallel Permutation Verification. These top-k move requests may contra-

dict each other and therefore applying them concurrently might lead to over-weighted

or under-weighted partitions. Instead of employing a role-back approach, we paral-

lelize the conflict verification by distributing all possible move permutations across

warps. We create 2k move permutations from the move requests with highest gains

and allow each warp to process one of these permutations. For example if we assume

k is equal to 8, a warp that has a global ID of 0b01000001 will verify the scenario

where only the 1st and the 7th move requests are applied. Within the warp, threads

read the accepted move requests from the global memory to a warp-specific shared

memory region. The warp lanes collaboratively apply the committed moves (corre-

sponding bit 1) of the warp assigned permutation value and calculate the partition

weights and potential gain of the permutation accordingly.

To verify a permutation, the warp threads read a subset of top-k gain entries

according to the warp assigned permutation and copy the source and destination par-

tition numbers of these entries to a buffer on the shared memory (part). We also

utilize two other on-chip shared memory buffers to keep the sorted partition numbers

(sort part) and final weight changes (w changes) of these partitions. Since some of

the partitions may appear as both source and destination in entries being explored,

warp lanes perform a radix sort on part to put the similar partition numbers in the

consecutive locations and save the results on sort part. They collaborate in removing

the duplicates within sort part and then read the initial partition numbers from part

103

to find each partition index in sort part using a fast binary search. If the partition

number read by a thread from part is a source partition, the thread updates the cor-

responding index (found by binary search on sort part) of this partition in w change

by using atomicSub(). Conversely, if the thread reads a destination partitioner, it

updates its corresponding index in w changes using atomicAdd().

In this scenario, for a particular permutation verified by the warp, some of the

partitions may overweight or underweight. Therefore, the warp threads read the

updated value of affected partitions and if at least one of the partitions violates the

load balance, the warp assigned permutation is rejected by assigning an invalid value

to the potential gain of the warp. Otherwise the first thread of the warp writes the

permutation’s potential gain and the warp number in a location on global memory

(best gain) using atomicMax().

When all the warps finalized the gains, the best gain is stored on best gain

variable . According to the valid permutation with the best gain, we update partition

labels and partition weights for the corresponding vertices at the end of the reduction

kernel. We repeat finding the top-k highest gain movement combinations until no

move is possible.

The refinement step is performed iteratively aimed to improve the edge cut while

keeping the partitions balanced. When we arrive at the maximum number of passes,

or no vertices were moved in the last refinement pass, the refinement in the current

level of un-coarsening ends.

5.2.5 Additional Optimization: Custom Memory Allocator

As we described earlier, coarsening phase hierarchically constructs coarser graphs that

need to be saved inside the global memory to be used later during the un-coarsening

phase. Also we need temporary arrays during the computation to hold intermediate

data. If we rely on CUDA runtime for memory allocation (using cudaMalloc()) each

time that we need a global memory buffer, since the requests have to be registered

with the host, we pay a considerable penalty. To minimize this recurring delay and

104

avoid it in the critical path of our solution, we developed a custom memory allocator

on GPU based on the region-based 2 memory allocation concept [42]. In our design,

we over-provision the future memory usage and allocate a large chunk of memory,

while an allocation pointer keeps track of the inserted data. When a data structure

is allocated from a region, the allocation pointer is incremented by its size and the

new pointer is returned.

5.3 Experimental Evaluation

In this section we evaluate the performance of our designed multilevel GPU graph

partitioner and compare it against Metis 5.1.0 and mt-metis 0.6.0. We also demon-

strate the effectiveness of our design by profiling the warp efficiency in the critical

kernels of the multilevel GPU graph partitioner. The system we performed experi-

ments on is equipped with an Intel Xeon E5540 processor with 8 cores and an Nvidia

Kepler K40 GPU with 12 GB of global memory. we compiled our code with highest

optimization level flag applied using CUDA version 8.0.

We use graphs listed in Table 5.1 for the experiments. These are undirected graphs

from various areas of computation obtained from DIMACS10 [6] and University of

Florida Sparse Matrix Collection [22]. The graphs edge weights were added as the

random numbers between 0 and 100.

For all the experimental evaluations we partition the input graphs into 64 parti-

tions and the imbalance tolerance rate for each partition is set to 3% (as in Metis

and mt-metis). To have a fair comparison with mt-metis the coarsening rate is set to

0.85 and the coarsest graph size threshold variable (known as CoarsenTo) has been

set to NumberofV ertices
20×(log2(npartitions))

which both are similar to mt-metis.

2Region-based memory allocation is also known as arena-based memory allocation.

105

Graph |V | |E| Description

m14b 214,765 1,679,018 Walshaw’s Graph Partitioning
Archive

delaunay 1,048,576 3,145,686 Delaunay triangulation of
random points

auto 448,695 3,314,611 Walshaw’s Graph
Partitioning Archive

AS365 3,799,275 11,368,076 An Eurocopter AS365 Dauphin

NLR 4,163,763 12,487,976 Numerical simulation

adaptive 6,815,744 13,624,320 Numerical simulation

co-papers 540,486 15,245,729 Co-author and Citation
Networks

idoor 952,204 22,785,143 Sparse matrix from UFC

af-shell 1,508,065 25,582,130 Sparse matrix from UFC

USA roads 23,947,347 28,854,312 Road network

Serena 1,391,349 31,570,176 gas resevoir simulation
for CO2 sequestration

audikw1 943,695 38,354,076 Structural Problem

channel-500 4,802,000 42,681,372 Numerical simulation

dielfilterV3 1,102,824 44,101,598 Electromagnetics Problem

nlpkkt120 3,542,400 46,651,696 Sparse matrix from UFC

Flan 1565 1,564,794 57,920,625 2D Structural Problem

Table 5.1: Input graphs used for the experiments.

5.3.1 Performance Comparison

Figure 5.8 shows the speedup achieved by our GPU graph partitioner and mt-metis

(with 8 threads) over the serial Metis. In each case, we consider the minimum runtime

of three experiments in calculating the speedup. As Figure 5.8 illustrates our GPU

partitioner outperforms mt-metis across all the input graphs ranging from 1.45 to

2.35. This speedup is mainly due to high level of parallelism in processing of the

neighbor list of the graph vertices in the matching and contraction steps. The fast

boundary move combinations evaluation in the refinement step through the warp

threads also ameliorate the speedup. On average our solution performs 1.93× and

5.81× faster than multi-threaded and single-threaded versions respectively.

