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ABSTRACT 

Laboratory Measurements and Computer Simulations of  

Highly Curved Flow after Sluice Gate 

Bowen Xu 

Sluice-gates are widely used for such purposes as the control of discharges and water levels in 

hydraulic engineering systems. It is important to understand the features of turbulent flow 

passing underneath a sluice-gate. Previously, a great deal of research attention has centred on 

such flow features as the head-discharge relationship and the pressure distribution over the gate 

surfaces, leading to impressive progress in those aspects of the turbulent flow problem. However, 

little attention has been paid to the curvature of flow profiles immediately downstream of the 

gate. This is in spite of its relevance to the optimal design and safe operations of sluice-gates. 

The purpose of this research work is to characterise the highly curved turbulent flow through 

laboratory flume experiments and to extend the experimental results by computer simulations. 

The experiments covered the conditions that the gate opening ranged from one to two inches and 

the ratio of the upstream depth to the gate opening ranged from four to 16. The computer 

simulations produced finite volume solutions to the Reynolds-averaged Navier-Stokes equations. 

Under the same conditions as the flume experiments, the computed flow profiles as well as 

pressure distributions from the simulations compare well with the experimental data. Much of 

the success in computations is attributable to the implementation of rigorous procedures to 

validate mesh convergence, the independence of numerical results on time step and initial 

conditions used, and the suitability of turbulence closure schemes. The shear stress transport k-ω 

model is shown to be a suitable model for turbulence closure. It is shown that the volume of fluid 

method works well for tracking the highly curved free water surface. 
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This thesis reports further computational results of the flow and pressure fields for large gate 

openings up to 16 inches, which are close to field scales or prototype scales, and which are 

difficult and expensive to set up in laboratories. Using the new experimental and computational 

results, reliable relationships for flow curvature parameters, including the radius of the circle of 

curvature, the centre of the circle, and the angle of a tangent to the free surface with the channel-

bottom, have been developed. The introduction of these new relationships to the permanent 

literature about sluice-gate flows represents a significant contribution from this research work. 

This thesis also provides an update of the contraction distance and coefficient, the results being 

consistent with the literature values. Moreover, corrections to some existing formulations of the 

sluice-gate flow problem are proposed. 
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Chapter One Introduction 

1.1 Background 

Sluice-gates have commonly been used to control discharge and water level in the water and 

wastewater industry. When a water channel is controlled by a gate at its head, the channel is 

called as a sluice. In the domain of water and wastewater control, the terms, such as slide gate, 

knife gate, sluice gate and sluice, are used interchangeably. Traditionally, sluice gates are built 

using either wooden or metal materials. 

First, sluice gates were used to allow excessive water to flow over an overflow-spillway. 

Examples include the investigation of water level drop in Lake Victoria, Nairobi, Kenya by Kull 

(2006), in connection with the Kiira Dam built close to the lake. The author suggested that the 

sluice gate provided a direct control of the flowrate to ensure the safety of the dam operations. 

Other examples include the use of sluice gates to determine the amount of water passing through 

turbines for electricity productions. 

In other cases, sluice gates have been used to provide a mechanism for achieving desirable 

flowrates in power and irrigation canals, wastewater transport and treatment streams, and water 

supply facilities. For instance, Lozano et al. (2009) performed field calibrations of submerged 

sluice gates in irrigation canals. Their field work dealt with an irrigation canal in Lebrija, Spain. 

This canal connected four pools. Four sluice gates were installed in the canal, with sensors for 

tracking water levels and discharges, and for providing desirable flowrates in the canal by 

adjusting the gate opening. 

Besides the typical applications discussed above, sluice gates have been used to regulate 

the water discharge and water level in order to make efficient use of the lake water (Zhang et al. 

2003). There are cases of using sluice gates in natural rivers as well as man-made waterways for 
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such purposes as flood defences and mitigations, shipping, and floating debris control (Baek et al. 

2015; Wang et al. 2016). 

The flow of water passing underneath a sluice gate is an important topic in hydraulic 

engineering. In the past a few decades, many researchers have used different approaches to 

investigate the characteristics of sluice gate flows. Masliyah et al. (1985) introduced boundary-

fitted coordinates methods for accurate evaluations of the discharge coefficient and for 

predictions of free-surface profiles on upstream and downstream sides of a sluice gate. Finnie et 

al. (1991) used a finite element computer code to calculate the velocities upstream of a sluice 

gate and pressure distribution on the upstream face of the sluice gate They also studied the 

kinetic energy and its dissipation rate around the sluice gate.  

Montes (1997) proposed mathematical methods to evaluate water surface profiles, velocity, 

and pressure distribution around a sluice gate. Shammaa et al. (2005) studied the velocity field 

upstream of a sluice gate and orifice. On the basis of momentum conservation, Belaud et al. 

(2009) studied the contraction coefficient under sluice gates for both free and submerged flows. 

Habibzadeh et al. (2011) proposed a theory for the calculation of the discharge coefficient under 

both free and submerged flow conditions. They introduced an energy-loss factor to improve the 

results of hydraulic energy loss. Regarding the flow characteristics upstream and downstream of 

a sluice gate, Cassan and Belaud (2012) investigated the energy and momentum coefficients, 

head loss, friction forces, and contraction coefficient by using numerical models. 

In recent years, researchers have used sluice gates in their studies of many flow phenomena, 

including the hydraulic jump (Zhang et al. 2014; Chern and Syamsuri 2013), water flow 

behaviors (Xie amd Lim 2015; Termini 2009; Zimmer et al. 2013), and sediment transport 

(Zhang et al. 2013; Moreno et al. 2016). However, neither the issue of flow curvatures between 
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the gate opening and the section of vena contracta, nor the issue of resultant forces on the sluice 

gate has been addressed in the previous studies. 

 

1.2 Objectives of this research 

It is clear that sluice gates are important hydraulic structures. Previously, researchers have used 

experimental and numerical methods to investigate the characteristics of sluice gate flows. The 

flow of water on the downstream side of the gate in question can be free flow or submerged flow. 

So far, researchers of the sluice gate flow problem have focused on the contraction coefficient, 

Cc, discharge coefficient, Cd, and their dependence on the ratio of the upstream flow depth to the 

sluice gate opening, y1/w. 

The existing studies have made little efforts to investigate the curvature distributed along 

the free water surface downstream of the sluice gate. The issue of flow curvature is important. 

Thus, there is a gap of knowledge, which has motivated this thesis study. This study aims is to 

provide a detailed description of the curvature distribution. 

The sub-objectives of this study are: 1) to understand the characteristic of highly curved 

flows passing underneath a sluice-gate through flume experiments; and 2) to extend the 

experimental results by computer simulations. The dual approach of physical experiments and 

numerical simulations would be effective to achieve an improved understanding of the flow 

curvature. This is of engineering relevance to the optimal design and safe operations of sluice-

gates. 
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1.3 Scope of the research work 

The contents of this thesis are organised into six chapters. In the following, Chapter Two 

presents a review of the pertinent literature, and explains the motivation of this research work. 

The literature review covers studies using experimental and numerical methods. 

Then, Chapter Three describes the laboratory experiments conducted in the Water 

Resources Engineering Laboratory at Concordia University. The description includes the 

experimental setup, flow conditions, and measurements methods. The experiments provide the 

first-hand data for validations of the numerical model. The validations are accomplished by 

comparing water flow profiles and pressure distributions on the gate surfaces between the 

experiments and numerical computations. 

Next, Chapter Four provides detailed explanations of the numerical simulations, which 

include:  

 The Computational Fluid Dynamics (CFD) method implemented in the numerical 

simulations; 

 OpenFOAM, an open-source CFD software, used as a tool for the development of 

numerical solvers. The solvers are based on the Finite Volume Method (FVM); 

 The continuity equation and momentum equations of motion; 

 The Reynolds-averaged Navier-Stokes equations; 

 The volume of fluid (VOF) method for tracking the interface of two-phase flow. 

Subsequently, Chapter Five discusses the experimental and numerical results, along with 

data comparisons. The results include: 

 water flow profiles; 

 the contraction distance and coefficient; 
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 pressure distributions on the sluice gate surfaces and the channel-bottom; 

 the curvature of the rapidly varied flow surface downstream of the sluice gate; 

 boundary layer thickness; 

 velocity vectors and kinetic energy distributions close to the sluice gate; 

 evaluation of some assumptions made in earlier studies; 

 the performance of the standard k- and SST k- models. 

Finally, Chapter Six provides highlights of the conclusions from this research work. 

 

1.4 Main contributions from this research work 

The main contributions from this research work are highlighted below: 

 A knowledge gap about turbulent underflow in the vicinity of a sluice-gate has been filled 

through the research work reported in this thesis; 

 For the first time, useful relationships for some key flow curvature parameters have been 

introduced, on the basis of experimental and numerical results from this thesis; these 

relationships are applicable for a wide range of hydraulic conditions; 

 The inadequacies of some existing formulations of the sluice-gate flow have been 

quantified, and proper suggestions for improvement have been proposed; 

 An update of the contraction distance and coefficient has been provided as an extension 

to the results from existing studies of the sluice flow problem; 

 Detailed methods for computing two-phase turbulent flow passing underneath a sluice-

gate using the Reynolds-averaged Navier-Stokes equations have been developed; the 

methods include strategies for computational model validations; 

 This study has produced the valuable experimental data of sluice gate flow. 



 6 

Chapter Two Literature Review 

2.1 Classical studies of the sluice-gate problem 

Consider the flow of water produced by a vertical sluice-gate in a horizontal channel of 

rectangular section (Figure 2-1). The flow is subcritical upstream from the gate and supercritical 

downstream from it. The supercritical outflow is a wall-bounded jet (Rajaratnam 1976), open to 

atmosphere (or free outflow). This outflow jet has a continuous profile x2 = f(x1), with very high 

curvature at points on the free surface close to the gate. At a given point B on the free surface, 

the curvature is equal to the reciprocal of the radius, r, of the circle of curvature. The outflow 

possesses a vena contracta, where the flow area is minimum and cross-sectionally averaged 

velocity is at its maximum. 

 

 

Figure 2-1: Definition diagram of flow passing underneath a vertical sluice gate. The gate is 

located at x1 = 0, in a Cartesian coordinate system (x1, x2) with point O as its origin. Upstream 

from the gate, the approach flow has a velocity uo in the x1-direction and a depth y1. Downstream 
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from the gate, a boundary layer develops along the bottom, with a thickness δ(x1); at a given 

point B on the free surface, a tangent to the free surface makes an angle θ with the bottom.  

