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Abstract

A Framework for Energy Efficient UAV Trajectory Planning

Bruno Pereira de Carvalho

Motivated by the reduced flight time of battery-powered UAVs, this thesis proposes a method-
ology for determining the optimal trajectories of a quadrotor in the sense of a trade-off between an
energy-based cost and a time-related cost. Two main cost functionals are proposed to address the
battery power consumption.

Firstly, a trade-off between costs associated with body acceleration and total time is studied
for nonsteady maneuvers. An optimal state feedback solution that considers the nonlinearities of
the quadrotor’s equations of motion and the drag force components were developed. The main
advantage of this technique is that it provides a state-feedback analytical expression.

Secondly, a simplified energy consumption model based on the blade element momentum the-
ory (BEMT) is developed to deal with the cruise portion of the flight. The analytical solution for
the constant altitude steady state flight minimum-energy problem was obtained and was similar
to the maximum range problem solution. Based on the nature of the solutions, a hypothesis of a
geometrical bound for the optimal pitch angle is raised.

The problems are formulated as a free terminal time optimal control problem using a trade-off
cost index and solutions are derived using the Pontryagin’s Minimum Principle (PMP). Simulations

show the suitability of the proposed method.
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Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen sondern das Erwer-

ben, nicht das Da-Seyn, sondern das Hinkommen, was den grifiten Genuf} gewdhrt.

[Indeed it is not knowledge, but the act of learning, not possession, but obtaining, not arrival,

but the act of getting there, which grants the greatest enjoyment. |

(Carl Friedrich Gauss, 1808)
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Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) have grown in popularity in the last decades, climbing their
way to leading technology in the traditional aviation industry. Being remotely controlled, they have
the ability to reach places and accomplish tasks that would be more costly and/or timely if performed
by human beings. Due to the realization of its business potential, unmanned aerial technology has
been adopted across many industries, encouraging the research and development thereof.

A quadrotor unmanned aerial vehicle is a class of rotorcrafts characterized by a configuration of
four propellers positioned in such a way that an antipodal pair of rotors counterbalances the torque
of the opposite pair. Position and yaw can be controlled by changing the thrust of each propeller.
Due to their versatility, quadrotors have been used in several fields in recent years. Applications can
vary from aerial mapping, traffic and agricultural surveillance, to rescue operations and package
delivery, to name a few.

Despite the increasing number of applications, rotorcraft vehicles are not the most energy effi-
cient design choice since lift is delivered uniquely by the propellers at all times. Although alternative
sources of energy, such as solar and hydrogen cells, had been introduced in UAVs, the ratio of power
to weight continues to rule the total system efficiency. Thus, in order to accomplish promising new
applications, in which longer distances are flown, battery-powered UAVs will need to overcome

their reduced flight endurance issue.



1.2 Literature Survey

There have been several articles addressing the multirotor energy efficiency and flight endurance
matters, mainly tackling these subjects from the design perspective. A substantial efficiency im-
provement in most of vehicle subsystems has been achieved in the past few years. The author in
[1] presents a method to design optimum propellers in the sense of minimizing momentum losses.
The influence of design aspects, such as propeller configuration, number of blades and rotors, frame
dimensions and shapes, battery, on the UAV efficiency are investigated in [2], [3], [4], [S]. Authors
in [6] propose a model that relates the chosen mass of rotorcrafts to their endurance. Reference
[7] concludes that most of the power consumed by quadrotors at hover is due to the motors, while
the remaining power is spent in electrical circuits. In addition, new strategies to expand the flight
endurance have been proposed. For instance, [8] included a laser power beaming as an extra source
of energy, [9] proposed a battery swapping system, while [10] developed and assembled a novel
six-rotor design to carry payloads in narrow corridors.

Another way of looking at the flight endurance issue is by considering the question of how to fly
a certain UAV in a more (or the most) energy-wise cost-effectively way. Answers to this problem
have not been vastly investigated. In order to fill the gap in the literature, this thesis will focus on
the quadrotor trajectory planning problem exploring algorithms whose main feature is the energy
economy.

Motivated by the expansion of the air traffic, path optimization techniques for aircraft have
started to be explored. A survey of the flight trajectory optimization problems for fuel propelled
aircraft vehicles is presented in [11]. In civilian aviation, real-time flight planning algorithms are
incorporated in a device named flight management system (FMS). A flight management system
(FMS) runs algorithms that provide optimal trajectories dependent on a parameter called the cost
index (C7). The cost index weighs different sources of cost in a flight operation according to the
flight mode. This parameter is entered by the pilot. In UAVs, path generation algorithms as part of

a flight management system is a more recent idea [12], [13], [14].



The formulation of the trajectory planning problem for UAVs has evolved from the simple short-
est path approach to complex optimization problems, such as minimum time [15], [16], [17], min-
imum snap [18], minimum derivatives [19], among others. Dynamic programming [20], Model
Predictive Control (MPC) [21], and genetic algorithms [22][23], have been proposed to address
signal constraints and feasibility [19], collision avoidance [24], nonlinearities [25], and multiple
vehicle formation [24][26].

Trajectory generation for UAVs based on energy-related criteria has not been vastly addressed in
the literature. A heuristic procedure is proposed in [27] to solve the Generalized Traveling Salesman
Problem with Neighbourhoods (TSPN), addressing the energy consumption problem of a six-rotor
aircraft. By estimating the available energy for the quadrotor mission, [28] proposes an adaptive
mission planner by solving numerically a Mixed Integer Linear Programming (MILP) problem.
Reference [29] derives a theoretical model on the power consumption of a fixed-wing UAV. It for-
mulates a trajectory optimization problem and proposes a solution based on linear state-space ap-
proximation and sequential convex optimization techniques. The author of [30] solved analytically
the unconstrained minimum kinetic energy trajectory generation problem for a quadrotor in level
flight without considering drag effects.

An essential part of the minimum-energy trajectory generation problem is the formulation of
a power consumption model. Reference [31] sets up and experiment in a wind tunnel to study
the power consumption of a multi-rotor in the forward flight condition. Based on results of less
than 10% of error, they conclude that static propeller measurements together with blade element
simulations are sufficient to estimate the performance of a propeller in forward flight. A method
to evaluate the energy consumption of a vertical take-off and landing UAV (VTOL) is proposed
in [32]. Their approach combines blade element theory and a model of the wings to formulate an
optimization problem that can be solved numerically. The authors in [33] develop a theoretical
power consumption model for a multi-rotor vehicle in steady-state flight. Although their model
neglects the influence of the wind speed, their experimental results show small errors.

Reference [34] determines trajectories for a quadrotor solving numerically an optimal control
problem in the sense of minimizing a power consumption model which is related to the angular

accelerations of the propellers. Based on the model obtained in [33], reference [35] proposes an
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Figure 1.1: Thesis structure diagram

energy-based flight planning algorithm for traffic management system, in which routing algorithms

are used to find optimal paths.

1.3 Contributions

The present work proposes a methodology for determining analytically the optimal trajectories
of a quadrotor in the sense of a trade-off between a cost associated with the consumed energy
and a time-related cost, which, according to the author’s knowledge, has not been done before.
Analytical solutions are particularly useful in real time algorithms for embedded systems, since
they do not require a significant amount of computational power. In addition, this type of solutions
usually provides helpful insights into the nature of the problem. The problems are formulated as a
free terminal time-optimal control problems using a trade-off cost index and solutions are derived
using the Pontryagin’s Minimum Principle (PMP) [36]. This thesis contributes to the field of UAV

trajectory planning as follows:

(1) An optimal state feedback solution for nonsteady flights that considers the nonlinearities of

4



the quadrotor’s equations of motion and the drag force is developed in Chapter 3.

