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Abstract

Spotting Keywords in Offline Handwritten Documents Using Hausdorff Edit
Distance

Mohammad Reza Ameri, Ph.D.

Concordia University, 2018

Keyword spotting has become a crucial topic in handwritten document recognition, by

enabling content-based retrieval of scanned documents using search terms. With a query

keyword, one can search and index the digitized handwriting which in turn facilitates

understanding of manuscripts. Common automated techniques address the keyword

spotting problem through statistical representations.

Structural representations such as graphs apprehend the complex structure of handwriting.

However, they are rarely used, particularly for keyword spotting techniques, due to

high computational costs. The graph edit distance, a powerful and versatile method for

matching any type of labeled graph, has exponential time complexity to calculate the

similarities of graphs. Hence, the use of graph edit distance is constrained to small size

graphs.

The recently developed Hausdorff edit distance algorithm approximates the graph edit

distance with quadratic time complexity by efficiently matching local substructures. This

dissertation speculates using Hausdorff edit distance could be a promising alternative

to other template-based keyword spotting approaches in term of computational time

and accuracy. Accordingly, the core contribution of this thesis is investigation and

development of a graph-based keyword spotting technique based on the Hausdorff
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edit distance algorithm. The high representational power of graphs combined with the

efficiency of the Hausdorff edit distance for graph matching achieves remarkable speedup

as well as accuracy. In a comprehensive experimental evaluation, we demonstrate the

solid performance of the proposed graph-based method when compared with state of the

art, both, concerning precision and speed.

The second contribution of this thesis is a keyword spotting technique which incorpo-

rates dynamic time warping and Hausdorff edit distance approaches. The structural

representation of graph-based approach combined with statistical geometric features

representation compliments each other in order to provide a more accurate system. The

proposed system has been extensively evaluated with four types of handwriting graphs

and geometric features vectors on benchmark datasets. The experiments demonstrate a

performance boost in which outperforms individual systems.
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Chapter 1

Introduction

This chapter presents a review of pattern recognition methods outlining statistical and

structural categories. Then, document analysis is discussed from a pattern recogni-

tion point of view, considering both holistic and character-based recognition. Finally,

motivations, objectives, contributions, and outline of the dissertation are presented.

1.1 Pattern Recognition

Pattern recognition is one of the most prominent abilities of the human being. The

understanding of sophisticated patterns has helped humans to survive and as a result our

cognitive and neural system evolved to make us superior in identifying patterns (Duda,

Hart, & Stork, 2000). The pattern recognition field aims at giving machines the ability to

determine the categories of patterns. Thereby pattern, an observation in the real world,

is recognized by the computer to aid humans in automating an ever growing number of

tasks.

The field of pattern recognition comprises a large number of topics ranging from the

recognition of signature, handwriting, to the identification of objects and patterns such as

human faces. These examples reveal the importance of pattern recognition for humans in
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daily life. Some tasks, yet, are tedious for humans, such as sorting mails in post offices,

reading the bank cheques, and recognizing cars license plates. Moreover, some tasks

that are designed for machines such as computer-aided diagnostic in medical images,

speech recognition for personal assistance devices, biometrics authentication such as

fingerprints and faces. Thus, an algorithmic approach to the above problems requires us

to use computers.

To delegate the work to machines, we must empower them with the ability to mimic

human perception and intelligence. In computer science, yet, the tasks are carried out

by numerical calculation. Thus the aim of pattern recognition as a field of computer

science is to build mathematical models and methods to define and delegate the tasks in

computer-understandable forms.

Many applications in computer science are theory driven. For a specific task, the precise

step by step approach is given to solve the problem. Learning-based approaches, on the

other hand, enable the machines to adapt to specific tasks instead of instructing the exact

requirements. The pattern recognition problems are often too complex to have analytical

solutions that provide a precise instruction for identifying a pattern. The analytical

solution needs humans to analyze each model individually and make a set of instructions

We would like the computers preferably, with learning-based approaches, to learn the

concepts of class or category. Therefore, to recognize patterns, we build an intelligent

system first to learn and then to identify the patterns.

Showing a few pictures of an unfamiliar animal, a child is able to recognize that animal

in the wild. Pattern recognition aims to empower the machine with similar abilities.

With this approach, machines can imitate the human’s behavior of identifying objects by

samples. In most pattern recognition tasks, a set of samples are first provided as examples

for a specific class. The algorithm adjusts to the objects and their particular features

from few examples. While adapting to a specific pattern, the algorithm nevertheless
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must generalize the concept to unseen models of the same category. Then the computer

employs the adapted models to classify unknown and unlabeled objects.

Pattern recognition has become one of the most demanding fields in computer science.

With the effort of scientists, several problems have practical solutions to some extent.

Examples include are mail sorting (Lu & Tan, 2002), spam filtering (L. Zhang, Zhu, &

Yao, 2004), handwritten text recognition (Zimmermann, Chappelier, & Bunke, 2006),

writer identification (Schlapbach & Bunke, 2008), and identification of persons by

fingerprint (Yager & Amin, 2004), to name just a few. Although the pattern recognition

approaches have succeed in these tasks, there is still room for improvement. Without

doubt, with ever growing digital contents, new applications will emerge.

1.2 Statistical and Structural Pattern Recognition

The description of patterns for computers is considered to be a crucial task in pattern

recognition. The representation is the underlying data structure that is used by the algo-

rithm. Data structures provide abstractions for computers to store values, assert possible

relations, and mechanism for accessing and modifying data. The choice of data structure,

therefore, attributes to the general functionality of the models. Pattern recognition, based

on the descriptors, is categorized as statistical or structural. The possibility of combining

the two methods, as a third hybrid approach, has been investigated in Olszewski (2001).

Figure 1.1 illustrates representing a word image with a graph and a sequence of feature

vectors as structural and statistical representation, respectively.
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FIGURE 1.1: Representing a word image with statistical feature vectors
and structural graph presentation.

1.2.1 Statistical Pattern Recognition

A feature is an n-dimensional tuple of real-valued numbers, i.e. X = (x1, . . . ,xn) ∈ Rn.

The representation of feature X is inherently a point in n-dimensional space. The

representation often termed as feature vector, nonetheless, a vector defines the difference

between two points. Subtracting the first point from the second one yields a vector. The

concepts of points and vectors are interchangeable in pattern recognition (Pekalska &

Duin, 2005). Statistical pattern recognition refers to representing the objects with fixed

size vectors. The neural network approaches such as long short term memory (LSTM)

(Frinken, Fischer, Baumgartner, & Bunke, 2014), (Frinken, Fischer, Manmatha, & Bunke,

2012), (Sankaran & Jawahar, 2012) and convolutional neural networks (CNN) (Sudholt

& Fink, 2016) are also considered as statistical pattern recognition models.
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The feature vector representation is a computationally efficient approach since modern

computers internally perform vectorial operations by design. The efficiency in low

computational complexity is supported by the fact that features typically are represented

in the similar array-shaped data structures of computers. Moreover, the theoretical

foundation of linear algebra provides extensive predefined vectorial operations. Thus, the

largest number of algorithmic approaches for pattern recognition has been developed in

the field of statistical pattern recognition (Duda et al., 2000).

By definition, using vectors implies a fixed-size representation even when the shape and

size of different objects are not the same. Consequently, there are no means to represent

the relations between different parts of a pattern. The structural methods provide a better

representation of the patterns when the dependencies of substructures are more prominent

than local distributions (Bunke, 1993).

1.2.2 Structural Pattern Recognition

Structural pattern recognition focuses on symbolic types of data such as graphs or strings.

Graphs are defined by a set of nodes that are connected by edges. Graphs can represent

patterns of variable size as well as almost any structure with the binary relation between

substructures (Conte, Foggia, Sansone, & Vento, 2004). By overcoming the feature

vectors drawbacks to describe structures, graphs have become a matter of interest in the

pattern recognition community (Kandel, Bunke, & Last, 2007).

The high representational power of graphs, however, is accompanied by drawbacks in

pattern recognition applications. The problem arises from flexibility and computation

operations on graphs. For feature vectors, the comparison of two vectors is a linear-

time operation concerning the size of the vectors. Graph comparison by employing

graph matching often has an exponential time complexity. Moreover, even simple vector

operations like sum or product are not defined in a standard way for graphs in general.
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Often these operations address an individual problem rather than a general computational

concept for graphs.

Whether we use statistical or structural pattern recognition, the fundamental rule is the

object from the same class should have a similar feature vector or structural representation.

Likewise, to have a useful pattern recognition paradigm, the feature vectors or graph-

based representations must be far away and distinctly dissimilar for different objects.

1.3 Handwritten Document Analysis

Handwritten documents have been means of communication and documentation since

the beginning of civilization. In the digital era, document analysis becomes a demanding

task to manage and recognize digitized documents. Examples of such documents are

envelopes, bank cheques, forms, manuscripts or a part of a book. The purpose of

document analysis by computers, however, is not only to recognize the context yet to

process documents based on the contents. The extract information could be used to sort

the mails for the post offices, automate depositing cheques, and search in an extensive

database of documents for specific words.

Machine-printed parts of documents are more accessible than handwritten parts. The

characters in printed documents have a clear boundary and monotonic shapes. Likewise,

characters have a fixed shape for a specific typeface in the document. Thus, the obstacles

to recognizing a machine printed document are mostly related to scanning quality and

existence of noise. The difference for a specific class of character is eventually limited

to the typeface such as font, size, and orientation. The handwritten parts of documents,

however, in addition to the mentioned difficulties, must cope with obstacles such as

degraded characters, skewed text lines and the connected nature of cursive handwriting.
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Modern digital computing devices, digital pen, and touch-sensitive surfaces empower

users to digitize the drawing. Correspondingly, handwriting recognition looks beyond

the scanned documents input, i.e. offline handwriting recognition. Online handwriting

recognition has emerged as a second type of handwriting recognition. It aims to recognize

the writing with the stylus on the surface of an electronic device. Online handwriting

recognition processes the sensor input such as pen movement and pressure on the surface

to translate strokes into text.

Character recognition has been the primary research interest for both handwritten and

printed documents. Identifying individual characters aims at transcribing the entire

documents. The digitized transcription demands the segmentation of words to the

character level in advance. Such segmentation has to accommodate a higher amount

of noise compared to printed characters since lexicons are often cursive in the Latin

handwritten scripts. Cursive handwriting leads to ambiguity of the character boundaries.

Thus, transcription of handwritten documents through character recognition does not

yield a comparable result as it does for the machine printed documents.

By searching for a particular keyword, we can make the digitized manuscript more

accessible. Keyword spotting refers to querying for a specific keyword in the documents.

The system then must respond whether the keyword exists; and report the positions of

the keyword subsequently. The user finally receives a list of documents with the location

of the corresponding keyword. Keyword spotting was first employed in the domain of

speech recognition (Myers, Rabiner, & Rosenberg, 1980) to detect a specific word in

speech. Later, keyword spotting was proposed for handwritten documents by Manmatha,

Han, and Riseman (1996) and Manmatha and Croft (1997).
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1.3.1 Character Recognition

Initial efforts to recognize text in scanned documents focused on identifying characters

as the writings building blocks. Optical character recognition has been an active field of

research for more than three decades. Hundreds of approaches have been proposed for

the recognition of handwritten characters for different scripts (Cavalin, Sabourin, Suen,

& Britto Jr., 2009).

For machine-printed Latin scripts, character recognition methods achieve very high

recognition rates, at least when the level of noise is low (Fujisawa, 2008). When clear

imaging is available, typical recognition rates for machine-printed characters exceed

99%. However, optical character recognition is prone to errors when dealing with

handwritten characters. Commercial applications with near-perfect recognition accuracy

are only available for restricted tasks such as bank check reading (Gorski, Anisimov,

Augustin, Baret, & Maximor, 2001). In general, the problem is still considered as mainly

unsolved (Bunke & Varga, 2007).

The difficulty of recognizing handwritten characters lies in the fact that each person

writes in a distinct handwriting style. In the discipline of forensic science, handwriting

identification and verification are based on the principle that the handwriting of two

people are not alike. In fact, forensics believe that individual’s handwriting is unique

to themselves; therefore, they can distinguish authentic handwriting from forged one.

Consequently, the recognition system must be flexible enough to adjust to the different

writing styles. Even in documents produced by a single writer, a considerable amount of

ambiguity must be addressed. Fig. 1.2 shows some examples of letters from the NIST

SD19 database Grother (1995) which may be mistaken with the letter “a” without context.

In a study by Haji (2012), the authors showed that there are at least 29 pairs of letters

that may have almost identical shapes in cursive Latin handwriting. We can conclude the
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(a) ‘a’ or ‘c’

(b) ‘a’ or ‘u’

(c) ‘a’ or ‘Q’

(d) ‘a’ or ‘w’

FIGURE 1.2: Ambiguity of cursive characters for the character ‘a’.

number of shapes that a handwritten character can take is substantial and challenging for

pattern recognition.

Handwritten character recognition classifies individual characters in the document to the

corresponding alphanumeric categories. The segmented images of characters undergo a

feature extraction stage. Feature extraction is a crucial primary step that determines how

well the different characters are distinguishable in the respective feature space. For an

early survey, we refer to Trier, Jain, and Taxt (1996). Examples of state-of-the-art feature

sets include wavelet-based representations of low-quality printed characters as well as

handwritten characters Chen, Bui, and Krzyzak (2003); X. Wang, Ding, and Liu (2005);
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Wunsch and Laine (1995).

It is common to preprocess feature vectors for normalization. Furthermore, there are

methods for feature space transformation that apply to any feature set and may be able to

improve the class separability. In general, it cannot be predicted whether the feature sets

perform better with preprocessing unless it is examined in a specified recognition task.

Exemplary techniques for cursive handwriting include the use of principal component

analysis (PCA) and independent component analysis (ICA) Vinciarelli and Bengio (2002)

as well as non-linear kernel PCA Fischer and Bunke (2009).

Recent advances in image representation include the development of sparse represen-

tations, which have proven successful for various applications in computer vision and

pattern recognition Wright et al. (2010). The underlying idea is to describe an image as a

linear combination of representative samples such that only a few coefficients of the linear

combination are non-zero. PCA creates an orthogonal space with the aim to minimize

the basis vectors. Sparse coding instead uses an extensive dictionary of representative

samples to create an overcomplete basis. Following this procedure, semantic information

like class membership can be directly propagated from non-zero coefficients.

1.3.2 Keyword Spotting Systems

In recent years we have seen increasing efforts worldwide by libraries and archives to

digitize handwritten historical documents. Digital files of handwriting are more accessi-

ble, to search and index, by the textual content of the documents. To integrate scanned

manuscript images into digital libraries based on their content, automatic handwriting

recognition is needed. However, modeling and identification of handwriting are far more

challenging than optical character recognition for printed text. The difficulty arises mainly

due to the variable character and word shapes. Facing ancient scripts and languages,

automatic transcription is often not feasible because of a lack of training data.
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In most recognizer systems it is necessary to segment the text lines into characters, then

a recognition system gives the proper transcription. This method works for machine

printed text where character boundaries are clear, and the characters themselves are

not distorted. However, for handwritten document recognition, a significant amount

of ambiguity is faced in segmentation; see Figure 1.2. For such situations, keyword

spotting (KWS) offers an alternative to index scanned manuscripts without performing a

complete transcription (Manmatha et al., 1996; T. Rath & Manmatha, 2003). So-called

holistic approaches consider the whole word as a unit to be recognized. Considering a

whole word can effectively reduce the ambiguity which we face in individual character

recognition.

Depending on the type of input handwriting, KWS operates either on online or offline

handwriting. As mentioned above the online approach makes use of additional temporal

information. Therefore, the additionally recorded data support the recognition of text.

Hence, offline methods are typically regarded as more difficult because they operate on

scanned images of documents. This thesis contributes to offline approaches of KWS

where the input is given by scanned document pages.

The keyword spotting algorithms respond to the question of whether a keyword exists in

the documents or not. Once the instance(s) of keyword are spotted, they are reported with

their locations in the text. The query could be a string of characters or an image segment

representing the keyword. The choice of the query type is not always arbitrary, because

having a string-based word representation requires knowledge about the language and

its alphabets. When the information about the language is not sufficient, in an ancient

historical manuscript, there is no other choice than using a template image of the keyword

as a query. This approach is called template-based keyword spotting.
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Keyword Spotting Applications

Keyword spotting has several applications; here we discuss some of them briefly. In

T. M. Rath, Manmatha, and Lavrenko (2004) historical documents are in the center of

interest proposing a search engine for a historical documents. Keyword spotting is the

primary tool used in this proposed system. Searching among historical documents is

essential for libraries that digitized their books. Indexing the digitized manuscript is also

another subject of interest which needs keyword spotting.

Another application of handwriting recognition is processing handwritten forms. The

forms can be classified with specific keywords and transferred to the desired departments.

A more sophisticated application is processing of incoming letters or parcels. In a

company or organization where a lot of mail is received daily, keyword spotting can

help to sort and dispatch correspondences to the related department. For example, a

mail which contains the keyword "cancellation" or "cancel" is probably for terminating

a contract or subscription. Thus an automated dispatch system transmits them to the

corresponding department.

Keyword Spotting Methods

Early approaches of KWS employed the segmented image of keywords as query. The

query image is then aligned with the word images pixel-by-pixel (Manmatha et al., 1996).

The Scott and Longuet-Higgins algorithm (Scott & Longuet-Higgins, 1991) compares

the template query image using affine transformations with the potential word images

in documents. In the same way Leydier, Lebourgeois, and Emptoz (2007) applies the

transform on zones of interest rather than pixels.

The single pixels are prone to noise particularly in handwritten documents. Later on,

different feature descriptors have been investigated. The sequence of features represent
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characteristics of images such as projection profiles (Manmatha & Rath, 2003; T. Rath &

Manmatha, 2007; B. Zhang, Srihari, & Huang, 2003), histograms of oriented gradients

(HOG) (Rodriguez & Perronnin, 2008; Rusiñol, Aldavert, Toledo, & Lladós, 2015; Tera-

sawa & Tanaka, 2009), contours (Adamek, O’Connor, & Smeaton, 2006; Can & Duygulu,

2011), and features extracted from unlabeled data by deep neural networks (Wicht, Fis-

cher, & Hennebert, 2016), to name just a few. The image descriptors of classic image

processing like Gabor (Cao & Govindaraju, 2007) and local binary patterns (Dey, Nico-

laou, Llados, & Pal, 2016; Kovalchuk, Wolf, & Dershowitz, 2014) and scale invariant

feature transform (Konidaris, Kesidis, & Gatos, 2015), are applied in KWS problems as

well. Another well-known descriptor proposed by Marti and Bunke (2002) includes nine

geometric features.

For coping with the variable width of the handwriting, a widely adopted approach is to

use a sliding window for extracting a sequence of feature vectors from word images and

match two sequences by means of dynamic time warping (DTW) (T. Rath & Manmatha,

2007). To avoid an explicit segmentation of the scanned document page into word images,

segmentation-free methods have been proposed as well (Rusiñol et al., 2015).

Two general approaches to keyword spotting can be distinguished, viz. template-based

and learning-based methods. While template-based methods match one or several

instances of a keyword image directly with the scanned manuscript, learning-based

methods aim to learn word or sub-word models from labeled training samples. Examples

include learning with hidden Markov models (HMM) (Fischer, Keller, Frinken, & Bunke,

2012; Perronnin & Rodríguez-Serrano, 2009; Rothacker & Fink, 2015), support vector

machines (SVM) (Almazan, Gordo, Fornes, & Valveny, 2014), recurrent neural networks

(RNN) (Frinken et al., 2012), and convolutional neural networks (CNN) (Sudholt &

Fink, 2016). In general, learning-based methods are able to achieve a significantly better

performance than template-based methods. However, they are less flexible because they
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require a considerable amount of labeled training data. The template-based paradigms,

on the other hand, requires no knowledge of underlying languages of documents.