Classical studies of sluice-gate flows have typically used a list of assumptions: 

 The flow is steady, incompressible, and frictionless. 

 The flow is one-dimensional, with straight streamlines and without turbulent velocity 

fluctuations. 

 The flow is uniform at cross sections a short distance upstream as well as downstream of a 

sluice-gate. 

 The associated pressure distribution in the flow is hydrostatic. 

These assumptions substantially simplify the analysis of the flows, leading to analytical 

solutions without or with empirical coefficients. 

When the approach flow (Figure 2-1) has a velocity head much smaller than the difference 

between the upstream depth y1 and downstream depth y2 (or uo
2
/2g << y1 – y2), the use of the 

energy equation yields an expression for the flow velocity, u1, at the section of the vena contracta 

(or the y2 section)  

𝑢1 = √2𝑔(𝑦1 − 𝑦2)     [2-1] 

If the contraction coefficient, Cc, is known, one can calculate y2 from the underflow gate 

opening w as y2 = Ccw, calculate u1 from Equation [2-1] for a given value of y1, and further 

calculate the per unit width discharge q as 

)(2 1 wCygwCq cc      [2-2] 

Equations [2-1] and [2-2] would underestimate the flow speed and discharge, due to the 

exclusion of the effect of uo
2
/2g on q. 
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If the ratio y1/w is not sufficiently large, Equations [2-1] and [2-2] become inadequate, 

because the assumption that the velocity head is negligible no longer holds. Without omitting the 

effect of the velocity head, the discharge is expressed as Henderson 1966: 

12gywCq d      [2-3] 

where Cd is a discharge coefficient of the form 𝐶𝑑 = 𝐶𝑐/√1 + 𝐶𝑐𝑤/𝑦1. Values of Cc and hence 

Cd depend on the ratio yo/w only. Note that the velocity head does not appear in Equation [2-3], 

but its effect has been included implicitly (Chow 1959). The results from the classical studies 

discussed above have not taken into account the effect of the non-uniform velocity distribution. 

 

2.2 Experimental studies of the sluice-gate problem 

Previously, many investigators have carried out laboratory experiments of sluice-gate flows for 

the purpose of determining the coefficients Cc and Cd. The results from well-referenced 

investigations show that the experimental values of Cc range from 0.59 to 0.75; Cc increases as 

the ratio y1/w increases; Cc appears to show an asymptotic value of 0.61. 

For instance, Lin et al. (2002) investigated the hydraulic jump in an open channel, by 

means of laboratory experiments. In the open-channel flume, the flow of water passed 

underneath a sluice gate, and a free flow hydraulic jump appeared on the downstream side of the 

sluice gate (Figure 2-2). 
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Figure 2-2: The layout of the equipment used in Lin et al. (2002) (from Lin et al. 2002). 

The experiments showed a certain length of free flow before the hydraulic jump. Within 

this portion of free flow, the contraction coefficient, Cd, was measured. Lin et al. (2002) 

summarized the contraction coefficients measured in previous studies. For a vertical sluice gate, 

Henry (1950) reported Cd = 0.60, and Henderson (1966) determined Cd = 0.61. For tainter gates, 

Henderson (1966) suggested that Cd was in the range of 0.6 to 1.0. For planar sluice gates at 

different streamline angles, Montes (1997) reported that Cd ranged from 0.60 to 0.75. Other 

researchers point out that the contraction coefficient ranges from 0.65 to 0.75 for modified slide 

gates and from 0.59 to 0.61 for sharp-edged gates. 

 

2.3 Numerical studies of the sluice-gate problem 

Using available experimental data for comparisons, many researchers implemented different 

types of mathematical and numerical methods to predict details of the flow field for different 

regions of sluice gates. Mathematical models are useful for describing the flow phenomena. 

For example, Montes (1997) used the inverse method to produce numerical solutions of the 

flow field. The author considered two-dimensional water flow passing underneath a sluice gate, 
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and used Laplace’s equation to transfer the physical plane into the complex potential plane. In 

the calculations, the upstream flow was assumed to be inviscid and irrotational, and have 

constant specific energy (E). 

 

Figure 2-3: The transformation of the free flow phenomenon from the cartesian coordinates to 

the complex potential plane (from Montes 1997). 

 

To reduce the artificial effects of model channel boundaries, Montes (1997) placed the 

inlet and outlet boundaries sufficiently far from the sluice gate. The author investigated the 

vertical sluice gate as well as inclined sluice gates at 45 and 60 from the horizontal direction. 

The main conclusion was that the assumption of inviscid and irrotational flow with constant 

specific energy (E) had very small effects on the results of contraction coefficient and pressure 

distributions on the gate surfaces, which agreed well with some reported experimental data 

(Montes 1997). Also, Montes (1997) concluded that with the consideration of gravity effect, 

calculated values for the contraction coefficient decrease with increasing ratio of the gate 

opening to specific energy (w/E). However, under the assumption of zero gravity, the trend is 

opposite. 
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The fast growth of computing power has made computer simulations of sluice-gate flow 

efficient and feasible to generate improved results. In a review of the previous studies, Kim 

(2007) suggested that mathematical models based on the potential flow theory could lead to 

persistent discrepancies of the contraction coefficient from experimental results. The 

experimental values of the contraction coefficient are usually 5 to 10% higher than the 

mathematical model results. 

Kim (2007) solved the RANS equations using the finite volume method. The author 

established non-slip boundaries using the fractional area/volume obstacle representation method, 

and tracked the free surface using the VOF method. Kim (2007) treated non-slip walls by the 

wall function. The wall function considers the logarithmic layer in the near-wall region. The 

numerical simulations of Kim (2007) considered free surface geometry, real fluid flow and 

gravity. The results of Kim (2007) appear to show that the RANS equation model is effective to 

generate acceptable contraction and discharge coefficients. 

Kim (2007) suggested that experimental values for the contraction coefficient were usually 

larger than the calculated values based on the potential flow theory. The numerical simulations 

of Kim (2007) gave larger contraction coefficients for smaller values for the ratio y1/w. 

Experimental results show an opposite trend. 

It is always desirable to achieve both high computational accuracy and efficiency. In this 

regard, the generation of good mesh for CFD computations is important. Akoz et al. (2009) 

performed a sensitivity test of the mesh setup in CFD computations using the finite element 

method. The authored used the VOF method (Nichols and Hirt 1975) to track the free surface, 

and two-equation models (the standard k-ε model and standard k-ω model) for turbulence closure. 
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Akoz et al. (2009) concluded that the VOF method was suitable for simulations of steady and 

unsteady free surface flows on fixed mesh. 

For validations of the CFD models, the study of Akoz et al. (2009) included a series of 

laboratory experiments. The sensitivity test involved eight different mesh systems (Figure 2-4). 

The authored concluded that mesh refinements were very important for the regions of high-

gradient changes of the velocity field and free surface profiles. Akoz et al. (2009) suggested that 

the standard k-ε model was more accurate and efficient than the standard k-ω model. 

 

 

Figure 2-4: Eight types of mesh systems investigated in the study of Akoz et al. (2009) (from 

Akoz et al. 2009). 

 

A summary of the contraction coefficients for free flow under a vertical sluice gate from 

previous experimental and numerical investigations is given in Table 2-1. 
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Table 2-1: The contraction coefficient of free flow under a vertical sluice gate. 

Reference y1/w Cc (or y2/w) F 
a
 

Experimental Investigation  

(Lin et al. 2002) 2–16 0.65–0.75 1.55-5.82 

(Cheng et al. 1981) 2–10 0.59–0.61 1.28-6.72 

(Akoz et al. 2009) 8.92 0.73 1.96 

(Pajer 1937) 2.1–5 0.61 2.10-5.01 

(Marchi 1953) 2.1 0.61 2.31 

(Chung 1972) >1.67 0.59–0.61 >2.00 

(Roth and Hager 1999) 1.45–6.425 0.595 1.86-4.44 

Numerical Investigation  

(Kim 2007) 1.67–10 0.618–0.63 1.96-5.52 

(Khanpour et al. 2014) 9.167 0.71 4.90 

(Montes 1997) 2-10 0.608–0.617 2.25-5.52 

 
a
 The Froude number, F, is evaluated at the y2 section. 

 

Overall, the classical and many other existing studies of sluice-gate flows have been 

limited to the regions of uniform flow depth upstream from the y1 section and downstream from 

the y2 section (Figure 2-1). Between these two sections, the flow in the region close to the gate is 

rapidly varied flow; this is a problem to which solutions are far from being complete (Henderson, 

1966). Among outstanding issues are the determination of realistic flow profiles from the gate 

opening to the section of the vena contracta, and the curvature of the flow. Knowledge of the 

varying curvature from the channel-bed to the curved free water surface is important. Existing 

studies resort to assumed curvature variations. This is an area of uncertainty. 
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Chapter Three Experimental Method 

3.1 The flume system 

Experiments of sluice-gate flow were performed using a laboratory flume in the Water 

Resources Engineering Laboratory at Concordia University (Figure 3-1). The flume channel is of 

rectangular cross section, with a constant width of 12.25 inches (or 31.115 cm). It has a length of 

196 inches (or 497.84 cm). The channel-bed is made of stainless steel, and the sidewalls are 

made of tempered glass (Figure 3-2). Both the bed and sidewall surfaces are smooth. The 

channel-bed was set horizontal, with zero bed slope. The sluice-gate was installed vertically 

across the channel width at a longitudinal distance of 49.25 inches (or 125.095 cm) from the 

upstream end of the channel. The gate door has a bevelled lower edge. 

 

 

Figure 3-1: Experimental Flume in Water Resources Engineering Laboratory at Concordia 

University, used in the study. 
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Figure 3-2: The channel-bed is made of stainless steel, and the sidewalls are made of tempered 

glass. 

 

An inlet section made of stainless steel is fitted to the flume channel at its upstream end. This 

section has a length of 58.25 inches (or 147.995 cm), and a height matching that of the channel 

sidewalls. It has a constant width of 19.5 inches (49.53 cm) over its upstream two-thirds length, 

and then an S-curve tapering width that provides a match with the flume channel cross section. 

In the inlet section, there is a flat plastic board that floats at the free water surface during an 

experiment. An outlet section of 19.5 inches long (49.53 cm) is fitted to the flume channel at its 

downstream end. This outlet section has the same width and sidewall height as the flume channel. 

At the downstream end of this outlet section, a tilting weir is installed, which can be raised or 

lowered to produce a desirable flow depth in the flume channel during an experiment. 

