

Oswaldo: A Semantic Web Enabled Approach for

Identifying Open Source License Violations

Christopher J. Forbes

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfilment of the Requirements

for the Degree of Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

August 2018

© Christopher J. Forbes 2018

 ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Christopher J. Forbes

Entitled: Oswaldo: A Semantic Web Enabled Approach for Identifying Open Source License

Violations

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

____________________________________ Chair

Dr. J. Yang

____________________________________ Examiner

Dr. Gregory Butler

____________________________________ Examiner

Dr. Joey Paquet

____________________________________ Supervisor

Dr. Jürgen Rilling

Approved by: ____________________________________

Dr. Volker Haarslev, Graduate Program Director

August 29, 2018 ____________________________________

Dr. Amir Asif, Dean, Faculty of Engineering and Computer Science

 iii

Abstract

Oswaldo: A Semantic Web Enabled Approach for Identifying Open Source License

Violations

Christopher J. Forbes

Open source license violations are numerous, multifaceted, and pose significant risk to developers

and companies in the form of litigation, sometimes resulting in millions in dollars in damages or

settlements. Free/Libre and Open Source Licenses utilize copyright law and are written in legalese,

which is often outside the scope of a developer’s expertise. Software Engineers commit violations

of these licenses’ terms and conditions easily and often unknowingly. Consequently, increased

knowledge, better tools, and sound processes to detect and prevent license violations are extremely

important. This work is an investigation in the types of potential license violations that are

committed, through direct and transitive dependency hierarchies in hundreds of thousands of real-

world software projects. This thesis contributes a novel approach, entitled Oswaldo, that defines

and detects three types of license conflicts: Type 1 Simple Violation, Type 2 Embedded Violations,

Type 3 Compound Violations. Unidirectional compatibility/incompatibility relationships of major

licenses are modelled. Ontologies and Linked Data are advantageously exploited to detect

transitive violation Types 2 and 3, as well as the direct violation Type 1. This thesis also reports

initial evaluations of these three types of license violations found in the Maven repository.

Keywords: license violation, compatibility, incompatibility, transitive dependency, free/libre and

open source software, semantic web, linked data, ontology, knowledge repository.

 iv

Résumé

Oswaldo: une approche basée sur le Web sémantique pour identifier les violations de licences

à code source ouvert

Christopher J. Forbes

Les violations des licences libres et à code source ouvert (Free/Libre and Open Source Licenses)

sont nombreuses, multiformes et représentent un risque important pour les développeurs et les

entreprises sous forme de litiges, entrainant parfois des millions de dollars en dédommagements

ou en règlements hors cours. Ces licences utilisent la loi sur les droits d'auteur qui sont rédigés

dans un jargon juridique, mais aussi dépassent souvent les compétences des ingénieurs logiciels.

Il leur est donc faciles de commettre des violations des conditions, et ce de manière inconsciente.

Par conséquent, une connaissance accrue, de meilleurs outils et des processus solides pour détecter

et prévenir les violations de licences sont extrêmement importants. Ce travail est une enquête sur

les types de violations potentielles qui sont commises, à travers des hiérarchies de dépendance

directes et transitives dans des centaines de milliers de projets logiciels réels. Ce mémoire apporte

une nouvelle approche, intitulée Oswaldo, qui définit et détecte trois types de conflits de licence :

violation simple de type 1, violation embarquée de type 2, violation composée de type 3. Les

relations de compatibilité/incompatibilité unidirectionnelles des licences majeures sont

modélisées. Les ontologies et les données liées (Linked Data) sont avantageusement exploitées

pour détecter les violations transitives de types 2 et 3, ainsi que la violation directe de type 1. Ce

mémoire rapporte finalement les premières évaluations de ces trois types de violations de licence

trouvées dans le dépôt Maven.

Mots clés : violation de licence, compatibilité, incompatibilité, dépendance transitive, logiciel

libre et à code source ouvert, web sémantique, données liées, web des données, ontologie,

référentiel de connaissances.

 v

Acknowledgements

Prof. Dr. Rilling, Dr. Keivanloo und künftiger Dr. Eghan: danke vielmals.