To further compare the performance of our GPU partitioner with mt-metis’s, we

demonstrate the time distribution of the three phases of partitioning for mt-metis and

our GPU graph partitioner in Figure 5.9. Please note that these measurements do not

106

0

1

2

3

4

5

6

7

8

9

S
p

e
e

d
U

p
 R

e
la

ti
v

e
 t

o
 M

e
ti

s

mt-metis GPU-partitioner

Figure 5.8: Speedup of mt-metis and GPU-partitioner relative to Metis

include I/O duration. It is evident from Figure 5.9 that our partitioner reduces the

runtime significantly in the coarsening phase. The initial partitioning is almost the

same as mt-metis because the design space in which The GPU implementation can

be effectively parallelized is small. Finally the un-coarsening time in our partitioner

is again lower than mt-metis. Using a global buffer for the boundary vertices and

concurrent calculation of boundary vertices with top gains over the warps results in

better performance compared to mt-metis in the refinement phase.

Next we evaluate the edge cut ratio of both methods (ours and mt-metis) relative

to serial Metis. The results are listed in Table 5.2. Therein, we show that GPU

graph partitioner is able to produce partitions of comparable quality to mt-metis.

Serialization of the refinement step for mt-metis by distributing the boundary vertices

among a few number of threads is the main reason for its supremacy in terms of edge

cut.

107

0

0.2

0.4

0.6

0.8

1

1.2

N
o

r
m

a
li

z
e

d
 R

u
n

T
im

e

mt-metis (coarsening) mt-metis (initial partitioning) mt-metis (un-coarsening)

GPU-partitioner (coarsening) GPU-partitioner (initial partitioning) GPU-partirioner (un-coarsening)

Figure 5.9: Time distribution of 3 partitioning phases of mt-metis and GPU-
partitioner

Graph mt-metis GPU-partitioner

m14b 1.02 1.028

delaunay 1.01 1.031

auto 1.016 1.031

AS365 1.024 1.045

NLR 1.024 1.05

adaptive 1.028 1.049

co-papers 1.12 1.17

idoor 1.01 1.05

af-shell 1.02 1.046

USA roads 1.14 1.17

Serena 1.024 1.038

audikw1 1.018 1.0342

channel-500 1.008 1.02

dielFilterV3 1.027 1.051

nlpkkt120 1.014 1.019

Flan 1565 1.006 1.011

Table 5.2: Edge cut ratio in comparison to Metis.

108

0

10

20

30

40

50

60

70

80

90

W
a

rp
 E

xe
cu

ti
o

n
 E

ff
ic

ie
n

cy
 (

%
)

Matching Contraction Refinement

Figure 5.10: Profiled average warp execution efficiency in different kernels

5.3.2 Performance Analysis

To evaluate the effectiveness of our partitioner implementation on GPU, we pro-

filed our partitioner’s main kernels over different graphs for warp execution efficiency.

We only measure the warp-efficiency for the main kernels within coarsening and un-

coarsening phases which have been the focus of our design. Figure 5.10 shows the

average warp efficiency results for 3 runs. The warp execution efficiency on average

for the matching and contraction main kernels is 73% and 81%, respectively and

66% for the refinement kernel. The irregularity of refinement step reduces the warp

efficiency in comparison to the matching and contraction kernels. In the matching

and contraction steps the sub-tasks are more regular and resolving their dependencies

and evenly distributing the loads over the SIMD threads are more straightforward.

However, parallelizing the boundary vertex movements in the refinement step is more

complicated as their concurrent movements may violate the balance constraints. Con-

sequently, the refinement sub-tasks are more irregular and the load imbalance rate is

higher which results in reducing the warp execution efficiency.

109

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

8 10 12 14 16 8 10 12 14 16 8 10 12 14 16 8 10 12 14 16 8 10 12 14 16 8 10 12 14 16 8 10 12 14 16 8 10 12 14 16

delaunay AS365 adaptive idoor Serena audikw1 dielFilterV3 Flan_1565

R
e

fi
n

e
m

e
n

t
D

u
ra

ti
o

n
(S

e
co

n
d

)

Figure 5.11: Refinement phase duration changes relative to different values of k rang-
ing from 8 to 16

5.3.3 Sensitivity Analysis

Now we evaluate the performance sensitivity of our GPU partitioner to 9 variants of k

for permutations of k boundary vertex migration requests with the highest gain in the

refinement phase. Figure 5.11 demonstrates the refinement phase duration changes

relative to different values of k ranging from 8 to 16. Based on experiments on 8

different graphs we observe that when we set k to 11 and evaluate the 11 permutations

of boundary vertex moves over the warps, the best refinement performance is achieved.

We also analyze the impact of coarsest graph size threshold value (CoarsenTo) on

performance. As we mentioned before in our experiments we use the same value as mt-

metis’s which is set to (NumberofV ertices
20×(log2(npartitions))

). According to Figure 5.12 we monitor the

effect of reducing the value of CoarsenTo parameter by increasing the denominator in

the formula. We change the coefficient in the denominator from 20 to 100 and measure

the total partitioning time. By increasing this value, the coarsest graph size threshold

reduces, therefore, more coarsening iterations are required. The best execution time is

achieved when this coefficient is set to 40. However higher values cause longer delays

in the coarsening and the total execution time increases subsequently. We conclude

that although the value 40 gives better performance in comparison to 20, its impact

110

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

auto adaptive Serena dielFilterV3

To
ta

l
E

x
e

cu
ti

o
n

 T
im

e
 (

S
e

co
n

d
)

Figure 5.12: Total graph partitioning execution time changes relative to increasing
the coefficient in the denominator of CoarsenTo formula from 20 to 100

on performance is not significant.

5.4 Extending the Coarsening Techniques to MST

In this section, we apply the techniques we developed in the coarsening phase of our

graph partitioner to the Minimum Spanning Tree (MST) graph processing algorithm,

which exhibits such characteristics as thread divergence and imbalance load distribu-

tion. The MST algorithm is a well-known graph processing algorithm that creates a

subset of the edges of a connected, edge-weighted undirected graph that connects all

the vertices without any cycle. MST is used in many real world applications, e.g.,

distributed networks, VLSI layouts, and medical imaging.

