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Abstract

Energy-Efficient Pilot-Data Power Control in MU-MIMO

Communication Systems

Ye Zhang, Ph.D.

Concordia University, 2018

Multiple-input multiple-output (MIMO) antenna system is considered as a core technology for
wireless communication. To reap the benefits of MIMO at a greater scale, massive MIMO with
very large antenna arrays deployed at base station (BS) has recently become the forefront in
wireless communication research. Till present, the design and analysis of large-scale MIMO
systems is a fairly new subject. On the other hand, excessive power usage in MIMO networks is
a crucial issue for mobile operators and the explosive growth of wireless services contributes
largely to the worldwide carbon footprint. As such, significant efforts have been devoted to
improve the spectral efficiency (SE) as well as energy efficiency (EE) of MIMO communication
systems over the past decade, resulting in many energy efficient techniques such as power
allocation. This thesis investigates novel energy-efficient pilot-data power control strategies
which can be used in both conventional MIMO and massive MIMO communication systems.
The new pilot-data power control algorithms are developed based ontwo optimization
frameworks: one aims to minimize the total transmit power while satisfying per-user signal-
interference-plus-noise ratio (SINR) and power constraints; the other aims to maximize the total
EE, which is defined as the ratio of the total SE to the transmit power, under individual user
power constraints. The proposed novel pilot-data power allocation schemes also take into
account the maximume-ratio combining (MRC) and zero-forcing (ZF) detectors in the uplink

together with maximume-ratio transmission (MRT) and ZF precoder in the downlink.
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Considering that a direct use of such SINR expressions in the power control schemeswould lead
to a very difficult optimization problem which is not mathematically tractable, we first
investigatethe statistical SINR lower bounds for multi-cell multi-user MIMO (MU-
MIMO)communication systemsunder minimum mean square error (MMSE) channel estimation.
These lower bounds of the per-user average SINRs are used to replace the true SINRs to simplify
the power allocation optimization problems. Such relaxation of the original average SINR yields

a simplified problem and leads to a suboptimal solution.

Then, based on the derived average SINR lower bounds, two novel energy efficient pilot-data
power control problems are formulatedwithin the first optimization framework,aiming to
minimize the total transmit power budget subject to the per-user SINR requirement and power
consumption constraint in multi-cell MU-MIMO systems. For the EE-optimal power allocation
problems with MRT precoder and MRC detector, it is revealed that such minimization problems
can be converted to a standard geometric programming (GP) procedure which can be further
converted to a convex optimization problem. For the pilot-data power control scheme with ZF
precoder and ZF detector, geometric inequality is used to approximate the original non-convex
optimization to GP problem. The very large number of BS station situation is also discussed by
assuming infinite antennas at BS. Numerical results validate the tightness of the derived SINR

lower bounds and the advantages of the proposed energy efficient power allocation schemes.

Next, two pilot and data power control schemes are developed based on the second power
allocation optimization framework to jointly maximize the total EE for both uplink and downlink
transmissions in multi-cell MU-MIMO systems under per-user and BS power constraints. The
original power control problems are simplified to equivalent convex problems based on the
derived SINR lower bounds along with the Dinkelbach's method and the FrankWolfe (FW)
iteration. By assuming infinite antennas at BS, the pilot-data power control in massive MIMO
case is also discussed. The performance of the proposed pilot-data power allocation schemes
based on the two frameworks, namely total transmit power minimization and total EE

maximization, are evaluated and compared with the SE maximization scheme.

Furthermore, we investigate the pilot-data power allocation for EE communications in single-cell
MU-MIMO systems with circuit power consumption in consideration. The pilot and data power

allocation schemes are proposed to minimize the total weighted uplink and downlink transmit
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power as well as processing circuit power consumption while meeting the per-user SINR and BS
power consumption constraints. In our proposed schemes, both fixed and flexible numbers of BS
antennas are investigated. For the fixed number of BS antennas case, the non-convex
optimization problems are converted to a general GP problem to facilitate the solution. An
iterative algorithm is proposed to solve the EE-optimal power control problems in the flexible
number of BS antennas casebased on the partial convexity of both the cost function and the
constraints. It is shown that the convergence of the proposed iterative algorithm is guaranteed

due to the fact that each iteration follows convex optimization.
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Chapter 1

Introduction

1.1 Background and Motivation

Over the past decades, multiple-input multiple-output (MIMO) technology has received a
great deal of attention in wireless communication research community. It is considered as a
strong candidate for future wireless communication systems due to its exploiting the spatial
multiplexing gain, spatial diversity and array gain [1]-[4]. With the development of nowadays
MIMO networks, more and more antennas are employed on transmitter and/or receiver in
order to reduce intra-cell interference and serve more users at the same time, thus leading
to a new technology called massive MIMO system [5]-[10]. Typically, massive MIMO is a
multi-user MIMO (MU-MIMO) technology in which a base station (BS) equipped with a
very large antenna array services several users simultaneously. It has been proved that in
massive MU-MIMO systems, the effect of small-scale fading and additive white Gaussian
noise (AWGN) can be averaged out with simple signal processing. The research in [11]-[12]
based on random matrix theory has demonstrated that linear receivers with infinite number
of BS antennas and perfect channel state information (CSI) can completely eliminate the
intra-cell interference and noise, resulting in the “favourable propagation”. The design and
analysis of large scale MIMO systems is a new subject which is attracting more and more

interests.



Because of the explosive growth of user demands on high-data-rate multimedia traffic,
energy consumption of MIMO communication has been dramatically increasing in recent
years. Such huge energy consumption results in a large amount of carbon dioxide emission
and high capital and operating expenditures [13]-[15]. Moreover, the mobile terminals also
desire high energy efficiency for the reason that the development of battery technology has not
kept up with the demand of broad band mobile communications [16]-[18]. Therefore, green
communication design has become a significant trend for the development of future wireless
communication technologies and has been considered as a promising research direction in
both the academic and industrial areas [19]-[20].

One main topic of green communication focuses on the energy efficient resource allocation
[21]-[25]. Because of the environment changing and users’ mobility, the CSI of wireless links
varies randomly with time. In almost all communication scenarios, the system performance
highly depends on the accuracy of CSI at transmit and/or receive ends. To learn the channel,
one popular method is to let the transmitter send known training signal, which is known as
pilot signal, to the receiver during a certain transmission time interval. A proper training
signal is very important for MIMO communication systems, especially for massive MIMO
systems. Little training power leads to a heavy noise caused by the channel estimation error,
which directly affects the transmission performance, i.e. a very low signal-to-interference-
plus-noise ratio (SINR) [26]-[28]. On the contrary, if a longer training sequence or more
training power is used, it means less remaining energy for the useful data transmission for

a given energy budget spent in a coherence interval, causing a waste of resource in MIMO



communication systems, such as power, time and bandwidth [29]-[32]. Therefore, the power
allocation between training and data signal is a major problem that has a large impact on
the performance of MIMO systems. As a result, it is crucial to study the resource allocation
strategy for MIMO communication systems in order to save the energy consumption on
BS and/or user terminals. Therefore, this thesis focuses on the trade-off between system
performance and energy consumption by developing the power allocation schemes for both
training and data signal to achieve the green communication requirement. Moreover, it is
generally believed that the massive MU-MIMO as a results of using tremendous antennas
at BS can save the energy cost without sacrificing system performance as compared to
traditional MU-MIMO systems [11] [33]-[36]. We will also discuss the power saving and
system performance improvement of the energy efficient power allocation versus the number

of antennas used in massive MU-MIMO networks.

1.2 Literature Review

1.2.1 Power Allocation Based on Perfect CSI

Wireless communication usage has gained a huge growth recently and will continue to grow
rapidly in the following years. The power consumption of the mobile devices has become a
major concern because battery technologies have not been able to scale up with the increas-
ingly higher communication speed. Moreover, the large amount of carbon dioxide emission
gives rise to significant environmental problem, which has made power consumption a crucial
performance metric that is highly concerned in wireless communication systems. As a result,
energy efficient optimal resource allocation, aiming at increasing the energy efficiency (EE)
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as well as saving power cost of the whole system, has emerged as a significant research topic
in MIMO communication systems.

In the past decades, many researchers have studied the energy efficient resource allo-
cation in MIMO communication systems based on perfect CSI. For example, an energy
efficient power allocation algorithm for MIMO wireless systems was formulated as a convex
optimization problem with quality of service (QoS) constraints in [37]. The bit energy of
training-based single-input single-output (SISO) and MIMO system was investigated in [48],
where the works were based on optimization of SNR for single user MIMO systems. In [39],
an energy efficient optimal power control based on water-filling algorithm for the downlink
MU-MIMO system was developed. In [40], an optimal power allocation that maximizes the
EE performance in the downlink of a MU-MIMO was studied with zero-forcing (ZF) pre-
coder used at BS. The optimal number of active users and their power allocation in uplink
MU-MIMO systems was discussed in [41] based on the maximization of total EE. The au-
thors of [11] studied the trade-off between uplink energy and spectral efficiency in large-scale
MU-MIMO systems under both perfect and imperfect CSI. It is shown that by employing
very large antenna arrays at BS, both spectral and energy efficiency can be improved greatly
with a simple power allocation scheme in which all users are assumed to have the same pilot
power and data power.

However, in practice we can never have perfect CSI because of channel estimation error
[42]-[44]. Usually, the CSI in MU-MIMO system is estimated based on training signal, which
is called training-based channel estimation. For a massive MU-MIMO system as a large
number of antennas are employed at BS, it is extremely difficult to estimate CSI at user
side [30] [45]. As such, the channel estimation is performed at BS through uplink training

4



under the assumption of time-division duplexing (TDD) in large-scale MU-MIMO systems.
In this thesis, we will focus on the study of EE techniques in both conventional and massive
MU-MIMO communication systems based on the imperfect CSI, which is a more practical

situation.

1.2.2 Power Allocation Based on Imperfect CSI

Generally speaking, there are two main energy efficient power allocation frameworks for
MIMO communication systems based on imperfect CSI: one aims to minimize the total
transmit power under certain constraints, i.e. QoS constraint, per-user power constraint, etc.;
the other is to maximize total EE defined as the spectral efficiency (sum-rate in bit/channel)
divided by the transmit power (in Joules/channel) [11] [46]-[48]. It is straightforward to
understand the first framework which is to use minimum power to satisfy the required system
performance. Typically, increasing the SE is associated with increasing the power and the
achievable transmission rate. On the contrary, the energy saving optimization aims to save
power in the whole system and sometimes decreases the system performance, such as spectral
efficiency (SE), signal to interference-plus-noise ratio (SINR), system reliability, etc. There is
a fundamental trade-off between the power consumption and the SE. The idea of the second
framework is to jointly optimize the power cost and the SE in one operating regime. Even
though the main goal is to save energy cost in MIMO communication systems, these two
frameworks are based on different purpose of system design. The first framework aims to
minimize power cost over a given system performance target while the second aims to find

a balance between spectral efficiency and power cost.



Under the first framework, the power allocation work in [49] aims to minimize the down-
link transmission energy of the time-division multiple-access (TDMA) MIMO systems while
meeting the individual users’ effective capacity constraints, which is defined as the maximum
achievable source rate under a given delay bound. The authors of [50] proposed a resource
allocation scheme to minimize the overall transmit power subject to given user target rates in
a downlink MIMO orthogonal frequency division multiplexing (OFDM) system. The authors
of [51] investigated the energy-efficient uplink power control in multi-cell massive MU-MIMO
systems with the linear minimum mean-square-error (MMSE) receiver based on the lower
bound of statistic uplink SINR. Paper [52] exploited the interdependency between pilot and
data transmission and achieved total power saving is achieved subject to the per-user SINR
constraint. The work in [53] considered a linear downlink transceiver design for the sum
power minimization problem with per-user rate constraints in a multi-cell MU-MIMO sys-
tem. The works in [54] and [55] aimed to minimize radiated power in MIMO systems under
sum rate constraint with channel correlation and partial CSI at the transmitter in consid-
eration. The work in [56] studied an optimization problem to minimize the overall energy
consumption while ensuring users’ QoS requirement by considering both perfect CSI and sta-

tistical CSI from users to the primary receiver in a single cell time-division multiple access

(TDMA) MIMO cognitive radio (CR) network.

Under the second energy-efficient optimization framework, the work in [57] discussed the
pilot-data power allocation to maximize the total EE for training-based single user MIMO
with and without feedback, by taking circuit power consumption into consideration. The
works in [58] studied the SE and EE optimal power allocation between reverse training,

6



forward training and data transmission in two-way training based multiple-input single-
output (MISO) systems. The work in [59] studies the energy-efficient downlink resource
allocation for frequency-division duplexing (FDD) MIMO system under a correlated Rayleigh
fading channel. The authors in [60] proposed a power control algorithm to maximize the
downlink energy efficiency by assuming equal data power allocation among all users. The
work in [61] addresses optimal energy-efficient design of uplink MU-MIMO in a single cell
environment with radio frequency (RF) transmission power and device electronic circuit
power considered. The works in [62]-[65] are essentially targeted to analyse the maximal
achievable EE in MIMO systems under the statistical QoS constraint. The authors in [66]
studied the transmit power control for multi-tier MIMO heterogeneous cellular networks
(HetNets), where each tier operates in closed-access policy and base stations (BSs) in each
tier are distributed as a stationary Poisson point process (PPP).

It should be noted that the schemes in [48]-[66], as mentioned above, considered the en-
ergy efficient power control for the uplink and downlink transmissions separately by ignoring
the relation between uplink and downlink transmit powers, which limit their use in practi-
cal MIMO systems. Moreover, some of these works on energy efficiency in MIMO systems
as described in [46]-[49], [54], [58] and [67] are based on the assumption that all users are
allocated the same pilot power or data power. Such equal power allocation strategies may

cause squaring effect in low power regime [67].

1.2.3 Power Control Schemes in Massive MIMO systems

Massive MIMO is a promising technique to increase the EE of cellular networks by deploying

antenna arrays with a very large number of active antennas at the BSs. This technique allows



for very efficient spatial multiplexing, and has a significant gain in reliability due to flattening
out unrelated noise, deep fades, hardening of the channel and array gain. In massive MIMO
systems, power control among users should be considered as a necessary and essential tool
to take full advantage of massive antenna arrays. However, since the design and analysis of
very large scale MIMO systems is a fairly new subject, limited research has been done on
the power allocation for massive MIMO, especially for multi-cell massive MIMO systems.
As mentioned in the previous subsection, the work in [48], [51] and [59] discussed the power
control schemes in massive MIMO systems by assuming no more than two hundreds of
antennas employed at BSs. In [68], a power control strategy among different users has been
proposed to maximize the SE in single-cell massive MIMO systems. In [69] and [70], power
control among different users is applied as an effective way to minimize the uplink power
consumption with maximum sum SE in multi-cell massive MIMO systems. It should be
noted that all the above power control algorithms only take into consideration the transmit
power consumption, and tend to achieve higher SE and better EE performance with more
BS antennas. However, in practical massive MIMO systems, since the effect of circuit power
consumption would be gradually aggravated by the number of BS antennas as the size of
hardware systems increases, it would bring nonnegligible negative impacts on massive MIMO
systems.

It is generally believed that circuit power consumption is fundamentally the limit in
massive MIMO systems in the high-power regime [71]-[72]. However, there are only a few
publications found so far discussed such behaviour in the large number of antenna regime.
In [73], the lower bounds on the achievable uplink sum rate in massive single-cell systems
with phase noise from free-running oscillators were derived. The authors in [74] used the

8



excess degrees of freedom offered by massive MIMO to optimize the downlink precoding
for low peak-to-average power ratio (PAPR), while the work in [75] designed a constant
envelope precoding scheme for very low PAPR. The authors in [71] analysed the capacity
and estimation accuracy of massive MIMO systems with non-ideal transceiver hardware
based on a new system model that considers the hardware impairment at each antenna by
an additive distortion noise proportional to the signal power at this antenna.

Note that the power control algorithms in [48], [51], [59], [69] and [70] only considered
the transmit power consumption while the work in [73]-[75] only considered the single type
of hardware impairments. In contrast to these power allocation works, by using the power
consumption model of different hardware impairments as discussed in [71]-[75] along with
large antenna arrays, we will investigate a more practical power control scheme in this thesis

that takes into account circuit power consumption.

1.3 Organization and Contributions

The organization of the thesis along with the main contributions of each chapter is presented
as follows.

