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Abstract

Multidimensional Proportional Data Clustering Using Shifted-Scaled
Dirichlet Model

Rua Tawfiq Alsuroji

We have designed and implemented an unsupervised learning algorithm for a finite

mixture model of shifted-scaled Dirichlet distributions for the cluster analysis of multivari-

ate proportional data. The cluster analysis task involves model selection using Minimum

Message Length to discover the number of natural groupings a dataset is composed of.

Also, it involves an estimation step for the model parameters using the expectation maxi-

mization framework. This thesis aims to improve the flexibility of the widely used Dirichlet

model by adding another set of parameters for the location (beside the scale parameter)

We have applied our estimation and model selection algorithm to synthetic generated

data, real data and software modules defect prediction. The experimental results show

the merits of the shifted scaled Dirichlet mixture model performance in comparison to

previously used generative models.
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Chapter 1

Introduction

1.1 Context

With the continuous rapid development that our world has experienced in information

technology systems such as the World Wide Web, significant advancements have changed

the way we think and work. This quick development has accelerated the growth of the

amount of available data and consequently the challenge of handling and extracting knowl-

edge from these data.

Machine learning and data mining algorithms are widely used to analyze large datasets

in order to discover unknown patterns and extract useful knowledge from them. These al-

gorithms are utilized in many fields such as; medical sciences Khozeimeh, Alizadehsani, et

al. (2017), crime-detection Nath (2006), risk assessment Kirkos, Spathis, and Manolopou-

los (2007), and products’ sales Sun, Choi, Au, and Yu (2008), in order to minimize costs,

improve the quality, and boost the number of sales Khozeimeh, Alizadehsani, et al. (2017).

Clustering is among the significant tasks that have been discussed and captured scien-

tists’ attention in machine learning and data mining Erman, Arlitt, and Mahanti (2006).

Clustering procedures are used in representing the presence of subpopulations within an
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overall population, with the identification of the sub-population that each individual ob-

servation belongs to Figueiredo and Jain (2002). Model-based methods are clustering ap-

proaches that make inference through probabilistic assumptions of the data distributions.

A popular model-based approach in clustering is finite mixture which offers a consid-

erable practical value in modeling heterogeneous data Li and Zhang (2008). This approach

has provided a mathematical-basis for statistical modeling of many different phenomena in

a wide variety of fields including: astronomy, biology, medicine, economics, and engineer-

ing G. McLachlan and Peel (2004).

1.2 Objectives

The main objective of this thesis is expanding the current research on finite mixture

modeling. For this reason, we explore the use of finite mixture models in cluster analysis

taking in consideration some important issues in developing the learning framework. These

issues are:

(1) The challenge of choosing a flexible mixture density for the model based cluster

analysis.

(2) The estimation approach for the parameters of the chosen mixture model.

(3) A model selection method which determines the optimal number of clusters that a

data set comes from.

(4) Evaluation and validation of the cluster analysis method.

Therefore, we consider a generalization of the Dirichlet distribution called the Shifted

Scaled Dirichlet (SSD) that offers better flexibility in modeling multivariate data vectors

by employing the use of maximum likelihood estimation approach. We also implement
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the Minimum Message Length (MML) as a model selection criterion to estimate the op-

timal number of clusters inherent within a data set. Moreover, we validate our clustering

approach capabilities in some problems from different application areas. This will further

elaborate the usefulness of the proposed finite mixture model in several real-life applica-

tions, particularly, issues related to the improvement of quality engineering systems.

1.3 Contributions

The major contribution of this work is proposing a finite mixture model based on the

shifted scaled Dirichlet distribution which is a generalization of the Dirichlet distribution.

The shifted scaled Dirichlet distribution introduces a new set of parameters related to loca-

tion that can translate a distribution besides the scale and the shape parameters. This allows

more flexibility in modeling natural and engineering phenomena.

In this thesis, we first develop an unsupervised algorithm for learning finite mixture

models from multivariate proportional data. We then implement a model selection crite-

rion that determines the optimal number of clusters that best describes a given dataset. To

evaluate the merits of our approaches, we present our experimental results based on syn-

thetic, real datasets and real-world applications such as detection of fault prone software

modules and writer identification.

1.4 Thesis Layout Overview

The organization of this thesis is as follows: Chapter 2 reviews finite mixture modeling

approach which is the foundation on which the thesis is built on. Furthermore, we consider

model based clustering framework, parameter estimation techniques and some issues re-

garding model selection, cluster validation and generalization of the Dirichlet distribution.

In chapter 3, we propose and discuss in details our proposed model based on shifted
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scaled Dirichlet distribution and elaborate on the explanation of the model parameters esti-

mation process and the model selection criterion.

Chapter 4 is dedicated to present the used datasets and we clearly illustrate the experi-

mental results that we obtained from the testing phase in an organized form, supported with

figures and tables that contain the performance measures of our model comparing to some

other widely used models.

Finally, chapter 5 summaries the conclusions drawn from the experiments in this thesis,

highlights some limitations and challenges then, areas for future work.
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Chapter 2

Background

2.1 Model Based Framework for Clustering

A wide range of possible statistical analysis techniques exist and can be used to draw

some inferences from our data. Data clustering is one of those common learning methods

that help to find a pattern in a collection of unlabeled data according to similarity or intrinsic

characteristics. It is the task of assigning objects into groups called clusters in such a

way that the samples in the same group are more similar to each other than those in other

groups. The absence of the labels distinguishes data clustering techniques, which is called

unsupervised learning, from other analysis techniques that belong to supervised learning

such as classification. This missing information makes clustering a much more difficult

task than classification, both in theory and practice. It is used in many fields, including

machine learning, data mining, information retrieval, pattern recognition, image analysis,

etc. Through clustering, we can make a complex data set simpler to understand. In addition,

data can be compressed using clustering so that it takes less space for storage.

Many approaches have been developed such as, K-means clustering, which is by far the

most popular clustering method, hierarchical clustering Johnson (1967); Sneath (1957),

spectral clustering algorithms Meila and Shi (2001); A. Y. Ng, Jordan, and Weiss (2002);
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Shi and Malik (2000) which are famous for being able to handle irregularly shaped clusters,

the K-medoids algorithm Kaufman and Rousseeuw (1987) which primarily uses pairwise

similarities while preserving the spirit of K-means clustering, and model-based clustering

G. J. McLachlan and Basford (1988) that is based on probability models, such as mix-

ture models. This thesis concentrates on the last mentioned family of clustering methods

known as model-based clustering. This method models the density that generates the data

directly, and thus the task of clustering becomes one of finding the modes of the probability

distribution. A natural way to model this density is to use a mixture of several unimodal

densities. This process is known as mixture modeling, and the underlying model is called

a finite mixture model.

It is important to know that, the quality of a clustering method depends on the criterion

that defines the similarity between data samples. In other words, obtaining a high quality

clustering result occurs when the intra-cluster similarity is high and the inter-cluster simi-

larity is low. This similarity criterion is expressed in terms of a distance measure which can

be represented as either a probabilistic model or a distance metric in an Euclidean space.

Yet, deciding if it is similar enough or good enough is subjective. The absence of clus-

ters labels also makes evaluating the clustering results a difficult process. These methods,

knowns as clustering validation techniques, which we talk about them later in section 2.4.

Despite all challenges, clustering is gaining increasing popularity from statistics, com-

puter science and many other areas. In particular, in the case of the model-based clustering,

researchers are constantly exploring different probability density distributions that can an-

alyze complex forms of datasets and provides the robustness, flexibility, and ease of use.

Therefore, we use our proposed algorithm to cluster and optimize the fit between the dataset

we have, and the model we have designed.
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2.1.1 Finite Mixture Model

As we are usually incapable to use a single model to find patterns in data sets, the need

arose to find a robust method that introduces the idea of using more than one model to better

fit and then cluster data sets. Therefore, the model-based clustering approach assumes that

data are generated from a mixture of probability distributions, each of which represents a

different component. Additionally, the total number of components is countable where we

describe it by the word, ”Finite”.

Finite mixture model (FMM) is a probabilistic model that combines two or more density

functions. It is useful in various applications, e.g., statistical pattern recognition Figueiredo

and Jain (2002). In addition to the robust ground that FMM has in the theory of statistics

and probability, they are a natural choice when the data to model is heterogeneous. More-

over, they are flexible in the approximation of any other statistical model G. J. McLachlan

and Peel (2000).

By using the mixture model in clustering, the parameters of the probability distribution

that can fit the patterns will be associated with data samples. Once this fit is completed, the

data samples are assigned to the cluster that has the highest estimated posterior probability.

2.2 Maximum Likelihood Estimation

After proposing the model that we are going to use, we need an estimator for the pa-

rameters in the used model. The maximum likelihood estimator (MLE) is a popular choice

for the finite mixture model. However, an optimization algorithm should be used to find

the MLE numerically when an analytical solution does not exist. Most of these algorithms

include calculating the derivatives of the objective function and should take into account

the special structure of the FMM.