One of the well-known proposed MST algorithms is that of Bor̊uvka [12], which is

known to be suitable for parallelization. This algorithm finds the minimum weighted

outgoing edge at each vertex and merges the connected vertices into supervertices

(components). Since Bor̊uvka’s algorithm provides natural parallelism, many parallel

MST algorithms are based on this approach.

Algorithm 5.4 shows the Bor̊uvka’s MST algorithm for an undirected graph. At

111

Algorithm 5.4 Bor̊uvka’s MST algorithm.

Input= an undirected graph G
Output= T which is a minimum spanning tree of graph G

1: procedure MST
2: T= {C1, C2, C3,..., Ck}
3: while (number of components in T)> 1) {
4: /*Edge Discovery Phase*/
5: foreach component Ci in T {
6: S = {}
7: foreach (vertex vj in Ci {
8: e = minOutComponentEdge(vj)
9: S.add(e) }

10: T.add(minEdge(S)) }
11: /*Merge Phase*/
12: mergeComponents(T) }

the beginning, all the vertices of graph G are initialized as individual components.The

algorithm iterates through the components and connects each component to another

component with a minimum cost path from the component. The iterative process

continues until only one component is left. During the first phase of Bor̊uvka’s al-

gorithm (edge discovery phase), all the vertices find the minimum-weight crossing

edge among their neighbors of the other components. This phase has a similar func-

tionality to the heavy edge matching (HEM) process in the coarsening phase of our

designed graph partitioner. We extend our load-balanced matching technique to the

edge discovery phase of Bor̊uvka’s algorithm, to achieve a high-performance parallel

implementation of MST algorithm on the GPU.

5.4.1 Efficient Edge Discovery

In the edge discovery phase of Bor̊uvka’s algorithm, each vertex in a graph component

finds the minimum weighted edge to the minimum outgoing vertex (edge suggestion).

We exploit the disjoint-set data structure to represent the components, wherein each

component C contains a disjoint subset of vertices; a tree data structure represents

such a disjoint subset with its root vertex as the representative for C. Additionally,

112

the union operation merges two subsets into one by attaching the root of the tree

associated with one subset into another, and the find operation locates the subset’s

representative for a constituent vertex by traversing its corresponding tree.

Each component representative maintains a shared location for storing the edge

suggestions of its component vertices. A vertex’s edge suggestion is compared with its

representative’s shared value and if such a suggestion is less expensive, the represen-

tative’s content is replaced. The main task of the edge discovery phase is to determine

the minimum-weight edge from each component of the graph connecting it to other

components. In each component, the MST algorithm first finds the minimum-weight

edge (edge suggestion) for each vertex connecting it to adjacent vertices in other com-

ponents. This is followed by finding the minimum of these edge suggestions. The edge

discovery phase is similar to heavy edge matching implemented in the matching phase

of our GPU-based graph partitioner. The only difference is that the maximum-edge

weight objective is transformed to the minimum-edge weight objective.

Hence, similar to our matching technique, in the edge discovery phase of bor̊uvka’s

algorithm, each warp processes the adjacency list of 32 consecutive vertices of the

graph on the fast GPU shared memory. The adjacency lists of the warp-assigned

vertices are grouped in different sized segments. All the threads in a warp explore

the neighbor lists of warp-assigned vertices collectively and find the minimum-edge

candidate of the neighbor components in the neighbor list of each warp-assigned

vertex. Then the warp threads perform an intra-warp parallel reduction over the

corresponding edge weights of the neighbor list of each warp-assigned vertex to find

the neighboring candidate with the minimum-weight incident edge. Following this,

the first thread of each segment compares this neighboring candidate edge weight,

with the current edge weight suggestion stored in the component’s representative. The

minimum of these two values is retained in the representative as the edge suggestion

through an atomic operation (atomic “compare and swap” (atomicCAS()).

Figure 5.13 shows the result of edge discovery performed on a graph with three

components: A, B and C. The figure also shows the MST edges discovered in each

113

1

4

2

3

7

5 6

8

11

9

10

A

B

C

1

2

3

4

5

6

(C,5)

(B,2)

(A,1)

(C,6)

(A,3)

(A,4)

(B,1)

remaining edges

MST edges

discovered MST edges

pointers to component’s

representative

Figure 5.13: Edge discovery phase scheme.

component by retaining the least expensive edge suggestions made from the com-

ponent’s vertices. For example, the least expensive edge is selected among all edge

suggestions made to component A’s representative (i.e. vertex 2), which is illustrated

by pointers from vertices 1, 2, 3 and 4 to vertex 2. The final suggestion of component

A is the MST edge incident on vertex 2 (in component A) connecting to vertex 5 (in

component B).

The merge phase implementation on GPU, utilizes a Software Transactional Mem-

ory (STM) [85, 86] synchronization technique to handle the race condition when the

graph components are merged in a parallel way. STM offers ease of use by guaran-

teeing deadlock/livelock-free behavior as opposed to blocking lock-based . STM is a

high abstraction level of synchronization method that simplifies the development of

parallel code by allowing the programmer to identify and mark sections of the code

that should be executed concurrently and atomically in an optimistic manner. The

114

Graph |V | |E| Description

USA road 23.9M 58M full USA road network

W 6.2M 15M Western USA road network

E 3.5M 8.7M Eastern USA road network

FLA 1M 2.7M Florida road network

NY 264K 733K New York city road network

Table 5.3: Input graphs used for the experiments.

underlying support for the STM replaces the memory accesses in the marked sec-

tions with transactional reads and writes. it also detects the dependence violations

and inserts operations to start, commit, and retry transactions. Further details on

STM-based implementation of merge phase on GPU are discussed in our paper [65].

5.4.2 Experimental Evaluation

In this section, we show the results of the performance comparison of transaction-

based implementation of MST on GPU against the serial and STM-based multi-

core [46] implementations. We carried out the experiments using two GPUs of differ-

ent strengths: a server/workstation based NVIDIA Tesla K40 with 2880 stream cores,

288GB/sec of memory bandwidth, 12GB of GDDR4 memory, and core boost clock

of 875 MHz; and a desktop based Quadro K1200 with 512 steam cores, 80GB/sec

of memory bandwidth, 4GB of GDDR5 memory, and core boost clock of 1124 MHz.

Table 5.3 shows the sparse graphs of large and moderate sizes from USA road net-

works [6] used in our experiments.

