
Analyzing TLS Interception in Middleware Network

Appliances

Louis Waked

A Thesis

in the

Concordia Institute of Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of

Master of Applied Science (Concordia Institute of Information Systems Engineering) at
Concordia University

Montreal, Quebec, Canada

March 2018

©Louis Waked, 2018

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Louis Waked

Entitled: Analyzing TLS Interception in Middleware Network
Appliances

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Information Systems Security

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Jamal Bentahar Chair

Dr. Amr Youssef Supervisor

Dr. Mohammad Mannan CIISE Examiner

Dr. Khaled Galal External Examiner (ECE)

Approved

Chair of Department or Graduate Program Director

20

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

ii

Abstract

Analyzing TLS Interception in Middleware Network

Appliances

Louis Waked

Concordia University, 2018

Network traffic inspection, including TLS traffic, in enterprise environments is

widely practiced. Reasons are primarily related to improving enterprise security (e.g.,

phishing and malicious traffic detection) and meeting legal requirements (e.g., prevent-

ing unauthorized data leakage, complying with laws such as the US Health Insurance

Portability and Accountability Act, HIPAA). To be able to analyze TLS-encrypted data,

network appliances implement a Man-in-the-Middle TLS proxy, by acting as the intended

web server to a requesting client (e.g., a browser), and acting as the client to the ac-

tual/outside web server. As such, the TLS proxy must implement both a TLS client and

a server, that can handle a large amount of traffic (preferably, in real-time). However,

as protocol and implementation layer vulnerabilities in TLS/HTTPS are quite frequent,

these proxies at least be as secure as a modern, up-to-date web browser (e.g., Chrome,

Firefox), and a properly configured web server (e.g., an A+ rating in SSLlabs.com). As

opposed to client-end TLS proxies (e.g., as implemented in several anti-virus products),

the proxies in network appliances may serve tens to hundreds of clients, and any vulner-

ability in their TLS implementations can significantly downgrade an enterprise’s security

level.

iii

To analyze TLS security of network appliances, we develop a comprehensive test-

ing framework, by combining and extending tests from existing work on client-end and

network-based interception studies. We analyze 13 representative network appliances over

a period of more than a year (including multiple product versions, before and after notify-

ing affected vendors, a total of 17 versions), and uncover several security issues regarding

TLS version and certificate parameters mapping, CA trusted stores, private keys, and

certificate validation tests. For instance, we found that four appliances perform no certifi-

cate validation at all, three use pre-generated certificates, and 11 accept certificates signed

using the MD5 algorithm, exposing their end-clients to MITM attacks. Our goal is to

highlight the risks introduced by widely-used TLS proxies in enterprise and government

environments, potentially affecting many systems hosting security, privacy, and financially

sensitive data.

iv

Acknowledgments

I would like to express my gratitude to everyone that supported me throughout the

course of my Master Program.

First and foremost, I would like to thank my supervisor, Dr. Amr Youssef, for the

continuous guidance, patience and support that he provided me with. I am thankful for

all the opportunities that you have provided me with, which enhanced my learning curve

and boosted my professional development in the information security field. I could not

have asked for a more caring and genuine advisor, always available for consultation on

academic and even personal matters. It was a pleasure working under your supervision.

I would also like to thank Dr. Mohammad Mannan. You saw potential in me and

pushed me towards big achievements. I am proud of the work that I have achieved, and a

big part of the credits goes to you. Thank you for the fruitful and rewarding experience

you have provided me with.

I wouldn’t have made it without the support of my lab and university colleagues. Thank

you Mohamed Nabil Tolba, Ahmed Abdelkhalek, Sharon Shasha, Moustafa Mahmoud,

Muhammad ElSheikh, Abdullah Al-Barakati, Omar Khalid, Xavier de Carné de Car-

navalet for your assistance and kindness.

This journey would not have been possible without the ultimate and consistent support

of my family. You have always encourage me to follow my dreams and always aim higher.

With every achievement, I aim to make you proud. I would also like to thank Dr. Elie

v

Nasr for the support he gave me throughout my professional career. You have mentored

me and guided towards the best opportunities I have faced, and have been always there

whenever I needed advice. I have learned a lot from you.

Finally, I would like to thank my friends in Montreal for the good times and fun ex-

periences we had. You helped me through the rough moments and made my days full

of happiness. Thank you Patrick Abdel Ahad, Mariam AlHilani, Megan El Nemnom,

Edy Haleblian, Amyn Murji, Rachel Partamian, Holly Pelerine, Timothy Thomasson,

and Edmond Yazbeck. I wish you all the best and success in the world.

Louis Waked

vi

To my family for their love and support

Table of Contents

Abstract iii

Acknowledgments v

List of Figures xi

List of Tables xii

List of Acronyms xiii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Thesis contributions . 5

1.2.1 Related Publication . 5

1.3 Outline of the thesis . 6

Chapter 2 Background and Literature Review 7

2.1 Introduction . 7

2.2 The TLS Protocol . 7

2.2.1 TLS Handshake Protocol . 8

2.2.2 TLS Record Protocol . 9

2.2.3 X.509 Certificates and Certificate Authorities 10

viii

2.2.4 TLS Client Certificate Validation 11

2.2.5 Known TLS Attacks . 11

2.3 HTTPS Proxies and TLS Interception . 13

2.3.1 Expected Behavior of a TLS Proxy 14

2.4 Related Work . 15

2.4.1 TLS Interception . 16

2.4.2 Certificate Scans . 17

2.4.3 Certificate Validation . 17

2.4.4 Comparison . 19

2.5 Terminology . 19

2.6 Threat Model . 20

Chapter 3 Framework for Testing TLS Intercepting Network Appliances 22

3.1 Introduction . 22

3.2 Test Setup/Architecture . 22

3.3 CA Trusted Store . 26

3.4 TLS Version Mapping . 27

3.5 Certificate Parameters Mapping . 27

3.6 Cipher Suites . 28

3.7 Known TLS Attacks . 29

3.8 Faulty Certificates . 31

3.8.1 Faulty Certificate Chains Crafting Methodologies 33

3.9 Private Key Protection, Self-issued, and Pre-Generated Certificates 38

Chapter 4 Results of the Analysis of 13 network appliances’ TLS proxies 41

4.1 Introduction . 41

4.2 Tested Appliances . 41

4.3 TLS Parameters . 43

4.3.1 TLS versions and mapping . 44

4.3.2 Certificate parameters and mapping 44

ix

4.3.3 Cipher suites . 45

4.3.4 Known TLS attacks . 46

4.4 Certificate Validation Results . 46

4.5 CA Trusted Stores . 52

4.5.1 Accessibility . 53

4.5.2 Source and content . 54

4.6 Private Key Protection . 56

4.6.1 Private Key Extraction for Cisco Ironport WSA 59

4.7 Evolution of Products Between 2016–2018 60

4.8 Practical Attacks . 62

Chapter 5 Conclusions and Future Work 65

5.1 Summary and Conclusion . 65

5.2 Future Work . 66

Bibliography 68

x

List of Figures

2.1 TLS Handshake . 9

3.1 Framework components and the overall test architecture 23

3.2 Framework components and test architecture with a router 25

xi

List of Tables

4.1 List of the tested appliances . 42

4.2 Results for TLS parameter mapping/mirroring and vulnerabilities to known

attacks . 43

4.3 Results for certificate validation, part I . 47

4.4 Results for certificate validation, part II 49

4.5 Results for certificate validation, part III 51

4.6 Results for CA trusted stores, private keys and initial setup 57

xii

List of Acronyms

3DES Triple Data Encryption Algorithm

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CA Certificate Authority

CAPI Cryptography API

CBC Cipher Block Chaining

CCS Computer and Communications Security

CN Common Name

CNG Cryptography API Next Generation

CRL Certificate Revocation List

DES Data Encryption Standard

DHE Ephemeral Diffie-Hellman

DNS Domain Name System

DV Domain Validation

EC2 Elastic Compute Cloud

EV Extended Validation

FTP File Transfer Protocol

GCM Galois Counter Mode

GUI Graphical User Interface

xiii

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDEA International Data Encryption Algorithm

IETF Internet Engineering Task Force

IMAP Internet Message Access Protocol

IP Internet Protocol

ISO International Standards Organization

JSSE Java Secure Socket Extension

MAC Message Authentication Codes

MD4 Message Digest 4

MD5 Message Digest 5

MITM Man in the Middle

N/A Not Available

NAT Network Address Translation

NG Next Generation

NSA National Security Agency

NSS Network Security Services

OCSP Online Certificate Status Protocol

OID Object Identifier

OS Operating System

OV Organization Validation

PKI Public Key Infrastructure

POC Proof of Concept

POP3 Post Office Protocol 3

RAM Random Access Memory

RC4 Rivest Cipher 4

RFC Request for Comments

xiv

RSA RivestShamirAdleman

SAN Subject Alternative Name

SDK Software Development Kit

SHA Secure Hash Algorithm

SMTP Simple Mail Transfer Protocol

SNI Server Name Indication

SP1 Service Pack 1

SP2 Service Pack 2

SSH Secure Shell

SSL Secure Sockets Layer

TCB Trusted Code Base

TLS Transport Layer Security

TMG Threat Management Gateway

UFS Unix File System

UI User Interface

URL Uniform Resource Locator

US United States

UTM Unified Threat Management

VM Virtual Machine

WAN Wide Area Network

WSA Web Security Appliance

WSVA Web Security Virtual Appliance

xv

Chapter 1

Introduction

1.1 Motivation

Most network appliances currently include an SSL/TLS interception feature in their

products. The interception process is performed by making use of a TLS web proxy

server. Being either transparent or explicit to the end-user, the proxy intercepts the

user’s request to visit a TLS server, and creates two separate TLS connections. It acts

as the HTTPS endpoint for the user’s browser, and as the client for the actual HTTPS

web server. Having the appropriate private key for the signing certificate (inserted to

the client’s root CA store), the proxy has access to the raw plaintext traffic, and can

perform any desired action, such as restricting the access to the web page by parsing its

content, or passing it to an anti-virus/malware analysis module or a customized traffic

monitoring tool. Common reasons for adopting TLS interception include the protection

of organization and individuals against malware and phishing attacks, law enforcement

and surveillance, access control and web filtering, national security, hacking and spying,

and privacy and identity theft [57].

While interception violates the implicit end-to-end guarantee of TLS, we focus on

the potential vulnerabilities that such feature introduces to end-users located behind

1

the network appliances, following several other existing studies on TLS interception,

e.g., [53, 24, 10, 42, 46]. In general, TLS interception, even if implemented correctly,

still increases the attack surface on TLS due to the introduction of an additional TLS

client and server at the proxy. However, the lack of consideration for following the current

best practices on TLS security as implemented in modern browsers and TLS servers, may

result in severe potential vulnerabilities, and overall, a significantly weak TLS connection.

For example, the proxy may not mirror the TLS version and certificate parameters

or might accept outdated, insecure ones. Also, the proxy could allow TLS compression,

enabling the CRIME attack [45], or insecure renegotiation [56]. The proxy may downgrade

the Extended Validation (EV) domains to Domain Validated (DV) ones. The proxy also

may not mirror the cipher suites offered by the requesting client, and use a hard-coded list

with weak and insecure ciphers, reviving old attacks such as FREAK [37], Logjam [35], and

BEAST [44]. If the proxy does not implement a proper certificate validation mechanism,

invalid and tampered certificates could be accepted by the proxy, and the clients (as

they see only proxy-issued, valid certificates). Accepting its own root certificate as the

signing authority of externally delivered content could allow MITM attacks on the network

appliance itself. The use of a pre-generated key pair by a proxy could enable a generic

trivial MITM attack [42]. In addition, the proxy may rely on an outdated root CA store for

certificate validation, containing certificates with insecure key length, expired certificates,

or banned certificates that are no longer trusted by major browsers/OS vendors.

Concerns about security weaknesses introduced by TLS interception proxies are not

new. In 2012, Jarmoc [53] proposed a basic framework for testing network appliances

consisting of seven certificate validation tests, and applied it on four network appliances.

Dormann [24, 10] relied on badssl.com’s tests to analyze the certificate validation process

of two network appliances, revealing flaws in the appliances’ certificate validation mecha-

nisms. Carnavalet and Mannan [42] designed a framework for analyzing client-based TLS

2

proxies (as included in several leading anti-virus and parental control applications), and

revealed several flaws in the TLS version and certificate mapping, certificate validation,

private key generation and protection, CA trusted store content, in addition to vulnera-

bilities to known TLS attacks. In 2017, Durumeric et al. [46] applied tests from earlier

frameworks on 12 network appliances and 13 client-side TLS proxies, uncovering several

flaws in certificate validation, cipher suites, TLS versions and known TLS attacks.

We argue that most past studies on network appliances analyzed only preliminary

aspects of TLS interception, while the extensive work of Carnavalet and Mannan [42]

targeted only client-end TLS proxies. However, TLS vulnerabilities in network appliances

could result in more serious security issues, as arguably, enterprise computers handle

more important business/government data in bulk, compared to personal information on

a home user machine. Also, a single, flawed enterprise TLS proxy can affect hundreds of

business users, as opposed to one or few users using a home computer with a client-side

TLS proxy.

We present an extensive framework dedicated for analyzing TLS intercepting appliances,

borrowing/adapting several aspects of existing work on network appliances and client-end

proxies, in addition to applying a set of comprehensive certificate validation tests. We

analyze the TLS-related behaviors of appliance-based proxies, and their potential vul-

nerabilities from several perspectives: TLS version and certificate parameter mapping,

cipher suites, private key generation/protection, content of root CA store, known TLS

attacks, and 32 certificate validation tests. We use this framework to evaluate 13 repre-

sentative TLS network appliances, a total of 17 product versions, between July 2017 and

March 2018 (see Table 4.1), including open source, free, low-end, and high-end network

appliances, and present the vulnerabilities and flaws found. All our findings have been

disclosed to the respective companies.

3

A summary of our findings include the following. Four appliances do not perform any

certificate validation by default, allowing simple MITM attacks against their clients; one

does not perform certificate validation even after explicitly enabling in its configuration.

Another appliance accepts self-signed certificates, and three appliances use pre-generated

key pairs, enabling similar MITM attacks. One appliance states in its documentation that

it generates the key pair during installation, but we found it to use a pre-generated key

pair. Four appliances accept their own certificates for externally delivered content. 11

appliances accept certificates signed using the MD5 algorithm, and 4 appliances accept

certificates signed using the MD4 algorithm. Eight appliances offer weak and insecure

ciphers (generally not offered by any modern browser). Four appliances support SSL 3.0,

of which one only accepts TLS 1.0 and SSL 3.0 (i.e., rejects connections with TLS 1.1

and 1.2). We also found that the root CA stores of all appliances include at least one

or more certificates deemed untrusted by major browser/OS vendors, and one appliance

includes an RSA-512 certificate, which can be trivially compromised. Nine appliances also

do not encrypt their private keys; seven such keys are accessible to unprivileged processes

running on the same appliance.