Two general limitations of feature vector descriptors relate to their representational power.

Firstly, they have to capture the structure of handwriting with a fixed number of real-

valued features regardless of the complexity of the given instance. Secondly, they cannot

represent binary relations between parts of the handwriting in a straight-forward way.

Both limitations can be solved by means of graph-based representations which model

parts of an object with nodes and relations between the parts with edges (Conte et al.,

2004). In recent work, several graph-based methods have been proposed in the context

of template-based keyword spotting, using keypoints as nodes (Howe, 2013; Stauffer,

Fischer, & Riesen, 2016a; P. Wang et al., 2014a, 2014b) or basic strokes as nodes (Bui,

Visani, & Mullot, 2015; Riba, Llados, & Fornes, 2015), and connecting them with edges

if there is a connection in the image.

The main drawback of graphs, however, is that their high representational power comes

at the cost of high computation complexity. Most of the aforementioned methods for

graph-based keyword spotting use the well-known bipartite approximation (BP) (Riesen

& Bunke, 2009a) of the graph edit distance (GED) (Bunke & Allermann, 1983). Al-

though BP reduces the NP-complete problem of GED to a polynomial-time assignment

problem, it still has a cubic time complexity with respect to the graph size, which imposes

significant computational constraints for keyword spotting.

1.4 Motivations

Pattern recognition is an inherent ability of human beings. This ability has helped us to

survive in daily life. However, some pattern recognition tasks are quite tedious for us

and, accordingly, there is an increasing interest to delegate such tasks to machines.
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In order to empower machines to solve the pattern recognition problems, we must

implement the problem in mathematical and algorithmic forms. The formulation of

patterns typically falls under structural or statistical representation. Regarding the benefits

and drawbacks of each method, the selection must be carefully made.

The area of interest in our research is the recognition of handwritten documents. This

thesis has been inspired with our earlier investigation in the handwritten document

recognition:

• Holistic keyword spotting approach (Haji, Ameri, Bui, Suen, & Ponson, 2014).

• Segmented-based character recognition (Ameri, Haji, Fischer, Ponson, & Bui,

2014).

Based on our investigation the character-based approach for handwritten document

analysis has two pitfalls:

(1) Errors in the segmentation of cursive handwriting.

(2) Difficulty in the identification of characters outside the word context.

Therefore, we focus on holistic keyword spotting approaches.

The keyword spotting in historical manuscripts aids libraries to provided the annotated

versions of their collections. Users can retrieve documents which are related to a search

query within the collections. The string-based query requires a prior knowledge of the

language of the document which is not always applicable in ancient manuscripts. The

template-based query is independent of underlying language. Therefore, the template-

based approach better suits to the situation.

In the statistical approaches, we employ fixed-size feature vector to represent the charac-

ters and sequence of fixed-size vectors to represent words. We have speculated whether
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the statistical representation cannot preserve the essential information in order to recog-

nize documents with more accuracy. The structural representation has the flexibility to

represent objects of different shapes and sizes. In particular, they are pretty useful when

the dependency of substructures can be used toward discriminating patterns. However,

these representations suffer from a lack of efficient computational algorithms. Statistical

approaches have a large number of learning-based algorithms at their disposal for classi-

fication tasks; nevertheless, they risk losing discriminative information of the original

objects related to dependencies among substructures.

1.5 Objectives

In this thesis, we investigate the potential of a recently introduced more efficient approx-

imation of GED, namely the Hausdorff edit distance (HED) (Fischer, Suen, Frinken,

Riesen, & Bunke, 2015). It has a quadratic time complexity with respect to the graph

size similar to DTW, which has a quadratic time complexity with respect to the sequence

length. Unlike DTW, HED is not constrained to sequence matching. Instead it is able

to match arbitrary handwriting graphs without constraints as regards the graph structure

and the label alphabets for nodes and edges.

Our objective is to develop the keyword spotting system which is:

Holistic Keywords are spotted as a whole.

Offline Spotting keywords on scanned documents.

Template-based The query can be arbitrary image segments in the document.

Structural Using the graph representation of handwriting.

Fast Investigating the quadratic time algorithm rather than the cubic time approximation

of GED.
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1.6 Contributions

The contributions of this thesis have been presented and published in:

GBR Conference Ameri, Stauffer, Riesen, Bui, and Fischer (2017).

Pattern Recognition Letter Journal Ameri, Stauffer, Riesen, Bui, and Fischer (2018).

The main contribution of this thesis is a keyword spotting paradigm. The proposed

system considers graphs from the beginning to the end for representation and distance

computation. The second contribution proposes the hybrid keyword spotting system

which combines structural and statistical representation in a hybrid HED-DTW-based

keyword spotting system.

In this thesis, we put forward the idea of using the efficient quadratic-time HED algorithm

for the purpose of calculating the dissimilarity of handwriting graphs.

The proposed systems have the following properties:

Learning Free It has few parameters that are optimized.

Transferable Parameters Although we optimize the system on a particular batch of

documents, transferring these default parameters can lead to comparable perfor-

mance.

The combined system additionally benefits from the statistical and structural approach in

one system.

The contributed approaches have been evaluated on several benchmark datasets of histor-

ical manuscripts. The results demonstrate:

• Superior performance improvement with respect to the accuracy of results.

• A significant speedup compared to the BP-based KWS.
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when compared with other template-based keyword spotting techniques regarding speed

and accuracy.

1.7 Outline

The remainder of this thesis organized as follows. In chapter 2 different approaches

to keyword spotting in handwritten documents are reviewed and discussed. Afterward,

graph-based representation and graph matching algorithms are presented in chapter 3.

Chapter 4 is dedicated to the graph-based keyword spotting using the PB algorithm. The

structural representation of handwriting with graphs and the architecture of the system

are described.

The contributions, proposed approaches to keyword spotting, are then presented and

empirically evaluated in chapter 5. Besides the HED-based keyword spotting system,

the idea of the multiple classifier systems is put forward. It combines both statistical

and structural techniques for keyword spotting, profiting from their complementary

perspectives on the handwriting. Through comprehensive experiments, we demonstrate

a promising performance of the proposed method on various historical handwriting

benchmark datasets, with respect to both accuracy and computational efficiency. Finally,

chapter 6 concludes the thesis and highlights a potential path for future lines of research.
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Chapter 2

Keyword Spotting in Handwritten

Documents

Keyword spotting systems can be broadly categorized into template-based and learning-

based approaches. The former paradigm involves either structural or statistical representa-

tion to match template images of the keyword with document images. The template-based

methods, when a statistical representation is used, are often based on the dynamic time

warping (DTW) algorithm. In this case, DTW is employed for alignment as well as for

computation of the pattern’s dissimilarities.

The latter paradigm is typically based on statistical machine learning algorithms; hence,

they operate on vectorial representations. The learning-based approaches utilize a variety

of statistical learning algorithms such as hidden Markov model (HMM) (Fischer et al.,

2012; Perronnin & Rodríguez-Serrano, 2009; Rothacker & Fink, 2015), support vector

machines (SVM) (Almazan et al., 2014), recurrent neural networks (RNN) (Frinken et

al., 2012), and convolutional neural networks (CNN) (Sudholt & Fink, 2016).

HMMs are widely used for recognition of sequential patterns, such as series of characters

or strokes in a handwritten document. A typical segmentation-based workflow for

keyword spotting is illustrated in Figure 2.1.
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FIGURE 2.1: Keyword spotting workflow for document indexing.

In this section, we describe both template-based KWS with DTW and learning-based

KWS with HMM in more detail, in order to present examples of well-established spotting

methods based on statistical feature vector representations. The HMM-based system

has been implemented by the author of the present thesis in the context of an industrial

application.

2.1 DTW in keyword spotting

Keyword spotting was first introduced in Myers et al. (1980) in the speech recognition

community. It was introduced to the field of document analysis by Agazzi (1994).

Later on, Manmatha et al. (1996) employed DTW for indexing historical documents

by a template-based keyword spotting approach. In this section, the method proposed

by T. Rath and Manmatha (2007) is explained in more detail.

Spotting keywords in digitized documents by means of the template-based approach starts

with a preprocessing step that includes segmenting and correcting skew and slant of the

words. Then a feature extraction step converts the images into feature vectors sequences.

The distance between these feature vectors sequences is the measure of similarity of
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the compared words. The distance is computed by means of the DTW algorithm which

aligns two vector sequences and returns the minimum cost of such an alignment. The

DTW algorithm used in in a variety of recent KWS approaches like Adamek et al. (2006);

Frinken et al. (2012); Wicht et al. (2016).

2.1.1 Feature Extraction

To calculate the dissimilarities, the DTW-based keyword spotting system performs two

crucial stages: feature extraction and alignment. The feature extraction accounts for

converting the images to a particular vectorial representation. The purpose of feature

extraction here is to vectorize the two-dimensional image. The vector elements contain

higher-level information than the pixel values and temporal information in the reading

direction.

A simple yet efficient feature extraction method has been proposed by Marti and Bunke

(2002). The feature vector is a collection of nine geometric features. The word image

is processed from left to right direction with a sliding window. The first three features

measure the global aspect of a window: the weight of the window (fraction of foreground

pixels), the center of gravity, and second-order moment. Feature four to nine process the

writing style. Upper bound, lower bound, and their derivatives represent the boundary

information. The number of foreground-to-background transitions and the fraction of

foreground pixels within the boundary complete the list.

An arbitrary image I, extracted from a handwritten document, has a height of h and width

of w. The pixel value at column c and row r of the image is represented by I(r,c). It

is either 1 (foreground, black) or 0 (background, white) after binarization. The above

approach extracts a sequence of w feature vectors. Each vector corresponds to a sliding

window of size one that moves from left to right on the image.
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The feature vector F is the combination of the nine features f1, ..., f9:

F = ( f1, ..., f9) (2.1)

The feature vectors further normalized to F̂ with z-score where Fµ and Fσ are mean

and variance , respectively, computed over the whole feature vector sequence of the

handwriting image.

F̂ =
F−Fµ

Fσ

(2.2)

2.1.2 Distance Computation by DTW

To compare the distance of two sequences of feature vectors the straightforward approach

is resampling the sequences of vectors to have the same number of samples. Therefore,

the distance can be computed by the Euclidean distance of corresponding elements.

This matching does not consider the variation in handwritten text and assumes the

corresponding points are located at precisely the same positions. DTW aligns two time

series in order to find the corresponding points on the time axis. Such points can be

located at different times. This allows the nonlinear sequence alignment by compressing

and expanding the time axis.

For vector sequences X = (x1, ...,xM) and Y = (y1, ...,yN) the DTW distance, dist(X ,Y ),

is computed with the help of a dynamic programming cost matrix D ∈ RM×N . D(i, j)

indicate the alignment cost of two sub-sequences X1:i and Y1: j. Intuitively D(M,N) is the

cost of the complete mapping of X and Y .
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D(i, j) is recursively computed by :

D(i, j) = min


D(i, j−1)

D(i−1, j)

D(i−1, j−1)

+d(xi,y j) (2.3)

d(xi,y j) can be the squared Euclidean distance of the d-dimensional feature vectors xi

and yi as indicated by Eq. 2.4.

d(xi,y j) =
d

∑
p=1

(xi,p− y j,p)
2 (2.4)

The DTW algorithm is described in Algorithm 1.

Algorithm 1 DTW Algorithm

Require: X = (x1, ...,xM) , Y = (y1, ...,yN) and distance function d(., .) i.e. Euclidean
distance.

Ensure: DTW distance
1: D(1,1)⇐ d(x1,y1)
2: for i ∈ (2,M) do
3: D(i,1)⇐ D(i−1,1)+d(xi,y1)
4: end for
5: for j ∈ (2,N) do
6: D(1, j)⇐ D(1, j−1)+d(x1,y j)
7: end for
8: for i ∈ (2,M) do
9: for j ∈ (2,N) do

10: D(i, j)⇐min


D(i, j−1)
D(i−1, j)

D(i−1, j−1)

+d(xi,y j)

11: end for
12: end for
13: return D[M,N]
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2.2 HMM in Handwritten Keyword Spotting

Learning-based approaches to KWS employ statistical learning algorithms. Such algo-

rithms train a distinct number models a priori in the training stage. The models learn the

characteristics of patterns from the training data to categorize words within corresponding

classes. HMMs are one of the most widely used approaches to develop such models.

Training HMM models on character images, Edwards et al. (2004) have proposed a

system to transcribe Latin manuscripts. Another example is the HMM-based approach

for printed and handwritten Arabic letters proposed by Chan, Ziftci, and Forsyth (2006).

The entire word descriptor by Lavrenko, Rath, and Manmatha (2004), which combines

scalar and projection-based features, highlighted a new path to use HMMs for recognizing

entire words. The authors employed continuous HMM and semi-continuous HMM to

model the words (Rodríguez-Serrano & Perronnin, 2009). Later on, Rodríguez-Serrano

and Perronnin (2012), in the context of KWS investigated semi-continuous HMM in

conjunction with DTW matching. The HMM-based method proposed by Fischer et al.

(2012) follows a segmentation-free approach for character-based and lexicon-free KWS

in complete text lines.

The following section describes the HMM-based keyword spotting systems developed

for an industrial project that is inspired by Rodríguez-Serrano and Perronnin (2009).

Keyword spotting is an essential part of the document analysis workflow. The collection

of input data is processed and segmented, and then the word matching step discovers

potential keywords. Finally, based on the spotted keywords information retrieval task

such as document classification can be performed as illustrated in Figure 2.1.

Keyword spotting can be used to retrieve related documents written in cursive scripts.

The process considers the recognition of words segmented at the word or line level rather

than individual characters. The recognition engines used for this purpose are recognizer
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based on sequence alignment. The HMM is a statistical model which performs the task

of aligning and matching the sequences at the same time. We intended to investigate the

HMM-based recognition engine with respect to the document analysis workflow that is

used to classify the documents with user-defined keywords.

Handwritten document recognition can be classified into two categories, i.e. holistic and

character-based, with respect to the patterns that are modeled and recognized. In the

holistic methods, the classes represent words from a given lexicon. In character-based

methods, the sub-word models, i.e., characters, are the recognition units. For recognizing

cursive handwriting, the holistic techniques may have a certain advantage - if enough

training data is available - as they model the entire shape of a word. HMM models has

been proposed to employ either of these methods. In the holistic approach, an HMM

is trained to recognize a specific word. The keyword models evaluate the candidate

words as accepted or rejected.The disadvantage of this method is that the number of

models noticeably rise when taking words into account. Thus a limited number of words

are trained in practice. Consequently, the system cannot recognize out-of-vocabulary

keywords. In character-based methods, individual HMMs represent characters. Thus,

arbitrary keyword models can be composed of the individual character HMMs.

2.2.1 Theory of HMMs

HMMs are directed graphical Markov models Rabiner (1989). The HMMs can predict or

generate a sequence of events based on sequence of hidden states. The sequence of events

are related together and visible hence they also are called observations. The probability

of an event only depends on the previous one. The HMMs then compute the probability

of a sequence of observations.

A sequence of observations, O = (o1, . . . ,oT ), is emitted from states Q = {q1, . . . ,qN}.

In Figure 2.2 the states are High pressure(HP) and Low Pressure(LP) and there are two
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FIGURE 2.2: Hidden Markov model for predicting weather.

possible observations rainy and sunny. The HMM models provide no direct interaction

with the states. For an observation the HMM, from a hidden state, transit to another

connected state. The state transition probability determines which state is more likely

to proceed. Once a state is reached, the probability of an observation adds up to the

sequence likelihood. Being at the LP state, the chance of a rainy or sunny day is called

emitting probability represented by P(rainy|LP) = 0.9 and P(sunny|LP) = 0.1 . Next

day, the atmosphere can be the same with the probability of P(LP|LP) = 0.4 or change

with the probability of P(HP|LP) = 0.6.

HMM theory makes three assumptions for such inference.

• Markov assumption.

• Stationary assumption.

• Output independence assumption.

The Markov assumption states that next state only depends on the current state P(qt+1|qt).

The stationary assumption is about independence of the probability from the time frame

that is P(qt+1 = i|qt = j) = P(qt+k+1 = i|qt+k = j). Transiting from state i to j, the



Chapter 2. Keyword Spotting in Handwritten Documents 27

probability is the same for every event. Finally the output independence assumption is

about independence of the emitted probability for a sequence of observations P(O) =

∏
T
t=1 P(ot).

In discrete HMM models λ = (A,B,Π), A is the transition probability, Π is initial state

probability, and B is the emission probability. B is represented by a N×M matrix where

N is the number of states, and M is the number of observation symbols.

HMM models for continuous observation

In some applications the observations have continuous forms i.e. o ∈ [0,1] . The

Continuous HMM models accept the continuous observation. The emitting probability

for the states, in this case, is modeled by a continues distribution probability. Using a

Gaussian distribution or more general a mixture of Gaussian distributions is a standard

approach to model continuous observations in HMMs. The Gaussian function has two

parameters, the mean µ and the standard deviation σ . If a mixture of Gaussian functions

is used, a weight parameter c for each Gaussian is provided. Figure 2.3 shows the weather

forecast with continuous observation i.e. Temperatures.

Algorithms

Three fundamental problems must be solved for HMMs: the evaluation, decoding and

learning problem. The evaluation problem computes the probability of observation

O = (o1, . . . ,oT ) by a given HMM model λ . The probability P(O|λ ) computes the odds

of generating observation O by HMM model λ . The HMM model yet could generate

O probably with more than one path through hidden states. The Forward-Backward

algorithm calculates the probability considering all the paths within HMM state sequences

that generates O. The second fundamental problem, decoding, aims at finding the most
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FIGURE 2.3: Hidden Markov model with continuous observation for
predicting temperature.

likely sequence of states that produces the observation O. For a possible solution of this

problem the Viterbi algorithm can be used.

The learning problem refers to training an HMM on a set of observation sequences.

The Baum-Welsh algorithm maximizes the probability of observation O by adjusting

the HMM model parameters. The algorithm re-estimates the parameters iteratively to

maximize the likelihood of the observation sequence.
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Chapter 3

Graph Matching Algorithms

Finding an ideal representation of objects has a direct influence on the performance of the

pattern recognition systems. It is essential to capture the main characteristics of an object

for any pattern recognition system to succeed. Graphs are universal data structures that

can model complex objects with arbitrary interconnection of substructures. Therefore,

graphs make an excellent choice to represent patterns as they can express structures of

arbitrary size and complexity.

However, few pattern recognition applications adopted graph-based methods. In fact,

the main disadvantage of graph-based approaches is from computational point of view.

In typical feature vector representation, we can perform pairwise operations on two

feature vectors in linear time. Whereas in graphs, computing some of the most basic

operations such as the sum are not defined in general. In a specific framework, we can

define such operations tailored to the specific application domain. The flexibility of

nodes and edges of arbitrary size and order leads to additional problems of obtaining

correct correspondence. Any arbitrary order can hold the optimal solution since there is

no specific way known a priori for the related structures of graphs. However, the graph

edit distance algorithm explores an exponential number of solutions to find the optimal

one.
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To find a quantitative metric for the degree of similarities in graphs, we compare the

structures to find similarities in the subgraphs. Based on the associated structures,

consequently, we can define a proximity measure. The task, namely graph matching,

aims at comparing the structure of two graphs to find their resemblance. Then we define

a measure of proximity that is applied to the corresponding nodes and edges to quantify

the matching. The operation is a crucial process concerning the exponentially growing

number of subgraphs.