(2) Based on the blade element momentum theory, the formulation of an energy consumption
optimal control problem of electric-powered quadrotors in steady forward flight at constant

altitude is presented in Chapter 4.

(3) In Chapter 4, an analytical optimal solution for the minimum-energy problem in steady for-

ward flight at constant altitude is obtained.

(4) A suboptimal solution for the energy consumption optimal control problem of electric-powered

quadrotors in steady forward flight at constant altitude is obtained.

(5) From the geometrical interpretation of the solution proposed in Chapter 4, a range of efficient
pitch angles for constant altitude steady forward flight where quadrotors should operate is

obtained.

1.4 Thesis Structure

An overview of quadrotor modelling and important theories used later in this thesis are pre-
sented in Chapter 2. Furthermore, Chapter 2 provides a general overview of the theory used in the
problem solution, namely optimal control theory. The problems formulated in this thesis are orga-
nized by their nature as shown in the diagram in Figure 1.1. Chapter 3 presents an optimal real-time
flight management system for quadrotor UAV's that minimizes a trade-off between costs associated
with body acceleration and total time. This general solution is then studied under the influence of
body drag. Simulation results are provided for situations where the drag effect is considered. A
flight management economy mode system is presented in Chapter 4 for long steady forward flights.
Simulation results and the geometric interpretation of the solution are also provided. Conclusions

and possible extensions of this work are then discussed in Chapter 5.

1.5 Published Work

Most of the work of Chapter 3 has been published in [37]:



B. Carvalho, M. Di Perna, L. Rodrigues, "Real-Time Optimal Trajectory Generation
for a Quadrotor UAV on the Longitudinal Plane," in European Control Conference,

June 2018, Limassol, Cyprus, pp. 3132-3136.



Chapter 2

Review of Modelling and Optimal

Control

The first part of this chapter presents an overview of quadrotor modeling and the notation used
throughout this thesis. A summary of optimal control theory is introduced in section 2.2.

The subscript notation is used for partial derivatives, i.e., L, is short for the partial derivate of

dL

g » 18 often

the function L with respect to the variable a. Additionally, the time derivative of L, i.e.

denoted by L.

2.1 Quadrotor Modelling

Quadrotor models started to be vastly researched at the end of the last century having as starting
point the consolidated work on helicopter aerodynamics. Nowadays, due to simplicity and cost,
most of the developed quadrotors in the market, differently from the commercial helicopters, employ
a fixed-pitch blade design. The following sections will summarize the main aspects of the fixed-

pitch quadrotor model which are used in this thesis.

2.1.1 Frames of Reference and Rotation Representation

In order to formulate a dynamic model for a quadrotor two frames of reference are introduced

according to the Figure 2.1. Due to the relatively small magnitude of the accelerations experienced
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Figure 2.1: Frames of reference.

by the Earth, it can be accurately approximated as an inertial reference frame for the applications
considered in this thesis. The inertial reference frame {Z} has its base point / fixed on the surface
of Earth. For a local area around the base point I, the Earth can be considered flat. The set {ix,
iy, i} forms the basis vectors of {Z}, where the pair iy, i, defines the longitudinal plane, with i,
pointing up. The point B, which coincides with the center of gravity of the quadrotor, and the set of
basis vectors {by, by, b, }, which is aligned with the quadrotor principal axes of inertia, define the
fixed-body reference frame {5}.

Euler stated in the form of two theorems that two independent orthonormal coordinate frames
may be related by less than four successive rotations about coordinate axes, where no two succes-
sive rotations may be about the same axis [38]. Additionally, the two independent orthonormal
coordinate frames may be related by a single rotation about some axis. A rotation between the
aforementioned two frames is usually described by one of the three representations: Euler angles,
rotation matrices, or quaternions. The latter will not be revised in this document since it is not used

in the scope of this work.

Rotation Matrices and Euler Angles

Let “[a] € R3 be a point in three-dimensional space represented in the inertial coordinates

and B[a] € R be a representation of the same point expressed in the body-fixed coordinates. The



Figure 2.2: Rotation about z-axis.

following linear transformation then holds,

"la] = AR "], (1)

where é R is called transformation matrix [39]. It is also possible to represent a single rotation about

the third coordinate (z-axis) by

R.(a) = |sin(a) cos(a) 0], (2)

where « is the angle of rotation according to the Figure 2.2. Similarly, one can write the same



transformation for the y and x-axes,

Rfa)=| 0o 1 0 (3)

Ri(a) = |0 cos(a) —sin(a) 4)

0 sin(a) cos(a)

which complete one possible set of rotation matrices in the three-dimensional space. As a con-
sequence, the result of subsequent rotations R, (o) and R, (az) of a vector u may be described
by

u' = Ry(a1)Ry(a2)u. 5)

Following Euler’s theorems, one could find a parameterization where the rotation matrix R, (¢, 6,)
is the product of consecutive single rotations R (1)), Ry (6), and R(¢), about the third, second, and

first axes, respectively, i.e.,

Rya(9,0,9) = R.(¢) Ry (0) Re (o) (6)

where ¢, 0, and v, are the so-called Euler angles or roll, pitch, and yaw, respectively. In addition, be-
cause Ry, (¢, 6,1) is orthogonal with determinant equal to 1, then R;ylx(gb, 0,1) = Rzyx(é, 0,1).
Finally, the relation of a vector Ya € R represented in the inertial coordinates and the same vector

Ba € R3 expressed in the body-fixed system of coordinates is the following,
'a = 4R"(¢,0,9)"a (7)

where ¢, 0, and 1) is one possible set of Euler angles from frame {Z} to {B} (see Figure 2.3), and
the bracket notation used in (1) as well as the subscript zyz are dropped for the sake of brevity.

Similarly, the following expression holds

10



Figure 2.3: Euler angles.

Pa = fR(¢,0,9)a. (®)

In order to avoid singularities, the chosen set of Euler angles is assumed to satisfy the following

interval.

2.1.2 Rigid Body Dynamic Model
In order to formulate the quadrotor equations of motion, the following assumptions are made:
Assumption 2.1. The quadrotor is a rigid body.

Assumption 2.2. The origin of the body-fixed frame {B} corresponds to the quadrotor center of

gravity.

11



Assumption 2.3. The body-fixed frame coincides with the principal axes of inertia of the quadrotor.
Assumption 2.4. The quadrotor is considered to fly at altitudes where the ground effect is negligible.
Assumption 2.5. Wind disturbance is considered to be small and is neglected.

Let the vector x = [z y z]* represent the position of the quadcopter in the inertial frame {Z} and
the vector @ = [¢ 6 1]T be the rotation angles (roll, pitch, and yaw) from the inertial frame to the
body-fixed frame. From Newton’s second law of motion, the translational dynamics of a quadrotor

can be described by the following second-order differential equation written in the inertial frame

[40]
%:—m-+lfmmfﬁ+—lﬁmxm )
Z m B m 9
where g is the gravitational acceleration, m is the quadcopter mass, D(x,0) = D, (x,0)ix +

Dy(x,0)iy + D.(x,0)i, is the drag force acting at the center of gravity of the vehicle, T = T'b,
is the total thrust vector generated by the propellers, and éR(G) is the rotation matrix from the
body-fixed frame to the inertial frame as described in (6).

Let w = 6 be the vector which represents the quadrotor angular velocity.From Euler’s rotation
equations, the rotational motion of a quadrotor is described by the following first-order differential
equation,

I =M - w x (Iw), (10)

where I is the inertia matrix of the quadrotor,

Ty —T3)
M= Z(TQ—T4) (11)

My — My + M3 — My

comprises the torques generated by the propellers (see Figure 2.4), and [ is the quadrotor arm length.