Table 5.4 summarizes the execution time comparisons of our implementation on

Tesla K40 GPU (CUDA) versus sequential and multi-core STM-based implementa-

tions. As the table shows, the fast edge-discovery and efficient implementation of

STM-based merge phase on GPU, result in higher speedup for the larger graphs in

comparison to serial and multi-core implementations. The USA graph that has the

highest number of edges, shows 4.52× speedup relative to the serial MST and achieves

2.60× speedup relative to STM-based multi-core implementation.

In the next experiment, we generate random and R-MAT [5] graphs of different

115

Graph GPU-based MST
Speedup vs serial

GPU-based MST
Speedup vs multi-core

USA 4.52 2.69

W 4.22 2.31

E 3.36 2.12

FLA 1.83 1.47

NY 1.39 1.28

Table 5.4: Speedup of STM-based GPU implementation of MST (using Tesla K40)
relative to serial and multi-core STM-based implementations.

3M 4M 5M 6M 7M 8M 9M 10M

GPU - Random 9.39 9.67 10.46 10.73 10.57 11.41 12.29 12.74

CPU - Random 110.2 109.93 110.44 109.01 109.55 110.04 110.09 111.76

GPU - R-MAT 9.08 9.26 10.47 10.71 10.92 11.12 13.39 13.59

CPU - R-MAT 109.25 109.78 110.7 112.1 110 112.67 112.09 111.57

1

10

100

Ti
m

e(
se

co
n

d
)

Lo

ga
ri

th
m

ic
 s

ca
le

 b
as

e
1

0

#Vertices

Figure 5.14: Execution time comparison of STM-based GPU implementation of MST
and serial implementation over random/R-MAT graphs with 30M edges and varying
number of vertices.

116

number of vertices ranging from 3M to 10M and with the same number of edges

(30M). Figure 5.14 illustrates the execution times on CPU and GPU. Increasing the

number of vertices, while keeping the number of edges fixed, increases the sparse-

ness of the graph; however it raises the execution time mainly due to the inevitable

memory latency and extra work required in the merge phases with additional ver-

tices. However, the performance of the transaction-based GPU implementation is

still significantly better than the serial implementation on CPU.

5.5 Conclusion

In this chapter we designed and implemented the first end-to-end high performance

multilevel GPU graph partitioner. To overcome the irregularities in partitioning sub-

tasks, we dynamically assigned them to the SIMD threads while maximizing the

GPU resource utilization. In the coarsening phase we avoided the thread divergence

by parallel processing of the neighbor lists of the warp assigned vertices. We also

took advantage of processing power of warps in the un-coarsening phase to find the

best combination of boundary vertex movements resulting in improving the parti-

tions’ quality. We employed a custom memory allocator on GPU to eliminate the

allocation delay caused by the registration of allocation requests with the host during

each coarsening level. The experimental results demonstrate that our partitioner is

on average 1.93× faster than the the CPU-based parallel graph partitioner mt-metis.

This speedup is specifically due to significant parallelism of the coarsening phase by

evenly processing the graph vertices and irregular sized neighbors in the matching

and contraction steps. In terms of partitioning quality, our partitioner produces com-

parable results with mt-metis. We also extended our efficient coarsening techniques

to the edge-discovery phase of Bor̊uvka MS algorithm, which helps in achieving a

high-performance STM-based implementation of MST on GPU, that outperforms

the serial and multi-core implementations.

117

Chapter 6

Conclusion and Future Work

Integrated multi-core CPU and many-core GPU systems have become mainstream.

High processing potential and low cost are some of the key features that have made

these environments ubiquitous. Although combining the features of both CPU and

GPU is revolutionizing the future of parallel programming, fully exploiting the pro-

cessing powers of all the available processors necessitates considering the difference

in the programming models of CPU (MIMD) and GPU (SIMD) and modifying and

redesigning the requisite parallelization methods accordingly.

In this thesis, we addressed challenges to the high performance execution of em-

barrassingly parallel applications on a heterogeneous CPU-GPU system. The massive

parallel processing power of GPU cores makes the heterogeneous CPU-GPU platform

an excellent candidate for parallelizing embarrassingly parallel applications. However,

optimally distributing independent tasks over the CPU and GPUs plays an impor-

tant role in minimizing execution time. Determining the ideal portion of the input

tasks for each processing device is an NP-complete scheduling problem. Furthermore,

the task split ratios over the processors are usually determined manually at runtime,

which requires high programming effort.

We proposed an adaptive and scalable dynamic scheduling algorithm on a CPU-

GPU platform. The scheduler, which operates iteratively, starts the scheduling pro-

cess by an initial distribution of independent tasks based on an efficient profiling

118

approach. Then, during each round of execution, it employs the work stealing tech-

nique to adapt the load distribution based on the processing power of the processors.

Repetition of work stealing and ratio adaptation in the subsequent rounds finally

reaches the ideal distribution rates over the CPU and GPUs.

Experimental evaluation on two different embarrassingly parallel applications showed

that our developed scheduler outperforms the static min-min and dynamic greedy

heuristics on a system with single CPU and multiple GPUs. It also achieves sim-

ilar performance in comparison to the Qilin heuristic on a single-CPU single-GPU

system. Nonetheless, unlike Quilin, our dynamic scheduler is applicable to heteroge-

neous CPU-GPU platforms integrated with more than one GPU, and it is less sensi-

tive to size of training data. We integrated our dynamic scheduler into a scheduling

framework that hides the scheduling complexities from the user and automatically

distributes the loads over the processors.

Next, we investigated task dependent applications, where the tasks and their

interactions are shown by a task interaction graph. We designed and implemented

a multilevel parallel partitioner for the task interaction graph on a heterogeneous

CPU-GPU system. The graph partitioner implicitly accelerates the scheduling of

this category of applications on either heterogeneous or homogeneous clusters by

partitioning the graph into a set of computationally balanced partitions in such a

way that the communication cost among the partitions is minimized. Furthermore,

as the capacity to model the complex scientific problems has increased, the size and

diversity of the generated graphs has also been raised. This requires designing fast

and efficient graph partitioning methods. Enabling a high-performance CPU-GPU

graph partitioner that outperforms the parallel distributed and multi-core methods

fulfills this demand.