Graph matching is formally categorized as exact graph matching and inexact graph

matching. In the exact graph matching point of view, similar graphs require a strict

mapping between nodes and edges otherwise they are considered dissimilar. In the

inexact graph matching, however, the algorithms tolerate some degree of deterioration

in the structures. In other words, even if two graphs are not entirely similar, they can

be matched. The detected similarities and dissimilarities comprise the outcome. Error-

tolerant graph matching is the preferred approach for our pattern recognition application

as the patterns usually are subjected to noise and show some degree of deterioration.

3.1 Graph Definition

Graphs are fundamental concepts in math, the terminology that is used in other fields

may have slight variations. The following definition, most common in the discrete math

domain, provides a reliable description that we have adopted in the course of this thesis.

Definition 1 A graph g is defined as a four-tuple g = (V,E,δ ,ν) where

• V is the set of finite nodes.

• E ⊆V ×V is set of finite edges.

• δ → LV is node labeling function.



Chapter 3. Graph Matching Algorithms 31

• ν : E→ LE is edge labeling function.

• LV is the finite or infinite set of labels.

• LE is the finite or infinite set of labels.

Based on individual attributes of nodes and edges, we can categorize graphs into labeled

or unlabeled graphs. In the former case, both nodes and edges have an arbitrary numerical,

vectorial, or symbolic label from LV or LE , respectively. In the latter case, we assume

empty label alphabets, i.e., LV = LE = {}.

Edges represent the connection between graph nodes by pair of source and target node

(u,v). The nodes u and v are called adjacent when they are connected by an edge

e = (u,v). Often, the adjacency considered directed from the source to the target node i.e.

u→ v. One can define the undirected edge that implies forward and backward adjacency,

u→ v and v→ u respectively. Additionally, graphs can be divided into undirected and

directed graphs, where pairs of nodes are either connected by undirected or directed

edges.

Graphs substructures, namely subgraphs, span over a subset of graphs nodes and edges.

One can make a subgraph of g by removing some of its nodes and edges. The nodes and

edges labels of subgraph however are kept intact.

Definition 2 For graphs g1 = (V1,E1,δ1,ν1) and g2 = (V2,E2,δ2,ν2) g1 is subgraph of

g2 i.e. g1 ⊆ g2 if

• V1 ⊆V2.

• E1 ⊆ E2.

• δ1(u) = δ2(u) for all u ∈V1.

• ν1(e) = ν2(e) for all e ∈ E1.
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We can obtain g1 as the induced subgraph of g2 by the strict condition on the subgraph

edges.

E1 = E2∩V1×V1

The subgraph therefore has less or equal number of nodes yet the entire relevant edges.

3.2 Graph Matching Definition

The process of graph matching aims at finding the similar substructure of underlying

graphs. The graph matching algorithms could be categorized as exact and inexact

algorithms. The exact matching algorithms only map the substructures if they are

identical. The latter approach, inexact matching, tolerates some degree of dissimilarity

in substructures. Therefore it always finds a bijection between graphs even when they

are not alike. Based on the (dis)similarity of graphs, i.e., variation in substructures, a

distance can be calculated. The distance is the proximity measure of graphs known as

graph comparison problem. The comparison problem is defined as

Definition 3 For graph g1 and g2 graph comparison problem is to find the function d on

graph domain G such that

d : G×G→ R (3.1)

d is the proximity of graphs g1 and g2.

Graph matching and graph comparison inherently are different concepts. Graph matching

maps structure of graphs and finds an edit path from one graph to another. Graph

comparison, on the other hand, calculates the distance between graphs. However, in the

course of this thesis graph matching is used to find the edit map and consequently the
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mapping is used to calculate the distance between graphs. Hence, graph matching and

graph comparison carry the same concept and could be used interchangeably.

The exact graph matching approach asserts identical structure and labels of two graphs or

at least their subgraphs. Such identity determined by graph isomorphism concept. Graph

isomorphism defines a bijection function that maps g1 to g2. Eventually, for every node

and edge in g1, it finds a corresponding node and edge with the same label in g2. In a

less restrictive case, the subgraph isomorphism requires a mapping between g1 and a

subgraph of g2.

Graph matching employing an exact approach requires exact structure and topology in

corresponding graphs to recognize their similarity. Slight difference in topology or labels

is interpreted as different graphs. In pattern recognition problems, objects of the same

category typically do not have the same structure but having similarities. Thus graph

extracted from objects in the same class are not identical. Moreover, often noise are

inevitable in extraction process that can affect graph structure and labels. Consequently,

the drawback of exact graph matching is with the assumption that there are no noise

and deformation in the patterns. Hence the exact graph matching is rarely applied in the

real-world applications.

The inexact graph matching algorithms allow different topology in graphs. They could

be used in more general and broader application due to the relaxed constraint. Thus, the

(dis)similarity score of objects makes broader understanding rather than the binary result,

namely same or different, in the exact graph matching. Being more specific, instead of

determining whether two graphs, i.e., nodes, edges, and their labels, are the same, the

inexact graph matching algorithms assess the similarity with a quantitative measure. The

matching cost defines a higher cost for different nodes or edges, and a lower cost for

similar nodes and edges. Thus, the matching algorithm favors mapping similar structures

to minimize the eventual matching cost. Furthermore, the inexact matching algorithms
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do not reject the graphs with different structures, yet they penalize such a condition with

a higher matching cost. Thus, nor the graph labels neither the structure of edge need to

be identical. Hence, two graphs have a mapping no matter how different they are yet the

matching cost describes the discrepancy.

An example in Figure 3.1 demonstrates inexact graph matching. The graph g1 with black

nodes is matched against graph g2 with white nodes. The algorithm performs a series

of operations, deletion, substitution, and insertion, to show a possible matching path

between two graphs. The graphs represent the word "you" with a slight variation in

writing style. The similar parts are assigned with substitution operations. Deletions and

insertions of dissimilar parts in edit path determine a remarkable discrepancy.

Error-tolerant graph matching is proposed within broad range algorithms including yet

not limited to the graph edit distance that uses tree search method, genetic algorithms

the relaxation labeling technique, kernel methods, spectral approaches, and artificial

neural networks. It is possible to use any mentioned method, in theory; however, we

devote this thesis to the study of graph matching paradigms based on the graph edit

distance algorithm. This paradigm is known to handle arbitrary graphs and not restricted

to the particular cases. In remaining sections, we describe the graph edit distance

(GED) algorithm with a further discussion of practical usage due to the computation time

complexity. The NP-hard algorithm discovers the optimal solution in an exponential

tree. Consequently, we justify the usage of approximation algorithms with quadratic and

cubic time complexities as the alternatives.

3.3 Graph Matching in Structural Pattern Recognition

We addressed two significant classes of pattern recognition techniques: statistical and

structural. The statistical pattern recognition operates on vectorial data. The process of
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FIGURE 3.1: A possible inexact match between g1 to g2.
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statistical pattern recognition requires extracting feature vectors. A local window often

moves over a word image to extract features. The features of a word image are created in

a sequence of independent vectors. More specifically, a vector holds the characteristics

of a local image patch. The vectors do not provide any information about relations

between substructures such as correlation with other patches. A complex structure holds

many links between substructures. The feature vectors disregard the complex structure

of patterns since they cannot preserve the complex structure. As a consequence, the

feature vectors are not suited to represent structural information since a complex shape is

presented by binary relations between subcomponents.

We need to preserve global characteristics of patterns for a complex shape. The feature

vector captures independent information of local windows. The graphs can represent the

patterns of variable size as well as the binary relation between substructures. Graphs

could represent a various amount of structural patterns, i.e., strings, trees, or graphs.

Graphs have become a matter of interest in pattern recognition community to overcome

the feature vectors drawbacks.

The pattern recognition techniques often rely on similarities or dissimilarities between

patterns. However, the similarity concept on arbitrary graphs has no specific correspond-

ing unit of measurement. The graph matching algorithms can compare graphs and show

a set of editing operations between two graphs. The editing operations have potential and

flexibility to quantify the difference between graph-based patterns (Conte et al., 2004).

Graph matching based pattern recognition has received considerable attention in the field

of pattern recognition recently (Foggia, Percannella, & Vento, 2014).

Exact graph matching requires strict similarities between graphs hence it is not a suit-

able choice to compare handwriting graphs. Graph matching algorithm must be flex-

ible enough since handwritings have considerable variations. Inexact graph matching

paradigm, however, tolerates differences in graphs. The graph edit distance (GED)
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algorithm, as an inexact graph matching algorithm, performs the matching by considering

deletion and insertion of different subgraphs in addition to substitutions. We consider

GED based matching for the keyword spotting framework as it tolerates inequality in

graphs. Thus rather than the binary comparison of exact graph matching, we can quantify

the matching by assigning a specific cost to the operations.

The graph matching based on the GED paradigm (Bunke & Allermann, 1983; Sanfeliu

& Fu, 1983), provides a flexible quantitative measure to compare graphs. However,

the primary drawback is associated with the time complexity of GED as it belongs to

quadratic assignment problems (QAP) class of NP-complete algorithms. Thus GED is not

applicable in most real word problems other than small sized graphs. Being NP-complete

means polynomial solutions do not exist unless P=NP. The classic solution yet performs

an exhaustive search in the exponential space of solutions to calculate optimal GED.

The approach to use graph matching algorithms for pattern recognition problems es-

tablished by Riesen and Bunke (2009b); Riesen, Neuhaus, and Bunke (2007) is known

as bipartite graph edit distance (BP). The BP algorithm reduces the exponential graph

matching to cubic time by considering the local structure of graphs rather than global.

The BP algorithm transforms the graph matching to the linear sum assignment problem

(LSAP) with cubic time complexity. Hence, the BP graph matching method views the

nodes of graphs as elements of sets. Since LSAP assigns equal size sets, BP adjusts the

size of sets by adding null operations ε . PB obtains an assignment solution that indicates

a node map between graphs. Then, BP takes the induced edge map into account to

compute the approximated graph edit distance. The LSAP has a fair number of practical

cubic time algorithms (Burkard, Dell’Amico, & Martello, 2009).

The Hausdorff metric is adapted to graph context in Fischer, Plamondon, Savaria, Riesen,

and Bunke (2014) considering the graph nodes as individual components. The Hausdorff

edit distance (HED) employs the matching in a quadratic time rather than the cubic time
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of BP. The algorithm treats the graph nodes as a set of elements; then it finds a mapping

from each set to another one concerning Hausdorff metric. Finally, the cost of node

mapping in addition to the local edge structures constitute the HED.

3.4 Graph Matching Applications in Pattern Recogni-

tion

Graph-based representation of patterns has been an intrinsic approach to describe the

patterns (Conte et al., 2004). Graphs are more suitable than vectorial representation

for the applications where structures are essential to identify the patterns. The recent

development of graph matching algorithms motivates researchers to apply graphs in to

broader domains of pattern recognition (Foggia et al., 2014).

Graphs have been used in the field of bioinformatics (Mahé, Ueda, Akutsu, Perret, &

Vert, 2005) to analysis the molecular structures. In Borgwardt et al. (2005) graphs have

been used to predict the protein function. Chemical properties of molecules are classified

in Ralaivola, Swamidass, Saigo, and Baldi (2005) using graph representations. In web

content mining approaches graph matching is used in Schenker, Bunke, Last, and Kandel

(2005) and Schenker, Last, Bunke, and Kandel (2004).

In handwritten document domain, graphs based methods for recognizing characters are

investigated in Suganthan and Yan (1998). The handwritings are represented by strokes

as graph nodes and vectorial attributes as node relations. In Rocha and Pavlidis (1994),

the authors consider graph-based prototypes of character. The candidate shapes then

mapped to the prototypes with a defined set of transformations.

The BP algorithm encouraged development of graph-based keyword spotting systems by

providing a faster algorithm. Considering graphemes as graph nodes, Riba et al. (2015)
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proposed a keyword spotting method that constructs handwriting graphs by connecting

the convex groups with edges. The approach first extracts the strokes of handwriting

from convex groups of the skeleton where a complete text line is taken to account for

grapheme graph. The strokes correspond to the graph nodes and connect to the adjacent

ones with edges. The stroke’s codebooks are obtained by blurred shape model (BSH)

clustering algorithm (Escalera et al., 2009). Then it is used to generate the node labels.

Each stroke, with the k-mean algorithm, is assigned to the corresponding codebook as

a node label. The edges also are labeled with three attributes: the number of points

connecting the nodes, angle, and length. The coarse-to-fine approach first identifies the

potential subgraphs then matches them to the query.

Using similar paradigm, Bui et al. (2015) had developed an interactive approach to

automatically extract the writing pieces. The user then can compose a graph-based

keyword query using invariants. The invariants are the different shapes that a stroke can

have. Based on the similarities, the invariants represent the strokes. The invariants then

are labeled to the graph nodes represented by strokes. The edge connectivity of nodes is

defined for the strokes on basis of being in the same connected components.

The keyword spotting system in P. Wang et al. (2014b) used the skeleton of connected

components attributed to the shape context representing the handwriting. The keypoints

on the skeleton correspond to the nodes of graphs. Edge connectivity is placed where

the keypoints are connected with the strokes. A word may consist of several connected

components that yield a collection of graphs representing a word. First, the keyword

graph(s) are matched with the PB algorithm. The keywords are then retrieved by DTW

alignments and PB matching. In a similar manner P. Wang et al. (2014a) applied a

two-stage coarse-to-fine approach that first filters the region of interest for keywords then

applies the GED based graph matching.

Furthermore, the PB algorithm proposed in Riesen, Brodić, Milivojević, and Maluckov
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(2014) is used for matching skeleton based graphs representing the word images. The

keypoints of word skeleton are used as graph nodes where the edges are drawn from

connectivity on the images. Finally, the skeleton based graphs of word images (Fischer,

Suen, Frinken, Riesen, & Bunke, 2013), are used to extract the similarity feature vector

from prototypes. The embedding process becomes faster with new HED matching.

Using vector space embedding, the statistical hidden Markov models (HMM) recognizer

performs the word classification.

3.5 Graph Edit Distance

Employing graph matching algorithms require several issues to be considered with care.

The exact graph matching paradigm, employing graph isomorphism is too restrictive that

even a small variation in structures causes rejection. Moreover, subgraph isomorphism,

being less restrictive, still requires significant substructures of the graph to have the same

topology and labels to score high similarity value. Thus this paradigm is not applicable

in real word graph matching applications in general.

The error tolerant paradigms, on the other hand, can quantify the dissimilarity using

inexact graph matching. In a string of characters, the problem is addressed by the string

edit distance, also known as Levenshtein distance to compare sequences of strings. The

string edit distance inspires the idea of graph matching with a set of operations. The

Levenshtein algorithm minimizes the matching cost concerning the three fundamental

operations: insertion, deletion, and substitution of characters. The algorithm determines

the distance between two strings taking the minimum number of operations into account.

The dynamic programming algorithm finds the optimal alignment by computing the

alignment distance matrix in quadratic time. The graph edit distance algorithm tackles
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graph matching intuitively similar to the string edit distance by likewise edit operation

insertion, deletion, and substitution.

Graph edit distance, as an error-tolerant graph matching, alters one graph to another

with a minimum cost concerning the defined operations. The minimum cost is then used

for measuring the distance between two graphs. The approach evaluates every possible

mapping between graph g1 and g2, to obtain the proper matching with the minimum cost.

String edit distance computes the optimal alignment of the given sequences in quadratic

time. The graph edit distance approach employs the tree search approach. The algorithm

is NP-hard as it spans over the induced search tree with exponential size concerning the

number of graph nodes. The A∗ based algorithm employs a heuristic functions besides

it assures the solution with the optimized cost (Hart, Nilsson, & Raphael, 1968). The

algorithm remains NP-hard nonetheless the heuristic function employed. Accordingly,

we demonstrate why it is not practical to use it despite the optimal solution.

The graph edit distance algorithm operates on arbitrary graphs without any restriction

on the topology of the graph or the attributes of nodes and edges. Accordingly, the

algorithm defines the dissimilarity measure by employing three fundamental operations:

substitution, insertion, deletion. The edit operations reflect the distortion of mapping

individual nodes or edges. The algorithm then calculates the optimal graph edit distance

with the minimum cost concerning the defined operations.

For graphs g1 = (V1,E1,δ1,ν1) and g2 = (V2,E2,δ2,ν2) the edit distance transforms g1

to g2 by a sequence of edit operations. It substitutes nodes and edges of g1 with nodes

and edges of g2 by relabeling the attributes if they vary. For the nodes and edges with the

more significant deterioration, the algorithm deletes the corresponding subgraphs from

g1 and inserts the subgraphs of g2. The sequence of operations that transform g1 to g2 is

called the edit path E from g1 to g2.
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The edit path λ = {e1, ...,ek} consists a set of edit operations ei. The substitution

e = (u→ v) transforms a node from the first graph u ∈V1 to a node in v ∈V2 in second

graph. The deletion (u→ ε) removes the node (u ∈V1) where by convention mapping u

to the null symbol ε represents deletions. The insertion of the node (ε → v) includes the

node (v ∈V2) to the edit path .

Deleting every node and edges of g1 and inserting the entire nodes and edges of g2 is a

trivial case of graph edit distance. The trivial case is valid however it does not specify any

definitive information about the proximity of graphs. The substitutions in the edit path

constitute the proximity as nodes and edges have direct counterparts, i.e., the substituted

nodes are comparable with minor divergence. The insertion and deletion, on the other

hand, represent a noticeable difference since substitution cost would be higher than

individually deleting and inserting nodes and edges.

An edit path λ represents a sequence of edit operations that transforms g1 to g2, however,

several other edit paths can perform such transformation. The graph edit distance algo-

rithm examines the entire set of edit paths ϒ(g1,g2) to find the optimal graph matching.

Nonetheless, the optimal graph edit distance relies on the cost function. The insertion and

deletion operations as mentioned earlier represent the dissimilarity, however, they do not

provide the proximity information. On the other hand, substitution measures proximity

that shows quantitative correlation by analyzing the labels of substituted subgraphs. The

cost function according to circumstances must assign a higher cost to the insertion and

deletion since they state a substantial divergence. Thus the optimal edit path λ j ∈ ϒ has

the minimum cost by balancing the number of substitutions with insertions and deletions.

The cost of individual edit operations C(ei),1≤ i≤ k constitutes to the cost of edit path

λ j = {e1, ...,ek}. The edit path cost C(λ j) given in Eq. 3.2 is therefore sum of individual

edit paths C(ei),1≤ i≤ k.
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C(λ j) = ∑
ei∈λ

C(ei) (3.2)

The graph edit distance then is formalized by minimizing the edit path cost. The graph

edit distance corresponds to the edit path with the minimum cost in ϒ formally defined in

Definition 4.

Definition 4 (Graph Edit Distance GED) The graph edit distance transforms graph g1 to

g2 by sequence of edit operations, i.e., edit path λ = {e1, ...,ek}. The edit path λ has the

minimum distance among, ϒ(g1,g2), set of all edit paths between g1 and g2. Concerning

the cost function C, the GED calculates the minimum distance as directed in Eq. 3.3.

dGED(g1,g2,C) = min
λ∈ϒ(g1,g2)

C(λ ) (3.3)

3.5.1 Cost Functions

The graph edit distance Eq. 3.3 is parameterized by the cost function C. This fact supports

using the graph matching framework in versatile applications. One can adjust the cost

function for a particular domain with the prior knowledge such as alphabets of nodes and

edges labels. However, insufficient knowledge could be a drawback to have a suitable

proximity measure. For example when the graphs are used to distinguish the handwriting,

yet a more comprehensive study of similar and dissimilar patterns are required rather

than the information about graph labels. Thus having a proper cost function requires a

crucial task for achieving the desired results.