From the definition of principal axes, the inertia matrix can be represented in terms of its principal

12



T
M, 3
T,
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M;
- Iy
“
by | b;.u
Figure 2.4: Thrust and torque convention
components in the body fixed frame
Io. 0 O
1=|o0 1, 0]- (12)
0 0 I,

Expressions for the thrust 7; and torque @;, fori = 1, ..., 4, generated by each propellers are derived

in the next sections.

2.1.3 Thrust and Torque

Blade Element Momentum (BEM) theory combines equations obtained from both blade element
(BET) and momentum theories to estimate forces, torques, and power involved in a rotor-propeller
system. This subsection adapts the derivations in [41] to the notation and framework used in this
thesis.

Let v € R? be the quadcopter velocity. Considering assumption 2.5, the apparent stream veloc-
ity into the rotor V has the same magnitude of v in the opposite direction. Let v;,q € R3 be the
induced velocity caused by the acceleration of the air through the spinning rotor. For convenience,

let the unit vector b), be defined as b, = —b,. At the rotor, the actual velocity is the sum of the two

13
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Figure 2.5: Rotor airstream control volume

aforementioned velocities,

Vi =V + Vipg. (13)

Downstream, the air velocity in the far-wake region is vo € R3.

Momentum Theory

The following assumptions are considered.
Assumption 2.6. The flow is considered to be steady, irrotational, inviscid and incompressible.

Assumption 2.7. Horizontal forces acting into the rotors are assumed to be very small for slow

moving quadrotors.

From Newton’s law [42], defining a control volume delimited by the rotor disc A at the rotor
hub in the axial direction as shown in Figure 2.5, the conservation of momentum at the upstream

and downstream yields the following equation,

T = (1airV2 — MqirV).b), (14)

where 7" is the magnitude of the thrust generated by one single propeller, and 74, is the mass flow

14



rate of the air through the control volume,
air = pAlV1| (15)
where p is the air density. The power generating thrust in a single propeller can be described by the
Piprust = TV1.by, (16)

which is also described by the difference of the rate of kinetic energy in and out of the control
volume,

1. 1.
Pinrust = §mair(v2-b/z)2 - §mair(v-b;)2~ a7

Equating (16) and (17) and replacing the thrust term by (14), yields

b, = —5—by, (18)
from the definition of the actual air velocity at the rotor (vy),
Vina b, = 22 > Vo (19)
Finally, (19) and (15) can be plugged back into (14), which results in
T = 2pA|vi|Ving.bl. (20)

Remark 1. If the quadcopter is performing an axial motion (V = v, b;), and the induced air

velocity occurs only in the axial direction (v;nq = Vind bé ),

T = 2pA(v; + Vind)Vind- (21)

Remark 2. If the quadcopter is hovering (V = 0), and the induced air velocity occurs only in the
axial direction (Ving = Vinq bl,),

T = 2pAv?,,. (22)

15



Figure 2.6: Blade element notation and rotating reference frame {C}.

Blade Element Theory

The blade element theory (BET) intends to estimate the forces and torques acting on the rotor
by integrating the infinitesimal components of these physical quantities along the blade azimuth
() and radius (r) directions (see Figure 2.6). Define each blade element by the coordinates (v,
r), expressed in the rotating reference frame {C} attached to the rotor, which spins at an angular
velocity €. The aerodynamic lift dL(r,7) is the force perpendicular to the total airflow vyoq;(7, )
on the blade element dA as shown in Figure 2.7. Similarly, the aerodynamic drag dD(r,+) is the
force parallel to the total airflow on the blade element.

According to [43], it is possible to derive the following equations for the aerodynamical thrust

and drag components on the blade element,
1 2
dL(7,7) = 5pViotar|"Ci dA (23)

1
dD(v,r) = §p|vtomz\20d dA (24)

where C; and C are the aerodynamical lift and drag coefficients.
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Figure 2.7: Blade element body diagram (longitudinal cut).

The total airflow on the blade element v,.(r, ) can be broken down into two components. The
first one represents the apparent speed due to the rotational motion of the blade, and it is parallel to

the plane of the rotor. It can be shown that its magnitude is

v ()| = Qr. (25)

The second component v,(r, ) appears due the translational motion of the rotor (or frame {C}) plus
the induced airflow. It can be seen from Figure 2.7, how the blade element force components relate
to the lift and draft forces

dF.(v,r) = dLcos® — dDsin® (26)
dF,(v,r) = dLsin® + dDcos® 27

where O is the blade angle, and ® the angle between V., and the rotor plane.
Slow moving rotorcraft UAVSs typically perform forward flight maneuverers in a range of speed
in between 0-20 m/s, and even slower axial motions. Additionally, rotors are commonly operating

at higher at angular speeds than 1,000 rad/s. This fact leads to the following consideration.

Assumption 2.8. For slow moving UAVs, the airflow on the element due to the translational motion

is too small in comparison with the apparent wind velocity onto the blade element due to the rotor

17



rotation, i.e. [v¢(r,7y)| << [vp(7,7)|, then viota(r,7y) = v (r,7).

From the assumption 2.8, one can realize that the angle ® ~ 0. It is therefore possible to get the

Taylor’s first order approximation of expressions (32) and (33), which yields,
dF,(vy,r) =~ dL —dD ® (28)

dFy(y,r) = dL ® +dD. (29)

For modelling purposes the following assumption is made.

Assumption 2.9. The blade is a rigid body, azimuthally uniform, with constant chord length C and

constant blade angle (©) along its radius R.

From Assumption 2.9 that the blade element dA(vy,r) = r drd~y can be replaced by the blade
element dA’(r) = Cdr, which is a rectangle of side C' and infinitesimal height dr. This represen-
tation is valid since forces acting on different blade elements are approximately equal for different
azimuths in the same r. Using equation (25) and Assumption 2.8, the expressions for the aerody-

namical lift and drag in (23) and (24) for the blade element d A’ can then be rewritten as
1 2
dL(r) = ip(Qr) Cy Cdr (30)

1
dD(r) = ip(Qr)QCd Cdr. 31
It is possible to integrate the blade element quantities along r to obtain the thrust and torque

generated by the rotor,

R R
T= nb/ F.dr ~ nb/ (dL — dD®)dr (32)
0 0

R R
M=ny / Fordr ~ / (dL® + dD)rdr, (33)
0 0

where ny, is the number of blades in the rotor. Plugging (30) and (31) into (32) and (33), respectively,
yields
1
T~ nbép(C’l — C3®) C O*R? (34)
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Figure 2.8: Aerodynamic drag model

1
M~ ny2p(Cr® + Cy) C 0% R (35)

All the parameters associated with the rotor geometry can be grouped together in one single con-
stant.

T(Q) ~ CrO? (36)
M(Q) ~ Cp 02, (37)

where Cr and C) are called thrust and drag coefficients, respectively. According to [44], the ratio
between the ideal power to the real power of a rotor is called the figure of merit, which can be
defined as,

CT3/ 2

FM = ——. 38
V20 (38)

2.1.4 Body Drag Force

The force generated by the relative airflow against the UAV in opposition to its translational
motion is called drag. Below supersonic speeds, this effect is explained by three main different
phenomena, each one having more influence in certain flight speed range. They are named form
drag, skin friction drag, and induced drag. The sum of the form and the skin drag is called parasite
drag (or aerodynamic). One way to model this type of effect in one dimension is by the following
relation,

rel

1
D, = §pACd7)2 (39)
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where A is the cross-sectional area, v,¢; is the relative velocity between the vehicle and the wind,
and Cy is the drag coefficient which depends on the vehicle shape and the Reynolds number [45].
Several models of the main types of drag on UAVs have been studied in [46], [47], [48], and

[49]. In this thesis, the total drag effect on the longitudinal motion is modelled as,