7



We can obtain the MLE estimates of the mixture parameters using Expectation Maxi-

mization (EM) and related techniques G. J. McLachlan and Peel (2000). The EM algorithm

is a common general approach to maximum likelihood in the presence of incomplete data

i.e. the assignment variable that indicates the component of a particular data sample is

generated from is unknown E. S. Oboh (2016). Hence, the EM is used to fit finite mixture

models with gradient ascent to the observed data where the convergence occurs at a Maxi-

mum Likelihood Estimate (MLE) of the mixture parameters Figueiredo and Jain (2002).

The MLE helps us to find an optimal value of the mixture model parameter by selecting

the optimal parameter value that maximizes the product of the likelihood function of each

data sample though applying two steps iteratively that we will discuss in the next section.

2.2.1 Expectation Maximization

As we mentioned in 2.2, the EM algorithm is a common general approach to maximum

likelihood in the presence of incomplete data. The early work in Dempster, Laird, and

Rubin (1977) presented how EM is used to iteratively compute the maximum likelihood

estimate of incomplete data as we mention in 2.2.

The EM algorithm is first initialized with some random model parameters as starting

values which is critical for the successful of the mixture parameters estimation. Many

works such as E. S. Oboh (2016) and Bdiri and Bouguila (2012) make use of the well-

known Kmeans algorithm and the Method Of Moments (MOM) in the task of parameter

initialization in order to reduce the possibility of the convergence to local maxima. The

moments method relies on low order statistics of the equations of the model distribution

that we intend to compute its parameters.

The authors in Giordan and Wehrens (2015) discuss and make a comparison with

Bouguila and Ziou (2007); Ronning (1989) works regarding the initialization step where

they emphasized the importance of efficient re-parametrization technique which usually
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occurs when the parameters become negative or exceed a very large number, that making

the EM iteration convergence difficult.

After the initialization step, EM iteratively uses two steps. First, the expectation step

(E-step) in which the posterior probability is computed. Second, the maximization step

(M-step) where the likelihood function is maximized until convergence.

2.2.2 Newton-Raphson Method

Generally it has been proven in many works that no closed-form solution exists for the

maximum likelihood estimate of the Dirichlet model parameter. This problem caused by

the non-linearity of the parameter function becomes a challenging optimization problem.

This challenge led to the necessity of using an iterative optimization technique such as

gradient ascent, Newton Raphson, fixed point iteration, etc. In our work, we make use of

the Newton Raphson method which is at present among the most common techniques to

find the MLE for the parameter of the Dirichlet distribution since it converges very fast as

compared with other optimization techniques Huang (2005).

Newton Raphson methods typically rely on a second-order derivative of the objective

likelihood function (i.e. the Hessian matrix), and the inverted matrix is required. Invert-

ing Hessian matrix becomes a very difficult and expensive process when we have high-

dimensional data. However, Graybill (1983) introduced an approximation technique that

allows an easy approach to invert Hessian matrices.

As we mentioned before, the initialization step is crucially important for the success of

the estimation to be inside the parameter range. Besides, in the case of Dirichlet distribu-

tion, the parameters have to be non-negative. Therefore, we should consider the methods

of moment which is used in Bdiri and Bouguila (2012); Bouguila, Ziou, and Vaillancourt

(2004) as well to initialize the Newton-Raphson method.
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2.3 Model Selection

A fundamental part of the unsupervised learning problem in mixture modeling is model

selection that determines the number of clusters which best describes the data. Model se-

lection is very important because the EM algorithm requires to pre-specify the number of

components as an input. However, knowing the number is difficult in practice but for-

tunately there are many available methods in the case of finite mixture models. These

methods are based on the likelihood that help in estimating the number of clusters which is

a big advantage only mixture models are able to provide as rigorous reasoning, instead of

simple heuristics, for the model selection criteria that they use.

Various model selection approaches have been used by researchers such as cross valida-

tion Shao (1993), deterministic methods, hypothesis testing and re-sampling. Since the last

two approaches are still expensive to be applicable in computer vision and pattern recog-

nition applications, our interest is on deterministic methods of model selection that can be

divided as mentioned in Bouguila and Ziou (2007) into two main classes. The first class

is based on the Bayesian approach, for example ; the Schwarzs Bayesian Information Cri-

terion (BIC) and the Laplace Empirical Criterion (LEC), while the second class is based

on information/coding theory concepts such as the Minimum Message Length (MML), the

Mixture Minimum Description Length (MMDL), Bouguila and Ziou (2005b, 2007); Wal-

lace and Dowe (2000), Akaikes Information Criterion (AIC), and the Minimum Description

Length (MDL) criterion Bouguila and Ziou (2005b).

In this thesis, we use the minimum message length which has both Bayesian and infor-

mation theoretic interpretation in its principle. From the Bayesian perspective, we find the

optimal cluster number when maximizing the product between the parameter likelihood

and its prior probability Wallace and Dowe (2000), while from an information theoretic

perspective, it describes the data with minimal error Wallace and Dowe (2000).
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2.4 Cluster Validation

Cluster validation is related to evaluating the goodness of clustering algorithm results

Brock, Pihur, Datta, Datta, et al. (2011). Three empirical clustering validation statistics are

discussed in Theodoridis, Koutroumbas, et al. (2008) to examine cluster validity which are:

(1) External cluster validation, which depends on comparing the cluster analysis results

to an externally supplied class labels (true labels) that have been already known in

advance, e.g., entropy. The authors in Bdiri and Bouguila (2012); Bouguila and

Ziou (2007); Bouguila et al. (2004) evaluate their clustering algorithm performance

with a labeled dataset by using a confusion matrix to calculate some of performance

measures such as, overall accuracy, average accuracy, precision, recall, etc.

(2) Internal cluster validation, which uses the internal information of a clustering process

to evaluate the goodness of the result by considering how well the clusters are sepa-

rated and compact without the respect to external information e.g., Sum of Squared

Error (SSE ), Silhouette coefficient, Dunn index.

(3) Relative cluster validation, which compares different clustering structures by using

different parameter values for the same algorithm (e.g., changing the number of clus-

ters k). It is commonly used for determining the optimal number of clusters, e.g.,

often an external or internal index is used for this function (SSE or Entropy).

This remains an open research topic for both clustering validation and model selection with

finite mixture models.
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2.5 Generative models for proportional data

2.5.1 Dirichlet Model

The distribution is named after the 19th century Belgian mathematician Johann Dirich-

let. It is widely known throughout statistics and probability, Bayesian analysis, statistical

genetics, modeling of multivariate data, multivariate analysis, non-parametric inference,

reliability theory, characterization problems, and many other areas Gupta and Richards

(2001).

The Dirichlet is the multivariate generalization of the Beta distribution where it equals

to the probability density function (PDF) of the Beta PDF when the outcomes are two, also

it equals the uniform distribution when all parameters (α1, . . . , αK) are equal.

Before the Dirichlet distribution gained its popularity, the normal distribution (Gaus-

sian) was widely applied in most of multivariate data clustering algorithms. While the

Gaussian distribution is a probability distribution over all the real numbers, the Dirichlet is

a probability distribution over a probability simplex, i.e., it is a probability distribution on

the simplex of sets of positive numbers that added up to 1. Therefore, it is closely related to

the multinomial distribution which makes it a good candidate to model distributions over

distributions or distributions over functions.

Moreover, the symmetry property that Gaussian distribution has, makes it difficult to

detect asymmetric patterns in data or to analyze data generated from non-Gaussian sources

Medasani and Krishnapuram (1999). Yet, the Dirichlet is flexible and can be applied to

asymmetric patterns depending on its shape parameter value Bouguila et al. (2004). Intro-

ducing more parameters to the Dirichlet distribution has been main focus of our research

work to enhance the flexibility of the model, and release the limitations related to the co-

variance structure.
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2.5.2 Generalization of the Dirichlet Model

Modeling compositional data requires a distribution that can be defined on the bounded

domain, the simplex. The most commonly studied distribution on the simplex is the Dirich-

let. It gains its popularity from its conjugate property with the multinomial likelihood in

Bayesian analysis and its computational efficiency as well as easiness of parameter inter-

pretation. However, it is quite limited to see it in applications due to the most extreme

forms of required independence. Ongaro and Migliorati (2013).

Overfitting is crucial issue that happens when a learning algorithm is more accurate in

fitting known data and less accurate in predicting new data. the concepts of generalization

and overfitting are closely related. Also, it more likely occurs with nonparametric and non-

linear models that have more flexibility of fitting a large number of data forms. Therefore,

it is a big challenge to find a model that can better detect unseen data and provide a useful

probability without overfitting. Even recognizing the existence of the overfitting problem

is in itself a difficult process. This was a main concern of many research efforts Bouguila

and Ziou (2006a); G. Monti, Mateu i Figueras, Pawlowsky-Glahn, Egozcue, et al. (2011);

Ongaro, Migliorati, Monti, et al. (2008); Pawlowsky-Glahn and Buccianti (2011). In addi-

tion to the previous issues, the number of extra parameters that we introduce in building a

model that generalizes another model might also cause overfitting.