However, irregular and data-dependent graph partitioning sub-tasks pose multi-

ple challenges for efficient GPU utilization, including load imbalance, non-coalesced

memory accesses, and warp execution inefficiency. To overcome these challenges, we

redesigned the parallel coarsening and un-coarsening methods in order to implement

119

a multilevel graph partitioner on a heterogeneous CPU-GPU system. We adapted our

design to the parallel processing of the GPU by executing the computation-intensive

parts of our partitioner on the GPU and assigning the parts with less parallelism

to the CPU. We also avoided the fine-grained synchronization overhead on the GPU

by designing a lock-free multilevel graph partitioner. The partitioner employs the

CSR graph representation technique and reuses the GPU memory space allocated

for the temporary data. Efficient employment of GPU memory enabled us to handle

partitioning real-world graphs with millions number of vertices and edges.

Our experimental results showed that, on average, our CPU-GPU graph parti-

tioner using Titan GPU performs 2.57× and 1.52× faster than serial partitioner Metis

and parallel MPI-based partitioner ParMetis respectively. When using K40 GPU, our

partitioner performs 2.63× faster than Metis and 1.57× faster than ParMetis. It is

comparable in performance and quality of the partitions with multi-core partitioner

mt-metis.

To optimize our design, we identified the performance bottlenecks of our CPU-

GPU graph partitioner and discovered that the imbalanced load and thread divergence

over the GPU threads in some phases of the designed graph partitioner degrades the

performance. We avoided the thread divergence and balanced the load over GPU

threads by dynamically assigning appropriate number of threads to process the graph

vertices and irregular sized neighbors. We described an effective and methodological

approach to enable a high-performance multilevel GPU-based graph partitioner. All

the partitioning phases are performed on GPU with minimal CPU intervention. We

also mitigated the recurrent GPU memory allocation overhead by employing a custom

dynamic regional memory allocator.

The experimental results proved the superiority of our design over the multi-core

partitioner and demonstrated that our partitioner is, on average, 1.93× faster than

the the CPU-based parallel graph partitioner mt-metis. The high warp execution

efficiency of the partitioner’s main processing kernels also proved the effectiveness of

our GPU-based partitioner.

120

Finally, we applied some of our graph partitioning techniques developed in the

coarsening phase to MST, another graph processing algorithm. This resulted in a

high-performance implementation of MST on a GPU, achieving 4.52× and 2.69×

speedups relative to serial and multi-core implementations, respectively.

6.1 Future Directions

The widespread usage of heterogeneous CPU-GPU systems and the fast evolution of

the GPU technology, makes efficient parallelization of various scientific applications

on these platforms, an interesting topic to be more explored.

The dynamic scheduling method, that we proposed for embarrassingly parallel

applications on a single-CPU multi-GPUs system, could be extended such a way it

also schedules other category of applications with data-flow dependency on a het-

erogeneous CPU-GPU system. The scheduler can be generalized in such a way it

acquires the graph with data flow dependency, resolves the dependencies, distributes

the tasks over the heterogeneous devices based on an appropriate scheduling algo-

rithm, and hides the underlying details from the user. Designing a scheduler which

has “intelligence” in decision-making can be an interesting future direction of this

research.

In our research, for designing the heterogeneous CPU-GPU graph partitioning

methods, we assumed that the graph size is small enough to fit into the GPU’s mem-

ory. However, to handle the larger graphs which do not fit in a single GPU memory,

the graph partitioner could be scaled to use multiple GPUs. This provides more

memory and parallel processing resources to perform the partitioning subtasks. How-

ever when the size of graph exceeds the limit of the GPU memory, arranging the

communication among the GPUs during the partitioning such a way that the high

throughput is maintained, is challenging. The recently introduces NVLink technol-

ogy can improve the host-GPU and inter-GPU communication bandwidth up to 16

times. Employing this technology in designing a high performance graph partitioner

121

on multiple GPUs is an interesting topic to be investigated in the future.

In addition, the graph partitioning solutions introduced in this thesis, focus on

static graphs. Therefore since the graph structure does not change, the graph part-

titiong process balances the load, if it only performs once. However if the graph is

dynamic and its structure changes frequently in real time, new re-partitioning method

is required to keep the graph balanced.

Distributed diffusion-based graph repartitioning is shown to be a promising ap-

proach for local improvement of re-partitioning of dynamic graphs. Distributed

diffusion-based re-partitioning consists of initially selecting a set of seed vertices (equal

to number of partitions) and iterative assignment of the remaining vertices to their

closest seed vertex using a specific linear system solution. After the assignment step,

each partition computes its new center for the next iteration and the graph partitions

become balanced after a fix number of iterations.

Although the diffusion-based methods contain a high degree of natural parallelism

and provide excellent partitioning quality in comparison to contemporary refinement

methods, they are significantly slower than the popular parallel repartitioning meth-

ods. The reason is that the repeated solution of linear systems makes the reparti-

tioning slow. This opens up a great room for exploring the high performance paral-

lelization of diffusion-based dynamic graph partitioning on heterogeneous CPU-GPU

systems.

122

Bibliography

[1] Nvidia CUDA. https://docs.nvidia.com/cuda/. Online; accessed January-

2018.

[2] B. O. F. Auer and R. H. Bisseling. A gpu algorithm for greedy graph matching,

In Facing the Multicore-Challenge II. pages 108–119. Springer-Verlag, 2012.

[3] B. O. F. Auer and R. H. Bisseling. Graph coarsening and clustering on the

GPU. Graph Partitioning and Graph Clustering, ser. Contemporary Mathemat-

ics, 588:223–240, 2013.

[4] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. Starpu: A unified plat-

form for task scheduling on heterogeneous multicore architectures. Concurrency

and Computation: Practice and Experience, 23(2):187–198, 2011.

[5] D. A. Bader and K. Madduri. Gtgraph: A synthetic graph generator suite.

http://www.cse.psu.edu/~kxm85/software/GTgraph/. Online; accessed june-

2018.

[6] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Graph Parti-

tioning and Graph Clustering, 10th DIMACS Implementation Challenge Work-

shop, Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012.

Proceedings, volume 588 of Contemporary Mathematics. American Mathematical

Society, 2013.

[7] S. Baxter. Moderngpu library. https://github.com/moderngpu/moderngpu.

Online; accessed March-2018.

123

https://docs.nvidia.com/cuda/
http://www.cse.psu.edu/~kxm85/software/GTgraph/
https://github.com/moderngpu/moderngpu

[8] O. Beaumont, A. Legrand, and Y. Robert. Static scheduling strategies for het-

erogeneous systems. In Seventeenth International Symposium On Computer and

Information Sciences, pages 18 –22, 2002.