Having a valid edit path E, we can make an arbitrary edit path by inserting and deleting
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an element to obtain another valid yet trivial edit path, i.e., (u→ ε), (ε → u) . With

nonspecific arbitrary cost function C, we can repeat the situation to propagate an edit

path of infinite length. In addition to the infinite length, the number of such edit paths

can rise dramatically. Accordingly, we declare few weak conditions on cost function to

limit the graph edit distance search to a finite set of edit paths.

The graph edit distance does not compute a metric measure generally. Not being a metric

measure, a cost function can result in non-symmetric graph edit distance d(g1,g2) 6=

d(g2,g1). However, in the context of this thesis the graphs are compared independent

of their order hence d(g1,g2) = d(g2,g1) must hold true. If the cost function C satisfies

the metric properties the graph edit distance can successfully examine a measurable

quantity of edit paths. The mathematical definition of a distance, more precisely metric

principles, must be fulfilled by the cost function to yield a proper result by graph edit

distance algorithm. A valid metric distance holds four principles of non negatively,

triangle inequality, symmetry, and identity of indiscernible. Therefore the properties

in Eq. 3.4-3.8 assert particular conditions on the edit operations ei costs to prevent the

addressed problems.

C(ei)≥ 0 Non negativity for substitution (3.4)

C(ei)> 0 Positive cost for insertion and deletion (3.5)

C(X → Y )≤C(X → Z)+C(Z→ Y ) Triangle inequality (3.6)

C(X → Y ) =C(Y → X) Symmetric property (3.7)

C(X → X) = 0 Identical substitution cost (3.8)

The edit operations ei are parameters of cost function C where X→Y emphasize mapping

X to Y . The substitution operations for nodes or edges of identical labels can have zero
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cost provided by non negativity principle. The insertion and deletion operations, however,

do not represent similarity hence they should have a positive value. A series of insertions

and deletions with the cost of zero do not change the optimal GED value, yet it could

create an infinite number of edit paths. Therefore, insertion and deletion operations

must have nonzero property to prevent GED from the series of augmented insertion and

deletion with zero cost.

The triangle inequality as a property of metric distance ensures the edit paths are not

excessively long. Providing that the cost of operations (X → Y ) becomes higher than

(X → Z) and (Z → Y ), GED takes the low cost yet longer path into account. When

triangle inequality conditions hold true on cost function the right side of inequality

always has a higher value than the left side. Thus the edit paths maintain the smaller

number of operations and lower matching cost eventually. Intuitively for assigning nodes,

a direct assignment is preferred over a path with intermediate nodes.

The symmetry property preserves the equality of an edit operation with its inverse.

Comparing two substructures is independent of the order, for example, substituting

(u→ v) has the same cost as of replacing (v→ u). As a consequence of violating the

symmetry requirement, the graph edit distance of g1 and g2 can yield different values, i.e.

d(g1,g2) 6= d(g2,g1).

Finally, the cost function must satisfy identity of indiscernible. Considering the identical

attributes of objects the cost as a result is zero. The principle in graph matching context

states substituting a node or edge with itself has a zero cost. We would refer the reader

to Bunke and Allermann (1983) for more information on the metric.

The functions in 3.9 and 3.10 define the Euclidean cost function for vectorial labels.

These functions fulfill the valid metric distance properties Eq. 3.4-3.8. The Euclidean

cost function assists the graph edit distance algorithm to succeed and acquire a proper

result.
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Node costs


C(u→ v) = α · ||δ1(u)−δ2(v)|| Substitution

C(u→ ε) = α · τn Deletion

C(ε → v) = α · τn Insertion

(3.9)

Edge costs


C(p→ q) = (1−α).||ν1(p)−ν2(q)|| Substitution

C(p→ ε) = (1−α) · τe Deletion

C(ε → q) = (1−α) · τe Insertion

(3.10)

The insertion/deletion operations have constant costs of τn > 0,τe > 0 as the costs of

nodes and edges respectively. As a reminder to abide the symmetry requirement an

identical value for insertion and deletion has been chosen. The shared parameter between

nodes and edges cost function α is weighting parameter. Being 0≤ α ≤ 1, the parameter

defines the priority of nodes over edges in the computation of graph edit distance. For

instance, setting α = 0.5 balances the equal contributions between nodes and edge.

A substitution has two corresponding nodes or edges. The Euclidean cost function for

substitution operation measures the distance of corresponding labels. The far away labels

highlight a considerable difference between two ends. Therefore they are associated with

a higher cost. A node or edge substitution can attain at most 2×τn and 2×τe respectively

otherwise they will be replaced by a deletion and insertion of corresponding nodes or

edges.
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3.5.2 A∗ Algorithm for Graph Edit Distance

The graph edit distance is fundamentally an A∗ best-first search algorithm (Hart et al.,

1968). The A∗ search, Algorithm 2, conducts a tree search by creating an ordered tree.

The tree comprises all feasible edit paths that map the nodes and edges of g1 to g2. The

leaves serve as the complete edit path starting from the root of the tree. The optimal graph

edit distance is, however, a complete edit path with the minimum cost. Furthermore, a

path from root to an inner node of the tree denotes a partial edit path. The A∗ search tree

does not create the entire tree at the beginning; it slightly expands the partial solutions

concurrently with the search. An inner node p in the ordered tree represents a partial

solution from tree root φ to p. The cost component g(p) represents the determined

cost of path from root φ to p based on the included node maps. However, the heuristic

function h(p) predicts the cost of upcoming edit operation from p to a leaf node to yield

a complete edit path. The algorithm obtains a cost information f (p) = g(p)+h(p) for

every partial solution. Afterwards, based on the cost information f (p), the algorithm

expands the path with the minimum cost. Eventually, the algorithm discovers a complete

edit path which is anticipated to be the optimal edit map as well. The algorithm stops at

the first complete edit path it approaches since the algorithm performs the best-first search.

Figure 3.2 shows the entire search tree for graphs with V1 = {v1,v2,v3} and V2 = {u1,u2}

as set of nodes. ε represents deletion (u→ ε) or insertion (ε → v) respectively.

The search through the tree paths examines every possible nodes map E ∈ γ(g1,g2)

between two graphs g1 and g2. A node map E = {e1, ...,e|E|} consists a set of edit

operations ei which are insertion, deletion or substitution of nodes. Each node u ∈ g1 and

v∈ g2 must appear at most once in a valid node map, in other words, multiple assignments

of a node are not permitted. Accordingly, a node map is partial unless every node of g1

and g2 appears in the node map. The GED algorithm 2 finds the optimal complete node

map E = {e1, ...,e|M|} by exploring all the possible node maps in E ∈ γ(g1,g2).
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Algorithm 2 Graph Edit Distance Algorithm

Require: Graphs g1 = (V1,E1,δ1,ν1) and g2 = (V2,E2,δ2,ν2),
1: Where V1 = {u1, ...,u|V1|} and V2 = {v1, ...,v|V2|}.

Ensure: A minimum cost edit path, pmin, from g1 to g2.
2: OPEN← φ

3: for all v ∈V2 do
4: OPEN←{(u1→ v)}
5: end for
6: OPEN←{(u1→ ε)}
7: loop
8: pmin = argminp∈OPEN{g(p)+h(p)}
9: OPEN← OPEN \ pmin

10: if pmin is a complete edit path then
11: Return pmin . Solution
12: else
13: Let pmin = {(u1→ vi1), ...,(uk→ vik)}
14: if k < |V1| then
15: for all v ∈V2 \{vi1, ...,vik} do
16: OPEN← OPEN∪{pmin∪{(uk+1→ v)}}
17: end for
18: OPEN← OPEN∪{pmin∪{(uk+1→ ε)}}
19: else
20: OPEN← OPEN∪

{
pmin∪{(ε → vik+1), . . . ,(ε → vi|V2|)}

}
21: end if
22: end if
23: end loop
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Algorithm 3 computes the edit path cost g(p). The edit path consists of the nodes and

induced edges operations. A complete node map is represented with M. The edit path

cost function employs node cost 3.9 and edge cost 3.10 on the induced edit path to

calculate the costs.

Algorithm 3 EPC(M,C)
Require: complete node map M, cost function C
Ensure: edit path cost c

1: c← 0
2: for all node deletion (u→ ε) in M do
3: c← c+C(u→ ε)
4: for all implied edge deletion (p→ ε) do
5: c← c+C(p→ ε)/2
6: end for
7: end for
8: for all node insertion (ε → v) in M do
9: c← c+C(ε → v)

10: for all implied edge insertion (ε → q) do
11: c← c+C(ε → q)/2
12: end for
13: end for
14: for all node substitution (u→ v) in M do
15: c← c+C(u→ v)
16: for all implied edge substitution (p→ q) do
17: c← c+C(p→ q)/2
18: end for
19: for all implied edge insertion (ε → q) do
20: c← c+C(ε → q)/2
21: end for
22: for all implied edge deletion (p→ ε) do
23: c← c+C(p→ ε)/2
24: end for
25: end for
26: return c

The root of the tree φ , i.e., the beginning point, contains no node map. On each subsequent

level of the tree, GED opens the path including a node of the first graph v ∈V1. More

precisely, the operations comprise the deletion v→ ε and substitution v→ ui of v with

every unassigned node ui ∈V2. For instance, the search tree dedicates the first level of
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the tree to the v1 ∈V1. The edit operations v1→ ε , and v1→ ui constitute the deletion

and substitution of v1 respectively where ui ∈V2. Therefore GED opens |V2|+1 unique

paths in the first level of tree search.

For every subsequent tree level j = 2, ..., |V1|, a similar situation will take place. However,

the cost function f (p) = g(p)+h(p) determines the forthcoming node p. Nonetheless,

the search expands a partial path on the tree independent of the tree level after that. In

addition to the deletion of node (v j→ ε), the expansion of the tree substitutes (v j→ ui)

for ui ∈V2 concerning ui has not appeared in the induced node map.

Eventually, the level j = |V1| processes the last node v j by either deleting or substituting.

For any partial edit map at this level, the tree can expand just one level to j = |V1|+1.

However, for the nodes from V2 have not appeared, being at j = |V1|+1, no substitution

can take place since all source graph nodes v ∈V1 are already consumed. Consequently,

the remaining nodes ui ∈V2 in line 20 of algorithm 2, are inserted (ε → ui) at once to

make a complete map.

The graph edit distance comprises nodes and edge edit operations. The edge maps are

under the restriction of the underlying node maps. Hence, If a node is deleted (v→ ε) or

inserted (ε → u) in the node maps, the corresponding adjacent edges will be removed or

added respectively. For example, when the node (v→ ε) is removed, the every adjacent

edge q will be removed accordingly (q→ ε).

For induced edge substitution, an edge r ∈ E1 could be matched to another edge q ∈ E2

only when nodes are substituted on both ends. More precisely, edge substitution (r→ q)

is induced when the ending points of r = (v,v′) are matched to ending points of q= (u,u′).

Hence the node map must contain (u→ v) and (u′ → v′). In any other circumstances,

the edges r, q would be deleted (r→ ε), and inserted (ε → q) respectively.
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Having m = |V1| and n = |V2| number of nodes, the maximum number of node substi-

tutions in the node map, as substitution requires a corresponding node, is min(m,n).

The remaining nodes map then contain either m+n−2∗min(m,n) deletions or in-

sertions. Therefore, the edit path p with minimum number of operations has size of

|p|= m+n−min(m,n) node operations in total. On the other hand, the maximum num-

ber of operations arises when there is no substitution involved in edit path which happens

for notably different graphs. The GED represents this situation, through removing every

node from the first graph by m operations and inserting every node from the second graph

by n insertions. The edit path with a maximum number of edit operations hence has a

size of |p|= m+n. Consequently, the tree search algorithm traverses at least m levels of

tree regarding the V1 nodes. The tree expands by a proportional factor to n at each level.

Accordingly, the graph edit distance is applicable in small problems yet by increasing

graphs size it is not feasible to approach in practical applications.

For a partial edit path, the function g(p) determines the cost of the induced path. The A∗

search, however, estimates the cost of remaining operations by a heuristic function. The

heuristic function h(p), on the other hand, approximates the cost of the unmapped nodes.

The heuristic cost, however, must be admissible, the predicted value must be lower or

equal to the actual cost. Reaching the first complete map in OPEN is guaranteed to be

the optimal solution with an appropriate heuristic cost that does not overestimate the real

values. Hence, by merely setting heuristic to zero, h(p) = 0, we fulfill this requirement;

however, a useful heuristic can help to reduce the tree size and computation.

3.6 Hausdorff Edit Distance

The GED obtains an optimal solution, yet it has an exponential time complexity. Due to

the time complexity, it is unlikely to use GED for the graphs of medium to large size. The
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alternative graph matching, with a weaker constraint on the edit path, can be achieved

by approximating the GED. Conventional approaches for the approximation of GED

consider the bipartite graphs as graph matching. Hence the approximation approach

relaxes the global constraint to a local matching of nodes and their local structures.

A bipartite graph has its set of nodes V separated in two disjoint sets of nodes V ′ and

V ′′. No connection exists between nodes of the same set; accordingly, the edges connect

the nodes from disjoint node sets between u ∈V ′ and v ∈V ′′. Definition 5 explains the

bipartite graphs more precisely.

Definition 5 (Bipartite Graph) A bipartite graph g = (V,E,δ ,ν) satisfies the condition

of having nodes in two partition which is V =V ′∪V ′′ and V ′∩V ′′. The edge are subset

of E ∈V ′×V ′′∪V ′′×V ′.

Considering the graph matching as a bipartite graph, we can mention the BP (Riesen,

Fischer, & Bunke, 2015) and Hausdorff Edit Distance (HED) (Fischer et al., 2014, 2015)

with cubic and quadratic time complexity respectively. These algorithms approximate

the graph edit distance employing bipartite graph concept.

The bipartite graph matching for g1 and g2 considers V1 and V2 as two node partitions

V ′ and V ′′. The algorithm, supporting bipartite constraints in Definition 5, associates a

mapping between nodes in V ′ and V ′′. The resulting bipartite graph serves as an edit

path between g1 and g2. The bipartite mapping, compared to GED, relaxes the global

constraint on edit map to local subgraph structures. Therefore, the local adjacency of

edges is taken into account considering individual nodes in the edit path.

Figure 3.3 shows an example of bipartite graph that is separated in two sets V1 = {u1,u2}

and V2 = {v1,v2,v3}. The edges relate the nodes of disjoints sets. The adjacency

denotes a valid edit path if it associates each node with precisely one node. Concerning

insertion or deletion, helper node(s) ε in V1 and V2 are enough to show these operations.
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FIGURE 3.3: A bipartite graph maps V1 and V2.

Hence, in the example the implied edit path contains three node maps: two substitutions

(u1 → v1),(u2 → v3), and one insertion (ε → v2).

In a metric space, a distance exists between every two members. In two independent

subsets of a metric space the concept of distance between two sets can be inferred from

distance of individual members. For instance, we can use the minimin in Eq. 3.11 to find

the distance of nearest members between two sets.

minimin(A,B) = min

{
inf
a∈A

(
inf
b∈B

(
d(a,b)

))
, inf

b∈A

(
inf
a∈A

(
d(a,b)

))}
(3.11)

However, by simply taking the distance of two close points as distance we exclude the

underlying information about other members in the set. Figure 3.4 shows the nearest
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FIGURE 3.4: Nearest distance by means of minimin function between sets
A and B represented with orange and green colors respectively.
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distance of two sets of points. The nearest distances in two examples are equal when

minimin function is employed. However, we can observe a considerable difference in the

given cases. The minimin distance does not delegate a suitable measure between two sets

of points as it does not consider the entire members.

The Hausdorff1 metric, names after Felix Hausdorff2, is a maximin metric that calculates

the distance between two sets. Having sets A and B, the oriented Hausdorff distances are

obtained by:

h(A,B) = sup
a∈A

(
inf
b∈B

(
d(a,b)

))
(3.12)

h(B,A) = sup
b∈A

(
inf
a∈A

(
d(a,b)

))
. (3.13)

The distances h(A,B) and h(B,A), being asymmetric, are not necessarily equal. The more

general Hausdorff distance is defined in Eq. 3.14 by taking the maximum of h(A,B) and

h(B,A) distances. From now on we consider the symmetric H(A,B) unless specifically

mentioned.

H(A,B) = max

{
sup
a∈A

(
inf
b∈B

(
d(a,b)

))
,sup

b∈A

(
inf
a∈A

(
d(a,b)

))}
(3.14)

Figure 3.5 shows examples of Hausdorff distance between sets A and B. Compared to

minimin distance of the same sets in Figure 3.4, the Hausdorff distance can make a better

metric to distinguish the differences.

For finite sets of A and B, we adapt the Hausdorff distance in Definition 6.

1Also called Pompeiu–Hausdorff distance.
2Felix Hausdorff was a German mathematician (November 8, 1868 – January 26, 1942).
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FIGURE 3.5: Hausdorff distance between sets A and B represented with
orange and green colors respectively.
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Definition 6 (Hausdorff Distance) The Hausdorff distance for finite sets A = {a1, ...,an}

and B = {b1, ...,bm} is defined by Eq. 3.15

H(A,B) = max

{
max
a∈A

(
min
b∈B

(
d(a,b)

))
,max

b∈A

(
min
a∈A

(
d(a,b)

))}
(3.15)

HED measures the distance of two graphs by means of the Hausdorff distance. The

algorithm in Fischer et al. (2015) employs a modified Hausdorff function to obtain the

distance. Considering possible outliers the modified metric Eq. 3.16 provides a better

representation by including the entire nearest distance into the equation. The equation

uses the summation instead of the maximum functions. The distance d(a,b) in Eq. 3.16

can be any metric such as Euclidean distance between a and b.

H(A,B) = ∑

{
∑
a∈A

(
min
b∈B

(
d(a,b)

))
, ∑

b∈A

(
min
a∈A

(
d(a,b)

))}
(3.16)

Considering graph nodes and their local edge connectivity as two sets, HED employs the

Hausdorff function on sets to estimate GED. The algorithm obtains a mapping between

graph members as a result. The HED mapping, however, is directed compared to the

GED edit path. Thus the node assignments may not be symmetric Eq. (3.12-3.13). A

node accordingly can receive multiple assignments. Figure 3.6 shows an example of

the bipartite graph with directed node maps. The node map contains {(u1→ v1),(u2→

v3),(v1 → ε),(v2 → u2),(v3 → u2)}. Unlike undirected node map in Figure 3.3, the

HED node map is directed hence it is not unnecessarily symmetric. Also, multiple node

assignments, i.e., assignment to u2 by (v2→ u2),(v3→ u2), is permitted by HED.

Hausdorff Edit Cost (HEC) computes the Hausdorff distance between two arbitrary sets.

Figure 3.7 demonstrates the HEC algorithm for sets A and B. The algorithm 4 calculates
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FIGURE 3.6: A directed bipartite graph represents an HED mapping.

the Hausdorff distance in Eq. 3.16 for sets A and B with respect to the cost functions in

Eq. 3.9-3.10.

The node cost function needs an adjustment with regard to the individual type of edit

operations. Considering the cost function C in Eq. 3.9-3.10, the HED node cost is

obtained by Eq. 3.17-3.19.