However, in our case we present a generalization that has two extra parameters to the

shape parameter of the Dirichlet, one called the scale parameter which has already been

introduced in G. Monti et al. (2011) and implemented in E. S. Oboh (2016), and location

parameter that has been introduced in G. Monti et al. (2011) and which we are proposing

for clustering problems. This distribution is known as the Shifted Scaled Dirichlet distri-

bution (SSD). Authors in G. Monti et al. (2011) introduce this generalization as a natural

generalization of the classical Dirichlet model, i.e, the model obtained after applying per-

turbation and powering to the Dirichlet random composition. This kind of generalization

13



permits more flexibility in different real-life situations and phenomena.
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Chapter 3

Proposed Model

3.1 Shifted-Scaled Dirichlet Distribution

The Shifted-Scaled Dirichlet model is a natural generalization of the Dirichlet distri-

bution obtained after applying the perturbation and powering operations to the classical

Dirichlet random composition. These operations define a vector-space structure in the sim-

plex, and play the same role as the sum and product by scalars in real space G. S. Monti,

Mateu-Figueras, and Pawlowsky-Glahn (2011). By introducing another set of parameters,

we can acquire many useful probability models K. W. Ng, Tian, and Tang (2011). The

shifted scaled Dirichlet, subsequently, keeps (2D + 1) degrees of freedom which grant

it the flexibility for diverse real data applications Hankin et al. (2010); B. S. Oboh and

Bouguila (2017). As stated by G. Monti et al. (2011) when we apply only a power trans-

formation to the classic Dirichlet random composition, the result changes the measure of

dispersion around the mean and a scaled Dirichlet is obtained. While applying a power

and then a perturbation transformations will result a scaling and a translation to the density,

which means that the shifted-scaled Dirichlet is formed once this equally constraint for

scaling and location are relaxed (See Appendix A).

As it has been widely known that, the Dirichlet distribution models proportional data.
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Therefore, we will show that the shifted scaled Dirichlet distribution can be used as well

to model multivariate proportional data constrained on a simplex. Let us define X =

(x1, . . . , xD) as a random vector of proportions, where
∑D

d=1 xd = 1. Therefore, the proba-

bility of X that follows a shifted scaled Dirichlet distribution (X ∼ pSDD(α, β, τ)) with

parameters α = (α1, ..., αD) ∈ RD
+ , β = (β1, ..., βD) ∈ SD, τ ∈ R+ is given by:

SSD(X|θ) =
Γ(α+)∏D
d=1 Γ(αd)

1

τD−1

∏D
d=1 β

−αd
τ

d x
(
αd
τ
−1)

d

(
∑D

d=1
xd
βd

1
τ )α+

(1)

where Γ denotes the Gamma function,α is the shape parameter, β is the location parameter,

τ is a scale parameter, and α+ =
∑D

d=1 αd. These parameters empower our model with the

flexibility to fit any data set. The shape parameterα symbolizes the form of the distribution,

the scale parameter τ controls how the density plot is spread out, and the β follows the

location of the data densities.

Assuming that a set X = {X1,X2, . . . ,XN} composed of data vectors independent

and identically distributed (I.I.D) the resulting likelihood is:

P (X|θ) =
N∏
n=1

Γ(α+)∏D
d=1 Γ(αd)

1

τD−1

∏D
d=1 β

−αd
τ

d x
(
αd
τ
−1)

nd

(
∑D

d=1
xnd
βd

1
τ )α+

(2)

3.1.1 Shape Parameter

The shape parameter (α) that simply represents the form of the shifted scaled distribu-

tion where the more flexibility that α has, the better the modeling and clustering are. Figure

3.1 shows a 2D density plot with different cases for the shape parameter. First, when the

shape is less than 1, we get a convex distribution while in the second case, we have a higher

shape parameter that result in concave plots of different shapes.
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Figure 3.1: Artificial plot describing the properties of the shape parameter

3.1.2 Scale parameter

The scale parameter (τ) which is a scalar that simply stretches or shrinks the distri-

bution, i.e. controlling the density plot spreading out. Regardless of the scale parameter

whether it has a constant value of 1 or any higher value, we have realized that the density

shape stays the same and the changing in the value does not affect the form. Figure 3.2

shows a 2D density plot with different values for the scale parameter. As we can see the

different values for the scale affect the spread of the distribution that has the same shape

values.

3.1.3 Location parameter

The location parameter (β) that simply shifts the distribution which adds more flexi-

bility to the model in fitting the data and identifying the patterns that a dataset has. Fig-

ure 3.3 shows a 2D density plot with different values that shows the Dirichlet case, then
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Figure 3.2: Artificial plot describing the properties of the scale parameter

the scaled-Dirichlet, and finally the shifted-scaled Dirichlet which shifts the previous one

(scaled Dirichlet) by changing the location of the distributions and shift them according to

the parameters values we assign.

3.2 Finite shifted-scaled Dirichlet Mixture Model

A finite mixture model is a convex collection of two or more probability density func-

tions that has the capability in approximating any arbitrary distribution Costa Filho (2008).

That is, for a data population X = {X1, . . . ,XN} with N observations in which each

sample is a D-dimensional vector, Xn = (xn1, . . . , xnD), is modeled in terms of a mixture

of several components K that the data population comes from. Each component which is

called cluster has a simple parametric form which is in our case, shifted scaled Dirichlet,
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Figure 3.3: Artificial plot describing the properties of the location parameter

and the mixture model is, thus, defined as:

p(X|Θ) =
K∑
j=1

πj SSD(X|θj) (3)

where the complete model parameters are denoted by Θ = {π1, . . . , πK , θ1, . . . , θK} in

which θj = {αj, βj , τj} represents the parameter vectors for the jth population, and πj is

the mixing weight satisfying
∑K

j=1 πj = 1, and 0 ≤ πj ≤ 1. Therefore, we form the cor-

responding likelihood of X with N -observations, assuming that each Xn is independently

distributed as:

p(X|Θ) =
N∏
n=1

K∑
j=1

πj SSD(Xn|θj) (4)

where the summation inside the product in Eq.(4) prohibits the possibility of analytical

solutions.
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3.3 Parameters Estimation of the Finite Shifted Scaled Dirich-

let Mixture Model

Estimating the model parameters is a really critical issue in a finite mixture modeling. In

order to infer each parameter equation, we make use of the maximum likelihood estimation

(MLE) approach. MLE has become widely popular and acceptable in solving this problem

Costa Filho (2008) through Expectation Maximization (EM) approach on the complete

likelihood Dempster et al. (1977) that can be formed as,

Θ∗ = arg max
Θ
L(X ,Θ) (5)

which is commonly useful in observations that can be viewed as incomplete data Demp-

ster et al. (1977); G. McLachlan and Krishnan (2007). By incomplete data we presume

the absence of the assignment variable that refers to a cluster of a particular data sam-

ple. Let Z = {Z1, . . . , Zn} denotes the latent variables or hidden assignment, where our

prior knowledge about Z is given only by the posterior distribution p(Z|X ,Θ). Since

we cannot use the complete-data likelihood, its expected value under the posterior dis-

tribution of the latent variable is considered, which corresponds to the E step in the EM

algorithm. Thus, unobserved latent variables Zn is a K-dimensional binary random vector

where
∑K

j=1 znj = 1, i.e. znj is the hidden membership assignment of each data sample to

jth cluster, where znj ∈ {0, 1}, as:

znj =


1 if Xn belongs to a componentj,

0 otherwise,
(6)
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Therefore, the complete data likelihood is given by:

log(p(X , Z|Θ)) = L(Θ,X , Z) =
N∏
n=1

K∑
j=1

znj

(
(πj) ∗ p(Xn|αj, βj , τj)

)
(7)

Then, we replace znj by its expectation, which we can call it, posterior probability ẑnj as

following,

L(X ,Z|Θ) =
N∏
n=1

K∑
j=1

ẑnj

(
log(πj) + log p(Xn|αj, βj , τj)

)
(8)

where

ẑnj = P (j|Xn, θj) =
πjp(Xn|αj, βj , τj)∑K
j=1 πjp(Xn|αj, βj , τj)

(9)

As we mentioned before, we make use of EM algorithm through two steps for learning

our mixture model. Firstly, E-step, where we compute the posterior probabilities by using

Eq. 9. Secondly, M-step, where we update the model parameter estimates by maximizing

the following:

Θ = arg max
Θ
{L(X ,Z|Θ)}

= arg max
Θ

N∏
n=1

K∑
j=1

ẑnj

(
πj + (Xn|θj)

)
.