The flume channel, along with the inlet and outlet sections, is elevated 50.25 inches (or 

127.635 cm) from the floor. A water supply reservoir (with a capacity of 2200 litres) on the floor 

is connected by a 3-inch inner-diameter pipe to the inlet section at the bottom. A 5-HP pump 
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(Lowara SHS4 model, manufactured by Xylem Inc., N.Y.) and an electromagnetic flowmeter 

(Promag 10D model, manufactured by Endress + Hauser Canada Ltd., Burlington, ON) are 

incorporated in the pipe. During an experiment, water is pumped from the reservoir up to the 

inlet section. Here, the S-curve contraction and floating board damp turbulent disturbances and 

help create uniform flow approaching the flume channel. Then, the flow of water passes through 

the sluice-gate opening and the outlet section and returns to the reservoir. 

 

3.2 Experimental conditions 

The experiments covered three different cases of the gate opening w: 1) w = 1 inch (or 2.54 cm); 

2) w = 1.5 inches (or 3.81 cm); 3) w = 2 inches (or 5.08 cm), in combination of up to 13 different 

values for the ratio of flow depth, y1, before the sluice-gate to gate opening. In the first case, 

experiments covered 13 different conditions of y1/w = 4, 5,…, 16. In the second case, 

experiments covered seven different conditions of y1/w = 4, 5,…, 10. In the third case, 

experiments covered five different conditions of y1/w = 4, 5,…, 8. Thus, there is a total of 25 

combinations of different w and y1/w values. For each combination, experiments were repeated 

five times. In other words, a total of 125 experiments were performed in this study, as listed in 

Table 3-1. 

It is understood that the dimensions of the flume channel and flow depth used are relatively 

small; therefore, it is necessary to access possible scale effects on the results if they are to be 

applied to field conditions. As will be explained in Sections 5.4 and 5.7, the scale effects have 

small impacts in the cases where w = 1 inch and 1.5 inches, but the results are acceptable. In the 

cases where w = 2 inches or larger, the experimental and numerical results are consistent. 

Therefore, the limitations of the experimental results are insignificant in this study. 
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Table 3-1: Summary of the hydraulic conditions for experiments of flow through sluice gate 

opening. The Froude number at the vena contracta is determined assuming a contraction 

coefficient of 0.62. 

Parameter y1/w Discharge Q 

(Litre per second) 

Froude number F 

Before the gate At the vena contracta 

w = 2.54 cm 4,5,6,…,16 4.55 to 13.60 0.205 to 0.054 3.144 to 6.775 

w = 3.81 cm 4,5,6,…,10 11.89 to 19.68 0.204 to 0.086 2.756 to 4.552 

w = 5.08 cm 4,5,6,…,8 18.14 to 26.65 0.203 to 0.105  2.390 

 

3.3 Measurements 

Each of the 125 experiments produced measurements of: 1) flow depth before the sluice-gate, 2) 

profile of the free water surface (or flow curvature) after the sluice-gate, and 3) distributed 

pressures on the upstream face of the gate door at a series of depths below the free water surface 

(Figure 3-3). The depth of flow and the curved flow profile were measured using point gauges. 

These point gauges have an accuracy of 0.1 mm. The distributed pressures exerted on the gate 

door by the flowing water were made using manometers. These manometers have an accuracy of 

1 mm. The pressure taps of the manometers were installed along the vertical centreline of the 

gate door, at vertical distances of 3.2, 9.6, 16.0, 28.7, 54.1, 104.9, 155.7, 206.5, 257.3 and 308.1 

mm from the lower edge of the door. 
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Figure 3-3: Measurer before the sluice gate (right hand side) to control the ratio of y1/w; 

measurer after the sluice gate (left hand side) to measure the profile of flow on the downstream. 

 

In addition, measurements of the discharge, Q, through the flume channel were obtained 

using an electromagnetic flowmeter. The measuring technique is based on Faraday’s law of 

electromagnetic induction. The flowmeter is installed between the water pump and inlet section. 

It can measure flowrates from 0.044 to 45.278 L/s, at an accuracy of up to 0.028 L/s. 

For each experiment, the Froude number is determined as F = Q/(by1
3/2

g
1/2

) before the sluice-

gate, and F = Q/(0.62
3/2

by1
3/2

g
1/2

) at the section of the vena contracta, where b is the width of the 

flume channel, and g is the gravity. 
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Chapter Four Numerical Model 

4.1 Continuity and Momentum Equations for Two-phase Flow 

Let 𝜌𝑎 denote the density of air, 𝜌𝑤 denote the density of water, 𝜇𝑎 denote the dynamic viscosity 

of air, and 𝜇𝑤 denote the dynamic viscosity of water and assuming that two-phase flow of water 

and air as a mixture is incompressible, the volume-weighted averages of the mixture density, 𝜌, 

and dynamic viscosity, 𝜇, are: 

𝜌 = 𝛼𝑤𝜌𝑤 + (1 − 𝛼𝑤)𝜌𝑎    [4-1] 

𝜇 = 𝛼𝑤𝜇𝑤 + (1 − 𝛼𝑤)𝜇𝑎    [4-2] 

where 𝛼𝑤 is the volume fraction of water. For air, its volume fraction is (1 − 𝛼𝑤). 

Let u denote the velocity vector of the mixture. In the Cartesian coordinate system, the 

continuity equation is expressed as: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0      [4-3] 

The momentum equation is given by: 

𝜕𝜌𝑢𝑖

𝜕𝑡
+ 𝜌𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 + 𝜌𝑔𝑖    [4-4] 

where t is time; p is pressure; 𝜇 is dynamic viscosity. 

Physically, the momentum equation [4-4] considers processes related to unsteadiness (the 

1
st
 term on the left-hand side), convection (the 2

nd
 term on the left hand side), pressure gradient 

(the 1
st
 term on the right hand side), diffusion (the 2

nd
 term on the right hand side), and the 

combined effects of surface tension and gravity (the 3
rd

 term on the right hand side). A more 

detailed description of these processes has been given in Akahori and Yoshikawa (2012). 
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4.2 Volume of Fluid Method for Tracking the Free Water Surface 

One may track the position of the free water surface using the Volume of Fluid (VOF) method 

introduced by Hirt and Nichols (1981). Assuming that the gas and liquid phases are immiscible, 

in the absence of mass sources, the change of water volume fraction is governed by a convection 

equation of the form 

𝜕𝛼𝑤

𝜕𝑡
+ ∇ ∙ (𝛼𝑤𝑢𝑖) + ∇ ∙ (𝛼𝑤(1 − 𝛼𝑤)𝑢𝑟) = 0    [4-5] 

where 𝑢𝑟 is surface internal energy density. Note that when 𝛼𝑤 is equal to zero or one, the third 

term on the left-hand side of the above equation will be zero, which means the convection of 

fluids is pure. When 𝛼𝑤 is between zero and one, the third term acts to compress the interface 

between two phases. 

 

4.3 Reynolds-averaged Governing Equations 

It is necessary to use the statistical approach since turbulent flows always contain fluctuations of 

different flow characteristics (Wilcox 2006, p. 34). This reason justifies the use of the averaging 

concept introduced by Reynolds (1895), where all flow variables can be expressed as a 

combination of mean and fluctuating parts. The averaging is applied to each of the terms in the 

continuity and Navier-Stokes equations. 

 

4.3.1 Continuity and momentum equations of motion 

The instantaneous dependent variables in Equation [4-3] and Equation [4-4] are individually 

decomposed into time-averaged and fluctuating quantities through Reynolds decomposition. The 

resultant Reynolds-averaged equations are time-averaged equations of motion for fluid mixture 

flow, given by 
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𝜕𝑢𝑖

𝜕𝑥𝑖
= 0           [4-6] 

ρ (
𝜕𝑢𝑖

𝜕𝑡
+ �̅�𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
) = ρ𝑔𝑖 −

𝜕�̅�

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 +

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
    [4-7] 

𝜕𝛼𝑤

𝜕𝑡
+ ∇ ∙ (𝛼𝑤�̅�𝑖) + ∇ ∙ (𝛼𝑤(1 − 𝛼𝑤)𝑢𝑟) = 0    [4-8] 

where ui is the velocity in xi direction, t is time, ρ is fluid density, gi is gravity, p is pressure, 𝜇 is 

dynamic viscosity, and τij is the turbulent stress. 

The Reynolds shear stress components in Equation [4-7] are the extra unknowns. In order 

to obtain numerical solutions to the governing equations on a mesh system, one needs to 

parameterise the Reynolds shear stress. In other words, one needs to use turbulence closure 

schemes. The schemes used in this paper are based on the Boussinesq approximation  

    𝜏𝑖𝑗 = −ρ𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗                                              

[4-9] 

where 𝑢𝑖
′  is velocity fluctuation in xi direction, 𝜇𝑡  is turbulent viscosity, k is the turbulence 

kinetic energy, and 𝛿𝑖𝑗 is Kronecker delta. 

which relates the unknown shear stress to the mean flow strain rate through an eddy 

viscosity. In the following, two turbulence closure models are discussed. A comparison of their 

suitability will be given in Section 5.3 of this thesis. 

 

4.3.2 The Standard k- Model 

The standard k- model is a widely used two-equation turbulence closure model, and it is on the 

basis of the eddy-viscosity concept. 
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It belongs to the two-equation models. According to Launder and Spalding (1974), its 

governing equations of the turbulence parameters k (turbulence kinetic energy) and  (dissipation 

rate) are: 

𝜕𝑘

𝜕𝑡
+ 𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(

𝜈𝑇

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝜈𝑇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝜀   [4-10] 

𝜕𝜀

𝜕𝑡
+ 𝑢𝑗

𝜕𝜀

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(

𝜈𝑇

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
) + 𝐶1

𝜀

𝑘
𝜈𝑇 (

∂𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝐶2

𝜀2

𝑘
  [4-11] 

where the distribution of eddy-viscosity 𝜈𝑇 gives: 

𝜈𝑇 = 𝐶𝜇𝑘2 𝜀⁄      [4-12] 

and C1=1.44, C2=1.92, 𝐶𝜇=0.09, 𝜎𝑘=1.0, 𝜎𝜀=1.3. 

In this model, the transport equation for turbulence kinetic energy k (Equation [4-10]) 

determines the energy in the turbulence, and the transport equation for turbulence dissipation 

epsilon (Equation [4-11]) determines the rate of dissipation of the turbulence kinetic energy. 

 

4.3.3 The SST k- Model 

The shear stress transport (SST) k- model is another two-equation turbulence closure model. 

