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Abstract 

Energy-Efficient Pilot-Data Power Control in MU-MIMO 

Communication Systems 

Ye Zhang, Ph.D. 

Concordia University, 2018 

 

 

Multiple-input multiple-output (MIMO) antenna system is considered as a core technology for 

wireless communication. To reap the benefits of MIMO at a greater scale, massive MIMO with 

very large antenna arrays deployed at base station (BS) has recently become the forefront in 

wireless communication research. Till present, the design and analysis of large-scale MIMO 

systems is a fairly new subject. On the other hand, excessive power usage in MIMO networks is 

a crucial issue for mobile operators and the explosive growth of wireless services contributes 

largely to the worldwide carbon footprint. As such, significant efforts have been devoted to 

improve the spectral efficiency (SE) as well as energy efficiency (EE) of MIMO communication 

systems over the past decade, resulting in many energy efficient techniques such as power 

allocation. This thesis investigates novel energy-efficient pilot-data power control strategies 

which can be used in both conventional MIMO and massive MIMO communication systems. 

The new pilot-data power control algorithms are developed based ontwo optimization 

frameworks: one aims to minimize the total transmit power while satisfying per-user signal-

interference-plus-noise ratio (SINR) and power constraints; the other aims to maximize the total 

EE, which is defined as the ratio of the total SE to the transmit power, under individual user 

power constraints. The proposed novel pilot-data power allocation schemes also take into 

account the maximum-ratio combining (MRC) and zero-forcing (ZF) detectors in the uplink 

together with maximum-ratio transmission (MRT) and ZF precoder in the downlink. 
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Considering that a direct use of such SINR expressions in the power control schemeswould lead 

to a very difficult optimization problem which is not mathematically tractable, we first 

investigatethe statistical SINR lower bounds for multi-cell multi-user MIMO (MU-

MIMO)communication systemsunder minimum mean square error (MMSE) channel estimation. 

These lower bounds of the per-user average SINRs are used to replace the true SINRs to simplify 

the power allocation optimization problems. Such relaxation of the original average SINR yields 

a simplified problem and leads to a suboptimal solution. 

Then, based on the derived average SINR lower bounds, two novel energy efficient pilot-data 

power control problems are formulatedwithin the first optimization framework,aiming to 

minimize the total transmit power budget subject to the per-user SINR requirement and power 

consumption constraint in multi-cell MU-MIMO systems. For the EE-optimal power allocation 

problems with MRT precoder and MRC detector, it is revealed that such minimization problems 

can be converted to a standard geometric programming (GP) procedure which can be further 

converted to a convex optimization problem. For the pilot-data power control scheme with ZF 

precoder and ZF detector, geometric inequality is used to approximate the original non-convex 

optimization to GP problem. The very large number of BS station situation is also discussed by 

assuming infinite antennas at BS. Numerical results validate the tightness of the derived SINR 

lower bounds and the advantages of the proposed energy efficient power allocation schemes. 

Next, two pilot and data power control schemes are developed based on the second power 

allocation optimization framework to jointly maximize the total EE for both uplink and downlink 

transmissions in multi-cell MU-MIMO systems under per-user and BS power constraints. The 

original power control problems are simplified to equivalent convex problems based on the 

derived SINR lower bounds along with the Dinkelbach's method and the FrankWolfe (FW) 

iteration. By assuming infinite antennas at BS, the pilot-data power control in massive MIMO 

case is also discussed. The performance of the proposed pilot-data power allocation schemes 

based on the two frameworks, namely total transmit power minimization and total EE 

maximization, are evaluated and compared with the SE maximization scheme. 

Furthermore, we investigate the pilot-data power allocation for EE communications in single-cell 

MU-MIMO systems with circuit power consumption in consideration. The pilot and data power 

allocation schemes are proposed to minimize the total weighted uplink and downlink transmit 
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power as well as processing circuit power consumption while meeting the per-user SINR and BS 

power consumption constraints. In our proposed schemes, both fixed and flexible numbers of BS 

antennas are investigated. For the fixed number of BS antennas case, the non-convex 

optimization problems are converted to a general GP problem to facilitate the solution. An 

iterative algorithm is proposed to solve the EE-optimal power control problems in the flexible 

number of BS antennas casebased on the partial convexity of both the cost function and the 

constraints. It is shown that the convergence of the proposed iterative algorithm is guaranteed 

due to the fact that each iteration follows convex optimization. 
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Chapter 1

Introduction

1.1 Background and Motivation

Over the past decades, multiple-input multiple-output (MIMO) technology has received a

great deal of attention in wireless communication research community. It is considered as a

strong candidate for future wireless communication systems due to its exploiting the spatial

multiplexing gain, spatial diversity and array gain [1]-[4]. With the development of nowadays

MIMO networks, more and more antennas are employed on transmitter and/or receiver in

order to reduce intra-cell interference and serve more users at the same time, thus leading

to a new technology called massive MIMO system [5]-[10]. Typically, massive MIMO is a

multi-user MIMO (MU-MIMO) technology in which a base station (BS) equipped with a

very large antenna array services several users simultaneously. It has been proved that in

massive MU-MIMO systems, the effect of small-scale fading and additive white Gaussian

noise (AWGN) can be averaged out with simple signal processing. The research in [11]-[12]

based on random matrix theory has demonstrated that linear receivers with infinite number

of BS antennas and perfect channel state information (CSI) can completely eliminate the

intra-cell interference and noise, resulting in the “favourable propagation”. The design and

analysis of large scale MIMO systems is a new subject which is attracting more and more

interests.
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Because of the explosive growth of user demands on high-data-rate multimedia traffic,

energy consumption of MIMO communication has been dramatically increasing in recent

years. Such huge energy consumption results in a large amount of carbon dioxide emission

and high capital and operating expenditures [13]-[15]. Moreover, the mobile terminals also

desire high energy efficiency for the reason that the development of battery technology has not

kept up with the demand of broad band mobile communications [16]-[18]. Therefore, green

communication design has become a significant trend for the development of future wireless

communication technologies and has been considered as a promising research direction in

both the academic and industrial areas [19]–[20].

One main topic of green communication focuses on the energy efficient resource allocation

[21]-[25]. Because of the environment changing and users’ mobility, the CSI of wireless links

varies randomly with time. In almost all communication scenarios, the system performance

highly depends on the accuracy of CSI at transmit and/or receive ends. To learn the channel,

one popular method is to let the transmitter send known training signal, which is known as

pilot signal, to the receiver during a certain transmission time interval. A proper training

signal is very important for MIMO communication systems, especially for massive MIMO

systems. Little training power leads to a heavy noise caused by the channel estimation error,

which directly affects the transmission performance, i.e. a very low signal-to-interference-

plus-noise ratio (SINR) [26]-[28]. On the contrary, if a longer training sequence or more

training power is used, it means less remaining energy for the useful data transmission for

a given energy budget spent in a coherence interval, causing a waste of resource in MIMO

2



communication systems, such as power, time and bandwidth [29]-[32]. Therefore, the power

allocation between training and data signal is a major problem that has a large impact on

the performance of MIMO systems. As a result, it is crucial to study the resource allocation

strategy for MIMO communication systems in order to save the energy consumption on

BS and/or user terminals. Therefore, this thesis focuses on the trade-off between system

performance and energy consumption by developing the power allocation schemes for both

training and data signal to achieve the green communication requirement. Moreover, it is

generally believed that the massive MU-MIMO as a results of using tremendous antennas

at BS can save the energy cost without sacrificing system performance as compared to

traditional MU-MIMO systems [11] [33]-[36]. We will also discuss the power saving and

system performance improvement of the energy efficient power allocation versus the number

of antennas used in massive MU-MIMO networks.

1.2 Literature Review

1.2.1 Power Allocation Based on Perfect CSI

Wireless communication usage has gained a huge growth recently and will continue to grow

rapidly in the following years. The power consumption of the mobile devices has become a

major concern because battery technologies have not been able to scale up with the increas-

ingly higher communication speed. Moreover, the large amount of carbon dioxide emission

gives rise to significant environmental problem, which has made power consumption a crucial

performance metric that is highly concerned in wireless communication systems. As a result,

energy efficient optimal resource allocation, aiming at increasing the energy efficiency (EE)
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as well as saving power cost of the whole system, has emerged as a significant research topic

in MIMO communication systems.

In the past decades, many researchers have studied the energy efficient resource allo-

cation in MIMO communication systems based on perfect CSI. For example, an energy

efficient power allocation algorithm for MIMO wireless systems was formulated as a convex

optimization problem with quality of service (QoS) constraints in [37]. The bit energy of

training-based single-input single-output (SISO) and MIMO system was investigated in [48],

where the works were based on optimization of SNR for single user MIMO systems. In [39],

an energy efficient optimal power control based on water-filling algorithm for the downlink

MU-MIMO system was developed. In [40], an optimal power allocation that maximizes the

EE performance in the downlink of a MU-MIMO was studied with zero-forcing (ZF) pre-

coder used at BS. The optimal number of active users and their power allocation in uplink

MU-MIMO systems was discussed in [41] based on the maximization of total EE. The au-

thors of [11] studied the trade-off between uplink energy and spectral efficiency in large-scale

MU-MIMO systems under both perfect and imperfect CSI. It is shown that by employing

very large antenna arrays at BS, both spectral and energy efficiency can be improved greatly

with a simple power allocation scheme in which all users are assumed to have the same pilot

power and data power.

However, in practice we can never have perfect CSI because of channel estimation error

[42]-[44]. Usually, the CSI in MU-MIMO system is estimated based on training signal, which

is called training-based channel estimation. For a massive MU-MIMO system as a large

number of antennas are employed at BS, it is extremely difficult to estimate CSI at user

side [30] [45]. As such, the channel estimation is performed at BS through uplink training

4



under the assumption of time-division duplexing (TDD) in large-scale MU-MIMO systems.

In this thesis, we will focus on the study of EE techniques in both conventional and massive

MU-MIMO communication systems based on the imperfect CSI, which is a more practical

situation.

1.2.2 Power Allocation Based on Imperfect CSI

Generally speaking, there are two main energy efficient power allocation frameworks for

MIMO communication systems based on imperfect CSI: one aims to minimize the total

transmit power under certain constraints, i.e. QoS constraint, per-user power constraint, etc.;

the other is to maximize total EE defined as the spectral efficiency (sum-rate in bit/channel)

divided by the transmit power (in Joules/channel) [11] [46]-[48]. It is straightforward to

understand the first framework which is to use minimum power to satisfy the required system

performance. Typically, increasing the SE is associated with increasing the power and the

achievable transmission rate. On the contrary, the energy saving optimization aims to save

power in the whole system and sometimes decreases the system performance, such as spectral

efficiency (SE), signal to interference-plus-noise ratio (SINR), system reliability, etc. There is

a fundamental trade-off between the power consumption and the SE. The idea of the second

framework is to jointly optimize the power cost and the SE in one operating regime. Even

though the main goal is to save energy cost in MIMO communication systems, these two

frameworks are based on different purpose of system design. The first framework aims to

minimize power cost over a given system performance target while the second aims to find

a balance between spectral efficiency and power cost.
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Under the first framework, the power allocation work in [49] aims to minimize the down-

link transmission energy of the time-division multiple-access (TDMA) MIMO systems while

meeting the individual users’ effective capacity constraints, which is defined as the maximum

achievable source rate under a given delay bound. The authors of [50] proposed a resource

allocation scheme to minimize the overall transmit power subject to given user target rates in

a downlink MIMO orthogonal frequency division multiplexing (OFDM) system. The authors

of [51] investigated the energy-efficient uplink power control in multi-cell massive MU-MIMO

systems with the linear minimum mean-square-error (MMSE) receiver based on the lower

bound of statistic uplink SINR. Paper [52] exploited the interdependency between pilot and

data transmission and achieved total power saving is achieved subject to the per-user SINR

constraint. The work in [53] considered a linear downlink transceiver design for the sum

power minimization problem with per-user rate constraints in a multi-cell MU-MIMO sys-

tem. The works in [54] and [55] aimed to minimize radiated power in MIMO systems under

sum rate constraint with channel correlation and partial CSI at the transmitter in consid-

eration. The work in [56] studied an optimization problem to minimize the overall energy

consumption while ensuring users’ QoS requirement by considering both perfect CSI and sta-

tistical CSI from users to the primary receiver in a single cell time-division multiple access

(TDMA) MIMO cognitive radio (CR) network.

Under the second energy-efficient optimization framework, the work in [57] discussed the

pilot-data power allocation to maximize the total EE for training-based single user MIMO

with and without feedback, by taking circuit power consumption into consideration. The

works in [58] studied the SE and EE optimal power allocation between reverse training,

6



forward training and data transmission in two-way training based multiple-input single-

output (MISO) systems. The work in [59] studies the energy-efficient downlink resource

allocation for frequency-division duplexing (FDD) MIMO system under a correlated Rayleigh

fading channel. The authors in [60] proposed a power control algorithm to maximize the

downlink energy efficiency by assuming equal data power allocation among all users. The

work in [61] addresses optimal energy-efficient design of uplink MU-MIMO in a single cell

environment with radio frequency (RF) transmission power and device electronic circuit

power considered. The works in [62]-[65] are essentially targeted to analyse the maximal

achievable EE in MIMO systems under the statistical QoS constraint. The authors in [66]

studied the transmit power control for multi-tier MIMO heterogeneous cellular networks

(HetNets), where each tier operates in closed-access policy and base stations (BSs) in each

tier are distributed as a stationary Poisson point process (PPP).

It should be noted that the schemes in [48]-[66], as mentioned above, considered the en-

ergy efficient power control for the uplink and downlink transmissions separately by ignoring

the relation between uplink and downlink transmit powers, which limit their use in practi-

cal MIMO systems. Moreover, some of these works on energy efficiency in MIMO systems

as described in [46]-[49], [54], [58] and [67] are based on the assumption that all users are

allocated the same pilot power or data power. Such equal power allocation strategies may

cause squaring effect in low power regime [67].

1.2.3 Power Control Schemes in Massive MIMO systems

Massive MIMO is a promising technique to increase the EE of cellular networks by deploying

antenna arrays with a very large number of active antennas at the BSs. This technique allows
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for very efficient spatial multiplexing, and has a significant gain in reliability due to flattening

out unrelated noise, deep fades, hardening of the channel and array gain. In massive MIMO

systems, power control among users should be considered as a necessary and essential tool

to take full advantage of massive antenna arrays. However, since the design and analysis of

very large scale MIMO systems is a fairly new subject, limited research has been done on

the power allocation for massive MIMO, especially for multi-cell massive MIMO systems.

As mentioned in the previous subsection, the work in [48], [51] and [59] discussed the power

control schemes in massive MIMO systems by assuming no more than two hundreds of

antennas employed at BSs. In [68], a power control strategy among different users has been

proposed to maximize the SE in single-cell massive MIMO systems. In [69] and [70], power

control among different users is applied as an effective way to minimize the uplink power

consumption with maximum sum SE in multi-cell massive MIMO systems. It should be

noted that all the above power control algorithms only take into consideration the transmit

power consumption, and tend to achieve higher SE and better EE performance with more

BS antennas. However, in practical massive MIMO systems, since the effect of circuit power

consumption would be gradually aggravated by the number of BS antennas as the size of

hardware systems increases, it would bring nonnegligible negative impacts on massive MIMO

systems.

It is generally believed that circuit power consumption is fundamentally the limit in

massive MIMO systems in the high-power regime [71]-[72]. However, there are only a few

publications found so far discussed such behaviour in the large number of antenna regime.

In [73], the lower bounds on the achievable uplink sum rate in massive single-cell systems

with phase noise from free-running oscillators were derived. The authors in [74] used the

8



excess degrees of freedom offered by massive MIMO to optimize the downlink precoding

for low peak-to-average power ratio (PAPR), while the work in [75] designed a constant

envelope precoding scheme for very low PAPR. The authors in [71] analysed the capacity

and estimation accuracy of massive MIMO systems with non-ideal transceiver hardware

based on a new system model that considers the hardware impairment at each antenna by

an additive distortion noise proportional to the signal power at this antenna.

Note that the power control algorithms in [48], [51], [59], [69] and [70] only considered

the transmit power consumption while the work in [73]–[75] only considered the single type

of hardware impairments. In contrast to these power allocation works, by using the power

consumption model of different hardware impairments as discussed in [71]-[75] along with

large antenna arrays, we will investigate a more practical power control scheme in this thesis

that takes into account circuit power consumption.

1.3 Organization and Contributions

The organization of the thesis along with the main contributions of each chapter is presented

as follows.

Chapter 2 describes the system model, including the time-division duplex (TDD) multi-

cell MU-MIMO channel model, minimum mean square error (MMSE) channel estimation as

well as the uplink and downlink SINRs. Both small-scale fading and large-scale fading in the

proposed TDD multi-cell MU-MIMO system, which incorporate path-loss and shadowing

effect, are also considered in the channel model.

In chapter 3, two optimization frameworks are established to meet the goal of this thesis:

to develop energy efficient algorithms for pilot and data power allocation in the proposed
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TDD multi-cell MU-MIMO system. As the original optimization problems using true SINR

expressions are very difficult to solve, we investigate the average SINR lower bounds in order

to simplify the power allocation optimization problems. In particular, close-form average

SINR lower bounds are derived under MMSE channel estimation for both uplink and down-

link transmissions of MU-MIMO systems, by considering the conventional linear maximum-

ratio combining (MRC) and zero-forcing (ZF) detectors in the uplink and the maximum-ratio

transmission (MRT) and ZF precoder in the downlink. These lower bounds of the per-user

average SINR will be used to replace the true SINR in the optimization frameworks to fa-

cilitate the solution in later chapters. Such relaxation of the original average SINR yields a

simplified problem and leads to a suboptimal solution.