(10)

For the purpose of facilitating the parameters estimation process, we do maximize the

21



log of the likelihood in Eq. 8 that we can express it as:

log(Xn|αj, βj , τj) = log[
N∏
n=1

(
Γ(α+)∏D
d=1 Γ(αjd)

∗ 1

τD−1
j

∗
∏D

d=1 β
−(

αjd
τj

)

jd x
(
αjd
τj

)−1

nd

(
∑D

d=1(xnd
βjd

)
1
τj )α+

)]

=
N∑
n=1

([log Γ(α+)−
D∑
d=1

log Γ(αjd)]+

[log(1)− (D − 1) log(τj)]+

[(
D∑
d=1

−(
αjd
τj

log(βjd)) +
D∑
d=1

(
αjd
aj
− 1 ∗ log(xnd)))− (α+ log(

D∑
d=1

(
xnd
βjd

)
1
τj ))])

(11)

Then, find ΘMLE when the derivatives are equal to zero. The following subsections

describes the whole process.

3.3.1 Mixing weight parameter estimation: πj

In order to derive its equation, two constraints should be considered,
∑K

j=1 πj = 1 and

0 ≤ πj ≤ 1. Therefore, we introduce Lagrange multipliers in terms of finding πj . Hence,

the augmented log likelihood is:

φ(Θ, Z,X,Λ) =
N∑
n=1

K∑
j=1

ẑnj(log πj + log( ~Xn|αj, βj , τj)) + Λ(1−
K∑
j=1

πj) (12)

Taking the derivative of Eq. 12 with respect to πj for each cluster, we obtain,

πj =
1

N

N∑
n=1

ẑnj (13)
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3.3.2 The Distribution parameters estimation: αj, βj, and τj

In order to get the parameters equations, we maximize L(X ,Z|Θ) by taking the first

derivative with respect to αjd, βjd, and τj are calculated respectively in 14, 15, 16 consid-

ering βjd constraints 0 ≤ βjd ≤ 1 ;
∑D

d=1 βjd = 1 (See Appendix B).

∂L(X ,Z|Θ)

∂αjd
=

N∑
n=1

ẑnj

(
Ψ(α+)−Ψ(αjd)+

log(xnd)− log(βjd)

τj
− log(

D∑
d=1

(
xnd
βjd

)
1
τj )
) (14)

while Ψ is the digamma function (the logarithmic derivative of the Gamma function).

βjd =

∑N
n=1 ẑnj

α+xnd

τjβjd
∑D
d=1

Xnd
βjd

− αjd
τj∑N

n=1 ẑnj
∑D

d=1
α+xnd

τjβjd
∑D
d=1

xnd
βjd

−
∑D

d=1
αjd
τj

(15)

τj =
N∑
n=1

ẑnj

∑D
d=1 αjd

(
log(βjd)− log(Xnd)

)
D − 1

+
N∑
n=1

ẑnj
α+ log

∑D
d=1

xnd
βjd

D − 1

(16)

As a result of the non-linearity of the first derivative of α parameter, there is no closed-

form solution for it. This issue leads to the necessity of an optimization technique to han-

dle it such as, gradient ascent, Newton Raphson, fixed point iteration, etc. In our work,

we employ the Newton Raphson method that allows the fastest convergence among other

techniques Huang (2005). The Newton Raphson method for α parameter is expressed as:

αnewj = αoldj −H−1G (17)
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Where H is called the Hessian matrix associated with L(X ,Z|Θ) , and G is called the

gradient which is the first derivatives vector.

Then, by calculating the second and mixed derivatives with respect to αjd, we obtain:

∂2L(X ,Z|Θ)

∂2α2
jd

=
N∑
n=1

znj

(
Ψ′(α+)−Ψ′(αjd)

)
(18)

∂2L(X ,Z|Θ)

∂2αjd1αjd2
=

N∑
n=1

znjΨ
′(α+) (19)

where Ψ′ is the trigamma function (the logarithmic derivative of the digamma function).

H(αj,d, αj,d) =
N∑
n=1

znj ×


Ψ′(α+)−Ψ′(α1) . . . Ψ′(α+)

:
. . . :

Ψ′(α+) . . . Ψ′(α+)−Ψ′(αD)

 (20)

Note that, the Hessian matrix should be transformed to its inverse before it can be

calculated in the Newton-Raphson maximization step. Yet, we should keep in mind that

the Hessian block matrix has to be positive or semi-positive definite before its inverse be

computed in our case. Since it is difficult to do that, we do need to relax this constraint by

making use of its diagonal approximation. Consequently, this approximation, allows the

inverse to be trivially computed.

3.3.3 Initialization and Estimation Algorithm

EM algorithm is very sensitive to the initialization step Gentle (1998); Hu (2015). In

this regard, K-means clustering (the most commonly used clustering algorithm) is used to

initialize the mixing proportions. Moreover, for initializing α parameter we make use of

the method of moments Minka (2000), for initializing β parameter, we create a proportions

vector (summed to one) , and for initializing τ , we assigned a scalar of 1.
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The method of moments estimates the model parameters based on their moment equations.

Since a closed form solution to the shifted scaled Dirichlet distribution and its moment

equations do not exist, we initialize α by using the moment equation of the Dirichlet distri-

bution.

Initialization Algorithm:

The following is brief steps for the initialization process:

(1) Apply K-means algorithm to the data X to get the pre-defined K-components and

their elements.

(2) Calculate the πj parameter as, πj = No#Elements in Cluster j
No#Observations .

(3) Apply the method of moment Minka (2000) for each cluster j to get the shape param-

eter vector αj .

(4) Initialize the scale parameter τj with a scalar one for each j.

(5) Initialize the Location parameter vector βj with a proportion vector of ones for each

j. (where the dimensions summation for each βj equals to one).

Main Parameters Estimation Algorithm:

The complete algorithm of the shifted scaled Dirichlet mixture parameter estimation

can be summarized as:

(1) INPUT: Data set X with D-dimensional N observations, and a determined number

of clusters K.

(2) Perform the initializations algorithm.

(3) E Step: Calculate the posterior probability ẑnj of an object assigned to a cluster using

Eq. 9.
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(4) M Step:

• Update πj using Eq. 13.

• Update αj, βj, and τj using Eq.17, 15, and 16 respectively.

(5) Terminate and return the final parameters estimates if the convergence test passed;

otherwise go to 3.

3.4 MML Approach for Model Selection

An important part of an unsupervised learning problem concerns determining the num-

ber of components which best describes the data Minka (2000). In the previous section, we

mentioned that we pre-defined the number of clusters before executing the EM algorithm;

however, the goal of model selection is to help us infer the number of optimal clusters. As-

suming that our data is fundamentally modeled by a mixture of distributions, we consider

the application of Minimum Message Length (MML) principle to solve the problem of

model selection since it has been found that MML model selection method ,which is based

upon information theory, outperforms many other approaches with a superior performance

Bouguila and Ziou (2005a, 2006b). As the name implies, the Minimum Message Length

inductive inference is based on evaluating models according to their ability to compress a

message containing the data Wallace and Dowe (2000). A high compression is obtained by

forming suitable statistical models to code the data where the function of a model or param-

eter estimate provides a probability distribution Baxter (1996). Each message contains two

parts, the first part encodes the model by using the prior information about the model only,

whereas the second part encodes the data by using the first part Dowe and Farr (1997). The

same model should be used by the sender and receiver in order to have the same probability

distribution Wallace and Freeman (1987). The number of bits in which a data, X , should

be encoded is called the information content of X . From information-theory point of view,
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the optimal number of components is the one that allows the efficient transmission (i.e.,

with minimum amount of information) of the data from a sender to a receiver Wallace and

Freeman (1987). The message length formula for a mixture of distributions is defined by

Baxter (1996); Wallace and Dowe (2000) as:

MessLen ' − log h(Θ)− log p(X|Θ) +
1

2
log(|F (Θ)|)

+
Np

2
(1 + log(KNp))

(21)

where h(Θ) is the prior probability distribution, p(X|Θ) is the likelihood of the complete

data, Np is the number of free parameters to be estimated where it is in our case equal

to K(2D + 1) − 1. KNp is the optimal quantization lattice constant for RNp Conway

and Sloane (2013). As Np increases, KNp tends to the asymptotic value given by 1
2πe
'

0.05855 which can be approximated by 1
12

Bouguila and Ziou (2007). The determinant

of the Fisher information matrix |F (Θ)| is derived by taking the second derivative of the

negative log-likelihood Wallace and Dowe (2000).

The estimation of the number of clusters is carried out by finding the minimum message

length MessLemgth with regards to Θ. Subsequently, we will first develop the determinant

of the Fisher information |F (Θ)| for a mixture of shifted scaled Dirichlet distributions and

then propose a prior distribution h(Θ) about our knowledge of its parameters.