D(X, 0) =D, (X7 0) + DO(X) 9) (40)

where, D, is the drag vector that groups the influence of smaller drag terms, for instance, induced
drag. For the longitudinal flight, the aerodynamic component of drag on the quadrotor is modelled
as if it was acting on a cylinder. The right-hand side of Figure 2.8 shows this configuration, where
A is the top area of the cylinder and the A is the largest cross-sectional area. This model yields

the following expressions for the translational drag for a longitudinal flight,

1
Dy (Vg v2,0) = §pCd(AT5m0 + Apcosh)vg\/v2 + v? 41)
1
Daz(vg,v.,0) = ipcd(ATCOSQ + Apsind)v,\/v2 + v2 (42)
thus,
Dm(vxavme) = Dax(vxavzag) + Dox(vxae) (43)
Dz(vxav279) :Daz(vxav,Zae)JrDoz('UZae) (44)

In the literature, there are two approaches for modelling the total drag of flying vehicles. The
first option is the adoption of a complex model that gathers most of the drag-related effects for
rotorcraft vehicles. This approach often increases the complexity of the model to a level that it
becomes unsuitable for study cases of even simple maneuvers such as forward flight. The second
way is to look for relations of the type D = f4(x, @) that suits observation data for a specific
maneuver. Following one approach or the other one is a trade-off between the ability to predict the
behaviour in a vast number of scenarios (flight modes) and the accuracy in a specific application.

This thesis follows the second approach, and the following section will derive the total drag model
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for two specific mode of operations.

Quasi forward flight mode

The quasi forward flight motion is adopted to study the nonsteady portion of the flight.

Definition 1. On the longitudinal plane, the quasi forward flight mode is described as the condition
in which a flying vehicle undergoes significant distances Ax in the horizontal direction while small
vertical displacements Az are performed for any interval of time At > 0 (see Figure 2.9), ie.

v () >> v, (1), V.

It follows from the Definition 1 that the horizontal component of drag (D) is much larger than

the vertical (D)), for almost all time.

Assumption 2.10. In the quasi forward flight regime, the vertical component of drag D, is ne-

glected.

Assumption 2.11. No aggressive maneuvers are performed, i.e., body accelerations are considered

to be small.

For the cases of Assumption 2.11, the pitch angle and the forward speed v, are strictly related. It
follows that the dependency on the orientation can be aggregated in the dependency on the forward
speed, i.e.,

D, (vg, 0) = Dl (vy). (45)

In addition, because of the fact that the quasi forward flight mode will be used to describe slow
trajectories (than in the steady portion), the Taylor’s first order approximation can be used, and the

total drag fits a linear model as in [50], [51].

D! (vy) = kv, (46)

where k is a positive constant to be determined experimentally.
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Ax

Figure 2.9: Quasi forward flight mode.

Constant altitude steady forward flight regime

Definition 2. The constant altitude steady forward flight mode is described as the condition in
which a flying vehicle performs a constant velocity motion in the horizontal direction while no
vertical displacements are expected on the longitudinal plane. In that sense, the magnitude of the
total drag force is equal to the total thrust projection in the horizontal direction, while the quadrotor

weight balances the vertical projection of the thrust.

In this case, only the horizontal component of drag exists (D,). Note that from Definition 2,

Dy (vy,0) = T'sin(0) (47)
Tcos(0) = mg (48)

which yields,
Dy (vy,0) = mgtan(6), (49)

where 6 is the forward flight pitch angle according to Figure 2.8. Because, the right-hand side
of the above equation is constant in v, and strictly monotonic in 6 for the allowed interval 6 €
(0,7/2), it can be shown that if D, (v, #) is stricly monotonic in v, and 6, the solution of (49)
can be parametrized by v;. This result encourages the adoption of a relation f; that is function of
the forward speed only. Because velocities in steady flight are expected to be greater than in the
nonsteady portion (at least for longer periods of time), the total drag is chosen to fit a quadratic
model as in [52], [53],

Da oy (Va) = K10z + kvl (50)
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where k1 and where ko are positive constants to be determined empirically.

2.1.5 Ideal Battery

LiPo (lithium polymer) is the most used type of battery in conventional quadrotors. It is prefer-
able among alternatives, such as LiPo are nickel metal hydride (NiMH) and nickel cadmium (NiCd)
batteries, due its high discharge currents and power density, The following assumptions will be
made regarding the ideal model adopted for LiPo batteries which are similar to the ones made by

[54] for lithium-ion batteries of a all-electric aircraft.
Assumption 2.12. The internal resistance of the battery is small and will be neglected.

Assumption 2.13. The battery’s output voltage (U,) does not vary significantly with the state of
charge (SoC), which means that the battery is considered to operate only in the nominal zone (cen-

tral region of the discharge characteristic curve, Figure 2.10).
Assumption 2.14. Thermal effects are neglected.
Assumption 2.15. The battery capacity does not depend on the amplitude of the current.

Under the above assumptions the electrical power delivered by the battery can be modelled as

P. = -Usg (5D

where U, and g are the battery nominal voltage and charge, respectively.

2.2 Optimal Control

Although the development of optimal control theory got its maturity in the 20th century, few
authors claim that its birth occurred way before, specifically in 1696 when Bernoulli posted the
brachistochrone problem [55]. The primary objective of optimal control theory is to find inputs
to control a dynamic system while optimizing a given performance index (or cost functional). Its
principles find their utility, features, and application in many fields of science, for instance, biology,

economics and business, computer, to cite a few. In engineering, optimal control methods such
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Figure 2.10: Power at 1, 50, and 80 percent depth of 2 discharge at the 3-hour rate (12.1 A/m?) as
a function of current density is shown by the dashed lines. Corresponding cell potential curves are
depicted by the solid lines [Extracted from: Lawrence Berkley National Laboratory; Available in:
https://escholarship.org/uc/item/61g2r55k]

as Pontryagin’s Maximum Principle (PMP), are useful tools for formulating and solving real-life
problems. Flight management system (FMS) algorithms relate closely to optimality principles.
As a sub-case of FMS algorithms, the trajectory planning task of a UAV is considered one of the
countless applications of this theory.

This section reviews a few topics on control theory. For further explanation on this material the

reader is referred to [36], [55], [56], and [57].

2.2.1 Optimal Control Problem Formulation

In simple words, an optimal control problem (OCP) consists of a control system and an associ-
ated cost functional to be minimized.
Control systems are composed of system states, control inputs, boundary conditions, and con-

straints. When described in the continuous time domain, control systems are usually modelled by
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differential equations of the form

x(t) = f(t,x(1),u(t)), (52)

where x(t) € R™ represents the vector of system states, f is a C' function (continuously differen-
tiable), u(t) € U the vector of input variables, ¢ € [to,ts] is time, U C R™ is the set of admissible
control inputs, and n and m are the number of state and input variables, respectively. Moreover,
X; = X(ty) is the final state which is either fixed or free, and xg = X(%o) is the initial state. Finally,
the final time ¢y may be fixed or set free.

The cost functional introduces a penalty (or cost) associated with each system behaviour. Cost
functionals are generally parametrized by the system states, inputs, and time variable. Because it
is a real-valued function on a space of functions, this entity is a functional, usually denoted by the

capital letter .J, and it is of the form

ty
J:/ L(t,x(t),u(t))dr + K(ts,xy), (53)

to

where L, also called Lagrangian, is the running cost, and K is the terminal cost, both C!.
For the sake of readability, the function-of-time notation (¢) is often suppressed for variables
such as x and u, and the optimal control problem is therefore formulated as
ty
J* = inf { /to L(t,x,u)dr + K(tf,xf)}

s.t.

x(t) = f(t,x,u) (54)
x(to) = X

x(ty) = xg

u(t) el.
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2.2.2 Pontryagin’s Maximum Principle

In order to analyze the OCP described in (54), the system dynamic equations (52) can be ad-
joined to the running cost L by the introduction of the time-varying vector of costate variables
(or Lagrange multiplier) JX () € R". Additionally, this thesis considers the unconstrained OCP,
meaning that I/ = R™.