In chapter 4, based on the first EE power allocation framework, two schemes for power

control between pilot and data symbols in the TDD multi-cell MU-MIMO system are de-

veloped to minimize the total weighted uplink and downlink transmit power while meeting

the per-user SINR and BS power constraints. In order to simplify the power allocation op-

timization problem, the derived lower bounds of the per-user average SINR in chapter 2 are

used to establish the SINR QoS constraints for the proposed problem. Then, the non-convex

optimization problems are converted to a standard geometric programming (GP) problem

to facilitate their solution. The performance of the power control algorithms in massive

MU-MIMO situation with infinite number of antennas employed at BS is also discussed.

Numerical simulation results have confirmed the tightness of the derived per-user average

SINR lower bounds and the advantage of the proposed power allocation schemes.

Chapter 5 proposes and investigates two pilot and data power control schemes based

on the second EE power allocation framework to jointly maximize the total EE for both
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uplink and downlink transmissions under per-user and BS power constraints for multi-cell

TDD MU-MIMO systems. The non-convex problems formulated with the derived SINR

lower bounds are simplified to equivalent convex problems based on Dinkelbach’s method

and FrankWolfe (FW) iteration. Simulation results and discussions are given to validate our

proposed schemes, including the tightness analysis of the derived SINR lower bounds, the

total transmit power and EE for large-scale MU-MIMO, and the comparison of our proposed

power allocation schemes with the existing SE maximization scheme.

Chapter 6 addresses the energy efficient power allocation issue in single-cell TDD massive

MU-MIMO communication systems for both uplink and downlink transmission with circuit

power consumption taken into account. Firstly based on the discussion in chapters 2 and

3, we modify the system model and SINR lower bounds from multi-cell to single-cell MU-

MIMO, and accommodate the model of circuit power consumption for the new optimization

problem. Then, pilot and data power allocation schemes are proposed to minimize the total

weighted uplink and downlink transmit power while meeting the per-user SINR and BS

power consumption constraints with circuit power in consideration. In our proposed power

control schemes, both fixed and variable numbers of BS antennas are investigated. For the

fixed number of BS antennas case, the non-convex optimization problems are converted to

a general GP problem to facilitate their solution. For the variable number of BS antennas

case, we present an iterative algorithm to solve the optimization problem. Simulation results

are provided to demonstrate the effectiveness of the proposed methods.

Chapter 7 gives a summary of the thesis work and provides suggestions for future inves-

tigation.
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Chapter 2

Multi-Cell MU-MIMO Systems with Channel Estimation

2.1 Introduction

Currently, we are in the era of 4G and 4.5G networks, which are referred to as Long Term

Evolution (LTE). MIMO technology has been under active research over the last decade

and been considered in 3GPP standard for LTE and LTE-Advanced networks. In the near

future, we expect an explosive increase in the number of connected devices, such as smart

phones, tablets, sensors, connected vehicles and so on, leading to the 5th-generation (5G)

communication. Massive MIMO is considered as one of the enabling and promising tech-

nologies for 5G wireless communications and has already attracted considerable interest in

communication and signal processing fields.

The availability of accurate CSI at transmitter and/or receiver is vital to achieve the

desired performance in almost all communication scenarios. Acquiring accurate CSI is very

important in both conventional and massive MU-MIMO systems because the performance

of several BS operations, such as linear detection on the uplink and linear precoding on the

downlink, is subject to the availability of accurate CSI at the BS. The ideal situation is

that the perfect CSI is available at BS. As discussed in [11], with perfect CSI, “favourable

propagation” can be achieved in massive MU-MIMO systems where the wireless channels
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become near-deterministic because the channel vectors between BS and users become near-

orthogonal to each other. This is because the effects of small-scale fading tend to disappear

when the number of antennas at the BS increases unboundedly. However, from the practical

point of view, having access to perfect CSI is not possible since this compromises the intrinsic

capabilities of communication systems. Therefore, it is essential to estimate and evaluate

the CSI in MIMO systems.

Generally speaking, there are three kinds of channel estimation approaches in MIMO

channel estimation. The first one is called the training-based channel estimation methods

which employ known pilot signals to render an accurate channel estimation [76]-[78], such

as the least squares (LS), maximum likelihood (ML) and MMSE algorithms. The second

one is blind channel estimation algorithms which exploit the second-order cyclo-stationary

statistics, correlative coding and other properties [79]-[82]. Thirdly, by combining the idea

of both the training-based and blind methods, with a small number of training symbols,

semi-blind channel estimation problems based on the second-order statistics of a long vector

can be solved [82]-[86]. Among these three channel estimation methods, the most popular

one is training-based channel estimation which always requires less complicated processing

circuits.

Moreover, in conventional MIMO systems, a duplex communication link can either be

established under TDD or FDD. In TDD, there is one frequency band for both uplink

and downlink transmission. And in FDD operation mode, two frequency bands are used,

one for the uplink and one for the downlink. In general, the number of licenses for the

FDD mode is much more than that for TDD, since when compared to TDD systems, FDD

operating systems facilitate better hardware re-use, easier software upgrades, and a smoother
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transition. However, most research works on massive MIMO have focused on the TDD mode

of operation. This is because, in the FDD mode, the uplink and downlink channels use

different frequency bands and are not reciprocal, and thus the CSI corresponding to the

uplink and downlink is different. The uplink channel estimation is done at the BS with the

uplink pilot sequences sent by users. The time required for uplink pilots is independent of the

number of BS antennas. However, to get downlink CSI under FDD protocol, the BS needs

to transmit pilot symbols to all users. The number of required downlink pilot symbols is

proportional to the number of BS antennas. As the number of BS antennas grows very large

for massive MIMO, the traditional downlink channel estimation strategy for FDD systems

becomes infeasible [10]. On the other hand, in TDD systems based on the assumption of

channel reciprocity, only the CSI for the uplink needs to be estimated, avoiding the channel

estimation at mobile users for the downlink. Therefore, TDD mode is more efficient and

realistic, and is widely utilized in massive MIMO systems.

In this chapter, we explain the structure of a multi-cell MU-MIMO communication sys-

tem. First, we briefly address the channel model and the frame structure of TDD operation

mode. Then, we present the training-based MMSE channel estimation method. Finally, we

derive the uplink and downlink SINRs.

2.2 Channel Model

We consider a TDD multi-cell MU-MIMO system with L cells as shown in Fig. 2.1, in which

each cell has one BS equipped with M antennas serving K (K<M ) single-antenna mobile

users and all cells share the same frequency band. When M comes to a large value, say a

hundred or a few hundreds, we call this system a large-scale MU-MIMO system.

14





The diagonal matrix D
1/2
li = diag{[βli1, βli2, . . . , βliK ]} denotes the large-scale channel fading

coefficients which incorporate the path-loss and shadowing effect and are assumed to be

constant and known as a priori.

We assume a block fading structure where the channel gains remain constant in each

coherence time period. In pilot-assisted channel estimation as discussed in [10], [67] and

[73], when large antenna arrays are employed at BS, it is difficult to estimate the downlink

CSI at users, since in this case the number of pilot symbols must be larger than or equal to

the number of BS antennas. On the contrary, the uplink CSI is easier to estimate at BS as

the number of uplink pilot symbols depends on the number of active users rather than the

number of BS antennas. Under the assumption of ideal channel reciprocity, however, we can

estimate the uplink CSI at BS and then use such estimated uplink CSI for both uplink and

downlink data transmission.

Based on the discussion above, we assume that the multi-cell MU-MIMO system, all

users and BSs in all cells synchronously transmit and receive data by following the TDD

block fading structure as in Fig. 2.2. Namely, in the first τ (τ ≥ K) slots of a coherent

time interval, all users from all cells synchronously transmit uplink pilot signal to all BSs

for CSI estimation. Based on the assumption of channel reciprocity, such estimated uplink

CSI can be used to detect the uplink data and generate pre-coding matrix for downlink data

transmission. After the transmission of training sequences, T1 symbols are used for uplink

data transmission followed by T2 symbols for downlink data transmission. Note that the

silent slots used for BS processing as discussed in [10] [73] are not included in Fig. 2.2.
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2.3 Channel Estimation

By using the MMSE channel estimation during the training phase as discussed in [87], we

have

Yp,l =
L
∑

i=1

GliP
1/2
p,i Φ+Nl (2.3)

where Yp,l denotes the M × τ received pilot signal matrix at the l -th BS and Nl is an

M × τ complex noise matrix whose entries are i.i.d. Gaussian RVs with zero-mean and unit

variance. The diagonal matrix Pp,i = diag{[τpp,i1, τpp,i2, . . . , τpp,iK ]} denotes the pilot power

of the K users in cell i. We assume that the same set of pilots is used by different cells and

the pilots satisfy the orthogonality, i.e., ΦHΦ = IK . Then, the estimated channel matrix

can be expressed as

Ĝli = Yp,lΦ
H(IK +

L
∑

j=1

DljPp,j)
−1DliP

1/2
p,i (2.4)

Since the same set of pilots is reused among different cells, the CSI estimated at BS is

simply a scaled version of the same term which can be expressed as

Yp,lΦ
H(IK +

L
∑

j=1

DljPp,j)
−1. (2.5)

The detailed discussion with respect to the pilot contamination can be found in [51]. Then,

from (2.5) we have the relation below

Ĝli =
DliP

1/2
p,i

DljP
1/2
p,j

Ĝlj (2.6)

Similar to the single-cell MU-MINO situation [88] [89], the estimation error matrix can

18



be defined as ∆Gli = Gli − Ĝli. From the properties of MMSE channel estimation [69]

[77], Ĝli and ∆Gli have i.i.d. Gaussian RVs with zero mean. Let M×1 vectors ĝlik and

∆glik denote the k -th column of matrix Ĝli and ∆Gli respectively. The elements of ĝlik

are independent of that of ∆glik and the variance of the elements of ĝlik and ∆glik can be

expressed as follows

σ2
lik

∆
=

τpp,ikβ
2
lik

1 +
L
∑

j=1

τpp,jkβljk

(2.7)

ε2lik
∆
=

βlik(1 +
L
∑

j 6=i

τpp,jkβljk)

1 +
L
∑

j=1

τpp,jkβljk

(2.8)

From (2.7) and (2.8), we have the following relations,

ĝlik =
βlikp

1/2
p,ik

βllkp
1/2
p,lk

ĝllk =
σlik

σllk

ĝllk (2.9)

ĝilk =
βilkp

1/2
p,lk

βiikp
1/2
p,ik

ĝiik =
σilk

σiik

ĝiik (2.10)

Based on the MMSE channel estimation results, in the next section, we will present a

discussion on the linear multi-user detectors and precoders for MU-MIMO systems, namely

MRC and ZF detectors, and MRT and ZF precoders. We will also derive the SINR expression

of these linear detectors and precoders.
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2.4 Uplink Data Transmission

After applying the M×K receive beamforming matrix Wl, the data or user signal received

at BS l can be represented by the following M×1 vector,

rl = WH
l yl = WH

l

L
∑

i=1

GliP
1/2
d,i si +WH

l nl (2.11)

where K×1 vector si denotes the data symbols transmitted by the K users in cell i andM×1

vector nl represents the white complex Gaussian noise with zero-mean and unit variance.

Let rlk and slk denote the k -th element of the M×1 vector rl and that of sl, respectively.

The uplink received signal associated to the k -th user at BS l can be expressed as

rlk = ŵH
lkyl = p

1/2
d,lkŵ

H
lk ĝllkslk + ŵH

lk

K
∑

κ 6=k

p
1/2
d,lκĝllκslκ

+ŵH
lknl − ŵH

lk

L
∑

i=1

∆GliP
1/2
d,i si+ŵH

lk

L
∑

i 6=l

ĜliP
1/2
d,i si

(2.12)

where ŵlk denotes the k -th column of matrix Wl. From (2.12), it can be seen that the first

term represents the desired signal and the second term is the intra-cell interference. The

third term means the white Gaussian noise which is independent of any transmit signal. The

fourth term can be considered as the additive noise caused by channel estimation error and

the last term represents the inter-cell interference.

When linear multi-user detection techniques are used, the BS multiplies the received

signal with a linear detection matrix so as to decode the data streams transmitted by the K

users on the uplink. By employing the MRC receiver at BS with detection matrix Wl = Ĝll,

we have wH
lk = ĝH

llk. From (2.12), the received SINR of user k in cell l, which is defined as the
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power ratio of the desired signal to the sum of noise, intra-cell and inter-cell interferences,

can be derived as given by (2.13).

γMRC
lk =

pd,lk‖ĝllk‖4
/

(
K
∑

κ=1,κ 6=k

pu,lκ
∣

∣ĝH
llkĝllκ

∣

∣

2
+
∥

∥ĝH
llk

∥

∥

2
+

L
∑

i=1

K
∑

κ=1

pu,iκ
∣

∣ĝH
llk∆gliκ

∣

∣

2

+
L
∑

i=1,i 6=l

K
∑

κ=1,κ 6=k

pu,iκ
∣

∣ĝH
llkĝllκ

∣

∣

2 β2
liκpp,iκ

β2
llκpp,lκ

+
L
∑

i=1,i 6=l

pu,ik‖ĝllk‖4
β2
likpp,ik

β2
llkpp,lk

)

(2.13)

When ZF receiver is used at BS with receiving matrix Wl = Ĝll(Ĝ
H
ll Ĝll)

−1 [11], we have

ŵH
lk ĝllk = 1 and ŵH

lk ĝllκ = 0 (k 6= κ). Then, the received uplink SINR of user k can be

obtained by using (2.12), as given by

γZF
lk =

pu,lk
L
∑

i=1

K
∑

κ=1

pu,iκ|ŵH
lk∆ĝliκ|2 +

L
∑

i=1,i 6=l

pu,ik
β2
likpp,ik

β2
llkpp,lk

+ ‖ŵH
lk‖

2

(2.14)

2.5 Downlink Data Transmission

When linear multi-user precoding techniques are used, the BS multiplies the transmit signal

with a linear precoding matrix to precode the data streams on the downlink. Based on the

assumption of channel reciprocity as discussed in section 2.2, the estimated uplink CSI is

used to generate the precoding matrix for downlink data transmission.

When a normalized precoding vector alk/‖alk‖ is employed at BS, the signal received at

the k -th user r̃lk in cell l can be expressed as

r̃lk = p
1/2
d,lk

ĝH
llkalk

‖alk‖
slk +

K
∑

κ 6=k

p
1/2
d,lκ

ĝH
llkalκ

‖alκ‖
slκ + nl −

L
∑

i=1

K
∑

κ=1

p
1/2
d,iκ

∆gH
ilkaiκ

‖aiκ‖
+

L
∑

i 6=l

K
∑

κ=1

p
1/2
d,iκ

ĝH
ilkaiκ

‖aiκ‖
(2.15)
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where pd,k represents the downlink data power for the k -th user in cell l and s̃lk denotes

the data signal of user k in cell l. Similar to the uplink transmission, only the first term in

(2.15) is the desired signal, and other four terms represent the intra-cell interference, white

Gaussian noise, channel estimation error and inter-cell interference, respectively.

When MRT precoder is employed at BS, we have vlk = ĝllk (or vik = ĝiik) [11]. The

received SINR of user k in cell l can then be obtained as

γ̃MRT
lk =

pd,lk‖ĝllk‖2
K
∑

κ=1,κ 6=k

pd,lκ
|ĝH

llkĝllκ|2
‖ĝllκ‖2 +

L
∑

i=1

K
∑

κ=1

pd,iκ
|∆gH

ilkĝiiκ|2
‖ĝiiκ‖2 +

L
∑

i 6=l

K
∑

κ=1

pd,iκ
|ĝH

iikĝiiκ|2
‖ĝiiκ‖2

β2
ilkpp,lk

β2
iikpp,ik

+ 1

(2.16)

When ZF precoder [10] is used at BS with precoding matrix Al = Ĝll(Ĝ
H
ll Ĝll)

−1, we

have ĝllkâ
H
lk = 1 and ĝllkâ

H
lκ = 0 (k 6= κ). Then, by using (2.15), the downlink SINR of user

k can be obtained as

γ̃ZF
lk =

pd,lk

‖alk‖
2

L
∑

i=1

K
∑

κ=1

pd,iκ
|∆ĝH

ilkaiκ|2
‖aiκ‖

2 +
L
∑

i=1,i 6=l

1
‖aik‖

2

pd,ikβ
2
ilkpp,lk

β2
iikpp,ik

+ 1

(2.17)

It is obvious that the SINRs of these precoders and detectors are very complicated. In

the next chapter, we will derive their lower bounds to be used in the development of power

allocation algorithms.
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2.6 Conclusion

At the beginning of this chapter, we presented a brief introduction about conventional MU-

MIMO and large-scale MU-MIMO systems and discussed different channel estimation meth-

ods. Then, we introduced multi-cell MU-MIMO model including TDD operating mode frame

structure and MMSE channel estimation with pilot contamination. In the proposed TDD

multi-cell MU-MIMO system, both small-scale fading and large-scale fading, which incorpo-

rate path-loss and shadowing effect, were considered in the channel model. Finally, based

on the assumption of channel reciprocity, the uplink and downlink data transmission and

SINRs were discussed by considering the conventional linear MRC and ZF detectors in the

uplink and the MRT and ZF precoder in the downlink.
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Chapter 3

Lower Bounds of SINR

3.1 Introduction

The increasing popularity of mobile devices and the success of wireless communication net-

working over the past few decades have brought an exponential growth of data traffic. The

ubiquity of energy-consuming wireless applications has raised a serious energy efficiency

concern, which triggered an immense interest in the development of energy-efficient and

eco-friendly wireless communication technology. For this reason, future 5G communication

networks are required to provide both high data rate and low power consumption services[90]-

[92], necessitating the design of green communication systems with energy efficiency as a

primary goal.