C∗
n(u,ε) =C(u → ε)+ ∑

pi∈u.E

C(pi → ε)
2

(3.17)

C∗
n(ε,v) =C(ε → v)+ ∑

qi∈v.E

C(ε → qi)

2
(3.18)

C∗
n(u,v) =

C(u → v)+ Ce(u,v)
2

2
(3.19)
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FIGURE 3.7: HEC algorithm diagram shows computation of modified
Hausdorff distance between sets A and B.
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Algorithm 4 HEC(A,B,C) Hausdorff Edit Cost
Require: A, B , cost function C
Ensure: Hausdorff edit cost c

1: for all a ∈ A do
2: c1(a)←C(a→ ε)
3: end for
4: for all b ∈ B do
5: c2(b)←C(b→ ε)
6: end for
7: for all a ∈ A do
8: for all b ∈ B do
9: c1(a)←min

(C(a→b)
2 ,c1(a)

)
10: c2(b)←min

(C(a→b)
2 ,c2(b)

)
11: end for
12: end for
13: c← ∑a∈A c1(a)+∑b∈B c2(b)
14: return c

We show the set of edges adjacent to u and v with u.E and v.E respectively in Eq. 3.17-

3.19. Three types of node matching cost are described: deletion, insertion, and substitu-

tion. In case of insertion or deletion of nodes, the cost includes cost of node insertion or

deletion and half the cost of adjacent edges. The other half of edges costs depends on the

node on the other side of the edges.

In the case there is a substitution (u,v) half the cost of mapping node and a quarter of

adjacent edge costs Ce is taken into account. Likewise, the other half of node cost is

reserved for the opposite direction.

The edge cost could be defined with a similar argument without constraint of node map

as in Eq. 3.20-3.22.
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C∗e (p→ ε) =C(p→ ε) (3.20)

C∗e (ε → q) =C(ε → q) (3.21)

C∗e (p→ q) =
C(p→ q)

2
(3.22)

The edges adjacent to u and v are represented by sets u.E = {p1, ..., p|u|} and v.E =

{q1, ...,q|v|} respectively. Therefore, every edge in u.E can be mapped to every edge in

v.E. The Hausdorff distance of these sets Ce(u,v), given in Eq. 3.23, can be computed

with algorithm 4. Thus the function HEC(u.E,v.E,C) computes Ce(u,v) which is the

edge cost related to substitution (u→ v). Ce is less than the true cost because it does not

consider the mapping constraint in computation.

Ce(u,v) = ∑
p∈u.E

min
q∈v.E+ε

C∗(p→ q)+ ∑
q∈v.E

min
p∈u.E+ε

C∗(p→ q) (3.23)

The lower bounds are introduced to compensate the underestimation of the costs. The

HED(g1,g2,C) lower bound is derived by assuming each node can be mapped to other

nodes. Eq. 3.24 calculates the lower bound assuming every node in V1 and V2 can be

mapped with zero cost. Hence the contributing factor to the lower bound is the difference

between |V1| and |V2|. The remaining nodes are deleted or inserted with minimum cost.

L(g1,g2) =


(|V1|− |V2|).minu∈V1 C(u→ ε) |V 1|> |V 2|

(|V2|− |V1|).minv∈V2 C(ε → v) o.w.
(3.24)

With the same argument for nodes u ∈ V1 and v ∈ V2, the edge cost Ce lower bound is

achieved by Eq. 3.25.
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L(u,v) =


(|u|− |v|).minp∈PC(p→ ε) |u|> |v|

(|v|− |u|).minq∈QC(ε → q) o.w.
(3.25)

The Hausdorff edit distance computes suboptimal solution for graph edit distance. Since

the node operations are considered individually the edge context consequently are eval-

uated locally. The local context assumes every adjacent edge can be mapped to other

edges regardless of the other ends. Although the assumption might be invalid and real

edge cost might be higher than the computed one. In general HED underestimates the

cost computed by GED, that is HED(g1,g2)≤ GED(g1,g2,C). Figure 3.8 demonstrates

graph matching using local edge context by HED algorithm. The final graph matching is

a directed bipartite graph.

Algorithm 5 calculates the HED(g1,g2,C). The algorithm initializes d1 and d2 by deletion

and insertion edit operations. The cost includes the cost of deletion or inserting nodes and

half the cost of adjacent edges. Then the substitution of nodes takes place in lines 7−14.

Comparing every two pairs of nodes (u,v) ∈ g1.V × g2.V , the algorithm starts with

calculating Ce at line 9 by calling HEC(u.E,v.E,C) function. Next, the maximum of the

lower bound L(u,v) and Ce are taken to account to avoid underestimation of Ce. The

node substitutions, which should be smaller than deletion or insertion, are calculated

and adjusted accordingly at lines 11−12. d1 and d2 constitute the potential HED that

is achieved by summing up the included costs. Finally, line 16 verifies the calculated

cost and would adjust it with the lower bound L(g1,g2) if the cost is underestimated. The

HED algorithm has quadratic time complexity concerning the nested loops that iterate

on g1.V and g2.V . More precisely, having n1 = |g1.V | and n2 = |g2.V | nodes the time

complexity would be O(n1.n2).
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FIGURE 3.8: HED algorithm diagram shows graph matching using Haus-
dorff edit distance between graphs G1 and G2.
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Algorithm 5 HED(g1,g2,C) Hausdorff Edit Distance
Require: g1,g2 and cost function C
Ensure: HED distance d

1: for all u ∈ g1.V do
2: d1(u)←C(u→ ε)+∑p∈u.E

C(p→ε)
2

3: end for
4: for all v ∈ g2.V do
5: d2(v)←C(ε → v)+∑q∈v.E

C(ε→q)
2

6: end for
7: for all u ∈ g1.V do
8: for all v ∈ g2.V do
9: Ce← HEC(u.E,v.E,C)

10: Ce←max(L(u,v),Ce)

11: d1(u)←min
(

C(u→v)+Ce
2

2 ,d1(u)
)

12: d2(v)←min
(

C(u→v)+Ce
2

2 ,d2(v)
)

13: end for
14: end for
15: d← ∑u∈g1.V d1(u)+∑v∈g2.V d2(v)
16: d←max(d,L(g1,g2))
17: return d
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Chapter 4

Graph-based Keyword Spotting

Graph representation is an essential part of our KWS paradigm. The representations

in pattern recognition impact the succeeding steps of the system. In this chapter, we

present our approach for using the graph-based representation in our proposed KWS

system in chapter 5. We discuss possible representations of the word images with graphs.

The graphs have attributes, which are used to calculate the distances. The Graph Edit

Distance class of algorithms takes an entire word as a graph to perform the calculations.

4.1 Handwriting Graphs

The graph-based keyword spotting approach uses the graph for the representation of the

word images. Figure 4.1 demonstrates the overview of the keyword spotting workflow.

As a template-based approach, a query based on a word image is used to retrieve the

words.

The primary issue to consider for graph-based KWS is how to represent handwritings

in a graph form. The graph-based representation of handwritten words must capture

the essential aspects of handwriting. Hence, the graph representation is as important as

feature extraction in statistical recognition methods. In KWS approach, graphs associate
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FIGURE 4.1: The graph-based KWS process.
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the primary domains of interests by nodes. As a structural representation, graphs retain

the binary relations between substructures with edges.

In the first step, Section 4.1.1 discusses the image processing before graph extraction. The

scanned handwritten document images are binarized then segmented into word images.

Section 4.1.2 takes the graph extraction into account. Concerning a single word image,

four distinct graph representations are extracted. Each representation can individually be

used in the KWS framework. Next, Section 4.1.3 addresses the requirement of fortifying

the representation to avoid abnormalities. Hence, the postprocessing step normalizes the

graphs by a z-score to minimize the abnormalities such as intraclass variations.

The graph-based keyword spotting method, Section 4.2, demonstrates the computation

of graph dissimilarities to perform the task. Using graph edit distance algorithms, the

KWS approach computes the distance between a specific query graph q and all document

graphs g ∈ G. Finally, it builds a retrieval index from the created distances.

4.1.1 Image Preprocessing

The first step toward processing the documents is binarizing the images. When binarizing

the images, it is undoubtedly necessary to detect and remove and backgrounds. Otherwise,

the binarized images would have a high degree of degradation and noises.

First, the images are transformed into grayscale, if they are colored, by considering the

luminance. Next, the band-pass Difference of Gaussians (DoG) filter is applied to the

grayscale image. The DoG filter removes noises as well as enhancing the edges (Fischer,

Indermühle, Bunke, Viehhauser, & Stolz, 2010). The difference of Gaussians indicates

obtaining two filtered images by applying Gaussian kernels. The kernels have different

standard deviation σ1 and σ2 and blur the images accordingly. Then one image is

subtracted from the other one to obtain the DoG image. However, we have to choose
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the kernels with regard to the quality of the documents. Thus the parameters σ1 and σ2

must be adjusted for a batch of new images to make the filter useful for extracting the

foreground. Next, a global threshold T binarizes the locally enhanced document images.

Figure 4.2 illustrates filtering and detecting the foreground on an example document

image.

It is often required to segment the documents concerning the building blocks, such as

words or characters. In a template-based method approach, we take a whole word as a

recognition piece. In an unconstrained manuscript, however, the segmentation is known

as an open problem. For instance, in a cursive Latin manuscript, we can acknowledge

lack of precise geometrical definition for connection between characters or inclination in

writing. In a top-down approach, we perform the segmentation on document images to

extract first the lines and subsequently the words.

Figure 4.3 shows the horizontal projection profile on a sample document. The segmen-

tation in Fischer, Indermühle, et al. (2010) is capable of distinguishing the boundaries

by employing the projection profiles. The approach accomplishes the segmentation at a

satisfactory level if the document is quasi-straight. The potential errors, without the help

of the manual correction, can contribute to declining the performance. If necessary, the

automatic segmentation result is manually adjusted to preclude the involvement of errors.

Accordingly, the proposed keyword spotting system operates on distinct isolated words

obtained from documents. Therefore, the reported performance should be taken as an

upper bound on the end-to-end keyword spotting system.

We capture the structure of a word image in the graph representations. The thickness

of strokes in handwriting can vary, yet the characters and lexicons shapes can remain

intact regarding the topology. Therefore, a thin version of the image, namely skeleton,

has a comparable topology with its original counterpart since it retains the strokes

and connections. The thinning or skeletonization refers to the algorithmic approach of
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Gaussian �휎=8 Gaussian �휎=1

DoG

Thresholding

FIGURE 4.2: Preprocessing an image to obtain the foreground by applying
DoG filter (σ1 = 8 and σ2 = 1).
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FIGURE 4.3: The horizontal projection profile of foreground pixels indi-
cates the possibility of six text lines.

removing the boundary pixels until the thickness of the patterns is one pixel wide. Using

a 3×3 thinning operator (Guo & Hall, 1989), we obtain the skeleton of the word images

that is denoted by S in the forthcoming sections.

Any other thinning algorithm can substitute Guo and Hall (1989) as long as it satisfies

the following conditions. The algorithm must produce a thin image by removing the

boundary of a pattern until it is one pixel wide. However, it must not go further to

eliminate the entire pixels on the images. Hence it must be stable and retain the skeleton.

The algorithm must maintain the connectivity of original patterns. Finally, the position of

skeleton must approximately be at the center of the image.

The summary of image processing in Figure 4.4 demonstrates the overview of the

preparing the word images from scanned documents. The process also includes a skew

correction (Hull, 1998) that is the correction of the inclination of the document. We

indicate the binarized word images with B in the following sections.
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DoG Filter and Binarization

Segmentation

Skeleton extraction
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Denoted by B
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FIGURE 4.4: The image processing generates the binarized word images
B and skeleton images S.
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4.1.2 Graph Extraction

As a general rule in pattern recognition, related patterns must have similar representation.

In the same way, different patterns should exhibit a notable dissimilarity. The rule holds

true in the graph representation of handwriting. Hence, the similarity and dissimilarity

determine the strength of the graph-based KWS system. The graphs of the same lexicons

should not vary too much. Accordingly, the graphs representing different words must

have a sizable difference. We cannot make a robust KWS system unless we satisfy these

rules.

The proposed HED-based KWS represents the entire word as one graph. Although

other graph-based KWS approaches in P. Wang et al. (2014a), use a collection of graphs,

extracted from individual connected components, to represent a word.

In the following, we introduce and describe four different graph representations of

handwriting. For further details, we refer to Stauffer, Fischer, and Riesen (2016b). All

graph extraction methods, regarding definition 1, result in nodes that are labeled with

two-dimensional numerical labels LV = R2. The edges, however, remain unlabeled,

i.e.and LE = {}.

Keypoint graphs

The first graph extraction algorithm, Keypoint, makes use of characteristic points (so-

called main-points) in skeletonized word images S. The keypoint graphs first used

in Fischer, Riesen, and Bunke (2010) as a feature in HMM-based KWS approach. We

have modified the method to take the edges into account as well.

The keypoints formally involve three categories of points: the end-points, junction-points,

and upper-left-point in case of circular shapes. Figure 4.5 illustrates the main-points by
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FIGURE 4.5: The keypoints for each connected component are marked
with a circle.

the circles and connected components in different colors on the skeleton. The keypoints

serve as the graph nodes; however, their distribution might be imbalanced.

For each connected components (CC), the keypoints are first extracted from S. If multiple

main-points exist nearby, a local search refines and selects one point in a region. Next, the

node sets completed by connection-points. Between pairs of keypoints (on the skeleton)

further intermediate points are transformed into nodes. By removing the junction points

and keypoints on the upper left location of circular shapes from S, we obtain connected

subcomponents (CCsub). On each CCsub, since there is no junction, we select the start

and end points. Then, on an equidistant interval D, the connection-points are identified

as nodes. For a chain of m points (x1,y1), ...,(xm,ym) on the CCsub, we compute the

Euclidean distance d(i, j) between (xi,yi) and (x j,y j) by Eq. 4.1.

d(i, j) =
j−1

∑
k=i
||(xk+1,yk+1)− (xk,yk)|| (4.1)

The graph nodes are labeled with the corresponding (x,y)-coordinates on the image
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where the node has been selected. Finally, undirected edges are inserted into the graph

for each pair of nodes directly connected by a stroke. Algorithm 6 demonstrates the

keypoint graph extraction.

Algorithm 6 Graph Extraction: Keypoints
Require: Skeleton image S, Distance threshold D.
Ensure: Keypoint graph g = (V,E).

1: for all connected components CC ∈ S do
2: V ←V ∪{(x,y) ∈CC|(x,y) are keypoints}
3: Remove junction points from CC
4: for all connected subcomponents CCsub ∈CC do
5: V ←V ∪{(x,y) ∈CCsub|(x,y) on equidistant intervals D}
6: end for
7: end for
8: for all pairs of nodes (u,v) ∈V ×V do
9: E← E ∪ (u,v) if the corresponding points are connected in S

10: end for
11: return g = (V,E)

Grid

The second graph extraction algorithm Grid is based on a grid-wise segmentation. The

grid-wise segmentation splits the binarized word images B into equally sized segments.

The statistical features extraction techniques for keyword spotting, such as local gra-

dient histogram (LGH) by Rodriguez and Perronnin (2008), and histogram of oriented

gradients (HOG) by Almazán, Gordo, Fornés, and Valveny (2014), perform a gird-wise

segmentation of word images. Grid-wise graphs extraction from the word image is

illustrated in Figure 4.6.

The images Bw×h are segmented on the grounds of having a particular number of segments

C×R. The dimension of an image modifies the size of segments in the grid. The size

of segments in the grid is therefore distinct based on the image dimension w× h. We

calculate the grid size of an image Bw×h with width w and height h by Eq. 4.2.
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FIGURE 4.6: Grid-wise extraction of graphs.

w′ =
w
C

and h′ =
h
R

(4.2)

Algorithm 7 describes the graph extraction by means of grid-wise segmentation. Each

segment corresponds to a potential node in the graph. A node will be assigned to a

segment if it contains any foreground pixels. The (x,y)-coordinates of segment’s center

of mass (xm,ym) represent the label of the node. For an image segment with n foreground

pixels, we calculate the center of mass by Eq. 4.3.

xm =
1
n

n

∑
w=1

xw and ym =
1
n

n

∑
w=1

yw (4.3)

Nonetheless, no node will be assigned to the empty segments that do not contain any

foreground pixels.

For any pair of nodes u,v an undirected edge is added to E if two nodes are adjacent

in the grid. Finally, the graph is transformed into minimal spanning tree (MST). By

trimming the graph edges, the Kruskal algorithm (Kruskal, 1956) finds the MST.
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Algorithm 7 Graph Extraction: Segmentation Grid
Require: Binary image B, Grid width w, Grid height h
Ensure: graph g = (V,E).

1: C← Width of B
w . number of columns

2: R← Height of B
h . number of rows

3: for i← 1 : C do
4: for j← 1 : R do
5: V ←V ∪{(xm,ym)|(xm,ym) is the center of mass of segment si j}
6: end for
7: end for
8: for all pairs of nodes (u,v) ∈V ×V do
9: E← E ∪ (u,v) if the associated segments are connected by MST

10: end for
11: return g = (V,E)

Projection

The next graph extraction algorithm Projection is computed on the horizontal and

vertical projection profiles of binary images B. Projection graph extraction is illustrated

in Figure 4.7.

Algorithm 8 performs a vertical and subsequent horizontal segmentation based on projec-

tion profiles. For an image Bw×h, with width of w and height of h, the vertical projection

profile Pv = {p1, . . . , pw} calculates the number of foreground pixels for every column in

B. Hence the vertical projection profile comprises a sequence of w values. The image is

then vertically segmented on the white spaces, locations in which there are no foreground

pixels in the vicinity. Formally in a white space region, pi = · · ·= pi+k = 0, the image is

segmented on the midpoint p = b(pi + pi+k)/2c of the white space . An additional step

refines the resulting segmentation concerning a distance-based threshold Dv. When the

width of segment s ∈ Bsegmentes is greater than the threshold, it is further segmented in

equidistant intervals Dv.

In the horizontal direction, the same rule applied to every vertical segment s ∈ Bsegmentes.

The horizontal projection profile Ph = {p1, . . . , ph} calculates the number of foreground
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FIGURE 4.7: Projection extraction of graphs.

pixels on each row of s. In the same manner, horizontal segmentation take place on

the white spaces. After splitting the segments s horizontally on the white spaces, the

subsequent segments are split further on equidistant intervals Dh if the segment height is

still higher than Dh. A node is inserted into the graph for each segment and labeled by

the (x,y)-coordinates of the corresponding center of mass. Undirected edges are inserted

into the graph for each pair of nodes if a stroke directly connects them in the skeleton S

of the word image.

Split

The fourth graph extraction algorithm split iteratively segments the binarized word

images B. Algorithm 9 computes the horizontal and vertical projection profiles similar to

algorithm 8 yet on individual segments. Figure 4.8 depicts the split graph extraction.
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Algorithm 8 Graph Extraction: Projection Profiles
Require: Binary image B, Skeleton image S, Vertical and Horizontal thresholds

(Dv,Dh).
Ensure: graph g = (V,E).

1: Compute vertical projection Pv of B
2: Split B vertically at middle of white spaces of Pv into Bsegments
3: for all segment s ∈ Bsegments, if Width(s) > Dv do
4: Split s vertically in equidistant intervals Dv into Bsegments
5: end for
6: for all segment s ∈ Bsegments do
7: Compute horizontal projection profile Ph of s
8: Split s horizontally at middle of the white spaces of Ph into Bsegments
9: for all segment s ∈ Bsegments, if Height(s) > Dh do

10: Split s horizontally in equidistant interval Dh into Bsegments
11: end for
12: end for
13: for all segment s ∈ Bsegments do
14: V ←V ∪{(xm,ym)|(xm,ym) is the center of mass of segment s}
15: end for
16: for all pairs of nodes (u,v) ∈V ×V do
17: E← E ∪ (u,v) if the associated segments are connected in S
18: end for
19: return g = (V,E)

FIGURE 4.8: Split extraction of graphs.
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The algorithm 9 begins with one segment s = B that considers the whole image as

an initial segment. Then, each s ∈ Bsegments, having a width w greater than the width

threshold Dw, splits vertically. The split point of segment s is at the white space of

projection profile if the white space exists. The vertical midpoint of s determines the split

point accordingly if no white space can be located.