Chapter 2 describes the system model, including the time-division duplex (TDD) multi-
cell MU-MIMO channel model, minimum mean square error (MMSE) channel estimation as
well as the uplink and downlink SINRs. Both small-scale fading and large-scale fading in the
proposed TDD multi-cell MU-MIMO system, which incorporate path-loss and shadowing
effect, are also considered in the channel model.

In chapter 3, two optimization frameworks are established to meet the goal of this thesis:

to develop energy efficient algorithms for pilot and data power allocation in the proposed



TDD multi-cell MU-MIMO system. As the original optimization problems using true SINR,
expressions are very difficult to solve, we investigate the average SINR lower bounds in order
to simplify the power allocation optimization problems. In particular, close-form average
SINR lower bounds are derived under MMSE channel estimation for both uplink and down-
link transmissions of MU-MIMO systems, by considering the conventional linear maximum-
ratio combining (MRC) and zero-forcing (ZF) detectors in the uplink and the maximum-ratio
transmission (MRT) and ZF precoder in the downlink. These lower bounds of the per-user
average SINR will be used to replace the true SINR in the optimization frameworks to fa-
cilitate the solution in later chapters. Such relaxation of the original average SINR yields a
simplified problem and leads to a suboptimal solution.

In chapter 4, based on the first EE power allocation framework, two schemes for power
control between pilot and data symbols in the TDD multi-cell MU-MIMO system are de-
veloped to minimize the total weighted uplink and downlink transmit power while meeting
the per-user SINR and BS power constraints. In order to simplify the power allocation op-
timization problem, the derived lower bounds of the per-user average SINR in chapter 2 are
used to establish the SINR QoS constraints for the proposed problem. Then, the non-convex
optimization problems are converted to a standard geometric programming (GP) problem
to facilitate their solution. The performance of the power control algorithms in massive
MU-MIMO situation with infinite number of antennas employed at BS is also discussed.
Numerical simulation results have confirmed the tightness of the derived per-user average
SINR lower bounds and the advantage of the proposed power allocation schemes.

Chapter 5 proposes and investigates two pilot and data power control schemes based
on the second EE power allocation framework to jointly maximize the total EE for both

10



uplink and downlink transmissions under per-user and BS power constraints for multi-cell
TDD MU-MIMO systems. The non-convex problems formulated with the derived SINR
lower bounds are simplified to equivalent convex problems based on Dinkelbach’s method
and FrankWolfe (FW) iteration. Simulation results and discussions are given to validate our
proposed schemes, including the tightness analysis of the derived SINR lower bounds, the
total transmit power and EE for large-scale MU-MIMO, and the comparison of our proposed
power allocation schemes with the existing SE maximization scheme.

Chapter 6 addresses the energy efficient power allocation issue in single-cell TDD massive
MU-MIMO communication systems for both uplink and downlink transmission with circuit
power consumption taken into account. Firstly based on the discussion in chapters 2 and
3, we modify the system model and SINR lower bounds from multi-cell to single-cell MU-
MIMO, and accommodate the model of circuit power consumption for the new optimization
problem. Then, pilot and data power allocation schemes are proposed to minimize the total
weighted uplink and downlink transmit power while meeting the per-user SINR and BS
power consumption constraints with circuit power in consideration. In our proposed power
control schemes, both fixed and variable numbers of BS antennas are investigated. For the
fixed number of BS antennas case, the non-convex optimization problems are converted to
a general GP problem to facilitate their solution. For the variable number of BS antennas
case, we present an iterative algorithm to solve the optimization problem. Simulation results
are provided to demonstrate the effectiveness of the proposed methods.

Chapter 7 gives a summary of the thesis work and provides suggestions for future inves-

tigation.
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Chapter 2

Multi-Cell MU-MIMO Systems with Channel Estimation

2.1 Introduction

Currently, we are in the era of 4G and 4.5G networks, which are referred to as Long Term
Evolution (LTE). MIMO technology has been under active research over the last decade
and been considered in 3GPP standard for LTE and LTE-Advanced networks. In the near
future, we expect an explosive increase in the number of connected devices, such as smart
phones, tablets, sensors, connected vehicles and so on, leading to the 5th-generation (5G)
communication. Massive MIMO is considered as one of the enabling and promising tech-
nologies for 5G wireless communications and has already attracted considerable interest in

communication and signal processing fields.

The availability of accurate CSI at transmitter and/or receiver is vital to achieve the
desired performance in almost all communication scenarios. Acquiring accurate CSI is very
important in both conventional and massive MU-MIMO systems because the performance
of several BS operations, such as linear detection on the uplink and linear precoding on the
downlink, is subject to the availability of accurate CSI at the BS. The ideal situation is
that the perfect CSI is available at BS. As discussed in [11], with perfect CSI, “favourable
propagation” can be achieved in massive MU-MIMO systems where the wireless channels
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become near-deterministic because the channel vectors between BS and users become near-
orthogonal to each other. This is because the effects of small-scale fading tend to disappear
when the number of antennas at the BS increases unboundedly. However, from the practical
point of view, having access to perfect CSI is not possible since this compromises the intrinsic
capabilities of communication systems. Therefore, it is essential to estimate and evaluate
the CSI in MIMO systems.

Generally speaking, there are three kinds of channel estimation approaches in MIMO
channel estimation. The first one is called the training-based channel estimation methods
which employ known pilot signals to render an accurate channel estimation [76])-[78], such
as the least squares (LS), maximum likelihood (ML) and MMSE algorithms. The second
one is blind channel estimation algorithms which exploit the second-order cyclo-stationary
statistics, correlative coding and other properties [79]-[82]. Thirdly, by combining the idea
of both the training-based and blind methods, with a small number of training symbols,
semi-blind channel estimation problems based on the second-order statistics of a long vector
can be solved [82]-[86]. Among these three channel estimation methods, the most popular
one is training-based channel estimation which always requires less complicated processing
circuits.

Moreover, in conventional MIMO systems, a duplex communication link can either be
established under TDD or FDD. In TDD, there is one frequency band for both uplink
and downlink transmission. And in FDD operation mode, two frequency bands are used,
one for the uplink and one for the downlink. In general, the number of licenses for the
FDD mode is much more than that for TDD, since when compared to TDD systems, FDD
operating systems facilitate better hardware re-use, easier software upgrades, and a smoother
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transition. However, most research works on massive MIMO have focused on the TDD mode
of operation. This is because, in the FDD mode, the uplink and downlink channels use
different frequency bands and are not reciprocal, and thus the CSI corresponding to the
uplink and downlink is different. The uplink channel estimation is done at the BS with the
uplink pilot sequences sent by users. The time required for uplink pilots is independent of the
number of BS antennas. However, to get downlink CSI under FDD protocol, the BS needs
to transmit pilot symbols to all users. The number of required downlink pilot symbols is
proportional to the number of BS antennas. As the number of BS antennas grows very large
for massive MIMO, the traditional downlink channel estimation strategy for FDD systems
becomes infeasible [10]. On the other hand, in TDD systems based on the assumption of
channel reciprocity, only the CSI for the uplink needs to be estimated, avoiding the channel
estimation at mobile users for the downlink. Therefore, TDD mode is more efficient and
realistic, and is widely utilized in massive MIMO systems.

In this chapter, we explain the structure of a multi-cell MU-MIMO communication sys-
tem. First, we briefly address the channel model and the frame structure of TDD operation
mode. Then, we present the training-based MMSE channel estimation method. Finally, we

derive the uplink and downlink SINRs.

2.2 Channel Model

We consider a TDD multi-cell MU-MIMO system with L cells as shown in Fig. 2.1, in which
each cell has one BS equipped with M antennas serving K (K <M ) single-antenna mobile
users and all cells share the same frequency band. When M comes to a large value, say a
hundred or a few hundreds, we call this system a large-scale MU-MIMO system.
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Figure 2.1: Structure of a multi-cell MU-MIMO system

The signal received at the [-th BS can be represented by an M x 1 vector as given below

L
Y=Y GuP/’si+m, (I=12,..1L) (2.1)

=1

where the m-th element of y; represents the signal received by the m-th antenna of the BS,
(m = 1,2,..., M), the K x 1 vector s; represents the data symbols transmitted by the K
users in cell 4, and the M x 1 vector n; denotes the additive independent and identically
distributed (i.i.d.) white complex Gaussian noise with zero-mean and unit variance. The
M x K matrix G; denotes the channel matrix between the K users in cell ¢ and the BS in cell
[, and the diagonal matrix Py; = diag{[pai1,Pdi2;-- - Paix]} represents the transmit data
power of each user in the i-th cell. By assuming flat fading channel, G;; can be represented

as

G, = H,;D,/* (2.2)

where Hj; denotes the M x K fast fading channel matrix from the K users in cell ¢ to the BS
in cell [ whose elements are i.i.d. complex Gaussian RVs with zero-mean and unit variance.
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The diagonal matrix Dlli/ 2 = diag{ [P, Buiz, - - -, Buirc] } denotes the large-scale channel fading
coefficients which incorporate the path-loss and shadowing effect and are assumed to be

constant and known as a priori.

We assume a block fading structure where the channel gains remain constant in each
coherence time period. In pilot-assisted channel estimation as discussed in [10], [67] and
[73], when large antenna arrays are employed at BS, it is difficult to estimate the downlink
CSI at users, since in this case the number of pilot symbols must be larger than or equal to
the number of BS antennas. On the contrary, the uplink CSI is easier to estimate at BS as
the number of uplink pilot symbols depends on the number of active users rather than the
number of BS antennas. Under the assumption of ideal channel reciprocity, however, we can
estimate the uplink CSI at BS and then use such estimated uplink CSI for both uplink and

downlink data transmission.

Based on the discussion above, we assume that the multi-cell MU-MIMO system, all
users and BSs in all cells synchronously transmit and receive data by following the TDD
block fading structure as in Fig. 2.2. Namely, in the first 7 (7 > K) slots of a coherent
time interval, all users from all cells synchronously transmit uplink pilot signal to all BSs
for CSI estimation. Based on the assumption of channel reciprocity, such estimated uplink
CSI can be used to detect the uplink data and generate pre-coding matrix for downlink data
transmission. After the transmission of training sequences, 77 symbols are used for uplink
data transmission followed by 75 symbols for downlink data transmission. Note that the
silent slots used for BS processing as discussed in [10] [73] are not included in Fig. 2.2.
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Coherent Period

Uplink Uplink Data ) ..
p. P .. Downlink Data Transmission
Pilot Transmission
T Symbols T, Symbols T, Symbols
M antennas

Base station

Figure 2.2: Frame structure of TDD system, where the BS acquires CSI via uplink training
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2.3 Channel Estimation

By using the MMSE channel estimation during the training phase as discussed in [87], we
have

L
Y, =Y GuP,’®+ N, (2.3)
i=1

where Y,; denotes the M x 7 received pilot signal matrix at the [-th BS and IV; is an
M x 7 complex noise matrix whose entries are i.i.d. Gaussian RVs with zero-mean and unit
variance. The diagonal matrix P,; = diag{[Tpp.i1, TDpi2, - - -, TDpix|} denotes the pilot power
of the K users in cell . We assume that the same set of pilots is used by different cells and
the pilots satisfy the orthogonality, i.e., ®7® = I. Then, the estimated channel matrix
can be expressed as

L
Gy =Y, ®"(Ix +Y_ D;P,;)"' Dy P, (2.4)

j=1
Since the same set of pilots is reused among different cells, the CSI estimated at BS is

simply a scaled version of the same term which can be expressed as

L
Y, @' (Ix + Y D,P,;) ™" (2.5)

J=1

The detailed discussion with respect to the pilot contamination can be found in [51]. Then,

from (2.5) we have the relation below

.  DyPJ? .
i = — 1729
D,;P/?

p7j

(2.6)

Similar to the single-cell MU-MINO situation [88] [89], the estimation error matrix can
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be defined as AG,; = Gj; — éli. From the properties of MMSE channel estimation [69]

[77], G’li and AGy; have i.i.d. Gaussian RVs with zero mean. Let M x 1 vectors g, and

Agpir denote the k-th column of matrix G’li and AG/y; respectively. The elements of gy

are independent of that of Agy, and the variance of the elements of g, and Agy, can be

expressed as follows
2
2 A T Pp,ik ik

Olik. = 17
L+ > opjrBije
j=1

L
Bk (L + > op e Bijk)
2 A J#i

= L
L4+ > mppikBijk
j=1

Clik =

From (2.7) and (2.8), we have the following relations,

1/2
~ /Blik'pp,ik A Ok A
Giik = 5 Juk = giik
o
UkPp 1k Ik
1/2
. BuakPpak . O
ik = 15 Giik = — Giik
iikDp. ik Tiik

(2.7)

(2.8)

(2.10)

Based on the MMSE channel estimation results, in the next section, we will present a

discussion on the linear multi-user detectors and precoders for MU-MIMO systems, namely

MRC and ZF detectors, and MRT and ZF precoders. We will also derive the SINR expression

of these linear detectors and precoders.
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2.4 Uplink Data Transmission

After applying the M x K receive beamforming matrix W;, the data or user signal received

at BS [ can be represented by the following M x 1 vector,
L
ro= Wiy = WS GuP)’s, + Win, (2.11)
i=1

where K x I vector s; denotes the data symbols transmitted by the K users in cell s and M x 1
vector n; represents the white complex Gaussian noise with zero-mean and unit variance.
Let r and s denote the k-th element of the M x 1 vector r; and that of s;, respectively.

The uplink received signal associated to the k-th user at BS [ can be expressed as

K
o~ H . 1/2 Afa ~H 1/2
Tik = WY1 = Py i Wik GukSik + Wy, Z Pq1x911kS1xk

Rk (2.12)
. o & 12 e A pl)2
+win; — Wi > AG; Py st Y GLPyls;
i=1 i#l

where Wy, denotes the k-th column of matrix Wj. From (2.12), it can be seen that the first
term represents the desired signal and the second term is the intra-cell interference. The
third term means the white Gaussian noise which is independent of any transmit signal. The
fourth term can be considered as the additive noise caused by channel estimation error and

the last term represents the inter-cell interference.

When linear multi-user detection techniques are used, the BS multiplies the received
signal with a linear detection matrix so as to decode the data streams transmitted by the K
users on the uplink. By employing the MRC receiver at BS with detection matrix W, = Gu,
we have wf! = gf}.. From (2.12), the received SINR of user k in cell [, which is defined as the
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power ratio of the desired signal to the sum of noise, intra-cell and inter-cell interferences,

can be derived as given by (2.13).

hiRe =
Dq, lng”kH 12 Py lnlgllkglln‘ + HgllkH + Z Z Y2y m‘gllkAglm‘ (213)
k=1,k# =1 =1
: 2 P 451 kPp ik
+ Z Z puzn‘gllkg”/{| lﬁlnppui Z puzngllk” /31 ppl )
i=1,i#l k=1,k#k i=1,i#l 1kPp,ik

When ZF receiver is used at BS with receiving matrix W, = Gy (GHGy) ™' [11], we have
Wil gue = 1 and wjlgy. = 0 (k # k). Then, the received uplink SINR of user k can be

obtained by using (2.12), as given by

Po ik

T = . K 82 ) <214)
> 3 Puil i Al + Z pusz [l
1=1 k=1 ’ i=1,i# ”kp itk

2.5 Downlink Data Transmission

When linear multi-user precoding techniques are used, the BS multiplies the transmit signal
with a linear precoding matrix to precode the data streams on the downlink. Based on the
assumption of channel reciprocity as discussed in section 2.2, the estimated uplink CSI is
used to generate the precoding matrix for downlink data transmission.

When a normalized precoding vector ay/||a|| is employed at BS, the signal received at

the k-th user 7y, in cell [ can be expressed as

K L K

- 1/2 g au 1/2 g, ai. 1/2 Aghai. 1/2 g% a;x

Ttk = Paik Jjag Sk + ;kpd,m am] Stk +1n — Z Z Pdix Tas]] + ; led,m lail (2'15)
K k2 R=

i=1 k=
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where pg represents the downlink data power for the k-th user in cell | and §;; denotes
the data signal of user k in cell /. Similar to the uplink transmission, only the first term in
(2.15) is the desired signal, and other four terms represent the intra-cell interference, white

Gaussian noise, channel estimation error and inter-cell interference, respectively.