Green communication aims to find innovative solutions to improve EE, and to relieve/reduce

the energy consumption and carbon footprint of wireless industry, while maintaining/improving

system performance and/or users’ quality of service. Power allocation focused on suppressing

the interferences, improving the quality of the signal reception and increasing the coverage

and/or capacity of overall network, is one main topic of green communication. Generally

speaking, there are two frameworks of power allocation in conventional MIMO systems to

improve the EE. The first framework aims to minimize the total transmit power under cer-

tain constraints, such as QoS requirement and per-user power constraint. In other words,
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this framework aims to transmit minimum power to satisfy the desired system performance.

The second framework is to maximize the total EE which is defined as the spectral efficiency

(sum-rate in bit/channel) divided by the transmit power (in Joules/channel) under certain

power constraints. Typically, increasing SE is associated with increasing the power and the

achievable transmission rate. On the contrary, the energy saving optimization aims to save

power in the whole system and sometimes decreases the system performance, such as SE,

SINR, system reliability, etc. Hence, there is a fundamental trade-off between the power

consumption and the SE. The idea of the second framework is to jointly optimize the power

cost and SE in one operating regime.

The objective of this thesis is to develop energy efficient power control methods for both

conventional and massive MU-MIMO systems by following the two frameworks mentioned

above. Under the first framework, we would like to formulate an optimization problem

to minimize the total transmit power while satisfying the per-user SINR requirements and

power consumption constraints [93] [94]. In the second framework, an optimization problem

is established such that the total EE for the whole system, which is again closely related

to the uplink and downlink SINRs, will be maximized under transmit power constraints

[94]. Considering that a direct use of the uplink and downlink SINR expression, as derived

in the previous chapter, in the minimization/maximization problem would lead to a very

complicated optimization problem which is extremely difficult to solve. So in this chapter,

we will derive the lower bounds of the per-user average SINR for the proposed TDD multi-

cell MU-MIMO systems. We will then apply the derived lower bounds in our optimal power

allocation problems to facilitate their solution. In the derivation of the average SINR lower

bounds, we consider both the conventional linear MRC and ZF detectors for the uplink
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together with MRT and ZF precoder for the downlink as employed in our proposed multi-

cell MU-MIMO model.

3.2 Lower Bounds of Uplink Average SINR

Based on the derived uplink and downlink SINR expressions in Section 2.3 and 2.4, the lower

bounds of the statistic SINRs of MRC and ZF detectors for uplink are derived in this section

and MRT and ZF precoder for downlink are derived in the next section.

Proposition 1 : When the MRC receiver is employed at BS, the lower bound of the average

uplink SINR of the k -th user under MMSE channel estimation can be expressed as

E{γMRC
lk } ≥ γMRC,up

lk

∆
=

pu,lk

1

(M−1)σ2
llk

(
K∑

κ=1,κ 6=k
pu,lκσ

2
llκ+1+

L∑

i=1

K∑

κ=1
pu,iκε

2
liκ+

L∑

i 6=l

K∑

κ=1,κ 6=k

p
u,iκ

β2
liκ

p
p,iκ

β2
llκ

p
p,lκ

σ2
llκ)+

L∑

i=1,i 6=l
pu,ik

β2
lik

p
p,ik

β2
llk

p
p,lk

(3.1)

Proof : From (2.13), we have

E{γMRC
lk }

= E{ pu,lk

K∑

κ=1,κ 6=k
pu,lκ

|ĝHllk ĝllκ|2
‖ĝllk‖

4 + 1

‖ĝllk‖
2+

L∑

i=1

K∑

κ=1
pu,iκ

|ĝHllk∆gliκ|2
‖ĝllk‖

4 +
L∑

i=1,i 6=l

K∑

κ=1,κ 6=k

p
u,iκ

β2
liκ

p
p,iκ

β2
llκ

p
p,lκ

|ĝHllk ĝllκ|2
‖ĝllk‖

4 +C1

}

(3.2)

Here,

C1
∆
=

L
∑

i=1,i 6=l

pu,ik
β2
likpp,ik

β2
llkpp,lk

(3.3)

From the Jensen’s inequality [95], we know that if f(x) is a convex function, and E[f(x)]

and f(E[x]) are finite, we can write the above inequality as E[f(x)] ≥ f(E[x]). So based on
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the fact that the function 1/x is convex when x is positive, we have E[1/f(x)] ≥ 1/E[f(x)].

Then, we obtain

E{γMRC
lk }

≥ pu,lk

E{
K∑

κ=1,κ 6=k
pu,lκ

|ĝHllk ĝllκ|2
‖ĝllk‖

4 + 1

‖ĝllk‖
2+

L∑

i=1

K∑

κ=1
pu,iκ

|ĝHllk∆gliκ|2
‖ĝllk‖

4 +
L∑

i=1,i 6=l

K∑

κ=1,κ 6=k

p
u,iκ

β2
liκ

p
p,iκ

β2
llκ

p
p,lκ

|ĝHllk ĝllκ|2
‖ĝllk‖

4 +C1}

(3.4)

For the denominator of (3.4), it is easy to have

Denominator of (3.4)

=
K
∑

κ=1,κ 6=k

pu,lκE{|ĝ
H
llkĝllκ|2
‖ĝllk‖

4 }+ E{ 1
‖ĝllk‖

2}+
L
∑

i=1

K
∑

κ=1

pu,iκE{|ĝ
H
llk∆gliκ|2
‖ĝllk‖

4 }

+
L
∑

i=1,i 6=l

K
∑

κ=1,κ 6=k

pu,iκβ
2
liκpp,iκ

β2
llκpp,lκ

E{|ĝ
H
llkĝllκ|2
‖ĝllk‖

4 }+ C1

(3.5)

Since the elements of vectors ĝllκ and ∆gliκ consist of i.i.d. zero-mean Gaussian RVs,

these two vectors are rotationally invariant and spherically symmetric. Then, from the

property of rotational invariance [96, chapter 4], both
ĝH
llkĝllκ

‖ĝllk‖
and

ĝH
llk∆gliκ

‖ĝllk‖
are independent of

‖ĝllk‖ when κ 6= k, thus the denominator of (3.4) can be rewritten as

Denominator of (3.4)

= E{ 1
‖ĝllk‖

2}(
K
∑

κ=1,κ 6=k

pu,lκE{|ĝ
H
llkĝllκ|2
‖ĝllk‖

2 }+ 1 +
L
∑

i=1

K
∑

κ=1

pu,iκE{|ĝ
H
llk∆gliκ|2
‖ĝllk‖

2 }

+
L
∑

i 6=l

K
∑

κ=1,κ 6=k

pu,iκβ
2
liκpp,iκ

β2
llκpp,lκ

E{|ĝ
H
llkĝllκ|2
‖ĝllk‖

2 }) + C1

(3.6)

From the property of spherically symmetric distribution [96], we know that
ĝH
llkĝllκ

‖ĝllk‖
and

ĝH
llk∆gliκ

‖ĝllk‖
in (3.6) are Gaussian RVs with zero-mean and variance σ2

llκ and ε2liκ, respectively.
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So we have

E{ ĝ
H
llkĝllκ

‖ĝllk‖
} = σ2

llκ (3.7)

and

E{ ĝ
H
llk∆gliκ

‖ĝllk‖
} = ε2liκ (3.8)

Substituting (3.7) and (3.8) into (3.6), we obtain

Denominator of (3.4)

= E{ 1
‖ĝllk‖

2}(
K
∑

κ=1,κ 6=k

pu,lκσ
2
llκ + 1 +

L
∑

i=1

K
∑

κ=1

pu,iκε
2
liκ +

L
∑

i 6=l

K
∑

κ=1,κ 6=k

pu,iκβ
2
liκpp,iκ

β2
llκpp,lκ

σ2
llκ)

+
L
∑

i 6=l

pu,ik
β2
likpp,ik

β2
llkpp,lk

(3.9)

The term 1
‖ĝllk‖

2 in (3.9) can be treated as a 1× 1 central complex Wishart matrix with

M degrees of freedom. From the property of central Wishart matrix [97], we get

E{ 1
‖ĝllk‖

2} = 1
σ2
llk
E{

[

(

ĝllk
σllk

)H
ĝllk
σllk

]−1

}

= 1
σ2
llk
E{tr

{

[

(

ĝllk
σllk

)H
ĝllk
σllk

]−1
}

}

= 1
(M−1)σ2

llk

(3.10)

Substituting (3.10) into (3.9) and (3.4), we obtain the result in (3.1).

Proposition 2 : When the ZF receiver is employed at BS, the lower bound of the uplink

average SINR of user k under MMSE channel estimation can be expressed as
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E{γZF
lk } ≥ γZF,up

lk

∆
=

pu,lk

1

(M−K)σ2
llk

(
L∑

i=1

K∑

κ=1
pu,iκε

2
liκ+1)+

L∑

i=1,i 6=l

pu,ik
β2
lik

p
p,ik

β2
llk

p
p,lk

(3.11)

Proof : Similar to the proof of Proposition 1, by using (2.14) and the property E[1/f(x)] ≥

1/E[f(x)] when f(x) ≥ 0, the lower bound of the average SINR of the user k in cell l can

be obtained as

E{γZF
lk } = E{ pu,lk

L∑

i=1

K∑

κ=1
pu,iκ|ŵH

lk∆ĝliκ|2+
L∑

i=1,i 6=l
pu,ik

β2
lik

p
p,ik

β2
llk

p
p,lk

+‖ŵH
lk‖2

}

≥ pu,lk

E{
L∑

i=1

K∑

κ=1
pu,iκ|ŵH

lk∆ĝliκ|2+
L∑

i=1,i 6=l
pu,ik

β2
lik

p
p,ik

β2
llk

p
p,lk

+‖ŵH
lk‖2

}

=
pu,lk

L∑

i=1

K∑

κ=1
pu,iκE{|ŵH

lk∆ĝliκ|2}+
L∑

i=1,i 6=l
pu,ik

β2
lik

p
p,ik

β2
llk

p
p,lk

+E{‖ŵH
lk‖2

}

(3.12)

Since ŵlk is independent of ∆ĝliκ, we obtain

E{
∣

∣ŵH
lk∆ĝliκ

∣

∣

2} = E{
∥

∥ŵH
lk

∥

∥

2}ε2liκ (3.13)

Substituting (3.13) into (3.12), we obtain

E{γZF
lk } ≥

pu,lk

E{‖ŵH
lk‖

2}(
L
∑

i=1

K
∑

κ=1

pu,iκε
2
liκ + 1) +

L
∑

i=1,i 6=l

pu,ik
β2
likpp,ik

β2
llkpp,lk

(3.14)

As the matrix Ĝli consists of i.i.d Gaussian RVs with the same variance for each column

elements, it can be written as

Ĝli = ΛliZ (3.15)
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Here, matrix Z has the same size as Ĝli, whose elements are i.i.d. Gaussian RVs with

zero-mean and unit variance, and the K ×K diagonal matrix Λl is defined as

Λl
∆
= diag (σll1, σll2, . . . , σllK) (3.16)

Based on the property of central Wishart matrix [97], we have

E{
∥

∥wH
lk

∥

∥

2} = E{WH
l Wl}kk = E{[(ĜH

ll Ĝll)
−1]kk}

=E{[(Λl)
−1(ZHZ)−1(Λl)

−1]kk} = 1
σ2
llk
E{[(ZHZ)−1]kk}

= 1
Kσ2

llk
E{tr[(ZHZ)−1]} = 1

(M−K)σ2
llk

(3.17)

Substituting (3.17) into (3.14), we get the lower bound of the uplink average SINR for ZF

receiver as in (3.11).

3.3 Lower Bounds of Downlink Average SINR

In the previous section, we have derived statistic SINR lower bounds for MRC and ZF

receiver. In this section, the lower bounds of average SINR for MRT and ZF precoder are

discussed.

Proposition 3 : The lower bound of the downlink average SINR of user k in cell l when

MRT precoder is employed at BS can be expressed as

E{γ̃MRT
lk } ≥ γMRT,dn

lk

∆
=

pd,lk(M−1)σ2
llk

(M−1)σ2
llk

M

K∑

κ=1,κ 6=k

pd,lκ+
L∑

i=1

K∑

κ=1
pd,iκε

2
ilk+

L∑

i 6=l

K∑

κ=1
pd,iκσ

2
iik

β2
ilk

p
p,lk

β2
iik

p
p,ik

+1

(3.18)
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Proof : Similar to the proof of Proposition 1, by using (2.16) and the property E[1/f(x)] ≥

1/E[f(x)] when f(x) ≥ 0, the lower bound of the average SINR of the user k in cell l can

be obtained as

E{γ̃MRT
lk } =

E{ pd,lk
K∑

κ=1,κ 6=k
pd,lκ

|ĝHllk ĝ
llκ|2

‖ĝ
llk‖2‖ĝ

llκ‖2+
L∑

i=1

K∑

κ=1
pd,iκ

|∆gH
ilk

ĝ
iiκ|2

‖ĝ
llk‖2‖ĝ

iiκ‖2+
L∑

i=1,i 6=l

K∑

κ=1
pd,iκ

|ĝHiik ĝ
iiκ|2

‖ĝ
llk‖2‖ĝ

iiκ‖2

β2
ilk

p
p,lk

β2
iik

p
p,ik

+ 1

‖ĝ
llk‖2

}

≥ pd,lk
Denominator of (3.19)

(3.19)

where

Denominator of (3.19)

=
K
∑

κ=1,κ 6=k

pd,lκE{ |ĝH
llkĝllκ|2

‖ĝllk‖2‖ĝllκ‖2}+
L
∑

i=1

K
∑

κ=1

pd,iκE{ |∆gH
ilkĝiiκ|2

‖ĝllk‖2‖ĝiiκ‖2}

+
L
∑

i 6=l

K
∑

κ=1

pd,iκE{ |ĝH
iikĝiiκ|2

‖ĝllk‖2‖ĝiiκ‖2}
β2
ilkpp,lk

β2
iikpp,ik

+ E{ 1

‖ĝllk‖2}

=
K
∑

κ=1,κ 6=k

pd,lκE{
∣

∣

∣

∣

ĝH
llk

‖ĝllk‖
ĝllκ

‖ĝllκ‖

∣

∣

∣

∣

2

}+ E{ 1

‖ĝllk‖2}(
L
∑

i=1

K
∑

κ=1

pd,iκE{|∆gH
ilkĝiiκ|2

‖ĝiiκ‖2 }

+
L
∑

i 6=l

K
∑

κ=1

pd,iκE{|ĝ
H
iikĝiiκ|2
‖ĝiiκ‖2 } β2

ilkpp,lk
β2
iikpp,ik

+ 1)

(3.20)

Similar to the discussion for proposition 1, we have

E{
∣

∣∆gH
ilkĝiiκ

∣

∣

2

‖ĝiiκ‖2
} = ε2ilk (3.21)

and

E{
∣

∣ĝH
iikĝiiκ

∣

∣

2

‖ĝiiκ‖2
} = σ2

iik (3.22)

Moreover, the elements of
ĝllκ

‖ĝllκ‖ are uncorrelated and dependent RVs following a unit
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spherical distribution with zero mean and variance 1/M , so vector
ĝllκ

‖ĝllκ‖ is spherical sym-

metric. Furthermore, the two vectors
ĝllκ

‖ĝllκ‖ and ĝllk are independent when κ 6= k. Thus from

the property of spherical symmetry [96],
ĝH
llk

‖ĝllk‖
ĝllκ

‖ĝllκ‖ follows a unit spherical distribution with

zero mean and variance 1/M . Therefore, we have

E{
∣

∣

∣

∣

ĝH
llk

‖ĝllk‖
ĝllκ

‖ĝllκ‖

∣

∣

∣

∣

2

} =
1

M
(3.23)

Substituting (3.21), (3.22) and (3.23) into the last equation of (3.20) and then using

(3.20) to (3.19), we get

E{γ̃MRT
lk } ≥

pd,lk

1
M

K∑

κ=1,κ 6=k
pd,lκ+E{ 1

‖ĝ
llk‖2 }

L∑

i=1

K∑

κ=1
pd,iκε

2
ilk+E{ 1

‖ĝ
llk‖2 }

L∑

i 6=l

K∑

κ=1
pd,iκσ

2
iik

β2
ilk

p
p,lk

β2
iik

p
p,ik

+E{ 1

‖ĝ
llk‖2 }

(3.24)

Finally, substituting (3.10) into (3.24), we get the lower bound of the uplink average

SINR for ZF receiver as in (3.18).