The following theorem states the maximum principle for the fixed-endpoint control problem

formulated in (54), and is adapted from [57].

Theorem 2.1. Let u*: [to,ts] — U be the optimal control input such that the corresponding state
trajectory is x*: [to,ty] — R™. Then there exists a non-null function J: [to,ts] and a constant

Jro <0, such that:

(1) x* and I, satisfy

X*T = HJI (tax*au*7J::7 J;O) (55)
JZT = —He(t,x",u", J;, J;O) 0

where the system Hamiltonian H is defined as
H(t,x,u, 0, Juy) = JL(8). f(t,x,0) + Joo L(t, x,u), (57)
(2) Vt, to <t < ty, the function H of variable u reaches its maximum when u = u*, meaning
H(t,x*u*, J,, J3o) > H(t,x* u,J,, J5). (58)

(3) If the final time ty is set free, the following transversality equation is valid

OK (tf,x7%)

BT . (59)

H(ty) = —

A proof of Theorem 2.1 is found in [57], chapter 4. Since / = R™, the statement in (58) can be
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translated into a necessary condition of optimality,
H, =0. (60)

The time derivative of the Hamiltonian can be written as,

dH O0H dx du dJ,
= +Hx.7+Hu.7+HJI.%.

o o di di 6D

For an optimal input u*, and because of equations (55), and (60), the above expression reduces to

dH _OH
= — + HyHf +0— Hy, .H] =

dH on
dt Ot

e (62)

which putting in words means that if the Hamiltonian does not depend explicitly on time, then is
constant Vt,tg < t < t;. The following remark shall appear handy in the coming chapters of this

thesis.

Remark 3. If there are no penalties associated with final states, i.e. K(ts,xs) = 0, and the final
time is free, it is possible to see from the transversality condition (59) that H(ty) = 0. Furthermore,

if H does not depend explicitly on time, H* = 0 [57].
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Chapter 3

Optimal Trajectory Generation for a
Quadrotor UAV on the Longitudinal

Plane

This chapter presents an optimal real-time flight management algorithm for quadcopter UAVs in
the sense of a trade-off between costs associated with body accelerations and total flight time while
considering the system nonlinearities. This chapter is organized as follows. The optimal control
problem formulation and the stated assumptions are presented in Section 3.1. Section 3.2 describes
the proposed trajectory generation methodology using the Pontryagin’s Minimum Principle (PMP).

The drag effect is discussed in Section 3.3. Section 3.4 is dedicated to simulation results.

3.1 Problem Formulation

The objective of this chapter is to design trajectories for a quadrotor starting at a given position
and arriving with zero speed at a target point (which can be the origin without loss of generality)
by optimizing a trade-off of body accelerations and time of flight. In addition to the assumptions in

section 2.1.2, the following is considered,

Assumption 3.1. Yaw and roll angles are considered to be zero for longitudinal trajectories.
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ix
Figure 3.1: Quadrotor free body diagram and pitch angle convention.

The forces acting on the quadrotor are illustrated in Figure (3.1). The translational equations of

motion in the x-z plane are
md = Tsin(0), mZ = Tcos(0) —mg (63)

where 0 is the pitch angle, considered to be positive clockwise, g is the gravitational constant, T is
the total propeller thrust, and m is the quadrotor mass. The influence of drag will only be studied in
section 3.3.

Rewriting (63), considering horizontal and vertical accelerations as control inputs leads to

T T
up = —sin(0), uy = —cos(0) — g, (64)
m m

respectively. The quadrotor’s position is described by = and 2 and its velocity by v, and v,. Position

and velocities form the state vector X = [z z v, v,]7.

The optimal control problem for trajectory generation can be stated as

ty 1 T
min / <—u u—i—C’1> dr (65)
ll,tf 0 2
subject to (63), x(0) = xo, X(t7) = X¢ (66)

with X3 = [0 20 Vg Vs, X = [0000], ul = [u; us], and C7 is the trade-off coefficient between
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costs associated with body acceleration and total flight time. Note that the cost index (C7) unit is

m?/s*. The higher the value of C7 the higher is the weight on the total flight time (¢ )

3.2 Problem Solution

Theorem 3.1. Assume that C; > 0 is given. Then the solution to the optimal control problem

(65)-(66) is

tan—1 <u§41rg>’ usy # =g
0* = 71./2, U;:_g>u>{>0
_7.‘./2’ U§:_97u>{<0

m(ud+g) *
cos?&*) ) 4 7& :HT/Q

T* = muy, 0 =m/2
—m UT; 0* - _7.(-/2
with 0 € [~ /2,7 /2], where

up? | 2(Cr A+ Jave + Jovz) - Jo.0)”
’UEQ 2(01 + szz + szzo) - JUI(O)z

and the costate variables are given by

6(23?0 + Umotf)
t}

6(220 + Uzotf)

Jm = 3 ’
by

7Jz:

2(3xg + 2ug,ts)
T, (0) = =5 g, (0) =
f

2
%

Proof. Let the cost-to-go be defined as
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The Hamiltonian of the system is

1 1
H= §u% + iug + Cr+ Jovg + Jy,ur + Jyv, + Ty us (72)

A necessary condition for optimality is H,, = H,, = 0 (where H, is the partial derivative of H
with respect to u) which yields

whi=—Jy,, uh=—J,.. (73)

Therefore, from the dynamics (64) we have

o, = Vg, Jyp, = =0, (74)

x

From the Hessian matrix of H with respect to u; and us we get the Legendre-Clebsch sufficient

condition of optimality

H H 1 0
uilul ui1u2 _ > O (75)
Hypu, Hugus 0 1

As in remark 3, there are no penalties associated with final states in our cost functional. Therefore
according to the transversality equations H(t;) = 0. Additionally, the final time is considered to
be free, and the Hamiltonian does not depend explicitly on time, which together with H(ts) = 0
makes H (t) = 0 and H* = 0 [57]. Replacing u} and w3 from (73) in the system’s Hamiltonian
(72) results in

Ji T2 =2(C1 + Jyvg + J1vs) (76)

According to PMP and Hamilton’s equations [58], [57],

Js 0
Jo, —J,
= (77)
J, 0
Jo. —J,

Consequently, J, and .J, are constant in time and .J,,, and J,,, are linear functions that can be written
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in the form

Jop () = —Jut + o, (0) (78)

o (t) = =t + J,,_(0) (79)

Having (78), and (79), one can integrate (74) to find expressions for v, (t) and v, (t).

t J t2
v (t) = —/ Ju, (T)dT + v,(0) = m2 — Ju, (0)t + v,(0) (80)
Ot J t2
v(t) = —/ Ju, (T)dT + v,(0) = ZT — Ju, (0)t + v,(0) (81)
0
Integrating (80) yields
t 3 2
(1) :/ vp(7)dr + 2(0) = Jf; - J”mg))t + vagt + 2(0) 82)
0
t 3 2
(1) :/ vu(F)dr + 2(0) = Jz,t - J”Z(Zo)t oyt + 2(0) 83)
0

It is possible to replace the expressions (78), and (79) and (80) into the system Hamiltonian equation

described in (76) to obtain

JvIQ = 2(01 + Jyvg + JZUZO) - J2 (0) (84)

Vz

Using (73) and (76), equation (84) reduces to

ui = £4/2Cr + oo + Jovzy) — o) (85)

and u3 is obtained similarly as

u§ = :E\/Q(C] + Jyv, + JIUIO) — va(0)2 (86)

The system of equation formed by (76), (80), (81), (82), and (83) at the final time can be solved

for the unknowns J,, J, J,,(0), J,,(0), and ¢;. Doing this, the final time is a real positive root of
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Figure 3.2: Optimal trajectories.