When MRT precoder is employed at BS, we have vy, = gur (or vy = Giix) [11]. The

received SINR of user k in cell [ can then be obtained as

A~ 2
AMRT _ Da ik [t
" x | |Agzlkgzm ’ ukgzm ﬁllkpp Ik
Z +Zzpdm o +ZZ dm A 2 32 p +1
k=1,k7#k || i=1 k=1 | ik i#£l k= ik | iikp,ik
(2.16)

When ZF precoder [10] is used at BS with precoding matrix A, = Gu(GHGy)™", we
have gupall = 1 and gyrall = 0 (k # ). Then, by using (2.15), the downlink SINR of user

k can be obtained as

Pa ik
~ZF __ ||alk”2
Nk = T &k X (2.17)
E Z P ‘ gzmam| + Z 1 Pg zkﬂilkpp L
dik a2 12
i=1 k=1 ‘a H i=1,i£l ”azk” ﬁukppzk

It is obvious that the SINRs of these precoders and detectors are very complicated. In
the next chapter, we will derive their lower bounds to be used in the development of power
allocation algorithms.
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2.6 Conclusion

At the beginning of this chapter, we presented a brief introduction about conventional MU-
MIMO and large-scale MU-MIMO systems and discussed different channel estimation meth-
ods. Then, we introduced multi-cell MU-MIMO model including TDD operating mode frame
structure and MMSE channel estimation with pilot contamination. In the proposed TDD
multi-cell MU-MIMO system, both small-scale fading and large-scale fading, which incorpo-
rate path-loss and shadowing effect, were considered in the channel model. Finally, based
on the assumption of channel reciprocity, the uplink and downlink data transmission and
SINRs were discussed by considering the conventional linear MRC and ZF detectors in the

uplink and the MRT and ZF precoder in the downlink.
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Chapter 3

Lower Bounds of SINR

3.1 Introduction

The increasing popularity of mobile devices and the success of wireless communication net-
working over the past few decades have brought an exponential growth of data traffic. The
ubiquity of energy-consuming wireless applications has raised a serious energy efficiency
concern, which triggered an immense interest in the development of energy-efficient and
eco-friendly wireless communication technology. For this reason, future 5G communication
networks are required to provide both high data rate and low power consumption services[90]-
[92], necessitating the design of green communication systems with energy efficiency as a
primary goal.

Green communication aims to find innovative solutions to improve EE, and to relieve /reduce
the energy consumption and carbon footprint of wireless industry, while maintaining/improving
system performance and/or users’ quality of service. Power allocation focused on suppressing
the interferences, improving the quality of the signal reception and increasing the coverage
and/or capacity of overall network, is one main topic of green communication. Generally
speaking, there are two frameworks of power allocation in conventional MIMO systems to
improve the EE. The first framework aims to minimize the total transmit power under cer-
tain constraints, such as QoS requirement and per-user power constraint. In other words,
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this framework aims to transmit minimum power to satisfy the desired system performance.
The second framework is to maximize the total EE which is defined as the spectral efficiency
(sum-rate in bit/channel) divided by the transmit power (in Joules/channel) under certain
power constraints. Typically, increasing SE is associated with increasing the power and the
achievable transmission rate. On the contrary, the energy saving optimization aims to save
power in the whole system and sometimes decreases the system performance, such as SE,
SINR, system reliability, etc. Hence, there is a fundamental trade-off between the power
consumption and the SE. The idea of the second framework is to jointly optimize the power
cost and SE in one operating regime.

The objective of this thesis is to develop energy efficient power control methods for both
conventional and massive MU-MIMO systems by following the two frameworks mentioned
above. Under the first framework, we would like to formulate an optimization problem
to minimize the total transmit power while satisfying the per-user SINR requirements and
power consumption constraints [93] [94]. In the second framework, an optimization problem
is established such that the total EE for the whole system, which is again closely related
to the uplink and downlink SINRs, will be maximized under transmit power constraints
[94]. Considering that a direct use of the uplink and downlink SINR expression, as derived
in the previous chapter, in the minimization/maximization problem would lead to a very
complicated optimization problem which is extremely difficult to solve. So in this chapter,
we will derive the lower bounds of the per-user average SINR for the proposed TDD multi-
cell MU-MIMO systems. We will then apply the derived lower bounds in our optimal power
allocation problems to facilitate their solution. In the derivation of the average SINR lower
bounds, we consider both the conventional linear MRC and ZF detectors for the uplink
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together with MRT and ZF precoder for the downlink as employed in our proposed multi-

cell MU-MIMO model.

3.2 Lower Bounds of Uplink Average SINR

Based on the derived uplink and downlink SINR expressions in Section 2.3 and 2.4, the lower
bounds of the statistic SINRs of MRC and ZF detectors for uplink are derived in this section
and MRT and ZF precoder for downlink are derived in the next section.

Proposition 1: When the MRC receiver is employed at BS, the lower bound of the average

uplink SINR of the k-th user under MMSE channel estimation can be expressed as

MRC\u;
E{ylFCY >, T

A - (3.1)
= I K L K p . B2 p L 82 p
1 (inPlirPp, 1ikPp,ik
M—1e2, (X Pyl 1+ 3 Py inciint 2 “;’5 ;H PO )T 2D Dy 521 ppz
Uk kr=1,k#k i=1k=1 iZ£l k=1,k#k UkTp,lk 1=1,1#1 Uk p,lk
Proof: From (2.13), we have
MRC
E{%k }
_ Pu ik
N E{ K |§lIl{k§lln|2 1 L K |§ﬁkﬁgzm|2 L K Py inBlinPp.in |§fllk§”ﬁ|2 }
> Puik s a — o+ X Py T 2 > 5 : — 7 +C1
r=1,k#£k 180l lgurll® =1a=1 = i=1,i#l k=1,k#k ’Bllnpp,lx =
(3.2)
Here
b
L 2
A 5likpp,ik

i=1,i#l 512“61)1)%
From the Jensen’s inequality [95], we know that if f(z) is a convex function, and E[f(z)]

and f(E[x]) are finite, we can write the above inequality as E[f(x)] > f(E|z]). So based on
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the fact that the function 1/x is convex when x is positive, we have E[1/f(x)] > 1/E|[f(x)].

Then, we obtain

B
> 2 Dot 2 2
- K EfiRm L K o/t Aaui | L K Dy inBePyin |98h00n]
E ik + ) ik 4 u,ik"lik " pik |Zllk 1C
{nzli,;e#kpu’m B ngzkll ; X:: Pusin TR 1:12,:#1 5:12,;"7&1@ B P in llgr|* 2
(3.4)
For the denominator of (3.4), it is easy to have
Denominator of (3.4)
_ z p {‘g”kglln| } + E{ } + Z Z p {|gllkAglzn|2 (3 5)
Ttk “l“ el ||gl l b wins gl :
L K H
VB § et o
i=Litl k=Lrk elpis Gtk

Since the elements of vectors gy. and Agy,. consist of i.i.d. zero-mean Gaussian RVs,

these two vectors are rotationally invariant and spherically symmetric. Then, from the

glIiIk;Aglin
lGua

property of rotational invariance [96, chapter 4], both 91119 ””” and

o are independent of

|gur|| when k # k, thus the denominator of (3.4) can be rewritten as

Denominator of (3.4)

JiuIr ath A’
{HgllkHz}( Z pul/f {| B ”H2| }+1+Z Zpuu-i {l k=

2
llgu b lgu |l

} (3.6)

+ Z Z pu,i;ﬁlinpp,in E{ |gllfcgll"‘2| }) + Cl

Ey G BiinPp i lGuik

9/ 911 and
HQ kll

From the property of spherically symmetric distribution [96], we know that %

gﬁlk Aglir@

: in (3.6) are Gaussian RVs with zero-mean and variance o3, and €3, respectively.
llGur llk lik>
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So we have

gllkgzm
FE . 3.7
Hgll H } ll ( )
and
AHA )
o (35)
||QukH

Substituting (3.7) and (3.8) into (3.6), we obtain

Denominator of (3.4)

Dy, iHBQinp LK
= E{m}( Z Py, ll{o—lll{ +1+ E Z Dy, mslm + Z E ’Ql—po—lzln) (39)

k=1,k#k i=1 k= 12l k=1,k#k PP,

L 2
BiikPp,i
435, g e
i7

k
o BitkPp, ik

The term B ”2 in (3.9) can be treated as a 1 x 1 central complex Wishart matrix with

M degrees of freedom. From the property of central Wishart matrix [97], we get

Bl = 45| () ]

= A B{tr { {(%)Hﬁl _1}} (3.10)

1
(Mfl)aflk

Substituting (3.10) into (3.9) and (3.4), we obtain the result in (3.1).

Proposition 2: When the ZF receiver is employed at BS, the lower bound of the uplink
average SINR of user £ under MMSE channel estimation can be expressed as
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E{yEF} > A
(3.11)

A P ik

I K L
L (X Y Pyl X Dy B
(M—K)of, /=4 2y winlin it B i

2
BlinPp,ik

Proof: Similar to the proof of Proposition 1, by using (2.14) and the property E[1/f(x)] >
1/E[f(x)] when f(x) > 0, the lower bound of the average SINR of the user k in cell [ can

be obtained as

E{vi"} = B{ mudk > }
ZL: §: Puyix 'Lbf,gAsz|2+_ ZL: Poik 'Zl;kpp’ik ﬁ’l}IgHQ
i=1 k=1 i=1,i#l 11kPp,lk
> mult 3.12
{é:l i::lpuzx wlkAgh“ + E pusziZkM ﬁ)lHkHQ} ( )
— Py lk
L K
;1 ﬁzz:lpu an{|wlkyAgllN| }+ Z pu i lezkpp :k ||2}
Since Wy, is independent of Agy;,., we obtain
A ~ 12 H 2
E{ | Aguin || e (3.13)
Substituting (3.13) into (3.12), we obtain
ZF Du,ik
E{vi"} = L E - P (3.14)
~ ikPpi
E{lellg” }(Z Zpumglm ) + Z pu,ikﬁgkpp’k
1=1 k=1 i=1,i%l kY p,lk

As the matrix G’li consists of i.i.d Gaussian RVs with the same variance for each column
elements, it can be written as
Gi=AMA,Z (3.15)
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Here, matrix Z has the same size as Gy;, whose elements are i.i.d. Gaussian RVs with

zero-mean and unit variance, and the K x K diagonal matrix A; is defined as

Al édzag (0”1,0”2,...,0'”]() (316)

Based on the property of central Wishart matrix [97], we have

E{||wi||*} = B{W Wik, = E{[(GH Gu) s}
=E{[(A)H(Z"Z) 7 (A) e} = - B{(Z2"72) ) (3.17)

= wor E{tr((272)71]} = m

Substituting (3.17) into (3.14), we get the lower bound of the uplink average SINR for ZF

receiver as in (3.11).

3.3 Lower Bounds of Downlink Average SINR

In the previous section, we have derived statistic SINR lower bounds for MRC and ZF
receiver. In this section, the lower bounds of average SINR for MRT and ZF precoder are

discussed.

Proposition 3: The lower bound of the downlink average SINR of user k in cell [ when

MRT precoder is employed at BS can be expressed as

E{’}/ RT} > FyMRTdn é

(3.18)

pd lk(M Dogy,

(M— 1)a”k K 2 Bllk:pp Lk
M Z pd ln+z Z pd ik zlk+z Z pd ik zzkﬁ2 +1
r=1,k#k iikP p,ik
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Proof: Similar to the proof of Proposition 1, by using (2.16) and the property E[1/f(z)] >
1/E[f(z)] when f(z) > 0, the lower bound of the average SINR of the user % in cell I can

be obtained as

BRTY =
EX{ : Dis ; }
LS ‘gllkgllr@’ L K ‘ gzlkgnn’ L LS ‘gukgnn| B?lkp Lk 1
e I [P = Pl P PO R o O PN T P
p
z Denominaollfél; of (3.19)
(3.19)
where
Denominator of (3.19)
A
— Z pdln |911k9un| ||2}+Z Zpdm | gzlkglm 2}
k=1,k#£k 9k i=1 k= Giin
325 g, B ' Q}WM ) (320
i;ém ’ I uk” [Fm| kP
Agll 8y ’
>y il 9”~|, o BN 5 (il
k=1,k#k ||9ukH i=1 k= Yiir
L X |§-- g, p
+ ) E iitkJdiik zlk p,lk
%;pd,m { ”gim| }Bukppzk )
Similar to the discussion for proposition 1, we have
2g/a,,
p=nly - 2, (3:21)
G
and
959", _
E{="—5-} = 0i (3.22)

Moreover, the elements of “?”*‘H are uncorrelated and dependent RVs following a unit
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ik

spherical distribution with zero mean and variance 1/M, so vector £
Jir

is spherical sym-

metric. Furthermore, the two vectors ” H and gy are independent when x # k. Thus from
lln

glln

the property of spherical symmetry [96], g”k follows a unit spherical distribution with
property p y y I

zero mean and variance 1/M. Therefore, we have

2

glI;Ik‘ gllﬁ (323)

Substituting (3.21), (3.22) and (3.23) into the last equation of (3.20) and then using

(3.20) to (3.19), we get

E{3y ™} >
(3.24)

Paik

d ik 7,lk+ {

i f +E{—1—
Mt H-"llk”

B3Py, ik 1
2}2 Zpdm ?Zkﬁz P2+ B 7}
”guk |7 7= pas [law

HMN

L
15

Finally, substituting (3.10) into (3.24), we get the lower bound of the uplink average

SINR for ZF receiver as in (3.18).

Proposition 4: The lower bound of the downlink average SINR of user % in cell | when

ZF precoder is employed at BS can be expressed as

n A
E{3/7} >y 2 : oLl ; (3.25)

L py . Bop

> Z d,ik"ilkPp,lk
(M— 11() ( Dgir€ zlk+1)+ Z 22 L
"llk i=1r=1 i=1,il 1ikPp,ik

Proof: By a similar method, we can obtain the lower bound of the average SINR of the
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user k£ in cell [ as

Pd,ik
~ZF\ _ llauell”
B = Bl )
il Yin 1 PdikPikPpik
3 X Pagn ozt 2 ’ —+1
S0P lawll? st leal® SRy
Pdik
> L (3.26)
LK ||alkH2|A§ﬁIk“m L a P ik iikPp.ik 2 '
> 5 py mee 0]y e gyl y P a o g,y
i=1 k=1 [lagql i=1,i#l llasell iikPp,ik
_ Paik
T L K L p, . B2 p
> 3 paacctn Ellanl®y+ > R lag?)
; , e B
i=1 k=1 i=1,i#£l iikP p,ik

Here, the two vectors Ag;;, and “‘””H are independent of each other, since A; only depends
on Gy. Thus, the last equation in (3.26) can be obtained from the property of spherical

symmetry.

On the other hand, as A; = W, we have

By = i) = =g (3.27)

Substituting (3.27) into the last equation of (3.26), we get the final lower bound expression

of the average downlink SINR with ZF precoder.

3.4 Conclusion

In this chapter, based on the uplink and downlink average SINRs obtained in chapter 2, we
have derived closed-form expressions of the average SINR lower bounds in multi-cell MU-
MIMO systems by considering the conventional linear MRC and ZF detectors in the uplink
and the MRT and ZF precoder in the downlink. The Jensen’s inequality and the properties
of central Wishart matrix were used to find the lower bounds of the derived average SINRs.
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These lower bounds will be used to replace the true SINR in the energy efficient power
allocation optimization problems for TDD MU-MIMO systems in later chapters. As seen
from the simulation results of the average SINR lower bounds in the next chapter, the derived
SINR lower bounds are very tight, namely, they approach closely the original SINRs yet lead

to simplified optimization problems.
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Chapter 4

Joint Pilot-Data Power Allocation Based on Total Transmit

Power Minimization

4.1 Introduction

In recent years, energy consumption has become a primary concern in the design and oper-
ation of MIMO communication systems. Due to economic, operational and environmental
reasons, energy efficiency (EE) has been regarded as a new performance metric in the design
of 5G wireless networks. One of the most useful approaches for increasing the EE of wireless
communication systems is energy efficient power allocation. As discussed in the previous
chapters, there are two main energy efficient power control frameworks for MIMO systems,
namely, the total transmit power minimization and the EE maximization. In this chapter,
we investigate the power control methods in multi-cell MU-MIMO systems based on the first

framework.

In the previous power control works such as [11], [57], [58], all users are assumed to
have the same pilot power and/or data power. Such equal power allocation strategies may
cause squaring effect in low power regime [11] [67], leading to a severe reduction in the
system’s SE. Moreover, since the users are randomly located in each cell of an MU-MIMO
system, the power loss of the received uplink and downlink signals depends on the distance
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between the users and BS, which is translated to the large-scale channel fading coefficient.
The assumption of equal power allocation among all users is far from accurate and may
cause waste of energy. In other words, to keep the same QoS requirement, more power is
needed for the users far from BS (with larger large-scale channel fading coefficient), while
less power should be allocated for the users close to BS (with lower large-scale channel
fading coefficient). Furthermore, most of the previous works, i.e., [48]-[66], considered the
EE power control for the uplink and downlink transmissions separately, which limit their
use in practical MIMO systems.