3.4.1 Fisher Information matrix for the Finite Mixture of Shifted-Scaled

Dirichlet Distributions:

The Fisher information matrix is sometimes called the curvature matrix since it is the

second derivative of the likelihood function. This matrix is the expected value of the Hes-

sian matrix of the logarithm of minus the likelihood of the mixture Bouguila and Ziou

(2007). Fisher information matrix is specified as the product of the determinant of the
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Fisher information |F (θj)| of the estimated parameters, θj = (αj, βj, τj) for each compo-

nent j and the determinant of the Fisher information of mixing weights |F (πj)| which is

computed in Baxter and Oliver (2000) as follows:

|F (Θ)| = |F (πj)|
K∏
j=1

|F (θj)| (22)

We determine |F (πj)| for jth cluster as a multinomial distribution with parameters

(π1, . . . , πK) that is calculated in Baxter and Oliver (2000) as:

|F (π)| = N∏K
j=1 πj

(23)

where πj is the mixing weight for each cluster that satisfies two constraints,
∑K

j=1 πj =

1 and 0 ≤ πj ≤ 1, and N is the number of data observations. In the case of a mix-

ture model, the Fisher information matrix can be computed as proposed in Figueiredo and

Jain (2002) after assigning each data vector to the respective clusters. Assuming that the

jth cluster contains Xj = {Xl, . . . , Xl+ηj−1} observations where l ≤ N and ηj is the ob-

servations number in each cluster j with the parameters αj, βj, τj . The negative of the log-

likelihood function given the vectors θj = {αj, βj , τj} of a single shifted scaled Dirichlet

distribution can be written as:

−L(Xj|θj) = − log
( l+ηj−1∏

i=l

p(Xi|θj)
)

= −
l+ηj−1∑
i=l

log p(Xi|θj)

(24)

Then, computing |F (θj)| by taking the negative of the second derivative of its log-

likelihood function as follows:
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− ∂2 log p(X|θ)
∂α2

jd

= −nj
(

Ψ′(α+)−Ψ′(αjd)
)

(25)

− ∂2 log p(X|θ)
∂2αjd1αjd2

= −njΨ′(α+) (26)

− ∂2 log p(X|θ)
∂β2

jd

= −nj[ αjd
τjβ2

jd

] +
N∑
n=1

[α+
x2
nd

τjβ6
jd(
∑D

d=1
xnd
βjd

)2
] (27)

− ∂2 log p(X|θ)
∂2βjd1βjd2

= −nj[ 1

τj
] +

N∑
n=1

[α+
x2
nd

τj(
∑D

d=1
xnd
βjd

)2
] (28)

− ∂2 log p(X|θ)
∂τ 2

j

= −nj
(

[
D − 1

τ 2
j

]−
D∑
d=1

[
αjd
τ 4
j

log βjd]
)

−
N∑
n=1

( D∑
d=1

[
αjd
τ 4

log xnd]− [α+

log
∑D

d=1
xnd
βjd

τ 4
]
) (29)

Note that, we make use of the Fisher diagonal approximation when d1 = d2 = d for

our parameters derivatives to avoid some numerical problems that could be occur while

computing the whole matrix.

Because F (θj) has a block structure for each component, we have computed the de-

terminant of each block matrix using the solution provided in Powell (2011), where in our

case it is a (2D + 1)× (2D + 1) block matrix.

As soon as we get the Fisher information for a single shifted scaled Dirichlet distri-

bution, we are able to use it for calculating the Fisher information for a mixture of our

distribution as following,

log |F (Θ)| = log(N)−
K∑
j=1

log(πj) +
K∑
j=1

log |F (θj)| (30)
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3.4.2 Prior Distribution:

MML criterion performance success is dependent on the choice of prior distribution

h(Θ) for the parameters of the shifted scaled Dirichlet mixture model. However, we do

not have a prior knowledge about the mixture parameters, We should assign distributions

that better describe our prior knowledge of the vectors of mixing parameter and the pa-

rameter vectors of the shifted scaled Dirichlet finite mixture model taking into account that

these parameters are independent of each others Bouguila and Ziou (2007), which we can

represent it as follows,

h(Θ) = h(π) h(α) h(β) h(τ) (31)

Both the mixing weight π and the location parameter β are defined on the simplex

where
∑K

j=1 πj = 1, and
∑D

d=1 βd = 1. Thus, a symmetric Dirichlet distribution with

parameters ϕ = (ϕ1, . . . , ϕK), or ϕ = (ϕ1, . . . , ϕD), is a natural choice as a prior for the

mixing probabilities and the location parameter, respectively, and defined as,

h(π1, . . . , πK) =
Γ(
∑K

j=1 ϕj)∏K
j=1 Γ(ϕj)

K∏
j=1

πϕ−1
j (32)

h(β1, . . . , βD) =
Γ(
∑D

d=1 ϕd)∏D
d=1 Γ(ϕd)

D∏
d=1

βϕ−1
jd (33)

choosing ϕ = 1 gives a uniform prior density choice as follows, Baxter and Oliver (2000);

Wallace and Dowe (2000):

h(π) = Γ(K) = (K − 1) ! (34)

h(β) = Γ(D) = (D − 1) ! (35)

In addition, the absence of other knowledge about the shape parameter αjd, we assume that
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the components of αj are independent as well:

h(α) =
K∏
j=1

h(αj) =
K∏
j=1

D∏
d=1

h(αjd) (36)

As a result, the principle of ignorance under the uniform distribution is used for the

prior, as it is shown experimentally in Bdiri and Bouguila (2012), over the range of [0, e6 ‖αj‖
αjd

]

. Then, αjd is the estimated parameter vector and ‖α̂j‖ is the norm of the shape vector. We

choose the to use a simple uniform prior, which is known to give good results according to

Ockham’s razor Bouguila and Ziou (2006b); Jefferys and Berger (1992),

h(αjd) = e6 αjd
||αj||

(37)

As we mentioned, the scale parameter is a scalar that we can give it a prior value equals to:

h(τj) =
1

10
(38)

Therefore, substituting the log of the prior for the shape, location, and scale parameters

in Eq. (31), gives the prior probability of the shifted scaled Dirichlet mixture parameters.

The log of the prior distribution is given by:

log(h(Θ)) =
K−1∑
j=1

log(j)− 6KD −D
K∑
j=1

log(||αj||)

+
K∑
j=1

D∑
d=1

log(αjd) +
D−1∑
d=1

log(d) + log(
1

10
)

(39)

The finite mixture of shifted scaled Dirichlet distributions message length is obtained by

substituting Eqs. (30) and (39) into Eq. (21).
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3.4.3 Complete Learning Algorithm

We can re-write ”Main Parameters Estimation Algorithm” mentioned in 3.3.3 to have

the complete algorithm of our mixture model estimation together with the MML as:

(1) INPUT: D-dimensional data set X with N observations for each K candidate value.

(2) Perform the Initialization algorithm in 3.3.3.

(3) Apply EM algorithm of the mixture model as mentioned in steps 3:5 in 3.3.3.

(4) Calculate the associated criterion MML(K) using Eq.21.

(5) Select the optimal model K∗ such that: .

K∗ = arg min
K

MML(K)
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Chapter 4

Experimental Results

4.1 Overview

In this chapter, an examination for the performance of the Shifted Scaled Dirichlet finite

Mixture Model (SSDMM) takes place. We test our model in comparison with some pop-

ular models such as, classical Dirichlet Mixture Model (DMM), Scaled Dirichlet Mixture

Model (SDMM) E. S. Oboh (2016), and Gaussian Mixture Model (GMM). To evaluate the

proposed model, we have considered the following:

(1) Synthetic datasets.

(2) Real datasets.

(3) Software modules defect-prone prediction.

(4) Writer identification classification.

The performance is measured by its ability to estimate model parameters, specifying the

number of clusters within datasets, and having a good clustering result. The measures we

used to evaluate the proposed clustering approach is discussed in next section.

33



4.2 Performance Measures

To validate our learning algorithm performance, we make use of the confusion matrix

which is also known as the error matrix. This method is suitable because we know the

labels of the used datasets.

Real Value
TP FP

Predicted Positive True Positive False Positive
FN TN

Predicted Negative False Negative True Negative

We define the terms as follow,

• True Positive: The number of samples correctly marked as positive.

• True Negative: The number of samples correctly marked as negative.

• False Positive: The number of samples incorrectly marked as positive (type1 error).

• False Negative: The number of samples incorrectly marked as negative (type2 error).

The perfect case, which is hardly occurring, when we obtain a diagonal matrix with only

true positive and true negative values. There are many indicators or scores that can be

computed from the confusion matrix and we use some of them, for example:

• Overall Accuracy, which calculates how accurate is our predictive model.

OverallAccuracy =
TP + TN

TP + FP + FN + TN
(40)

• Average Accuracy, which calculates the average of each accuracy per class.

Avg. Accuracy =
1

M

M∑
m=1

TP

NumInClass
; where M is number of clusters (41)
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• Precision (at Macro Level), that measures how frequently it is correct when the

prediction is yes.

Precision =
1

M

M∑
m=1

TP

TP + FP
; where M is number of clusters (42)

• Recall (at Macro Level), which is also known as true positive rate that measures the

proportion of the actual positives that are correctly identified.

Recall =
1

M

M∑
m=1

TP

TP + FN
; where M is number of clusters (43)

• False Alarm, which is also known as false positive rate that measures how frequently

it is wrong when the prediction is yes.