[9] M. Birn, V. Osipov, P. Sanders, C. Schulz, and N. Sitchinava. Efficient parallel

and external matching. In Proceedings of the 19th International Conference on

Parallel Processing, Euro-Par’13, pages 659–670, 2013.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5):720–748, 1999.

[11] M. Boratto, P. Alonso, C. Ramiro, and M. Barreto. Heterogeneous computa-

tional model for landform attributes representation on multicore and multi-GPU

systems. Procedia Computer Science, 9:47–56, 2012.

[12] O. Bor̊uvka. O jistém problému minimálńım (about a certain minimal problem).

Práce Mor. Pŕırodoved. Spol. v Brne III, 3, 1926.

[13] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther,

J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A compar-

ison of eleven static heuristics for mapping a class of independent tasks onto het-

erogeneous distributed computing systems. Journal of Parallel and Distributed

Computing, 61(6):810–837, 2001.

[14] T. N. Bui and C. Jones. A heuristic for reducing fill-in in sparse matrix factor-

ization. In 6th SIAM Conf.Parallel Processing for Scientific Computing, pages

445–452, 1993.

[15] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances

in graph partitioning. CoRR, abs/1311.3144, 2013.

[16] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable shared

memory parallel programming. MIT press, 2013.

124

[17] S. Chatterjee, M. Grossman, A. Sb̂ırlea, and V. Sarkar. Dynamic task paral-

lelism with a gpu work-stealing runtime system. In Languages and Compilers

for Parallel Computing, pages 203–217, 2013.

[18] Q. Chen, Y. Chen, Z. Huang, and M. Guo. Wats: Workload-aware task schedul-

ing in asymmetric multi-core architectures. In Proceeding of the 26th IEEE

International Symposium on Parallel & Distributed Processing (IPDPS), pages

249 –260, 2012.

[19] C. Chevalier and F. Pellegrini. Pt-Scotch: A tool for efficient parallel graph

ordering. Parallel Computing, 34(6-8):318–331, 2008.

[20] H. J. Choi, D. H. Son, S. G. Kang, J. M. Kim, H. H. Lee, and C. H. Kim.

An efficient scheduling scheme using estimated execution time for heterogeneous

computing systems. The Journal of Supercomputing, 65(2):886–902, 2013.

[21] M. Danelutto. Adaptive task farm implementation strategies. In proceeding

of the 12th Euromicro Conference on Parallel, Distributed and Network-based

Processing, pages 416 –423, 2004.

[22] T. A. Davis and Y. Hu. The university of Florida sparse matrix collection. ACM

Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[23] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, 2008.

[24] G. F. Diamos and S. Yalamanchili. Harmony: An execution model and runtime

for heterogeneous many core systems. In Proceedings of the 17th International

Symposium on High Performance Distributed Computing, HPDC ’08, pages 197–

200, 2008.

[25] R. Dolbeau, S. Bihan, F. Bodin, and C. Entreprise. HmppTM: A hybrid multi-

core parallel programming environment.In Proceedings of the Workshop on Gen-

eral Purpose Processing on Graphics Processing Units, (GPGPU), 2007.

125

[26] J. Dongarra, H. Meuer, and E. Strohmaier. Top 500 supercomputing sites.

https://www.top500.org/. Online; accessed June-2018.

[27] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal

of Research of the National Bureau of Standards B, 69:125–130, 1965.

[28] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Papers on Twenty-five Years of Electronic Design Au-

tomation, pages 241–247, 1988.

[29] B. Goodarzi, M. Burtscher, and D. Goswami. Parallel graph partitioning on a

CPU-GPU architecture. In HCW2016, as a part of 30th IEEE international

Parallel and Distributed Processing Symposium (IPDPS), pages 58 –66, 2016.

[30] B. Goodarzi, F. Khorasani, V. Sarkar, and D. Goswami. High performance mul-

tilevel gpu graph partitioning, submitted to Journal of Parallel and Distributed

Computing (JPDC). 2018.

[31] M. T. Goodrich, R. Tamassia, and M. H. Goldwasser. Data Structures and

Algorithms in Java. Wiley Publishing, 2014.

[32] R. Green, O. McColl and D. A. Bader. Gpu merge path: A gpu merging algo-

rithm. In Proceedings of the 26th ACM International Conference on Supercom-

puting (ICS), pages 331—-340, 2012.

[33] D. Grewe and M. F. P. O’Boyle. A static task partitioning approach for het-

erogeneous systems using OpenCL. In CC, volume 6601 of Lecture Notes in

Computer Science, pages 286–305. Springer, 2011.

[34] K. Gupta, J. A. Stuart, and J. D. Owens. A study of persistent threads style

GPU programming for GPGPU workloads. In Proceedings of Innovative Par-

allel Computing, pages 1–14, 2012.

126

https://www.top500.org/

[35] M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen. Approximate

weighted matching on emerging manycore and multithreaded architectures. In-

ternational Journal of High Performance Computing Applications, 26(4):413–

430, 2012.

[36] S. W. Hammond. Mapping unstructured grid computations to massively parallel

computers. Technical report, 1992.

[37] M. Harris. Optimizing parallel reduction in cuda (2007). http:

//developer.download.nvidia.com/compute/cuda/1_1/Website/projects/

reduction/doc/reduction.pdf. Online; accessed January-2018.

[38] M. Harris and M. Garland. Optimizing parallel prefix operations for the Fermi

architecture, pages 29 –38. Elsevier, 2011.

[39] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.

In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, Super-

computing ’95, page 28. ACM, 1995.

[40] J. H. Her and F. Pellegrini. Efficient and scalable parallel graph partitioning.

Parallel Computing, 2010, 2010.

[41] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,

13(1):124–149, 1991.

[42] E. Holk, R. Newton, J. Siek, and A. Lumsdaine. Region-based memory man-

agement for gpu programming languages: Enabling rich data structures on a

spartan host. In Proceedings of the 2014 ACM International Conference on Ob-

ject Oriented Programming Systems Languages & Applications, pages 141–155,

2014.

[43] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent

tasks on nonidentical processors. J. ACM, 24(2):280–289, 1977.

127

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf

[44] V.J Jiménez, L. Vilanoval, I. Gelado, M. Gil, G. Fursin, and N. Navarro. Pre-

dictive runtime code scheduling for heterogeneous architectures. In High Perfor-

mance Embedded Architectures and Compilers, pages 19–33, 2009.

[45] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali. Adap-

tive heterogeneous scheduling for integrated GPUs. In Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation, PACT ’14,

pages 151–162, 2014.