Proposition 4 : The lower bound of the downlink average SINR of user k in cell l when

ZF precoder is employed at BS can be expressed as

E{γ̃ZF
k } ≥ γZF,dn

lk

∆
=

pd,lk

1

(M−K)σ2
llk

(
L∑

i=1

K∑

κ=1
pd,iκε

2
ilk+1)+

L∑

i=1,i 6=l

p
d,ik

β2
ilk

p
p,lk

β2
iik

p
p,ik

(3.25)

Proof : By a similar method, we can obtain the lower bound of the average SINR of the
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user k in cell l as

E{γ̃ZF
k } = E{

pd,lk

‖alk‖
2

L∑

i=1

K∑

κ=1
pd,iκ

|∆ĝH
ilk

aiκ|2
‖aiκ‖

2 +
L∑

i=1,i 6=l

1

‖aik‖
2

p
d,ik

β2
ilk

p
p,lk

β2
iik

p
p,ik

+1

}

≥ pd,lk

L∑

i=1

K∑

κ=1
pd,iκE{

‖alk‖
2|∆ĝH

ilk
aiκ|2

‖aiκ‖
2 }+

L∑

i=1,i 6=l
E{

‖alk‖
2

‖aik‖
2 }

p
d,ik

β2
ilk

p
p,lk

β2
iik

p
p,ik

+E{‖alk‖
2}

=
pd,lk

L∑

i=1

K∑

κ=1
pd,iκε

2
ilkE{‖alk‖

2}+
L∑

i=1,i 6=l

p
d,ik

β2
ilk

p
p,lk

β2
iik

p
p,ik

+E{‖alk‖
2}

(3.26)

Here, the two vectors ∆gilk and
aiκ

‖aiκ‖
are independent of each other, sinceAl only depends

on Ĝll. Thus, the last equation in (3.26) can be obtained from the property of spherical

symmetry.

On the other hand, as Al = Wl, we have

E{
∥

∥aH
lk

∥

∥

2} = E{
∥

∥wH
lk

∥

∥

2} =
1

(M −K)σ2
llk

(3.27)

Substituting (3.27) into the last equation of (3.26), we get the final lower bound expression

of the average downlink SINR with ZF precoder.

3.4 Conclusion

In this chapter, based on the uplink and downlink average SINRs obtained in chapter 2, we

have derived closed-form expressions of the average SINR lower bounds in multi-cell MU-

MIMO systems by considering the conventional linear MRC and ZF detectors in the uplink

and the MRT and ZF precoder in the downlink. The Jensen’s inequality and the properties

of central Wishart matrix were used to find the lower bounds of the derived average SINRs.
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These lower bounds will be used to replace the true SINR in the energy efficient power

allocation optimization problems for TDD MU-MIMO systems in later chapters. As seen

from the simulation results of the average SINR lower bounds in the next chapter, the derived

SINR lower bounds are very tight, namely, they approach closely the original SINRs yet lead

to simplified optimization problems.
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Chapter 4

Joint Pilot-Data Power Allocation Based on Total Transmit

Power Minimization

4.1 Introduction

In recent years, energy consumption has become a primary concern in the design and oper-

ation of MIMO communication systems. Due to economic, operational and environmental

reasons, energy efficiency (EE) has been regarded as a new performance metric in the design

of 5G wireless networks. One of the most useful approaches for increasing the EE of wireless

communication systems is energy efficient power allocation. As discussed in the previous

chapters, there are two main energy efficient power control frameworks for MIMO systems,

namely, the total transmit power minimization and the EE maximization. In this chapter,

we investigate the power control methods in multi-cell MU-MIMO systems based on the first

framework.

In the previous power control works such as [11], [57], [58], all users are assumed to

have the same pilot power and/or data power. Such equal power allocation strategies may

cause squaring effect in low power regime [11] [67], leading to a severe reduction in the

system’s SE. Moreover, since the users are randomly located in each cell of an MU-MIMO

system, the power loss of the received uplink and downlink signals depends on the distance
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between the users and BS, which is translated to the large-scale channel fading coefficient.

The assumption of equal power allocation among all users is far from accurate and may

cause waste of energy. In other words, to keep the same QoS requirement, more power is

needed for the users far from BS (with larger large-scale channel fading coefficient), while

less power should be allocated for the users close to BS (with lower large-scale channel

fading coefficient). Furthermore, most of the previous works, i.e., [48]-[66], considered the

EE power control for the uplink and downlink transmissions separately, which limit their

use in practical MIMO systems.

On contrary to most previous works, in this chapter we consider a more practical sce-

nario, where the transmit power of pilot or data symbols for different users can be different.

Also, based on the MMSE channel estimation, we address the joint pilot-data power control

problem for both uplink and downlink transmissions in one optimization problem, so as to

achieve a minimum sum power under both per-user SINR and per-user power budget con-

straints in multi-cell MU-MIMO systems. Besides the joint pilot and data power allocation

for conventional MU-MIMO systems, we will then extend our work to massive MU-MIMO

case by assuming infinite antennas at BS. The proposed schemes for both conventional and

massive MU-MIMO systems take into account the MRC and ZF detectors in the uplink

transmission together with MRT and ZF precoder in the downlink transmission. In order to

simplify the original optimization problems, the SINR lower bounds derived in the previous

chapter are used in the power allocation algorithms instead of the true SINR expressions.

Note that such relaxation of the original SINR yields a simplified problem and leads to a

suboptimal solution. Finally, numerical results are presented to validate the tightness of

the derived SINR lower bounds and the advantages of the proposed energy efficient power
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allocation schemes.

4.2 Total Transmit Power Minimization with MRC Receiver and MRT

Precoder

Consider the combined use of MRC receiver and MRT precoder in each BS in the multi-cell

MU-MIMO system. Let Ptotal be the total transmit power for one transmission frame. By

defining

pp
∆
= [pp,11, pp,12, . . . , pp,1K , . . . , pp,L1, pp,L2, . . . , pp,LK ], (4.1)

pd
∆
= [pu,11, pu,12, . . . , pu,1K , . . . , pu,L1, pu,L2, . . . , pu,LK ] (4.2)

and

p̃d
∆
= [pd,11, pd,12, . . . , pd,1K , . . . , pd,L1, pd,L2, . . . , pd,LK ], (4.3)

the power control problem which minimizes the total transmit power while meeting the per-

user SINR and power constraints, as specified by the derived average SINR lower bounds for

both MRC receiver and MRT precoder, can be formulated as

min
pp,pd,p̃d

Ptotal
∆
=

L
∑

l=1

K
∑

k=1

(pp,lkτ + pu,lkT1 + ζ1pd,lkT2) (4.4a)

s.t. C1 : γMRC
lk ≥ γ1 (4.4b)

C2 : γ̃MRT
lk ≥ γ2 (4.4c)

C3 : pp,lkτ + pu,lkT1 ≤ P1
(4.4d)
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C4 :
K
∑

k=1

pu,lkT2 ≤ P2 (4.4e)

C5 : pp,lk ≥ 0, pu,lk ≥ 0, pd,lk ≥ 0 (4.4f)

Here, the objective function is the weighted sum of pilot, uplink data and downlink data

powers. The first and second constraints represent the uplink and downlink per-user SINR

constraints γ1 and γ2, respectively. The third and fourth constraints are the power constraint

at each user and that at the l -th BS which are given by P1 and P2, respectively.

The above optimization problem is very difficult to solve directly, because its first and

second constraints are nonconvex. Based on the fact that σ2
lik+ε2lik=βlik, by substituting

(2.7), (2.8) and (3.1) into (4.4b) and carrying out some derivations, we can rewrite the first

constraint C1 as

C6 : 1
(M−1)τpu,lkpp,lkβ

2
llk
(

K
∑

κ=1,κ 6=k

pu,lκβllκ + 1 +
L
∑

j=1

τpp,jkβljk

+
L
∑

i=1,i 6=l

K
∑

κ=1,κ 6=k

pu,iκβliκ +
L
∑

j=1

τpp,jkβljk

K
∑

κ=1,κ 6=k

pu,lκβllκ

+
L
∑

j=1

τpp,jkβljk

L
∑

i=1,i 6=l

K
∑

κ=1,κ 6=k

pu,iκβliκ+
L
∑

i=1

pu,ikβlik

+τ
L
∑

i=1

pu,ikβlik

L
∑

j=1,j 6=i

pp,jkβljk) +
L
∑

i=1,i 6=l

β2
likpu,ikpp,ik

β2
llkpu,lkpp,lk

≤ 1
γ1

(4.5)

where the left side of the inequality is posynomial. Similarly, by using (2.7), (2.8) and (3.13)

into (4.4c) and conducting some derivations, the second constraint C2 becomes
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C7 : (M−1)
Mpd,lk

K
∑

κ=1,κ 6=k

pd,lκ +
1

pd,lkτpp,lkβ
2
llk
(βllk

K
∑

κ=1

pd,lκ

+τβllk

K
∑

κ=1

pd,lκ
L
∑

j 6=l

pp,jkβljk +
L
∑

i 6=l

K
∑

κ=1

pd,iκβilk + 1

+τ
L
∑

j=1

pp,jkβljk

L
∑

i 6=l

K
∑

κ=1

pd,iκβilk + τ
L
∑

j=1

pp,jkβljk) ≤ (M−1)
γ1

(4.6)

Then, we can rewrite the minimization problem as

min
pp,pd,p̃d

Ptotal

s.t. C3, C4, C5, C6, C7

(4.7)

Now, since the objective function and constraints of (4.7) are all posynomials [98] [99]

where all the coordinates and coefficients are positive real numbers and the exponents are

real numbers, the optimization problem in (4.7) is a standard geometric programming (GP)

problem [98]-[100]. It is known that such a GP problem can be solved by using some standard

numerical optimization packages, for example, MOSEK [101], TOMLAB [102], YALMIP

[103], GPCVX [104] and ConVeX (CVX) [105]. By using these standard packages, we can

obtain a globally optimal solution. In our simulation, CVX package is employed to solve the

proposed pilot-data power control optimization problems.

4.3 Total Transmit Power Minimization with ZF Receiver/Precoder

Similar to the system with MRC/MRT discussed in the previouse subsection, the pilot-data

power allocation problem for ZF receiver and ZF precoder which minimizes the weighted

total transmit power subject to the obtained lower bounds on the average SINR and power
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constraints can be formulated as

min
pp,pd,p̃d

Ptotal (4.8a)

s.t. C8 : γZF
lk ≥ γ1 (4.8b)

C9 : γ̃ZF
lk ≥ γ2 (4.8c)

C3, C4, C5 (4.8d)

By substituting (2.7), (2.8) and (3.8) into (4.8b), we can rewrite (4.8b) as

1 +
L
∑

j=1
τpp,lkβllk

(M −K)τpp,lkpu,lkβ
2
llk

[
L
∑

i=1

K
∑

κ=1

pu,iκ

βliκ(1 +
L
∑

j 6=i

τpp,jκβljκ)

1 +
L
∑

j=1
τpp,jκβljκ

+ 1] +
L
∑

i=1,i 6=l

pu,ik

pu,lk

β2
likpp,ik

β2
llkpp,lk

≤ 1

γ1
(4.9)

By defining 0 ≤ tlκ ≤ 1+
L
∑

j=1

τpp,jκβljκ, (4.9) is equivalent to the following three inequalities

C10 : γ1
(M−K)τpp,lkpu,lkβ

2
llk
[
L
∑

i=1

K
∑

κ=1

βliκpu,iκ
tlκ

(1 +
L
∑

j 6=i

τpp,jκβljκ)(1 +
L
∑

j=1

τpp,jkβljk)

+1 +
L
∑

j=1

τpp,jkβljk] +
L
∑

i=1,i 6=l

γ1β2
likpp,ikpu,ik

β2
llkpp,lkpu,lk

≤ 1

(4.10)

C11 : tlκ ≥ 0 (4.11)

tlκ ≤ 1 +
L
∑

j=1

τpp,jκβljκ (4.12)

It is easy to see that (4.10) and (4.11) are posinomial inequalities [96] [106] but (4.12) is

not. Here, we can use a simple approximation as discussed in [106] to convert (4.12) to

an posinomial inequality based on the property of geometric inequality that the arithmetic

mean is greater than or equal to the geometric mean. Therefore, the right side of (4.12)
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becomes

1 +
L
∑

j=1

τpp,jκβljκ ≥
L
∏

j=1

(
τpp,jκβljκ

αj

)
αj

× (
1

αt

)αt (4.13)

where
L
∑

j=1

αj + αt = 1. One possibility of computing αj and αt is to let

αj =
τpp,jκβljκ

1+
L∑

j=1
τpp,jκβljκ

, αt =
1

1+
L∑

j=1
τpp,jκβljκ

(4.14)

where pp,jκ can take any feasible values which satisfy the minimization problem (4.13). Then

by replacing the term 1 +
L
∑

j=1

τpp,jκβljκ with its lower bound given in (4.13), we can rewrite

(4.12) as

C12 : tlκ

L
∏

j=1

(
τpp,jκβljκ

αj

)
−αj

× (αt)
αt ≤ 1 (4.15)

Similarly, by substituting (2.7), (2.8), (3.19) and using 0 ≤ tlκ ≤ 1+
L
∑

j=1

τpp,jκβljκ, (4.8c)

is equivalent to the following inequality

C13 : γ1
(M−K)τpp,lkpd,lkβ

2
llk
[
L
∑

i=1

K
∑

κ=1

βilkpd,iκ
tik

(1 +
L
∑

j 6=l

τpp,jkβijk)(1 +
L
∑

j=1

τpp,jkβljk)

+1 +
L
∑

j=1

τpp,jkβljk] +
L
∑

i=1,i 6=l

γ1β2
ilkpd,ikpp,lk

β2
iikpd,lkpp,ik

≤ 1

(4.16)

Then, the constraint (4.8b) and (4.8c) can be replaced by (4.10), (4.11), (4.15) and (4.16).

We can rewrite the optimization problem (4.8) as

min
pp,pd,p̃d,t

Ptotal (4.17a)

s.t. C3, C4, C5, C10, C11, C12, C13 (4.17b)
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where,

t
∆
= [t11, t12, . . . , t1K , . . . , tL1, tL2, . . . , tLK ] (4.18)

Now, the optimization problem (4.17) is a standard GP problem which can be solved by

using a standard numerical optimization package as mentioned in the previous subsection.

4.4 Asymptotic Performance under A Very Large Number of BS Antennas

From (3.1), (3.8), (3.13) and (3.19), it can be seen that the SINR lower bounds tend to be

infinity for infinite M with fixed pilot and data powers. By following [11, equation (37)],

we assume the pilot and data powers of each user are scaled by
√
M , i.e., Ep,lk=

√
Mpp,lk,

Eu,lk=
√
Mpu,lk and Ed,lk=

√
Mpd,lk, for l = 1, 2, ..., L and k = 1, 2, ..., K. Then, we have

when M → ∞

γMRC,up
lk , γZF,up

lk → τβ2
llkEp,lkEd,lk

1+τ
L∑

i=1,i 6=l
β2
likEp,ikEd,ik

γMRC,dn
lk , γZF,dn

lk → τβ2
llkEp,lkẼd,lk

1+τ
L∑

i=1,i 6=l
β2
likEp,ikẼd,ik

(4.19)

which implies that there is nearly no intra-cell interference and uncorrelated noise in massive

MU-MIMO systems, leaving only pilot contamination. Moreover, with fixed Ep,lk, Ed,lk

and Ẽd,lk, the uplink and downlink SINR lower bounds of ZF/ZF and MRC/MRT schemes

approach to a constant for a very large value of M.

By using (4.19) into (4.4) and (4.8), respectively, the pilot and data power control problem
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with ZF/ZF and that with MRC/MRT have the same formulation as given below,

min
ep,ed,ẽd

K
∑

k=1

(τEp,lk + T1Ed,lk + ζ1T2Ẽd,lk) (4.20a)

s.t. C14 :
τβ2

llkEp,lkEd,lk

1+τ
L∑

i=1,i 6=l

β2
likEp,ikEd,ik

≥ γ1 (4.20b)

C15 :
τβ2

llkEp,lkẼd,lk

1 + τ
L
∑

i=1,i 6=l

β2
likEp,ikẼd,ik

≥ γ2 (4.20c)

C16 : τEp,lk + T1Ed,lk ≤
√
MP1 (4.20d)

C17 :
K
∑

k=1

Ẽd,lkT2 ≤
√
MP2 (4.20e)

C18 : Ep,lk ≥ 0, Ed,lk ≥ 0, Ẽd,lk ≥ 0 (4.20f)

where

ep
∆
= [Ep,11, Ep,12, . . . , Ep,1K , . . . , Ep,L1, Ep,L2, . . . , Ep,LK ] (4.21)

ed
∆
= [Ed,11, Ed,12, . . . , Ed,1K , . . . , Ed,L1, Ed,L2, . . . , Ed,LK ] (4.22)

ẽd
∆
= [Ẽd,11, Ẽd,12, . . . , Ẽd,1K , . . . , Ẽd,L1, Ẽd,L2, . . . , Ẽd,LK ] (4.23)

Note that when M → ∞, we have
√
MP1 → ∞ and

√
MP2 → ∞. Thus the third and forth

constraints in (4.20) can be omitted. As a consequence, we can rewrite the optimization

problem as

min
ep,ed,ẽd

K
∑

k=1

(τEp,lk + T1Ed,lk + ζ1T2Ẽd,lk) (4.24a)
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s.t. C19 :

1 + τ
L
∑

i=1,i 6=l

β2
likEp,ikEd,ik

τβ2
llkEp,lkEd,lk

≤ 1

γ1
(4.24b)

C20 :

1 + τ
L
∑

i=1,i 6=l

β2
likEp,ikẼd,ik

τβ2
llkEp,lkẼd,lk

≤ γ2 (4.24c)

C18 (4.24d)

It can be seen that (4.24) is a GP problem in which all constraints are posinomial inequalities

and can be solved by a standard software package as mentioned earlier.

4.5 Simulation Results and Discussion

Computer simulations are carried out to validate the derived average SINR lower bounds

and evaluate the proposed EE power allocation schemes. We consider a two-cell MU-MIMO

system (L = 2) with a radius of 1000m for each cell. Each BS locates in the cell center

serving K = 3 users. All users in each cell are distributed uniformly at random with at

least a distance of 100m away from the BS. The large-scale channel fading is modeled with

βk = zk/(rk/rh)
v, where zk represents a log-normal random variable with standard deviation

σ, rk is the distance between the k -th user and the BS and v means the path loss exponent.