False Alarm =
FP

TP + FP
(44)

4.3 Synthetic data sets

We have implemented our model on one-dimensional and multi-dimensional synthetic

data. The purpose of using synthetic data is to objectively evaluate our learning algo-

rithm performance with known model parameters and mixture components. Thus, we test

our algorithm through various synthetic datasets that have different parameter vectors and

number of mixture components known a priori. Moreover, we create plots to describe the

shape and surface of the synthetic datasets used to show our learning algorithm capabili-

ties. It is also important to note that the synthetic data were generated with constant β, τ

parameters.
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4.3.1 One-dimensional data

We make use of the synthetic data generated from a Dirichlet mixture and let our algo-

rithm learn its shape parameters while setting the other parameters (location β and scale τ )

vectors to a constant value of one. Table 4.1 shows the first generated dataset with real and

estimated parameters, where Figure (4.1-a) displays three well separated mixture compo-

nents while Figure (4.1-b) displayed the three components overlapping. Moreover, Figure

(4.3-a) shows how the MML was able to determine the exact number of clusters within the

dataset with 3 components.

k nj d
Real parameters’ values Estimated parameters’ values
pj α β τ pj α β τ

1 1000
1

0.33
2 0.5

1 0.33
2 0.5

1
2 10 0.5 9.98 0.5

2 1000
1

0.33
20 0.5

1 0.33
19.67 0.5

1
2 20 0.5 20.29 0.5

3 1000
1

0.34
10 0.5

1 0.34
10.4 0.5

1
2 2 0.5 2.07 0.5

Table 4.1: One-dimensional synthetic data

4.3.2 Multi-dimensional data

We show here examples of multi-dimensional datasets (D = 3) that we have generated.

Data are created from two, three, and four shifted scaled Dirichlet densities with different

parameters. The values of the real and estimated parameters are shown in Table (4.2) for

the 2, 3, and 4-components, respectively, where in Figure (4.2), we display well separated

mixtures components. Additionally, Figure (4.3)-(b, c, and d) show how the MML was

able to determine the exact number of clusters within the 3D datasets with 2, 3, and 4

components.
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Figure 4.1: One-dimensional generated synthetic dataset plot
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k nj d
Real parameters’ values Estimated parameters’ values
pj α β τ pj α β τ

1 1000
1

0.5
20 0.33

1 0.5
19.95 0.33

12 30 0.33 29.98 0.33
3 18 0.34 17.98 0.34

2 1000
1

0.5
15 0.33

1 0.5
15.12 0.33

12 10 0.33 09.90 0.33
3 30 0.34 30.04 0.34

1 450
1

0.33
65 0.33

1 0.35
64.89 0.33

12 15 0.33 15.28 0.33
3 30 0.34 29.66 0.34

2 450
1

0.33
30 0.33

1 0.32
30.24 0.33

12 34 0.33 33.75 0.33
3 35 0.34 35.09 0.34

3 450
1

0.34
25 0.33

1 0.33
25.26 0.33

12 65 0.33 65.22 0.33
3 30 0.34 29.72 0.34

1 500
1

0.17
16 0.33

1 0.23
16.09 0.33

12 19 0.33 19.26 0.33
3 21 0.34 20.79 0.34

2 1000
1

0.33
18 0.33

1 0.25
18.29 0.33

12 43 0.33 43.53 0.33
3 21 0.34 20.25 0.34

3 1000
1

0.33
43 0.33

1 0.29
42.69 0.33

12 30 0.33 30.37 0.33
3 18 0.34 17.86 0.34

4 500
1

0.17
30 0.33

1 0.23
29.74 0.33

12 21 0.33 20.98 0.33
3 20 0.34 20.26 0.34

Table 4.2: Multi-dimensional synthetic data with 2,3, and 4 clusters.

4.4 Real Datasets

We consider five real data sets; the first one related to life science (Iris flower dataset

or Fisher’s Iris dataset1 dataset), where the second and third are related to medical sci-

ence (Haberman’s Survival dataset2, and Immunotherapy dataset3), then the fourth one is
1 https://archive.ics.uci.edu/ml/datasets/iris
2https://archive.ics.uci.edu/ml/datasets/Haberman’s+Survival
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Figure 4.2: Multi-dimensional generated synthetic dataset plot

related to the business field (Absenteeism at work dataset4) to detect the reasons behind

the employees absenteeism, and finally Wholesale Customers dataset5 to find meaningful

customer segments within a data population.

First, Iris flower dataset (Iris dataset for short) is a multivariate dataset that was in-

troduced in 1936 by the British statistician and biologist Ronald Fisher as an example of

linear discriminant analysis Fisher (1936). Iris dataset is mostly used for testing machine

learning algorithms. The data set has 150 rows in which each represents an iris flower by

4 attributes, including its species and dimensions (length and width) of its botanical parts

(sepal and petal) in centimetres. These observations are classified into 3 groups, Iris Setosa,

Iris Versicolour, and Iris Virginica where each has 50 rows equally.

Secondly, Haberman’s survival dataset (Haberman dataset for short) which was first

3 https://archive.ics.uci.edu/ml/datasets/Immunotherapy+Dataset
4https://archive.ics.uci.edu/ml/datasets/Absenteeism+at+work
5https://archive.ics.uci.edu/ml/datasets/wholesale+customers
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Figure 4.3: Message length plot for the generated synthetic datasets

introduced by R. A. The dataset contains cases from a study that was conducted between

1958 and 1970 at the University of Chicago’s Billings Hospital on the survival of patients

who had undergone surgery for breast cancer. The 306 survival patients samples are de-

scribed with four features, Age of patient at the time of operation, Patient’s year of opera-

tion, Number of positive axillary nodes detected, and Survival status that divide the dataset

into two classes where 225 belong to first class for the patient who survived 5 years or

longer , 81 belong to second class for the patient who died within 5 year.

Thirdly, Immunotherapy dataset is a new dataset conducted in the domain of wart

treatment and collected in the dermatology clinic of Ghaem Hospital in Mashhad from

January 2013 to February 2015 Khozeimeh, Alizadehsani, et al. (2017). Immunotherapy is
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a new treatment method which has lately been employed where the aim of this dataset to

diagnose its results and see if this treatment method has better results for each patient than

other suggested methods Khozeimeh, Jabbari Azad, et al. (2017) which would help these

patients spend less time and money. The dataset was collected from 90 patients with plantar

and common warts, who had referred to the dermatology clinic and has 8 features. These

patients are classified into 2 groups represent the Response to Treatment feature where the

classes has 71 rows for positive response and 19 rows for Negative responses.

Fourthly, Absenteeism at work dataset (Abs@work dataset for short) which was col-

lected during the period from July 2007 to July 2010 in a Courier company in Brazil. The

high competition among the organizations in the market increases the pressure on the em-

ployees to achieve superior goals against the competitors. This compression leads some

employees to acquire disturbance in the state of health which is related to the type of work

activity. The aim of this dataset is to predict the reasons behind the absenteeism at work

where the data has 740 instances that classified by the International Classification of Dis-

eases into 21 categories.

Finally, Wholesale customers dataset (Sales dataset for short). This kind of application

is widely seen in marketing where the inference would help companies in making better

decisions regarding budget, amount/ type of goods to supply to serve a particular customer

segment that would increase market share and bottom line for such businesses. The data set

source from Lisbon, Portugal Abreu et al. (2011) and it concerns the annual customers’ ex-

penses (in monetary units) on product categories: grocery, fresh/frozen/delicatessen prod-

ucts, milk products, detergents and paper products. It has 440 customers of wholesale

grouped into two segments based on their spending patterns. The first group, 298 cus-

tomers from the Horeca (Hotel/Restaurant/Cafe) channel and the second is 142 customers

from the Retail channel. As mentioned in Baudry, Cardoso, Celeux, Amorim, and Ferreira

(2012), they are distributed into two large Portuguese cities regions (Lisbon and Oporto)
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and a complementary region. The wholesale data also includes a questionnaire responses

evaluating possible managerial actions with the potential impact on sales such as improving

the store layout, offering discount tickets or extending products assortment. The customers

answers were registered about whether those actions have impacts on their purchases.

Before comparing our model performance with others, we use the MML to select the

number of clusters. As it is presented in Fig.(4.4) a,b,c, d and e for Iris, Haberman, Im-

munotherapy, Abs@work, and Wholesale customers respectively, the MML was able to

determine the optimal number of clusters for all datasets.