In the same way, after a pass of vertical segmentation, the height of segments are

compared with Dh. Each segment s ∈ Bsegmentes that has a height h > Dh is divided on

horizontal white space or the midpoint. That is, segments are iteratively split into smaller

subsegments until the width and height of all segments are below certain thresholds.

A node is inserted into the graph and labeled by the (x,y)-coordinates of the point on the

stroke closest to the center of mass of each segment. For the insertion of the edges, the

same procedure as for Projection is applied.

4.1.3 Graph Normalization

A sequence of operations processes the scanned documents to produce the handwriting

graphs. A small deviation on each stage can expand into a significant variation of the

final graph. To moderate the variations of the intraclass writing, we normalize the graphs

Figure 4.9.

The resulting set of graphs is normalized concerning the (x,y)-coordinates of their node

labels µ(v). Formally, we use a z-score to derive normalized coordinates (x̂, ŷ) by

x̂ =
x−µx

σx
and ŷ =

y−µy

σy
,

where (µx,µy) and (σx,σy) are the mean and standard deviation of all (x,y)-coordinates

in the graph under consideration.
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Algorithm 9 Graph Extraction: Split
Require: Binary image B, Skeleton image S, Width threshold Dw, and Height thresholds

Dh.
Ensure: graph g = (V,E).

1: Bsegments← B
2: while Width(s) > Dw or Height(s) > Dh for any segment s ∈ Bsegments do
3: for all segment s ∈ Bsegments, if Width(s) > Dw do
4: if s contains white space in vertical projection profile Pv then
5: Split s vertically at the middle of white space of Pv into Bsegments
6: else
7: Split s vertically at the center of s into s1,s2
8: end if
9: end for

10: for all segment s ∈ Bsegments, if Height(s) > Dh do
11: if s contains white space in horizontal projection profile Ph then
12: Split s horizontally at the middle of white space of Ph into Bsegments
13: else
14: Split s horizontally at the center of s into s1,s2
15: end if
16: end for
17: end while
18: for all segment s ∈ Bsegments do
19: V ←V ∪{(xm,ym)|(xm,ym) is the center of mass of segment s}
20: end for
21: for all pairs of nodes (u,v) ∈V ×V do
22: E← E ∪ (u,v) if the associated segments are connected in S
23: end for
24: return g = (V,E)

FIGURE 4.9: Normalizing the extracted graphs.
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4.2 Bipartite Graph Matching for Keyword Spotting

So far we discussed the image processing and graph extractions of the graph-based KWS.

The final step performs graph matching to calculate the retrieval index of the relevant

words.

In graph-based KWS, a query graph q (representing a particular keyword) is pairwise

matched against all document graphs G = {g1, . . . ,gN}. Generally, graphs can either be

matched utilizing exact or inexact approaches (Conte et al., 2004; Foggia et al., 2014). In

the case of graph-based KWS, graphs are used to represent the inherent characteristic of

handwriting, and thus, affected by (subtle) variations in both their structure and labels.

Accordingly, as explained in chapter 3, inexact graph matching can be applied only.

Several approaches have been proposed for inexact graph matching (Conte et al., 2004;

Foggia et al., 2014). The graph edit distance (GED) is regarded as one of the most flexible

and robust paradigms (Bunke & Allermann, 1983; Riesen, 2015).

As discussed in chapter 3, the exact computation of GED is exponential concerning the

number of nodes of the involved graphs. Formally, GED is an example of a Quadratic

Assignment Problem (QAP) (Koopmans & Beckmann, 1957). The QAP problems, and

consequently GED, belong to the class of NP-complete problems 1.

The graph-based KWS in Stauffer et al. (2016a) has used the BP algorithm (Riesen &

Bunke, 2009a) to approximate the GED. The BP algorithm finds the optimal matching

between nodes and their connected edges structures, yet the solution is suboptimal with

respect to the global graph structure. The BP algorithm reduces the QAP problem to

LSAP by disregarding the global graph structure. Hence, it enhances the complexity to

the cubic time.
1That is, an exact and efficient algorithm for the graph edit distance problem cannot be developed

unless P =NP .
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The BP distance dBP is calculated between query q and the word graphs G = {g1, . . . ,gN}.

The graphs from various classes of words are different is size. Consequently, dBP must be

interpreted regarding the graphs sizes. The accommodation is done with the normalization

term in the denominator of Eq. 4.4. The normalization term is associated with the worst

case in graph matching where every node and edge is deleted or inserted into the edit

path. Finally, the revival score r(q,g) in Eq. 4.4 accounts for the priority of retrieved

word in descending order.

r(q,g) =− dBP(q,gi)

(|Vq|+ |Vgi |)τv +(|Eq|+ |Egi |)τe
(4.4)
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Chapter 5

The Proposed KWS Systems

This chapter is based on the following published articles:

Ameri, M. R., Stauffer, M., Riesen, K., Bui, T., & Fischer, A. (2017). Keyword

Spotting in Historical Documents Based on Handwriting Graphs and Hausdorff

Edit Distance. In International graphonomics society conference (pp. 105–108).

Ameri, M. R., Stauffer, M., Riesen, K., Bui, T. D., & Fischer, A. (2018). Graph-based

keyword spotting in historical manuscripts using hausdorff edit distance. Pattern

Recognition Letters.

In this chapter, the proposed KWS systems are presented and empirically evaluated. The

HED-based KWS system in section 5.1 employs, HED, a fast graph matching algorithm

in order to improve the performance of graph-based KWS. The combined HED-DTW-

based KWS system is presented in section 5.2 as a multi-classifier approach which

benefits from both structural and statistical representation of handwriting. The datasets

which we use to evaluate systems are described in section 5.3. In order to evaluate the

KWS approaches, we must consider the design of methods and types of data which are

being processed. Section 5.4 describes and discussed the choice of evaluation metrics.

Section 5.5 is dedicated to the numerical demonstration of the proposed method. The

selection of parameters as well as sample outputs are explained in detail. We compare
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the performance of the proposed method with three template-based reference methods,

namely BP, BP2, and DTW. We also put our method into context with learning-based

approaches to keyword spotting. All of which are detailed in section 5.6. In section 5.7,

we demonstrate the efficiency of the proposed graph-based keyword spotting. We evaluate

the proposed HED-based method on four benchmark datasets for keyword spotting in

historical manuscripts. The results have been presented and published at Ameri et al.

(2017, 2018). Finally, the conclusion is presented in section 5.8.

5.1 Keyword Spotting based on HED

In this section, we describe a graph-based KWS, as a template-matching method, which

does not require any learning. The graph-based KWS, as well as any template-based

approach, in the worst condition, expect at least a single template image of the keyword.

Although with a more substantial number of keyword templates, the system has more

option to incorporate the variation of intraclass words. This is particularly useful for

historical manuscripts, which typically demand human experts for obtaining labeled

training data in a time-consuming and costly process. The graph-based keyword spotting

in Figure 4.1 aims at finding similar words to a query keyword in the form of a retrieval

index.

The GED graph matching algorithm provides flexibility to match arbitrary graphs. In

particular, GED measures the amount of distortion needed to transform graph g1 into

graph g2 using a sequence of edit operations like insertions, deletions, and substitutions

of both nodes and edges. The sequence is referred to as edit path, λ (g1,g2), between g1

and g2.

To find the most suitable edit path, one commonly introduces a particular cost func-

tion c(e) for every edit operation e. This cost function should correspond to the strength
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of a specific graph modification. Therefore, the graph edit distance dGED(g1,g2), or dGED

for short, between g1 and g2 comprises the sum of edit path costs (see Eq. 3.3).

For the representation of domain knowledge, one commonly makes a change to Eq.3.9-

3.10 to obtain an appropriate cost model. In the current case, constant costs for both

node and edge deletions/insertions are used, i.e. τn ∈ R+ and τe ∈ R+, respectively. For

the substitution of nodes, however, we adjust Eq.3.9 to the weighted Euclidean distance

between the corresponding node labels, i.e., δ = (x,y)-coordinates. Formally,

C(vi→ v j) = α.
√

β σx(xi− x j)2 +(1−β )σy(yi− y j)2 (5.1)

where β ∈ [0,1] denotes a parameter to weight the importance of the x- and y-coordinate

of a node. The actual z-score values µ and σ are retained when normalizing graphs.

Hence, σx and σy denote the standard deviation of all node coordinates in the current

query graph before normalization. Moreover, we still use a weighting factor α ∈ [0,1]

between the node and edge edit costs.

Hence, we can use fast, but suboptimal algorithms, that have been proposed in the last

years (see Foggia et al. (2014)). In this thesis, we consider the recently introduced

Hausdorff edit distance (HED) (Fischer et al., 2015). HED reduces the problem of

graph edit distance to a set matching problems between local substructures (nodes and

their adjacent edges). In section 3.6, we have demonstrated HED could be computed in

quadratic time concerning the graph size. The suboptimal computed distance, yet is a

lower bound of graph edit distance dHED ≤ dGED.

The Hausdorff edit distance dHED(g1,g2) between two graphs g1 and g2, using Eq. 3.16,

is obtained in Eq. 5.2 as :

dHED(g1,g2) = ∑
u∈V1

min
v∈V2∪{ε}

f (u,v)+ ∑
v∈V2

min
u∈V1∪{ε}

f (u,v) . (5.2)
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Similar to the Hausdorff distance between finite subsets of a metric space, the two

summation terms compute nearest neighbor distances between the node sets. According

to the node function Eq. 3.17-3.19 , using constant cost τn and τe for insertion/deletion of

nodes and edge respectively, we obtain the node cost function by Eq. 5.3.

f (u,v) =


τn +∑

|P|
i=1

τe
2 for node deletion (u→ ε)

τn +∑
|Q|
i=1

τe
2 for node insertion (ε → v)

c(u→v)+ dHED(P,Q)
2

2 for node substitution (u→ v)

(5.3)

The cost function regards P and Q as the set of edges adjacent to u and v, respectively.

Note that only half of the implied edge cost is added to the node cost and only half of the

substitution cost is considered in general as explained in the original cost function, to

ensure the lower bound property.

The edge cost Eq. 3.23, which is implied by node substitution, is estimated based on the

edge sets P and Q. With a similar Hausdorff matching using edge cost function g, we

obtain dHED(P,Q) in Eq. 5.4.

dHED(P,Q) = ∑
p∈P

min
q∈Q∪{ε}

g(p,q)+ ∑
q∈Q

min
p∈P∪{ε}

g(p,q) (5.4)

The edge functions Eq. 3.20-3.22 , are accordingly adjusted with constant cost τe to

Eq.5.5.

g(p,q) =


τe for edge deletion (p→ ε)

τe for edge insertion (ε → q)

c(p→q)
2 for edge substitution (p→ q)

(5.5)
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The underestimation of dHED ≤ dGED is limited by a minimum edit costs given by

Eq. 3.24 and Eq. 3.25. According to the constant cost functions they can be calculated by

||V1|− |V2|| · τn for dHED(g1,g2) and ||P|− |Q|| · τe for dHED(P,Q).

The retrieved documents are selected based on the KWS score. For building the KWS

score, the graph-based KWS computes the distance between query graph q and all

document graphs G = {g1, . . . ,gN} using approximate graph edit distances dHED. The

distance is normalized by the maximum cost edit path between q and gi. Hence, the

normalization term is calculated by deleting all nodes and edges of q and inserting all

nodes and edges in gi that corresponds to the edit path with the maximum cost. Eventually,

using Eq. 5.6, we calculate the rank scores r(q,g) to determine the index of retrieved

documents.

r(q,g) =− dHED(q,gi)

(|Vq|+ |Vgi |)τv +(|Eq|+ |Egi |)τe
(5.6)

r(q,g) scores are used to determine the retrieved words with highest values. The range of

r(q,g) values is r(q,g) ∈ [−1,0] where the highest value of r(q,g) = 0 indicates that q

and g are identical. The lowest value r =−1 corresponds to considerable dissimilarities

in the graph where there is no substitution. Thus, the cost of dHED consists deletion and

insertion of graph nodes and edges that is the same as the denominator.

A query can consist of a set of graphs Q= {q1, . . . ,qt}where all q∈Q represent the same

keyword. The minimal graph edit distance achieved on all t query graphs accordingly

determines the KWS score.
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FIGURE 5.1: Combined keyword spotting workflow

5.2 Combined Graph-Based and DTW-Based Keyword

Spotting

In this section, we propose a combined HED-DTW keyword spotting approach. Fig-

ure 5.1 demonstrates the architecture of the system. The matching score is computed by

combining the HED (section 5.1) and DTW (section 2.1). The two methods are different,

one is matching two-dimensional graphs, and the other is matching one-dimensional se-

quences. Feature representation of DTW-based system includes nine-Geometric features

Figure 5.2. The difference in solving the problem indicates they can complement each

other. They have a high potential to support each other in the multiple classifier systems

(MCS) considering the complementary properties. In such an MCS setting, ideally, one

method can correct errors of the other method (Kuncheva, 2004).

Both approaches rank the similar words to the query by providing a spotting score. Hence,

we combine the scores with a weighted sum of dHED and dDTW to obtain the MCS score.

The calculation of MCS scores for the combined system is demonstrated in Figure 5.3.
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FIGURE 5.2: Geometric feature extraction.

First, we normalize the HED and DTW scores to zero mean and unit standard deviation.

The z-score is calculated for each algorithm separately in the validation stage. The

normalized HED and DTW scores, rHED(q,w) and rDTW (q,w) respectively, are combined

with a weighted sum given in Eq. 5.7

rcombined(q,w) = rHED(q,w)+ω · rDTW (q,w) (5.7)

where the weight parameter ω expresses the contribution of each score to the rank

rcombined(q,w). The weighted sum calculation typically assigns independent weights to

the components. There is a possibility of using a single parameter as a pair (ω,1−ω)

for binary relations. However, we had the idea of designing a flexible combined system

to use multiple recognition engines. In our case we observed by using a fixed weight

for rHED, the optimal parameter can be obtained by examining a single ω weight. In

section 5.5 we empirically demonstrate the correlation of weights and potential range

of ω .



Chapter 5. The Proposed KWS Systems 91

FIGURE 5.3: Score Calculation in combined system

FIGURE 5.4: An example handwriting taken from George Washington
dataset.

5.3 Datasets

George Washington The Library of Congress keeps the record of 65,000 manuscripts

written by George Washington and his associates between 1741-1977. The George

Washington (GW) 1 dataset consists of letters of George Washington and his associates

during the American Revolutionary War in 1755. The letters are written in English with

minor variations in writing and degradation Figure 5.4. It is based on twenty pages of

letters which contain 4994 words in total.

Parzival The Parzival (PAR)2 is based on stories of the German poet Wolfgang von

Eschenbach in the 13th century. The manuscript is written in Middle High German on

1George Washington Papers at the Library of Congress, 1741-1799: Series 2, Letterbook 1, pp. 270-279
& 300-309, http://memory.loc.gov/ammem/gwhtml/gwseries2.html

2Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/databases/iam
-historical-document-database/parzival-database

http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
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FIGURE 5.5: An example handwriting taken from Parzival dataset.

FIGURE 5.6: An example handwriting taken from Alvermann Konzilspro-
tokolle dataset.

parchment. From 45 pages, a total of 23478 words have been extracted. The manuscripts

have been written with low writing variations, by three writers, yet they have markable

signs of degradation. The image in Figure 5.5 illustrates a page segment of Parzival

dataset.

Alvermann Konzilsprotokolle The Alvermann Konzilsprotokolle (AK)3 consists of

minutes of formal meetings held by the central administration of the University of

Greifswald from 1794 to 1797. The notes were written in German and based on 18000

pages with minor variations and signs of degradation. Figure 5.6 shows a page segments

captured from Alvermann Konzilsprotokolle dataset.

3Alvermann Konzilsprotokolle at ICFHR2016 benchmark database, http://www.prhlt.upv.es/
contests/icfhr2016-kws/data.html

http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
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FIGURE 5.7: An example handwriting captured from Botany dataset.

Original Preprocessed Keypoint Grid Projection Split

GW

PAR

BOT

AK

FIGURE 5.8: Exemplary graph representations of the Alvermann Konzil-
sprotokolle (AK), Botany (BOT), George Washington (GW), and Parzi-

val (PAR) dataset.

Botany Finally, the Botany (BOT)4 is based on botanical records made in British India

in the 18th and 19th centuries. The records were written in English and based on ten

pages with high writing variation and markable signs of degradation. Figure 5.7 shows a

page segment of Botany dataset.

For the experimental evaluation, we consider two well-known manuscripts as well as two

documents of a very recent KWS benchmark competition. On all four manuscripts, we

extract graphs by means of the graph representation formalisms proposed in Section 4.1.

Note that for AK and BOT, only the two most promising graph representations (Keypoint

and Projection) are considered.

Figure 5.8 shows an exemplary word of each manuscript and the corresponding graph

representation.

4Botany at ICFHR2016 benchmark database, http://www.prhlt.upv.es/contests/icfhr2016
-kws/data.html

http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
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5.4 Evaluation Metrics

The evaluation metrics in machine learning and pattern recognition applications determine

the efficiency of methods. Researchers evaluate systems on several criteria. An evaluation

measure might describe the effectiveness of a paradigm yet it could be trivial on the

others. Thus the choice of evaluation metrics should guide us to evaluate the system in

general aspects.

Keyword spotting systems operate on a collection of documents and respond to the user

queries. The response contains a group of words similar to the keyword. The retrieved

words are ranked based on the similarities to the query keyword. The ground truth of

test data specifies the binary relation of relevant or nonrelevant between any query-word

pair in the collection. The confusion matrix in table 5.1 describes the four fundamental

metrics, true positive (TP), false positive (FP), true negative (TN), and false negative

(FN) in terms of the number of retrieved/not-retrieved and relevant/nonrelevant words.

TABLE 5.1: The TP, FP, TN, FN measures based on the number of
retrieved/not-retrieved and relevant/nonrelevant

Number of relevant Number of nonrelevant

Number of retrieved TP FP
Number of non-retrieved FN TN

Common measure such as accuracy (ACC) is the percent of correctly classified samples

in a classification ACC = (T P+T N)/(T P+FP+T N +FN). The measure might be

helpful in character and text recognition tasks, yet it is less useful in keyword spotting

frameworks. Since the number of samples mostly skewed toward nonrelevant words, T N

contributes a considerable portion in the accuracy. Thus a system that optimized based on

accuracy tends to work well in reporting non-keywords. The strategy to reject every word

as non-keyword can score a high accuracy value. In contrast, a significant improvement

in T P does not reflect much on the accuracy.
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Considering the disadvantages of accuracy, we would focus on metrics to better reflect

the positive cases. The precision (P) P = T P/(T P+FP) is the ratio of relevant and

retrieved words, T P, over retrieved words. In a typical response the precision calculates

the percentage of the correct answer in the response. If we restrict the response to the

highest possible scores, we get higher precision, yet the response may not cover lots of

relevant keywords in the document. In other words, relevant keywords could be a small

fraction of all keywords that exist in the document.

The recall (R), also called sensitivity, R = T P/(T P+ FN) measures the percent of

relevant words in the response. Recall on the other hand measures how much of relevant

data has been retrieved. A high value of recall is proportional to having a significant

number of positive values. However, the recall individually does not signify the quality

of the method. Nonetheless, by returning all words in the response the recall would have

the value of R = 1, yet it is a response carrying no information.