Menter (1994) introduced the model by combining the Wilcox k- model and the standard k- 

model. The k-ω formulation is used in the inner parts of the boundary layer (viscous sub-layer) 

to improve the simulation of flow behaviour in the viscous sub-layer. The SST k- model uses 

the following two transport equations 

𝜕𝑘

𝜕𝑡
+ 𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝑃𝑘 − 𝛽∗𝑘𝜔 +

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝑘𝜈𝑇)

𝜕𝑘

𝜕𝑥𝑗
]   [4-13] 

𝜕𝜔

𝜕𝑡
+ 𝑢𝑗

𝜕𝜔

𝜕𝑥𝑗
= 𝛼𝑆2 − 𝛽𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜎𝜔𝜈𝑇)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
  [4-14] 
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Equation [4-13] gives the turbulence kinetic energy, and Equation [4-14] gives the specific 

turbulence dissipation rate. The turbulent eddy viscosity is calculated as 

νT = a1k max (a1ω, SF2)⁄             [4-15] 

 

where  

F2 = tanh [[max (
2√k

β∗ωy
,

500ν

y2ω
)]

2

]    [4-16]  

Pk = min (τij
∂ui

∂xj
)     [4-17] 

F1 = tanh {{min [max (
√k

β∗ωy
,

500ν

y2ω
) ,

4σω2k

Dkωy2]}
4

}   [4-18] 

Dkω = max (2ρσω2
1

ω

∂k

∂xi

∂ω

∂xi
, 10−10)    [4-19] 

and 𝛼1 =
5

9
, 𝛼2 = 0.44 , 𝛽1 =

3

40
, 𝛽2 = 0.0828 , 𝛽∗ = 0.09 , 𝜎𝑘1 = 0.85 , 𝜎𝑘2 = 1 , 𝜎𝜔1 = 0.5 , 

𝜎𝜔2 = 0.856. 

An advantage of the SST k- model is that it is less sensitive to the flow outside the 

boundary layer, because the closure switches to the k-ε model in the free-stream. The activation 

of using the k- model is achieved by introducing the blending function, F1. 

 

4.4 Boundary conditions 

The model channel has five different types of boundaries: 1) water inlet, 2) air inlet, 3) solid 

walls, 4) outlet, and 5) atmospheric pressure at the top (Figure 4-1).  
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Figure 4-1: Model domain for numerical computations of flow passing underneath a sluice gate. 

Here, p1, p2, and p3 mark three selected locations for comparisons of numerical results among 

sensitivity test runs of the computational model. 

 

At the water inlet, the horizontal velocity u1 of water inflow is uniform in the vertical 

direction, which matches the experiment condition as 

u1 = Q/by1     [4-20] 

where u1 the measured discharge, b is the flume width, and Q is the discharge. The vertical 

velocity of the inflow is 

u2 = 0      [4-21] 

The turbulence kinetic energy k is calculated as 

k = 3/2(Iu1)
2     

[4-22]
 

where I is the turbulence intensity (equals to 0.5%). The suitability of other values of turbulence 

intensity (3% and 12%) has been accessed. The results with I = 0.5% are the best, matching the 

experimental results. This is consistent with the findings from Dolinski et al. (2013). 



 25 

At the air inlet, the inflow velocities 

u1 = u2 = 0     [4-23] 

The water volume fraction is 

w = 0      [4-24] 

The turbulence kinetic energy is k has the same value as that at the water inlet. 

At the outlet, u1, u2, k and w have zero gradient, without flow reversal. 

At the atmospheric pressure at the top, u1, u2 and k have zero gradient, there is no water 

influx, and the water volume fraction is w = 0. 

Conditions at the solid walls are discussed below. The velocity component normal to the 

walls is zero, and the turbulence kinetic energy is given the same value as that at the water inlet. 

The tangential component of velocity, and turbulence parameters ε, ω and νt are determined 

by wall functions. For a detail description, refer to Kalitzin et al. (2005) and Launder and 

Spalding (1974). The first node off a wall is in the logarithmic layer. The friction velocity 𝑢τ is 

calculated from the k value at the node as 

𝑢𝜏 = 𝐶𝜇
1/4

𝑘1/2     [4-25] 

where 𝜈 is the viscosity. The friction velocity is related to the wall shear stress 𝜏𝑤 as 

𝑢τ = √
𝜏𝑤

𝜌
     [4-26] 

For the first node to fall inside the logarithmic layer, the wall distance, y
+
, must be in the 

range of 30 to 200. The wall distance is defined as 

𝑦+ =
𝑦𝑢τ

𝜈
     [4-27] 

where y is the distance to the wall, 𝜌 is the density and 𝜇 is the dynamic viscosity.  

The tangential velocity at the center of the first cell satisfies the following relationship:  
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𝑢+ =
1

𝜅
ln (𝐸𝑦+)    [4-28] 

where u
+
 is defined in Equation [4-28], 𝜅 is the von Karman constant (equal to 0.41, and E is an 

empirical constant (equal to 9.8 for a smooth wall). 

In dimensionless form, ε, ω, and νt are expressed as 

𝜀+ =
1

𝜅𝑦+
     [4-29] 

𝜔+ =
1

𝜅√𝐶𝜇𝑦+
        [4-30] 

𝜈𝑇 = 𝜈 ∙ (
𝜅𝑦+

ln(𝐸𝑦+)
− 1)             [4-31] 

In dimension form, the following wall functions are used to calculate , , u1 as  

𝜺+ =
𝜺𝝂

𝒖𝝉
𝟒                                                             [4-32] 

𝜔+ =
𝜔𝜈

𝑢𝜏
2     [4-33] 

𝑢+ =
𝑢1

𝑢𝜏
      [4-34] 

In the case of using the k- model, the  value from Equation [4-20] enters Equation [4-10] 

for the calculation of k. In the case of the k-ω model, the w value from Equation [4-22] enters 

Equation [4-13] to calculate k. 

 

4.5 Initial Conditions 

At time t = 0, the flow velocities, u1 and u2, at all interior nodes are zero. The pressure 

distributions are hydrostatic. 

When the k-ε model is used for turbulence closure, the initial conditions are as follows: At 

time t = 0, the initial values of the turbulence kinetic energy, k, and its dissipation rate, ε, are 

estimated on the basis of isotropic turbulence. They are given as 



 27 

𝑘 =
3

2
(𝐼|𝒖𝟎|)2     [4-35] 

𝜀 =
𝐶𝜇

0.75𝑘1.5

𝐿
     [4-36] 

where I is the turbulence intensity, and 𝒖𝟎 is the inlet velocity (or u1 at x1 = -L1). In this study, I 

is assumed as 0.5%, and L is the reference length set to the inlet y1. The turbulent eddy viscosity, 

𝜈𝑇, is calculated using Equation [4-12]. 

When the SST k-ω model is used for turbulence closure, the initial values of the turbulence 

kinetic energy and ε are also given by Equations [4-13] and [4-14]. In addition, the initial values 

of the turbulence specific dissipation, 𝜔, is estimated by 

𝜔 =
𝑘0.5

𝐶𝜇𝐿
      [4-37] 

The initial values of the turbulent eddy viscosity, 𝜈𝑇, area calculated using Equation [4-15].  

For the standard k- model, at first, the software imports the initial values of k and , then 

reads the coefficients values as introduced in equations [4-10], [4-11], [4-12], [4-36], and [4-37]. 

Secondly, the turbulence viscosity is corrected for the whole field and boundaries by Equation 

[4-12]. Thirdly, the turbulence kinetic energy production term 𝜈𝑇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑖

𝜕𝑥𝑗
 is calculated, 

and the correct production term is inputted in the boundary layer. Fourthly, the production term 

is put into equation [4-11] and calculate the new field of . Fifthly, the new  and the production 

term is used in equation [4-10], and the new kinetic energy, k, is updated in the field and 

boundaries. Finally, since we have new values of k and , the second step is repeated to renew 𝜈𝑇 

and the rest steps are repeated till the end. 

For the standard SST k- model, the process is very similar to the standard k- model, 

except that the production term is 
𝜕

𝜕𝑥𝑗
(𝜈

𝜕𝑘

𝜕𝑥𝑗
), turbulence 𝜈𝑇  is calculated by equation [4-15], 
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viscosity k and  are updated in the boundary layer by equations [4-13] and [4-14], and k and  

are updated in the field by using the blending function F1 in equation [4-14]. 

 

4.6 Numerical Techniques 

In this study, the finite volume method is used to solve the governing partial differential 

equations. This method has two advantages: First, it ensures the conservation of mass, the 

balance of momentum and energy at the discretized level. Fluxes are in balance between two 

adjacent controlled volumes. Second, its arbitrary meshing structures have excellent flexibilities 

to closely approximate the complex geometries (Kolditz, 2013). 

At first, the model domain is discretized into a number of non-overlapping control volumes. 

Since the CFD model in this study is two-dimensional, each control volume is generally 

surrounded by four neighboring volumes in the field, or two ~ three neighboring volumes on the 

boundaries. Details can be found in Versteeg and Malalasekera (2007). 

In the given two-dimensional situation, the distribution of property 𝜑 can be obtained by 

applying discretized equations at each grid node. On the boundaries, since the fluxes are known, 

the discretized equations are modified to incorporate boundary conditions. 

In the governing partial differential equations [4-10], [4-11], [4-13], and [4-14], they have 

time terms and divergence terms on the left hand side, and the gradient terms and Laplacian 

terms on the right hand side. For each term, different mathematics schemes are used with the 

considerations of computational efficiency and accuracy. 

For the time term (in the form of 𝜕 𝜕𝑡⁄ , such as 
𝜕𝑘

𝜕𝑡
), the Euler scheme is chosen for it. Euler 

scheme is a bounded first order scheme designed for transient flows. 
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For the gradient terms (in the form of ∇, such as 
𝜕�̅�

𝜕𝑥𝑖
), Gauss Linear scheme is chosen as the 

scheme. The Gauss entry defines the standard finite volume discretization of Gaussian 

integration. In the integration process, the values are interpolated from cell centers to face centers. 

Following the Gauss entry, the Linear entry means the linear interpolation or central differencing. 

Gauss Linear scheme is a second-order scheme. 

For the divergence terms (in the form of ∇ ∙, such as 𝑢𝑗
𝜕𝜔

𝜕𝑥𝑗
, where uj gives the advection 

flux), bounded Gauss upwind scheme is chosen for terms containing turbulence parameters and 

velocities, and other terms are assigned with Gauss linear. For bounded Gauss upwind, it means 

that the boundedness of the solution derived by the first order upwind scheme is maintained in 

order to provide a better convergence. 

For the Laplacian terms (in the form of ∇2, such as 
𝜕

𝜕𝑥𝑗
(

𝜈𝑇

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
)), Gauss linear is chosen as 

the scheme for these terms. 