After that, we run each algorithm, GMM, DMM, SDMM, and SSDMM 100 times

and report the overall accuracy, average accuracy, Precision and Recall at Macro level,

and false alarm each with standard errors. The results for the four datasets are shown in

the Table (4.3). As we can see, for Iris dataset, the SSDMM outperforms other models

with accuracy of 95.33% compared to 94.67% for SDMM, 89.33% for DMM and 82.00%

for GMM. Then, for Haberman dataset, the SSDMM performs better than other models

with accuracy of 75.49% compared to 73.53% for SDMM, 62.75% for DMM and 66.67%

for GMM. Whereas for Immunotherapy dataset, over again the SSDMM together with

DMM are better than others with overall accuracy of 88.89% compared with the equal

overall accuracy of 74.44% for both SDMM and GMM; however, SDMM has less false

alarm which is considered better. Then, for Abs@work dataset, GMM outperforms others

with 98.38% followed by a competitive accuracy value for SSDMM with 96.89%. Finally,

for Sales dataset, the SSDMM performs again better than other models with accuracy of

84.32% compared to 81.82% for SDMM, 77.27% for DMM and 78.18% for GMM.
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Figure 4.4: Message length plot for the five real datasets
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Dataset Model Overall Acc. Avg. Acc. Macro Precision Macro Recall False Alarm

Iris

SSDMM 95.33%±0.0077 95.33%±0.0143 95.33%±0.0077 95.34%±0.0090 0.0467

SDMM 94.67%±0.0083 94.67%±0.0144 94.67%±0.0083 94.71%±0.0114 0.0533

DMM 89.33%±0.0063 89.33%±0.0146 89.33%±0.0063 91.92%±0.0087 0.1067

GMM 82.00%±0.0304 82.00%±0.0321 82.00%±0.0304 82.06%±0.0303 0.1800

Haberman

SSDMM 75.49%±0.0228 62.00%±0.0388 62.00%±0.0048 67.66%±0.0167 0.2093

SDMM 73.53%±0.0226 63.83%±0.0350 63.83%±0.0062 65.25%±0.0139 0.1949

DMM 62.75%±0.0190 57.08%±0.0263 47.41%±0.0098 46.67%±0.0173 0.2771

GMM 66.67%±0.0167 66.67%±0.0214 66.67%±0.0167 63.30±0.0134 0.1525

Immunotherapy

SSDMM 88.89%±0.0144 88.89%±0.0084 88.89%±0.0084 88.97%±0.0208 0.1111

SDMM 74.44%±0.0244 60.67%±0.0142 60.67%±0.0142 61.66%±0.0187 0.1549

DMM 88.89%±0.0168 88.98%±0.0083 88.98%±0.0083 89.14%±0.0216 0.1102

GMM 74.44%±0.0173 49.11%±0.0067 49.11%±0.0025 47.62%±0.0045 0.5089

Abs@work

SSDMM 96.89%±0.0037 96.82%±0.0034 96.82%±0.0034 97.10%±0.0138 0.0318

SDMM 91.89%±0.0065 89.46%±0.0025 89.46%±0.0025 92.79%±0.0147 0.1054

DMM 78.65%±0.0089 79.16%±0.0088 79.16%±0.0088 84.78%±0.0166 0.2084

GMM 98.38%±0.0006 98.14%±0.0006 98.14%±0.0006 98.60%±0.0005 0.0186

Sales

SSDMM 84.32%±0.0176 84.00%±0.0100 84.00%±0.0100 81.86%±0.0173 0.1568

SDMM 81.82%±0.0281 77.73%±0.0055 77.73%±0.0055 79.66%±0.0118 0.0281

DMM 77.27%±0.0304 77.88%±0.0076 77.88%±0.0076 75.04%±0.0138 0.0304

GMM 78.18%± 0.0242 74.68%±0.0229 74.68%±0.0292 75.06%±0.0256 0.0242

Table 4.3: Classification results for Real datasets
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4.5 Software Modules Defect-prone Prediction

Due to the increasing number of software errors and defects, many researchers have

tackled the challenging problem of predicting errors Catal (2011); Jiang, Cukic, and Men-

zies (2007); Najadat and Alsmadi (2012); Shihab (2012), where the predictions help to

figure out the potential future defects Shihab (2014). It is most likely that when we say a

faulty software program, the fault is located in some of the modules6 not all.

The authors in, Shihab (2012) discuss the importance of historical datasets in detecting

fault prone software modules. Therefore the unavailability of these kind of datasets makes

the process more difficult. On the other hand, it is important to select the appropriate

metrics which explain the attributes of these software modules. Hence, it would help to

effectively classify the fault-prone software modules.

The datasets used in this study are the four mission critical NASA software projects,

which are obtained from NASA public MDP (Modular toolkit for Data Processing) reposi-

tory that has 13 projects which are publicly accessible7. Each dataset contains 21 software

metrics (independent variables) which are 5 different lines of code measure, 3 McCabe

metrics, 4 base Halstead measures, 8 derived Halstead measures, a branch-count, and 1 as-

sociated dependent Boolean variable for predicting whether the module is defective or not,

rather than how many defects it contains. The Halsteads and McCabes complexity mea-

sures are useful metrics that can be computed early during the software program design

and implementation stages. They are based on the characteristics of the software modules

as explained in McCabe (1976).

The McCabes metric includes the following:

(1) Essential complexity.

(2) Cyclomatic complexity.

6A module is the smallest independent unit of a software that performs a certain function
7http://promise.site.uottawa.ca/SERepository/datasets-page.html
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(3) Design complexity.

(4) Number of lines of code.

While the Halsteads complexity metric contains:

(1) Base measures.

(2) Derived measures.

(3) Line of code (LOC) measures.

Two of the datasets are CM1 (NASA spacecraft instrument) and PC1 (Flight software for

an earth orbiting satellite) which are from software projects written in a procedural lan-

guage (C), where a module in this case is a function. The other two datasets are KC1

(which is system implementing storage management for receiving and processing ground

data) and KC3 (Collection, processing and delivery of satellite metadata) which are from

projects written in object-oriented languages (C++ and Java) where a module in this case

is a method. Table 4.4 summarizes the main properties of the considered datasets.

Data set language samples non-defects defects

CM1 C 498 449 49

KC1 C++ 2109 1783 326

KC3 JAVA 458 415 43

PC1 C 1109 1032 77

Table 4.4: Summarized NASA Datasets Properties

For evaluation, we have used some common performance measures such as Average

accuracy, precision and recall averaged at Macro level, and False alarm to assess and com-

pare different prediction models quantitatively. Table (4.5) presents the results SSDMM,

SDMM, and DMM. Each algorithm was relatively run 100 times with different random

initializations and for each dataset, the average metrics with standard errors are reported.
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Dataset Model Overall Accc. Avg. Acc. Precision Recall FA

CM1
SSDMM 80.32%±0.0309 61.82%±0.0204 61.82%±0.0204 57.27%±0.0301 0.0787
SDMM 80.30%±0.0339 61.80%±0.0585 61.80%±0.0056 57.24%±0.0155 0.0730
DMM 29.92%±0.0337 60.23%±0.0496 60.23%±0.0053 55.57%±0.0111 0.0988

KC1
SSDMM 72.04%±0.0185 72.44%±0.0172 71.53%±0.0172 62.12%±0.0279 0.0658
SDMM 70.51%±0.0271 71.53%±0.0261 71.53%±0.0106 62.12%±0.0130 0.0658
DMM 72.02%±0.0254 70.98%±0.0257 70.98%±0.0069 62.24%±0.0088 0.0717

KC3
SSDMM 62.45%±0.0309 73.02%±0.0426 73.02%±0.0077 57.94%±0.0193 0.0235
SDMM 87.48%±0.0313 73.02%±0.0329 73.02%±0.0118 57.94%±0.0176 0.0235
DMM 65.28%±0.0342 74.59%±0.0155 74.59%±0.0177 58.62%±0.0086 0.1368

PC1
SSDMM 75.65%±0.0331 61.68%±0.0183 61.68%±0.0020 54.17%±0.0205 0.0496
SDMM 75.65%±0.0340 50.47%±0.0884 50.47%±0.0044 50.31%±0.0077 0.0688
DMM 72.32%±0.0311 61.69%±0.0850 61.69%±0.0080 53.78%±0.0080 0.0486

Table 4.5: Classification results for NASA four datasets

As we can see in table 4.4 and for each dataset, we have more non-defective modules

than the defectives ones, i.e., we encounter imbalanced classes. Therefore, using ”overall

accuracy” is not effective in our case. However, the average accuracy gives us better as-

sessment measure. Table (4.5) shows that SSDMM performs almost as good as SDMM

in CM1 and KC3 datasets, but for PC1 SSDM is comparable to DMM, while for KC1 the

SSDMM performs the best.

For CM1, the average accuracy gives the result of 61.82% for SSDMM and 61.80% for

SDMM which is better than 60.23% in case of DMM. While for KC1, the average accuracy

is 72.44% for SSDMM and 71.53% SDMM which is better than 70.98% in case of DMM.

Moreover, for KC3 dataset, the same result of 73.02% is obtained from both SSDMM and

SDMM against 74.59%. For PC1, SSDMM and DMM provide almost the same result of

61.68% and 61.69% respectively which are better than 50.47% for SDMM. According to

the false alarm, SSDMM once again achieved comparable results indicated by the small

values presents (where the smaller is the better), as (0.0787) for CM1, (0.0658) for KC1,

(0.0235) for KC3, and (0.0496) for PC1.

Generally, we can say the experimental results show that SSDMM is better than or at
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least is comparable to other generative models and more flexible to predict the defects. Al-

though the focus of this work is on software defect prediction, we believe that the proposed

model can be efficiently used in many other applications where the data is in proportional

form.