Analyzing network appliances raises several new challenges compared to testing browsers

and client-end TLS proxies. Several network appliances do not include an interface for

importing custom certificates (essential for testing), and many appliances do not provide

access to the file system or a terminal, overburdening the tasks of injecting custom cer-

tificates and locating the private keys (for details, see 4.6.1). Many appliances do not

support more than one or two network interfaces, and thus, require the use of a router

to connect to multiple interfaces. In addition, appliances that perform SSL certificate

caching require the generation of a new root key pair for their TLS proxies for each test.

4

1.2 Thesis contributions

This thesis has the following contributions:

• We develop a comprehensive framework to analyze TLS interception in enterprise-

grade network appliances, combining our own certificate validation tests with exist-

ing tests for TLS proxies (both client-end services and network appliances), which

we reuse or adapt as necessary for our purpose. Our certificate validation tests can

be found at: https://madiba.encs.concordia.ca/software/tls-netapp/.

• We use this framework to evaluate 13 well-known appliances from all tiers: open

source, free, low-end, and high-end products, indicating that the proposed frame-

work can be applied to different types of network appliances.

• We uncover several vulnerabilities and bad practices in the analyzed appliances,

including: either an incomplete or completely absent certificate validation process

(resulting trivial MITM attacks), improper use of TLS parameters that mislead

clients, inadequate private key protection, and the use of weak/insecure cipher suites.

• We describe the practical attacks that can exploit the dangerous vulnerabilities we

uncovered. We show that all appliances are vulnerable to full server impersonation

under an active man-in-the-middle attack, and that attacker can recover authenti-

cation cookies of clients behind six appliances, out of the 13 tested middleboxes.

1.2.1 Related Publication

The work discussed in this thesis has been accepted in the ACM ASIACCS 2018 con-

ference:

Louis Waked, Mohammad Mannan, and Amr Youssef. To Intercept or Not to Intercept:

Analyzing TLS Interception in Network Appliances. The 13th ACM ASIA Conference on

5

Information, Computer and Communications Security, Jun 4-8, 2018, Songdo, Incheon,

Korea.

1.3 Outline of the thesis

The rest of the thesis is organized as follows. Chapter 2 provides a summary for the

background information related to this thesis, in terms of the TLS protocol and HTTPS

Interception. It additionally provides a list of related work from previous publication in

the areas of TLS interception, certificate scans and certificate validation, and a comparison

with the most related work. This chapter also provides a list of the terminologies used in

this thesis, in addition to a threat model. In Chapter 3, we present our comprehensive

framework for analyzing TLS intercepting network appliances, and provide insights on the

different components of the framework. In Chapter 4, we present the results of the testing

of 13 different network appliances’ TLS proxies, in addition to analyzing the vulnerabilities

uncovered and providing a list of practical attacks on these network appliances and their

clients. We also highlight the yearly evolution of network appliances from 2016 to 2018.

Finally, in Chapter 5, we provide a summary and a conclusion, in addition to the future

work.

6

Chapter 2

Background and Literature Review

2.1 Introduction

In this chapter, we present a background in addition to a related work literature to this

thesis. We describe the TLS protocol, along with its handshake record processes, x509

certificates and certificate authorities, certificate validation process and known attacks

on it. We also describe HTTPS proxies, the TLS interception process, and the expected

behavior of a TLS proxy. We also include in this chapter a description of the related

work, in terms of TLS interception, certificate scans, and a comparison with the most

related work. We conclude this chapter with a list of terminologies used and a threat

model related to TLS interception.

2.2 The TLS Protocol

The SSL (Secure Socket Layer) protocol, originally designed by Netscape, first appeared

in 1995 as version 2.0, but contained numerous amounts of security flaws, which led to the

release of a redesigned version 3.0 in 1996 [48]. In 1999, Netscape handed the ownership

and development duties to the IETF (Internet Engineering Task Force), which changed the

protocols name to TLS (Transport Layer Security), in order to avoid legal and ownership

7

problems. TLS currently exists under three versions: 1.0, 1.1 and 1.2. Alongside the

progress of technology, progressed the field of cryptography, as attacked gained more

knowledge and resources, and cryptographers countering their attempts by extending the

versions of protocols and designing more secure ones. The TLS version 1.2, released in

2008, is more secure than its predecessors. However, cryptographers found numerous flaws

in its design, which led the IETF to work on designing a new version 1.3.

The TLS protocol is designed to hold three properties, which are confidentiality, data

integrity and authenticity. Confidentiality is secured after the encryption of the data

application, while data integrity relies on MACs (Message Authentication Codes), whereas

the authenticity is done through a public key encryption scheme, and is required by the

server side [43].

2.2.1 TLS Handshake Protocol

The TLS protocol involves the TLS handshake phase and the TLS record phase. The

handshake phase uses asymmetric cryptography to acquire a shared session key between

the two parties. Figure 2.1 represents a typical TLS handshake.

The requesting client initiates with a ClientHello message, which includes information

about the TLS version and the list of supported cipher suites, sorted by priority. The

web server replies with a ServerHello message, which indicates the selected TLS version

and cipher suite, which are typically the highest commonly supported version and cipher.

The server also provides its leaf X509 certificate to the client, before ending with a Server-

HelloDone message. The client then sends a ClientKeyExchange message. The content

of this message will depend on the public key algorithm selected between the ClientHello

and the ServerHello.

8

Alternatively, the key can be used for authenticated encryption using AES-GCM in the

TLS version 1.2 only.

2.2.3 X.509 Certificates and Certificate Authorities

The TLS protocol relies on the X.509 public key infrastructure (PKI) for server authen-

tication (client authentication optional). The private key is kept secret on the web server,

and should be stored in an encrypted format, accessible by the Root administrator of the

server. On the other hand, the public key is embedded in a binary certificate, known as

an X.509 public key certificate.

Webmasters typically request their key pair from a trusted authority, which delivers an

end-server key pair signed by its CA certificate. The CA certificate could be either a Root

CA certificate or an intermediate CA certificate. A typical certificate key chain includes

one Root CA certificate, an optional unlimited amount of intermediate CA certificates, and

a single leaf certificate, used by web servers mainly. A CA certificate is identified through

the X.509 version 3 extension ‘basicConstraints’, which includes the CA parameter, with

either a ‘true’ or ‘false’ value. Note that X.509 version 1 certificates do not include any

extensions, and thus, do not possess any way to differentiate between CA certificates and

non-CA certificates.

For a CA certificate to be trusted by a client, it should be included in its trusted CA

store, under the trusted issuers section. Public key certificates are issued by certificate

authorities in three forms. The most common type is a domain validation (DV) certificate,

issued to anyone listed as the administrator contact in the public record associated with

a domain name. The second type is an organization validation (OV) certificate, which

requires proof of ownership of the domain name, as it contains the company information

in the certificate. The third and most trustful type of certificates is the Extended Vali-

dation (EV) certificate, which is issued after a rigorous identity check on the requesting

10

organization. However, the EV certificates are displayed in a green address bar on all

major browsers, giving an extra layer of trust to the end users.

2.2.4 TLS Client Certificate Validation

Upon receiving a server certificate, the requesting TLS client must validate the entire

certificate chain, including the Root CA certificate, the intermediate CA certificates, and

the server certificate. It is the responsibility of the client to insure that the certificates

are valid, compliant and not tempered with. An up-to-date browser is the best line of

defense in terms of certificate validation.

In addition to checking the validity periods, constraints, key usages, certificate signa-

ture, associated domains, X.509 version 3 extensions, key size and algorithms used, the

requesting client must also make sure that the certificates have not been revoked by their

issuing certificate authority, through a Certificate Revocation List (CRL) or the Online

Certificate Status Protocol (OCSP).

2.2.5 Known TLS Attacks

In this section, we provide a brief description for the Known TLS attacks mentioned in

this work.

The BEAST [44] vulnerability allows an active MITM attack to decrypt session cookies

and authentication credentials. This client side vulnerability is a result of a flaw in the

CBC mode of operation, that can be exploited in a TLS version 1.0 TLS connection, by

repeatedly predicting the Initialization Vector blocks and checking if the prediction was

accurate or not. To patch this vulnerability, TLS proxies should patch their TLS libraries

by implementing the 1/n-1 split method [1] for the CBC mode of operation, excluding

cipher suites that use CBC, or denying access to web servers that do not accept TLS

11

connection versions higher than TLS version 1.0.

CRIME [45] is exploited when TLS data compression is used in a TLS connection,

leaking the content of some encrypted packets, which could result in decrypted cookies.

In order to mitigate this attack, TLS proxies should refuse the use of TLS data compression

in its TLS connections.

A system is vulnerable to the FREAK [37] attack if it includes export ciphers in this

list of supported ciphers. The use of these ciphers was forced by the US Government

during the 1990s for any system that is exported outside the US. The reason is that

the NSA solely had enough computing power at that time to exhaustively search these

40-bit and 56-bit keys at the time, allowing them to have access to decrypted traffic.

Furthermore, with the ongoing increase of computing power, the factoring of small RSA

keys is now a trivial task. Attackers can downgrade the connection by forcing the use

of an export cipher, factor the key and use it to have access to the plaintext traffic. As

a countermeasure, TLS proxies should not include export-grade ciphers into their list of

supported ciphers.

The Logjam [35] attack is a reminiscent of the FREAK attack, requiring the use of

the previously mentioned export ciphers. However, this attack exploits a vulnerability

in the TLS protocol’s DHE key exchange. The MITM attacker forces a DHE EXPORT

cipher with the web server, and relies on small TLS parameters and a set of precomputed

parameters to break the DHE key exchange process, resulting in decrypted traffic. To

avoid this attack, TLS proxies should not advertise export-grade ciphers in the list of

their supported ciphers.

TLS renegotiation [56] is a TLS protocol feature that permits renegotiation of new TLS

parameters in an already established TLS connection between two parties. This feature

12

can be exploited by an attacker, allowing the attacker to place herself in a MITM position

between the requesting client and the origin server. The malicious user achieves this by

establishing a TLS connection with the server, and later, intercepting the client’s TLS

request and relays the the request over the encrypted channel. The renegotiation of the

parameters then takes place, without the consent of the client. On the other hand, the

server believes that it is a legitimate TLS renegotiation. As a result, the attacker can now

send requests to the server on behalf of the authenticated client. As a mitigation, TLS

proxies must implement RFC 5746, a TLS extension that ties renegotiations to the initial

connection.

2.3 HTTPS Proxies and TLS Interception

For TLS interception, network appliances make use of TLS proxies, deployed as either

transparent proxies or explicit proxies. The explicit proxy requires the client machine

or browser to have the proxy’s IP address and listening port specifically configured to

operate. Thus, the client is aware of the interception process, as the requests are sent

to the proxy’s socket. On the other hand, transparent proxies may operate without the

explicit awareness of the clients, as they intercept outgoing requests that are meant for

the web servers, without the use of an explicit proxy configuration on the client side;

however, for TLS interception, a proxy’s certificate must be added to the client’s trusted

root CA store (explicitly by the end-user, or pre-configured by an administrator). Such

proxies could filter all ports, or a specific set of ports, typically including HTTP port 80

and HTTPS port 443. Secure email protocols could also be intercepted, by filtering port

465 for secure SMTP, port 993 for secure IMAP, and port 995 for secure POP3. The

proxy handles the client’s outgoing request by acting as the TLS connection’s endpoint,

and simultaneously initiates a new TLS connection to the actual web server by acting as

the client, while relaying the two connections’ requests and responses.

13

By design, the TLS protocol should prevent any MITM interception attempt, by enforc-

ing a certificate validation process, which mandates that the incoming server certificate

must be signed by a trusted issuer. Certificate authorities only provide server certificates

to validated domains, and not to forwarding proxies, precluding the proxy from becoming

a trusted issuer (i.e., a valid local CA). To bypass this restriction, the proxy can use a

self-signed certificate that is added to the trusted root CA store of the TLS client, and

thereby allowing the proxy to sign certificates for any domain on-the-fly, and avoid trig-

gering browser warnings that may expose the untrusted status of the proxy’s certificate.

Thereafter, all HTTPS pages at the client will be protected by the proxy’s certificate,

instead of the intended external web server’s certificate. Users are not usually aware of

the interception process, unless they manually check the server certificate’s issuer chain,

and notice that the issuer is a local CA [55].

2.3.1 Expected Behavior of a TLS Proxy

We summarize expected behaviors from a prudent interception proxy (following [42]).

Deviations from these behaviors help design and refine our framework and validation tests.

The TLS version, key length, and signature algorithms should be mirrored (between

client-proxy and proxy-web) to avoid misleading clients regarding the TLS security pa-

rameters used in the proxy to external web server connection. The list of cipher suites

offered by the client should ideally be mirrored to the server’s TLS connection, or at

least maintained to have no weak/insecure ciphers. Domains with EV certificates should

not be downgraded to DV certificates, by exempting them from the interception process

(e.g., through white-listing, or simply based on the certificate type). The TLS proxies

and any associated libraries (e.g., OpenSSL, GnuTLS) must be up-to-date, and patched

against known TLS attacks and vulnerabilities (following major browser vendors), such as

BEAST [44], CRIME [45], FREAK [37], Logjam [35], and TLS insecure renegotiation [56].

14

Typically, the client software (e.g., a web browser) is the last line of defense against

faulty external certificates, as it is the sole entity responsible for the received certificate’s

chain of trust validation. When deployed, the TLS proxy takes on the responsibility of

protecting the clients by performing a proper certificate validation on behalf of them,

as the browser will be only exposed to the proxy-issued certificates. A less-stringent or

incomplete certificate validation process could result in severe consequences, e.g., enabling

MITM and downgrading attacks on client-based TLS proxies [42]. The impact is even

higher when a network appliance’s TLS proxy lacks strict TLS validation, affecting many

enterprise machines behind the appliance. Thus, all aspects of TLS chain of trust should be

properly validated, checking for flaws such as untrusted issuers, mismatched signatures,

wrong common-names, constrained issuers, revoked and expired certificates, certificate

usage, short key certificates and deprecated signature algorithms. TLS proxies should

also recognize their own root certificate if provided by an external web server (which

should never happen), and block such connections. Also, the proxy’s trusted CA store

must not include short key, expired or untrusted issuer certificates.

Vendors should adequately protect proxies’ private keys, e.g., by encrypting them, and

limiting access permissions to the root account. The keys must not be pre-generated, to

limit the aftermath of a leaked private key from a single product, avoiding cases such as

Lenovo’s SuperFish [16].