On contrary to most previous works, in this chapter we consider a more practical sce-
nario, where the transmit power of pilot or data symbols for different users can be different.
Also, based on the MMSE channel estimation, we address the joint pilot-data power control
problem for both uplink and downlink transmissions in one optimization problem, so as to
achieve a minimum sum power under both per-user SINR and per-user power budget con-
straints in multi-cell MU-MIMO systems. Besides the joint pilot and data power allocation
for conventional MU-MIMO systems, we will then extend our work to massive MU-MIMO
case by assuming infinite antennas at BS. The proposed schemes for both conventional and
massive MU-MIMO systems take into account the MRC and ZF detectors in the uplink
transmission together with MRT and ZF precoder in the downlink transmission. In order to
simplify the original optimization problems, the SINR lower bounds derived in the previous
chapter are used in the power allocation algorithms instead of the true SINR expressions.
Note that such relaxation of the original SINR yields a simplified problem and leads to a
suboptimal solution. Finally, numerical results are presented to validate the tightness of
the derived SINR lower bounds and the advantages of the proposed energy efficient power
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allocation schemes.

4.2 Total Transmit Power Minimization with MRC Receiver and MRT

Precoder

Consider the combined use of MRC receiver and MRT precoder in each BS in the multi-cell

MU-MIMO system. Let P, be the total transmit power for one transmission frame. By

defining
A
Dy = [pp,llapp,127 <oy Pp1Ks- -3 Pp, L1, Pp,L2y- - - J%,LK]; (4-1)
A
DPd = [Pui1s Pui2s -« Pulks -« s PuLls PuL2s - - - s Pu LK (4.2)
and
- A
Dd = [Pd11,Pd12s - - Pd1K s - - - s PdL1s Dd, L2, - - - s Dd, LK) s (4.3)

the power control problem which minimizes the total transmit power while meeting the per-
user SINR and power constraints, as specified by the derived average SINR lower bounds for

both MRC receiver and MRT precoder, can be formulated as

i P 2 52 5% (5,7 + T+ Gy T2) (4.4a)
st O1:AMRC > 4, (4.4D)
C2: T > g (4.4¢)

C3: p, 7+ punTi < Pr (4.44)
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K
C4: ) puds < P (4.4e)

k=1
5 - Ppik > O7pu,lk: > Oapd,lk >0 (4.4f)

Here, the objective function is the weighted sum of pilot, uplink data and downlink data
powers. The first and second constraints represent the uplink and downlink per-user SINR
constraints v, and 79, respectively. The third and fourth constraints are the power constraint

at each user and that at the [-th BS which are given by P, and P, respectively.

The above optimization problem is very difficult to solve directly, because its first and
second constraints are nonconvex. Based on the fact that o7, +e7,=5,,, by substituting
(2.7), (2.8) and (3.1) into (4.4b) and carrying out some derivations, we can rewrite the first

constraint C1 as

06 : _ : 2 ( Z pu lnﬁlln + 1 + Z TpPJkﬁle

(M 1)Tpuylkpp,lk6”k e 1fi7£k
K

L
+ Z pu,mﬁlin + E Tpp,jkﬁljk Z pu,lnﬁllﬁ
1,i#l k=1,k#k j k=1,k#k (45)

+ Z TPp, ]kﬁl]k Z Z Py mﬁlm—i_ Z Py, zkﬁllk

i= 11#[/@ 1,k#k

ﬁl'kp ikPp.ik 1
T E :pu zkﬁlzk E : pp]kﬁl]k) E : 52 pul ppl S "
G=T1,j#i i= 1, kP Pyl

where the left side of the inequality is posynomial. Similarly, by using (2.7), (2.8) and (3.13)
into (4.4c) and conducting some derivations, the second constraint C2 becomes

38



K K
. (M-1) 1
or: Mpg, ik n:%;ék Pa i + PPk Bk (ﬁ”k Kz::lpd’l“
K L L K
+7 B D Pqix pr,jkﬂljk +> 20 pd,mﬁilk +1 (4.6)
k=1 J#l 1#l k=1

L L K L
+T 2 Pp,jkBijk ; > PaeBan + 7 2 PpjwBigr) < B

Then, we can rewrite the minimization problem as

min~ -Ptotal
PpP Py (4.7)

st. (C3,04,05,C6,C7

Now, since the objective function and constraints of (4.7) are all posynomials [98] [99]
where all the coordinates and coefficients are positive real numbers and the exponents are
real numbers, the optimization problem in (4.7) is a standard geometric programming (GP)
problem [98]-[100]. It is known that such a GP problem can be solved by using some standard
numerical optimization packages, for example, MOSEK [101], TOMLAB [102], YALMIP
[103], GPCVX [104] and ConVeX (CVX) [105]. By using these standard packages, we can
obtain a globally optimal solution. In our simulation, CVX package is employed to solve the

proposed pilot-data power control optimization problems.

4.3 Total Transmit Power Minimization with ZF Receiver/Precoder

Similar to the system with MRC/MRT discussed in the previouse subsection, the pilot-data
power allocation problem for ZF receiver and ZF precoder which minimizes the weighted
total transmit power subject to the obtained lower bounds on the average SINR and power
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constraints can be formulated as

min_ Py (4.8a)
PpiPyBy

st. C8:vZl > (4.8b)

C: 355 > (4.8¢)

C3,04,C5 (4.8d)

By substituting (2.7), (2.8) and (3.8) into (4.8b), we can rewrite (4.8b) as

L L
L4+ > mppkBur 1 K Brin(1 + > TPp,jrBujn) L 5
=1 5% i g S Pwik BinPrie 1 o)
(M — K)Tpp,lkpu,lkﬁl%k o L 7

2 P
i = Pk BiiPp
i=1 k=1 1+ Z Tpp,ijljn 1=1,i#l ’ p;
j=1

L
By defining 0 < t;,, < 1+ > 7p,.xBijs, (4.9) is equivalent to the following three inequalities
j=1

B'anu in
¢10: (M— K)Tpplkpu Bk [Z Z (1 Z TPp.jnlin) (1 + Z TPp,jkijk)

== i (4.10)
'Ylﬁllk:pp zkpu ik <
+1+ ]Z TPp.jkBijk] + l ;ﬂ —ﬁllkpp o 1
C11:t, >0 (4.11)
L
b <1+ Z TPp.jxBljn (4.12)
j=1

It is easy to see that (4.10) and (4.11) are posinomial inequalities [96] [106] but (4.12) is
not. Here, we can use a simple approximation as discussed in [106] to convert (4.12) to
an posinomial inequality based on the property of geometric inequality that the arithmetic
mean is greater than or equal to the geometric mean. Therefore, the right side of (4.12)
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becomes
L

Tpp]nﬁl]n 1 «

1+ TPy irBlir X (—)™ 4.13

Z Pp,jnPljn = 1;[ (at) ( )
L

where ) a; + a; = 1. One possibility of computing «; and o is to let

j=1

oy = — e oy = — L (4.14)

1+ 'Zl Tpp,jnﬁljn 1+ 'Zl Tpp,jnﬁljn
Jj= Jj=

where p, j, can take any feasible values which satisfy the minimization problem (4.13). Then

L
by replacing the term 1+ ) 7p, ;. With its lower bound given in (4.13), we can rewrite

(4.12) as
L

c12: . [] (TLranPliry ™ )0 < 1 (4.15)
a.
=1 /

L
Similarly, by substituting (2.7), (2.8), (3.19) and using 0 < t;,, < 14 > 7p, jxBijn, (4.8¢)
=1

is equivalent to the following inequality

Bi p in
Cl13: (M~ K)Tpplkpd zkﬁuk[z Z (1 ZTpkaﬁwk)(l + Z TPp.jk k)

i=1 k= J#l
; (4.16)

+1+ ZTpkaﬁl]k]‘f— S w <1

=Tl BikPa,ikPp,ik

Then, the constraint (4.8b) and (4.8c) can be replaced by (4.10), (4.11), (4.15) and (4.16).

We can rewrite the optimization problem (4.8) as

min Py (4.17a)
ppvpdvﬁdyt
st. C3,04,C5,010,C11,C12,C13 (4.17b)
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where,

2

t t117t127"'7t1K7'"7tL17tL27"'7tLK] (418)

Now, the optimization problem (4.17) is a standard GP problem which can be solved by

using a standard numerical optimization package as mentioned in the previous subsection.

4.4 Asymptotic Performance under A Very Large Number of BS Antennas

From (3.1), (3.8), (3.13) and (3.19), it can be seen that the SINR lower bounds tend to be
infinity for infinite M with fixed pilot and data powers. By following [11, equation (37)],

we assume the pilot and data powers of each user are scaled by VM, i.e., E, .=V Mpy i,

Eyix=VMpy i and Egy,=vV Mpqu, for | =1,2,...,L and k = 1,2, ..., K. Then, we have

when M — oo

MRCup . ZFup _, 87k Ep, i By,
Vik ' Vike L (4.19)
I+ X lﬁlikEp,ikEd,ik ’

i=1,

) -
7B Ep ik B 1

L
5 -
1"'7', Z 'BlikEp,ikEd,ik
i=1,i#£l

MRC,dn _ZF,dn
Vik s Vik —

which implies that there is nearly no intra-cell interference and uncorrelated noise in massive
MU-MIMO systems, leaving only pilot contamination. Moreover, with fixed E, 1, Eqm

and Ed,lk, the uplink and downlink SINR lower bounds of ZF /ZF and MRC/MRT schemes

approach to a constant for a very large value of M.

By using (4.19) into (4.4) and (4.8), respectively, the pilot and data power control problem
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with ZF/ZF and that with MRC/MRT have the same formulation as given below,

K
IIlll’l~ (TEka + TlEd,lk —f- CITQEd,lk) (420&)
€5,€d,€4 —
T 2
st. C14: — PuwbeiBan (4.20b)
47 3 BB, iwEaa
1=1,17#£1
62, B, F
C15 - P el > (4.20¢)
L+7 > 512ikEp,ikEd,ik
i=1,i£l
C16 :7E, i + T' Equ < VMP, (4.20d)
K ~
C17: Y B,y T < VMP, (4.20€)
k=1
018 . Ep,lk Z 0, Ed,lk Z 07 Ed,lk Z 0 (420f)
where
A
ey = [Eprt, Eproy - Epirs s Byt Epras - oo, By k] (4.21)
A

€4 = [Ed,lh Ed,127 cee ,Ed,u(, cee 7Ed,L1a Ed,L27 ceey Ed,LK} (4-22)

- A = ~ ~ ~ ~ ~
€s=Eqn,Far2, .. Eaik, ... Ear, Eara, - ., Eq k] (4.23)

Note that when M — oo, we have VM P, — oo and vV M P, — oo. Thus the third and forth

constraints in (4.20) can be omitted. As a consequence, we can rewrite the optimization

problem as

K
min Z (TEp,lk + TlEd,lk: + CITZEd,lk> (4.24&)
k=1

epzedvéd —
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L
L+7 > /BIQikEp,ikEd,ik

i=1,i#l 1
s.t. C19: < — 4.24b
TﬁzzzkEp,lkEd,lk gs! ( )
L , ~
I4+7 ;ﬂ BinEp i Eair

C20: — = < (4.24¢)

Tﬁl%kEp,lkEd,lk
C18 (4.24d)

It can be seen that (4.24) is a GP problem in which all constraints are posinomial inequalities

and can be solved by a standard software package as mentioned earlier.

4.5 Simulation Results and Discussion

Computer simulations are carried out to validate the derived average SINR lower bounds
and evaluate the proposed EE power allocation schemes. We consider a two-cell MU-MIMO
system (L = 2) with a radius of 1000m for each cell. Each BS locates in the cell center
serving K = 3 users. All users in each cell are distributed uniformly at random with at
least a distance of 100m away from the BS. The large-scale channel fading is modeled with
Br = zi/(rx/7h)", where z;, represents a log-normal random variable with standard deviation
o, ri is the distance between the k-th user and the BS and v means the path loss exponent.
Following the parameter setting in [1], we choose 0 = 8dB and v=3.8. Throughout the
simulation, the normalized additive Gaussian noise with zero mean and unit variance is
assumed.

Suppose that the orthogonal frequency-division multiplexing (OFDM) signal is transmit-
ted. According to LTE standard [1], we choose an OFDM symbol interval of T, = 71.4us,
a subcarrier spacing of Af = 15kHz and a coherent time interval T, = 1ms. In turn, we
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can obtain the useful symbol duration 7, = 66.7us, the guard interval length T, = 4.7us
and the total number of symbols in each coherent time interval as 7' = (1,./T5)T, /T, = 196
symbols. To minimize the overhead of pilot symbols to the minimum level, we choose the
smallest amount of training 7 = K . The number of symbols for uplink transmission and
that of downlink data transmission are assumed to be the same in one coherent time inter-
val, namely T} = Ty, = (T — 7)/2 = 96 symbols. In the optimization problem, the weight
¢ is assumed to be one. The same target SINR and power constraint are applied for both
uplink and downlink transmission. The CVX standard package [105] is used throughout the

simulation to solve the GP problem.

To show the tightness of the lower bounds of SINR, Fig. 4.1 compares the simulation
results for the original SINR and the derived lower bounds of user 1 in cell 1. Here, equal pilot
and data power allocation among all users as in paper [11] is applied with p, i, = Puik = Pak
for any k € K and [ € L. Then for the fixed scaled pilot-data power we assume E,;;, =
Equ = Edlk for any k € K and [ € L. We can see that the derived lower bounds are tight in
all cases even for a large number of BS antennas and the uplink and downlink transmission
show nearly the same SINR performance in both ZF/ZF and MRC/MRT situations. The
MU-MIMO system with ZF /ZF shows a better SINR performance than the system with the
MRC/MRT. Moreover, when M becomes large, both uplink and downlink SINRs start to
saturate due to the pilot contamination. From the curves with fixed scaled pilot and data
powers, it can be observed that the SINR performances of both ZF/ZF and MRC/MRT

approach to a constant as M gets very large, which is consistent with the theoretical analysis.

Fig. 4.2 shows the total uplink power, which includes both pilot and uplink data powers,
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Figure 4.1: Average SINR versus the number of BS antennas

and the downlink power for total transmit power minimization scheme in multi-cell MU-
MIMI systems with SINR threshold v; = v = 5dB and y; = 75 = 15dB. The uplink power
includes the power of both pilot and uplink data signal. All the powers are normalized
according to the noise power. It can be clearly seen that both uplink and downlink powers
decrease as M grows, showing that the use of massive MU-MIMO can save a great deal
of transmit power. Note that for the system with MRC/MRT, when the required SINR
is chosen as 15dB, there is no solution when M < 50 because of the significant crosstalk
interference. In low target SINR region, MRC/MRT performs almost as well as the ZF based
scheme. For target 15dB SINR, ZF /ZF saves about 3dB in total uplink and downlink power
than MRC/MRT under a large value of M. When M approaches to infinity, from section 4.4
we can calculate the scaled pilot and data powers as E, , = 9.04dB, E;, = Ed?;~C = —10.17dB
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Figure 4.2: Pilot-data power allocation versus number of BS antennas

for 5dB target SINR and E,;, = 18.56dB, E;) = Ed,k = —9.23dB for 15dB target SINR.

Here the pilot and data powers have been scaled by multiplying v M.

In order to demonstrate the advantage of our proposed power allocation algorithm as
compared with a simple equal pilot-data power allocation where the pilot and data signal
have the same power p, mu for all users as in [11], we define the percentage of the total

power saving as

L K
KL(T + Tl + (TQ)pu,mulLi - Z (pp,lkT + pu,lle + de,lk‘T2>
=1k=1

4.25
K(T + Tl + CTQ)pu,multi ( )

where pymu for ZF/ZF and MRC/MRT schemes can be easily found by setting p, i =
Puik = Pdk = Pumuii i1t the previous optimization problems (4.7) and (4.17). From Fig. 4.3,
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Figure 4.3: Percentage of power saving versus target SINRs

we can see that more than 75% total power can be saved for ZF /ZF and MRC/MRT in low
target SINR region, depending on the number of BS antennas and the number of total users.
As the required per-user SINR increases, the percentage of power saving decreases. Note that
the benefit of deploying a very large number of BS antennas tends to become marginal, since
the ultimate SINR performance is limited by the interference, channel estimation error and
transmit power constraints. Moreover, for the case of M = 100, there is no solution for the
equal pilot-data power allocation scheme when the target SINR is larger than 15dB. From the
above discussion, the ZF /ZF scheme always gives a better performance than the MRC/MRT
scheme does. However, when M becomes very large which means a huge size of estimated
channel coefficient matrix G’li, calculating the inverse of Gy will be a computational burden
which needs complicated processing circuits. Compared with ZF /ZF scheme, the MRC/MRT
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scheme with processing matrix equal to the conjugate transpose of Gy is much easier to

implement in the case of a large number of antennas.