the following quartic polynomial P(Z),

CrZ* —2(v2, +v2) 2% — 12(vgyT0 + v220)Z — 18(2f + 23) = 0 (87)

o

In this case, because the zero and second order terms are negative, there are at least two real roots
and according to the Descartes’ rule of signs one of those roots is positive. The remaining unknowns
for the general solution can then be obtained by the roots of the fourth order linear system composed
by (80), (81), (82), and (83) at the final time, which yields (69), and (70). The results can be replaced
back into equations (80), (81), (82), and (83) in order to get expressions for z(t), z(t), v;(t), and
v.(t). Finally, the thrust profile and pitch angle can then be obtained by inverting the change of

input coordinates in equations (64), which finishes the proof. O

Remark 4. Given a specific Cy, it is possible to determine the optimal inputs u] and u3 knowing

the velocity states (v, v;) and initial conditions (xo, 20, Vg, Uz )-

Remark 5. For the special case in which the quadrotor is initially at zero speed (vy, = 0 and

Vs, = 0) the final time is

2 L L2\ 3
b= <18(£Cg;r ZO)> (88)

Corollary 3.1.1. Assume xg > 0 and zy > 0, then the optimal control law that achieves the state
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(0, 0, 0, 0) is given by the state feedback form

—/2J5 (Vg — V) + J2.(0) — 2J;04, t < ts,

up =14 0 Jt=t,,

+\/2J Uy — Vo) + J2,(0) — 2,0z, t > g,
(89)

—\/2J — Vz) + JZ2.(0) — 2J,04, T < ts,

uy =4 0  t=t,,

—I—\/QJZ(UZ — Vz) + J2.(0) = 2Jp04,, t > ts,

where the switching times occur at

b = (329 + QUmOtf)tf’ W= (320 + 2v,ty)ts (90)

T 6xg + 3vx0tf 629 + 3'Uzotf

Proof. The switching time of u] occurs when the acceleration along z axis is zero, meaning from

equation (74) that .J,,, (ts,) = 0, or similarly, from equation (78), and (79), that

tse = Ju,(0)/ o oD

Equations (69), and (70) can then be replaced into (91) which yields (90). Repeating this procedure

for z finishes the proof. ]

Remark 6. If the quadrotor is initially at zero speed, the switching time of each coordinate is equal

to half of final time.

Remark 7. Since the pitch angle was considered as an input, it is important to note that the gen-
erated optimal trajectories allow pitch discontinuities. However, this simplification has a shallow
impact on the overall performance since the solution is interpreted as a trajectory reference for the

trajectory tracking controller that will then smooth out the dynamic response in closed-loop.
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3.3 Influence of Drag

UAVs are capable of reaching certain speeds in which drag forces start to contribute significantly
to the dynamics [50], [51]. This section will address the case when drag cannot be neglected.
Specifically, this section addresses the cases where the distances to be covered in the horizontal
direction are much greater than in the vertical direction, as discussed in section 2.1.4. The following

assumption is added.
Assumption 3.2. The translational drag force in a quadrotor is modelled linearly as D, = k.

Under the assumptions (3.1-3.2) and equation (9), one can obtain the following translational
dynamics

md = Tsin(0) — kg, mzZ = Tcos(0) — mg. (92)

The original optimal control problem can then be restated as

ty 1 T
min / <u u+ C’1> dr 93)
u,tf 0 2
subject to  x = f(x,u) (94)
x(0) = xo, Xx(tf) = x¢ 95)

with x3 = [0 20 0 0],x{ = [0000], u? = [uy uy], and

(%"
Vy

uy — kvg

U2
where the definition of u; and ug is given by the equations (64), and k = kg/m > 0.

Theorem 3.2. Assume that the quadrotor never turns off its propellers, and a positive trade-off

coefficient Cy is given. Finding the quadrotor optimal pitch angle and thrust profiles which minimize
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the cost functional described by (93)-(95) is equivalent to solving the set of equations

J, = 1220/ti;’c
1,.(0) = 62082
Jr = K3xosinh(kty) /A (96)
Juo, (0) = k2x0(cosh(kts) — 1)/A

Jg (tf) + ng(tf) =2C7

l.

where

A = ktysinh(kty) — 2cosh(kty) +2 # 0 (97)
and finally, applying the identities (67) .

Proof. The dynamics in (92) and cost functional in (93) yield the following Hamiltonian.

1 1
H = iu% + iug + Cr 4 Jpvg + Jy, (u1 — kvg) + Jov, + Jy, ug (98)

The necessary and sufficient conditions of optimality from the previous section remain unchanged,

i.e.,
W=y, uh=—J,, (99)
and,
H H 10
i e > 0. (100)
Hypw, Huguy 0 1

The PMP and Hamilton’s equations become

J 0
Jo, —Jp + kJy,
Tl = . (101)
J, 0
Jo, —J,
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As one can expect, the z coordinate kinematic equations from last section remain the same. How-
ever, the x coordinate kinematic equations are derived as follows. Because J,, is constant .J,,, can

be written as
Jz I
Jy, (1) = <va(0) — k)ekt + o (102)

Having J,,, expressed in (102), one can obtain v,(¢) by integrating 0, = uj — kv, which from (99)
becomes

by = —Jy, — kus. (103)

Considering the initial condition v,.(0) = 0, the integration yields the following,
J. Ju, (0
vg(t) = k—g(cosh(kt) -1)— v’”k()sinh(k:t). (104)

Finally, z(t) is found by integrating (104) as

Ju, (0
k2

x(t) = xo + ﬁ(sinh(kt) — kt) — )(cosh(kt) -1) (105)

k3

It is shown in Appendix A.1 that expressions (104) and (105) reduce respectively to expressions
(80) and (82) of the previous section when the drag coefficient £ approaches zero, as expected.
The kinematic and dynamic equations (104), (105), (81), and (83) form a similar system of

equations that can be solved at the final time. This procedures yields,

k3zosinh(ktf) k?x,(cosh(kts) — 1)
L= 2 T, =0 (106)
J. A , Ju, (0) A ,
12z 62
Jo= =5 Ju(0) = —, (107)
b b

with, A = ktysinh(kty) — 2cosh(kts) + 2 # 0.
As in remark 3, because there are no penalties associated with final states in our cost functional,
H(ty) = 0. Additionally, the final time is set to be free, and the Hamiltonian does not depend

explicitly on time, which together with H (t¢) = 0 makes H* = 0. Then, from the Hamiltonian and
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the expressions in (99),

1 1
H= 5(—Jvz)2 + 5(—Jvz)2 + Cr + Jovg + Ty, (= Ty, ) — kvg) 4+ Jovs + J, (= J,.) = 0. (108)

At the final time v, = 0, and v, = 0, which results in

Jo (tr) + J7 (tg) = 2C1. (109)

The expression (109) composes the fifth equation needed in the system of equations of this theorem.

Similarly, the optimal control law is finally obtained from (99), which completes the proof. U

3.4 Simulation Results

Table 3.1: Hummingbird quadrotor parameters

Mass m 0.71 kg
Propeller size d 20,32 cm
LiPo battery capacity QQ, 2100 mAh
Battery voltage U,,ominai 111V
Max Thrust 20 N
Endurance up to 15 min
Max motor power 4x80W

This section presents the results of simulations for the solution discussed in the previous sec-
tions. The Ascending Technologies AscTec Hummingbird (see Figure 3.3) quadrotor parameters

were adopted according to table 3.1, obtained from [59].