Following the parameter setting in [1], we choose σ = 8dB and v=3.8. Throughout the

simulation, the normalized additive Gaussian noise with zero mean and unit variance is

assumed.

Suppose that the orthogonal frequency-division multiplexing (OFDM) signal is transmit-

ted. According to LTE standard [1], we choose an OFDM symbol interval of Ts = 71.4µs,

a subcarrier spacing of ∆f = 15kHz and a coherent time interval Tc = 1ms. In turn, we
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can obtain the useful symbol duration Tu = 66.7µs, the guard interval length Tg = 4.7µs

and the total number of symbols in each coherent time interval as T = (Tc/Ts)Tu/Tg = 196

symbols. To minimize the overhead of pilot symbols to the minimum level, we choose the

smallest amount of training τ = K . The number of symbols for uplink transmission and

that of downlink data transmission are assumed to be the same in one coherent time inter-

val, namely T1 = T2 = (T − τ)/2 = 96 symbols. In the optimization problem, the weight

ζ is assumed to be one. The same target SINR and power constraint are applied for both

uplink and downlink transmission. The CVX standard package [105] is used throughout the

simulation to solve the GP problem.

To show the tightness of the lower bounds of SINR, Fig. 4.1 compares the simulation

results for the original SINR and the derived lower bounds of user 1 in cell 1. Here, equal pilot

and data power allocation among all users as in paper [11] is applied with pp,lk = pu,lk = pd,lk

for any k ∈ K and l ∈ L. Then for the fixed scaled pilot-data power we assume Ep,lk =

Ed,lk = Ẽd,lk for any k ∈ K and l ∈ L. We can see that the derived lower bounds are tight in

all cases even for a large number of BS antennas and the uplink and downlink transmission

show nearly the same SINR performance in both ZF/ZF and MRC/MRT situations. The

MU-MIMO system with ZF/ZF shows a better SINR performance than the system with the

MRC/MRT. Moreover, when M becomes large, both uplink and downlink SINRs start to

saturate due to the pilot contamination. From the curves with fixed scaled pilot and data

powers, it can be observed that the SINR performances of both ZF/ZF and MRC/MRT

approach to a constant as M gets very large, which is consistent with the theoretical analysis.

Fig. 4.2 shows the total uplink power, which includes both pilot and uplink data powers,
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scheme with processing matrix equal to the conjugate transpose of Ĝli is much easier to

implement in the case of a large number of antennas.

4.6 Conclusion

In this chapter, we have investigated the pilot and data power allocation for EE communi-

cations in multi-cell MU-MIMO systems with an objective of minimizing the total uplink

and downlink transmit power under the per-user SINR requirement and power consumption

constraint. The proposed schemes take into account the MRC and ZF detectors in the uplink

transmission together with MRT and ZF precoder in the downlink transmission. In order to

simplify the original optimization problems, the SINR lower bounds derived in the previous

chapter are used in the power allocation algorithms instead of the true SINR expressions.

Then, in the MRC/MRT situation, the non-convex optimization problems are converted to a

standard GP problem to facilitate their solution based on inequality substitution. For the ZF

scheme, geometric inequality is used to approximate the original non-convex optimization to

the GP problem. The very large number of BS systems situation is also discussed for multi-

cell MU-MIMO systems. Finally, numerical simulation results have confirmed the tightness

of the derived per-user average SINR lower bounds and the advantage of the proposed power

allocation schemes.
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Chapter 5

Joint Pilot-Data Power Allocation Based on Total EE

Maximization

5.1 Introduction

Excessive power usage in MIMO networks is a crucial issue for mobile operators since the

explosive growth of wireless services contributes largely to the worldwide carbon footprint

[106]. As such, significant efforts have been devoted to improving the SE and EE of MIMO

communication systems over the past decade, resulting in energy efficient power allocation

technologies.

Besides EE based power control methods, the SE based power control in MIMO systems

is also very popular and has already been discussed in many papers. For example, the

authors of [107] considered the noncooperative multi-cell multicast MIMO network under

perfect and imperfect CSI. The authors in [109] studied the joint pilot and data power

allocation problems in single cell uplink massive MIMO systems for the case of maximizing

the weighted minimum SE and the sum SE. In [110], the authors studied the pilot power

allocation with the least squares (LS) and MMSE methods in multi-cell massive MIMO

systems. The authors in [111] investigated the pilot and data power allocation based on

the lower bound on the uplink capacity for Rayleigh fading channels with maximum ratio
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detection. In this thesis, we aim to investigate the energy-efficient power control schemes for

MU-MIMO systems. Later in this chapter, we will compare our proposed EE based power

allocation schemes with the SE based ones.

As discussed in [11] and [73], the EE of a wireless system is defined as the ratio of the

total SE to the total power consumption ptotal. As such, the total EE of both uplink and

downlink of a TDD multi-cell MU-MIMO can be defined as

EE =

L
∑

l=1

K
∑

k=1

(T1+T2

T
T1

T2
E{Rlk}+ ζ2

T1+T2

T
T2

T1
E{R̃lk})

Ptotal

(5.1)

where Rlk and R̃lk denote the uplink and downlink sum rates which are defined as Rlk =

log2(1 + γlk) and R̃lk = log2(1 + γ̃lk), respectively, T1 and T2 denote the number of uplink

data symbols and that of downlink counter parts, respectively, as shown in Fig. 2.2, and ζ2

is the weighting coefficient.

Based on the SINR lower bounds derived in chapter 3, we can find the lower bounds for

uplink and downlink achievable rates, and use such average sum rate lower bounds instead

of the true values to construct the optimization problems. Since f(x) = log2(1 + x) is a

monotonically increasing function, the lower bounds of the uplink achievable rate can be

obtained as E{RMRC
lk } ≥ log2(1 + γMRC,up

lk ) and E{RZF
lk } ≥ log2(1 + γZF,up

lk ) when MRC and

ZF receivers are used respectively. Similarly, the lower bound on the downlink achievable

rate can be found as E{R̃MRT
lk } ≥ log2(1 + γ̃MRT,dn

lk ) or E{RZF
lk } ≥ log2(1 + γZF,dn

lk ) when

MRT or ZF precoder is used.

In Chapter 4, we have developed joint pilot-data power allocation schemes based on

the first optimization framework, namely, the total transmit power minimization. In this
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chapter, based on the EE defined in (5.1) and by following the second framework, namely

the total EE maximization, we will develop two novel pilot-data power control algorithms

for multi-cell MU-MIMO systems with an objective of jointly maximizing the total uplink

and downlink EE under BS and per-user power constraints. As discussed in section 4.1,

unlike most of the previous works with equal pilot and power allocation schemes i.e. [11]

[57] [58], we will consider a more practical scenario, where the transmit power of pilot or

data symbols for different users can be different. Moreover, instead of considering uplink

and downlink power allocation separately [48]-[66], we will address the joint pilot-data power

control problem for both uplink and downlink transmissions in one optimization problem.

Besides the joint pilot-data power allocation for conventional MU-MIMO systems, massive

MU-MIMO case will also be studied by assuming infinite antennas at BS. The proposed

power control methods take into consideration the MRC and ZF detectors in the uplink

transmission together with MRT and ZF precoder in the downlink transmission. In order

to simplify the original optimization problems, the lower bounds for uplink and downlink

achievable rates stated above are used in the power allocation algorithms instead of the true

sum rate expressions. In chapter 4, we discussed the first framework for energy-efficient

power control in MIMO systems. In the simulation, we will compare the pilot and data

power allocation schemes based on the two frameworks, proposed in the previous chapter

and this chapter, with the SE maximization scheme in [109].

5.2 Total EE Maximization with MRC Receiver and MRT Precoder

The power allocation problem which maximizes the total EE while meeting the power con-

sumption requirements as specified by the derived average SINR lower bounds for MRC
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receiver and MRT precoder can be formulated as

max
pp,pu,pd

R
MRC/MRT
total

Ptotal
(5.2a)

s.t. C3, C4, C5 (5.2b)

In the objective function of (5.2), the total weighted sum rate is given by

R
MRC/MRT
total

∆
=

L
∑

l=1

K
∑

k=1

[a1log2(1 + γMRC,up
lk ) + ζ2a2log2(1 + γMRT,dn

lk )] (5.3)

where a1
∆
= T1+T2

T
T1

T2
and a2

∆
= T1+T2

T
T2

T1
. Note that (5.2) is a non-convex fractional optimization

problem which is very difficult to solve directly. To overcome this difficulty, we convert (5.2)

to an equivalent non-fractional problem by following the Dinkelbach’s method as discussed

in [112] and [113]. Letting η =
R

MRC/MRT
total

Ptotal
be the maximum EE in problem (5.2), we have

the following equivalent optimization problem when f(η) = 0.

f(η)
∆
= min

pp,pu,pd

ηPtotal −R
MRC/MRT
total (5.4a)

s.t. C3, C4, C5 (5.4b)

By following the Dinkelbach’s method [112] and [113], the optimal solution to problem

(5.4) can be obtained if we can find η such that f(η) = 0. In order to simplify the above

optimization problem, we introduce a new set of variables xu,lk and xd,lk (l = 1, 2, . . . , L; k =

1, 2, . . . , K), with the constraints 0 ≤ xu,lk ≤ γ̃MRC
u,lk and 0 ≤ xd,lk ≤ γ̃MRC

d,lk . Then we can
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rewrite the above optimization problem as

min
pp,pu,pd,xu,xd

ηPtotal

−
L
∑

l=1

K
∑

k=1

[a1log2(1 + xu,lk) + ζ2a2log2(1 + xd,lk)]

(5.5a)

s.t. C14 : xu,lk ≤ γ̃MRC
u,lk

(5.5b)

C15 : xd,lk ≤ γ̃MRC
d,lk

(5.5c)

C16 : xu,lk ≥ 0 (5.5d)

C17 : xd,lk ≥ 0 (5.5e)

C3, C4, C5 (5.5f)

where

xu
∆
= [xu,11, xu,12, . . . , xu,1K , . . . , xu,L1, xu,L2, . . . , xu,LK ] (5.6)

xd
∆
= [xd,11, xd,12, . . . , xd,1K , . . . , xd,L1, xd,L2, . . . , xd,LK ] (5.7)

Similar to the derivation of (4.5), by substituting (2.7), (2.8) and (3.1) into (5.5b), we
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can transform the first constraint in problem (5.5) as

C18 :
xu,lk

(M−1)τpu,lkpp,lkβ
2
llk
(

K
∑

κ=1,κ 6=k

pu,lκβllκ + 1 +
L
∑

j=1

τpp,jkβljk

+
L
∑

i=1,i 6=l

K
∑

κ=1,κ 6=k

pu,iκβliκ +
L
∑

j=1

τpp,jkβljk

K
∑

κ=1,κ 6=k

pu,lκβllκ

+
L
∑

j=1

τpp,jkβljk

L
∑

i=1,i 6=l

K
∑

κ=1,κ 6=k

pu,iκβliκ+
L
∑

i=1

pu,ikβlik

+τ
L
∑

i=1

pu,ikβlik

L
∑

j=1,j 6=i

pp,jkβljk) + xu,lk

L
∑

i=1,i 6=l

β2
likpu,ikpp,ik

β2
llkpu,lkpp,lk

≤ 1

(5.8)

Note that the left side of the above inequality is posynomial. Similarly, the second constraint

in problem (5.5) can also be converted to a posynomial inequality by substituting (2.7), (2.8)

and (3.18) into (5.5c), resulting in

C19 :
xd,lk

Mpd,lk

K
∑

κ=1,κ 6=k

pd,lκ +
xd,lk

(M−1)pd,lkτpp,lkβ
2
llk
(βllk

K
∑

κ=1

pd,lκ

+τβllk

K
∑

κ=1

pd,lκ
L
∑

j 6=l

pp,jkβljk +
L
∑

i 6=l

K
∑

κ=1

pd,iκβilk + 1

+τ
L
∑

j=1

pp,jkβljk

L
∑

i 6=l

K
∑

κ=1

pd,iκβilk + τ
L
∑

j=1

pp,jkβljk) ≤ 1

(5.9)

After replacing (5.5b) with (5.8), and replacing (5.5c) with (5.9), all the constraints in

problem (5.5) are posynomial inequalities, each with the form of a posynomial less than

or equal to a constant value. The optimization problem (5.5) can then be treated as a

generalized geometric programming (GGP) problem which is a combination of a standard

GP and several additive logarithm terms of generalized posynomial [99, section 7.2]. Since

all the variables in (5.5) are nonnegative, the constraints can be converted to convex through

a logarithmic transform of the variables. We replace the original variables xu,lk, xd,lk, pp,lk,

pu,lk and pd,lk with their logarithmic form for all values of k ∈ K and l ∈ L, then the
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variables become yu,lk = ln(xu,lk), yd,lk = lg(xd,lk), p′p,lk = ln(pp,lk), p′u,lk = ln(pu,lk) and

p′d,lk = ln(pd,lk). By substituting these new variables into (5.5), all its constraints become

convex and the objective function (5.5a) becomes

min
p′

p,p
′

u,p
′

d,yu,yd

ηP ′
total + g(yu,yd) (5.10)

where

yu
∆
= [yu,11, yu,12, . . . , yu,1K , . . . , yu,L1, yu,L2, . . . , yu,lk] (5.11)

yd
∆
= [ỹd,11, ỹd,12, . . . , ỹd,1K , . . . , ỹd,L1, ỹd,L2, . . . , yd,lk] (5.12)

p′

p
∆
= [p′p′,11, p

′
p,12, . . . , p

′
p,1K , . . . , p

′
p,L1, p

′
p,L2, . . . , p

′
p,LK ] (5.13)

p′

u
∆
= [p′u,11, p

′
u,12, . . . , p

′
u,1K , . . . , p

′
u,L1, p

′
u,L2, . . . , p

′
u,LK ] (5.14)

p′

d
∆
= [p′d,11, p

′
d,12, . . . , p

′
d,1K , . . . , p

′
d,L1, p

′
d,L2, . . . , p

′
d,LK ] (5.15)

Moreover, in (5.10) we have

P ′
total

∆
=

L
∑

l=1

K
∑

k=1

[exp(p′p,lk)τ + exp(p′u,lk)T1 + ζ1exp(p
′
d,lk)T2] (5.16)

g(yu,yd)
∆
= −

L
∑

l=1

K
∑

k=1

{[a1log2[1 + exp(yu,lk)] + ζ2a2log2[1 + exp(yd,lk)]}

=
L
∑

l=1

K
∑

k=1

[a1log2
1

1+exp(yu,lk)
+ ζ2a2log2

1
1+exp(yd,lk)

]

(5.17)

Now, we use the FrankWolfe (FW) iterative procedure to solve the above problem. Since

log2
1

1+exp(•)
is concave, it is easy to see that g(yu,yd) is also concave. Then, by following
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the first-order Taylor series expansion, we have f(x, y) ≤ f(x0, y0) + fx(x0, y0)(x − x0) +

fy(x0, y0)(y − y0). Assuming that [y
(κ)
u ,y

(κ)
d ] is a feasible solution to the problem, we ap-

proximate the upper bound of g(x, x̃) by its first-order Taylor series expansion at [y
(κ)
u ,y

(κ)
d ]

[114] [115] as

g(yu,yd) ≤ g(y
(κ)
u ,y

(κ)
d )−

L
∑

l=1

K
∑

k=1

[a′1
yu,lk−y

(κ)
u,lk

1+exp(y
(κ)
u,lk)

+ ζ2a
′
2

yd,lk−y
(κ)
d,lk

1+exp(y
(κ)
d,lk)

] (5.18)

where a′1
∆
= a1

ln 2
and a′2

∆
= a2

ln 2
. Based on (5.18), we propose an iterative algorithm to find

the optimal solution. After getting the (κ − 1)-th feasible solution [y
(κ−1)
u ,y

(κ−1)
d ], we can

obtain the feasible solution at the κ-th iteration by solving the following problem,

min
p′

p,p
′

u,p
′

d,yu,yd

f (κ) ∆
= ηP ′

total + g(y
(κ−1)
u ,y

(κ−1)
d )

−
L
∑

l=1

K
∑

k=1

[a′1
yu,lk−y

(κ−1)
u,lk

1+exp(y
(κ−1)
u,lk )

+ ζ2a
′
2

yd,lk−y
(κ−1)
d,lk

1+exp(y
(κ−1)
d,lk )

]

(5.19a)

s.t. C3′, C4′, C5′, C14′, C15′ (5.19b)

Here, C3’, C4’, C5’, C14’, C15’ represent the constraints of C3, C4, C5, C14, C15, re-

spectively, in the logarithmic transform domain. This iteration continues until no further

improvement on the objective function can be achieved. We summarize the algorithm as

Algorithm 1 in table 5.1.

The convergence of the inner loop in the above algorithm can be proved as follows.

Proposition 5 : Proof of the convergence of inner loop in Algorithm 1

Proof : Let P ′(κ)
total and P ′(κ−1)

total be the value of P ′
total at iterations κ and κ− 1 for solving
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Algorithm 1: The proposed iterative algorithm

Initialization
Set iteration indix i = 0, convergence tolerance δ > 0 and EE parameter η(0) = 0
Choose initial value [y

(0)
u ,y

(0)
d ];

Outer loop: repeat

Choose the initial solution [y
(i)
u ,y

(i)
d ] = [y

(i−1)
u ,y

(i−1)
d ];

Compute f (i);
Set i = i+ 1 and κ = 0;
Inner loop: repeat

Set κ = κ+ 1;
Find the optimal solution [y

(κ)
u ,y

(κ)
d ], p′p,lk, p

′
u,lk and p′d,lk to problem (5.19) for

given [y
(κ−1)
u ,y

(κ−1)
d ];

Compute f (κ);
until

∣

∣f (κ) − f (κ−1)
∣

∣ < δ;
Calculate the corresponding optimal Rtotal and Ptotal based on the obtained
solution of inner loop;
Update η(i) = Rtotal/Ptotal;

until
∣

∣η(i) − η(i−1)
∣

∣ < δ;
Output optimal solution for pp,lk, pu,lk and pd,lk.