[46] S. Kang and D. A. Bader. An efficient transactional memory algorithm for

computing minimum spanning forest of sparse graphs. In Proceedings of the 14th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’09, pages 15–24, 2009.

[47] G. Karpis and V. Kumar. A fast and high quality multilevel scheme for par-

titioning irregular graphs. SIAM Journal on Scientific Computing, 20:359–392,

1998.

[48] G. Karypis. METIS and ParMETIS, pages 1117–1124. Springer US, 2011.

[49] G. Karypis and V. Kumar. Parallel Multilevel K-way Partitioning Scheme for

Irregular Graphs. In Proceedings of the 1996 ACM/IEEE Conference on Super-

computing, 1996.

[50] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for irregular

graphs. J. Parallel Distrib. Comput., 48(1):96–129, 1998.

[51] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs. The Bell Systems Technical Journal, 49, 1970, 1970.

[52] F. Khorasani, R. Gupta, and L. N. Bhuyan. Scalable simd-efficient graph pro-

cessing on GPUs. In 2015 International Conference on Parallel Architecture and

Compilation (PACT), pages 39–50, 2015.

128

[53] F. Khorasani, B. Rowe, R. Gupta, and L. N. Bhuyan. Eliminating intra-warp load

imbalance in irregular nested patterns via collaborative task engagement. In 2016

IEEE International Parallel and Distributed Processing Symposium (IPDPS),

pages 524–533, 2016.

[54] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew.

Optimistic parallelism requires abstractions. In Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pages 211–222, 2007.

[55] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-

puting: Design and Analysis of Algorithms. Benjamin-Cummings Publishing

Co., Inc., 1994.

[56] S. Krishnamoorthy L. Chen, O. Villa and G. R. Gao. Dynamic load balancing

on single- and multi-GPU systems. In 2010 IEEE International Parallel and

Distributed Processing Symposium (IPDPS10), pages 1–12, 2010.

[57] D. LaSalle and G. Karypis. Multi-threaded graph partitioning. In Proceedings of

27th IEEE International Symposium on Parallel & Distributed Processing, pages

225–236, 2013.

[58] D. Lasalle and G. Karypis. A parallel hill-climbing refinement algorithm for

graph partitioning. In Proceedings - 45th International Conference on Parallel

Processing, ICPP 2016, pages 236–241, 2016.

[59] J. Lee, M. Samadi, Y. Park, and S. Mahlke. Transparent CPU-GPU collab-

oration for data-parallel kernels on heterogeneous systems. In Proceedings of

the 22Nd International Conference on Parallel Architectures and Compilation

Techniques, PACT ’13, pages 245–256, 2013.

[60] T. Li, V. K. Narayana, and T. El-Ghazawi. A static task scheduling framework

for independent tasks accelerated using a shared graphics processing unit. In

129

proceeding of the 17th IEEE International Conference on Parallel and Distributed

Systems (ICPADS), pages 88–95, 2011.

[61] J. Luitjens. Faster parallel reductions on Kepler. https://devblogs.nvidia.

com/faster-parallel-reductions-kepler/. Online; accessed june-2018.

[62] C. K. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on heteroge-

neous multiprocessors with adaptive mapping. In Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages

45–55, 2009.

[63] M. Maheswaran, S. Ali, H. J Siegel, D. Hensgen, and R. F. Freund. Dynamic

mapping of a class of independent tasks onto heterogeneous computing systems.

Journal of Parallel and Distributed Computing, 59(2):107–131, 1999.

[64] F. Manne, Md Naim, H Lerring, and M Halappanavar. On stable marriages and

greedy matchings. In CSC, pages 92–101, 2016.

[65] S. Manoochehri, B. Goodarzi, and D. Goswami. An efficient transaction-based

GPU implementation of minimum spanning forest algorithm. In 2017 Interna-

tional Conference on High Performance Computing & Simulation (HPCS), pages

643 –650, 2017.

[66] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming.

Addison-Wesley Professional, 2004.

[67] C. McClanahan. History and evolution of GPU architecture. a Survey paper,

2010.

[68] K. Mehlhorn and G. Schäfer. Implementation of O(Nmlogn) weighted matchings

in general graphs: The power of data structures. J. Exp. Algorithmics, 7:4, 2002.

[69] D. Merill. CUB Documentation. http://nvlabs.github.io/cub/. Online;

accessed January-2018.

130

https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
http://nvlabs.github.io/cub/

[70] G. L. Miller, S. H. Teng, and S. A. Vavasis. A unified geometric approach to

graph separators. In Proceedings of the 32Nd Annual Symposium on Foundations

of Computer Science, SFCS ’91, pages 538–547, 1991.

[71] S. Mittal and J. S. Vetter. A survey of CPU-GPU heterogeneous computing

techniques. ACM Computing Survey, 47(4):69:1–69:35, 2015.

[72] Md. Naim, F. Manne, M. Halappanavar, A. Tumeo, and J. Langguth. Optimizing

approximate weighted matching on Nvidia Kepler K40. In HiPC, pages 105–114,

2015.

[73] S. Narof. Clang: New LLVM C front-end. http://llvm.org/devmtg/2007-05/

09-Naroff-CFE.pdf. Online; accessed June-2018.

[74] R. Nasre, M. Burtscher, and K. Pingali. Atomic-free irregular computations on

GPUs. In Proceedings of the 6th Workshop on General Purpose Processor Using

Graphics Processing Units, GPGPU-6, pages 96–107, 2013.

[75] U. Naumann and O. Schenk. Combinatorial Scientific Computing. Chapman &

Hall/CRC, 2012.

[76] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. GPU

computing. In Proceedings of the IEEE 96 (5), pages 879––899, 2008.

[77] F. Pellegrini and J. Roman. Scotch: A software package for static mapping by

dual recursive bipartitioning of process and architecture graphs. In Proceedings

of the International Conference and Exhibition on High-Performance Computing

and Networking, pages 493–498, 1996.

[78] F. Pinel, B. Dorronsoro, and P. Bouvry. Solving very large instances of the

scheduling of independent tasks problem on the gpu. Journal of Parallel and

Distributed Computing., 73(1):101–110, 2013.

[79] P. J. Plauger, M. Lee, D. Musser, and A. A. Stepanov. C++ Standard Template

Library. Prentice Hall PTR, 2000.