4.6 Conclusion

In this chapter, we have investigated the pilot and data power allocation for EE communi-
cations in multi-cell MU-MIMO systems with an objective of minimizing the total uplink
and downlink transmit power under the per-user SINR requirement and power consumption
constraint. The proposed schemes take into account the MRC and ZF detectors in the uplink
transmission together with MRT and ZF precoder in the downlink transmission. In order to
simplify the original optimization problems, the SINR lower bounds derived in the previous
chapter are used in the power allocation algorithms instead of the true SINR expressions.
Then, in the MRC/MRT situation, the non-convex optimization problems are converted to a
standard GP problem to facilitate their solution based on inequality substitution. For the ZF
scheme, geometric inequality is used to approximate the original non-convex optimization to
the GP problem. The very large number of BS systems situation is also discussed for multi-
cell MU-MIMO systems. Finally, numerical simulation results have confirmed the tightness
of the derived per-user average SINR lower bounds and the advantage of the proposed power

allocation schemes.
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Chapter 5

Joint Pilot-Data Power Allocation Based on Total EE

Maximization

5.1 Introduction

Excessive power usage in MIMO networks is a crucial issue for mobile operators since the
explosive growth of wireless services contributes largely to the worldwide carbon footprint
[106]. As such, significant efforts have been devoted to improving the SE and EE of MIMO
communication systems over the past decade, resulting in energy efficient power allocation

technologies.

Besides EE based power control methods, the SE based power control in MIMO systems
is also very popular and has already been discussed in many papers. For example, the
authors of [107] considered the noncooperative multi-cell multicast MIMO network under
perfect and imperfect CSI. The authors in [109] studied the joint pilot and data power
allocation problems in single cell uplink massive MIMO systems for the case of maximizing
the weighted minimum SE and the sum SE. In [110], the authors studied the pilot power
allocation with the least squares (LS) and MMSE methods in multi-cell massive MIMO
systems. The authors in [111] investigated the pilot and data power allocation based on
the lower bound on the uplink capacity for Rayleigh fading channels with maximum ratio
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detection. In this thesis, we aim to investigate the energy-efficient power control schemes for
MU-MIMO systems. Later in this chapter, we will compare our proposed EE based power
allocation schemes with the SE based ones.

As discussed in [11] and [73], the EE of a wireless system is defined as the ratio of the
total SE to the total power consumption ps.q. As such, the total EE of both uplink and
downlink of a TDD multi-cell MU-MIMO can be defined as

L K 3
> > (BEERE{Ry} + QEEE R E{Ry})

EE === o (5.1)

where Ry, and le denote the uplink and downlink sum rates which are defined as Ry =
logy(1 4 %) and Ry, = logy (1 4+ A1), respectively, 77 and Ty denote the number of uplink
data symbols and that of downlink counter parts, respectively, as shown in Fig. 2.2, and (s
is the weighting coefficient.

Based on the SINR lower bounds derived in chapter 3, we can find the lower bounds for
uplink and downlink achievable rates, and use such average sum rate lower bounds instead
of the true values to construct the optimization problems. Since f(z) = log,(1+ z) is a
monotonically increasing function, the lower bounds of the uplink achievable rate can be
obtained as E{RMECY > log,(1 + 7, ") and E{RAF} > log,(1 + /") when MRC and
ZF receivers are used respectively. Similarly, the lower bound on the downlink achievable
rate can be found as E{R}T} > log,(1 + 4 7Y or E{RAF} > logy(1 4 ~/2™™) when
MRT or ZF precoder is used.

In Chapter 4, we have developed joint pilot-data power allocation schemes based on
the first optimization framework, namely, the total transmit power minimization. In this
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chapter, based on the EE defined in (5.1) and by following the second framework, namely
the total EE maximization, we will develop two novel pilot-data power control algorithms
for multi-cell MU-MIMO systems with an objective of jointly maximizing the total uplink
and downlink EE under BS and per-user power constraints. As discussed in section 4.1,
unlike most of the previous works with equal pilot and power allocation schemes i.e. [11]
[57] [58], we will consider a more practical scenario, where the transmit power of pilot or
data symbols for different users can be different. Moreover, instead of considering uplink
and downlink power allocation separately [48]-[66], we will address the joint pilot-data power
control problem for both uplink and downlink transmissions in one optimization problem.
Besides the joint pilot-data power allocation for conventional MU-MIMO systems, massive
MU-MIMO case will also be studied by assuming infinite antennas at BS. The proposed
power control methods take into consideration the MRC and ZF detectors in the uplink
transmission together with MRT and ZF precoder in the downlink transmission. In order
to simplify the original optimization problems, the lower bounds for uplink and downlink
achievable rates stated above are used in the power allocation algorithms instead of the true
sum rate expressions. In chapter 4, we discussed the first framework for energy-efficient
power control in MIMO systems. In the simulation, we will compare the pilot and data
power allocation schemes based on the two frameworks, proposed in the previous chapter

and this chapter, with the SE maximization scheme in [109].

5.2 Total EE Maximization with MRC Receiver and MRT Precoder

The power allocation problem which maximizes the total EE while meeting the power con-
sumption requirements as specified by the derived average SINR lower bounds for MRC
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receiver and MRT precoder can be formulated as

MRC/MRT

total ‘2a
pmaX Ptotal (5 )
p?pu 7pd

st.  C3,04,05 (5.2b)

In the objective function of (5.2), the total weighted sum rate is given by

L K
MRC/MRT A MRC, MRT,d
Rt = 2 3 [anlogy(1+ 7 7™) + Gaanlogy (1 + ) (5.3)
where a; 2 %% and a 2 %% Note that (5.2) is a non-convex fractional optimization

problem which is very difficult to solve directly. To overcome this difficulty, we convert (5.2)

to an equivalent non-fractional problem by following the Dinkelbach’s method as discussed

MRC/MRT

in [112] and [113]. Letting n = Zts— be the maximum EE in problem (5.2), we have

Priotal

the following equivalent optimization problem when f(n) = 0.

f(77) é l'IliIl nPtotal - Ri\;[t](jlc/MRT (54&)
ppvpuvpd
st.  C3,04,05 (5.4b)

By following the Dinkelbach’s method [112] and [113], the optimal solution to problem
(5.4) can be obtained if we can find n such that f(n) = 0. In order to simplify the above
optimization problem, we introduce a new set of variables x,, ;x and zqu, (I =1,2,...,L; k =

1,2,...,K), with the constraints 0 < x,; < ,%\74!?() and 0 < zgp < ’y%,fc. Then we can
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rewrite the above optimization problem as

min 7713total
pp)puvpdumuﬁrd (5 5a)
L K :
— > > [arlogy (1 + @y ) + Coazlogy (1 + au)]
=1 k=1
C15: xqu < ﬁ%ﬁc (5.5¢)
c17 . Td,lk Z 0 (556)
C3,C4,C5 (5.5f)
where
A
Ly = [$u,117 Ly12y«+ o s LKy« » oy L, L1y Ty, L2y « - - 7$u,LK] (5-6)
w2 L1, Td12s - - > Td1K - - - s Td, L1, Td,L2s - - - Ld,LK] (5.7)

Similar to the derivation of (4.5), by substituting (2.7), (2.8) and (3.1) into (5.5b), we
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can transform the first constraint in problem (5.5) as

K L
. Loy, lk
Cl8: (M=1)7p, 11,Pp, 1By (5227519 pu’lﬁﬂ“ﬁ L ]; Tpkaﬂljk

L K L K
+ Z Z pu,mﬁlm + Z Tpp,jkﬁljk Z pu,lnﬂlln
i=1,i#l k=1,k#k j= k=1,k#k (58)

L
2 pp,jkﬁl]k Z Z pumﬁlm_'_zpuzkﬂhk

i= lzilli 1,x#k

BlikPuikPp.i
+7 Zpu ik Bk Z Pp,jkBijk) + Tu ik Z Auluislpuin < |
J=1j#i i=T il kP kP ik

Note that the left side of the above inequality is posynomial. Similarly, the second constraint
in problem (5.5) can also be converted to a posynomial inequality by substituting (2.7), (2.8)

and (3.18) into (5.5¢), resulting in

K K
. Tk Zd,lk
C19: Moy on N:Lzﬁ#kpd,m T OT=Dpg oy inBon (Buuk ;1 Pa,ix
+7 Bk Z D1k pr,Jkﬁljk + Z Z PainBar +1 (5.9)
k=1 g;ﬁl 1#£l K=
+7 Z Pp.jkBijk ; Z Paix Bar + T Z ppjkﬁljk)
1#£l k=1

After replacing (5.5b) with (5.8), and replacing (5.5¢) with (5.9), all the constraints in
problem (5.5) are posynomial inequalities, each with the form of a posynomial less than
or equal to a constant value. The optimization problem (5.5) can then be treated as a
generalized geometric programming (GGP) problem which is a combination of a standard
GP and several additive logarithm terms of generalized posynomial [99, section 7.2]. Since
all the variables in (5.5) are nonnegative, the constraints can be converted to convex through
a logarithmic transform of the variables. We replace the original variables @, ik, Tk, Dp.iks

Pugk and pggr with their logarithmic form for all values of £ € K and [ € L, then the
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variables become Y,k = (Tuik), Yau = 18(Taiw), Py = M(Ppir), P =

In(pyx) and

Pase = In(pau). By substituting these new variables into (5.5), all its constraints become

convex and the objective function (5.5a) becomes

. /
min NP 1otat + 9(Yu, Ya)
PP P’ 4yYusYa

where
A
Yu = [yu,n, Yu12y o s Yu 1Ky - -+ 5 Yu, L1y Yu, L2, - - - ,yu,lk]
A - - - -
Ya = [yd,n, Yda2,---sYd1K, - - Yd, L1, Yd L2y - - - ,yd,lk]
; Ay / / / / /
p,= [pp/,uapp,ma s Ppiks- s Ppr1sPpras - app,LK]
A
/ =2 / / / / / /
p.= [pu,117pu,127 <oy Puiks - Puyp1s Puros - - - 7pu,LK]
A
/7 =2 / / / / / /
Pa.= [pd,llvpd,wv <oy Paiks - Par1 Par2 - - 7pd,LK]

Moreover, in (5.10) we have

K

A
Pliotal = E E lexp(p'p )T + exp(p' oy i6) T + Crexp(p' g ) T2
I=1 k=

—_

A

M=

K
9(Yu:ya) kX_II {[a1logy[1 + exp(yu, k)] + C2azlogy[1 + exp(yauk)]}

l

1

L K
_ 1 1
o ;::1 ];::1 [a110g2 1+exp(Yu,ik) + Gaazlogy 1+exp(yd,zk)]

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

Now, we use the FrankWolfe (FW) iterative procedure to solve the above problem. Since

loggm is concave, it is easy to see that g(y.,yq) is also concave. Then, by following
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the first-order Taylor series expansion, we have f(z,y) < f(zo,%0) + fz(%0,%0)(z — zo) +

fy(20,90)(y — yo). Assuming that [y, yc(f)] is a feasible solution to the problem, we ap-

proximate the upper bound of g(z, &) by its first-order Taylor series expansion at [yz(f), y((f)]

[114] [115] as

i t yu,zkfyffl)k + Gy yd,zryffl)k ] (5.18)

(k) (k)
< _
g(yw yd) = g(yu »Yq ) < = 1 1+exp(y7<jl)k) 2 1+exp(y§,jl)k)

L
=

where a4 2 5 and dy 2 5. Based on (5.18), we propose an iterative algorithm to find

the optimal solution. After getting the (k — 1)-th feasible solution [yi(f”_l), yén_l)], we can

obtain the feasible solution at the k-th iteration by solving the following problem,

. A - -
, ,ml,n f(ﬂ) = 7’/f)/toml + g(y’l(f 1)7 y((in 1))
p p7p wP d:Yu:Yd (5 19&)
(k—1) ( 1) ] '

LK / yu,lk_yuylk / yd,lk_yd:il;
- Z Z [a11+ ( (K—l)) +C2a21+ ( (n—l))
I=1k=1 exp yu,lk exp dek

st.  C3,04,05,C14',C15 (5.19b)

Here, C3’, C4’, C5’, C14’, C15 represent the constraints of C3, C4, C5, C14, C15, re-
spectively, in the logarithmic transform domain. This iteration continues until no further
improvement on the objective function can be achieved. We summarize the algorithm as

Algorithm 1 in table 5.1.
The convergence of the inner loop in the above algorithm can be proved as follows.

Proposition 5: Proof of the convergence of inner loop in Algorithm 1

Proof: Let P''") and P~ be the value of P

tota 1o At iterations x and x — 1 for solving
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Algorithm 1: The proposed iterative algorithm

Initialization
Set iteration indix i = 0, convergence tolerance § > 0 and EE parameter n® = 0

o (0) (0.
Choose initial value [yu *, Yy, |;

Outer loop: repeat
(1) (i)] = (i—1) (ifl)].

Choose the initial solution [y.’, y, Yu Yy
Compute f);
Set i =i+ 1 and Kk = 0;
Inner loop: repeat
Set k = Kk + 1;
Find the optimal solution [yq(f), yén)], Py ak Psr and py . to problem (5.19) for

given [y 4,

Compute f*);
until ‘f(") — f(”_l)‘ < 0;
Calculate the corresponding optimal Ry, and P based on the obtained
solution of inner loop;
Update U(i) = Riotat/ Prota;
until [n® —t=H| <5
Output optimal solution for p, ik, pux and pa .

(5.19), respectively. As [y, y'™] is feasible to (5.18), we have the relation as given in (5.20).

nP'") 4 gyl yl?)

(%) (r—1) (k) _, (k—=1)

K
< Pl(”) (k=1)  (k=1)y a Yo, ik~ Yu,lk a Ya,k " Yd,1k
S N ot T 9(Yu »Yq ) l; k; [a'y 1+eXP(y£'E_1)) + (1 2—1+exp(y;i;1))]

(r=1)_, (k—1) (r=1)_ (k—1)

K
-1) (k=1) | (k—1) 1 Yuar  "Yuik 7 Yaue  Yauk
<P+ - a1~ + Qe
— n total g<yu ) yd ) l:zjl 192:31 [ 1+eXp(yq(jzk1)) C 1+9XP(yt<:lk1))]

(5.20)

k—1 k—1 k—1
= nplgotal) + g(ng )7 yc(l )>

which proves that the proposed iterative algorithm is monotonically decreasing. Considering
that the objective function is lower bounded, the convergence of the inner loop in Algorithm

1 is ensured.

Regarding the proof of the convergence of the outer loop, the readers are referred to [95].
It should be pointed out that despite the guaranteed convergence of Algorithm 1, its solution
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may not be the globally optimum because of the non-convex nature of the joint optimization

problem.

5.3 Total EE Maximization with ZF Receiver/Precoder

The power allocation problem with ZF used in both receiver and precoder of BS, which

maximizes the weighted total EE subject to power constraints, can be formulated as

max Letal (5.21a)

PpPusPy Piotal

st.  C3,04,05 (5.21b)

with
L K

A n
RER 2D farlogy(1+377) + Gaslog, (1 + 72 )] (5.22)
=1 k=1

Similar to the discussion in the previous section, in order to simplify (5.21), we introduce

a new set of variables z, 5 and zq (I = 1,2,...,L;k = 1,2,..., L), with the constraints
~ Z Fup ZF,dn . .. .

0 < 2y < Y and 0 < 24 < 7" . Then we can rewrite the above maximization

problem as the following minimization counterpart,

min  f(n) (5.23a)

PpsPuyP g ZusZd

st C10: zu < L0 (5.23b)

C18: zau < yliF’d” (5.23¢)
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20 : Zd,lk Z 0 (5236)
C3,C4,C5 (5.23f)
where,
A
Zy = [zu,lb Zu12y -+ oy Ru 1Ky - - -y Zu, L1y Ru, L2y - -+ s Zu,LK]; (524)
A
24 = [Zd,n, Rd12s + -+ s RAAK -+ + + 5y Ad, L1y d, L2y - - - 7Zd,LK]7 (5-25)

and f(n) is defined in (5.4a).