2.4 Related Work

Several studies have been recently conducted on TLS interception, TLS certificate val-

idation, and forged TLS certificates. We briefly review studies that are closely related to

our work.

15

2.4.1 TLS Interception

Jarmoc [53] uncovered several TLS vulnerabilities in the certificate validation process

of four network appliances using a test framework with seven certificate validation checks.

Dormann [24, 10] relied on badssl.com’s tests to check for vulnerabilities in two network

appliances, finding flaws in the certificate validation process and the acceptance of insecure

TLS parameters. Dormann also compiled a list of possibly affected software and hardware

appliances.

Carnavalet and Mannan [42] proposed an extensive framework for analyzing client-end

TLS intercepting applications, such as anti-virus and parental control software. They

analyzed 14 applications (under Windows 7), revealing major flaws such as pre-generated

certificates, faulty certificate validation, insecure private key protection, improper TLS

parameter mapping, vulnerabilities to known TLS attacks, and unsanitized trusted CA

stores.

Durumeric et al. [46] later additionally included 5 TLS proxies under Mac OS, and 12

network appliances. They found that TLS proxies under Mac OS introduce more flaws

than their Windows counterparts. They also showed that web servers can detect TLS

interception, through the HTTP User-Agent header and protocol fingerprinting.

In March 2017, US-CERT [31] published an alert regarding TLS interception, to raise

awareness of the dangers of TLS interception and its impact.

Ruoti et al. [57] surveyed 1976 individuals regarding TLS inspection, to understand

user opinion regarding legitimate uses of TLS inspection. Over 60% of the surveyed

individuals had a negative response towards TLS inspection, and cited malicious hackers

and governments as their main concerns.

16

2.4.2 Certificate Scans

Huang et al. [52] analyzed over three million real-world TLS connections to facebook.com

to detect forged certificates. They found that around 0.2% of the analyzed connections

make use of a forged certificate, caused mainly by anti-virus software, network appliances

and malware.

O’Neill et al. [55] analyzed over 15 million real-world TLS connections using Google Ad-

Words campaigns. They found that nearly 0.4% of the TLS connections were intercepted

by TLS proxies, mostly by anti-virus products and network appliances, with the highest

interception rates in France and Romania. In addition, Issuer Organization fields in some

certificates matched the names of malware, such as ‘Sendori, Inc’, ‘Web-MakerPlus Ltd’,

and ‘IopFailZeroAccessCreate’.

Kumar et al. [54] analyzed, using their framework ‘ZLint’, 240 million certificates from

the Censys platform [4] for signs of misissuance, by determining if they comply with the

RFC5280 [51] and the CA/Browser Forum baseline requirements [2]. They found that

nearly 0.2% of the certificates violate one of these two standards, with the majority being

from small CA authorities. They found that the most common errors found were related

to the Subject Alternative Name (SAN) X.509 version 3 extension, invalid characters in

the DNS names, and the authority key identifier extensions missing.

2.4.3 Certificate Validation

Fahl et al. [47] analyzed 13,500 free Android apps for MITM vulnerabilities. They

found that 8% of the analyzed apps contain potentially vulnerable TLS modules. They

also performed manual inspection of 100 apps, and successfully executed MITM attacks

on 41, capturing credentials for widely used commercial and social websites, e.g., Google,

Facebook, Twitter, Paypal, and several banks. Their attacks relied on exploiting flaws

17

in the certificate validation process; many apps ignored the chain of trust validation,

accepting self-signed certificates, and mismatched common names.

Georgiev et al. [49] demonstrated that several widely used applications and development

libraries, such as Amazon’s EC2 Java library, Amazon and Paypal’s SDK, osCommerce,

and Java web services, among others, suffered from certificate validation vulnerabilities,

leading to generic MITM attacks. These vulnerabilities were attributed to be caused by

(primarily) the use of poorly designed APIs, such as JSSE and OpenSSL.

Brubaker et al. [40] designed an automated approach for testing the certificate val-

idation modules of several well-known TLS implementations. They first scanned the

Internet for servers with port 443 open using ZMap [34], and collected all the available

certificates. Then, they permuted the certificate parameters and possible X509 values,

compiling a list of 8 million Frankencerts. Using Frankencerts and differential testing,

Brubaker et al. found over 200 discrepancies in these commonly used TLS implementa-

tions (e.g., OpenSSL, GnuTLS and NSS).

He et al. [50] designed an automated static analysis tool for analyzing TLS libraries and

applications. They then evaluated Ubuntu 12.04 TLS packages, and found 27 zero-day

TLS vulnerabilities, related to faulty certificate/hostname validation.

Sivakorn et al. [58] proposed a black-box hostname verification testing framework for

TLS libraries and applications. They evaluated the hostnames accepted by seven TLS

libraries and applications, and found eight violations, including: invalid hostname char-

acters, incorrect null characters parsing, and incorrect wildcard parsing.

Chau et al. [41] made use of a symbolic execution approach to test the certificate

validation process of nine TLS libraries, compared to RFC 5280 [51]. They found 48

18

instances of noncompliance; libraries ignored several X509 certificate parameters, such as

the pathLenConstraint, keyUsage, extKeyUsage, and ‘notBefore’ validity dates.

2.4.4 Comparison

The most closely related work is by Durumeric et al. [46] (other studies mostly involved

analyzing TLS libraries and client-end proxies). While their work focuses primarily on

fingerprinting TLS interception, in addition to a brief security measurement for several

HTTPS proxies, we develop an extensive framework dedicated for analyzing the TLS in-

terception on network appliances. They checked/rated the highest TLS version supported

by a target proxy, while we examine all the supported versions by the proxy, in addition

to their respective mapping/mirroring to the client side. Durumeric et al.’s certificate

validation tests include: expired, self-signed, invalidly signed certificates, and certificates

signed by CAs with known private keys; we include more tests for this important aspect

(a total of 32 distinct tests). We also include several new tests such as: checking the con-

tent of the CA trusted store and the certificate parameter mapping, locating the private

signing keys of the proxies and examining their security (including checking pre-generated

root certificates); these tests are mostly added/extended from [42, 41].

In terms of results, for the five overlapping products with Durumeric et al. [46], we

observed a few differences; see Section 4.7.

2.5 Terminology

Throughout the thesis, we refer to the TLS intercepting network appliances as proxies,

HTTPS proxies, TLS proxies, middleboxes, or simply appliances. For the TLS requesting

client, we use: browser, end-user, user, or client. The term

19

mirroring is used to describe a situation where the proxy sends the same TLS parame-

ters received from the web server to the client side, and vice versa; otherwise, mapping is

used to indicate that the proxy has modified some parameters (for better or worse).

We refer to the trusted root CA stores as stores, trusted stores or trusted CA stores.

Finally, we refer to virtual machines as virtual appliances, VMs, or simply machines.

2.6 Threat Model

We mainly consider three types of attackers.

An external attacker can impersonate any web server by performing a MITM attack on

a network appliance that does not perform a proper certificate validation. The attacker

could be anywhere on the network between the appliance and the target website. Even

if the validation process is perfect, the attacker could still impersonate any web server,

if the appliance uses a pre-generated root certificate or accepts external site-certificates

signed by its own root key. The attacker could also take advantage of known TLS at-

tacks/vulnerabilities to potentially acquire authentication cookies (BEAST, CRIME), or

impersonate web servers (FREAK, Logjam).

A local attacker (e.g., a malicious employee) with a network sniffer in promiscuous mode

can get access to the raw traffic from the connections between the network appliance and

clients. If the appliance uses a pre-generated certificate, the malicious user can install his

own instance of the appliance, acquire its private key, and use it to decrypt the sniffed

local traffic when the TLS connections are not protected by forward-secure ciphers. Such

an adversary can also impersonate the proxy itself to other client machines, although this

may be easily discovered by network administrators.

20

An attacker who compromises the network appliance itself with non-root privileges can

acquire the private key if the key is not properly protected (e.g., read access to ‘other’

users and no passphrase encryption). With elevated privileges, more powerful attacks

can be performed (e.g., beyond accessing/modifying TLS traffic). We do not consider

such privileged attackers, assuming having root access on the appliance would be much

more difficult than compromising other low-privileged accounts. Note that, in most cases,

the appliance is simply an ordinary Linux/Windows box with specialized software/kernel,

resulting a large trusted code base (TCB).

21

Chapter 3

Framework for Testing TLS

Intercepting Network Appliances

3.1 Introduction

In this chapter, we present the setup and architecture of the proposed framework,

and the major components and tests included in it. We analyze the proxys’ CA trusted

stores, TLS version and certificate parameters mapping behavior, cipher suites, exposure

to known TLS attacks, private key protection, and exposure to faulty certificates. We

additionally provide insights on the methodology of generation of the faulty certificates.

3.2 Test Setup/Architecture

Our framework consists of three virtual machines: a client, a web server, and the TLS

intercepting network appliance; see Figure 3.1.

The client machine (Windows 7 SP1) is located behind the appliance; we update the

client with all available Windows updates, and install up-to-date Mozilla Firefox, Google

Chrome, and Internet Explorer 11 on it. We insert the TLS proxy’s root certificate into

22

The pre-installed OpenSSL version on the Ubuntu 16.04 distribution is not compiled

with SSLv3 support. Thus, in order to test the acceptance and mapping of SSLv3 only, we

rely on an identically configured older version of Ubuntu (14.04), with an older OpenSSL

version that supports SSLv3.

The third machine hosts the appliance that we want to test. The appliances are typically

available as a trial version on a vendor’s website, with a pre-configured OS, either as an ISO

image or an Open Virtualization Format file. The appliances are configured to intercept

TLS traffic either as a transparent or explicit proxy, depending on the available modules.

If both are available, transparent proxies are prioritized, as they do not require any client-

side network configuration. We disable services such as firewall and URL filtering, if

bundled in the appliances, to avoid any potential interferences in our TLS analysis. The

root CA certificates corresponding to our faulty test certificates are injected into the

trusted stores of the appliances.

We include the following TCP ports to the list of intercepted ports, as they are used

by the Qualys client test and badssl.com: 1010, 1011, 10200, 10300, 10301, 10302, 10303,

10444, and 10445 (determined by analyzing traffic captures on Wireshark of TLS connec-

tions to Qualys/badssl websites). Some appliances offer an interface to add custom ports

to be intercepted by the TLS proxy, while others require manual configuration in their

configuration files.

We set up a local DNS entry for apache.host on the client, web servers and network

appliances machines. Operating systems match local DNS entries, found typically in the

hosts file, before remote DNS entries, resulting in the correct mapping of our test server’s

domain name to its corresponding IP address.

24

3.3 CA Trusted Store

We first need to locate the trusted store of a TLS proxy, to inject our root certificates

in it, required for most of our tests.

Injecting custom certificates into a trusted store could be trivial, if the appliance directly

allows adding custom root CAs (e.g., via its user interface). If no such interface is offered,

we attempt to get a command line (shell) access through a terminal, or, the SSH service

if available, by enabling the SSH server first through the settings panels (we transfer files

using the SCP/SFTP protocols).

If SSH is unavailable, we mount the virtual disk image of the appliance on a sepa-

rate Linux machine. When mounting, we perform several attempts to find the correct

filesystem type and subtype used by the appliance (undocumented). After a successful

mount, we search the entire filesystem for digital certificates in known formats, such as

“.crt”, “.pem”, “.cer”, “.der”, and “.key”. We thus locate several directories with candi-

date certificates, and subsequently delete the content of each file, while trying to access

regular websites from the client. When an “untrusted issuer” warning appears at the

client, we then learn the exact location/directory of the trusted store (and can eliminate

duplicate/unnecessary certificates found in multiple directories).

We then inject our custom crafted root certificates into the trusted CA stores. We also

parse the certificates available in the trusted stores to identify any expired certificates,

or certificates with short key lengths (e.g., RSA-512 and RSA-1024). We also check for

the presence of root CA certificates from issuers that are no longer trusted by major

browser/OS vendors. Our list of misbehaving CAs includes: China Internet Network In-

formation Center (CNNIC [8]), TÜRKTRUST [27], ANSSI [23], WoSign [9], Smartcom [9],

and Diginotar [7].

26

3.4 TLS Version Mapping

To test the SSL/TLS version acceptance and TLS parameter mapping/mirroring, we

alter the Apache web server’s configuration. We use a valid certificate whose root CA

certificate is imported into the trusted stores of the client (to avoid warnings and errors).

We then subsequently force one TLS version after another at the web server, and visit

the web server from the client, while documenting the versions observed in the browser’s

HTTPS connection information. Using this methodology, we are able to analyze the

behavior of a proxy regarding each SSL/TLS version: if a given version is blocked, allowed,

or altered in the client-to-proxy HTTPS connection.

3.5 Certificate Parameters Mapping

We check if the proxy-to-server certificate parameters are mapped or mirrored to the

client-to-proxy certificate parameters. The parameters studied are signature hashing al-

gorithms, certificate key lengths, and the EV/DV status.

For testing signature hashing algorithms, we craft multiple valid certificates with dif-

ferent secure hash algorithms, such as SHA-256, SHA-384 and SHA-512. We import their

root CA certificates into the trusted stores of the client to avoid warnings and errors.

We subsequently load each certificate and its private key into the web server, and visit

the web page from the browser. We track the signature algorithms used in the certifi-

cates generated by the TLS proxy for each connection, and learn if the proxy mirrors the

signature hashing algorithms, or use a single hard-coded one.

For testing certificate key lengths, we craft multiple certificates with multiple acceptable

key sizes: RSA-2048, RSA-3072 and RSA-4096. We import their correspondent root CA

certificates into the trusted stores of the client. We subsequently load each certificate and

its private key into the web server, and visit the web page from the browser. We check the

27

key length used for the client-to-proxy server certificate generated by the proxy for each

connection, and learn if the proxy mirrors the key-length, or uses a hard-coded length.

We rely on Twitter’s website to study the network appliance’s behavior regarding EV

certificates. We visit twitter.com on the client machine, and check the client-to-proxy

certificate displayed by the browser. TLS proxies can identify the presence of EV certifi-

cates (e.g., to avoid downgrading them to DV), by parsing the content and locating the

CA/browser forum’s EV OID: 2.23.140.1.1 [12].

3.6 Cipher Suites

Cipher suites offered by the TLS proxy in the proxy-to-server TLS connection can

be examined in multiple ways. We initially rely on publicly hosted TLS testing suites,

howsmyssl.com and the Qualys client test [26]. Since the connection is proxied, the dis-

played results found on the client’s browser are the results of the proxy-to-server connec-

tion, and not the client-to-proxy connection. If the mentioned web pages are not filtered,

for reasons such as the use unfiltered or non-standard ports, we use Wireshark to capture

the TLS packets and inspect the Client Hello message initiated by the proxy to locate the

list of ciphers offered.