131

http://llvm.org/devmtg/2007-05/09-Naroff-CFE.pdf
http://llvm.org/devmtg/2007-05/09-Naroff-CFE.pdf

[80] A. Pothen, H. D. Simon, L. Wang, and S. T. Barnard. Towards a fast implemen-

tation of spectral nested dissection. In Proceedings Supercomputing ’92, pages

42–51, 1992.

[81] R. Preis. Linear time 1/2 -approximation algorithm for maximum weighted

matching in general graphs. In Proceedings of the 16th Annual Conference on

Theoretical Aspects of Computer Science, pages 259–269, 1999.

[82] V. T. Ravi, W. Ma, D. Chiu, and G. Agrawal. Compiler and runtime sup-

port for enabling generalized reduction computations on heterogeneous parallel

configurations. In Proceedings of the 24th ACM International Conference on

Supercomputing, ICS ’10, pages 137–146, 2010.

[83] J. C. Régin, M. Rezgui, and A. Malapert. Embarrassingly parallel search. In

Principles and Practice of Constraint Programming, pages 596–610, 2013.

[84] T. R. Scogland, B. Rountree, W. Feng, and B. R. de Supinski. Heterogeneous task

scheduling for accelerated openmp. In proceeding of the 26th IEEE International

Symposium on Parallel & Distributed Processing (IPDPS), pages 144–155, 2012.

[85] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the

Fourteenth Annual ACM Symposium on Principles of Distributed Computing,

PODC ’95, pages 204–213, 1995.

[86] Q. Shen, C. Sharp, W. Blewitt, G. Ushaw, and G. Morgan. Pr-stm: Priority rule

based software transactions for the GPU. In Euro-Par 2015: Parallel Processing,

pages 361–372, 2015.

[87] O. Sinnen. Task scheduling for parallel systems, Wiley Series on Parallel and

Distributed Computing, 2007.

[88] X. Sui, D. Nguyen, M. Burtscher, and K. Pingali. Parallel graph partitioning

on multicore architectures. In Languages and Compilers for Parallel Computing,

pages 246–260, 2011.

132

[89] H. Tomoaki, T. Endo, and S. Matsuoka. Power-aware dynamic task scheduling

for heterogeneous accelerated clusters. In Proceedings of the 2009 IEEE Inter-

national Symposium on Parallel&Distributed Processing, IPDPS ’09, pages 1–8,

2009.

[90] S. Tzeng, A. Patney, and J. D. Owens. Task management for irregular-parallel

workloads on the GPU. In Proceedings of the Conference on High Performance

Graphics, pages 29–37, 2010.

[91] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In Pro-

ceedings of the 8th International Symposium on Graph Drawing, pages 171–182,

2001.

[92] C. Walshaw and M. Cross. JOSTLE: parallel multilevel graph-partitioning soft-

ware – an overview, pages 27–58. Civil-Comp, 2007.

[93] L. Wang, S. Baxter, and J. D. Owens. Fast parallel suffix array on the GPU. In

Proceedings of Euro-Par 2015, pages 573 – 587, 2015.

[94] L. Wang, Y. Z. Huang, and X. Chen. Task scheduling of parallel processing in

CPU-GPU collaborative environment. In Computer Science and Information

Technology ICCSIT’08, pages 228–232, 2008.

[95] T. Wen, Z. Wang, and M. F. P. O’Boyle. Smart multi-task scheduling for

OpenCL programs on CPU/GPU heterogeneous platforms. In HiPC, pages

1–10, 2014.

[96] N. Wilt. CUDA Handbook: A Comprehensive Guide to GPU Programming, The.

Pearson Education, 2013.

[97] X. Yao, P. Geng, and X. Du. A task scheduling algorithm for multicore pro-

cessors. In 2013 International Conference on Parallel & Distributed Computing,

Applications and Technologies (PDCAT), pages 259 –264, 2013.

133

[98] D. Yu and T. G. Robertazzi. Divisible load scheduling for grid computing. In

PDCS’2003, 15th Int’l Conf. Parallel and Distributed Computing and Systems.

IASTED. Press, 2003.

[99] W. Zhang, D. Goswami, and B. Goodarzi. On the dynamic scheduling of task

farm patterns on a heterogeneous CPU-GPGPU environment. In Proceedings

of the 2014 International C* Conference on Computer Science and Software

Engineering, C3S2E ’14, pages 7:1–7:7, 2014.

134

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview and Objectives
	Problem Statement
	Contribution
	Thesis Outline

	Literature Review
	The CPU-GPU System Architecture
	CUDA Programming Model
	GPU Performance Constraints
	Thread Divergence
	Un-coalesced Memory Access
	Limited Memory Size
	Low-Level Programming Models
	Synchronization Latency

	Scheduling Heuristics on Heterogeneous CPU-GPU Systems
	Static Heuristics
	Dynamic Heuristics
	Scheduling Frameworks

	Graph Partitioning
	Serial Multilevel Graph partitioning
	Parallel Multilevel Graph Partitioning on Distributed Systems
	Parallel Multilevel Graph Partitioning on Shared-Memory Systems
	Matching Algorithms on GPU

	 Optimization Techniques on GPU
	Scan
	Reduction
	Atomics

	A Dynamic Scheduling Heuristic for Embarrassingly Parallel Applications on Heterogeneous CPU-GPU Systems
	Motivation
	Scheduler Architectural Model
	Partitioner
	Load Bundler

	HASS: A Dynamic Scheduling Algorithm
	Initialization Phase
	Execution Phase
	Adaptation Phase

	Experimental Evaluation
	Conclusion

	A Parallel Multilevel Graph Partitioner on the CPU-GPU Architecture
	Motivation
	Design Challenges
	A Multilevel Graph Partitioner for CPU-GPU Architectures
	Data Structures for Graph Representation
	Coarsening.
	Initial Partitioning
	Un-coarsening

	Comparison with mt-metis
	Experimental Evaluation
	Conclusion

	A High Performance Multilevel GPU-based Graph Partitioner
	Motivation
	Multilevel GPU-based Graph Partitioning
	Matching
	Contraction
	Initial Partitioning
	Un-Coarsening
	Additional Optimization: Custom Memory Allocator

	Experimental Evaluation
	Performance Comparison
	Performance Analysis
	Sensitivity Analysis

	Extending the Coarsening Techniques to MST
	Efficient Edge Discovery
	Experimental Evaluation

	Conclusion

	Conclusion and Future Work
	Future Directions

	Bibliography