By substituting (2.7), (2.8) and (3.8) into (5.23b), and performing some derivation, we

have ; L
1+ 21 TPp,ikBlik L K Buir (14 ;Z TPp,jrBljx)
(M*IJ{)TPp,lkpu,zkﬁfzk [z; ,;1 Pusin 1+XL; o B + 1]
=1 k= = pp,jﬂﬁl]li (526)

L 2
Puike BlinPp,ik < 1
+A ! Pu.ik /812”927 K Rulk
=104l " s

The left side of (5.26) is the same as that of (4.9). Hence, by following the same method as
discussed in chapter 4 and using the property of geometric inequality, it can be verified that

(5.26) is equivalent to the three inequalities C11, C12 and C21 below,

O ¢ st [ 3 s (14 S )
* (M=K)Tpy ixPy, 11,87, e e =7 Pp,irPljr
L

L L ﬁlzikpp,ikpu,ikzu,lk
(L4 22 7ppgeBun) + 1+ 3 Topgbip] + >0 —pr sl
j=1 j=1 i=1,i£l 1kPp,1kPu,lk

(5.27)

Similarly, the second constraint in problem (5.23) can also be converted to a posynomial
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inequality by substituting (2.7), (2.8) and (3.25) to (5.23c), resulting in

022 . Zu,lk L K Bilkpdﬂ;,{ 1 + L . ,8
' (MfK)Tpp,lkpd’lkﬁflk [Z; RZI tik ( %Tppuk ij)
L ! (5.28)
(1+ZL3 »/3-)+1+ZL: wBuik] + ZL: w<1
P TPp,jkPljk j:1Tpp,Jk ik L B PPy
Then we can rewrite the optimization problem (5.23) as
L min _f (n) (5.29a)
pPdPar®
s.t. 03,04,C5, 011,012,019, C20,C21, 022 (5.29b)

It can be seen that (5.29) is a GGP problem with all constraints being posinomial inequalities,
which can be converted to a convex problem through a logarithmic transform of the variables.
Finally, similar to problem (5.10), we can solve (5.29) by using FW iterative procedure as

summarized in Algorithm 1.

5.4 Asymptotic Performance under A Very Large Number of BS Antennas

It has been proved in section 4.3 that with constant pilot and data powers, the SINR lower
bounds tend to be infinity for infinite M. By using the SINR lower bounds in (4.19), the
joint pilot-data power control optimization problem based on EE maximization scheme with

MRC/MRT and that with ZF/ZF can both be written as

R

max
€p,€d;€d TE, 1, +T1Ey i +G TR E
kgl ( p,lk u,lk d,lk) (530)

s.t. C25,026,027
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where

L K 2
R30S farlogy(1 + — e
l=1k=1 I+7 . Z ﬁlzk D, 1k: u,ik
=Lz (5.31)
TBZQZkEPv”CEd Ik ]

L
4+ > ﬁszp zkEd ik

i=1,i#l

+(oaslogy (1 +

The constraints C25 and C26 in (5.30) can be omitted since vV M P, — oo and vV M Py, — oo

when M — oo. Then, (5.30) can be simplified as

max .

€p-€d,€d Epik+T1Ey 1o +C1 T2 E

P kZ::l(T otk T B ik +C1 T2 Eq 1) (5'32)
s.t. c27

Now, problem (5.32) can be solved by using the same approach as summarized in Algorithm

1.

5.5 Simulation Results and Discussion

In this section, computer simulation is carried out based on the same parameters as discussed
in Chapter 4, where a 2-cell MU-MIMO system is considered with 3 users in each cell. And
OFDM signals are transmitted according to the LTE standard and the parameter setting in
[1]. The weighted numbers (, is assumed to be one. Throughout the simulation, a normalized
additive Gaussian noise with zero-mean and unit variance is assumed. In addition, the
convergence tolerance of the proposed algorithm is set to § = 1073, The same average SINR
lower bounds are used in EE maximization schemes as that used in total transmit power
minimization schemes discussed in Chapter 4. The tightness of the derived lower bounds of
average SINR has already been shown in Fig. 4.1.
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Figure 5.1: Pilot-data power allocation versus number of BS antennas based on EE maxi-

mization scheme

Fig. 5.1 and Fig. 5.2 show respectively the total uplink and downlink power and the
average SINRs for the EE maximization power allocation schemes versus the number of BS
antennas. Here, the uplink power includes the pilot power and uplink data signal power.
From these two figures, it is seen that as M grows, the uplink and downlink powers slowly
decrease while the corresponding average SINRs increase. To maximize the total EE, the
ZF scheme requires approximately 0.5dB more power than the MRC/MRT for both up and
downlink transmissions, but meanwhile it provides about 3.5dB higher average SINRs when
compared with MRC/MRT. It is worth mentioning that when M grows to infinity, we can
calculate the scaled pilot and data powers as £, 11 = 12.32dB, E, 11 = Eq11 = 10.74dB.

In Fig. 5.3, we compare the EE of the proposed total transmit power minimization scheme
in Chapter 4 (with 3 = 9 = 5dB threshold), the EE maximization scheme proposed in
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Figure 5.2: Uplink and downlink average SINR versus number of BS antennas based on EE
maximization scheme
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Figure 5.3: Average EE versus number of BS antennas
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Chapter 5 and the SE maximization power control scheme discussed in [109]. It is observed
that the proposed the EE maximization scheme obtains the best EE performance while SE
maximization shows the worst despite the number of BS antennas. This is because the
proposed EE maximization scheme decreases the transmit power to avoid sacrificing EE,
whereas the SE maximization scheme always uses all of the transmit power. Meanwhile,
the total transmit power minimization scheme shows a moderate EE performance, since it
always keeps constant uplink and downlink average SINRs. The EE increases as M grows
in all the three methods since it has benefited largely from the use of massive MIMO. Even
though framework 2 (EE maximization scheme) shows the best EE performance in figure
5.3, it does not mean that framework 2 is better than framework 1, since the purpose of
these two frameworks are different in MU-MIMO system design. Framework 1 aims to use
the lowest power over a given system performance target, while framework 2 aims to find a

balance between system performance and the power cost.

5.6 Conclusion

In this chapter, we have developed novel pilot-data power control algorithms for multi-cell
MU-MIMO systems with an objective of jointly maximizing the total uplink and downlink
EE under BS and per-user power constraints. The proposed schemes take into account the
MRC and ZF detectors in the uplink transmission together with MRT and ZF precoder in
the downlink transmission. In order to simplify the original optimization problems, the lower
bounds of the average SINR derived in Chapter 3 were used in the proposed power alloca-
tion optimization problems in order to facilitate their solution. We have further simplified
the optimization problems by converting them to GP problems or recasting the proposed
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non-convex problems based on Dinkelbach’s method and FrankWolfe iteration to obtain
equivalent convex problems which can be easily solved. The very large number of BS sys-
tems situation is also discussed for multi-cell MU-MIMO systems. The joint pilot-data power
control schemes based on the two frameworks and SE maximization power allocation algo-
rithm are compared and discussed, showing the advantage of the proposed power allocation

schemes for massive MIMO systems.
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Chapter 6

Joint Pilot-Data Power Allocation with Circuit Power in

Consideration

6.1 Introduction

As discussed in Chapter 4 and Chapter 5, very large scale antenna arrays bring substantial
improvements in energy and spectral efficiency to wireless systems due to the greatly im-
proved spatial resolution and array gain. Moreover, infinite number of antennas employed
at BS, one may achieve in theory an unbounded EE since the user rates grow unbound-
edly as M — oo. Even though the power consumption of the radio front-end has not been
considered in the previous two chapters, massive MIMO is still a promising candidate for

improving the EE of future wireless networks.

In practical systems, however, it is not possible to achieve infinite EE because the power
consumed by digital signal processor and analog circuits for baseband processing and radio
frequency (RF) grows with M, which means that infinite antennas at BS will introduce infinite
circuit power as well. Unfortunately, there are very limited works in open literature that
have discussed about how the number of BS antennas M impacts the EE of wireless systems
when circuit power is considered. For example, the work in [116] has derived the optimal
values of M and K for a given uplink sum rate, but the necessary overhead due to the pilot
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signal for channel acquisition was ignored, leading to an unrealistic result, conclusion that
a large value of K, even if approaching infinity, would always be beneficial. The authors in
[117] analyzed the capacity and estimation accuracy of a TDD massive MIMO systems and
discussed how M, K and the transmit power affect the SE and EE of a single-cell MU-MIMO
system with different linear processing schemes at the BS.

The main purpose of this chapter is to investigate how the number of BS antennas M
impacts the EE of a single-cell massive MU-MIMO system when circuit power consumption
is taken into account. Similar to previous chapters, we consider the most commonly used
precoder and receiver, namely, ZF, MRT and MRC. It is worth mentioning that our interest
in this chapter is to deal with the transmit power minimization based on the first optimization
framework of single-cell MU-MIMO systems [118]. If circuit power consumption is considered
in multi-cell MU-MIMO systems, the power allocation problem would become very difficult,

which will be left as future work.

6.2 Single-cell MU-MIMO Systems with Channel Estimation

6.2.1 Channel Model

Now we simplify the multi-cell MU-MIMO channel model in chapter 2 for single-cell systems.
Consider a TDD single-cell MU-MIMO system operating over a bandwidth of BHz with the
same frame structure in multi-cell MU-MIMO systems as shown in Fig. 2.2, where we
only estimate the uplink CSI at BS and use such estimated uplink CSI for both uplink and
downlink data transmission. The system consists of an M-antenna BS serving K (K<M)
single-antenna mobile users. Let G denote the M x K channel matrix between the BS and
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K MTs with its elements g, = [G,nx being the channel coefficients between the k-th user

and the m-th antenna of the BS. Then the channel response ¢,,, can be modeled as

Gmk = humk\/ B (6.1)

where h,,. ~ CN(0,1) represents the small-scale fading coefficient and /[ models the
large-scale fading that incorporates path-loss and shadow fading which is assumed to be

constant and known a priori. Then the channel matrix G' can be expressed as

G = HD'? (6.2)

where [H],x = hyi and D is a K x K diagonal matrix with [D]g, = Sy.

6.2.2 Channel Estimation

In single-cell MU-MIMO systems, during the training phase, the M x N, received pilot

matrix at the BS can be expressed as

Y,=GS,+ N, (6.3)

where S, denotes the K x N, pilot symbol matrix and N, is an M x N,, complex noise matrix
whose entries are i.i.d. RVs with zero-mean and unit variance. Assume an orthogonal pilot

matrix is used, which means that S, satisfies

S,S,' = diag(Tpy1, TPy - - TPpK) (6.4)
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where p, (k=1,2,..., K) represents the pilot power of the k-th user. Based on the MMSE

channel estimation, the estimated channel matrix can be expressed as [22]

G =Y,S!(D'+ 8,51 = GS,S1d + NS o (6.5)

where the K x K diagonal matrix ® is given by

A -1 H\-1 _ ; B B 6.6

® = (D +85,5,)" =diag (1"1‘6171—7717,1"..71+BKI;pp,K> (6.6)

The estimation error matrix is defined as AG = G — G. Similar to the Multi-cell MU-
MIMO situation, we know that G and AG have i.i.d. Gaussian RVs with zero mean. Let
M x 1 vectors §x and Agy, denote the k-th column of matrix G and that of AG, respectively.
The elements of G are independent of that of AG and the variance of the elements of Jx

and that of Agy can be, respectively, calculated as

2 BitPok B

o; = e = — 6.7
N Betppr’ T 1+ BT (6.7)

6.2.3 Lower Bounds of Average SINR

The derivation of SINR expressions and their lower bounds in single-cell MU-MIMO is very
similar to that in multi-cell MU-MIMO systems as discussed in Chapter 3. Here we only
give the results for SINR expressions and lower bounds of average SINR for the single-cel
MU-MIMO system, without showing the detailed derivation and proof. Similar to the multi-
cell MU-MIMO case, we adopt the MRC and ZF detectors in the uplink, and MRT and ZF
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precoders in the downlink in the following discussion.

When MRC receiver is employed at BS, the detection matrix is simply given by W = G.

Therefore, we have wif = g7 (or wf = g). The received SINR of user k can be obtained

as
pdk‘@fﬁkﬁ
fy]é\/[RC = K 9 : K 9 9 (68>
| ;#kpd,ilng’ﬁﬂ +led7j|glngi| + ¢’
1=1,2 J=

where par (k=1,2,..., K) represents the uplink data transmit power for the k-th user.

Proposition 6: When the MRC receiver is employed at BS, the lower bound of the uplink

average SINR of user £ under MMSE channel estimation can be expressed as

2
MByTPp,kPd,k

E{yRC} > A RO 2 o (6.9)

K
)
> BibditPd ka1
PO Bipa,itPak 5 rp

When ZF receiver is used at BS with receiving matrix W = G(GY G) ™, we have wi g, =
1 and wf g; = 0 (i # k). Then the received uplink SINR of user k can be obtained as

VEF = — Pa (6.10)

2 2
pailwi Agi|” + [Jw/ |
=1

)

where w;, denotes the k-th column of matrix W.

Proposition 7: In the case of ZF receiver, the lower bound of the average uplink SINR of

user k can be expressed as

ZFup A ,
EyiF >y = 7 (6.11)

148 TP k B;
D, . 2 1
(M=K)BFp, (121 Pdi T35y, )
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When MRT precoder is employed at BS with precoding matrix A = G, we have all =gl

H

(or afl = ). Then, the received SINR of user k can be given by

~ ~ 2
ARC = — p ool (6.12)
> D ||’;||22 +Z ai g T
i=1,i#k ¢ 9j

where par (k=1,2,..., K) represents the downlink data power for the k-th user.

Proposition 8: When MRT precoder is employed at BS, the lower bound of the downlink

average SINR of user k£ can be expressed as

~ MRC,dn
E{'VIQ/IRC} > Yk
DB ropp s (6.13)

1+f3k‘FPp k

1>

(M-1)B27p,, By,
M(+Bm My k) E;ﬁkpd it Z Pd,j 1+f8kTP & +1

When ZF precoder [11] is used at BS with precoding matrix A = G(G”G)™", we have

gilap=1and gfla;, =0 (i # k). The downlink SINR of user k can be obtained as

ﬁd,k2
~ZF __ llakll
= 6.14
Vi K . ’Agk a1| ( )
Z Dd.i +1

las |

Proposition 9: In the case of ZF receiver, the lower bound of the average downlink SINR

of user k£ can be expressed as

~ n A
E{3FF} = 470 2 Pk (6.15)

1+B8kTP, 1 Bl
P, 1
<M*Kwiwp,k(lzl”“1+ﬁw P
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6.2.4 Circuit Power Consumption Model

The circuit power consumed by different analog components and digital signal processing

can be modeled as [33]:

K

Pep = MPps + KPy + Psyn + Pop + Z (E{Ry, + R},})Pop + Prp (6.16)
=1

Here, Ppg accounts for the power to run the circuit components (such as converters, mixers,
and filters) caused by each antenna in BS and Py by each single-antenna user, respectively.
The third term Psy ny, which is a constant value, represents the power consumption of the
baseband processors, Pcog accounts for the power consumption due to channel estimation
process in each coherence time interval, Pop is the load/data-rate dependent power con-
sumption, e.g. channel coding, decoding and backhaul processing, and Prp represents the
linear processing power consumption at the BS. In (6.16), Ry denotes the uplink achievable

rate of user k. Following the definition in [33, equation (6)], Ry is defined as

Ry = =2(1— Z)Blog(1 + ) (6.17)

where the factor %(1 — %) accounts for pilot overhead and % represents the ratio of uplink
to the downlink transmission. Similarly, the downlink achievable rate of the k-th user Ry

can be defined as

~ T2 T -
— ~2(1 — Z)Blog(1 1
Ry, ﬂ( ﬁ og(1+ %) (6.18)
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with pilot overhead %(1 — 7) and the downlink to uplink transmission ratio % In (6.16),
the term Pog can be further expressed as
2rBMK
Pop = ——— 6.19
er = 00 (6.19)

Here Lpg is the computational efficiency of processing circuit in BS, which is assumed to
be constant in this paper, B/T represents the number of coherence blocks per second, with

T = 7+ 1T, +T5. The power cost of transmit precoding and receiving beamforming of

MRT/MRC and ZF can be expressed as follows

OMK 3BMK
PMRT/MRC’ — B(1— 1 6.20
LP ( T) LBS + TLBS ( )

oMK  BK3 3BMK?+ BMK
PZF — p(1- L 6.21
tp = BU =)=+ gpp TLps (6:21)

As discussed in [33], (6.20) and (6.21) describe the power cost by the linear processing circuit.
By assuming constant B, K, t and T" and substituting (6.16), (6.17) and (6.18) into (6.13),

we can summarize the total circuit power consumption as

P%DRT/MRC = AMBT/MRC pp i (B{Ry, + Ry})Pcp + BMET/MEC (6.22)
k=1
K
PZE = APM + ) (E{Ry + Ry})Pop + B*F (6.23)
k=1
where
AMBT/MRC _ p_ 4 ;ﬁi + QLL,Z: (6.24)
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2BK 3BK?+ BK

A =p 2
Bs T+ Lps i TLgps (6.25)
BMRT/MRC — K P, 4 Poyy (6.26)
BK?3
B = KP; + P 6.27
v + Psyn + T Lns ( )

6.3 Joint Power Allocation with Fixed Number of BS Antennas

In this section, based on the average SINR lower bounds and circuit power model discussed
in the previous section, we will develop two algorithms for power allocation between pilot
and data symbols to minimize the weighted uplink and downlink transmit power and circuit

power consumption while guaranteeing per-user SINR and power constraints.