In OpenFOAM, values of initial conditions and boundary conditions are assigned to the 

nodes of each controlled volume at first. Then the algorithm will assign a value at the center of 

each controlled volume based on the values on the surrounding nodes and boundary types, such 

as wall functions, fixed value, gradient formats, etc., in order to process the simulation by finite 

volume method. During the simulation, at each write interval (recording time point, not the time 

step), the simulated values for each used parameter will be re-assigned to the nodes of each 

controlled volume based on the boundary types and the value stored in the center of that 

controlled volume and written in corresponding files. Figure 4-2 explains the simulation process 

of OpenFOAM. 
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Figure 4-2: Simulation Process in OpenFOAM 

 

In terms of the size of the first layer mesh close to the wall, the calculation is based on the 

flat-plate boundary layer theory explained by White and Corfield (2006): 

∆𝑠 =
𝑦+𝜇

𝑢τ𝜌
     [4-38] 

where ∆𝑠 is the spacing of the first layer mesh close to the wall. In this study, the spacing of the 

first layer mesh is chosen as 0.0001 m. 

In addition, to achieve temporal accuracy and numerical stability, the Courant number 

should be less than 1 for every cell in the model. Given the definition of Courant number: 

𝐶𝑜 =
𝛿𝑡|𝑈|

𝛿𝑥
     [4-39] 

where 𝛿𝑡  is the time step, |𝑈|  is the velocity magnitude, and 𝛿𝑥  is the cell size. Since the 

minimal size of the cell is the spacing of the first layer mesh close to the wall, with the 

consideration of the free stream velocity in each situation, the time step, 𝛿𝑡, is set as 0.0001s. 
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In OpenFOAM, most fluid dynamics solver applications use one of these three algorithms, 

namely PISO (pressure-implicit split-operator), SIMPLE (semi-implicit method for pressure-

linked equations) and PIMPLE (combined PISO and PIMPLE). Equations of momentum and 

mass conservation are coupled by these algorithms. PISO and PIMPLE are used for transient 

problems, and SIMPLE is for steady-state. In this study, since the momentum equation (Equation 

[4-4]) contains a partial time term, 
𝜕𝜌𝑢

𝜕𝑡
, which means the model is transient; thus, the algorithm 

for pressure-velocity coupling is chosen as PIMPLE. 

The simulations in this study allow a march of the transient flow to a steady state by 

retaining the unsteady term, 
𝜕𝜌𝑢

𝜕𝑡
, in the Navier-Stokes equations for better accuracy. The total 

CPU time of each simulation is about 2 hours, with parallel computations using 48 cores. 
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Chapter Five Results 

5.1 Grid Convergence 

Three test runs (MS1, MS2, and MS3 listed in Table 5-1) of the computational model were 

carried out for the purpose of determining mesh convergence of computational results. All the 

simulation conditions for these runs were the same, except the mesh size, δx. The mesh size was 

progressively refined from 0.2 to 0.1 to 0.05 cm (Table 5-1).  

The computed Reynolds-averaged flow velocities (u1, u2) and water pressure p were 

extracted from the model results for three selected (x1, x2) locations, marked as p1, p2, and p3 in 

Figure 4-1, at model time t = 20 s. The u1, u2 and p values are compared in Table 5-1. The 

comparisons show consistent values for the same (x1, x2) locations between MS2 and MS3. This 

confirms that grid convergence has been achieved. Thus, there is no need for further refinement 

of the mesh from ∆x = 0.1 cm. This mesh size was used for subsequent model runs. 
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Table 5-1: Setup and conditions for test runs of the computational model, and comparisons of computed flow velocities (u1 and u2) 

and pressures (p) at selected locations (p1, p2, and p3, marked in Figure 4-1) among the test runs. 

Run ∆t ∆x Turbulence w y1/w uo  p (Pa) 
u1 

(m/s) 

u2 

(m/s) 
 

p 

(Pa) 

u1 

(m/s) 

u2 

(m/s) 
 

p 

(Pa) 

u1 

(m/s) 

u2 

(m/s) 

 (s) (cm) model (cm)  (cm/s)  Location p1  Location p2  Location p3 

MS1 0.0001 0.2 SST k-ω 5.08 8 21.018  3060.3 0.306 -0.234  69.7 2.712 -0.002  58.8 2.719 0.014 

MS2 0.0001 0.1 SST k-ω 5.08 8 21.018  3061.1 0.307 -0.235  68.1 2.728 -0.003  59.3 2.724 0.007 

MS3 0.0001 0.05 SST k-ω 5.08 8 21.018  3061.1 0.307 -0.235  68.1 2.728 -0.003  59.3 2.724 0.007 

TS1 0.0001 0.1 SST k-ω 5.08 8 21.018  3061.1 0.307 -0.235  68.1 2.728 -0.003  59.3 2.724 0.007 

TS2 0.00005 0.1 SST k-ω 5.08 8 21.018  3065.9 0.307 -0.234  67.6 2.729 -0.003  59.3 2.727 0.007 

IC1 0.0001 0.1 SST k-ω 2.54 6 17.117  1047.6 0.205 -0.129  35.6 1.640 0.004  32.8 1.647 0.004 

IC2 0.0001 0.1 SST k-ω 2.54 6 17.117  1055.1 0.205 -0.129  34.3 1.662 0.004  31.3 1.656 0.004 

TC1 0.0001 0.1 SST k-ω 5.08 5 25.959  1563.7 0.276 -0.149  63.9 2.110 -0.002  59.3 2.108 0.006 

TC2 0.0001 0.1 
Standard k-

 
5.08 5 25.959  1483.4 0.278 0.102  103.7 1.795 0.011  103.4 1.819 0.010 
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5.2 Independence of model results on the choices of time step and initial conditions 

Two test runs: TS1 and TS2 (Table 5-1), of the computational model were performed in order to 

confirm the independence of model results on the choice of time step. These two runs used the 

same simulation conditions, except the time step Δt. Here, ∆t = 0.0001 s for TS1, and ∆t = 

0.00005 s for TS2. From the model results at model time t = 20 s, (u1, u2) and p were extracted 

for (x1, x2) locations p1, p2, and p3 (Figure 4-1), compared in Table 5-1. It is shown that there are 

no significant differences of u1, u2 and p values at the same locations between TS1 and TS2. This 

confirms the independence of model results on the time step used. The time step of Δt = 0.0001 s 

is short enough to achieve numerical accuracy, and a further reduced ∆t is not necessary. 

The purposes of test runs IC1 and IC2 were to confirm the independence of model results on 

the choice of initial conditions. Initially, there was water of uniform depth [Figure 5-1(a)] equal 

to the gate opening downstream for IC1, whereas there was no water [Figure 5-1(b)] downstream 

from the sluice-gate for IC2. This was the only difference in simulation conditions between these 

two runs. In Table 5-1, IC1 and IC2 are shown to produce consistent results of flow velocity and 

pressure at selected locations at t = 20 s. Thus, the model results are independent of the initial 

conditions used. The initial condition shown in Figure 4-1 was used for all subsequent model 

runs. 
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Figure 5-1: Sensitivity test of the choice of initial condition. a) the original setup for all of the 

simulations: the initial water position is placed before the sluice gate, with the desired flow 

depth, y1, b) the modified setup for the sensitivity test: the initial water position is placed before 

and after the sluice gate. On the upstream, the flow depth is set as y1; on the downstream, the 

flow depth equals to the gate opening size. 

 

5.3 Suitability of turbulence closure schemes 

The use of a proper turbulence closure scheme is important to computations of turbulent flow 

using the Reynolds-averaged approach. This section examines the suitability of two turbulence 

closure schemes: the SST k-ω model, and the standard k-ε model. The former was used in run 

TC1, whereas the latter was used in TC2 (Table 5-1). All other simulation conditions are the 

same between these two runs. In Figure 5-2, the computed flow profiles for TC1 and TC2 at 

model time t = 20 s are compared with measured flow profiles from the flume experiments, 

which are described in Section 2. Clearly, the prediction for TC1, which uses the SST k-ω model 

for turbulence closure, compares well with the experimental data. Run TC2, which uses the k-ε 

model for turbulence closure, has over-predicted the flow depth by about 15%. This finding is 
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consistent with Cassan and Belaud (2012) results. In this paper, subsequent model runs used the 

SST k-ω model for turbulence closure. 

 

 

Figure 5-2: Comparisons of flow profiles downstream from the gate between runs (TC1 and 

TC2) and flume experiments, under matching hydraulic conditions. The gate opening is w = 5.08 

cm. The upstream depth-to-gate opening is y1/w = 5. 

 

5.4 Validation of the computational model 

This section gives validation of the computational model by comparing model predictions of 

flow variables with experimental data under a range of hydraulic conditions. The conditions 

cover the cases, where three different gate openings (or w = 2.54, 3.81 or 5.08 cm) are combined 

with five different upstream depth-to-opening ratios (or y1/w = 4, 5,…, 8). It is understood that 

all the 15 individual combinations use the SST k-ω model for turbulence closure, a time step of 

∆t = 0.0001 s, and a simulation time period of T = 20 s. 

x1/w 

x2/w 
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In Figure 5-3(a)–(e), the computed flow profiles at model time t = 20 s for gate opening w = 

2.54, 3.81, and 5.08 cm are plotted as the solid, long-dashed, and dot-dashed curves, respectively. 

The positions of the free water surface are determined using the criterion that the water volume 

fraction w = 0.5. The measured positions of the free water surface are plotted as the open 

triangle, circle, and square symbols. The curves are shown to plot through the symbols. This 

quantitatively confirms the quality of the model predictions. There are some minor discrepancies 

for the case of w = 2.54 cm. The computed curves are plotted slightly below the triangle symbols 

at relatively large longitudinal distances downstream from the gate opening. However, the 

discrepancies become insignificantly small at relatively large y1/w ratios [Figure 5-3(d–e)]. 

Overall, the comparisons show that the computational model has produced acceptable results for 

the downstream side from the sluice-gate. 
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Figure 5-3: Longitudinal profiles of the water surface of flow after sluice gates, showing the 

surface curve for y1/w equal to: (a) 4; (b) 5; (c) 6; (d) 7; (e) 8. The predicted flow profiles for w = 

1, 1.5, and 2 inches are plotted as the solid, long-dashed, and short-dashed curves, respectively. 