(5.19), respectively. As [y
(κ)
u ,y

(κ)
d ] is feasible to (5.18), we have the relation as given in (5.20).

ηP ′(κ)
total + g(y

(κ)
u ,y

(κ)
d )

≤ ηP ′(κ)
total + g(y

(κ−1)
u ,y

(κ−1)
d )−

L
∑

l=1

K
∑

k=1

[a′1
y
(κ)
u,lk−y

(κ−1)
u,lk

1+exp(y
(κ−1)
u,lk )

+ ζ1a
′
2

y
(κ)
d,lk−y

(κ−1)
d,lk

1+exp(y
(κ−1)
d,lk )

]

≤ ηP ′(κ−1)
total + g(y

(κ−1)
u ,y

(κ−1)
d )−

L
∑

l=1

K
∑

k=1

[a′1
y
(κ−1)
u,lk −y

(κ−1)
u,lk

1+exp(y
(κ−1)
u,lk )

+ ζ1a
′
2
y
(κ−1)
d,lk −y

(κ−1)
d,lk

1+exp(y
(κ−1)
d,lk )

]

= ηP ′(κ−1)
total + g(y

(κ−1)
u ,y

(κ−1)
d )

(5.20)

which proves that the proposed iterative algorithm is monotonically decreasing. Considering

that the objective function is lower bounded, the convergence of the inner loop in Algorithm

1 is ensured.

Regarding the proof of the convergence of the outer loop, the readers are referred to [95].

It should be pointed out that despite the guaranteed convergence of Algorithm 1, its solution
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may not be the globally optimum because of the non-convex nature of the joint optimization

problem.

5.3 Total EE Maximization with ZF Receiver/Precoder

The power allocation problem with ZF used in both receiver and precoder of BS, which

maximizes the weighted total EE subject to power constraints, can be formulated as

max
pp,pu,pd

RZF
total

Ptotal
(5.21a)

s.t. C3, C4, C5 (5.21b)

with

RZF
total

∆
=

L
∑

l=1

K
∑

k=1

[a1log2(1 + γ̃ZF,up
lk ) + ζ2a2log2(1 + γZF,dn

lk )] (5.22)

Similar to the discussion in the previous section, in order to simplify (5.21), we introduce

a new set of variables zu,lk and zd,lk (l = 1, 2, . . . , L; k = 1, 2, . . . , L), with the constraints

0 ≤ zu,lk ≤ γ̃ZF,up
lk and 0 ≤ zd,lk ≤ γZF,dn

lk . Then we can rewrite the above maximization

problem as the following minimization counterpart,

min
pp,pu,pd,zu,zd

f(η) (5.23a)

s.t. C10 : zu,lk ≤ γZF,up
lk

(5.23b)

C18 : zd,lk ≤ γZF,dn
lk

(5.23c)
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C19 : zu,lk ≥ 0 (5.23d)

C20 : zd,lk ≥ 0 (5.23e)

C3, C4, C5 (5.23f)

where,

zu
∆
= [zu,11, zu,12, . . . , zu,1K , . . . , zu,L1, zu,L2, . . . , zu,LK ], (5.24)

zd
∆
= [zd,11, zd,12, . . . , zd,1K , . . . , zd,L1, zd,L2, . . . , zd,LK ], (5.25)

and f(η) is defined in (5.4a).

By substituting (2.7), (2.8) and (3.8) into (5.23b), and performing some derivation, we

have
1+

L∑

j=1
τpp,lkβllk

(M−K)τpp,lkpu,lkβ
2
llk
[
L
∑

i=1

K
∑

κ=1

pu,iκ

βliκ(1+
L∑

j 6=i

τpp,jκβljκ)

1+
L∑

j=1
τpp,jκβljκ

+ 1]

+
L
∑

i=1,i 6=l

pu,ik
pu,lk

β2
likpp,ik

β2
llkpp,lk

≤ 1
zu,lk

(5.26)

The left side of (5.26) is the same as that of (4.9). Hence, by following the same method as

discussed in chapter 4 and using the property of geometric inequality, it can be verified that

(5.26) is equivalent to the three inequalities C11, C12 and C21 below,

C21 :
zu,lk

(M−K)τpp,lkpu,lkβ
2
llk
[
L
∑

i=1

K
∑

κ=1

βliκpu,iκ
tlκ

(1 +
L
∑

j 6=i

τpp,jκβljκ)

(1 +
L
∑

j=1
τpp,jkβljk) + 1 +

L
∑

j=1
τpp,jkβljk] +

L
∑

i=1,i 6=l

β2
likpp,ikpu,ikzu,lk

β2
llkpp,lkpu,lk

≤ 1

(5.27)

Similarly, the second constraint in problem (5.23) can also be converted to a posynomial
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inequality by substituting (2.7), (2.8) and (3.25) to (5.23c), resulting in

C22 :
zu,lk

(M−K)τpp,lkpd,lkβ
2
llk
[
L
∑

i=1

K
∑

κ=1

βilkpd,iκ
tik

(1 +
L
∑

j 6=l

τpp,jkβijk)

(1 +
L
∑

j=1
τpp,jkβljk) + 1 +

L
∑

j=1
τpp,jkβljk] +

L
∑

i=1,i 6=l

β2
ilkpd,ikpp,lkzu,lk

β2
iikpd,lkpp,ik

≤ 1

(5.28)

Then we can rewrite the optimization problem (5.23) as

min
pp,pd,p̃d,z,z̃

f(η) (5.29a)

s.t. C3, C4, C5, C11, C12, C19, C20, C21, C22 (5.29b)

It can be seen that (5.29) is a GGP problem with all constraints being posinomial inequalities,

which can be converted to a convex problem through a logarithmic transform of the variables.

Finally, similar to problem (5.10), we can solve (5.29) by using FW iterative procedure as

summarized in Algorithm 1.

5.4 Asymptotic Performance under A Very Large Number of BS Antennas

It has been proved in section 4.3 that with constant pilot and data powers, the SINR lower

bounds tend to be infinity for infinite M. By using the SINR lower bounds in (4.19), the

joint pilot-data power control optimization problem based on EE maximization scheme with

MRC/MRT and that with ZF/ZF can both be written as

max
ep,ed,ẽd

R
K∑

k=1
(τEp,lk+T1Eu,lk+ζ1T2Ẽd,lk)

s.t. C25, C26, C27

(5.30)
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where

R
∆
=

L
∑

l=1

K
∑

k=1

[a1log2(1 +
τβ2

llkEp,lkEu,lk

1+τ
L∑

i=1,i 6=l
β2
likEp,ikEu,ik

)

+ζ2a2log2(1 +
τβ2

llkEp,lkEd,lk

1+τ
L∑

i=1,i 6=l

β2
likEp,ikEd,ik

)]

(5.31)

The constraints C25 and C26 in (5.30) can be omitted since
√
MP1 → ∞ and

√
MP2 → ∞

when M → ∞. Then, (5.30) can be simplified as

max
ep,ed,ẽd

R
K∑

k=1
(τEp,lk+T1Eu,lk+ζ1T2Ẽd,lk)

s.t. C27

(5.32)

Now, problem (5.32) can be solved by using the same approach as summarized in Algorithm

1.

5.5 Simulation Results and Discussion

In this section, computer simulation is carried out based on the same parameters as discussed

in Chapter 4, where a 2 -cell MU-MIMO system is considered with 3 users in each cell. And

OFDM signals are transmitted according to the LTE standard and the parameter setting in

[1]. The weighted numbers ζ2 is assumed to be one. Throughout the simulation, a normalized

additive Gaussian noise with zero-mean and unit variance is assumed. In addition, the

convergence tolerance of the proposed algorithm is set to δ = 10−3. The same average SINR

lower bounds are used in EE maximization schemes as that used in total transmit power

minimization schemes discussed in Chapter 4. The tightness of the derived lower bounds of

average SINR has already been shown in Fig. 4.1.
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Chapter 5 and the SE maximization power control scheme discussed in [109]. It is observed

that the proposed the EE maximization scheme obtains the best EE performance while SE

maximization shows the worst despite the number of BS antennas. This is because the

proposed EE maximization scheme decreases the transmit power to avoid sacrificing EE,

whereas the SE maximization scheme always uses all of the transmit power. Meanwhile,

the total transmit power minimization scheme shows a moderate EE performance, since it

always keeps constant uplink and downlink average SINRs. The EE increases as M grows

in all the three methods since it has benefited largely from the use of massive MIMO. Even

though framework 2 (EE maximization scheme) shows the best EE performance in figure

5.3, it does not mean that framework 2 is better than framework 1, since the purpose of

these two frameworks are different in MU-MIMO system design. Framework 1 aims to use

the lowest power over a given system performance target, while framework 2 aims to find a

balance between system performance and the power cost.

5.6 Conclusion

In this chapter, we have developed novel pilot-data power control algorithms for multi-cell

MU-MIMO systems with an objective of jointly maximizing the total uplink and downlink

EE under BS and per-user power constraints. The proposed schemes take into account the

MRC and ZF detectors in the uplink transmission together with MRT and ZF precoder in

the downlink transmission. In order to simplify the original optimization problems, the lower

bounds of the average SINR derived in Chapter 3 were used in the proposed power alloca-

tion optimization problems in order to facilitate their solution. We have further simplified

the optimization problems by converting them to GP problems or recasting the proposed
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non-convex problems based on Dinkelbach’s method and FrankWolfe iteration to obtain

equivalent convex problems which can be easily solved. The very large number of BS sys-

tems situation is also discussed for multi-cell MU-MIMO systems. The joint pilot-data power

control schemes based on the two frameworks and SE maximization power allocation algo-

rithm are compared and discussed, showing the advantage of the proposed power allocation

schemes for massive MIMO systems.
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Chapter 6

Joint Pilot-Data Power Allocation with Circuit Power in

Consideration

6.1 Introduction

As discussed in Chapter 4 and Chapter 5, very large scale antenna arrays bring substantial

improvements in energy and spectral efficiency to wireless systems due to the greatly im-

proved spatial resolution and array gain. Moreover, infinite number of antennas employed

at BS, one may achieve in theory an unbounded EE since the user rates grow unbound-

edly as M → ∞. Even though the power consumption of the radio front-end has not been

considered in the previous two chapters, massive MIMO is still a promising candidate for

improving the EE of future wireless networks.

In practical systems, however, it is not possible to achieve infinite EE because the power

consumed by digital signal processor and analog circuits for baseband processing and radio

frequency (RF) grows withM, which means that infinite antennas at BS will introduce infinite

circuit power as well. Unfortunately, there are very limited works in open literature that

have discussed about how the number of BS antennas M impacts the EE of wireless systems

when circuit power is considered. For example, the work in [116] has derived the optimal

values of M and K for a given uplink sum rate, but the necessary overhead due to the pilot
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signal for channel acquisition was ignored, leading to an unrealistic result, conclusion that

a large value of K, even if approaching infinity, would always be beneficial. The authors in

[117] analyzed the capacity and estimation accuracy of a TDD massive MIMO systems and

discussed how M, K and the transmit power affect the SE and EE of a single-cell MU-MIMO

system with different linear processing schemes at the BS.

The main purpose of this chapter is to investigate how the number of BS antennas M

impacts the EE of a single-cell massive MU-MIMO system when circuit power consumption

is taken into account. Similar to previous chapters, we consider the most commonly used

precoder and receiver, namely, ZF, MRT and MRC. It is worth mentioning that our interest

in this chapter is to deal with the transmit power minimization based on the first optimization

framework of single-cell MU-MIMO systems [118]. If circuit power consumption is considered

in multi-cell MU-MIMO systems, the power allocation problem would become very difficult,

which will be left as future work.

6.2 Single-cell MU-MIMO Systems with Channel Estimation

6.2.1 Channel Model

Now we simplify the multi-cell MU-MIMO channel model in chapter 2 for single-cell systems.

Consider a TDD single-cell MU-MIMO system operating over a bandwidth of BHz with the

same frame structure in multi-cell MU-MIMO systems as shown in Fig. 2.2, where we

only estimate the uplink CSI at BS and use such estimated uplink CSI for both uplink and

downlink data transmission. The system consists of an M -antenna BS serving K (K<M )

single-antenna mobile users. Let G denote the M×K channel matrix between the BS and
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K MTs with its elements gmk
∆
= [G]mk being the channel coefficients between the k -th user

and the m-th antenna of the BS. Then the channel response gmk can be modeled as

gmk = hmk

√

βk (6.1)

where hmk ∼ CN(0, 1) represents the small-scale fading coefficient and
√
βk models the

large-scale fading that incorporates path-loss and shadow fading which is assumed to be

constant and known a priori. Then the channel matrix G can be expressed as

G = HD1/2 (6.2)

where [H ]mk = hmk and D is a K×K diagonal matrix with [D]kk = βk.

6.2.2 Channel Estimation

In single-cell MU-MIMO systems, during the training phase, the M × Np received pilot

matrix at the BS can be expressed as

Yp = GSp +Np (6.3)

where Sp denotes the K×Np pilot symbol matrix and Np is an M×Np complex noise matrix

whose entries are i.i.d. RVs with zero-mean and unit variance. Assume an orthogonal pilot

matrix is used, which means that Sp satisfies

SpS
H
p = diag(τpp,1, τpp,2, . . . , τpp,K) (6.4)
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where pp,k (k = 1, 2, . . . , K) represents the pilot power of the k -th user. Based on the MMSE

channel estimation, the estimated channel matrix can be expressed as [22]

Ĝ = YpS
H
p (D−1 + SpS

H
p )−1 = GSpS

H
p Φ +NSH

p Φ (6.5)

where the K ×K diagonal matrix Φ is given by

Φ
∆
= (D−1 + SpS

H
p )−1 = diag

(

β1

1+β1τpp,1
, . . . , βK

1+βKτpp,K

)

(6.6)

The estimation error matrix is defined as ∆G = G − Ĝ. Similar to the Multi-cell MU-

MIMO situation, we know that Ĝ and ∆G have i.i.d. Gaussian RVs with zero mean. Let

M×1 vectors ĝk and ∆gk denote the k -th column of matrix Ĝ and that of ∆G, respectively.

The elements of Ĝ are independent of that of ∆G and the variance of the elements of ĝk

and that of ∆gk can be, respectively, calculated as

σ2
k =

β2
kτpp,k

1 + βkτpp,k
, ε2k =

βk

1 + βkτpp,k
(6.7)

6.2.3 Lower Bounds of Average SINR

The derivation of SINR expressions and their lower bounds in single-cell MU-MIMO is very

similar to that in multi-cell MU-MIMO systems as discussed in Chapter 3. Here we only

give the results for SINR expressions and lower bounds of average SINR for the single-cel

MU-MIMO system, without showing the detailed derivation and proof. Similar to the multi-

cell MU-MIMO case, we adopt the MRC and ZF detectors in the uplink, and MRT and ZF
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precoders in the downlink in the following discussion.

When MRC receiver is employed at BS, the detection matrix is simply given by W = Ĝ.

Therefore, we have wH
k = ĝH

k (or wH
i = ĝH

i ). The received SINR of user k can be obtained

as

γMRC
k =

pd,k
∣

∣ĝH
k ĝk

∣

∣

2

K
∑

i=1,i 6=k

pd,i|ĝH
k ĝi|2 +

K
∑

j=1

pd,j|ĝH
k ∆gi|2 + ‖ĝH

k ‖2
(6.8)

where pd,k (k = 1, 2, . . . , K) represents the uplink data transmit power for the k -th user.

Proposition 6 : When the MRC receiver is employed at BS, the lower bound of the uplink

average SINR of user k under MMSE channel estimation can be expressed as

E{γMRC
k } ≥ γMRC,up

k

∆
=

Mβ2kτpp,kpd,k
1+βkτpp,k

K∑

i=1,i 6=k
βipd,i+pd,k

β
k

1+βkτpp,k
+1

(6.9)

When ZF receiver is used at BS with receiving matrixW = Ĝ(ĜHĜ)−1, we havewH
k ĝk =

1 and wH
k ĝi = 0 (i 6= k). Then the received uplink SINR of user k can be obtained as

γZF
k =

pd,k
K
∑

i=1

pd,i|wH
k ∆gi|2 + ‖wH

k ‖
2

(6.10)

where wk denotes the k -th column of matrix W .

Proposition 7 : In the case of ZF receiver, the lower bound of the average uplink SINR of

user k can be expressed as

EγZF
k ≥ γZF,up

k

∆
=

pd,k
1+βkτp

p,k

(M−K)β2
k
τp

p,k

(
K∑

i=1
pd,i

βi
1+βiτpp,i

+1)
(6.11)
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When MRT precoder is employed at BS with precoding matrix A = Ĝ, we have aH
k = ĝH

k

(or aH
i = ĝH

i ). Then, the received SINR of user k can be given by

γ̃MRC
k =

p̃d,k‖ĝk‖2
K
∑

i=1,i 6=k

p̃d,i
|ĝH

k ĝi|2
‖ĝi‖

2 +
K
∑

j=1

p̃d,j
|∆gH

k ĝj|2
‖ĝj‖

2 + 1

(6.12)

where p̃d,k (k = 1, 2, . . . , K) represents the downlink data power for the k -th user.