We then compare the list of ciphers offered by the proxy to that list of our browsers,

learning if the TLS proxy performs a cipher suite mirroring or uses a hard-coded list.

We also parse the proxy’s cipher-suite for weak and insecure ciphers that could lead to

insecure and vulnerable TLS connections.

28

3.7 Known TLS Attacks

We test TLS proxies for vulnerabilities against well-known TLS attacks, including:

BEAST, CRIME, FREAK, Logjam, and Insecure Renegotiation.

The BEAST [44] vulnerability allows an active MITM attack to decrypt session cookies

and authentication credentials. This client side vulnerability is a result of a flaw in the

CBC mode of operation, that can be exploited in a TLS version 1.0 TLS connection, by

repeatedly predicting the Initialization Vector blocks and checking if the prediction was

accurate or not. To patch this vulnerability, TLS proxies should patch their TLS libraries

by implementing the 1/n-1 split method [1] for the CBC mode of operation, excluding

cipher suites that use CBC, or denying access to web servers that do not accept TLS

connection versions higher than TLS version 1.0.

CRIME [45] is exploited when TLS data compression is used in a TLS connection,

leaking the content of some encrypted packets, which could result in decrypted cookies.

In order to mitigate this attack, TLS proxies should refuse the use of TLS data compression

in its TLS connections.

A system is vulnerable to the FREAK [37] attack if it includes export ciphers in this

list of supported ciphers. The use of these ciphers was forced by the US Government

during the 1990s for any system that is exported outside the US. The reason is that

the NSA solely had enough computing power at that time to exhaustively search these

40-bit and 56-bit keys at the time, allowing them to have access to decrypted traffic.

Furthermore, with the ongoing increase of computing power, the factoring of small RSA

keys is now a trivial task. Attackers can downgrade the connection by forcing the use

of an export cipher, factor the key and use it to have access to the plaintext traffic. As

a countermeasure, TLS proxies should not include export-grade ciphers into their list of

supported ciphers.

29

The Logjam [35] attack is a reminiscent of the FREAK attack, requiring the use of

the previously mentioned export ciphers. However, this attack exploits a vulnerability

in the TLS protocol’s DHE key exchange. The MITM attacker forces a DHE EXPORT

cipher with the web server, and relies on small TLS parameters and a set of precomputed

parameters to break the DHE key exchange process, resulting in decrypted traffic. To

avoid this attack, TLS proxies should not advertise export-grade ciphers in the list of

their supported ciphers.

TLS renegotiation [56] is a TLS protocol feature that permits renegotiation of new TLS

parameters in an already established TLS connection between two parties. This feature

can be exploited by an attacker, allowing the attacker to place herself in a MITM position

between the requesting client and the origin server. The malicious user achieves this by

establishing a TLS connection with the server, and later, intercepting the client’s TLS

request and relays the the request over the encrypted channel. The renegotiation of the

parameters then takes place, without the consent of the client. On the other hand, the

server believes that it is a legitimate TLS renegotiation. As a result, the attacker can now

send requests to the server on behalf of the authenticated client. As a mitigation, TLS

proxies must implement RFC 5746, a TLS extension that ties renegotiations to the initial

connection.

We rely on the Qualys SSL Client Test [26] to confirm if the TLS proxy is patched

against FREAK, Logjam, and Insecure Renegotiation, and check if TLS compression is

enabled for possible CRIME attacks. We visit the web page from the client browser, which

displays the results for the proxy-to-server TLS connection.

For the BEAST attack, we rely on howsmyssl.com [15] (with the modifications from [42])

to test the proxies that support TLS 1.2 and 1.1. After the BEAST attack was uncovered,

a patch was released for CBC (implementing the 1/(n − 1) split patch [1]), but was

30

identically named as CBC, making the distinction between the patched/unpatched CBC

difficult.

3.8 Faulty Certificates

We use OpenSSL to craft our invalid test certificates, specifying apache.host as the

Common Name (CN), except for the wrong CN test. We then deploy each certificate

on our Apache web server, and request the HTTPS web page from the proxied client,

and thus learn how the TLS proxy behaves when exposed to faulty certificates; if a

connection is allowed, we consider the proxy is at fault. If the proxy replaces the faulty

certificate with a valid one (generated by itself), leaving no way even for a prudent client

(e.g., an up-to-date browser) to detect the faulty remote certificate, we consider this as

a serious vulnerability. If the proxy passes the unmodified certificate and relies on client

applications to react appropriately (e.g., showing warning/error messages, or terminating

the connection), we still consider the proxy to be at fault for two reasons: (a) we do not

see any justification for allowing plain, invalid certificates by any TLS agent, and (b) not

all TLS client applications are as up-to-date as modern browsers, and thus may fail to

detect the faulty certificates.

When the certificate’s chain of trust contain intermediate certificate(s), we place the leaf

certificate and intermediate certificate(s) at the web server, by appending the intermediate

certificate(s) public keys after the server leaf certificate, in SSLCertificateFile. Note that

we inject the issuing CA certificates of the crafted certificates into the TLS proxy’s trusted

store for all tests, except for the unknown issuer test and the fake GeoTrust test.

We enumerate the list of invalid certificate validation tests that we used; we compile

this list using several sources (including [42, 41, 51]).

- Self-signed Certificate: A leaf certificate whose issuer is itself.

31

- Signature Mismatch: A leaf certificate with a tempered signature.

- Fake GeoTrust: A leaf certificate without an Authority Key Identifier, and whose un-

trusted issuer has the same subject name as the GeoTrust root CA.

- Wrong CN: A leaf certificate with a CN not matching apache.host.

- Unknown Issuer: A leaf certificate with an untrusted issuer.

- Non-CA Intermediate: An intermediate certificate with the CA basic constraint param-

eter set to be false.

- X509v1 Intermediate: An intermediate X509v1 certificate with no CA basic constraint

parameter.

- Invalid pathLenConstraint: An intermediate certificate with a pathLenConstraint of 0

issuing another intermediate certificate.

- Bad Name Constraint Intermediate: An intermediate certificate constrained for a dif-

ferent domain issues a leaf certificate for apache.host.

- Unknown Critical X509v3 Extension: A leaf certificate with an unknown certificate

extension object identifier (OID), set to critical.

- Malformed Extension Values: A leaf certificate with an atypical value for a certificate

extension.

- Revoked: A leaf certificate issued by a revoked issuer.

- Expired Leaf, Intermediate and Root: Three tests with either an expired leaf, interme-

diate or root certificate.

- Not Yet Valid Leaf, Intermediate and Root: Three tests with either a leaf, intermediate

or root certificate, which is not yet valid.

32

- Wrong keyUsage in Leaf and Root: Two tests with invalid keyUsage parameters for a

root and a leaf certificate.

- Wrong extKeyUsage in Leaf and Root: Two tests with invalid extKeyUsage parameters

for a root and a leaf certificate.

- Short Key Length in Root and Leaf: Multiple tests using short key lengths for root and

leaf certificates.

- Bad Signature Hashing Algorithms: Three leaf certificates signed using either MD4,

MD5, or SHA1.

Before using the faulty certificates, we assess them against Firefox v53.0 (latest at the

time of testing), and confirm that Firefox terminates all connections with these certificates.

As part of the analysis of the certificate validation mechanisms, we ensure that the

TLS proxies do not cache TLS certificates, by checking the ‘Organization Name’ field of

the subject parameter in the server certificates. Each leaf certificate of the crafted chains

contains a unique ‘Organization Name’ value, allowing us to identify exactly which TLS

certificate is being proxied. We additionally check if the TLS inspection feature is enabled

by default after the activation of the appliances, or if it requires a manual activation.

3.8.1 Faulty Certificate Chains Crafting Methodologies

In this section, we detail the methodology used to create each certificate validation test.

Self-Signed

We generate a standalone certificate using OpenSSL with regular parameters.

33

Signature Mismatch

We first generate a regular CA certificate, and use it to sign a regular leaf certificate.

We then modify the signature of the leaf public key certificate by flipping one of the last

bits in the certificate. The certificate signature is positioned as the last item inside the

certificate. We thus create a certificate with a mismatching signature, and test if the

proxy validates the signature on the presented certificate.

Fake GeoTrust Global CA

We craft an issuing root certificate with the same certificate parameters as the GeoTrust

Global CA authority. We mimic the Common Name field (CN = GeoTrust Global CA),

the Organization field (O = GeoTrust Inc.), and the Country field (C = US). Before signing

the leaf certificate, we remove the authority key identifier parameter from it. Without

the authority key identifier, the certificate cannot be linked to its issuing certificate. By

doing so, we test if the TLS proxy validates the chain of trust properly, or relies only on

the certificate parameters such as the subject name alone.

Wrong Common Name (CN)

We generate a regular root CA certificate, and use it to sign a regular leaf certificate

that does not have apache.host as the value for Common Name field. If the TLS proxy

accepts such a leaf certificate for the apache.host domain, then the proxy does not validate

that the delivered certificate is for the exact domain requested, and thus, allows websites

to impersonate other servers by using their valid certificate.

Unknown Issuer

The test relies on a normal issuing certificate and its normal leaf certificate. However,

we do not import the issuing certificate to the trust store of the network appliance, and

34

consequently, check if the TLS proxy is vulnerable to MITM attacks, when an attacker

uses untrusted CA certificates as issuers for their certificate.

Non-CA Intermediate

We generate three certificates that serve respectively as the root CA, the intermedi-

ate certificate and the leaf certificate. However, we intentionally craft the intermediate

certificate to have the basic constraint extension that identifies CA certificate as false.

Using this methodology, we test if the TLS proxy ensures that the CA certificates have

the ability to issue other certificates, using the CA flag. If the proxy does not detect such

vulnerabilities, attackers could use any valid leaf certificate to sign other leaf certificates,

and host them on their servers.

X509v1 Intermediate

The first version of x509 does not have the basic constraint extension, and thus, CA

certificates cannot be differentiated from leaf certificates. As a result, x509v1 certificates

should not be used for issuing certificates. We generate three certificates that serve re-

spectively as the root CA, the intermediate certificate and the leaf certificate, while only

having the intermediate certificate of type x509v1. If accepted, the proxy risks potential

consequences that are similar to the Non-CA Intermediate test.

Revoked

We test if the TLS proxy accepts revoked certificates using Gibson Research Corpora-

tion’s special site that hosts a website using a revoked certificate [13]. Digicert provided

them with an intentionally revoked certificate using both a Certificate Revocation List

(CRL) and the Online Certificate Status Protocol (OCSP). If the revoked certificate is

allowed, this implies that the TLS proxy does not validate the revocation status of the

delivered certificates and their appropriate issuers.

35

Expired and Not Yet Valid Certificates

We generate three distinct tests to check the behavior of network appliances when

exposed to expired certificate. For the first test, we craft a root CA certificate with an

expired validity date, and use it to sign a regular leaf certificate. For the second test,

we craft a regular root CA certificate, use it to sign an expired intermediate certificate,

which in turn, signs a regular leaf certificate. For the third test, we craft a regular root

CA certificate, and use it to sign an expired leaf certificate. Similarly, we generate three

similar tests for not yet valid certificates. The main difference between the two set of

certificates is that, for expired certificates, the ‘valid to’ date is prior to the current date

of testing, while the not yet valid certificates have the ‘valid from’ date exceeding the date

of testing.

Invalid pathLenConstraint

A pathLenConstraint of 1 in a root CA certificate implies that the issuer can issue one

layer of intermediate certificates, which in turn will have a pathLenConstraint of 0. A

pathLenConstraint of 0 implies that this certificate can only issue leaf certificates. We

generate a root CA certificate with a pathLenConstraint of 1, and issue an intermedi-

ate certificate with a pathLenConstraint of 0 using it, and subsequently issue another

intermediate certificate with a pathLenConstraint of 0 using the first intermediate cer-

tificate. We then use the second intermediate certificate to issue a leaf certificate. Using

this methodology, we test if the TLS proxies check the pathLenConstraint parameter,

as the first intermediate should issue only leaf certificates, and not another intermediate

certificate.

Bad Name Constraint Intermediate

We test if the TLS proxies validate the Name Constraint x509v3 certificate extension.

We craft a regular CA certificate, and use it to sign an intermediate certificate that has a

36

different domain than ‘apache.host’ solely permitted as a DNS name. We then issue a leaf

certificate for the domain apache.host using that intermediate certificate. The validating

proxy should typically terminate the TLS connection when exposed to such a case, as

the intermediate certificate has an issuing permit constraint for a domain different than

‘apache.host’.

Malformed X509v3 Extension Value

We generate a regular root CA certificate and use it to issue a leaf certificate that holds

a dummy random string as a value for its keyUsage parameter (i.e., will not match any

of the names in the list of the permitted key usages).

Unknown Critical X509v3 Extension

We generate a root CA certificate, and use it to issue a leaf certificate that holds a

non-typical x509v3 extension (unusual OID value), set to critical. We thus analyze the

TLS proxies’ behavior when exposed to unknown extensions marked as critical.

Wrong keyUsage and extKeyUsage

We rely on two tests for the keyUsage and extKeyUsage x509v3 extensions, one for

leaf certificates, and the other for root certificates. Regarding the keyUsage, we craft a

regular root certificate, and sign a leaf certificate that holds a keyUsage value of keyCert-

Sign, omitting the required keyEncipherment value for all leaf certificates. TLS proxies

should drop TLS connection to servers that hold no keyEncipherment keyUsages. More-

over, we craft a root CA certificate with a keyUsage of nonRepudiation, omitting the

required keyCertSign value for all issuing certificates. TLS proxies should not accept

issuing certificates with a keyUsage value that excludes keyCertSign.

Regarding the extKeyUsage extension, we craft a regular root certificate and use it

to issue a leaf certificate that holds clientAuth as the extKeyUsage value, implying that

37

this certificate is meant to be used by TLS clients, and not by TLS servers. TLS proxies

should then drop the TLS connection. We also craft a root certificate whose extKeyUsage

value consists of codeSigning, implying that this issuing certificate is not meant to be

used for TLS connections. TLS proxies should similarly drop such a connection. Failure

of proper validation of certificate usages allows attackers to abuse TLS connections by

using non-compliant certificates.

Short Key Length Root and Leaf Certificates

We generate RSA-512 and RSA-1024 root CA certificates, and import them to the

trusted stores (when possible). We host their respective leaf certificates, and test if the

TLS proxy accepts insecure key sizes for root certificates. On the other hand, we gener-

ate regular root certificates with proper key sizes (e.g., RSA-2048), and craft their leaf

certificates to have short keys (512, 768, 1016 and 1024 as key sizes), and test if the TLS

proxies accept such insecure key sizes for leaf certificates.