The predictions are compared with the corresponding experimental data (the triangle, circle, and 

square symbols). The gate position is at x = 0 (the same hereafter). 
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 It is constructive to further validate the model performance for the upstream side from the 

sluice-gate. For this purpose, vertical distributions of the computed pressures [Figure 5-4(a–c)] 

on the gate’s upstream surface are compared with measured pressures from the experiments 

described in the “Experimental Method” section. In the figures, the vertical axis expresses the 

normalized vertical distance from the lower edge of the gate, given by  

z = (x2 – w)/(y1 – w)     [5-1] 

and the horizontal axis represents the flow pressure normalized by the maximum value of 

P(x2) of the distributed pressure, given by 

p′ = p(x2)/max[p(x2)]  for  w  x2  y1 and x1 = 0   [5-2] 

 For 13 model runs, where w = 2.54 cm and y1/w = 4, 5,…, 16, respectively, the computed 

p′-z curves virtually overlap, plotted as the solid curve in Figure 5-4(a). Corresponding 

measurements are plotted as the symbols. Clearly, the predictions agree well with the 

measurements. Similarly, good agreement is obtained for seven runs [Figure 5-4(b)], where w = 

3.81 cm and y1/w = 4, 5,…, 10, respectively, as well as for five runs [Figure 5-4(c)], where w = 

5.08 cm and y1/w = 4, 5,…, 8, respectively. Note that the maximum pressure occurs at z = 0.08 

for w = 2.54 cm, and at z = 0.1 for w = 3.81 and 5.08 cm. The results show that at the lowest 

edge of the gate (or at z = 0), p′ = 0.199, 0.179, and 0.107 for the three gate openings, 

respectively. The effects of the gate opening on the distributions of pressure on the gate are small. 

So are the effects of the ratio of the upstream depth to the gate opening. The favourable 

comparisons shown in Figure 5-2 and Figure 5-3 have confirmed the accuracy of the 

computational model. 
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Figure 5-4: Distributions of pressure exerted on the gate door’s upstream surface by water, with 

height above the door’s lower edge (z = 0). The pressure has been normalised by the local 

hydrostatic pressure (Equation [5-2]). For y1/w = 4, 5, 6, …, 16, the normalised-pressure 

distributions predicted are virtually overlapped, their average being shown as the solid curve. 

Experimental data for the y1/w values are plotted as symbols for comparison. The gate opening is 

equal to: (a) 1 inch (2.54 cm); (b) 1.5 inches (3.81 cm); (c) 2 inches (5.08 cm).  

 

5.5 Curvature of flow profiles 

The explicit function x2 = f(x1) describes the free water surface. Some examples of which are 

shown as the solid curves in Figure 5-5. The curvature at a point (x1, x2) on the free water surface 

is (Zill et al., 2011): 

κ = f′′/(1 + f′
2
)
3/2     

[5-3] 

where f′ and f′′ denote the first and second derivative, respectively. At a given point, this paper 

evaluates f′ and f′′ with a fourth-order accuracy (Chung, 1972) as 

f′(x0) = [f(x0–2δx) – 8f(x0–δx) + 8f(x0+δx)/3 – f(x0+2δx)]/(12δx) + O(δx
4
) [5-4] 

f′′(x0) = [-f(x0–2δx) – 16f(x0–δx) – 30f(x0) + 16f(x0+δx) – f(x0+2δx)]/(12δx
2
) + O(δx

4
) [5-5] 

where x0 is the coordinate of the point in the x1-direction. 

Modelling studies of two-phase flows have commonly used the criterion that the water 

volume fraction w = 0.5 to track the free water surface. This can possibly result in some small 

waves on the free surface, as is the case shown in Figure 5-3. It is not important to analyse the 
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micro-scale (or local scale) curvature associated with these small spatial fluctuations. Thus, they 

are filtered out, yielding a smooth water surface (Figure 5-5) for the analysis of macro-scale 

curvature. The filtering process is based on a hyperbolic tangent model equation. 

 

 

Figure 5-5: Predicted free water surface for TS1 (Table 5-1): (a) its positions as discerned on the 

basis of water volume fraction w = 0.5 directly from the model prediction, and hyperbolic 

tangent curve fitted to the predicted positions; (b) the curvature of the curve. The gate opening is 

w = 5.08 cm. 

 

The curvature, κ, of the free water surface [Figure 5-5(a), the curve fitted to the model 

prediction] is determined using Equations [5-3]–[5-5]. The results of curvature in dimensionless 

form are plotted in Figure 5-5(b), which show that the curvatures decrease with increasing 

longitudinal distance downstream from the gate opening. The reciprocal of  is known as the 

radius of the circle of curvature, denoted by r (Figure 2-1). For six selected points on the free 
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water surface, whose longitudinal coordinates are x1/w = 0.0025, 0.25, 0.5, 0.75, 1.0, and 1.5, the 

circles (or part of them) of curvature and their centres are illustrated in Figure 5-6(a–g). 

(x1c, x2c) denotes the centre of a circle of curvature in question. Fitting the results plotted in 

Figure 5-6(a–f) into non-linear polynomial functions yields the following empirical relationships 

for the curvature parameters:   

𝑟/𝑤 = 𝑎𝑟(𝑥1/𝑤)𝑏𝑟 + 𝑐𝑟(𝑥1/𝑤)             [5-6] 

(𝑥1𝑐/𝑤, 𝑥2𝑐/𝑤) = [𝑎1𝑐(𝑥1/𝑤)𝑏1𝑐 + 𝑐1𝑐(𝑥1/𝑤), 𝑎2𝑐(𝑥1/𝑤)𝑏2𝑐 + 𝑐2𝑐(𝑥1/𝑤)] [5-7] 

𝜃 = 𝜋/2 − 𝑎𝜃tanh [𝑏𝜃(𝑥1/𝑤)𝑐𝜃]    [5-8] 

The best fit was achieved with ar = 3.486, br = 3.788, and cr = 3.211; (a1c, a2c) = (0.618, 

3.964), (b1c, b2c) = (0.316, 3.599), and (c1c, c2c) = (0.695, 2.36); a = 1.712, b = 1.374, and c = 

0.366. 
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Figure 5-6: The circle (or part of the circle) of curvature and its center (or a line toward its 

center) at six selected points on the free surface. The results are for run TS1 (Table 5-1). The 

gate opening is w = 5.08 cm. 

 

5.6 Contraction distance and contraction coefficient 

For different sizes of sluice gate opening, Figure 5-3 shows that the smaller sluice gate can lead 

to a larger value of Cc. The details shown in Figure 5-7 also proves this observation. This 

observation also indicates that the scale effect is more significant for 1-in gate opening, but it is 

much smaller when gate opening is 1.5 inches or larger. Regarding the dimensionless contraction 

distance, where x2/w on the downstream equals to Cc for the first time, the gate opening size has 

no significant influence on its value. As shown in Table 5-2, the dimensionless contraction 

distance just varies around the theoretical value, 1.5 (Henderson 1966). 
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Figure 5-7: Values of the contraction coefficient, Cc, for y1/w = 4, 5, 6,…, 16. The model 

predictions for w = 1, 1.5, and 2 inches are shown as the filled triangle, circle, and square 

symbols, respectively. The predictions are compared with the corresponding experimental data 

(the open triangle, circle, and square symbols). 

 

 As can be seen in Table 5-2, the results are: xc/w = 1.772, 1.470, and 1.535 for w = 2.54, 

3.81 and 5.08 cm, respectively. The corresponding estimates from the experimental data are: xc/w 

= 1.575, 1.470, and 1.575. In this paper, xc/w is considered as the contraction distance. The 

computational model appears to give over-prediction of the contraction distance at the small gate 

opening (w = 2.54 cm). 
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Table 5-2: Summary of Dimensionless Contraction Distance 

Sluice Gate Opening Size, w 

(in) 

Dimensionless Contraction Distance, xc/w 

Experimental Data CFD Simulation 

1 1.575 1.772 

1.5 1.470 1.470 

2 1.575 1.535 

 

5.7 Curvature characteristics of flow passing underneath large gate opening 

In order to reveal the applicability of the relations [5-6]–[5-8] to sluice-gate flows at scales closer 

to the prototype, three runs of the computational model at larger gate openings (w = 10.16, 20.32, 

and 40.64 cm) were carried out. For these three runs, y1/w = 6. Analyses of the model results for 

the runs where w ranges from 5.08 to 40.64 cm give very consistent values for the coefficients in 

the relations. The mean values and standard deviations of the coefficients are: ar = 3.459  0.048, 

br = 3.812  0.018, and cr = 3.196  0.011; (a1c, a2c) = (0.653  0.028, 3.948  0.043), (b1c, b2c) = 

(0.308  0.009, 3.616  0.017), and (c1c, c2c) = (0.711  0.022, 2.324  0.024); a = 1.717  

0.216, b = 1.359  0.010, and c = 0.364  0.002. These standard deviations are less than 3% of 

the corresponding mean values for all the coefficients, expect (a1c, a2c), which are about 4%. 

Thus, the relevance of the relations [5-6]–[5-8] is confirmed. 

 

5.8 The flow velocity field 

In Figure 5-8, the distribution of water-velocity vectors for run TS1 (Table 5-1) is shown as an 

example to illustrate the structures of the flow field between the inlet (at x1/w = - 6) at upstream 

and x1/w = 3 at downstream. At the inlet, the approach flow is in the horizontal direction, with a 

uniform speed. Above the gate opening, the horizontal velocity reduces in magnitude as the flow 

approaches the gate surface, the water flow nearby the flume bottom keeps their direction, but 

the velocity increases rapidly. With the increase of the height, the water flow starts to turn the 
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direction sooner or later. When the turning point gets closer to the sluice gate, the turning angle 

is larger. Especially for the water flow nearby the water surface, the flow streamline keeps 

horizontal till the sluice gate, and makes a 90 turn towards the gate opening. 

 

Figure 5-8: The flow velocity field. The scenario with 2-in gate opening and y1/w=8. The 

investigated interval is from x1/w = -6 to 3. Arrows represent the water flow directions in various 

points. Colours represent the flow velocity value. 

 

For the structures of flow velocities after the gate, the water flow starts with various 

velocities and directions in different depths, and rapidly stabilizes into a horizontal flow with a 

uniform high velocity. When the flow is right below the sluice gate, the flow direction ranges 

from 0 to 90 from the flume bottom to the lower edge of the sluice gate. After that, the flow 

depth drops and stabilizes at a certain level. The flow velocity also increases to a high uniform 

value, and the flow direction becomes horizontal. 
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5.9 Distributions of turbulence intensity 

In terms of the turbulence energy distribution, the relatively significant situation happens on the 

water flow after the sluice gate. As can be seen in Figure 5-9, when the water flow stabilizes with 

a certain height on the downstream, the turbulence energy reaches a peak value in the area 

nearby the flow surface. With the increase of the water depth, the turbulence energy decreases 

rapidly and reaches a uniform low value in the free flow zone. Special attention is drawn to the 

near wall region. In Figure 5-9, it is obvious that the turbulence energy is a little higher than the 

free flow zone in the region near the flume bottom. 