Proposition 8 : When MRT precoder is employed at BS, the lower bound of the downlink

average SINR of user k can be expressed as

E{γ̃MRC
k } ≥ γMRC,dn

k

∆
=

(M−1)β2kτpp,k
1+βkτpp,k

p̃d,k

(M−1)β2
k
τpp,k

M(1+βkτdnpp,k)

K∑

i=1,i 6=k
p̃d,i+

K∑

j=1
p̃d,j

β
k

1+βkτpp,k
+1

(6.13)

When ZF precoder [11] is used at BS with precoding matrix A = Ĝ(ĜHĜ)−1, we have

gH
k ak = 1 and ĝH

k ai = 0 (i 6= k). The downlink SINR of user k can be obtained as

γ̃ZF
k =

p̃d,k

‖ak‖
2

K
∑

i=1

p̃d,i
|∆gH

k ai|2
‖ai‖

2 + 1

(6.14)

Proposition 9 : In the case of ZF receiver, the lower bound of the average downlink SINR

of user k can be expressed as

E{γ̃ZF
k } ≥ γZF,dn

k

∆
=

p̃d,k
1+βkτp

p,k

(M−K)β2
k
τp

p,k

(
K∑

i=1
p̃d,i

βk
1+βkτp

p,k
+1)

(6.15)
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6.2.4 Circuit Power Consumption Model

The circuit power consumed by different analog components and digital signal processing

can be modeled as [33]:

PCP = MPBS +KPU + PSY N + PCE +
K
∑

k=1

(E{Rk + R̃k})PCD + PLP (6.16)

Here, PBS accounts for the power to run the circuit components (such as converters, mixers,

and filters) caused by each antenna in BS and PU by each single-antenna user, respectively.

The third term PSY N , which is a constant value, represents the power consumption of the

baseband processors, PCE accounts for the power consumption due to channel estimation

process in each coherence time interval, PCD is the load/data-rate dependent power con-

sumption, e.g. channel coding, decoding and backhaul processing, and PLP represents the

linear processing power consumption at the BS. In (6.16), Rk denotes the uplink achievable

rate of user k. Following the definition in [33, equation (6)], Rk is defined as

Rk =
T1

T2

(1− τ

T
)B log(1 + γk) (6.17)

where the factor T1

T2
(1− τ

T
) accounts for pilot overhead and T1

T2
represents the ratio of uplink

to the downlink transmission. Similarly, the downlink achievable rate of the k -th user R̃k

can be defined as

R̃k =
T2

T1

(1− τ

T
)Blog(1 + γ̃k) (6.18)
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with pilot overhead T2

T1
(1 − τ

T
) and the downlink to uplink transmission ratio T2

T1
. In (6.16),

the term PCE can be further expressed as

PCE =
2τBMK

TLBS

(6.19)

Here LBS is the computational efficiency of processing circuit in BS, which is assumed to

be constant in this paper, B/T represents the number of coherence blocks per second, with

T = τ + T1 + T2. The power cost of transmit precoding and receiving beamforming of

MRT/MRC and ZF can be expressed as follows

P
MRT/MRC
LP = B(1− τ

T
)
2MK

LBS

+
3BMK

TLBS

(6.20)

PZF
LP = B(1− τ

T
)
2MK

LBS

+
BK3

3TLBS

+
3BMK2 +BMK

TLBS

(6.21)

As discussed in [33], (6.20) and (6.21) describe the power cost by the linear processing circuit.

By assuming constant B, K, t and T and substituting (6.16), (6.17) and (6.18) into (6.13),

we can summarize the total circuit power consumption as

P
MRT/MRC
CP = AMRT/MRCM +

K
∑

k=1

(E{Rk + R̃k})PCD +BMRT/MRC (6.22)

PZF
CP = AZFM +

K
∑

k=1

(E{Rk + R̃k})PCD +BZF (6.23)

where

AMRT/MRC = PBS +
3BK

TLBS

+
2BK

LBS

(6.24)
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AZF = PBS +
2BK

LBS

+
3BK2 +BK

TLBS

(6.25)

BMRT/MRC = KPU + PSY N (6.26)

BZF = KPU + PSY N +
BK3

3TLBS

(6.27)

6.3 Joint Power Allocation with Fixed Number of BS Antennas

In this section, based on the average SINR lower bounds and circuit power model discussed

in the previous section, we will develop two algorithms for power allocation between pilot

and data symbols to minimize the weighted uplink and downlink transmit power and circuit

power consumption while guaranteeing per-user SINR and power constraints.

6.3.1 Power Allocation Based on ZF Receiver/Precoder

We first consider the combined use of the ZF receiver and the ZF precoder. Let Pt be the

total transmit power for one transmission frame. In order to determine the best power-

consumption trade-off between the uplink and downlink transmission, a weighted sum-

power minimization is considered with positive weight parameters ζ1 and ζ2. By defining

pp
∆
= [pp,1, pp,2, . . . , pp,K ], pd

∆
= [pd,1, pd,2, . . . , pd,K ] and p̃d

∆
= [p̃d,1, p̃d,2, . . . , p̃d,K ], the power

allocation problem which minimizes the total transmit and circuit power while meeting the

derived average SINR lower bounds for both ZF receiver and ZF precoder can be formulated

as

min
pp,pd,p̃d

PZF
c

∆
=

K
∑

k=1

(τpp,k + T1pd,k + ζ1T2p̃d,k)

+ζ2[A
ZFM + C

K
∑

k=1

log(1 + γZF,up
k ) + C̃

K
∑

k=1

log(1 + γZF,dn
k ) + BZF ]

(6.28a)
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s.t. γZF,up
k ≥ γ1, γ

ZF,dn
k ≥ γ2 (6.28b)

τpp,k + T1pd,k ≤ P1,

K
∑

k=1

p̃d,kT2 ≤ P2 (6.28c)

pp,k > 0, pd,k > 0, p̃d,k > 0 (6.28d)

where C
∆
= T1

T2
(1 − τ

T
)BPCD and C̃

∆
= T2

T1
(1 − τ

T
)BPCD. The above objective function is the

weighted sum-power accounting for the uplink pilot power, the uplink and downlink data

transmit powers and the circuit power consumption. In optimization problem (6.28), we

assume a fixed number of BS antennas, i.e., M is treated as a constant. The first and second

constraints represent the uplink and downlink SINR requirement with per-user SINR targets

γ1 and γ2, respectively. The third and fourth constraints are the power constraints at users

and BS with power thresholds P1 and P2, respectively.

By comparing (6.28) with the previous minimization problem (4.8) based on the total

transmit power minimization, one can see that there are two main differences between the two

problems. Firstly, (6.28) is for single-cell MU-MIMO system, while (4.8) is for multi-cell MU-

MIMO case. Second, (4.8) only contains the transmit power term in the objective function.

In the objective function of (6.28), however, the first term
K
∑

k=1

(τpp,k + T1pd,k + ζ1T2p̃d,k) rep-

resents the total transmit power while the secondAZFM+C
K
∑

k=1

log(1 + γZF,up
k )+C̃

K
∑

k=1

log(1 + γZF,dn
k )+

BZF denotes the circuit power consumption which is modelled by following (6.16). In other

words, in Chapter 4 we only considered to minimize the total transmit power, while in this

chapter we aim to minimize the transmit power and circuit power at the same time.

It is easy to see that this optimization problem is nonconvex and it is very difficult to

solve directly. In order to simplify the optimization problem, we introduce a new set of
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variables

ak
∆
=

βk

1 + βkτpp,k
(6.29)

As the range of pp,k is from zero to infinity, from (6.29) we can get the range of ak as

0 < ak < βk. By substituting (6.29) into problem (6.28) and dropping the constant terms,

we can rewrite the minimization problem as

min
a,pd,p̃d

K
∑

k=1

(
1

ak
+ T1pd,k + ζT2p̃d,k)+ζ2[C

K
∑

k=1

log(1 + γZF,up
k )+ C̃

K
∑

k=1

log(1 + γZF,dn
k )] (6.30a)

s.t.
(M −K)pd,k(βk − ak)

K
∑

i=1

pd,iai + 1

≥ γ1 (6.30b)

(M −K)p̃d,k(βk − ak)

ak
K
∑

i=1

p̃d,i + 1

≥ γ2 (6.30c)

a−1
k + T1pd,k ≤ P1 +

1

βk

(6.30d)

K
∑

k=1

p̃d,kT2 ≤ P2 (6.30e)

0 <ak < βk, pd,k > 0, p̃d,k > 0 (6.30f)

where

a
∆
= [a1, a2, . . . , aK ]. (6.31)

In order to simplify the concave logarithmic terms, we define

xk =
pd,k(βk − ak)
K
∑

i=1

pd,iai + 1

(6.32)
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By multiplying ak
(βk−ak)

at both sides of the equation and then taking summation of xk for

all k ∈ K, we get

K
∑

k=1

akxk

(βk − ak)
=

K
∑

k=1

pd,kak

K
∑

i=1

pd,iai + 1

(6.33)

After some derivation, we have

K
∑

i=1

pd,iai =

K
∑

k=1

akxk

(βk−ak)

1−
K
∑

k=1

akxk

(βk−ak)

(6.34)

Using (6.34) into the denominator of (6.32), we can get the expression of pd,k as

pd,k =

xk

(βk−ak)

1−
K
∑

i=1

aixi

(βi−ai)

(6.35)

For downlink data power p̃d,k, we define

x̃k =
(βk − ak)p̃d,k

ak
K
∑

i=1

p̃d,i + 1

(6.36)

In a similar manner, we get

K
∑

k=1

p̃d,k =

K
∑

i=1

x̃i

(βi−ai)

1−
K
∑

i=1

aix̃i

(βi−ai)

(6.37)

and

p̃d,k =

x̃k

(βk−ak)
[

K
∑

i=1,i 6=k

akx̃i

(βi−ai)
−

K
∑

i=1,i 6=k

aix̃i

(βi−ai)
+ 1]

1−
K
∑

i=1

aix̃i

(βi−ai)

(6.38)
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Using the range 0 <αk < βk, pd,k > 0, p̃d,k > 0 from (6.30f) to (6.32), (6.35), (6.36) and

(6.38), we have the following constraints for xk and x̃k

xk > 0, x̃k > 0,
K
∑

k=1

akxk

(βk − ak)
< 1,

K
∑

k=1

akx̃k

(βk − ak)
< 1 (6.39)

In order to further simplify the objective function (6.30), we define

pd,k ≤ yk,

K
∑

k=1

p̃d,k ≤ ỹ (6.40)

For pd,k and p̃d,k are all positive values, we know the ranges for yk and ỹ, i.e., yk > 0 and

ỹ > 0. Then substituting (6.32), (6.35), (6.41), (6.38), (6.39) and (6.40) into problem (6.30)

and dropping the redundant constraints, the minimization problem is equivalent to

min
a,x,x̃,y,ỹ

K
∑

k=1

( 1
ak

+ T1yk)+ζ1T2ỹ

+ζ2{C
K
∑

k=1

log[1 + (M −K)xk] + C̃
K
∑

k=1

log[1 + (M −K)x̃k]}
(6.41a)

s.t. xk ≥
γ1

M −K
(6.41b)

x̃k ≥
γ2

M −K
(6.41c)

xk

yk(βk − ak)
+

K
∑

i=1

aixi

(βi − ai)
≤ 1 (6.41d)

K
∑

i=1

x̃i

ỹ(βi − ai)
+

K
∑

i=1

aix̃i

(βi − ai)
≤ 1 (6.41e)

1

ak
+ T1yk ≤ P1 +

1

βk

, T2ỹ ≤ P2 (6.41f)
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0 <ak < βk, yk > 0, ỹ > 0 (6.41g)

where

x
∆
= [x1, x2, . . . , xK ] (6.42)

x̃
∆
= [x̃1, x̃2, . . . , x̃K ] (6.43)

y
∆
= [y1, y2, . . . , yK ] (6.44)

The above optimization problem is still not convex. Note that the left-side of the two

constraints (6.41d) and (6.41e) are a monotonically decreasing function of 1
(βk−ak)

, while

these two constraints contain the linear combination of 1
(βk−ak)

, so we can use the property

as described in [98, section 7.1] to simplify the above optimization problem. We define a

new variable bk such that 1
(βk−ak)

≤ bk, which can be further expressed as the generalized

posynomial inequality 1
bk

+ ak ≤ βk. As the range ak is 0 < ak < βk, we have bk > 0. Then

after some derivations, the above problem becomes

min
a,x,x̃,y,ỹ,b

K
∑

k=1

( 1
ak

+ T1yk) + ζ1T2ỹ

+ζ2{C
K
∑

k=1

log[1 + (M −K)xk] + C̃
K
∑

k=1

log[1 + (M −K)x̃k]}
(6.45a)

s.t.
xkbk
yk

+
K
∑

i=1

aixibi ≤ 1 (6.45b)

K
∑

i=1

x̃ibi
ỹ

+
K
∑

i=1

aix̃ibi ≤ 1 (6.45c)

1

bk
+ ak ≤ βk, bk > 0 (6.45d)
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1

ak
+ T1yk ≤ P1 +

1

βk

, T2ỹ ≤ P2 (6.45e)

0 <ak < βk, yk > 0, ỹ > 0 (6.45f)

where

b
∆
= [b1, b2, . . . , bK ] (6.46)

Now, the constraints in the above optimization problem are all posynomial inequalities,

each with the form of a posynomial less than a constant value. The problem (6.45) can be

treated as a generalized geometric programming (GGP) problem which can be considered as a

combination of a standard GP and several additive logarithm terms of generalized posynomial

[99, section 7.2]. Since all the variables in (6.45) are nonnegative, the optimization problem

(6.45) can be converted to a convex problem through a logarithmic change of the variables

as discussed in [99, section 7.2]. We replace original variables ak, xk, x̃k, yk, ỹ and bk with

their logarithmic form for all values of k ∈ K. Then, the variables become a′k = log(ak),

x′
k = log(xk), x̃

′
k = log(x̃′

k), y
′
k = log(yk), ỹ

′ = log(ỹ′) and b′k = log(bk). After substituting

these new variables in (6.45), the minimization problem becomes a convex optimization

problem and can be solved very efficiently by employing the augmented Lagrangian method

or by using a standard numerical optimization packages, for example, ConVeX (CVX) [105].

Then, we can calculate the values for pp,k, pd,k and p̃d,k by substituting the solution of problem

(6.45) to (6.29), (6.35) and (6.38).
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6.3.2 Power Allocation Based on MRC Receiver and MRT Precoder

Similar to the previous subsection, the power allocation problem which minimizes the weighted

transmit and circuit power subject to the obtained lower bounds on the average SINR for

MRC receiver and MRT precoder can be formulated as

min
pp,pd,p̃d

P
MRC/MRT
c

∆
=

K
∑

k=1

(τpp,k + T1pd,k + ζ1T2p̃d,k)

+ζ2[A
MRC/MRTM + C

K
∑

k=1

log(1 + γMRC,up
k ) + C̃

K
∑

k=1

log(1 + γMRT,dn
k ) + BMRC/MRT ]

(6.47a)

s.t. γMRC,up
k ≥ γ1, γ

MRT,dn
k ≥ γ2 (6.47b)

τpp,k + T1pd,k ≤ P1,

K
∑

k=1

p̃d,kT2 ≤ P2 (6.47c)

pp,k > 0, pd,k > 0, p̃d,k > 0 (6.47d)

Due to the concave logarithmic terms in the objective function, the above problem is

very difficult to solve. In order to simplify this problem, we define

zk =

K
∑

i=1,i 6=k

βipd,i + pd,kak + 1

(βk − ak)pd,k
+1 (6.48)

and

z̃k =

[ (M−1)βk

M
+ 1

M
ak]

K
∑

i=1,i 6=k

p̃d,i + p̃d,kak + 1

(βk − ak)(M − 1)p̃d,k
+

1

M
. (6.49)
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Using (6.48), (6.49) and a similar approach as in the previous subsection, we can get

pd,k =
1

(βk − ak)zk[1−
K
∑

i=1

βi

(βi−ai)zi
]

, (6.50)

p̃d,k =
[ (M−1)βk

M
+ 1

M
ak]

(M − 1)(βk − ak)z̃k

K
∑

i=1

1
(M−1)(βi−ai)z̃i

1−
K
∑

i=1

[
(M−1)βi

M
+ 1

M
ai]

(M−1)(βi−ai)z̃i

+
1

(M − 1)(βk − ak)z̃k
, (6.51)

and

K
∑

k=1

p̃d,k =

K
∑

i=1

1
(M−1)(βi−ai)z̃i

1−
K
∑

i=1

[
(M−1)βi

M
+ 1

M
ai]

(M−1)(βi−ai)z̃i

. (6.52)

Substituting the range of ak, pd,k and p̃d,k into equations (6.48) to (6.51), we get

zk > 1,
K
∑

k=1

βk

(βk − ak)zk
< 1, z̃k >

1

M
,

K
∑

k=1

[ (M−1)βk

M
+ 1

M
ak]

(M − 1)(βk − ak)z̃k
< 1 (6.53)

By substituting (6.29), (6.51), (6.50), (6.52) and (6.53) into problem (6.47) and dropping the

constant value in the objective function and redundant constraints, then the optimization

problem becomes

min
a,z,z̃,y,ỹ

K
∑

k=1

( 1
ak

+ ykT1)+ζ1T2ỹ + ζ2[C
K
∑

k=1

log(1 + M
zk−1

) + C̃
K
∑

k=1

log(1 + 1
z̃k−

1
M

)] (6.54a)

s.t. zk ≤
M

γ1
+1 (6.54b)

z̃k ≤
1

γ2
+

1

M
(6.54c)
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1

(βk − ak)zkyk
+

K
∑

i=1

βi

(βi − ai)zi
≤ 1 (6.54d)