3.4.1 Optimal Trajectories

Figure 3.2 shows the resulting trajectories for position, velocity, pitch angle and thrust. For sim-
ulation purposes the quadrotor’s initial state is considered to be (o, 20, Vz,, v,) = (100, 50, 10, 0),
the trade-off coefficient (C7) is set to 1, and no drag is considered. The final time obtained in the
simulation was 29.45 seconds. Because v,, = 0 m/s, the switching time for the coordinate y occurs

exactly at the half point of flight time. On the other hand, because v,, = —10 m/s the switching
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Figure 3.5: Thrust Profile for different Cost Indices.

time for the coordinate = occurs later at ¢t = 17.64 seconds. Similarly, the anti-symmetry of the pitch
angle with respect to ¢ = ¢ /2 axis does not occur because v, # 0 m/s. Additionally, the symme-
try of the thrust profile with respect to t = ¢ /2 axis would occur when v, = 0 m/s, v, = 0m/s,
and the ratio between x( and 2y is equal to 1. As predicted, the resulted pitch angle profile contains
discontinuities at initial and final states, but shall have a low impact on long-distance flights per-
formance, since trajectory tracking flight controllers are able to stabilize the desired attitude very
quickly in the case of multirotors.

Figure 3.4 illustrates optimal trajectories for quadrotors starting at the same position but with
different initial velocities. The interval between two consecutive marks represents 1 second. The
initial velocity vectors are represented by arrows. As expected, trajectories in which the initial
velocities are unfavorable to move in the direction of the final target take longer than the trajectories
with favorable initial conditions. The optimal path becomes a straight line if the initial velocity
vector vg = (vg,, Vs, ) can be written as vg = coax Where ¢y is a real scalar and xg is the initial
position vector.

Because the controller law is obtained analytically (closed-form expression), real-time path gen-

eration or replanning would not require high onboard processing capabilities.

3.4.2 Trade-off Coefficient
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Figure 3.6: Pitch Angle for different Cost Indices.

Cf is the tuning parameter of the solution, which is used to address the control energy and
final time trade-off. Figure 3.5 shows the influence of C'; on the thrust profile in the case where
(%0, 20, Vzg, Vz) = (100,50,0,0). As expected, higher cost indices provide shorter flight times
but require a higher thrust. Similarly, the behavior of the pitch angle is simulated in figure 3.6
considering the same initial conditions. Higher cost indices require more aggressive maneuvers
(larger pitch angles).

The Pareto-optimal trade-off curve between the total flight time and the amount of control en-
ergy required for different values of C7 is shown in figure 3.7. From this plot, it is possible to
conclude that if the cost index increases the total flight time decreases and the control energy con-

sumed increases.

3.4.3 Influence of Drag

Figure 3.8 shows the influence of drag in the optimal horizontal trajectory. The initial state is
(%0, 20, Vzg, Uz ) = (1000, 10,0,0) and C7 is set to 1. Curves are plotted for situations where the
drag coefficient (k = kg/m) varies from 0.05 to 0.20. Intuitively, higher drag coefficients imply
longer flight times. The drag effect also produces a limitation on the maximum magnitude of speed.
Requiring additional energy for accomplishing the goal, the drag effect demands that the system

operate at extremum pitch angle and thrust for longer.
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Chapter 4

Constant Altitude Steady Forward
Flight Economy Mode for a Quadcopter
UAV

When flying long trajectories, UAVs tend to remain most of the time in the steady state situ-
ation. This chapter aims at saving battery discharge by presenting an optimal flight management
formulation for quadcopter UAVs in the sense of a trade-off between costs associated with battery
consumption and total flight time for the steady forward flight at constant altitude. The proposed
formulation considers the saturation of the system input. This chapter is organized as follows. As-
sumptions are stated in Section 4.1. The optimal control problem formulation for the economy
mode and maximum range flights are presented in Sections 4.2 and 4.3. Section 4.4 is dedicated to

simulations.

4.1 Assumptions

This section studies the situation of a quadrotor performing a steady forward flight maneuver
at a constant speed or, similarly to the term used for commercial airplanes, in cruise at a constant
altitude. In order to formulate an energy-efficient framework for the trajectory planning problem of

a UAV, the following assumptions are added to the ones in Section 2.1.2.
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Assumption 4.1. Roll and yaw angles are considered to be zero for forward flight.

Assumption 4.2. The forward speed (v,) is assumed to be constant, which describes a steady

forward flight with constant pitch angle.
Assumption 4.3. The quadcopter is considered to remain at the same altitude.

Assumption 4.4. The efficiency of the electromechanical conversion (1) is considered to be con-

stant.

Assumption 4.5. The quadrotor flies at velocities in which the power due the parasitic drag is small

compared with the other components of power.

Cm

Cr3/2 is

Assumption 4.6. The rotors operate in a range of angular velocities in which the ratio
assumed to be constant. This assumption is equivalent to consider a constant rotor figure of merit

(FM).

Assumption 4.7. Tip losses, wake swirl, and non-uniform inflow are minor contributors, and are

neglected in the power consumption model.

Assumption 4.8. The adopted model for the drag effect has a linear term in the speed and a
quadratic term in the speed as derived in Section 2.1.4, D, = kv, + kovy2, where the posi-
tive drag coefficients k1 and ko, experimentally obtained, contain the dependency on the medium,

body dimensions, geometry, and orientation.

Assumption 4.9. The battery is considered to operate in the nominal zone, i.e., the region where
the voltage output does not vary significantly with the State of Charge (SOC) as discussed in Section

2.1.5.

4.1.1 Power Consumption

Currently, the literature about the power consumption of electrical powered UAVs is not vast.
Equations used in this section come from the theory developed for helicopters in textbooks [60] and
[61]. There are three main components of power in rotorcraft vehicles: profile power (P,), induced

power (F;;,4), and parasite power (F,). Profile power is the portion of power necessary to overcome
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the rotor aerodynamic drag force. Induced power is the component of power required to induce
airflow through the rotor disk. Finally, parasite power is spent due to the parasitic drag, i.e., the
power spent in the friction caused by the motion of the UAV through the air. The term total power
P, ota; Will be used to indicate the sum of the three components.
From momentum theory (see Subsection 2.1.3), equation (22) gives the magnitude of the in-
duced air velocity in hover condition
T

2
= 110
vh 2pA7 ( )

therefore, from equation (16), the power generating thrust in one single propeller in hovering is

Pippyst = Top, =T (111)

2pA’

which is a well known expression. The same procedure can be made for the forward flight condition,
where the actual wind velocity is

Vi = —Uzix + Vingby, (112)

then term,

v1.b, = vz sin 0 + ving, (113)

where 0 is the pitch angle depicted in Figure 4.1. From equation (16), the power generating thrust

in the forward flight, i.e., is,

Pthrust = P@'nd + Pp = T(Uind + Uy sin 9)7 (1 14)

in this sense, the first and second terms in Py, s represent the induced and parasite components of

power. From (20),

T = 2pA|vi|Vina.b, = 2pA\/(vx c0s0)? + (Ving + vz Sin 0)20;p4, (115)

which yields,
T

20A\/ (v c080)2 + (Ving + vy sin )2 '

(116)

Vind =
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Replacing term (v;,q + v5 sin 6) of (116) back in (114), yields,

T2
4p2 A29?

ind

Piprust = Ping + Pp = T\/ —v2cos? 6. (117)

As expected, (110) is recovered when v, = 0, since v;,q = vy, in this case. Therefore, the approxi-

T
Pthrust:Pind"FPp%T\/Qp»A- (118)

The profile power can be estimated using the blade element theory (see Subsection 2.1.3). The

mation v;,q = vp, leads to,

power into a single propeller is

P, = QM. (119)

where (2 is the propeller angular speed and M is the rotor torque. Replacing (37) into (119) yields,
P, ~ Cy Q3 (120)

Equation (36) can then be solved for {2 and plugged into (120), which results in

CMT3/2

o N (121)
cil?