Bad Signature Hashing Algorithms

To check the proxies’ behavior when exposed to weak and deprecated signature al-

gorithms, we modify the signature algorithms in the OpenSSL configuration file when

signing three distinct certificates to use respectively MD4, MD5 and SHA1.

3.9 Private Key Protection, Self-issued, and Pre-Generated

Certificates

We attempt to locate a TLS proxy’s private key (corresponding to its root certificate),

and learn if it is protected adequately, e.g., inaccessible to non-root processes, encrypted

under an admin password. Subsequently, we use the located private keys to sign leaf

certificates, and check if the TLS proxy accepts its own certificates as the issuing authority

38

for externally delivered content.

To locate the private keys on the non-Windows systems, access to the network appli-

ances’ disks content and their filesystems is required. If we get access to an appliance’s

filesystem (following Section 3.3), we search for files with the following known private

key file extensions: “.pem”, “.key”, “.pfx”, and “.p12”, and then compare the modulus

of located RSA private keys with the proxy’s public key certificate to locate the correct

corresponding key. Alternatively, we locate the ‘squid.conf’ file, the configuration file of

the Squid [25] proxy, used by most appliances as the proxy API. Squid is an open source

proxy, that performs TLS interception through its ‘ssl bump’ option. The configuration

file points to the full path of the private key, and thus, leads us to the location of the RSA

key.

If the filesystem is inaccessible, we parse the raw disks for keys, using the Linux com-

mand strings on the virtual hard disk file and search for private keys. We also use memory

analysis tools, such as Volatility [32] and Heartleech [14], to extract the private keys in

some cases; for more, see Section 4.6.1. If we acquire the private key using this method-

ology, we still get no information on the key’s location within the appliance’s file system,

storage method (e.g. encrypted, obfuscated), and privileges required to access the key.

For Windows-based appliances, we utilize Mimikatz [21] to extract the private key

(cf. [42]). Key storage is usually handled on Windows using two APIs: Cryptography

API (CAPI), or Cryptography API: Next Generation (CNG [33]). When executed with

Administrator privileges, Mimikatz exports private keys that are stored using CAPI and

CNG. We check the location of the private keys, the privilege required to access them and

if any encryption or obfuscation is applied.

39

If the located private key on disk is encrypted, we rely on a python script to launch a

dictionary attack (e.g., using the common English words [11]).

We also check if appliance vendors rely on pre-generated certificates for their proxies,

which could be very damaging. We install two instances of the same product, and compare

the certificates along with their correspondent private keys (if located). If we find the

same key, we conclude that the appliance uses a pre-generated certificate, instead of per-

installation keys/certificates.

40

Chapter 4

Results of the Analysis of 13 network

appliances’ TLS proxies

4.1 Introduction

In this chapter, we present the results of our analysis of the TLS proxies of 13 different

network appliances. We uncover numerous vulnerabilities resulting from misconfiguration

and non compliance, and compare our the products of 2018 to our finding in 2017 and

those of Durumeric et al. [46] in 2016. We conclude this chapter by highlighting the

potential practical attacks possible as a result of exploiting the vulnerabilities uncovered

by our work in this thesis.

4.2 Tested Appliances

Most current network appliance vendors offer products for TLS interception. We select

13 products, including: free appliances, appliances typically deployed by small companies,

appliances with affordable licensing for small to medium sized businesses, and high-end

products for large enterprises; see Table 4.1.

41

Table 4.1: List of the tested appliances

Appliance Company Version
Untangle NG Firewall Untangle 13.0

13.2
pfSense NetGate 2.3.4

2.4.2-P1
WebTitan Gateway TitanHQ 5.15 build 794

5.16 build 1602
Microsoft TMG Microsoft 2010 SP2 rollup update 5
UserGate Web Filter Entensys 4.4.3320601
Cisco Ironport WSA Cisco AsyncOS 10.5.1 build 270

AsyncOS 10.5.1 build 296
Sophos UTM Sophos 9.506-2
TrendMicro Interscan WSVA TrendMicro 6.5 SP2 build 1765
McAfee Web Gateway McAfee 7.7.2.8.0 build 25114
Cacheguard Web Gateway v1.3.5 Cacheguard 1.3.5
OpenSense Deciso B.V. 18.1.2 2
Comodo Dome Firewall Comodo 2.3.0
Endian Firewall Community Endian 3.2.4

On a side note, we performed several rounds of updates and patches for Microsoft Threat

Management Gateway, on a Windows Server 2008 R2 operating system, as recommended

by Microsoft’s documentation [19]. These include the service pack 1 (SP1), the service

pack 1 update, the service pack 2, and five rollup updates (1 to 5) [18].

For all the analyzed appliances, we keep the default configuration for their respective

TLS proxies. An administrator could of course manually modify this default configuration,

which may improve or degrade the proxy’s TLS security. We thus choose to apply our

test framework on the unmodified configuration (assuming the vendors will use secure-

defaults).

42

4.3 TLS Parameters

In this section, we uncover the results of our analysis of the TLS proxies’ TLS parameters

behavior, which includes the TLS versions supported and their mapping, the certificate

parameters and their mapping, the TLS cipher suites.

See Table 4.2 for an overview; For TLS version mapping, we display the TLS versions

seen by the client when the web server uses TLS 1.2, 1.1, 1.0 and SSL 3.0 (‘–’ means un-

supported. ‘†’ means supported but terminate with a handshake failure; see Section 4.3.1).

Under “Key Length Mapping”: ‘*’ means the appliance mirrors RSA-512 and RSA-1024

key sizes, but use a static key size RSA-2048 for any higher key sizes (see Section 4.3.1).

Under “Problematic Ciphers”: Weak means deprecated; Insecure means broken; blank

means good ciphers. Under “BEAST”: 7 means vulnerable; 7* means potentially vulner-

able (unknown if CBC is patched with 1/(n − 1) split); blank means patched. All the

appliances are patched against FREAK, Logjam, CRIME, and Insecure Renegotiation.

Table 4.2: Results for TLS parameter mapping/mirroring and vulnerabilities to known
attacks.

TLS Version Mapping Cipher Suites Certificate Parameter Mapping

TLS
1.2

TLS
1.1

TLS
1.0

SSL
3.0

Cipher
Suites

Mirroring

Problematic
Ciphers/Hash Algorithms

Key
Length
Mapping

Signature
Algorithm
Mapping

EV
Certi-
ficates

BEAST

Untangle 1.2 1.2 1.2 – 7 3DES 2048 SHA256 DV 7*
pfSense 1.2 – – – 7 2048 SHA256 DV
WebTitan 1.2 1.2 1.2 1.2 7 3DES, RC4, IDEA 1024 SHA256 DV 7*
Microsoft – – 1.0 3.0 7 3DES, DES, RC4, MD5 2048 Mirrored DV 7

UserGate 1.2 1.2 1.2 – 7 3DES, DES 1024 SHA256 DV 7*
Cisco 1.2 1.2 1.2 – 7 2048* SHA256 DV 7

Sophos 1.2 1.2 1.2 – 7 2048 SHA256 DV 7*
TrendMicro 1.2 † † – 7 3DES, RC4 1024 SHA256 DV 7

McAfee 1.2 1.2 1.2 – 7 2048 SHA256 DV
Cacheguard 1.2 1.2 1.2 – 7 3DES 2048 SHA256 DV 7*
OpenSense 1.2 1.2 1.2 – 3 2048 SHA256 DV 7*
Comodo 1.2 1.2 1.2 1.2 7 3DES, RC4, IDEA 2048 SHA256 DV 7*
Endian 1.2 1.2 1.2 1.2 7 3DES, RC4, IDEA 2048 SHA256 DV 7*

43

4.3.1 TLS versions and mapping

Untangle, UserGate, Cisco Ironport WSA, Sophos UTM, McAfee Web Gateway, Cache-

guard Web Gateway, and OpenSense support TLS versions 1.2, 1.1, and 1.0; WebTitan

Gateway, Comodo Dome and Endian Firewall Community support TLS 1.2, 1.1, 1.0 and

SSL 3.0. pfSense supports TLS 1.2 only. Microsoft Threat Management Gateway (TMG)

supports only TLS 1.0 and (more worryingly) SSLv3; as many web servers nowadays do

not support these versions (specifically SSLv3), clients behind Microsoft TMG will be

unable to visit these websites (Over 25% of web servers do not support TLS 1.1 & TLS

1.2. [17]).

TrendMicro WSVA terminates the TLS connections if the highest TLS version sup-

ported by the client is not supported by the requested server, instead of using a lower

TLS version that is supported by both the client and the server. For example, if the

requesting client supports TLS versions 1.2, 1.1 and 1.0, and the requested server sup-

ports TLS 1.1 and 1.0 only, TrendMicro WSVA will terminate the connection (with a

handshake failure) instead of establishing it with the TLS version 1.1. This behavior is a

more restrictive form of TLS version mirroring.

Except Microsoft TMG and TrendMicro WSVA, other appliances map all the proxy-

to-server TLS versions to TLS 1.2 for the client-to-proxy connection, and thus mislead

browsers/users through this artificial version upgrade.

4.3.2 Certificate parameters and mapping

No appliance, except Cisco Ironport WSA, mirrors the RSA key sizes; instead, they use

a hard-coded key length for all generated certificates (i.e., artificially upgrade/downgrade

the external key-length to RSA-2048, and thus may mislead clients/users). When exposed

to RSA-512 and RSA-1024 server certificates, Cisco Ironport WSA mirrors those key

44

lengths to client-to-proxy TLS connection. However, when exposed to RSA-2048, RSA-

4096 and RSA-8196, Cisco Ironport WSA maps those key lengths to a static RSA-2048

key size for the client-to-proxy TLS connection. Three appliances use the currently non-

recommended RSA-1024 certificates [36].

Regarding hashing algorithms used for signing certificates, all the appliances use SHA256

and thus will make external SHA1-based certificates (considered insecure) invisible to

browsers, with the exception of Microsoft TMG, the only appliance which mirrors the

hash algorithm.

All appliances intercept TLS connections with EV certificates, and thus, inevitably

downgrade any EV certificate to DV (as the proxies cannot generate EV certificates).

4.3.3 Cipher suites

We use the Qualys Client Test [26] to determine the list of cipher suites used by the

TLS proxies.

Only OpenSense mirrors the client’s cipher suites to the server side. Each of our test

client’s (Chrome/Firefox/IE) own list of cipher-suite is displayed on the Qualys test when

the connection is proxied by OpenSense. This behavior enables OpenSense to be in

complete transparency in terms of cipher suites.

All other appliances use a hard-coded list of cipher suites instead. Cisco Ironport

WSA, pfSense, Sophos UTM, and McAfee Web Gateway exclude any weak or insecure

ciphers from their cipher suites. Untangle, WebTitan Gateway, Microsoft TMG, UserGate,

TrendMicro WSVA, Cacheguard, Comodo Dome, and Endian Firewall Community offer

3DES, considered weak due its relatively small block size [38]. UserGate and Microsoft

TMG offer the insecure DES cipher [61]. Microsoft TMG, WebTitan Gateway, TrendMicro

45

WSVA, Comodo Dome, and Endian Firewall Community include RC4, which has been

shown to have biases [62], and is no longer supported by any modern browsers. Microsoft

TMG additionally includes the deprecated MD5 hash algorithm [64]. WebTitan Gateway,

Comodo Dome, and Endian Firewall Community includes an IDEA cipher [39] with a

64-bit block length. When relying on the DHE ciphers, a reasonably secure modulus

value should be used, e.g., 2048 or higher [35]; all appliances, except Sophos UTM and

McAfee Web Gateway, accept a modulus size of 1024-bit; UserGate and Comodo Dome

even accept a 512-bit modulus.

4.3.4 Known TLS attacks

pfSense does not support TLS 1.0 by default, so it is considered as safe against BEAST.

For a system to be vulnerable to BEAST, it has to support TLS 1.0, and use the CBC

mode. However, after the BEAST attack was uncovered, a patch was released for CBC,

but was identically named as CBC. Because of that, there is no easy way to distin-

guish between the unpatched CBC and patched CBC (implementing the 1/(n − 1) split

patch [1], initially pushed by Firefox). Untangle, WebTitan Gateway, UserGate, Sophos

UTM, Cacheguard, OpenSense, Comodo Dome, and Endian Firewall Community are pos-

sibly vulnerable to BEAST. However, Cisco Ironport WSA, Microsoft TMG, TrendMicro

WSVA are vulnerable to the BEAST attack, as their CBC ciphers were recognized by

howsmyssl.com. When combined with a Java applet to bypass the same origin policy, the

BEAST attack could leak authentication cookies. All appliances are patched against the

FREAK, CRIME, and Logjam attacks, and use a secure renegotiation.

4.4 Certificate Validation Results

In this section, we discuss the vulnerabilities found in the certificate validation mecha-

nism of the TLS proxies.

46

Table 4.3: Results for certificate validation, part I.

Self
Signed

Signature
Mismatch

Fake
Geo-
Trust

Wrong
CN

Unkn-
own
Issuer

Non-CA
Interm-
ediate

X509v1
Interm-
ediate

Invalid
pathLen-
Constraint

Bad
Name

Constraint
Intermediate

Unknown
Critical
X509v3

Extension

Malformed
Extension
Values

Untangle Ù 3 3

pfSense 3 Ù

WebTitan 3 3 3 Ù 3 3 3 3 3 3 Ù

Microsoft 3 3

UserGate 3 3 3 Ù 3 3 3 3 3 3 Ù

Cisco Ù 3

Sophos 3 3

TrendMicro 3 3

McAfee 3 3 3

Cacheguard 3 3 Ù

OpenSense 3 Ù

Comodo Ù 3 3 Ù 3 3 3 3 3 3 Ù

Endian* 3 Ù

For summary, see Tables 4.3, 4.4 and 4.5; 3 means a faulty certificate is accepted and

converted to a valid certificate by the TLS proxy; Ù means a faulty certificate is accepted

by the TLS proxy but caught by the client browser (Firefox); and blank means certificate

blocked. Endian* does not have certificate validation enabled by default. N/A means

not tested as the appliance disallows adding the corresponding faulty CA certificate to its

trusted store.

WebTitan, UserGate and Comodo do not perform any certificate validation; their TLS

proxies allowed all our faulty TLS certificates. UserGate enables TLS inspection by

default after a fresh installation. Endian does not perform certificate validation by default

(a checkbox for accepting all certificates is checked by default). We uncheck the checkbox

to test the certificate validation mechanism in Endian, and discuss the results based on

the forced certificate validation. Comodo also includes in its configuration interface a

checkbox for accepting all certificates, checked by default. Even after unchecking it, the

appliance still does not perform any certificate validation.