K
∑

k=1

1

ỹ(βk − ak)(M − 1)z̃k
+

K
∑

k=1

(M−1)βk

M
+ 1

M
ak

(βk − ak)(M − 1)z̃k
≤ 1 (6.54e)

zk > 1, z̃k >
1

M
(6.54f)

1

ak
+ T1yk ≤ P1 +

1

βk

, T2ỹ ≤ P2 (6.54g)

0 <ak < βk, yk > 0, ỹ > 0 (6.54h)

Here

z
∆
= [z1, z2, . . . , zK ] (6.55)

and

z̃
∆
= [z̃1, z̃2, . . . , z̃K ]. (6.56)

Similar to the optimization problem (6.41), here we use the property as described in

[98,section 7.1] to convert (6.54) into a GGP problem. We define a set of new variables tk

and t̃k, such that M
zk−1

≤ tk and 1
z̃k−

1
M

≤ t̃k which can be further expressed as the generalized

posynomial inequality M
tk

+ 1 ≤ zk and 1
t̃k
+ 1

M
≤ z̃k. From (6.54f), we can find the range for

tk and t̃k as tk > γ1 and t̃k > γ2. We also replace the term 1
(βk−ak)

with bk, along with the

constraint 1
bk

+ ak ≤ βk and bk > 0. After derivations, the previous problem becomes

min
a,z,z̃,y,ỹ,b,t,t̃

K
∑

k=1

( 1
ak

+ ykT1)+ζ1T2ỹ

+ζ2[PCD

K
∑

k=1

log(1 + tk) + PCD

K
∑

k=1

log(1 + t̃k)]

(6.57a)
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s.t. bk
zkyk

+
K
∑

i=1

biβi

zi
≤ 1 (6.57b)

K
∑

k=1

bk
(M−1)ỹz̃k

+
K
∑

k=1

bk[
(M−1)βk

M
+ 1

M
ak]

(M−1)z̃k
≤ 1 (6.57c)

1
bk

+ ak ≤ βk,
M
tk

+ 1 ≤ zk,
1
t̃k
+ 1

M
≤ z̃k (6.57d)

zk ≤
M

γ1
+1, z̃k ≤

1

γ2
+

1

M
(6.57e)

bk > 0, tk > γ1, t̃k > γ2 (6.57f)

1

ak
+ T1yk ≤ P1 +

1

βk

, T2ỹ ≤ P2 (6.57g)

0 <ak < βk, yk > 0, ỹ > 0 (6.57h)

Here

t
∆
= [t1, t2, . . . , tK ] (6.58)

and

t̃
∆
= [t̃1, t̃2, . . . , t̃K ]. (6.59)

Similar to the previous problem (6.45), (6.57) is also a GGP problem with a combina-

tion of a standard GP and several additive logarithmic terms of generalized posynomial as

described in [99, section 7.2]. Since all variables in (6.57) are nonnegative, similar to the

optimization problem (6.45), (6.57) can also be converted to a convex optimization problem

through a logarithmic change of the variables and then be solved by standard numerical

optimization packages, i.e., CVX [105].
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6.4 Joint Power Allocation with Variable Number of BS Antennas

As discussed in [22], with the assumption of infinite number of BS antennas, uncorrelated

noise and intra-cell interference can be completely averaged out, leading to ”favorable prop-

agation” and unbounded achievable uplink and downlink rate. However, power consumed

by digital signal processing and analog circuits also grows with the number of BS antennas.

So the number of BS antennas plays an important role in the performance of MU-MIMO

communication systems. In this section, we develop two EE power control algorithms with

consideration of variable number of BS antennas.

6.4.1 Power Allocation Based on ZF Receiver/Precoder

Similar to the previous fixed number of BS antennas case, the power allocation problem can

be formulated as

min
pp,pd,p̃d,M

PZF
c

s.t.M ≥ K

(6.28b), (6.28c), (6.28d)

(6.60)

Then, by substituting (6.32), (6.35), (6.36), (6.38) and (6.39) into problem (6.60), after some

derivation, we get

min
a,x,x̃,y,ỹ,b,M ′

K
∑

k=1

( 1
ak

+ T1yk)+ζ1T2ỹ

+ζ2[A
ZFM ′ + C

K
∑

k=1

log(1 +M ′xk) + C̃
K
∑

k=1

log(1 +M ′x̃k)]

(6.61a)

s.t.xkbk
yk

+
K
∑

i=1

aixibi ≤ 1 (6.61b)
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K
∑

i=1

x̃ibi
ỹ

+
K
∑

i=1

aix̃ibi ≤ 1, 1
bk

+ ak ≤ βk, bk > 0,M ′ > 0 (6.61c)

(6.46b), (6.46c), (6.46f, (6.46g)

Here M ′ ∆
= M − K. Now, (6.61)is a GGP problem with a combination of a standard GP

and several additive logarithmic terms of generalized posynomial as described in [99]. Since

all variables in (6.61) are nonnegative, (6.61) can also be converted to a convex optimization

problem through a logarithmic change of the variables as discussed in [99, section 7.2] and

then be solved by standard numerical optimization packages, i.e., CVX [105].

6.4.2 Power Allocation Based on MRT Precoder and MRC Receiver

The EE power control problem with consideration of variable number of BS antennas based

on MRT precoder and MRC receiver can be formulated as

min
pp,pd,p̃d,M

P
MRC/MRT
c

s.t.M ≥ K

(6.47b), (6.47c), (6.47d)

(6.62)

We follow a similar method in section 6.4 to simplify problem (6.57). By substituting (6.29),

(6.50), (6.51), (6.52) and (6.53) into problem (6.62) and performing some derivation, we get

min
a,z,z̃,y,ỹ,b,t,t̃,M

K
∑

k=1

( 1
ak

+ ykT1)+ζ1T2ỹ

+ζ2[A
MRC/MRTM + C

K
∑

k=1

log(1 + tk) + C̃
K
∑

k=1

log(1 + t̃k)]

(6.63)

s.t.(6.62b), (6.62c), (6.62d), (6.62e), (6.62f), (6.62g), (6.62h)
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It is worth-mentioning that if the number of BS antennasM is fixed, then the optimization

problem (6.63) would degrade to (6.57) which is a GGP problem as discussed in subsection

6.4. When the pilot and data power are fixed, which means a, z, z̃,y, ỹ, b all have fixed

values, (6.63) becomes

min
t̃,M

AMRC/MRTM + C
K
∑

k=1

log(1 + M
zk−1

) + C̃
K
∑

k=1

log(1 + t̃k) (6.64a)

s.t. 1
M−1

K
∑

k=1

bk
ỹz̃k

+ 1
M

K
∑

k=1

βkbk
z̃k

+ 1
M(M−1)

K
∑

k=1

akbk
z̃k

≤ 1 (6.64b)

max{γ1(zk − 1), K} ≤ M ≤ 1
z̃k−

1
γ2

(6.64c)

1
t̃k
+ 1

M
≤ z̃k (6.64d)

t̃k ≥ γ2 (6.64e)

By replacing the term 1
M−1

with a new variable M̃ , and using the constraint 1
M−1

≤ M̃ and

M̃ > 0, (6.64) becomes

min
t̃,M,M̃

AMRC/MRTM + C
K
∑

k=1

log(1 + M
zk−1

) + C̃
K
∑

k=1

log(1 + t̃k) (6.65a)

s.t.M̃
K
∑

k=1

bk
ỹz̃k

+ 1
M

K
∑

k=1

βkbk
z̃k

+ M̃
M

K
∑

k=1

akbk
z̃k

≤ 1 (6.65b)

max{γ1(zk − 1), K} ≤ M ≤ 1
z̃k−

1
γ2

(6.65c)

1
t̃k
+ 1

M
≤ z̃k (6.65d)
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t̃k ≥ γ2 (6.65e)

1
M̃

+ 1 ≤ M (6.65f)

M̃ > 0 (6.65g)

Similar to the previous problem (6.45) and (6.61), (6.65) is also a GGP problem with a com-

bination of a standard GP and several additive logarithm terms of generalized posynomial.

As a result, (6.65) can be converted to a convex optimization problem through a logarithmic

change of the variables and then be solved by standard numerical optimization packages.

Based on the discussion above, we give an iterative algorithm to find out the suboptimal

pilot and data power as well as the number of antennas at BS for optimization problem

(6.63). It can be seen that when the pilot and data powers or M is fixed, (6.65) can be

converted to a convex optimization problem which is easy to solve. Hence, the minimization

problem can be divided into two parts: at the iteration k, with the fixed M(k), we can

obtain three sets of new pilot-data allocation vector Pp,k(k+ 1), Pd,k(k+ 1) and P̃d,k(k+ 1),

to minimize the total power while satisfying all constraints; then after updating Pp,k(k),

Pd,k(k) and P̃d,k(k) to Pp,k(k + 1), Pd,k(k + 1) and P̃d,k(k + 1), by fixing the pilot and data

power obtained in the previous step, we calculate the optimal number of antennas at BS,

M(k+1), by solving (6.65). Such an alternating optimization procedure continues until the

error tolerance is satisfied. The proposed iteration is summarized as follow.

Algorithm 2:

1. Initialization: initialize M(0), Pp,k(0), Pd,k(0) and P̃d,k(0); set iteration number k = 0;

set the error tolerance ∆.
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2. With the fixedM(k), calculate the optimal pilot and data powers Pp,k(k+1), Pd,k(k+1)

and P̃d,k(k + 1) based on (6.63);

3. With the fixed Pp,k(k + 1), Pd,k(k + 1) and P̃d,k(k + 1), calculate the optimal number

of antennas M(k + 1). Then calculate the objective function in (6.65) by using M(k + 1),

Pp,k(k + 1), Pd,k(k + 1) and P̃d,k(k + 1) to obtain the total power P (k + 1);

4. Terminate the loop if |P (k + 1)− P (k)| ≤ ∆. Otherwise, let k = k+1 and go to Step

2.

It is worth mentioning that the convergence of the algorithm above is guaranteed because

the total transmitted power is minimized at each iterative step. However, it should be pointed

out that the proposed algorithm is not guaranteed to give the global optimal solution due

to the nonconvex nature of the original problem.

6.5 Simulation Results and Discussion

In this section, numerical simulations are carried out to validate the derived average SINR

lower bounds for single-cell MU-MIMO systems and evaluate the proposed EE power allo-

cation methods. We consider a single cell MU-MIMO system with a radius of 1000m. All

K = 4 users are assumed to be located uniformly over the cell at random with a minimum

distance of rh = 100m away from the BS. The large-scale channel fading is modeled with

βk = zk/(rk/rh)
v, where zk represents a log-normal random variable with standard deviation

σ, rk is the distance between the k -th user and the BS and v means the path loss expo-

nent. Following the parameter setting in [1], we choose σ = 8dB and v=3.8. Throughout

the simulation, the normalized additive Gaussian noise with zero mean and unit variance is

assumed.
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Same as the multi-cell MU-MIMO cases discussed in Chapter 4 and Chapter 5, we sup-

pose that the OFDM signal is transmitted according to LTE standard [1]. The simulation

parameters are summarized in Table 6.1. The parameters in circuit power consumption

model are chosen according to paper [33, table II]. In the optimization problem, the weight

ζ1 and ζ2 are assumed to be 1 and 0.01, respectively. The same target SINR and power con-

straint are applied for both uplink and downlink transmission. In the following simulation,

all powers are normalized according to noise power.

Table 6.1 Simulation Paremeters

Parameter Value 

Cell Radius 1000 m 

Minimum distance 100 m 

Transmission bandwidth 10MHz 

Channel coherence time 1 ms 

Subcarrier spacing  15 kHz 

OFDM symbol interval  71.4 μs 

Symbol duration 66.7 μs 

Guard interval length 4.7 μs 

Relative pilot length 4 

Power required to run the circuit components at BS, PBS 1W 

Power required to run the circuit components at user, PU 0.1W 

Power consumed by baseband processor, PSYN 2W 

Power consumed by linear processing at BS, PSYN 0.5W 

Computational efficiency at BS, LBS 12.8 Gflops/W 

Computational efficiency at user, LU 5 Gflops/W 

In order to validate the tightness of average SINR lower bounds in single-cell MU-MIMO

systems, we give the simulation results for the original average SINR and the derived lower

bounds for comparison in Fig. 6.1. Here, we have initially assumed that equal pilot and data

power allocation among all users is applied with pp,k = pd,k = p̃d,k = 10 for any k ∈ K as in

paper [22]. It is clearly seen that the derived lower bounds are tight in all cases despite the

number of BS antennas. In both ZF receiver/precoder and MRC receiver/MRT precoder
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6.6 Conclusion

In this chapter, we have investigated the pilot-data power allocation for EE communications

in single-cell MU-MIMO systems with an objective of minimizing the pilot power as well as

the total uplink and downlink data power and processing circuit power consumption. We

have first analysed the uplink and downlink SINRs and then derived their lower bounds,

based on which two EE power allocation optimization problems are formulated under the

per-user SINR requirement and power constraint. For the fixed number of BS antennas

case, the non-convex optimization problems are then converted to standard GP and general

GP problems to facilitate the solutions. For the variable number of BS antennas case, an

iterative algorithm is proposed to solve the optimization problem. Numerical simulation

results have demonstrated the tightness of the SINR lower bounds for single-cell MU-MIMO

systems and the impacts of number of BS antennas on EE.
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Chapter 7

Summary and Further Research Directions

7.1 Concluding Remarks

In this thesis, several joint pilot and data power allocation algorithms for both conventional

and massive MU-MIMO systems have been developed based on two energy efficient power

allocation frameworks, in order to pursue high energy efficiency of next-generation green

communication.

First, the close-form expressions of the average SINR lower bounds under MMSE channel

estimation for both uplink and downlink transmissions in multi-cell MU-MIMO systems have

been derived, by considering the conventional linear MRC and ZF detectors in the uplink

and the MRT and ZF precoder in the downlink. Based on the derived uplink and downlink

average SINRs, the Jensen’s inequality and the properties of central Wishart matrix were

applied to find the lower bounds of the derived SINRs. These lower bounds of the per-user

average SINR are used to replace the true SINR to simplify the power allocation optimization

problem. It has been shown that such relaxation of the original average SINR yields a

simplified problem and leads to a suboptimal solution.

Second, based on the first EE power allocation framework, we have investigated the pilot

and data power allocation for EE communications in multi-cell MU-MIMO systems with an

objective of minimizing the total uplink and downlink transmit power under the per-user
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SINR requirement and power constraint. The proposed schemes take into account the MRC

and ZF detectors in the uplink transmission together with MRT and ZF precoders in the

downlink transmission. In order to simplify the original optimization problems, the derived

SINR lower bounds instead of the true values were used in the power allocation algorithms.

Then, the non-convex optimization problems are converted to a standard GP problem to

facilitate their solution based on inequality substitution. For the pilot-data power control

scheme with ZF precoder and ZF detector, geometric inequality is used to approximate the

original non-convex optimization to GP problem. The case of very large number of BS

antennas has also been discussed by assuming infinite number of antennas at BS.

Third, two pilot and data power control schemes have been proposed and investigated

based on the second EE power allocation framework to jointly maximize the total EE for

both uplink and downlink transmission under per-user and BS power constraints for multi-

cell TDD MU-MIMO systems. The original non-convex power allocation problems have been

simplified by using the derived SINR lower bounds and Dinkelbach’s method and FrankWolfe

(FW) iteration to obtain an equivalent convex problem. The pilot-data power allocation

schemes based on the two frameworks are compared with the SE maximization scheme.

From the simulation results, the second framework shows a better EE performance than the

first framework.

Finally, we have investigated the pilot-data power allocation for EE communications in

single-cell MU-MIMO systems with an objective of minimizing the total uplink and down-

link transmit power and processing circuit power consumption. Based on the discussion
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in chapters 2 and 3, the system models and SINR lower bounds are degraded from multi-

cell to single-cell MU-MIMO. The model of processing circuit power consumption is dis-

cussed. Then, pilot and data power allocation schemes are proposed which minimize the

total weighted uplink and downlink transmit power while meeting the per-user SINR and

BS power constraints with circuit power consumption under consideration. In our proposed

power control schemes, both fixed and variable numbers of BS antennas have been investi-

gated. For the fixed number of BS antennas case, the non-convex optimization problems are

converted to a general GP problem to facilitate their solution. For the variable number of

BS antennas case, an iterative algorithm is proposed to solve the optimization problem.

7.2 Future Work

During my study of green communication technology, some original ideas have been proposed

on designing power control algorithm to improve the energy efficiency of the MU-MIMO

systems. Nevertheless, there are still some issues that require further investigation.

1. The pilot-data power allocation algorithm in single-cell massvie MIMO systems with

the consideration of circuit power consumption based on the second framework can be in-

vestigated.

2. In this thesis, we only discussed the pilot-data power allocation schemes in multi-

cell massive MU-MIMO systems without considering the circuit power consumption. Our

work in chapters 4 and 5 can be further extended with the consideration of both transmit

power and circuit power cost. To the best of our knowledge, there is no such power control

technique yet that exploits the energy efficiency in multi-cell massive MU-MIMO systems

among pilot and data symbols and circuit power. Also, the circuit power consumption model
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for multi-cell situation is worth-studying.

3. The proposed power allocation algorithms are based on the assumption that there

is no correlation between BS antennas. In practice, the antennas at BS are not perfectly

independent, where correlation may cause some noise in SINR. Therefore, it is desirable to

establish a more effective and robust channel model to estimate the SINRs.
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