6.3.1 Power Allocation Based on ZF Receiver/Precoder

We first consider the combined use of the ZF receiver and the ZF precoder. Let P; be the
total transmit power for one transmission frame. In order to determine the best power-
consumption trade-off between the uplink and downlink transmission, a weighted sum-
power minimization is considered with positive weight parameters (; and (. By defining
Dy = [Pp1:Dp2s - - -+ Pp.ic)s Pd = [Pd,1,Pd2, - - - Pax] and pqg = (D1, Pd2s - - - Ddk), the power
allocation problem which minimizes the total transmit and circuit power while meeting the
derived average SINR lower bounds for both ZF receiver and ZF precoder can be formulated
as

K
) A .
min P7" = 37 (7ppk + Tipak + 1 ToPak)
k=1

Py 7pd7ﬁd

(6.28a)

K . K

HG[AZFM + C Y log(1 + 47 ™") + C Y- log(1 + 4 ™) + B#F)
k=1 k=1
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s.t. 7,fF’"p > 71,7,€ZF’d" > vy (6.28Db)

K
TPps + Tipax < Pr, Zﬁd,sz <P (6.28¢)
k=1
Ppr > 0,0ak > 0,pak >0 (6.28d)

where C' 2 %(1 — 7)BPcp and c 2 %(1 — 7)BFPcp. The above objective function is the
weighted sum-power accounting for the uplink pilot power, the uplink and downlink data
transmit powers and the circuit power consumption. In optimization problem (6.28), we
assume a fixed number of BS antennas, i.e., M is treated as a constant. The first and second
constraints represent the uplink and downlink SINR requirement with per-user SINR targets
~v1 and 7, respectively. The third and fourth constraints are the power constraints at users

and BS with power thresholds P, and P, respectively.

By comparing (6.28) with the previous minimization problem (4.8) based on the total
transmit power minimization, one can see that there are two main differences between the two
problems. Firstly, (6.28) is for single-cell MU-MIMO system, while (4.8) is for multi-cell MU-
MIMO case. Second, (4.8) only contains the transmit power term in the objective function.
In the objective function of (6.28), however, the first term kf: (TPpse + T1pak + C1ToPa ) rep-

=1
resents the total transmit power while the second AZFM+C'§: log(1+ WkZF’“p)—i-C'kfj log(1 +~7 ")+
—1 =1

BZF denotes the circuit power consumption which is modelled by following (6.16). In other

words, in Chapter 4 we only considered to minimize the total transmit power, while in this

chapter we aim to minimize the transmit power and circuit power at the same time.

It is easy to see that this optimization problem is nonconvex and it is very difficult to
solve directly. In order to simplify the optimization problem, we introduce a new set of
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variables

>

B

=" 6.29

Qg

As the range of p,j is from zero to infinity, from (6.29) we can get the range of a; as
0 < ar < Bk. By substituting (6.29) into problem (6.28) and dropping the constant terms,

we can rewrite the minimization problem as

K K K
. 1 ~ U, ~ mn
min (— + Tpax + CTopag) + G [C Z log(1 477 ""7) —i—C’Z log(1 4+ 77"™)] (6.30a)
k=1

a’ 7~ a/
Pd;Pgy 1 k k=1

(M — K)pd,k:(ﬁk — ay)

s.t. = > M (6.30b)
> Pgai+ 1
i=1
(M — K)pg (B — ax)
. > Y9 (6.30c)
ar Y ﬁd,z‘ +1
i=1
. 1
a;. + Tlpd,k S P1 + — (630d)
k
K
Zﬁd,iﬂé <P (6.30e)
k=1
0 <ap < Bk;pd,k > O,ﬁd,k >0 (630f)
where
A
a =lay,as,...,ak]. (6.31)

In order to simplify the concave logarithmic terms, we define

pd,k(ﬁk — ay,)
Tp=——-—-—

IR (6.32)
> Dyt +1
=1
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By multiplying (Bkafkak) at both sides of the equation and then taking summation of x; for

all k € K, we get

K
—a
k=1 Bk k Zpd zaZ + 1

=1

After some derivation, we have

K

Z e
Br—ar)

K
— D i
= (Br—ax)

Zpd zaz -

Using (6.34) into the denominator of (6.32), we can get the expression of pyy as

T

(Br—ax)

1- E{ (5ii—;i)

Pajr =

For downlink data power pg, we define

In a similar manner, we get

=1
and
K K
Tl [ Z akai. _ Z a;x; + 1]
~ (ﬁkfak) —Titk (/81 az) =itk (/81 az)
pd,k’ - K
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(6.34)
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(6.36)

(6.37)

(6.38)



Using the range 0 <oy, < Bk, pax > 0,Par > 0 from (6.30f) to (6.32), (6.35), (6.36) and

(6.38), we have the following constraints for xj and &y

K K ~

~ AT AT

pe> 0,8 >0,) ——— <1y <] (6.39)
— (B — ax) p

In order to further simplify the objective function (6.30), we define

K

Pag < Yk Zﬁd,k <y (6.40)
k=1

For pq and pgy are all positive values, we know the ranges for y, and g, i.e., y, > 0 and
g > 0. Then substituting (6.32), (6.35), (6.41), (6.38), (6.39) and (6.40) into problem (6.30)

and dropping the redundant constraints, the minimization problem is equivalent to

K
min > (é + Thye)+Ci T2y
.z Y7 f=1 (6.41a)

+<2{Ck§:1 log[1 + (M — K)xy] + C’]f:llog[l + (M — K)Zxl}

s.t. x> M?K (6.41D)
ST (6.41c)
Lk K az
B —ar) 2 Gimay =1 (6.41d)
- i S ad
z’zl gwi—iai)—i_ ; M <1 (6.41e)
1 1 i
a + Ty < P+ E,sz < P (6.410)
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0 <ap < Br,yx > 0,57 >0 (6.41g)

where
A
T = [Il,JfQ,...,I'K] (642)
~ A ~
T = [1'1,1'2,-..,1/’[(] <643)
A
Yy = [y17y27"'7yK] (644)

The above optimization problem is still not convex. Note that the left-side of the two
constraints (6.41d) and (6.41e) are a monotonically decreasing function of B while
these two constraints contain the linear combination of m, so we can use the property
as described in [98, section 7.1] to simplify the above optimization problem. We define a

new variable b, such that ﬁ < by, which can be further expressed as the generalized

Bk

posynomial inequality é + ar < Pi. As the range ay is 0 < ap < [k, we have b > 0. Then

after some derivations, the above problem becomes

K

min > (& 4+ Thy) + GToy
a,x,%,y,5,b—1 *

(6.45a)

K K

+{C > log[l + (M — K)x) + C ) log[l + (M — K)Zy]}

k=1 k=1

s.t. xkbk + Zazzzzb <1 (6.45D)
i=1
1

— 4+ ar < 5]47 b, >0 (645d)

b,
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1 1
—+ Ty < P+ -, Ty < P (6.45¢)
Ak Br
0 <ar < Br,yx >0,y >0 (6.45f)
where
A
b= [b17b27"'abK] (646)

Now, the constraints in the above optimization problem are all posynomial inequalities,
each with the form of a posynomial less than a constant value. The problem (6.45) can be
treated as a generalized geometric programming (GGP) problem which can be considered as a
combination of a standard GP and several additive logarithm terms of generalized posynomial
[99, section 7.2]. Since all the variables in (6.45) are nonnegative, the optimization problem
(6.45) can be converted to a convex problem through a logarithmic change of the variables
as discussed in [99, section 7.2]. We replace original variables ay, xy, Tk, yx, § and by with
their logarithmic form for all values of k& € K. Then, the variables become a) = log(ag),
x) = log(xy), &), = log(Z}), yi. = log(yk), ¥ = log(y’) and b), = log(by). After substituting
these new variables in (6.45), the minimization problem becomes a convex optimization
problem and can be solved very efficiently by employing the augmented Lagrangian method
or by using a standard numerical optimization packages, for example, ConVeX (CVX) [105].
Then, we can calculate the values for p, i, pqr and pg i by substituting the solution of problem

(6.45) to (6.29), (6.35) and (6.38).
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6.3.2 Power Allocation Based on MRC Receiver and MRT Precoder

Similar to the previous subsection, the power allocation problem which minimizes the weighted
transmit and circuit power subject to the obtained lower bounds on the average SINR for

MRC receiver and MRT precoder can be formulated as

K
: A .
min_ P, MROIMET 2 > (Topx + Tipar + GToPa )
ppvpdvpd k=1
K . K
FG[AMIOPEINL 1+ C 37 log (1 + 7 ") + O 3 log(1+ ;") 4 BMAC/MEAT]
k=1 k=1
(6.47a)
st g O >y A > (6.47b)
K
Topk + Tipak < Pr, ZﬁdeTZ <P (6.47¢)
k=1
Ppk > 0,04k > 0,pag >0 (6.47d)

Due to the concave logarithmic terms in the objective function, the above problem is
very difficult to solve. In order to simplify this problem, we define

K
> BiPa; + Pagor + 1
i=1ik

(Br — ak)pd,k

+1 (6.48)

2 —

and
M8 11 S s .
[+ ra] Pai + Da ik + 1
- i=1,ik
2 = - + —. 6.49
(Br — ax)(M = 1)py M (6.49)
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Using (6.48), (6.49) and a similar approach as in the previous subsection, we can get

1
Py = — : (6.50)
(Br — ar)ze[l — X2 =)
i=1
s 1
[(M 1) B —|— ] ; (M—=1)(Bi—a;)z 1
B = i= + —, (6.51)
(M =1)(B - ak) Tk Kty ey (M= 1)(B — ar)

1 (M 1)(61 az)zz

and

K
Zpd,k = —x [M‘i‘iai}‘ (6.52)
- L= 2 e

Substituting the range of ay, psr and pay into equations (6.48) to (6.51), we get

— ak)zk M, 1 — 1 ﬁk — CLk)Zk

K ﬁk ) 1 K )5k + ]
2 > 1, E (5—<1’2k> E <1 (6.53)
k
k=1

By substituting (6.29), (6.51), (6.50), (6.52) and (6.53) into problem (6.47) and dropping the
constant value in the objective function and redundant constraints, then the optimization

problem becomes

min Z (o + 0 T)+G Ty + G[C 2 log(1+ ;") + C i log(1+ 1)  (6.54a)

a,2,2,9,9 j— k=1 UM
M
st oz < —+1 (6.54Db)
N
1 1
2 < —4+— 6.54c
* Yo M ( )



(5k - ak ZEYk

(2

K
+ Z “a7 < <1 (6.54d)
—1 ’L

K K (M=1)8; +
— + <1 6.54e
; 5k—ak M —1)z, ;ﬁk_ak —1) ( )

5 1
2 > 1,Zk > M (654f)
1
)
0 <ap < Br,yx > 0,57 >0 (6.54h)
Here
22 21,29, v ZK] (6.55)
and

225, 5. 2. (6.56)

Similar to the optimization problem (6.41), here we use the property as described in
[98,section 7.1] to convert (6.54) into a GGP problem. We define a set of new variables t;

and t;, such that —~~

posynomial inequality £ r 1<z and —|— < Zk. From (6.54f), we can find the range for

t, and 5 as t > ~v1 and t > v2. We also replace the term ﬁ with by, along with the

Bk

constraint z- + ap < By and by > 0. After derivations, the previous problem becomes

2,29y

+G[Pep kZ log(1+t,) + Pep kZ log(1 + )]
1

K
mlﬂ Z( -+ yTh)+G T2y

H-x

(6.57a)

=
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bk bi /31
2R Yk + Z < 1

f f (2 + frad <1
= (M= 1 D - (M—1)%,

i+ak§5k,M+1<2k,i+ﬁ§5k

tr —
< AJ—%l 2k < ! + !
z — y Rk S — T
T T M

b > 0,tx > 1, > 70

1 1 -

—+ Ty <P+, Thy<P

ay Br
O<ak<ﬁkayk>oag>0

Here

and

(6.57b)

(6.57¢)

(6.57d)

(6.57¢)

(6.57f)

(6.57g)

(6.57h)

(6.58)

(6.59)

Similar to the previous problem (6.45), (6.57) is also a GGP problem with a combina-

tion of a standard GP and several additive logarithmic terms of generalized posynomial as

described in [99, section 7.2]. Since all variables in (6.57) are nonnegative, similar to the

optimization problem (6.45), (6.57) can also be converted to a convex optimization problem

through a logarithmic change of the variables and then be solved by standard numerical

optimization packages, i.e., CVX [105].
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6.4 Joint Power Allocation with Variable Number of BS Antennas

As discussed in [22], with the assumption of infinite number of BS antennas, uncorrelated
noise and intra-cell interference can be completely averaged out, leading to ”favorable prop-
agation” and unbounded achievable uplink and downlink rate. However, power consumed
by digital signal processing and analog circuits also grows with the number of BS antennas.
So the number of BS antennas plays an important role in the performance of MU-MIMO
communication systems. In this section, we develop two EE power control algorithms with

consideration of variable number of BS antennas.

6.4.1 Power Allocation Based on ZF Receiver/Precoder

Similar to the previous fixed number of BS antennas case, the power allocation problem can
be formulated as
min PZF
pp7pd’ﬁd7M

st.M>K (6.60)

(6.28b), (6.28¢), (6.28d)

Then, by substituting (6.32), (6.35), (6.36), (6.38) and (6.39) into problem (6.60), after some

derivation, we get

K
min 37 (o 4+ Tiye) +G 10
a,z,Z,y,y,b,M k=1 (661&)

K K
+G[AZEM + C S log(1 + M'zy) + C S log(1 + M'%y)]
k=1 k=1

K
zEb

)
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8

ibi
Y

K
2.
=1

K
+ Z &Z:Z"Lbl S 17 i + ag S ﬁk?bk > O7M/ >0 (661C)
=1
(6.46b), (6.46¢), (6.46 f, (6.46)

Here M’ 2 M — K. Now, (6.61)is a GGP problem with a combination of a standard GP
and several additive logarithmic terms of generalized posynomial as described in [99]. Since
all variables in (6.61) are nonnegative, (6.61) can also be converted to a convex optimization
problem through a logarithmic change of the variables as discussed in [99, section 7.2] and

then be solved by standard numerical optimization packages, i.e., CVX [105].