Note that equations (36) and (37), were derived under the Assumption 2.8, under circumstances
which are equivalent to the ones in Assumption 4.5.

The total power delivered to the rotor is then

T2 CpT3/2
Piotar :Pind+Pp+Po = Pihrust + Po %T\/M _U%COSQH"FW (122)
Under Assumption 4.5, (122) becomes
T OyT?? 3/
Piota =T 2pA + L a7~ (123)

This consumption model suits well the flight conditions studied in this thesis. For a more complete
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Figure 4.1: Quadrotor free body diagram

model the reader is referred to [62].

4.1.2 Energy Conversion

Equation (123) was derived for one propeller. The total power delivered to the four propellers is

4
Pr = CZTZ.3/2 (124)
i=1
where ( = \/21;;_A + C(j;% > (. Under the assumptions stated in Subsection 2.1.5, the power delivered
T

to the four propellers is considered to be equal to the power provided by the battery P, times the

overall efficiency of the electromechanical conversion n (0 < n < 1).

4
Py =~Udn=() 17 (125)
i=1

where U and q are the battery voltage and charge, respectively. From assumption 4.9 the voltage is
considered constant (U = U,.ominal)-
From assumptions 4.1 and 4.2, each propeller provides the same amount of thrust (7; = T'/4,

i =1, ..., 4). Consequently, the identity
& 1
ZTiB/2 _ §T3/2 (126)
i=1

holds.
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4.1.3 Constant Altitude and Steady Forward Flight Model

Under assumptions 4.1 to 4.3, the equations in (9) are reduced to

T = Vg, (127)
- 2
vy = T(6)sin(0) B k1vg + kovg o, (128)
m m
PR— (129)
70 0
V.= —g+ ()fnos() —0, (130)

with § € (0, 7/2) (see Figure 4.1), and T'(0) = c:;(ge) due to equation (130).

Equation (128) is quadratic in &, with solutions,

k1 £/l + 4ksT(6)sin(6)
2n '

(131)

Vg =

Since k1 > 0, k2 > 0, and T'(6)sin(6) > 0, equation (131) has one positive and one negative root.

Since a negative root is not a possible solution for the steady forward flight situation,

k1 +/k1? + 4k T (0)sin(0)

vy = F(0) = o (132)

From (125), (127), (128), and (132) one can write the complete system dynamics in the following

form
&= F(T(0)),

z =0, (133)
_ T
T 2nU

4.2 Economy Mode Optimal Control Problem

In this section an Optimal Control Problem (OCP) for the longitudinal flight of a quadcopter is

formulated. The objective is to minimize the Operating Cost (OC) composed of a time-related cost

48



($/s) C¢ > 0 and the cost of the battery charge ($/C) Cq > 0,
ty
oC = / (Cr+ Cyld))dr (134)
0
Using (130), minimizing OC is equivalent to minimizing the following cost function,

ty ty mg 3/2
J :/ (Cr+T3%)dr :/ <CI + < > >d7‘ (135)
0 0 cos ()

> 0 encapsulates the trade-off parameter (C;/C,) and the other constants of

20U
Cq¢

the problem. Note that in this case, differently form the previous chapter, the cost index (Cfy) is

where C; =

expressed in N®/2. Intuitively, higher cost indices penalize more the flight time but require a faster
battery discharge. Furthermore, the minimum energy consumption case is achieved when the cost
index is set to zero.

Without loss of generality, the quadcopter is considered to start at g = 0 at the origin, and arrive

at the final position x ¢ at ¢ = t ;. The maximum allowed pitch angle must verify the constraint

g ) <7/2 (136)

Omaz = arccos(
max

where T},4, is the maximum allowed thrust. For a steady forward flight at constant altitude, the

minimum energy OCP can then be stated as

s.t.
—k1 + \/k12 + 4ko m g tan(0)
Ux = 07

z(0) = 0,z(ty) = x5 > 0,

0<9§9mam
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3/2
where G(0) = Cr + (%) and the final time ¢ is free.

4.2.1 Minimum-energy problem

Then following OCP can then be stated,

Ly
7 =ip [ (014 vt ka2 (o) Jar
0

Vg tf
s.t.
T = vy,
(138)
Uy = 0,
z(0) =0,z(ty) =z >0,
0 —k1 + \/k12 + 4ka m g tan(Omaz)
<
<V S 2ko
Proposition 4.1. The OCP stated in (138) is equivalent to (137)
Proof. From equations (128) and (130), it is possible to obtain the following identities,
T(0)sinf = kyvy + kov?,
(139)
T(0)cost = myg.
Therefore,
T(0) = V/(k1vs + k2v2)? + (mg)?, (140)
where the negative root was omitted since 7' > 0. The ratio of equations in (139) also gives
k kov?
0 — tan L (M) (141)
mg
and
T(6)sind = mg tan. (142)
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Identity (140) can be replaced into the dynamics (133), which yields the following dynamics,

— 2 sin
o rr) - b+ ki + 4T (0) (9)’

2ks
v, = 0, (143)
[ CTOY? _ C((kave + Fp0R)? + (mg)?)*)?
1= "ou = U '
Then, defining v, as the control input, the cost functional (137) can be rewritten as
ty
J* = mitn / (C’I + ((k1vg + k2v?)? + (mg)2)3/4> dr. (144)
Vg,lf 0
Finally, from (142),
—k + \/k12 + 4ko m g tan(6)
F(9) = : (145)

2ks

which is monotonic in the studied interval. The upper bound of the variable 6, sets the following

upper bound for the control input v,

—k1 + \/k:12 + 4ko m g tan(Opmax)
U:I? S 9
2ko

(146)
and the lower bound is found analogously. This result together with the fact the F'() is bijective in
the valid interval, finishes the proof. 0

Definition 3. The minimum-energy problem is the optimal control problem described in (137) or

(138) for the case when the cost index C is equal to zero.

Theorem 4.1. The solution of the minimum-energy problem is given by the following

ecm’t ) gcrit < gma:c
0* = (147)

Qmam ) Hcm't 2 Qmam'

where Ocrip € (0,7/2) is

(148)

_ kv it T k2U2
Ocrit = tan 1< Ferit )

Lerit
mg

51



and the value of the forward flight speed v, ,, at the critical point is the only real positive root of

the quartic polynomial
p(ve) = 4k3vE + Bkikov? 4 k202 — 2(mg)%. (149)

Proof. Because v, is constant it is possible to write the final time integrating &, which yields ¢ty =

%. Since the integrand of the cost functional .J is constant in time, it is possible to write,

J = (CI + ((k1vg + kav2)® + (mg>2>3/4)xf. (150)

Vg

Since C; = 0, the necessary condition is,

2(1.2 2,2\ 2
Jy = <vx(k7§ + 5k1kovy + 4k5vs) — 2(mg) >xf _o, (151)
202 (v2(ky + kovy)? + (myg)?)t/4
which, for v, > 0, k; > 0, k3 > 0, mg > 0, implies that
V2 (k3 4 k1 kovy + 4k302) — 2(mg)* = 0. (152)

The study of the roots of the polynomial in (152) can be found in Appendix A.2. The only possible
configurations of roots are: two real roots and two complex conjugate non-real roots, or four real
roots. Because of the Descartes’ rule of signs for a single-variable polynomial with real coefficients,
the maximum number of positive roots of (152) is one, and the allowed number of negative roots
are three or one. Therefore, only one real positive solution exists, and the pitch angle at the critical
point is obtained from (141).

The sufficient condition for a minimum can be verified as follows. Let J in (150) be written in
the fraction format J = N/D, where N = (CI + ((k1vs + k2v2)? + (mg)?)**)ay and D = v,.
The second partial derivative of J with respect to v, is then,

Ny v, — 20y, Dy

—JD,, 0,
D .

T

(153)

Jvzvz -
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