A keyword spotting system with high quality must take precisions and recalls into account.

To combine the two measure one might suggest averaging the precision and recall values,

however, considering the trivial cases the average could be 0.5 when recall is R = 1 and

precision is P = 0. The F measure is weighted harmonic mean of precision and recall.

Unlike the arithmetic mean F measure converges to the smaller value of precision or

recall, hence provides a more robust metric.

F =
1

α
1
P +(1−α) 1

R

(5.8)

The value α ∈ [0,1] specifies the balance between precision and recall. In case of equal

importance α = 1/2, precision has equal importance as recall5. The method is at peak

performance where the F measure on the precision-recall curve is maximized.

5The F measure is alternatively characterize by β ∈ [0,∞), as Fβ = (β 2+1)PR
β 2P+R . The β parameter therefore

is β 2 = 1−α

α
. The β > 1 considers higher priority to recall and β < 1 emphasize more on precision.
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However, the F measure is calculated by precision at a specific recall. Investigating the

precision change with respect to recall is most suited for the ranked output of keyword

spotting systems. The precision-recall curve demonstrates the variation of precision

by changing the sensitivity. It is ideal to investigate the entire curve rather than an

individual point that maximizes F measure. The curve would include a large number of

recall points, regarding the retrieved response. The information retrieval scholars would

instead summarize the evaluation metrics to fewer points, National Institute of Standards

and Technology (2009) suggests 11-point interpolated average precision as a suitable

measure to evaluate ranked outcomes.

Considering the 11 recall points r ∈ λ = {0.0,0.1, . . . ,1.0}, the corresponding precision

p(r) is shifted toward the maximal value in higher recall points. Thus the precision p(r)

at recall r, is calculated by p(r) = maxr′≥r P(r′). The interpolated average precision (AP)

refers to the arithmetic mean of these 11 precision values. Furthermore, the precision-

recall curve is interpolated consequently with 11-point precision. The AP value, therefore,

interpolates the area under the curve for precision-recall curve.

AP =
1
|λ | ∑r∈λ

p(r) (5.9)

The extensive evaluation requires testing system on a diverse set of keyword queries

Q = {q1, . . . ,qn}. The average precision evaluates the retrieved ranked words for the

query q ∈ Q as AP(q). The mean average precision (MAP) aggregates the individual

average precision AP(q) by arithmetic averaging in Eq. 5.10.

MAP(Q) =
1
|Q| ∑q∈Q

AP(q) (5.10)

The MAP value has been used in this thesis to evaluate the keyword spotting approach

extensively. MAP summarizes the precision-recall curve to a single value. To evaluate
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the keyword spotting performance, we consider Recall and Precision for each keyword

query and compute the (MAP) over all queries using the trec_eval6 software.

5.5 Parameter Optimization

This section demonstrates setting up the proposed methods with the parameters in order

to achieve the optimized system. Our proposed systems are template based approaches

that do not require a training stage; however, they require a set of parameters that must

be initialized. The experiments in this sections are conducted on a small set of data

including five query words (Colonel, now, no, soon, October) and 100 randomly selected

words from GW dataset.

5.5.1 Connection Node Distance in Keypoint Graphs

TABLE 5.2: Evaluation metrics for connection points selection

D MAP F1 ACC P R TP TN FP FN

1 85.72 84.29 97.00 83.33 85.78 85.78 98.23 1.77 14.22
2 85.97 82.75 97.20 92.42 77.56 77.56 99.34 0.66 22.44
3 86.58 82.91 97.40 97.78 75.11 75.11 99.78 0.22 24.89
4 83.26 79.22 96.60 90.28 73.11 73.11 99.12 0.88 26.89
5 83.63 80.95 97.00 95.00 73.11 73.11 99.56 0.44 26.89
6 83.17 81.99 95.80 83.85 85.33 85.33 96.89 3.11 14.67
7 78.27 77.61 93.40 70.25 93.56 93.56 93.34 6.66 6.44
8 75.82 75.78 94.20 71.46 83.56 83.56 95.35 4.65 16.44
9 73.38 73.71 92.20 65.14 91.56 91.56 92.24 7.76 8.44
10 74.87 72.60 94.00 70.31 81.78 81.78 95.36 4.64 18.22

Keypoint graphs consist of the main points and connection points (also named auxiliary

points). The connection points are inserted into the graph on monotonic intervals. The

optimal interval is adjusted by investigating MAP values of experiments which are

6http://trec.nist.gov/trec_eval

http://trec.nist.gov/trec_eval


Chapter 5. The Proposed KWS Systems 98

FIGURE 5.9: Evaluation metrics plots from Table 5.2

conducted on different thresholds. Table 5.2 reports the evaluation metrics corresponding

D ∈ {1, . . . ,10}. The corresponding values are plotted in Figure 5.9. Figure 5.10 shows

the precision-recall curves of examined thresholds.

5.5.2 HED Matching Parameters

HED matching requires four parameters {τn,τe,α,β} to be adjusted. τn and τe are the

constant cost of deletion or insertion of nodes and edges. Based on the graph labels, we

can determine which ranges of these parameters are more likely to be investigated. Small

values of these parameters result in a HED matching with only deletion and insertion

which holds no useful information. The parameter settings with large values might force

the substructures to be substituted with dissimilar ones. Therefore, they must be selected

to make a balance between mapping. We examine the range of τn,τn ∈ {1,2,4,8,16,32}
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FIGURE 5.10: Precision-Recall metrics for connection points selection

and {0.1,0.3,0.5,0.6,0.7,0.9} for α and β parameters in the following experiments.

The combination of parameters results in 900 experiments.

Best Parameters

In Table 5.3 the evaluation results from the best twenty parameters are provided. The

results are sorted based on the MAP values. To give the reader the possibility to investigate

further the results, we provide F1, ACC, P, R, TP, TN, FP, and FN metrics. The best ten

parameters of Table 5.3 are plotted in Figure 5.11. Figure 5.12 illustrates the precision-

recall curves of the best ten parameters and corresponding parameters values are annotated

on the upper right side of the figure.
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TABLE 5.3: Evaluation metrics for best twenty parameters

τn τe α β MAP F1 ACC P R TP TN FP FN

2 2 0.3 0.1 95.85 94.60 99.00 98.00 91.78 91.78 99.78 0.22 8.22
2 1 0.3 0.1 95.82 94.22 99.00 100.00 89.28 89.28 100.00 0.00 10.72
1 4 0.5 0.1 95.66 92.57 98.60 94.14 91.78 91.78 99.34 0.66 8.22
1 2 0.3 0.1 95.54 93.42 98.80 95.78 91.78 91.78 99.56 0.44 8.22
4 2 0.3 0.3 95.53 94.37 99.00 97.78 91.78 91.78 99.78 0.22 8.22
1 16 0.7 0.1 95.53 93.28 98.80 98.00 89.56 89.56 99.78 0.22 10.44
2 4 0.5 0.1 95.49 92.38 98.60 93.56 91.78 91.78 99.34 0.66 8.22
2 2 0.3 0.3 95.45 93.33 98.80 96.00 91.78 91.78 99.57 0.43 8.22
2 16 0.7 0.1 95.44 93.28 98.80 98.00 89.56 89.56 99.78 0.22 10.44
2 16 0.7 0.3 95.39 92.10 98.60 95.78 89.56 89.56 99.56 0.44 10.44
2 8 0.5 0.1 95.37 92.42 98.60 96.36 89.56 89.56 99.56 0.44 10.44
2 2 0.5 0.1 95.34 92.28 98.60 93.78 91.78 91.78 99.35 0.65 8.22
4 16 0.7 0.3 95.34 92.10 98.60 95.78 89.56 89.56 99.56 0.44 10.44
4 1 0.1 0.1 95.31 92.12 98.60 97.78 87.56 87.56 99.78 0.22 12.44
4 8 0.5 0.1 95.29 92.70 98.60 94.14 91.78 91.78 99.34 0.66 8.22
2 8 0.7 0.1 95.26 91.88 98.60 97.78 87.56 87.56 99.78 0.22 12.44
2 32 0.9 0.1 95.26 91.88 98.60 97.78 87.56 87.56 99.78 0.22 12.44
8 2 0.5 0.1 95.25 94.23 99.00 100.00 89.56 89.56 100.00 0.00 10.44
2 1 0.1 0.1 95.25 92.12 98.60 97.78 87.56 87.56 99.78 0.22 12.44
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FIGURE 5.11: Evaluation metrics of best ten parameters from Table 5.3

FIGURE 5.12: Precision-Recall curves for first best ten parameters
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FIGURE 5.13: Variation of τn and τe parameters for α = 0.3 and β = 0.1
in the parameter grid.

Performance Change on Parameter grids

Figure 5.13 illustrates the change of performance with respect to MAP values in a heat

map plot. The values correspond to 36 pairs of τn× τe where α = 0.3 and β = 0.1. We

also fixed node and edge costs to τn = 2 and τe = 2 to obtain Figure 5.14 that demonstrates

the performance change for the α and β parameters.

Five Queries Results for the Best Parameter

In the following, we provide the evaluation metrics and retrieval results of five queries

using the best parameters τn = 2, τe = 2, α = 0.3, and β = 0.1 in Table 5.4. Figure 5.15

shows performance metrics AP, F1, ACC, P, R, TP, TN, FP, and FN for five queries:

Colonel, now, no, October, and soon. The first 20 retrieved words for query:"October"

are provided in Figure 5.16. The images are labeled with the rank = {1, . . . ,20} and HED
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FIGURE 5.14: Variation of α and β parameters for τn = 2 and τe = 2 in
the parameter grid.

distance. Figure 5.17 demonstrates the corresponding graph matchings of Figures 5.16.

The graph matching figure contains ten rows. The first three rows are from rank=1-3

regardless of labels, and the rest are chosen from wrong matches. The exemplary spotting

results show that the structural approach, indeed, finds keywords with a similar structure.

Also, the top non-keywords have a close similarity to the query word, which is good.

For instance, the word "shall" at rank=10 has visual similarity with "October", yet the

substitutions have lengthier distances from the ones at the top-three ranks. In the deletion

and insertion, we observe a more substantial number of nodes and edges that can be

interpreted to more dissimilarities. Four other queries can be found in the appendix A in

which we observe similar properties. The precision-recall, F1-recall and ROC curves are

provided for the query in Figure 5.18.
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TABLE 5.4: Evaluation metrics for five queries with the best parameter

Keyword AP F1 ACC P R TP TN FP FN

Colonel 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00
now 92.88 90.00 98.00 90.00 90.00 90.00 98.89 1.11 10.00
no 95.56 94.12 99.00 100.00 88.89 88.89 100.00 0.00 11.11
October 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00
soon 91.19 88.89 98.00 100.00 80.00 80.00 100.00 0.00 20.00

FIGURE 5.15: Evaluation metrics for five queries with the best parameters.
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Query: October

Rank=1 True D = 0.0917 Rank=2 True D = 0.0927 Rank=3 True D = 0.0979 Rank=4 True D = 0.0999

Rank=5 True D = 0.1027 Rank=6 True D = 0.1133 Rank=7 True D = 0.1136 Rank=8 True D = 0.1182

Rank=9 True D = 0.1203 Rank=10 False D = 0.1481 Rank=11 False D = 0.1505 Rank=12 False D = 0.1508

Rank=13 False D = 0.1525 Rank=14 False D = 0.1545 Rank=15 False D = 0.1555 Rank=16 False D = 0.1558

Rank=17 False D = 0.1566 Rank=18 False D = 0.1572 Rank=19 False D = 0.1575 Rank=20 False D = 0.1582

FIGURE 5.16: First 20 retrieved words for query October.
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Query: October

Deletion Substitution Insertion Rank=1 True D = 0.0917

Deletion Substitution Insertion Rank=2 True D = 0.0927

Deletion Substitution Insertion Rank=3 True D = 0.0979

Deletion Substitution Insertion Rank=10 False D = 0.1481

Deletion Substitution Insertion Rank=11 False D = 0.1505

Deletion Substitution Insertion Rank=12 False D = 0.1508

Deletion Substitution Insertion Rank=13 False D = 0.1525

Deletion Substitution Insertion Rank=14 False D = 0.1545

Deletion Substitution Insertion Rank=15 False D = 0.1555

Deletion Substitution Insertion Rank=16 False D = 0.1558

FIGURE 5.17: Ten samples from HED matching for query October.

5.5.3 Optimization of the Combined System

In this section, we verify using a single ω parameter in Eq. 5.7 for the combined HED-

DTW system in which HED coefficient is set to one. By considering Eq. 5.11 instead of

Eq. 5.7, we compute the MAP value for (ω1,ω2) ∈ {0.1,0.2, . . . ,5}×{0.1,0.2, . . . ,5}

which constitute 2500 combinations of (ω1,ω2) in total.

rcombined(q,w) = ω1 · rHED(q,w)+ω2 · rDTW (q,w) (5.11)

Figure 5.19 illustrates the heatmap plot of the (ω1,ω2) grid where the highest values are

aligned along a straight line. Table 5.5 shows 20 of high performing parameter pairs with

identical results. Therefore, we can fix one of the weights, for instance, ω1 of HED and

optimize the weight of DTW.
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FIGURE 5.18: The precision-recall, F1-recall and ROC curves for query
October.
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TABLE 5.5: Combination of HED and DTW first 20 rows out of 55 similar
results

HED DTW MAP F1 ACC P R TP TN FP FN

4.9 1.3 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
0.7 0.2 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
3.6 0.9 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
1.4 0.4 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
4 1 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
3.9 1 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
3.8 1 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
3.7 1 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
3.6 1 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
3.5 1 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
2.4 0.6 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
2.9 0.8 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
2.8 0.8 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
4.2 1.2 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
4.8 1.3 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
0.8 0.2 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
1.2 0.3 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
4.6 1.2 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
4.5 1.2 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
4.4 1.2 97.86 96.36 99.20 95.00 98.00 98.00 99.33 0.67 2.00
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FIGURE 5.19: Relation between coefficients in combined HED-DTW
KWS

5.6 Reference Methods

In order to assess the potential of the proposed HED-based graph matching approach,

we compare it with three related reference methods. The reference systems include

the methods using graphs matching (BP and BP2) and sequences alignment (DTW),

respectively.

BP The first reference is the bipartite graph matching method (BP) proposed by Riesen

and Bunke (2009a) for approximating the graph edit distance. BP is widely used for

graph-based pattern recognition (see section 3.4). In particular, a number of graph-based

keyword spotting systems, including Bui et al. (2015); Riba et al. (2015); Stauffer et al.

(2016a); Stauffer, Fischer, and Riesen (2017); P. Wang et al. (2014b) employed the PB

algorithm. BP reduces the problem of graph edit distance to an LSAP. Thus it returns

a valid, yet not necessarily optimal, edit path between two graphs. BP approximates
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the graph edit distance by computing an upper bound. The PB distance hence is used

for computing the spotting score. The primary restriction of BP is still its cubic time

complexity concerning the graph size. The time complexity is significantly improved in

comparison with GED. However, it imposes computational limits regarding the size of

the handwriting graphs as well as the number of handwriting graphs that can be matched.

BP2 The second reference is the recently introduced quadratic time variant of BP called

BP2 (Fischer, Riesen, & Bunke, 2017). Similar to BP algorithm, BP2 solves the bipartite

matching problem. However, it improves the cubic time complexity to quadratic time.

The algorithm finds a valid, yet suboptimal edit path between two graphs thus an upper

bound of graph edit distance.

DTW The third reference is based on the well-established Dynamic Time Warping

(DTW) method for sequence matching. The approach has often been used for keyword

spotting in historical manuscripts (Frinken et al., 2012; T. Rath & Manmatha, 2007;

Terasawa & Tanaka, 2009; Wicht et al., 2016). The sequence of feature vectors is

obtained by moving a sliding window over the handwriting. It is remarkable to note that

the sequences are a particular case of graphs. The nodes are single feature vectors that

have at most one successor. DTW finds an optimal alignment of two sequences, along

with a time axis, in which the sum of feature vector distances is minimal. Using dynamic

programming, an optimal DTW alignment can be obtained in quadratic time with respect

to the sequence length. This sum of distances can then be used to compute a keyword

spotting score (see section 2.1).
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5.7 Experiments

The handwriting graphs are generated according to section 4.1. On all benchmark datasets,

documents are segmented into individual word images. Then the segmentation results are

manually corrected to exclude the segmentation mistakes in KWS experiments. Therefore,

the evaluation has been performed on the accurately segmented words. In a real-world

application, however, automatic word segmentation can contribute to decreasing the

end-to-end performance.

We managed the experiments on the basis of two stages: validation and test. In the

validation stage, we fine-tune the KWS system parameters. For each dataset, on a

small validation set, the best parameters are retrieved. The validation set contains 10

random instances of 10 manually selected keywords (with different word lengths) and

900 additional, randomly selected words (1000 words in total) for GW and PAR datasets.

For BOT and AK, we used the separate sets provided by the dataset. The training state

evaluates the optimized system on the same training and test sets as used in Fischer et al.

(2012) for GW and PAR and in Pratikakis et al. (2016) for AK and BOT. In Table 5.6 a

summary of the datasets is presented.

TABLE 5.6: Number of keywords and number of word images in the
training and test sets of the four datasets.

Dataset Keywords Train Test

GW 105 2447 1224
PAR 1217 11468 6869
BOT 150 1684 3380
AK 200 1849 3734
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FIGURE 5.20: MAP values of Table 5.7

5.7.1 Comparison with Graph Edit Distance Approximations

The first experiment contains the evaluation of HED-based KWS compared to the other

GED approximation approaches. BP and BP2, using a bipartite matching, approximate

the graph edit distance. Similar to HED, BP and BP2 can be applied to any graph type

without constraints on the graph structure or the node and edge label alphabets.

The parameter set includes the cost for node deletion/insertion τn, the cost for edge

deletion/insertion τe, and the weights α,β of the cost function. They are optimized over

the range of τn,τe ∈ {1,4,8,16,32} and α,β ∈ {0.1,0.3,0.5,0.7,0.9} for each method

individually on the validation set.

Table 5.7 presents the MAP results on the test set of GW and PAR for the three methods

and the four graph representations. Figure 5.20 shows the plotted data of results in

Table 5.7.

Comparing BP and BP2, we observe BP2 performs very similar to BP. The quadratic-time

BP2 outperforms BP in five out of eight cases. Hence the BP2 is not only significantly

more efficient concerning the time complexity but it can also achieve similar performance.

Our HED-based method achieves the best results, outperforming BP in eight out of
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TABLE 5.7: Mean average precision (MAP) for graph-based KWS systems
on the George Washington (GW) and Parzival (PAR) datasets.

GW PAR

Method MAP ± MAP ±

B
P

Keypoint 66.08 62.04
Grid 60.02 56.50
Projection 61.43 66.23
Split 60.23 59.44

B
P2

Keypoint 68.42 +2.33 55.03 −7.01
Grid 62.10 +2.07 57.00 +0.50
Projection 60.83 −0.60 63.35 −2.88
Split 64.24 +4.02 68.69 +9.25

H
E

D

Keypoint 69.28 +3.19 69.23 +7.19
Grid 62.78 +2.75 60.74 +4.24
Projection 66.71 +5.28 72.82 +6.59
Split 65.12 +4.89 72.79 +13.35

FIGURE 5.21: MAP values of Table 5.8

eight cases. Hence, it not only allows to reduce the computational complexity but also

improves the keyword spotting performance. Unlike BP and BP2, HED allows multiple

assignments among substructures in the handwriting graphs. Moreover, the edit path

is not necessarily symmetric that provides a higher degree of flexibility. We assume

that these properties of HED are beneficial in the context of handwriting. These allow

handling minor distortion such as regarding the characters of different sizes. The DTW

employs the same concept of warping only in one dimension rather than two.