 

 

Figure 5-9: The turbulence energy distribution after the sluice gate in the scenario with 2-in gate 

opening and y1/w=8. The investigated interval, x1/w, ranges from 0 to 3. 
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5.10 Discussion 

 

5.10.1 Division of highly curved flow profiles 

Benjamin (1956) divided a sluice-gate flow into two parts by the section B (Figure 2-1) chosen 

as the section where the angle  = 25, in order to simplify the analysis of the flow. The analysis 

was based on the assumption that downstream of B, the curvature, κ, of the free surface was 

insignificant. A correction of 5 needs to be made to the choice of the section B for the following 

reason. The angle  equal to 25 occurs at a downstream distance (from the gate) of about one-

fourth the gate opening (or at x1  w/4), as determined using Equation (23). At x1 = w/4, κ 

remains the same order of magnitude as its maximum value immediately downstream from the 

gate, as calculated from Equation [5-3]. The curvature (Equation [5-3]) drops by an order of 

magnitude from the maximum value only after a downstream distance of about one-third the gate 

opening (or x1  w/3). At x1 = w/3, the angle θ is equal to 20 (Equation [5-8]). Thus, a correction 

of 5 is proposed to Benjamin’s (1956) assumption. 

 

5.10.2 Non-hydrostatic pressure distribution 

At a certain distance upstream from the gate or downstream from the gate, the distributions of 

pressure in the flow are expected to be hydrostatic. Rajaratnam and Humphries (1982) took this 

distance as five times the gate opening w, suggesting that the bottom pressure heads hu at x1/w = -

5 and hd and x1/w = 5 had little deviations from the hydrostatic condition. From the 

computational results, this paper quantifies the deviations of bottom pressure head hp in the near-

gate region: −3 ≤ 𝑥1/𝑤 ≤ 3, using the parameter given by  

𝐻𝑝 = (ℎ𝑝 − ℎ𝑑)/(ℎ𝑢 − ℎ𝑑)    [5-9] 
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where Hp values of unity and zero represent hydrostatic condition, respectively, for the regions 

upstream and downstream of the gate; values in between mean deviations from the condition. 

 

Figure 5-10: Longitudinal distributions of dimensionless pressure deviation (Equation [5-9]) on 

the channel-bed before and after sluice gates. For y1/w = 4, 5, 6,…, 16, the dimensionless 

pressure-deviation distributions predicted are virtually overlapped, their average being shown as 

the solid curve. The gate opening is equal to: (a) 1 inch; (b) 1.5 inches; (c) 2 inches. 

 

 The profiles of Hp plotted in Figure 5-10 show large deviations in the vicinity of the gate. 

At the gate location (or x1 = 0), for w = 2.54 cm, the (mean value ± standard deviation) of Hp are 

(0.59 ± 0.002) among runs where y1/w = 4, 5,…, 16. Among runs where w = 3.81 cm, and y1/w = 
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4, 5,…, 10, the mean value and standard deviation are (0.59 ± 0.003). This is also the case 

among runs where w = 5.08 cm and y1/w = 4, 5,…, 8. The mean values of Hp are considerably 

different from unity and zero, meaning non-hydrostatic distribution. The deviations from 

hydrostatic condition are not negligible within an upstream or downstream (from the gate) 

distance equal to the gate opening. Therefore, the use of hydrostatic approximation should be 

cautioned against. This is regardless of the values for w and y1/w. The profiles (Figure 5-10) 

indicate a 10% correction for non-hydrostatic pressure at 𝑥1 = ±𝑤. 

 

Table 5-3: Summary of the Bottom Pressure Immediately under the Sluice Gate 

w = 1 inch w = 1.5 inch w = 2 inch 

h1/w Mean Difference h1/w Mean Difference h1/w Mean Difference h1/w Mean Difference 

4 0.59 0.005 10 0.59 0 4 0.591 0.005 4 0.592 0.005 

5 0.59 0.003 11 0.59 0 5 0.591 0.003 5 0.592 0.001 

6 0.59 0.001 12 0.59 0 6 0.591 -0.001 6 0.592 -0.002 

7 0.59 0 13 0.59 -0.003 7 0.591 -0.001 7 0.592 -0.001 

8 0.59 0 14 0.59 0.001 8 0.591 -0.002 8 0.592 -0.002 

9 0.59 0 15 0.59 0.001 9 0.591 -0.002    

   16 0.59 0 10 0.591 -0.002    

 

 

5.10.3 Momentum and energy coefficients 

The flow energy analysis that leads to the results given in Equations [2-1] – [2-2] has used the 

poor approximations that the flow is one-dimensional, and uniform at cross sections a short 

distance upstream and downstream of a sluice gate, and there are turbulent velocity fluctuations. 

More accurate results can be obtained by introducing the energy coefficient (Henderson 1966, p. 

19), defined as 𝛼 = ∫ 𝑢1
3𝑑𝐴 /(𝑢1𝑚

3 𝐴), where A is the area of the cross-section in question, and 

u1m is the cross-sectionally averaged velocity. This coefficient allows for the effect of variation in 

velocity at the cross section in question on energy flux. From the computed flow velocities, 

values for α are determined and plotted in Figure 5-11(a). 
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Figure 5-11: In the case where w = 2 inches and y1/w = 6: (a) the variation of energy coefficient, 

, with x1/w from -3 to 3; (b) the variation of momentum coefficient, , with x1/w from -3 to 3. 

 

 Similarly, the momentum coefficient (Henderson 1966, p. 19), defined as,  𝛽 =

∫ 𝑢1
2𝑑𝐴 /(𝑢1𝑚

2 𝐴), are also determined and shown in Figure 5-11(b). Introducing β to momentum 

analyses of the sluice-gate flow will improve the results. 
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5.10.4 The effect of gravity 

Some previous studies (e.g. Benjamin 1956) of the sluice-gate flow problem have ignored the 

effect of gravity on the flow in order to simplify the analysis. Here, the differences of the 

computed free surface profiles [Figure 2-1, x2 = f(x1)] for five runs, where w = 5.08 cm and y1/w 

= 4, 5,…, 8, with zero gravity (or g = 0), from the corresponding profiles, with g = 9.81 m/s
2
, are 

quantified as 

∆𝑥2 = (𝑥2|𝑔=0 − 𝑥2|𝑔=9.81)/𝑥2|𝑔=9.81   [5-10] 

The results show that ∆x2 ranges from 12% (for y1/w = 8) to 15% (for y1/w = 4) at x1 = w, 

and the percentages increase, respectively, to 14% and 16% at x1 = 1.5w. This is to say that 

ignoring the effect of gravity leads to significant over-predictions of the flow depth after the 

sluice gate, and thus corrections are needed. 

 

Figure 5-12: The relative difference in flow depth (Equation [5-10]) between predictions with 

gravitational effect and without, illustrating variation with longitudinal distance after sluice 

gates. 

 

∆𝑥2 

𝑥1/𝑤 
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5.10.5 Thickness of bottom boundary layer 

Discussions of the bottom boundary layer are given below for the region of 0 ≤ x1/w ≤ 3 for 

model runs where y1/w = 8. According to Schlichting et al. (1955), the flow is laminar, when the 

Reynolds number, 𝑅𝑒, is below the critical Reynolds number, 𝑅𝑒𝑥 𝑐𝑟𝑖𝑡 

𝑅𝑒𝑥 𝑐𝑟𝑖𝑡 = (
𝑈0𝑥1

𝜈
)

𝑐𝑟𝑖𝑡
= 5 × 105    [5-11] 

where U0 is the freestream velocity, x1 is the longitudinal distance from the sluice gate, and 𝜈 is 

the dynamic viscosity of water. 

The bottom boundary layer thickness, 𝛿, is defined as the distance normal to the bottom 

where the streamwise velocity is equal to 0.99Uo. On the basis of the computational results for 

the model runs, the thickness is plotted in Figures 5.13(a–c) as the solid curves. 

For the purpose of comparison, the thickness of a laminar boundary layer (Schlichting et al. 

1955), given by 

𝛿 = 5√
𝜈𝑥1

𝑈0
     [5-12] 

is plotted in Figures 5.13(a–c) as the dashed curves. In the figures, the difference of free surface 

elevation between the model run where the bottom was a slip wall and the model run where the 

bottom a non-slip wall, are plotted as the dotted-dashed curves. The idea is to examine whether 

or not this difference is close to the boundary layer thickness obtained by the two methods 

explained above. 
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Figure 5-13: The bottom boundary layer after sluice gates for the gate opening equal to: (a) 2.54 

cm; (b) 3.81 cm; (c) 5.08 cm.  

 

  

Eq. [5-12] 

x1/w 

x1/w 

x1/w 

x2/w 

x2/w 

x2/w 
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The solid curves show larger boundary layer thickness for all three cases of the gate 

opening, which indicate that the boundary layer develops before the sluice gate. In particular, the 

thickness based on the definition of 0.99Uo is larger than that calculated by equation [5-12]. 

Regarding the difference of free surface elevations between slip and non-slip bottom runs, 

although the curves show a growing thickness in the flow direction, the thicknesses are small, 

compared to those based on the definition of 0.99Uo. Thus, the difference does not reflect the 

true boundary layer thickness. 

 

5.10.6 The effect of bottom friction 

As expected, bottom friction has insignificant effect on the free surface profile [Figure 2-1, x2 = 

f(x1)] over the contraction distance. This is verified by comparing the computed free surface 

profiles for five runs, where w = 5.08 cm and y1/w = 4, 5,…, 8, with a value of zero assigned to 

the kinematic viscosity of water (or ν = 0), with the corresponding profiles, with ν = 1.05×10
-6

 

m
2
/s. The relative differences are smaller than 1%. Thus, it would be acceptable to ignore the 

effect of bottom friction in simplified analyses of sluice-gate flow profiles, even at laboratory 

scale. Nevertheless, bottom friction is known to affect the transverse velocity gradient within the 

bottom boundary layer. 
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Chapter Six Conclusions 

This paper reports new experimental and numerical results of turbulent flow passing underneath 

a sluice-gate. The focus is on the highly curved flow profiles downstream from the sluice-gate 

over the contraction distance, which have not received much research attention so far. The 

numerical results are obtained from solving the Reynolds-averaged continuity and momentum 

equations for two-phase flow of an air-water mixture. The following conclusions have been 

reached: 

 The flow curvatures under a wide range of conditions (Table 3-1) in terms of the gate 

opening and upstream depth-to-gate opening ratio have been quantified from accurate 

and detailed point-gauge measurements, along with validated numerical results (Figure 

2-1). 