Both WebTitan and UserGate block access to the web servers offering RSA-512 certifi-

cates, possibly triggered by the TLS libraries utilized by the proxies, and not by the TLS

47

interception certificate validation code (as apparent from the error messages we observed).

Although Comodo accepts self-signed certificates, Firefox caught the faulty certificate.

This is the result of Comodo mirroring the X.509 version 3 extension ‘basic constrains:

CA’ value of the server self-signed certificate to the client-side TLS connection. Note that

Firefox blocks a TLS connection when the delivered leaf certificate has the CA flag set

to true, while Chrome accepts it. We omit WebTitan, UserGate and Comodo from the

remaining discussion here, as they do not perform any certificate validation.

UserGate and TrendMicro cache TLS certificates and ignore changes in the server-side

certificates (as opposed to modern browsers). Therefore, we regenerate a key pair for their

TLS proxies for each of our certificate validation test, to ensure accuracy (i.e., not the

results of cached TLS certificates).

We mark a faulty certificate as passed when the TLS proxy accepts the faulty certificate

but leaves some chances for a diligent client to catch the anomaly. This behavior results

from the way TLS proxies mirror X.509 extensions and their values to the client-to-proxy

connection. The parameters mirrored are typically the common name, the keyUsage

and extKeyUsage extensions, and the not before and expiry dates. In addition, Comodo

mirrors the basic constraints CA flag, Cisco mirrors the RSA key size when it is 1024

bits and lower, and Microsoft mirrors the signature hashing algorithm. For simplicity, we

report our results using the Firefox browser, but some results may change based on the

client’s validation process. For example, the Chrome browser allowed the leaf certificate

with the basic constraints CA flag set to true in the Comodo self-signed test, while Firefox

blocked access in this case.

Cacheguard Web Gateway accepts self-signed certificates (explicitly allowed in its de-

fault configuration). All appliances accept certificate chains with intermediates that have

a bad name constraint. Untangle and Cisco Ironport WSA forward the wrong CN cer-

48

tificates to the our Firefox browser, which caught it and blocked access, while pfSense,

Microsoft TMG, Sophos UTM, TrendMicro WSVA, McAfee Web Gateway, Cacheguard,

OpenSense, and Endian Firewall Community terminate the connection. McAfee Web

Gateway is the sole appliance to accept a leaf certificate with an unknown x509 version 3

extension, marked as critical.

Regarding malformed extension values, only Cisco Ironport WSA blocks the anomalous

certificate; pfSense, Cacheguard, OpenSense, and Endian Firewall Community pass it to

the browser which caught it and blocked access; Untangle, Microsoft TMG, Sophos UTM,

TrendMicro WSVA, and McAfee Web Gateway accepted it and displayed the web page.

Only Microsoft, Cisco, and McAfee check the revocation status of the offered certificates.

When exposed to expired or not yet valid leaf certificates, Untangle, pfSense, Microsoft

TMG, Sophos UTM, TrendMicro WSVA, McAfee Web Gateway, Cacheguard, OpenSense,

and Endian Firewall Community block access, while Cisco Ironport WSA forwards the

certificates to the browser, as its default settings are configured to only monitor expired

leaf certificates, and not to drop the connections.

Table 4.4: Results for certificate validation, part II.

Revoked
Expired
Leaf

Expired
Interm-
ediate

Expired
Root

Not Yet
Valid
Leaf

Not Yet
Valid
Interm-
ediate

Not Yet
Valid
Root

Leaf
keyUsage
w/out Key
Enciph-
erment

Root
keyUsage
w/out

KeyCert-
Sign

Leaf
extKey-
Usage w/
clientAuth

Root
extKey-
Usage

w/ Code
Signing

Untangle 3 3 3 3 3

pfSense 3 3

WebTitan 3 Ù 3 3 Ù 3 3 Ù 3 Ù 3

Microsoft 3 3

UserGate 3 3 3 3 3 3 3 3 3 3 3

Cisco Ù 3 N/A Ù 3 N/A N/A N/A
Sophos 3 3

TrendMicro 3 3

McAfee 3 3 3

Cacheguard 3 3

OpenSense 3 3

Comodo 3 Ù 3 3 Ù 3 3 Ù 3 Ù 3

Endian* 3 3

49

Untangle fails to detect expired or not yet valid root CA certificates; pfSense, Microsoft

TMG, Sophos UTM, TrendMicro WSVA, McAfee Web Gateway, Cacheguard Web Gate-

way, OpenSense, and Endian Firewall Community block access, while Cisco Ironport WSA

disallows adding them to its trusted store in the first place. Cisco Ironport WSA fails to

detect expired and not yet valid intermediate certificates. Microsoft TMG and McAfee

Web Gateway allow leaf certificates whose keyUsage do not include keyEnciphernment;

Untangle, pfSense, Cisco Ironport WSA, Sophos UTM, TrendMicro WSVA, Cacheguard,

OpenSense, Comodo Dome, and Endian Firewall Community terminate the TLS connec-

tions. Untangle fails to detect root CA certificates that do not have keyCertSign among

the keyUsage values; pfSense, Microsoft TMG, Sophos UTM, TrendMicro WSVA, McAfee

Web Gateway, Cacheguard Web Gateway, OpenSense and Endian Firewall Community

block access; Cisco Ironport WSA disallows adding them to its trusted store.

Similarly, Cisco Ironport WSA disallows adding root CA certificates whose ex-

tKeyUsage parameter is codeSigning, while the remaining middleboxes accept connections

with such certificates. McAfee is the only appliance to accepts leaf certificates whose ex-

tKeyUsage x509 version 3 parameter is set to clientAuth, meaning that this certificate is

meant for TLS clients and not TLS web servers.

As for root CA RSA key sizes, Cisco Ironport WSA does not allow adding RSA-512

root certificates to its store, Microsoft TMG successfully terminates the connection if the

server certificate is signed by RSA-512 root CA certificates, and the remaining appli-

ances permit TLS connections involving such certificates. All appliances permit server

certificates signed by RSA-1024 root CA certificates.

Sophos UTM, Cacheguard Web Gateway, OpenSense, and Endian Firewall Commu-

nity accept RSA-512 leaf certificates (easily factorable [60]), and then issue certificates

with RSA-2048, leaving no options for browsers to catch such certificates, while Untan-

gle, pfSense, Microsoft TMG, TrendMicro WSVA, and McAfee Web Gateway terminate

50

Table 4.5: Results for certificate validation, part III.

Root Key
Length

(Good Leaf)

Leaf Key
Length

(Good Root)

Signature Hashing
Algorithm

DHE
Modulus
Length

Own
Root

512 1024 512 768 1016 1024 MD4 MD5 SHA1 512 1024
Untangle 3 3 3 3 3 3 3

pfSense 3 3 3 3 3 3 3 3

WebTitan 3 3 3 3 3 3 3 3 3 3

Microsoft 3 3 Ù Ù Ù 3 3

UserGate 3 3 3 3 3 3 3 3 3 3 3

Cisco N/A 3 Ù 3 3 3 3 3 3 3

Sophos 3 3 3 3 3 3 3 3

TrendMicro 3 3 3 3 3 3 3 3

McAfee 3 3

Cacheguard 3 3 3 3 3 3 3 3 3

OpenSense 3 3 3 3 3 3 3 3 3

Comodo 3 3 3 3 3 3 3 3 3 3 3 3

Endian* 3 3 3 3 3 3 3 3 3

connections that utilize this certificate. Cisco Ironport wSA also allows RSA-512 certifi-

cates, but Firefox detects them, as its proxy mirrors the RSA key sizes of RSA-512 and

RSA-1024 server certificates to the client-to-proxy TLS connection (RSA-2048 and higher

key sizes are mapped to RSA-2048).

All appliances accept RSA-768, RSA-1016, and RSA-1024 leaf certificates, except McAfee

Web Gateway which blocks access, and Microsoft TMG which accepts RSA-1024, but

blocks access when exposed to RSA-768 and RSA-1016.

Microsoft TMG mirrors signature hashing algorithms, and thus passes weak and dep-

recated hash algorithms (if any) to the client. Cisco Ironport WSA is the sole appliance

to accept certificates signed using the deprecated MD4 algorithm. On the other hand,

MD5 and SHA1 are accepted by all proxies, except McAfee Web Gateway, which disallows

them, and Untangle which accepts SHA1 but disallows MD5.

51

Microsoft TMG, WebTitan Gateway, UserGate, and Comodo Dome fail to detect ex-

ternal leaf certificates signed by their own root keys, while the remaining appliances

successfully terminate the connection.

Note that, when a TLS connection is terminated, Untangle and Microsoft TMG use a

TLS handshake failure; pfSense, Sophos UTM, TrendMicro WSVA, McAfee Web Gate-

way, Cacheguard Web Gateway, OpenSense, and Endian Firewall Community redirect the

connection to an error page; and Cisco Ironport WSA uses an untrusted CA certificate, re-

lying on the browser to block the connection. However, error pages as displayed by Sophos

UTM and TrendMicro WSVA, allow end-users to reestablish the connection (Sophos UTM

through ‘Add exception for this URL’, and TrendMicro WSVA through ‘Continue at own

your risk’). This behavior is a deviation from current practice (in browsers), as the users

may be unaware of the actual risks and consequences if they bypass these warnings.

For all appliances, we check if the TLS inspection feature is enabled by default after

the activation of the appliances, or if it requires any manual step. Only UserGate Web

Filter enables inspection by default. Thus, due to the lack of any certificate validation

in UserGate, users located behind a freshly installed UserGate Web Filter appliance are

automatically vulnerable to trivial MITM attacks.

4.5 CA Trusted Stores

In this section, we analyze the results concerning CA trusted stores, their accessibility,

source, and content; see Table 4.6 (‘Not Applicable’: the appliance does not rely on any

store (no certificate validation)). Note that, as WebTitan Gateway, UserGate Web Filter,

and Comodo Dome perform no certificate validations, their trusted stores are of no use.

52

4.5.1 Accessibility

Untangle’s file system can be accessed through SSH. We found that Untangle relies on

two CA trusted stores, saved in Java Keystore files on the filesystem. The first store,

‘trusted-ca-list.jks’, holds the CA authorities trusted by default, while the second store,

‘trustStore.jks’, holds the custom CA certificates, added by the machine administrator

through Untangle’s UI. pfSense also allows SSH, and we found that its CA trusted store

on the FreeBSD filesystem under ‘ca-root-nss.crt’. pfSense does not offer any UI to add

custom CA certificates. We append our crafted certificates to the original store, in a

format that includes the public key, in addition to the text meta-data (OpenSSL’s ‘-text’

option).

Microsoft TMG relies on the Windows Server’s standard trusted store. To view the

content of the trusted store and to inject our crafted CA certificates, we rely on the

Microsoft Management Console, in the Trusted Root Certification Authorities section of

the Local Computer.

Cisco Ironport WSA’s trusted CA store can be accessed through the appliance’s web

interface, under the Cisco Trusted Root Certificate List. It also includes another interface,

the Cisco Blocked Certificates, for untrusted issuer certificates. To add custom CA cer-

tificates, the appliance includes a third interface, the Custom Trusted Root Certificates.

However, Cisco Ironport WSA does not allow the injection of most of our invalid root

certificates, and responds with an error when tried.

Sophos UTM allows accessing the trusted CA store through its web interface, under

Global Verification CAs. The interface allows adding custom root certificates, in addition

to disabling CA certificates that are included by default.

53

TrendMicro WSVA’s trusted store can be accessed through the web interface’s Active

Certificates section. It is possible to add custom CA certificates and deactivate existing

default ones. McAfee Web Gateway gives access to the root certificates supplied by

default in the Known CAs section, and allows adding custom root certificates in the My

CAs section.

Cacheguard’s web interface does not include a section for root CA certificates. In

addition, Cacheguard does not give access to its filesystem through a terminal, and does

not support SSH. We thus mount the appliance’s virtual hard disk to a Linux machine,

and locate the trusted store in a ‘ca-bundle.crt’ file. We subsequently append our custom

CA certificates to the bundle. Similarly, OpenSense and Endian Firewall Community do

not include a section for root certificates. However, they give access to the filesystem

through an OS shell terminal. We locate the trusted store of OpenSense in a ‘cert.pem’

bundle file, and Endian Firewall Community’s in a ‘ca-certificates.crt’ bundle file. We

include our custom CA certificates to these files.

4.5.2 Source and content

As documented on Untangle’s SSL Insepctor wiki page [29], the list of trusted certifi-

cates is generated from the Debian/Linux ca-certificates package, in addition to Mozilla’s

root certificates. However, the list includes Microsoft’s own Root Agency certificate, which

indicates the additional inclusion of the Windows trusted certificates. The Root Agency

certificate is an RSA-512 certificate, valid until 2039, which can be readily compromised.

In 2016, it took about four hours and $75 to factor RSA-512 using Amazon EC2 [60]. It

has been used since the 1990s as the default test certificate for code signing and devel-

opment; Windows systems still include this certificate, but mark it as untrusted. As a

result, Untangle is instantly vulnerable to a trivial MITM attack, using the Root Agency’s

certificate key pair. Untangle also includes 21 RSA-1024 root certificates, 30 expired cer-

54

tificates, and 16 certificates from issuers that are no longer trusted by major browser/OS

vendors (three from CNNIC CA, six DigiNotar, three TÜRKTRUST, and four WoSign

certificates).

pfSense’s trusted CA store relies on Mozilla’s NSS certificates bundle, extracted from

the nss-3.30.2 version (Apr. 2017), with 20 untrusted certificates omitted from the bundle,

as specified in the header of the trusted store. It does not include any RSA-512 or RSA-

1024 certificates, and no expired certificates. However, pfSense includes two CNNIC CA

certificates, and four WoSign CA certificates.

Similar to the other Windows OSes, the Windows Server 2008 R2 also does not dis-

play the full list of trusted root certificates in its management console, and instead, only

displays the root certificates of web servers already visited. We thus rely on the Mi-

crosoft Trusted Root Certificate Program [20] to collect the list of certificates trusted to

the date of the testing. We found that the list includes two CNNIC CA certificates, two

TÜRKTRUST CA certificates, two ANSSI CA certificates, and four WoSign CA certifi-

cates. Nonetheless, the acquired list does not include the RSA key sizes of the certificates,

their expiry dates, or their revocation states.

As for Cisco Ironport WSA, we found four problematic root CA certificates from

TÜRKTRUST included into the trusted store. All certificates included in Cisco’s trusted

store are trusted by current browser/OS vendors. However, the RSA key sizes are not

displayed within the UI, so we could not check for RSA-512 and RSA-1024 CA certificates.