The results, shown in Table 5.8, indicate a similar conclusion for the two other datasets,

BOT and AK. Figure 5.21 plots MAP values of Table 5.8.
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They confirm, with comparable findings to Table 5.7, that HED outperforms BP in four

out of four cases on these datasets.

TABLE 5.8: Mean average precision (MAP) for graph-based KWS systems
on the Botany (BOT) and Alvermann Konzilsprotokolle (AK) datasets.

BOT AK

Method MAP ± MAP ±
B

P Keypoint 45.06 77.24
Projection 49.57 76.02

B
P2

Keypoint 50.94 +5.88 74.86 −2.38
Projection 50.49 +0.92 75.46 −0.56

H
E

D Keypoint 51.74 +6.68 79.72 +2.48
Projection 51.69 +2.12 81.06 +5.04

Both HED and BP algorithms have significant speedup with polynomial time complexity.

However, a cubic algorithm imposes a sizable delay to the experiments. Table 5.9 reports

the speedup that can be achieved with the quadratic-time HED method when compared

to the cubic-time BP method. On the GW dataset, the handwriting graphs have a median

size between 74 and 90 and a maximum size between 366 and 509. For this graph size,

HED-based keyword spotting is about hundred times faster than BP-based keyword

spotting.

TABLE 5.9: Median and maximum number of nodes, mean runtime per
graph pair in milliseconds for HED, BP, and BP2 with speed difference

factor on the George Washington (GW) dataset.

HED BP BP2

Method |V |med |V |max T T ± T ±

Keypoint 74 366 6.27 196.65 +190.38 6.73 +0.46
Grid 90 509 8.25 362.15 +353.89 8.18 -0.07
Projection 74 391 5.15 142.10 +136.96 5.78 +0.63
Split 80 434 5.83 136.24 +130.40 5.82 -0.01
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FIGURE 5.22: MAP values of Table 5.11.

Parameter Transfer

In this section, we present the outcome of experiments which are conducted with the

transferred parameters from section 5.5.2. The transferred parameters are optimized on

GW dataset and have been tested on BOT and AK datasets as shown in Table 5.10.

The following experiments show that the proposed system can achieve promising results

on predefined parameters. The performance of the system slightly drops as indicated in

Table 5.11 and corresponding plots in Figure 5.22.

TABLE 5.10: Optimal and transferred parameters.

τn τe α β

Transferred GW 2 2 0.3 0.1
Optimal AK 4 16 0.5 0.1
Optimal BOT 16 16 0.5 0.1

TABLE 5.11: Mean average precision (MAP) for HED-based KWS sys-
tems on the Botany (BOT) and Alvermann Konzilsprotokolle (AK) datasets

with optimal and transferred parameters.

BOT AK

Method MAP ± MAP ±

Optimal 51.74 79.72

Transfered 51.59 -0.15 78.03 -1.69
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5.7.2 Comparison with Dynamic Time Warping

In this section, we compare the graph-based KWS with state of the art template-based

keyword spotting using DTW alignment. Three reference methods are considered for

the GW and PAR benchmark datasets. The first approach, DTW’08 (Rodriguez &

Perronnin, 2008) employs gradient features histogram of oriented gradient (HoG). For

extracting HoG features, the images are split into M×N cells. Then for each cell,

horizontal and vertical gradients are used to calculate the polar gradient pairs (m,θ).

The radial histogram T is then calculated by assigning the angles θ to the nearest bin.

The sum of m in that specific bin constitutes the magnitude of bin t ∈ T . The overall

number of features are therefore M×N×T . The second reference, the slit style feature,

DTW’09 (Terasawa & Tanaka, 2009) performs the same task but on overlapping windows

rather than segmented cells.

The third approach, DTW’16 (Wicht et al., 2016) is based on a convolutional neural

network (CNN) features. The feature vectors are extracted from the datasets without

supervision (without labeled training data) using deep belief networks. The approach

stacks two convolutional restricted Boltzmann machines (CRBM). The first layer is

trained with extracted image patches. Then, the second layer is trained with the frozen

weights from the first layer.

Table 5.12 shows a comparison with state of the art for template-based keyword spot-

ting using DTW alignment. The DTW’09, DWT’08, and DTW’16 results are taken

from Wicht et al. (2016), whereas, for HED, we show the results for the best performing

graph representations found in Table 5.7. Figure 5.23 shows the plot of Table 5.12 values.

The results indicate that the template-based keyword spotting methods achieve perfor-

mance results in the equivalent rate. DTW’09 and DTW’16 tend to outperform BP and

BP2, while HED achieves the overall best results on these benchmarks.
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FIGURE 5.23: MAP values of Table 5.12

The strong performance of HED is somewhat surprising when comparing the sophisti-

cated CNN features of DTW’16 with the relatively simple coordinate labels used for the

handwriting graphs. It emphasizes the representational power of graphs for capturing

relevant structures of the handwriting.

Regarding runtime, HED has a quadratic time complexity to the graph size and DTW

has a quadratic time complexity concerning the sequence length. In our experimental

setting, the graph size is typically smaller than the sequence length. On the GW dataset,

for example, the median graph size is 74, while the median sequence length is 134. In

this scenario, HED also reduces the computational effort when compared with DTW.

TABLE 5.12: Mean average precision (MAP) for graph-based KWS sys-
tems in comparison with three template-based reference systems on the
George Washington (GW) and Parzival (PAR) dataset. The first, second,

and third best systems are indicated by (1), (2), and (3).

Method GW PAR Average

Reference (Template) DTW’08 63.39 47.52 55.46
DTW’09 64.80 73.49 (1) 69.15 (3)
DTW’16 68.64 (2) 72.38 (3) 70.51 (2)

Graph (Template) BP 66.08 66.23 66.16
BP2 68.42 (3) 68.69 68.55
HED 69.28 (1) 72.82 (2) 71.05 (1)
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FIGURE 5.24: MAP values of Table 5.13

5.7.3 Combination of HED and Dynamic Time Warping

In the next experiment, we investigate the potential of combining HED and DTW pro-

posed in section 5.2. We have implemented our DTW reference method, following the

general ideas of T. Rath and Manmatha (2007) and using the features proposed by Marti

and Bunke (2002). Image preprocessing includes skew and slant correction as well

as height and width normalization. Afterward, a sliding window of one-pixel width

extracts a sequence of nine geometric features. They are aligned utilizing DTW using a

Sakoe-Chiba band (Sakoe & Chiba, 1978) with a width of Ω percent. The Sakoe-Chiba

band speedups the alignment by excluding unusual warping paths. The parameter Ω is

optimized on the validation set over a range of Ω ∈ {0.20,0.25, . . . ,0.70}. The resulting

cost of the warping path is normalized with the length of the warping path to obtain a

keyword spotting score.

The normalized HED and the DTW scores are combined with a weighted sum HED+

ω ·DTW . The weight ω is optimized on the validation set over a range of ω ∈

{0.1,0.2, . . . ,2.0}.

Table 5.13 reports the combination result on the GW and PAR test sets. The accompanying

plots in Figure 5.24 illustrate the results.

The DTW system achieves a MAP of 64.00 on GW and 71.74 on PAR, which is compa-

rable with the other reference methods listed in Table 5.12. Although DTW has a lower

performance than HED, the combination leads to a significant increase in the MAP by
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8.55% on GW and 4.18% on PAR. The results highlight the complementary properties

of the two methods.

TABLE 5.13: Mean average precision (MAP) for the combination of DTW
and HED on the George Washington (GW) and Parzival (PAR) datasets.

Method GW PAR

Individual DTW 64.00 71.74
HED 69.28 72.82

Combined DTW+HED 77.83 +8.55 77.00 +4.18

5.7.4 Comparison with Learning-Based Keyword Spotting

Our graph-based approach serves as a template-based keyword spotting approach . A

template-based keyword spotting requires minimum human interaction in preparation

and annotation of the collection. As we explained, it can search for the keyword in a

collection of scanned documents with a single template image of the keyword. The low

requirements of template-based keyword spotting are especially useful in the context

of historical manuscripts, where obtaining labeled training data often requires human

experts and thus becomes time-consuming and costly.

However, if labeled training data can be made available to the system, learning-based

approaches can profit from this knowledge and build more robust spotting systems.

In Table 5.14 and corresponding plots in Figure 5.25, we compare our proposed template-

based method with recent learning-based methods from the ICFHR2016 competition (Pratikakis

et al., 2016), viz. CVCDAG (Almazan et al., 2014), PRG (Sudholt & Fink, 2016), and

QTOB. CVCDAG is based on Pyramidal Histogram Of Characters (PHOC) features

in conjunction with an SVM, PRG is based on the same features in conjunction with a

Convolutional Neural Network (CNN), called PHOCNet. PHOCNet utilizes a 19 layer

CNNs which consists of 13 convolutional, three max-pooling, and three fully connected
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FIGURE 5.25: MAP values of Table 5.14

layers. QTOB is based on another CNN following a triplet network approach that uses

33 convolutional layers and one fully connected layer for the CNN architecture.

As expected, the learning-based methods achieve a higher performance in general, and

especially PRG significantly outperforms the proposed HED-based method. Nevertheless,

it is interesting to observe that HED can keep up with the performance of QTOB and

outperforms CVCDAG in one out of three cases, despite the fact that no learning has

been performed for HED. This observation demonstrates the high potential of HED as a

template-based keyword spotting method.

Note that template-based and learning-based methods have complementary properties

and can be used together in the digitization process of historical manuscripts. In the

beginning, when no labeled data is available, a template-based method can be used to

cluster similar words that are then labeled conjointly and efficiently by a human expert.

As soon as enough training samples become available, learning-based methods can be

trained to perform a more accurate search. Finally, when enough labeled data is available

to train robust character models, a full transcription can be attempted together with a

word dictionary (Frinken et al., 2014).
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TABLE 5.14: Mean average precision (MAP) for graph-based KWS sys-
tems in comparison with three state-of-the-art learning-based reference
systems on the Alvermann Konzilsprotokolle (AK) and Botany (BOT)
datasets. The first, second, and third best systems are indicated by (1), (2),

and (3).

Method BOT AK Average

Reference (Learning) CVCDAG 75.77 (2) 77.91 76.84 (2)
PRG 89.69 (1) 96.05 (1) 92.87 (1)
QTOB 54.95 (3) 82.15 (2) 68.55 (3)

Graph (Template) BP 49.57 77.24 63.41
BP2 50.94 75.46 63.20
HED 51.74 81.06 (3) 66.40

5.8 Conclusion

The HED-based keyword spotting approach presented in this thesis has demonstrated

several promising properties supported by empirical experiments. First, it approximates

the graph edit distance and hence is flexible in the sense that it allows representing

handwriting with any graph types, without constraints on the graph structure or the label

alphabets for nodes and edges. Secondly, it can be computed in quadratic time concerning

the graph size and hence is efficient for matching large graphs and large numbers of

graphs. Thirdly, the experimental evaluation of system on four benchmark datasets for

keyword spotting in historical manuscripts has demonstrated that it is effective in terms

of mean average precision and compares favorably with other template-based keyword

spotting systems.

Unlike dynamic time warping, which considers handwriting as a sequence of feature

vectors, HED considers the two-dimensional global structure of the handwriting. The

two perspectives are different and complementary. We have observed by combining the

two methods into a multiple-classifier system that outperformed the individual methods.
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Chapter 6

Conclusions and Outlook

In this thesis, we have proposed a graph-based keyword spotting system. The approach

uses a flexible HED algorithm that can match any type of labeled graph. The computa-

tional complexity of HED is quadratic with respect to the number of graph nodes, which

leads to a high keyword spotting efficiency similar to that of DTW. On four benchmark

datasets, we have demonstrated that our proposed method is able to outperform other

state-of-the-art template-based approaches, both in terms of accuracy and speed.

The statistical representation using feature vectors in DTW-based methods provides a

different perspective on the handwriting when compared with the structural representation

using graphs. By combining the two complementary methods, we have achieved a further

significant improvement of the keyword spotting accuracy.

Handwritten keyword spotting remains an open field of research. We can suggest several

promising lines of future research. In our opinion, the most compelling work would

be a segmentation-free approach. One of the problems we have mentioned was the

automatic segmentation and its induced error to the end-to-end keyword spotting system.

We observed that the automatic segmentation may contribute to undesirable errors. We

speculate that it might be rewarding to use graph-based representations for the whole

page. In this scenario, keyword spotting would have a straightforward workflow by
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eliminating or even reducing the complexity of segmentation. The segmentation-free

approach requires matching a query to a whole document page. Hence the query must be

regarded as a subset of a document in contrast to the one-to-one association. For instance,

the page can contain several instances of the query keyword. The other concern would be

the graph labels as they are coordinates in the image. These labels must accordingly be

adjusted for the query or the documents.

Other future directions include the improvement of the current system such as an inves-

tigation of other, potentially more abstract graph-based representations of handwriting.

It also may be rewarding to combine the HED spotting scores of different graph-based

handwriting representations to improve the performance of the spotting system. Finally,

given labeled training data is available, an intriguing open question is how to perform

machine learning on graph-based representations and graph matching in order to profit

from the labeled data.
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Query: Colonel

Rank=1 True D = 0.1109 Rank=2 True D = 0.1219 Rank=3 True D = 0.1328 Rank=4 True D = 0.1405

Rank=5 True D = 0.1410 Rank=6 True D = 0.1411 Rank=7 True D = 0.1421 Rank=8 True D = 0.1511

Rank=9 False D = 0.1530 Rank=10 False D = 0.1653 Rank=11 False D = 0.1663 Rank=12 False D = 0.1737

Rank=13 False D = 0.1765 Rank=14 False D = 0.1774 Rank=15 False D = 0.1775 Rank=16 False D = 0.1798

Rank=17 False D = 0.1839 Rank=18 False D = 0.1842 Rank=19 False D = 0.1848 Rank=20 False D = 0.1857

FIGURE A.1: First 20 retrieved words for query Colonel.
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Query: no

Rank=1 True D = 0.0649 Rank=2 True D = 0.0788 Rank=3 True D = 0.0841 Rank=4 True D = 0.0870

Rank=5 True D = 0.0878 Rank=6 True D = 0.0997 Rank=7 True D = 0.1039 Rank=8 True D = 0.1066

Rank=9 False D = 0.1076 Rank=10 False D = 0.1085 Rank=11 False D = 0.1112 Rank=12 False D = 0.1114

Rank=13 False D = 0.1159 Rank=14 False D = 0.1181 Rank=15 True D = 0.1184 Rank=16 False D = 0.1194

Rank=17 False D = 0.1203 Rank=18 False D = 0.1206 Rank=19 False D = 0.1210 Rank=20 False D = 0.1254

FIGURE A.2: First 20 retrieved words for query no.
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Query: now

Rank=1 True D = 0.0587 Rank=2 True D = 0.0713 Rank=3 True D = 0.0730 Rank=4 True D = 0.0758

Rank=5 True D = 0.0797 Rank=6 True D = 0.0854 Rank=7 False D = 0.0916 Rank=8 True D = 0.0918

Rank=9 True D = 0.0963 Rank=10 True D = 0.0975 Rank=11 False D = 0.0978 Rank=12 False D = 0.1015

Rank=13 False D = 0.1016 Rank=14 False D = 0.1022 Rank=15 False D = 0.1027 Rank=16 False D = 0.1039

Rank=17 True D = 0.1056 Rank=18 False D = 0.1062 Rank=19 False D = 0.1085 Rank=20 False D = 0.1091

FIGURE A.3: First 20 retrieved words for query now.
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Query: soon

Rank=1 True D = 0.0803 Rank=2 True D = 0.0835 Rank=3 True D = 0.0843 Rank=4 True D = 0.0858

Rank=5 True D = 0.0866 Rank=6 True D = 0.0866 Rank=7 True D = 0.0881 Rank=8 True D = 0.0968

Rank=9 False D = 0.0997 Rank=10 False D = 0.1041 Rank=11 False D = 0.1072 Rank=12 False D = 0.1093

Rank=13 False D = 0.1099 Rank=14 True D = 0.1143 Rank=15 False D = 0.1158 Rank=16 False D = 0.1161

Rank=17 False D = 0.1161 Rank=18 False D = 0.1177 Rank=19 False D = 0.1180 Rank=20 False D = 0.1197

FIGURE A.4: First 20 retrieved words for query soon.
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Query: Colonel

Deletion Substitution Insertion Rank=1 True D = 0.1109

Deletion Substitution Insertion Rank=2 True D = 0.1219

Deletion Substitution Insertion Rank=3 True D = 0.1328

Deletion Substitution Insertion Rank=9 False D = 0.1530

Deletion Substitution Insertion Rank=10 False D = 0.1653

Deletion Substitution Insertion Rank=11 False D = 0.1663

Deletion Substitution Insertion Rank=12 False D = 0.1737

Deletion Substitution Insertion Rank=13 False D = 0.1765

Deletion Substitution Insertion Rank=14 False D = 0.1774

Deletion Substitution Insertion Rank=15 False D = 0.1775

FIGURE A.5: Ten samples from HED matching for query Colonel.

Query: no

Deletion Substitution Insertion Rank=1 True D = 0.0649

Deletion Substitution Insertion Rank=2 True D = 0.0788

Deletion Substitution Insertion Rank=3 True D = 0.0841

Deletion Substitution Insertion Rank=9 False D = 0.1076

Deletion Substitution Insertion Rank=10 False D = 0.1085

Deletion Substitution Insertion Rank=11 False D = 0.1112

Deletion Substitution Insertion Rank=12 False D = 0.1114

Deletion Substitution Insertion Rank=13 False D = 0.1159

Deletion Substitution Insertion Rank=14 False D = 0.1181

Deletion Substitution Insertion Rank=16 False D = 0.1194

FIGURE A.6: Ten samples from HED matching for query no.
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Query: now

Deletion Substitution Insertion Rank=1 True D = 0.0587

Deletion Substitution Insertion Rank=2 True D = 0.0713

Deletion Substitution Insertion Rank=3 True D = 0.0730

Deletion Substitution Insertion Rank=7 False D = 0.0916

Deletion Substitution Insertion Rank=11 False D = 0.0978

Deletion Substitution Insertion Rank=12 False D = 0.1015

Deletion Substitution Insertion Rank=13 False D = 0.1016

Deletion Substitution Insertion Rank=14 False D = 0.1022

Deletion Substitution Insertion Rank=15 False D = 0.1027

Deletion Substitution Insertion Rank=16 False D = 0.1039

FIGURE A.7: Ten samples from HED matching for query now.

Query: soon

Deletion Substitution Insertion Rank=1 True D = 0.0803

Deletion Substitution Insertion Rank=2 True D = 0.0835

Deletion Substitution Insertion Rank=3 True D = 0.0843

Deletion Substitution Insertion Rank=9 False D = 0.0997

Deletion Substitution Insertion Rank=10 False D = 0.1041

Deletion Substitution Insertion Rank=11 False D = 0.1072

Deletion Substitution Insertion Rank=12 False D = 0.1093

Deletion Substitution Insertion Rank=13 False D = 0.1099

Deletion Substitution Insertion Rank=15 False D = 0.1158

Deletion Substitution Insertion Rank=16 False D = 0.1161

FIGURE A.8: Ten samples from HED matching for query soon.
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FIGURE A.9: The precision-recall, F1-recall and ROC curves for query
Colonel.
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FIGURE A.10: The precision-recall, F1-recall and ROC curves for query
no.
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FIGURE A.11: The precision-recall, F1-recall and ROC curves for query
now.
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FIGURE A.12: The precision-recall, F1-recall and ROC curves for query
soon.
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