6.4.2 Power Allocation Based on MRT Precoder and MRC Receiver

The EE power control problem with consideration of variable number of BS antennas based

on MRT precoder and MRC receiver can be formulated as

. MRC/MRT
min F: /
Pp:P gDy, M

st.M > K (6.62)

(6.47b), (6.47¢), (6.47d)

We follow a similar method in section 6.4 to simplify problem (6.57). By substituting (6.29),

(6.50), (6.51), (6.52) and (6.53) into problem (6.62) and performing some derivation, we get

K
min > (é + unTh)+Ci T2y
a,z,2,9,5,b,t,t, M .—1 (663)
K . K -
FC[AMRC/MET Nr 4 0 5 log(1 4+ 1) + C S log(1 + )]
k=1 k=1

5.t.(6.62b), (6.62¢), (6.62d), (6.62¢), (6.62f), (6.62g), (6.62h)
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It is worth-mentioning that if the number of BS antennas M is fixed, then the optimization

values, (6.63) becomes

problem (6.63) would degrade to (6.57) which is a GGP problem as discussed in subsection
6.4. When the pilot and data power are fixed, which means a, z, Z,y, 7, b all have fixed

t,M

min AMEC/MET Ny O Z log(1

k=1

_ K
+o5) +C Y0 log(1 + t) (6.64a)
k=1
K K Ko
TSP R DV S TSP e (6.64b)
k=1 k=1 k=1
max{y(zx — 1), K} <M < —+ (6.64c)
Y2
E o < (6.64d)
T > o (6.64e)
By replacing the term ﬁ with a new variable M, and using the constraint M— < M and
M >0, (6.64) becomes
. K -
min AMRC/MET \r 4 ¢ Z log(1+ )4+ C 3 log(1 +ty,) (6.65a)
£,M,M -1 k=1
K LS L K
Z g Z + 5 Z (6.65b)
max{y(z, — 1), K} S M < =~ (6.65¢)
2
11 &
. + 47 <

(6.65d)



Ci<m (6.65f)

M >0 (6.65g)

Similar to the previous problem (6.45) and (6.61), (6.65) is also a GGP problem with a com-
bination of a standard GP and several additive logarithm terms of generalized posynomial.
As a result, (6.65) can be converted to a convex optimization problem through a logarithmic

change of the variables and then be solved by standard numerical optimization packages.

Based on the discussion above, we give an iterative algorithm to find out the suboptimal
pilot and data power as well as the number of antennas at BS for optimization problem
(6.63). It can be seen that when the pilot and data powers or M is fixed, (6.65) can be
converted to a convex optimization problem which is easy to solve. Hence, the minimization
problem can be divided into two parts: at the iteration k, with the fixed M (k), we can
obtain three sets of new pilot-data allocation vector P, x(k + 1), Pyg(k + 1) and Pyi(k + 1),
to minimize the total power while satisfying all constraints; then after updating P, x(k),
P, (k) and ]sdyk(k:) to Pox(k+1), Pyr(k+1) and ]5d7k(k' + 1), by fixing the pilot and data
power obtained in the previous step, we calculate the optimal number of antennas at BS,
M (k 4+ 1), by solving (6.65). Such an alternating optimization procedure continues until the

error tolerance is satisfied. The proposed iteration is summarized as follow.
Algorithm 2:
1. Tnitialization: initialize M(0), P,x(0), Psx(0) and Py (0); set iteration number k = 0;

set the error tolerance A.

89



2. With the fixed M (k), calculate the optimal pilot and data powers P, (k+1), Pyx(k+1)
and Py(k + 1) based on (6.63);

3. With the fixed P, (k + 1), Pyx(k + 1) and Py (k + 1), calculate the optimal number
of antennas M (k + 1). Then calculate the objective function in (6.65) by using M (k + 1),
P,x(k+1), Pyp(k+ 1) and Py (k + 1) to obtain the total power P(k 4 1);

4. Terminate the loop if |P(k + 1) — P(k)| < A. Otherwise, let k = k£ +1 and go to Step

It is worth mentioning that the convergence of the algorithm above is guaranteed because
the total transmitted power is minimized at each iterative step. However, it should be pointed
out that the proposed algorithm is not guaranteed to give the global optimal solution due

to the nonconvex nature of the original problem.

6.5 Simulation Results and Discussion

In this section, numerical simulations are carried out to validate the derived average SINR
lower bounds for single-cell MU-MIMO systems and evaluate the proposed EE power allo-
cation methods. We consider a single cell MU-MIMO system with a radius of 1000m. All
K = 4 users are assumed to be located uniformly over the cell at random with a minimum
distance of r, = 100m away from the BS. The large-scale channel fading is modeled with
Br = zi/(rx/7h)", where z;, represents a log-normal random variable with standard deviation
o, ri is the distance between the k-th user and the BS and v means the path loss expo-
nent. Following the parameter setting in [1], we choose o = 8dB and v=3.8. Throughout
the simulation, the normalized additive Gaussian noise with zero mean and unit variance is
assumed.
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Same as the multi-cell MU-MIMO cases discussed in Chapter 4 and Chapter 5, we sup-
pose that the OFDM signal is transmitted according to LTE standard [1]. The simulation
parameters are summarized in Table 6.1. The parameters in circuit power consumption
model are chosen according to paper [33, table II]. In the optimization problem, the weight
(1 and (5 are assumed to be 1 and 0.01, respectively. The same target SINR and power con-
straint are applied for both uplink and downlink transmission. In the following simulation,

all powers are normalized according to noise power.

Table 6.1 Simulation Paremeters

Parameter Value

Cell Radius 1000 m
Minimum distance 100 m
Transmission bandwidth 10MHz
Channel coherence time 1 ms
Subcarrier spacing 15 kHz
OFDM symbol interval 71.4 ps
Symbol duration 66.7 ps
Guard interval length 4.7 us
Relative pilot length 4

Power required to run the circuit components at BS, Pgg 1w

Power required to run the circuit components at user, Py 0.1W
Power consumed by baseband processor, Psyn 2W

Power consumed by linear processing at BS, Psyn 0.5W
Computational efficiency at BS, Lgs 12.8 Gflops/W
Computational efficiency at user, Ly 5 Gflops/W

In order to validate the tightness of average SINR lower bounds in single-cell MU-MIMO
systems, we give the simulation results for the original average SINR and the derived lower
bounds for comparison in Fig. 6.1. Here, we have initially assumed that equal pilot and data
power allocation among all users is applied with p,r = par = Par = 10 for any k € K as in
paper [22]. Tt is clearly seen that the derived lower bounds are tight in all cases despite the
number of BS antennas. In both ZF receiver/precoder and MRC receiver/MRT precoder
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situations, the uplink and downlink transmission show nearly the same SINR performance.
The MU-MIMO system with ZF receiver/precoder shows a better SINR performance than

the system with the MRC receiver/MRT precoder used at BS.
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Figure 6.1: Average SINR versus the number of BS antennas

Fig. 6.2 shows the uplink, downlink and the processing circuit power versus the number
of BS antennas with v, = 75 = 5dB and v, = v = 15d B, respectively, for the fixed number
of BS antennas schemes discussed in section 6.3. The uplink power includes the power of
both pilot and uplink data signal. Note that for the system with MRC receiver and MRT
precoder, when the required SINR is chosen as 15dB, there is no solution for M < 70
because of the significant crosstalk interference. When M becomes large, the total uplink or
downlink power required to achieve the 15dB SINR target between ZF/ZF and MRC/MRT
schemes is less than 5dB. In low target SINR region, MRC/MRT performs almost as well
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as the ZF based scheme. Moreover, the circuit power cost of ZF/ZF is always higher than
that of MRC/MRT, this is because the processing circuit for ZF/ZF is more complicated
than that of MRC/MRT. It can be seen that as M grows, both uplink and downlink powers
decrease, showing that the use of massive MU-MIMO can save a great deal of transmit power.
However, when M grows, the the corresponding circuit power increases severely. It means
that even the system spectral and energy efficiency can be beneficial with very large or even
infinite M because the user rates grow unboundedly as M goes to infinity [22], leading to
infinite but unrealistic spectral or energy efficiency because infinity M will also cause infinity

power consumed by digital signal processing and analog circuits.

S . ' _________________________ === Downlink power (MRC)__?L__
: = %= Downlink power (ZF)
| —o— Uplink power (MRT) |
TN, =15dB Do Uphnk power (ZF)—

Power level (dB)

SINR=5dB

T ] y i
100 200 300

Number of antennas at BS

Figure 6.2: Pilot-data power allocation with fixed number of BS antennas versus number of
BS antennas

Fig. 6.3 and Fig. 6.4 show the transmit and weighted total power versus the target
SINR thresholds. Here, the transmit power includes the power of pilot, uplink and downlink
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signals, and the weighted total power means the weighted sum of transmit power and circuit
power cost. The results in these two figures are based on the algorithm in section 6.4 for
variable number of BS antennas. It can be seen ZF /ZF requires lower transmit and weighted
total power then MRC/MRT under the same SINR target. However, MRC/MRT requires
less number of BS antennas than ZF/ZF under low SINR requirement. This is because the
circuit power cost in MRC/MRT system is lower than that in ZF/ZF system under equal
pilot and data power allocation. It is worth mentioning that ZF/ZF scheme gives a better
transmit power performance than the MRC/MRT scheme does. However, ZF/ZF scheme
also has more circuit power cost when compared to MRC/MRT which leads to a larger M

requirement in low target SINR region.

T = T 3
25 7776 Total power (MRC/MRT) ™~ A s
—o— Total power (ZF/ZF) . e
== Transmit power MRC/MRT) | 7 A,’
—/— Transmit power (ZF/ZF) o,
20 - S R pooeeeee P o SRR
= | .
)
o)
E 15
o)
A s
A e T |
(V]S SR e S —— SRS S ——— -
Wi :
’ '
,,,,, Sl S R
5 T 1
0 10 20
Target SINR (dB)

Figure 6.3: Total power versus target SINRs with variable number of BS antennas

94



2004 TRTZFZE S ———

98]

=

S
|

Number of BS antennas

Target SINR (dB)

Figure 6.4: Pilot-data power allocation with variable number of BS antennas versus number
of BS antennas

In Fig. 6.5, we compare the weighted total power of the proposed fixed number of BS
antennas schemes discussed in section 6.3, the variable number of BS antennas schemes in
section 6.4 and the pilot-data power allocation schemes proposed in Chapter 4. However, as
the pilot-data power control scheme in Chapter 4 is based on multi-cell case, we degrade it to
single-cell case for comparison which is the same as the (6.28) and (6.47) but removing the
second term in their objective functions. Here, the weighted total power of schemes proposed
in Chapter 4 also includes circuit power consumption which is calculated by using the same
equations discussed in section 6.2.4 based on the pilot and data powers. In simulation, we
choose M = 200 to calculate the corresponding pilot and data powers in the fixed number
of BS antennas schemes and schemes proposed in Chapter 4. It is obviously that the two
variable number of BS antennas scheme obtains the best power saving performance while
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the schemes proposed in Chapter 4 without taking consideration of circuit power shows the
worst, showing that with suitable number of BS antennas, the power saving performance

can be further improved.
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Figure 6.5: Total power versus target SINRs

Similar to Chapter 4, here, we also compare our proposed schemes with a simple equal
pilot-data power allocation where the pilot and data signal have the same power p, for all

users as in [22]. We define the percentage of the total power saving for the algorithm as

K

K+ Ty + GTo)pu — Y (tPpk + Thipar + GToDak)
k=1

K(t+ T + GiTs)p,

(6.66)

where p,, for ZF/ZF and MRC/MRT schemes can be easily found by setting p,r = par =
Dd,k = Py in the previous optimization problems in section 6.3. For the algorithm in section
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6.4, we define the percentage of the total power saving as

respectively. Here

MRC/MRT MRC/MRT
CZF(pu)_PZF P / (pu)_Pc /
P(;ZF(p’IL Pc]\/[RC/MRT (pu)

) DPu) an c D) denote the circuit power cost for
PZF d PMROIMET (), 1y g he circui for ZF /ZF

scheme and that for MRC/MRT scheme when equal power allocation is used, namely, by

setting ppx = Pax = Dar = Pu in the previous optimization problems (6.60) and (6.62),

respectively. From Fig. 6.6, it can be seen that about 75% to 79% total power has been

saved for ZF /ZF and MRC/MRT in low target SINR region, depending on the number of BS

antennas. The percentage of power saving decreases as the required per-user SINR increases.

It should be mentioned that the benefit of deploying a large number of BS antennas tends

to become marginal, since the ultimate SINR performance is limited by the interference and

channel estimation error.
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6.6 Conclusion

In this chapter, we have investigated the pilot-data power allocation for EE communications
in single-cell MU-MIMO systems with an objective of minimizing the pilot power as well as
the total uplink and downlink data power and processing circuit power consumption. We
have first analysed the uplink and downlink SINRs and then derived their lower bounds,
based on which two EE power allocation optimization problems are formulated under the
per-user SINR requirement and power constraint. For the fixed number of BS antennas
case, the non-convex optimization problems are then converted to standard GP and general
GP problems to facilitate the solutions. For the variable number of BS antennas case, an
iterative algorithm is proposed to solve the optimization problem. Numerical simulation
results have demonstrated the tightness of the SINR lower bounds for single-cell MU-MIMO

systems and the impacts of number of BS antennas on EE.
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Chapter 7

Summary and Further Research Directions

7.1 Concluding Remarks

In this thesis, several joint pilot and data power allocation algorithms for both conventional
and massive MU-MIMO systems have been developed based on two energy efficient power
allocation frameworks, in order to pursue high energy efficiency of next-generation green
communication.

First, the close-form expressions of the average SINR lower bounds under MMSE channel
estimation for both uplink and downlink transmissions in multi-cell MU-MIMO systems have
been derived, by considering the conventional linear MRC and ZF detectors in the uplink
and the MRT and ZF precoder in the downlink. Based on the derived uplink and downlink
average SINRs, the Jensen’s inequality and the properties of central Wishart matrix were
applied to find the lower bounds of the derived SINRs. These lower bounds of the per-user
average SINR are used to replace the true SINR to simplify the power allocation optimization
problem. It has been shown that such relaxation of the original average SINR yields a
simplified problem and leads to a suboptimal solution.

Second, based on the first EE power allocation framework, we have investigated the pilot
and data power allocation for EE communications in multi-cell MU-MIMO systems with an
objective of minimizing the total uplink and downlink transmit power under the per-user
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SINR requirement and power constraint. The proposed schemes take into account the MRC
and ZF detectors in the uplink transmission together with MRT and ZF precoders in the
downlink transmission. In order to simplify the original optimization problems, the derived
SINR lower bounds instead of the true values were used in the power allocation algorithms.
Then, the non-convex optimization problems are converted to a standard GP problem to
facilitate their solution based on inequality substitution. For the pilot-data power control
scheme with ZF precoder and ZF detector, geometric inequality is used to approximate the
original non-convex optimization to GP problem. The case of very large number of BS

antennas has also been discussed by assuming infinite number of antennas at BS.

Third, two pilot and data power control schemes have been proposed and investigated
based on the second EE power allocation framework to jointly maximize the total EE for
both uplink and downlink transmission under per-user and BS power constraints for multi-
cell TDD MU-MIMO systems. The original non-convex power allocation problems have been
simplified by using the derived SINR lower bounds and Dinkelbach’s method and FrankWolfe
(FW) iteration to obtain an equivalent convex problem. The pilot-data power allocation
schemes based on the two frameworks are compared with the SE maximization scheme.
From the simulation results, the second framework shows a better EE performance than the

first framework.

Finally, we have investigated the pilot-data power allocation for EE communications in
single-cell MU-MIMO systems with an objective of minimizing the total uplink and down-
link transmit power and processing circuit power consumption. Based on the discussion
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in chapters 2 and 3, the system models and SINR lower bounds are degraded from multi-
cell to single-cell MU-MIMO. The model of processing circuit power consumption is dis-
cussed. Then, pilot and data power allocation schemes are proposed which minimize the
total weighted uplink and downlink transmit power while meeting the per-user SINR and
BS power constraints with circuit power consumption under consideration. In our proposed
power control schemes, both fixed and variable numbers of BS antennas have been investi-
gated. For the fixed number of BS antennas case, the non-convex optimization problems are
converted to a general GP problem to facilitate their solution. For the variable number of

BS antennas case, an iterative algorithm is proposed to solve the optimization problem.

7.2 Future Work

During my study of green communication technology, some original ideas have been proposed
on designing power control algorithm to improve the energy efficiency of the MU-MIMO
systems. Nevertheless, there are still some issues that require further investigation.

1. The pilot-data power allocation algorithm in single-cell massvie MIMO systems with
the consideration of circuit power consumption based on the second framework can be in-
vestigated.

2. In this thesis, we only discussed the pilot-data power allocation schemes in multi-
cell massive MU-MIMO systems without considering the circuit power consumption. Our
work in chapters 4 and 5 can be further extended with the consideration of both transmit
power and circuit power cost. To the best of our knowledge, there is no such power control
technique yet that exploits the energy efficiency in multi-cell massive MU-MIMO systems
among pilot and data symbols and circuit power. Also, the circuit power consumption model
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for multi-cell situation is worth-studying.

3. The proposed power allocation algorithms are based on the assumption that there
is no correlation between BS antennas. In practice, the antennas at BS are not perfectly
independent, where correlation may cause some noise in SINR. Therefore, it is desirable to

establish a more effective and robust channel model to estimate the SINRs.
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