4.6 Writer identification

The importance of handwritten documents has still retained its place in this paperless

world; however, the problem lies in identifying the writers’ authentication. A certain degree

of stability exists behind each writing style of an individual, that makes it possible to iden-

tify the personality of the person who has written. For this reasons, several researches in the

recent years have investigated the Writer identification problem and many approaches have

been proposed to distinguish the author of a document Christlein, Gropp, Fiel, and Maier

(2017); He, Wiering, and Schomaker (2015); Wu, Tang, and Bu (2014)). The necessity to

identify the author is a widespread problem that emerges often in some fields more than

others. For example, the field of medicine where the prescription should come from an au-

thorized doctor, the court of justice where a document authenticity has to be concluded, the

library where ancient documents can be analyzed for indexing and retrieval, and in banks

for the verification of signatures.

In this section, we use SSDMM to model a persons handwriting where the objective is

to identify the writer of a sample among N given writers. Firstly, each handwriting image

is segmented into lines regions where for each writer, the lines were splitted randomly into

two halves; one for training and one for identification. Second, SIFT is used in the train-

ing stage to detect the key points and extract the descriptors Lowe (2004). The features

are formed by computing the gradient at each pixel in a 16 × 16 window around the de-

tected key points. In each 4 × 4 quadrant, a gradient orientation histogram is formed by
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adding the weighted gradient value to one of eight orientation histograms resulting in 128-

dimensional descriptor vector. Third, after extracting the features from the training dataset,

they are used to generate a codebook by quantizing resulting distribution of descriptors into

a number of homogeneous clusters using unsupervised clustering approach, typically a k-

means algorithm as proposed in Elkan (2003), where the centroid of each cluster is treated

as a visual word. Then, in the identification stage, the extracted descriptors are assigned to

the closest visual word (Euclidean distance) resulting in a histogram of frequencies that can

be normalized and used for the identification task based on the different tested methods.

Our experiments are based on handwritten text pages from public datasets: two En-

glish datasets, IAM Marti and Bunke (2002), and Firemaker Bulacu, Schomaker, and Vu-

urpijl (2003), and two Arabic datasets, KHATT Mahmoud et al. (2012), and IFN/ENIT

database Pechwitz et al. (2002). The IAM dataset includes 1, 539 English handwriting

document images written by 657 writers, with 158 writers owning 3 or more handwriting

samples. The Firemaker dataset contains 1, 000 handwriting pages written by 250 writ-

ers, four pages for each. The KHATT database is composed of unconstrained handwrit-

ten Arabic texts written by 1, 000 different writers developed jointly by research groups

from KFUPM, Saudi Arabia, TUDortmund, Germany, and TU-Braunschweig, Germany.

Finally, IFN/ENIT database composed of 26, 549 images of Tunisian town/village names

written by 411 writers and was developed by the Institute of Communications Technology

(IFN) at Technical University Braunschweig in Germany and The National School of Engi-

neers of Tunis (ENIT). Figure (4.5) presents sample handwriting images from each dataset

used in our experiments.

As we can see in table 4.6, SSDMM almost outperforms other models with accuracy of

98.17% for IAM dataset, 91.46% for Firemaker dataset, and 87.53% for KHATT dataset.

Finally, for IFN/ENIT dataset, GMM is slightly better with 79.82% as compared to SS-

DMM with 78.95%.
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IAM Dataset
Firemaker Dataset

KHATT Dataset IFN/ENIT Dataset

Figure 4.5: Written samples from the used datasets

Dataset GMM DMM SDMM SSDMM
IAM 83.21% 74.36% 94.87% 98.17%
Firemaker 64.36% 65.62% 91.46% 91.46%
KHATT 77.56% 20.71% 87.53% 87.53%
IFN/ENIT 79.82% 45.61% 70.45% 78.95%

Table 4.6: Performance of different models for writer identification on the considered
datasets.
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Chapter 5

Conclusion

Our work is related to the area of model-based clustering by proposing the shifted

scaled Dirichlet mixture model in a purpose of extending the research work that has con-

cerned modeling multivariate proportional data. Our choice of the shifted scaled Dirichlet

distribution was motivated by its extra parameters that add flexibility to data modeling as

compared to the Dirichlet distribution.

After that we discussed the maximum likelihood approach through implementing ex-

pectation maximization algorithm for our model parameters estimation. Note that, in real-

world application we need a predefined the number of components that a dataset is gen-

erated from. For this purpose, we implement the minimum message length as a model

selection criterion that help in determining the optimal number of clusters.

Thereafter, we used different datasets to evaluate our model and show its capability

to cluster the chosen datasets with widely used performance measures. We first tested

the model with synthetic data generated from the Dirichlet density and then compared the

estimated model parameters with the real mixture model parameters. After that, we went

further to execute the tests on real datasets with different applications related to life science,

the medical field, business field, and retailers sales. We also considered a very popular

application in software engineering about predicting defects-prone software modules which

51



has become very critical and expensive in case of large software projects. We ended up our

experiments with consideration of the writer identification application which is a task of

associating a handwriting sample with its writer identity. The manual writer identification

is very time consuming that requires an exhaustive comparison for the details. Leaving the

task for the computer is very useful to automatically confirm the authenticity of a document

or to link together documents written by the same author.

We experience a number of challenges and limitations in all stages of this work.

• The limitation to handle a very high dimensional and sparse dataset.

Due to the difficultly in computing the inverse of the high-dimensional Hessian ma-

trix when estimating model parameters which requires more work in Bayesian meth-

ods to tackle that.

• The convergence to the global maximum is very difficult.

because of the initialization step in EM, particularly while using the K-means algo-

rithm. A better initialization methods could solve this problem.

• We experience an issue with imbalanced classes in the application of the software

defect prediction.

This issue makes it difficult for the algorithm to find the optimal parameters that

define the defect group we are interested to know. Indeed, a small fraction of defects

limits our detection ability. A solution could be the need of developing metrics or

feature suitable for early defects detection for software modules.

Future works should tackle all the limitations we have faced. Moreover, finding efficient

optimization techniques for estimating parameter vectors could be a promising future work.

Also, online learning is an interesting direction.
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Appendix A

We show here the possibility of obtaining the classic Dirichlet density model from the

shifted scaled Dirichlet when we set τ = 1 and the vector β = C(1, . . . , 1).

The shifted scaled Dirichlet distribution defined as follows,

SSD(X|θ) =
Γ(α+)∏D
d=1 Γ(αd)

1

τD−1

∏D
d=1 β

−αd
τ

d x
(
αd
τ
−1)

d

(
∑D

d=1
xd
βd

1
τ )α+

(45)

We show a simple decomposition of the Dirichlet from the shifted scaled Dirichlet.

D(X|θ) =
Γ(α+)

∏D
d=1 x

(αd−1)
d∏D

d=1 Γ(αd)
→ Dirichlet portion (46)

SS(X|θ) =
1

τD−1

∏D
d=1 β

−αd
τ

d x
( 1
τ

)

d

(
∑D

d=1
xd
βd

1
τ )α+

→ Shifted scale portion (47)

Which means that in the case of a Dirichlet density, the shifted-scaled portion is equal to 1.

1

τD−1

∏D
d=1 β

−αd
τ

d x
( 1
τ

)

d

(
∑D

d=1
xd
βd

1
τ )α+

= 1 (48)
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Appendix B

In order to ensure all β constraints 0 ≤ βjd ≤ 1;
∑D

d=1 βjd = 1 are satisfied, Lagrange

Multiplier is introduced while estimating βjd. Therefore, the augmented log likelihood is:

φ(Θ, Z,X,Λ) =
N∑
n=1

K∑
j=1

znj(log(Xn|αj, βj , τj)) + Λ(1−
D∑
d=1

βjd) (49)

Taking the derivative of the previous equation with respect to βjd,Λ respectively, we obtain:

∂L(X ,Z|Θ)

∂βjd
=

1

Λ
[
N∑
n=1

znj
α+Xnd

τj ∗ βjd
∑D

d=1(Xnd
βjd

)
− αjd

τj
] (50)

∂L(X ,Z|Θ)

∂Λ
= 1−

D∑
d=1

βjd

that gives us: =>
D∑
d=1

βjd = 1

(51)

Then, by substituting Eq. 51 in Eq. 50 and solve them in order to end up with Λ equation

as following:

Λ =
N∑
n=1

ẑnj

D∑
d=1

α+Xnd

τjβjd
∑D

d=1(Xnd
βjd

)
−

D∑
d=1

αjd
τj
. (52)
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Thereafter, we get the final βjd equation after we plug Eq. 52 in Eq. 50 as following:

βjd =

∑N
n=1 znj

(
α+Xnd

τjβjd
∑D
d=1(

Xnd
βjd

)
− αjd

τj

)
∑N

n=1 Ẑnj

(∑D
d=1

α+Xnd

τjβjd
∑D
d=1(

Xnd
βjd

)
−
∑D

d=1
αjd
τj

) (53)
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