Sophos UTM includes two CNNIC, four WoSign, and three TÜRKTRUST CA certifi-

cates; TrendMicro WSVA has a CNNIC, two TÜRKTRUST, and 30 expired certificates;

and McAfee Web Gateway includes a CNNIC certificate. The RSA key sizes (for all three)

and expiry dates (for Sophos UTM and McAfee Web Gateway) of CA certificates are not

55

displayed within their UI, and thus we could not check for these issues.

Cacheguard Web Gateway’s trusted store is extracted from Mozilla NSS’s root cer-

tificates file ‘certdata.txt’ [22] and converted using Curl’s ‘mk-ca-bundle.pl’ version 1.27

script [6], as specified in the ‘ca-bundle.crt’ trusted store file. We parse the trusted store

using OpenSSL’s ‘-text’ option to extract the certificate metadata. The trusted store

contains two TÜRKTRUST, four WoSign, three expired certificates; however, it is free of

RSA-512 or RSA-1024 certificates.

OpenSense’s store also relies on Mozilla, extracted from the nss-3.35 (Jan. 2018) version,

with two untrusted certificates omitted from the bundle, as specified in the header of the

NSS trusted store. It does not include any RSA-512 or RSA-1024 certificates, and no

expired certificates. However, it includes a TÜRKTRUST CA certificate.

Endian Firewall Community’s trusted CA store bundle is the output of the ‘update-ca-

certificates’ Debian Linux command [30]. The trusted store contains two CNNIC, three

TÜRKTRUST, four WoSign, 10 expired, and 11 RSA-1024 CA certificates.

4.6 Private Key Protection

In this section, we discuss the results regarding the TLS proxies’ private keys, in terms

of storage location, state, and the privilege required to access them.

For summary, see Table 4.6; ‘N/A’: not available (failed to locate the private key

on disk); ‘World’: readable by any user account on the appliance.

We could not access the filesystem of Cisco Ironport WSA’s AsyncOS to locate the

private key on disk. Instead, we extract its private key from memory using Heartleech [14]

(see Section 4.6.1 for details). Sophos UTM and McAfee Web Gateway provide access to

their filesystems through a bash terminal. However, we could not locate their private keys

56

Table 4.6: Results for CA trusted stores, private keys and initial setup.

Trusted CA Store Private Key Initial Behavior

Location Type Location State Read Permission
Inspection
By Default

Pre-Generated
Key Pair

Untangle
/usr/share/untangle/lib/

ssl-inspector/trusted-ca-list.jks
Java

Key Store

/usr/share/untangle
/settings/untangle-

certificates/untangle.key
Plaintext Root Off No

pfSense
/usr/local/share

/certs/ca-root-nss.crt
Mozilla
NSS

/usr/local/etc
/squid/serverkey.pem Plaintext World Off No

WebTitan Not Applicable None
/usr/blocker/ssl

/ssl cert/webtitan.pem
Plaintext World Off No

Microsoft
mmc.exe → Windows Trusted

Store → Local Computer
Microsoft
Store

CERT SYSTEM STORE
LOCAL MACHINE MY

Exportable
Key

Admin Off No

UserGate Not Applicable None
/opt/entensys/webfilter

/etc/private.pem
Plaintext World On No

Cisco
Network → Certificate
Management → Cisco

Trusted Root Certificate List
GUI N/A N/A N/A Off No

Sophos
Web Protection → Filtering
Options → HTTPS CAs →
Global Verification CAs

GUI N/A N/A
Admin (for

GUI download)
Off No

TrendMicro
HTTP → Configuration →

Digital Certificates →
Active Certificates

GUI
/var/iwss/https/certstore
/https ca/default key.cer

Passphrase
Encryption

World Off Yes

McAfee
Policy → Lists →

Subscribed Lists → Certificate
Authorities → Known CAs

GUI N/A N/A
Admin (for

GUI download)
Off Yes

Cacheguard
/usr/local/proxy/var
/ca-ssl/ca-bundle.crt

Mozilla
NSS

/usr/local/proxy/var
/ca-ssl/self-ca.key

Plaintext World Off Yes

OpenSense /usr/local/openssl/cert.pem
Mozilla
NSS

/var/squid/ssl/ca.pem Plaintext Root Off No

Comodo Not Applicable None /var/cni/credentials/ca.key Plaintext World Off No

Endian /etc/ssl/certs/ca-certificates.crt
‘update-ca-
certificates’
Command

/var/efw/proxy/https cert Plaintext World Off No

on disk. Sophos UTM stores the key in a database, as it can be recovered by invoking

the following command ‘cc get object REF CaSigProxyCa’ via Sophos UTM’s terminal.

McAfee Web Gateway possibly has its private key hard-coded, as its key pair is pre-

generated, as discussed later in this section. Thus, we could not locate the private key

on disk. We get a copy of their respective private keys by downloading them from the

appliances’ web interfaces. As there is no information on the private key on disk, and

the located key was used only for testing external content signed by own key, we do not

discuss these appliances in the rest of the section.

57

We rely on the methodologies from Section 3.3 to access the filesystems on non-Windows

appliances. pfSense and Untangle’s access is acquired through SSH, while WebTitan

Gateway and Cacheguard Web Gateway’s access are acquired through the mounting of

their respective virtual disk drives on a separate machine. UserGate, TrendMicro WSVA,

OpenSense, Comodo Dome, and Endian Firewall Community provide access to their

OS shell terminal by default. Untangle, pfSense, WebTitan Gateway, UserGate, Cache-

guard Web Gateway, OpenSense, Comodo Dome and Endian Firewall Community store

their plaintext private keys within their filesystems (as ‘untangle.key’, ‘serverkey.pem’,

‘webtitan.pem’, ‘private.pem’, ‘self-ca.key’, ‘ca.pem’, ‘ca.key’, and ‘https cert’ files, re-

spectively). pfSense, WebTitan Gateway, UserGate, Cacheguard Web Gateway, Comodo

Dome, and Endian Firewall Community allow read access to all users accounts (write is

restricted to root), while Untangle and OpenSense allow read/write only to root accounts.

Regarding TrendMicro WSVA, we get access to the filesystem using its OS terminal,

and locate the root private key in a file named ‘default key’, with read permission to all

user accounts (write is restricted to root). However, the located key is encrypted using a

passphrase. We brute-force the encrypted key using a python script and a dictionary of

common English words, and successfully decrypt the key, with the passphrase ‘trend’.

Microsoft TMG’s private key is stored using theWindows Software Key Storage Provider,

utilizing Cryptography API: Next Generation (CNG). The key is exportable through the

Microsoft Management Console, if opened with SYSTEM privileges. We rely on the

Mimikatz tool to export the key, which requires a less privileged Administrator account.

We install multiple instances of each appliance to check if the root certificates are pre-

generated. To our surprise, we found that TrendMicro WSVA, McAfee Web Gateway

and Cacheguard Web Gateway use such certificates to intercept the TLS traffic. McAfee

Web Gateway includes an X509v3 ‘Netscape Certificate Comment’ extension, with the

58

following warning: “This is the default McAfee root CA. It will be delivered with each

web gateway installation. We recommend to generate and use your own CA.”. However,

it does not provide any warning during installation/configuration. Although Cacheguard

Web Gateway’s documentation explicitly state: “the default system CA certificate is

generated during the installation” [3], in reality, it uses a pre-generated certificate.

4.6.1 Private Key Extraction for Cisco Ironport WSA

In this section, we discuss the challenges faced while attempting to extract the private

key from the Cisco Ironport Web Security Appliance.

We performed several attempts to bypass the limited custom command line interface,

and access the filesystem content itself. We first tried to skip the proprietary command-line

interface and reach operating system’s native command-line. However, Cisco’s interface

is designed to have no escape point out of its custom command-line interface [5]. We then

attempted to mount the network appliance’s drive to our Ubuntu machine. We discovered

that the virtual disk drive is divided into 9 different partitions, with FreeBSD as the main

OS. We subsequently attempted to mount all partitions, with FreeBSD’s filesystem type

UFS, and all UFS type options, which include: old, default, 44bsd, ufs2, 5xbsd, sun,

sunx86, hp, nextstep, nextstep-cd, and openstep [28].

With all the mentioned UFS types failing and no mounted drive, we then attempted

to explore the content of the disk drive without mounting it. We relied on the Linux

strings command, which extracts printable characters from binary files. We then parsed

the output and saved all private keys found, by searching for the private key delimiters

‘-----BEGIN PRIVATE KEY-----’ and ‘-----BEGIN RSA PRIVATE KEY-----’. We then

compared the modulus of each key to the appliance’s public key certificate, in order to

attempt to locate the corresponding private key.

59

With no positive matching, we proceeded to memory analysis. We dumped the volatile

memory of a VM by saving a snapshot of the running machine, after intercepting the

traffic for a not previously visited website. We ensured that the website visited has not

been visited and proxied earlier, to guarantee that the private key will be used to sign the

intercepted page, and thus, be located in the appliance’s RAM. Subsequently, we passed

the memory dump to Volatility, a memory forensics tool [32]. Volatility requires as an

input the exact profile of the OS corresponding to the memory dump. Consequently, we

attempted to determine the profile using Volatility’s ‘imageinfo’ command, which fails to

determine the profile. Without the specific profile, Volatility fails to execute.

As a result, we attempted to use the collected memory dump with Heartleech [14].

We fed the tool with Cisco Ironport Web Security Appliance’s memory dump, along

with the TLS proxy’s public key certificate to Heartleech, which successfully outputs the

corresponding private key.

4.7 Evolution of Products Between 2016–2018

In this section, we highlight the evolution of the overlapping appliances that were tested

in three separate instances between 2016 to 2018: by Durumeric et al. [46] in 2016 (dis-

closed to vendors in Sept. 2016), our own tests in 2017 [63] (disclosed in Dec. 2017), and

the latest product releases tested in 2018 (disclosed in May. 2018).

In 2016, Untangle included RC4 and weak ciphers in its cipher-suite; we found that

version 13.0 (2017) still included weak ciphers, but no RC4. The Untangle 13.2 release,

tested in 2018, has no differences in its TLS interception processes compared to release

13.0, and thus, shows the exact same results.

60

pfSense, which was not tested in 2016 by Durumeric et al., accepts the TLS version

1.1 in its 2.3.4 release (2017), while pfSense 2.4.2-P1 (2018) no longer does. Moreover,

pfSense 2.3.4 maps the certificate keys to RSA-4096, while the latest version maps them

to RSA-2048.

In 2016, WebTitan Gateway had a broken certificate validation process and offered

RC4 and modern ciphers; we found that WebTitan Gateway version 5.15 (2017) did not

perform any certificate validation, was vulnerable to the CRIME attack, and still offered

RC4, in addition to weak ciphers. Moreover, the latest version of WebTitan Gateway

(5.16) in 2018 accepts SSLv3 (did not in 2017), but is now patched against CRIME.

Microsoft TMG performed no certificate validation in 2016 and the highest supported

SSL/TLS version was SSLv2.0; it now (2018) performs certificate validation, and supports

SSL versions 2.0, 3.0 and TLS 1.0. The Microsoft TMG and UserGate product releases

are the same in 2018 compared to 2017.

Cisco Ironport WSA no longer offers RC4 and export-grade ciphers, which was reported

in 2016. Furthermore, Cisco Ironport WSA build 270’s CBC ciphers (2017) are not

recognized by the Qualys client test, while the latest build’s CBC ciphers (2018) are,

indicating that the appliance is vulnerable to the BEAST attack. The older build fails

to block RSA certificates with malformed extension values, while the latest build does.

The latest build fails to block expired and not yet valid intermediate root certificates, in

addition to RSA-512 leaf certificates, while the older build (270) blocks them successfully.

In 2016, Sophos offered RC4, but not in the 2018 release.

We contacted the six affected companies after our 2017 tests, and received replies from

three companies; Untangle replied with just an automatic reply, Entensys (Usergate)

confirmed that they have passed the matter to its research team. Netgate (pfSense), stated

61

that they philosophically oppose TLS interception, but include it as it is a commonly

requested feature. Netgate also states that the TLS interception is done using the external

package ‘Squid’, which it does not control completely. They claimed that our tested version

was five releases old at that time. We found the latest version to have the exact same

results, with two minor exceptions. We are also contacting all vendors from our latest

2018 tests.

Overall, the disclosures appear to have limited impact on vendors. Many vendors

completely ignored the security issues (Untangle, Microsoft TMG, UserGate, and pfSense).

More worryingly, some products even became worse over time (Cisco Ironport WSA), and

some patched product releases introduced new vulnerabilities compared to their older

versions (WebTitan Gateway).

4.8 Practical Attacks

In this section, we summarize how the vulnerabilities reported could be exploited by an

attacker.

MITM attacks can be trivially launched to impersonate any web server against clients

behind UserGate, WebTitan Gateway, Comodo Dome and Endian Firewall Community,

due to their lack of certificate validation (using default configuration). Attackers can

simply use a self-signed certificate for any desired domain, fooling even the most secure

and up-to-date browsers behind these appliances. Since Usergate enables TLS interception

by default, users located behind a freshly installed UserGate appliance are automatically

vulnerable to trivial MITM attacks. Likewise, clients behind Cacheguard are vulnerable

to the same attack, as the appliance’s TLS proxy accepts self-signed certificates.

62

Clients behind Untangle are also similarly vulnerable to the same attack, due to the

RSA-512 ‘Root Agency’ certificate in its trusted store. This Root Agency CA certificate,

which is valid until 2039, has been used since the 1990s as the default test certificate for

code signing and development; Windows systems still include this certificate, but mark

it as untrusted. The RSA-512 private key corresponding to this certificate can be easily

factored under 4 hours [60] as a one time effort, and the factored key could be use attack

all instances of Untangle.

An attacker can also launch MITM attacks to decrypt traffic or impersonate any web

server against clients behind TrendMicro WSVA, McAfee Web Gateway and Cacheguard

Web Gateway, as they rely on pre-generated root keys (identical on all installations).

The attacker can retrieve private keys for these appliances from her own installations

irrespective of privileges required to access the keys.

Attackers could target Sophos UTM, Cacheguard Web Gateway, OpenSense, Comodo

Dome and Endian Firewall Community, as they accept RSA-512 leaf certificates (while

artificially upgrading them to RSA-2048). A 512-bits RSA modulus can be factored

under 4 hours using the ‘Factoring as a Service’ project. Using the factored key, the

attacker could decrypt the previously established sessions’ saved traffic, in addition to

any new session’s traffic. In 2016, 1% of TLS web servers were found to host an RSA-512

certificate [60].