 For given conditions, the flow curvatures have a maximum value immediately 

downstream of the gate opening, and monotonically decay with increasing distance from 

the gate opening (Figure 5-5(b)). 

 For the first time, reliable relationships (Equations [5-6] – [5-8]) for key flow-curvature 

parameters, namely the radius of the circle of curvature, the centre of the circle, and the 

angle of a tangent to the free surface with the channel-bottom, have been introduced. In 

dimensionless form, the lack of variations in these parameters under a wide range of 

conditions is remarkable. This represents a significant extension of the existing studies of 

the sluice-gate flow problem. 

 The computed flow profiles as well as pressure distributions on the gate surfaces compare 

well with the experimental data (Figures 5-3 and 5-4). It is shown that the shear stress 

transport k-ω model provides suitable turbulence closure, and the volume of fluid method 
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is reliable for tracking the highly curved free surface. The computational methods have 

successfully been applied to produce results of flow passing underneath large gate 

openings (close to prototype scales). 

 This thesis has provided an update of the contraction distance and coefficient to include 

large gate-opening flows (Table 5-2). The results are consistent with the literature values. 

 The pressure distributions before and after the gate within a longitudinal distance equal to 

the gate opening show a significant deviation (Figure 5-10) from the hydrostatic 

distributions. In this connection, corrections are needed to the location for dividing flow 

profiles. 

 The effect of gravity needs to be included in the analysis of the highly curved flow. The 

use of the momentum and energy coefficients from this paper would lead to an 

improvement in the results of future studies of the sluice gate flow problem using the 

momentum and energy principles. 

 

For future work, the following four points should be further studied: 

 The current research has dealt with vertical sluice gates. Future studies should consider 

other types of sluice gates such as Tainter gates, rolling gates and sluice gates with 

combined over- and underflow. 

 This study covers the scenarios of free flow after the sluice gate. It would be interesting 

to conduct further research under conditions of submerged flow on the downstream. 

 Future work should provide a comparison among different numerical approaches to 

simulating sluice gate flows. 
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 Finally, it would be interesting to systematically investigate the effects of turbulence on 

flow curvature. 

References 

Akahori, R., Yoshikawa, Y., and Yasuda, H. (2011). “Flexible control of density current 

migration by using sluice gate.” Journal of Japan Society of Civil Engineers. Ser. B1, Hydraulic 

engineering, JSCE, 67(40), 1585-1590. 

 

Akoz, M.S., Kirkgoz, M.S., and Oner, A.A. (2009). “Experimental and numerical modeling of a 

sluice gate flow.” Journal of Hydraulic Research, 47(2), 167-176. 

 

Baek, K.O., Ku, Y.H., and Kim, Y.D. (2015). “Attraction efficiency in natural-like fishways 

according to weir operation and bed change in Nakdong River, Korea.” Ecological Engineering- 

Elsevier, 84(11), 569-578. 

 

Belaud, G., Cassan, L., Baume, J.P. (2009). “Calculation of contraction coefficient under sluice 

gates and application to discharge measurement.” Journal of Hydraulic Engineering-ASCE, 

135(12), 1086-1091. 

 

Benjamin, T.B. (1955). “On the flow in channels when rigid obstacles are placed in the stream.” 

Journal of Fluid Mechanics, 1(2), 227-248. 

 

Cassan, L., and Belaud G. (2012). “Experimental and numerical investigation of flow under 

sluice gates.” Journal of Hydraulic Engineering-ASCE, 138(4), 367-373. 



 59 

 

Cheng, A. H., Liu, P. L., and Liggett, J. A. (1981). "Boundary calculations of sluice and spillway 

flows." Journal of the Hydraulics Engineering-ASCE, 107(10), 1163-1178. 

 

Chern, M.J., and Syamsuri, S. (2013). “Effect of corrugated bed on hydraulic jump characteristic 

using SPH method.” Journal of the Hydraulics Engineering-ASCE, 139(2), 221-232. 

 

Chow, V. T. (1959). Open channel hydraulics. McGraw-Hill Book Company, Inc., New York. 

 

Chung, Y.K. (1972). “Solution of flow under sluice gate.” Journal of the Engineering Mechanics 

Division-ASCE, 98(EM1), 121-140. 

 

Finnie, J.I., and Jeppson, R.W. (1991). “Solving turbulent flows using finite elements.” Journal 

of Hydraulic Engineering-ASCE, 117(11), 1513-1530. 

 

Habibzadeh, A., Vatankhah, A.R., and Rajaratnam, N. (2011). “Role of energy loss on discharge 

characteristics of sluice gates.” Journal of Hydraulic Engineering-ASCE, 137(9), 1079-1084. 

 

Henderson, F.M. (1966). Open Channel Flow, Macmillan, New York. 

 

Hirt, C.W., and Nichols, B.D. (1981). “Volume of fluid (VOF) method for the dynamics of free 

boundaries.” Journal of Computational Physics-Elsevier, 39(1), 201-115. 

 



 60 

Kalitzin, G., Medic, G., Iaccarino, G., and Durbin, P. (2004). “Near-wall behavior of RANS 

turbulence models and implications for wall functions.” Journal of Computational Physics- 

Elsevier, 204(1), 265-291. 

 

Khanpour, M., Zarrati, A.R., and Kolahdoozan, M. (2014). “Numerical simulation of the flow 

under sluice gates by SPH model.” Transactions A: Civil Engineering-Scientia Iranica, 21(5), 

1503-1514. 

 

Kim, D.G. (2007). “Numerical analysis of free flow past a sluice gate.” Journal of Civil 

Engineering-KSCE, 11(2), 127-132. 

 

Kolditz, O. (2013). Computational methods in environmental fluid mechanics. Springer Science 

& Business Media, Berlin, Germany. 

 

Launder, B.E., and Spalding, D.B. (1974). “The numerical computation of turbulent flows.” 

Computer Methods in Applied Mechanics and Engineering-Elsevier, 3(2), 269-289. 

 

Lin, C.H., Yen, J.F., and Tsai, C.T. (2002). “Influence of sluice gate contraction coefficient on 

distinguishing condition.” Journal of Irrigation and Drainage Engineering-ASCE, 128(4), 249-

252. 

 

Marchi, E. (1953). "Sui fenomeni di efflusso piano da luci a battente." Annali Di Matematica 

Pura Ed Applicata, 35(1), 327-341. 



 61 

 

Masliyah, J.H., Nandakumar, K., Hemphill, F. and Fung, L. (1985). “Body-fitted coordinates for 

flow under sluice gates.” Journal of Hydraulic Engineering-ASCE, 111(6), 922-933. 

 

Menter, F. R. (1994). "Two-equation eddy-viscosity turbulence models for engineering 

applications." AIAA Journal-AIAA, 32(8), 1598-1605. 

 

Montes, J. (1997). "Irrotational flow and real fluid effects under planar sluice gates." Journal 

Hydraulic Engineering-ASCE, 123(3), 219-232. 

 

Moreno, M., Maia, R., and Couto, L. (2016). “Prediction of equilibrium local scour depth at 

complex bridge piers.” Journal of Hydraulic Engineering-ASCE, 142(11), 04016045-1-

04016045-13 

 

Pajer, G. (1937). "Über den Strömungsvorgang an einer unterströmten scharfkantigen 

Planschütze." Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte 

Mathematik Und Mechanik-ZAMM, 17(5), 259-269. 

 

Rajaratnam, N. (1976). Turbulent jets. Vol. 5., Elsevier Scientific, New York. 

 

Rajaratnam, N., and Humphries, J. (1982). "Free flow upstream of vertical sluice gates." Journal 

of Hydraulic Research-Taylor and Francis, 20(5), 427-437. 

 



 62 

Reynolds O. (1895). “On the dynamical theory of incompressible viscous fluids and the 

determination of the criterion.” Philosophical Transactions A-The Royal Society, 186(1), 123–

164. 

 

Roth, A., and Hager, W.H. (1998). “Underflow of standard sluice gate.” Experiments in Fluids- 

Springer, 27(4), 339-350. 

 

Schlichting, H. (1955). Boundary-layer theory, McGraw-Hill, New York. 

 

Shammaa, Y., Zhu, D.Z., and Rajaratnam, N. (2005). “Flow upstream of orifices and sluice 

gates.” Journal of Hydraulic Engineering-ASCE, 131(2), 127-133. 

 

Termini, D. (2009). “Experimental observations of flow and bed processes in large-amplitude 

meandering flume.” Journal of Hydraulic Engineering-ASCE, 135(7), 575-587. 

 

Versteeg, H.K., and Malalasekera, W. (2007). An introduction to computational fluid dynamics, 

Pearson, Essex, UK. 

 

Wang, H.Z., Liu, X.Q., and Wang, H.J. (2016). “The Yangtze river floodplain: threats and 

rehabilitation.” American Fisheries Society Symposium-AFS, 84(1), 263-291. 

 

White, M. (2006). Viscous Fluid Flow, McGraw-Hill, New York. 

 



 63 

Wilcox, D.C. (2006). Turbulence modeling for CFD, DCW, La Canada, California 

Xie, C., and Lim, S.Y. (2015). “Effects of jet flipping on local scour downstream of a sluice gate.” 

Journal of Hydraulic Engineering-ASCE, 141(4), 04014088-1- 04014088-23 

 

Zhang, J., Jørgensen, S. E., Tan, C. O., and Beklioglu, M. (2003). "A structurally dynamic 

modelling—Lake Mogan, Turkey as a case study." Ecological Modelling-Elsevier, 164(2), 103-

120. 

 

Zhang, S.Y., Duan, J.G., and Strelkoff, T.S. (2013). “Grain-scale nonequilibrium sediment-

transport model for unsteady flow.” Journal of Hydraulic Engineering-ASCE, 139(1), 22-36. 

 

Zhang, W., Liu, M., Zhu, D.Z., and Rajaratnam, N. (2014). “Mean and turbulent bubble 

velocities in free hydraulic jumps for small to intermediate Froude numbers.” Journal of 

Hydraulic Engineering-ASCE, 140(11), 04014055-1- 04014055-9. 

 

Zill, D., Wright, W. S., and Cullen, M. R. (2011). Advanced engineering mathematics, Jones & 

Bartlett Learning, Burlington, Massachusetts 

 

Zimmer, A., Schmidt, A., Ostfeld, A., and Minsker, B. (2013). “New method for the offline 

solution of pressurized and supercritical flows.” Journal of Hydraulic Engineering-ASCE, 139(9), 

935-948. 