All appliances except Untangle and McAfee Web Gateway accept certificates signed

using MD5, with WebTitan Gateway, Microsoft TMG, UserGate, Cisco Ironport WSA

and Comodo Dome accepting MD4 too. The MD5 hash function has weaknesses that

permit having two different items with the same MD5 hash (collision). This weakness can

be exploited in a practical attack scenario, where the attacker forges a rogue intermediate

CA certificate that appears to be signed by a valid trusted root CA; all leaf certificates

63

signed by this rogue CA will similarly be trusted by the appliances. As a result of this

one time effort, the holder of this rogue intermediate CA can establish MitM attacks

and impersonate web servers, targeting the users behind all the appliances that accept

certificates signed using the MD5 algorithm [59].

UserGate, WebTitan Gateway, Microsoft TMG, and Comodo Dome accept external

certificates signed by their own root keys. If an attacker can gain access to the private

keys of these appliances, she can launch MITM attacks to impersonate any web server.

UserGate, WebTitan Gateway and Comodo Dome provide ‘read’ privileges to non-root

users for the private key, while Microsoft TMG makes it harder for attackers that have

compromised the appliances, requiring admin privileges to access the key.

When combined with a Java applet to bypass the same origin policy, the BEAST

vulnerability [44] allows an attacker to recover authentication cookies from the clients

behind Microsoft TMG, Cisco Ironport WSA and TrendMicro WSVA. Attackers could

also recover cookies from clients behind WebTitan Gateway, Microsoft TMG, TrendMicro

WSVA, Comodo Dome, and Endian Firewall Community due to their use of RC4 [62].

64

Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusion

We present a framework for analyzing TLS interception behaviors of network appli-

ances to uncover any potential vulnerabilities introduced by them. We tested 13 network

appliances, and found that all their TLS proxies are vulnerable against the tests under

our framework—at varying levels. Each proxy lacks at least one of the best practices in

terms of protocol and parameters mapping, patching against known attacks, certificate

validation, CA trusted store maintenance, and private key protection.

We found that the clients behind the 13 appliances are vulnerable to full server imper-

sonation under an active MITM attack, of which one enables TLS interception by default;

and that attackers can recover authentication cookies for six appliances. We also found

that three TLS proxies rely on pre-generated root keys, allowing trivial MITM attacks.

Furthermore, client browsers are often being misled, as the TLS versions and certificate

parameters displayed have a higher security level than the actual proxy-to-server TLS

connection, similar to client-end TLS proxies [42].

65

While TLS proxies are mainly deployed in enterprise environments to decrypt the traffic

in order to scan for malware and network attacks, they introduce new intrusion opportuni-

ties and vulnerabilities for attackers. As TLS proxies act as the client for the proxy-to-web

server connections, they should maintain (at least) the same level of security as modern

browsers; similarly, as they act as a TLS server for the client-to-proxy connections, they

should be securely configured like any up-to-date HTTPS server, by default. Before en-

abling TLS interception, concerned administrators may use our framework to evaluate

their network appliances, and weigh the potential vulnerabilities that may be introduced

by a TLS proxy against its perceived benefits.

5.2 Future Work

The following is a list of topics and ideas that can be implemented to extended the

work presented in this thesis.

• Automate the certificate validation testing process through a web application that

hosts the different certificate chains. This can be achieved using the TLS proto-

col extension server name indication (SNI). However, some TLS proxies might not

support SNI.

• Exploit the practical attacks suggested in Section 4.8, and present a proof of concept

(POC) for each exploit.

• Fingerprint the middleboxes’ TLS proxies. Each TLS proxy’s distinct configuration

results in a different fingerprint. During the TLS handshake, the proxy offers a

certain set of fixed TLS parameters, such as the SSL/TLS versions supported, the

list of supported cipher suites and their ordering priority, the compression method,

etc. The concatenation of all these fixed TLS parameters will result in a unique

value, which can be used to fingerprint and identify the requests incoming from a

TLS proxies.

66

• Perform an analysis of the threshold of delay caused by TLS interception, by mea-

suring the time needed for a TLS connection to be established with and without

TLS interception. Note that the performance should be measured on hardware

middleboxes rather then virtual appliances, as the latter does not deliver the same

performance as actual hardware.

• Include additional certificate validation tests in the presented framework to test for

non compliance with different TLS related Request for Comments (RFC).

67

Bibliography

[1] BEAST attack 1/n-1 split patch. Available at https://bugzilla.mozilla.org/

show bug.cgi?id=665814#c59, Jul 2017.

[2] CA/browser forum - baseline requirements documents. Available at https://

cabforum.org/baseline-requirements-documents.

[3] CacheGuard OS user’s guide - SSL mediation. Available at https://

www.cacheguard.net/doc/guide/ssl mediation.html, Jan 2018.

[4] Censys platform. https://censys.io/.

[5] Cisco WSA AsyncOS documentation. Available at https://www.cisco.com/c/en/

us/products/security/email-security-appliance/asyncos index.html.

[6] Curl’s mk-ca-bundle.pl - GitHub. Available at https://github.com/curl/curl/

blob/master/lib/mk-ca-bundle.pl, Jan 2018.

[7] Diginotar ca breach. Available at https://nakedsecurity.sophos.com/2011/09/

05/operation-black-tulip-fox-its-report-on-the-diginotar-breach/, Sep

2011.

[8] Distrusting new CNNIC certificates. Available at https://blog.mozilla.org/

security/2015/04/02/distrusting-new-cnnic-certificates/, Apr 2015.

68

[9] Distrusting new WoSign and StartCom certificates. Available at https:

//blog.mozilla.org/security/2016/10/24/distrusting-new-wosign-and-

startcom-certificates/, Oct 2016.

[10] Effects of HTTPS and SSL inspection on the client. Available athttps:

//vuls.cert.org/confluence/display/Wiki/Effects+of+HTTPS+and+SSL+

inspection+on+the+client, Aug 2017.

[11] English words dictionary ‘words.txt’ - GitHub. Available at https://github.com/

dwyl/english-words/blob/master/words.txt, Jul 2017.

[12] Extended validation OID. Available at https://cabforum.org/object-registry/,

Oct 2013.

[13] GRC certificate validation revoked test. Available at https://revoked.grc.com/.

[14] Heartleech - GitHub. Available at https://github.com/robertdavidgraham/

heartleech.

[15] Howsmyssl - GitHub. Available at https://github.com/jmhodges/howsmyssl.

[16] Lenovo’s superfish security. Available at https://www.cnet.com/news/superfish-

torments-lenovo-owners-with-more-than-adware/, Feb 2015.

[17] Mapping the current state of SSL/TLS - thesis. http://www.diva-portal.org/

smash/get/diva2:1109739/FULLTEXT01.pdf, 2017.

[18] Microsoft TMG 2010 updates. Available at https://blogs.technet.microsoft.com/

keithab/2011/09/27/forefront-tmg-2010-service-pack-rollup-and-

version-number-reference/.

[19] Microsoft TMG supported OS version. Available at https://www.microsoft.com/

en-ca/download/details.aspx?id=14238.

69

[20] Microsoft trusted root certificate program. Available at https://

gallery.technet.microsoft.com/Trusted-Root-Certificate-123665ca.

[21] Mimikatz - GitHub. Available at https://github.com/gentilkiwi/mimikatz.

[22] Mozilla’s ‘certdata.txt’ file. Available at https://hg.mozilla.org/mozilla-

central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt, Sep

2017.

[23] Revoking ANSSI CA. Available at https://security.googleblog.com/2013/12/

further-improving-digital-certificate.html, Dec 2013.

[24] The risks of SSL inspection. Available athttps://insights.sei.cmu.edu/cert/

2015/03/the-risks-of-ssl-inspection.html, Mar 2015.

[25] SSL Bump configuration - Squid. Available at http://www.squid-cache.org/Doc/

config/ssl bump/.

[26] SSL client test. Available at https://www.ssllabs.com/ssltest/

viewMyClient.html.

[27] The TÜRKTRUST SSL certificate fiasco. Available at https://

nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-certificate-

fiasco-what-happened-and-what-happens-next/, Jan 2013.

[28] UFS - Linux Kernel archives. Available at https://www.kernel.org/doc/

Documentation/filesystems/ufs.txt.

[29] Untangle SSL inspector documentation. Available at https://wiki.untangle.com/

index.php/SSL Inspector#Trust All Server Certificates.

[30] update-ca-certificates - Debian System Manager’s Manual. Available

at https://manpages.debian.org/jessie/ca-certificates/update-ca-

certificates.8.en.html, Apr 2017.

70

[31] US-CERT alert on HTTPS interception. Available at https://www.us-cert.gov/

ncas/alerts/TA17-075A.

[32] Volatility. Available at http://www.volatilityfoundation.org/26.

[33] Windows cryptography API (CNG). Available at https://www.codeguru.com/

cpp/w-p/vista/article.php/c13813/Windows-Cryptography-API-Next-

Generation-CNG.htm.

[34] ZMap - GitHub. Available at https://github.com/zmap/zmap.

[35] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,

N. Heninger, D. Springall, E. Thomé, L. Valenta, et al. Imperfect forward secrecy:

How diffie-hellman fails in practice. In Proceedings of the 22nd ACM SIGSAC Con-

ference on Computer and Communications Security, pages 5–17, Denver, CO, USA,

2015.

[36] E. Barker and A. Roginsky. NIST recommendations. NIST Special Publication,

800(131A):1–29, 2015.

[37] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,

A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A messy state of the union: Tam-

ing the composite state machines of tls. In 2015 IEEE Symposium on Security and

Privacy, pages 535–552, Fairmont, CA, USA, 2015.

[38] K. Bhargavan and G. Leurent. On the practical (in-) security of 64-bit block ciphers:

Collision attacks on HTTP over TLS and OpenVPN. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, pages 456–

467, Vienna, Austria, 2016.

[39] E. Biham, O. Dunkelman, N. Keller, and A. Shamir. New attacks on IDEA with at

least 6 rounds. Journal of Cryptology, 28(2):209–239, 2015.

71

[40] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using Frankencerts for

automated adversarial testing of certificate validation in SSL/TLS implementations.

In 2014 IEEE Symposium on Security and Privacy, pages 114–129, Fairmont, CA,

USA, 2014.

[41] S. Y. Chau, O. Chowdhury, E. Hoque, H. Ge, A. Kate, C. Nita-Rotaru, and N. Li.

SymCerts: Practical symbolic execution for exposing noncompliance in x.509 certifi-

cate validation implementations. In 2017 IEEE Symposium on Security and Privacy,

pages 61–68, Fairmont, CA, USA, 2017.

[42] X. de Carné de Carnavalet and M. Mannan. Killed by proxy: Analyzing client-end

tls interception software. In Network and Distributed System Security Symposium,

San Diego, CA, USA, 2016.

[43] T. Dierks and E. Rescorla. RFC 5246: The transport layer security (TLS) protocol,

Aug 2008.

[44] T. Duong and J. Rizzo. Here come the ⊕ ninjas. Technical Report. Available at

http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf, May 2011.

[45] T. Duong and J. Rizzo. The CRIME attack. Presentation at Ekoparty Security

Conference, 2012.

[46] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey,

J. A. Halderman, and V. Paxson. The security impact of HTTPS interception. In

Network and Distributed Systems Symposium, San Diego, CA, USA, 2017.

[47] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith.

Why eve and mallory love android: An analysis of Android SSL (in) security. In

Proceedings of the 2012 ACM conference on Computer and communications security,

pages 50–61, Raleigh, NC, USA, 2012.

72

[48] A. Freier, P. Karlton, and P. Kocher. RFC 6101: The secure sockets layer (SSL)

protocol version 3.0, Aug 2011.

[49] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The most

dangerous code in the world: validating ssl certificates in non-browser software. In

Proceedings of the 2012 ACM conference on Computer and communications security,

pages 38–49, Raleigh, NC, USA, 2012.

[50] B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan, R. Yang, and Z. Zhang.

Vetting SSL usage in applications with SSLint. In 2015 IEEE Symposium on Security

and Privacy, pages 519–534, Fairmont, CA, USA, 2015.

[51] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 5280: Internet x.509 public key

infrastructure certificate and crl profile, May 2008.

[52] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson. Analyzing forged SSL certifi-

cates in the wild. In 2014 IEEE Symposium on Security and Privacy, pages 83–97,

Fairmont, CA, USA, 2014.

[53] J. Jarmoc. SSL/TLS interception proxies and transitive trust. Black Hat Europe,

Mar 2012.

[54] D. Kumar, M. Bailey, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian, J. Ma-

son, Z. Durumeric, and J. A. Halderman. Tracking certificate misissuance in the wild.

In 2018 IEEE Symposium on Security and Privacy, pages 288–301, San Fransisco,

CA, USA, 2018.

[55] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala. TLS proxies: Friend or foe? In

Proceedings of the 2016 ACM on Internet Measurement Conference, pages 551–557,

Santa Monica, CA, USA, 2016.

73

[56] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. RFC 5746: Transport layer security

(tls) renegotiation indication extension, Feb 2010.

[57] S. Ruoti, M. O’Neill, D. Zappala, and K. E. Seamons. User attitudes toward the

inspection of encrypted traffic. In Proceedings of the Eleventh Symposium On Usable

Privacy and Security, pages 131–146, Denver, CO, USA, 2016.

[58] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana. HVLearn: Automated

black-box analysis of hostname verification in SSL/TLS implementations. In 2017

IEEE Symposium on Security and Privacy, pages 521–538, Fairmont, CA, USA, 2017.

[59] A. Sotirov, M. Stevens, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik, and

B. de Weger. MD5 considered harmful today, creating a rogue CA certificate. In 25th

Annual Chaos Communication Congress, number EPFL-CONF-164547, 2008.

[60] L. Valenta, S. Cohney, A. Liao, J. Fried, S. Bodduluri, and N. Heninger. Factoring as

a service. In International Conference on Financial Cryptography and Data Security,

pages 321–338, Christ Church, Barbados, 2016.

[61] P. Van De Zande. The day DES died. SANS Institute, Jul 2001.

[62] M. Vanhoef and F. Piessens. All your biases belong to us: Breaking RC4 in WPA-

TKIP and TLS. In USENIX Security Symposium, pages 97–112, Washington D.C.,

USA, 2015.

[63] L. Waked, M. Mannan, and A. Youssef. Analyzing TLS interception in middleware

network appliances. In ACM ASIACCS, Korea, 2018.

[64] X. Wang and H. Yu. How to break MD5 and other hash functions. In 37th Annual In-

ternational Conference on the Theory and Applications of Cryptographic Techniques,

pages 19–35, Sofia, Bulgaria, 2005.

74