 vi

Table of Contents

Chapter 1 ... 1

1.1 Introduction .. 1

1.2 Motivation ... 2

1.2.1 Motivating Examples .. 3

1.2.2 Research Statements .. 6

1.3 Original Contribution .. 7

1.3.1 Where’s Oswaldo? Potential Use Cases .. 8

Chapter 2 ... 10

2.1 Background .. 10

2.1.1 The Protection of Intellectual Property and the Inception of Open Source 10

2.1.2 Open Source Software and License Violations ... 14

2.1.3 Ontologies and the Semantic Web .. 16

2.1.4 Modelling Source Code Using the Semantic Web .. 21

2.1.5 Formal Concept Analysis .. 23

Chapter 3 ... 26

3.1 Methodology ... 26

3.1.1 Preliminary Study .. 26

3.1.2 Heterogeneous License Cohabitation .. 30

3.1.3 License Compatibility and Compliance .. 31

3.1.4 Types of Violations ... 34

3.1.5 The Semantic Web and Linked Data ... 36

Chapter 4 ... 37

4.1 Implementation .. 37

4.1.1 Ontological Compatibility ... 37

4.1.2 Generating Triples ... 40

4.1.3 Queries ... 41

4.1.4 Rules .. 46

4.1.5 Global Analysis ... 48

Chapter 5 ... 49

5.1 Results and Evaluation .. 49

 vii

5.1.1 Experimental Setting ... 49

5.1.2 Detected Violations: Trends & Influences .. 50

5.1.3 Type 1 Simple Violations .. 51

5.1.4 Type 2 Embedded Violations .. 53

5.1.5 Type 3 Compound Violations ... 55

5.1.6 Evaluating Actual (and Notional) License Violations ... 59

5.1.7 Findings ... 67

5.1.8 Threats to Validity ... 68

5.1.9 Evaluation Summary ... 69

Chapter 6 ... 70

6.1 Related Work ... 70

6.1.1 Code Clone Detection ... 70

6.1.2 License Violation Detection Tools and Approaches ... 71

Chapter 7 ... 75

7.1 Conclusion .. 75

7.2 Future Work ... 76

7.3 Publications .. 79

7.4 Bibliography ... 80

7.5 Appendices .. 88

7.5.1 TripleConstructor.java ... 88

7.5.2 Type1Analysis.swift .. 91

7.5.3 Type2Analysis.swift .. 93

7.5.4 Type3Analysis.swift .. 95

 viii

List of Figures

Figure 1.1 .. 4

Figure 1.2 .. 5

Figure 2.1 .. 17

Figure 2.2 .. 24

Figure 2.3 .. 24

Figure 2.4 .. 25

Figure 3.1 .. 26

Figure 3.2 .. 28

Figure 3.3 .. 29

Figure 3.4 .. 33

Figure 3.5 .. 33

Figure 3.6 .. 34

Figure 3.7 .. 34

Figure 3.8 .. 34

Figure 4.1 .. 37

Figure 4.2 .. 40

Figure 4.3 .. 42

Figure 4.4 .. 43

Figure 4.5 .. 45

Figure 4.6 .. 46

Figure 4.7 .. 47

Figure 4.8 .. 47

Figure 4.9 .. 48

Figure 5.1 .. 51

Figure 5.2 .. 53

Figure 5.3 .. 55

Figure 5.4 .. 56

Figure 5.5 .. 58

Figure 5.6 .. 63

 ix

Figure 5.7 .. 64

Figure 5.8 .. 65

Figure 6.1 .. 72

 x

Glossary

AGPL Affero General Public License (versions 1 and 2) or GNU Affero

General Public License (version 3), created by Affero, Inc. (versions 1

and 2) and the Free Software Foundation (version 3) respectively.

Apache Refers to the Apache License, created by the Apache Software

Foundation

Artistic Refers to the Artistic License, created by the Perl Foundation

BSD Refers to the BSD License (both 2-clause and 3-clause variants),

originally used for the Berkeley Software Distribution

Code clone The reproduction (including slight derivation) of one or more lines of

code

CPL Common Public License

Derivative work Also known as derived work, is a creative work (text, picture, film,

source code, etc.) that is a copy, modification, or extension of another

creative work

EPL Eclipse Public License

EUPL European Union Public License

GPL GNU General Public License, created by the Free Software Foundation

Incompatibility See Violation

Inconsistency See Violation

LGPL GNU Lesser General Public License, created by the Free Software

Foundation

 xi

Linked Data A data store that uses formalized ontologies. Data is stored as RDF

triples (also known as facts) in a triplestore. Triplestores can be queried

against using a SPARQL query.

MARKOS The Market for Open Source Software

MIT Refers to the MIT License, created by the Massachusetts Institute of

Technology

MPL Mozilla Public License

OSS / FLOSS / FOSS Free/Libre and Open Source Software

Oswaldo Describes this research’s approach to find open source license

violations. The name roughly originates from the phrase “On using the

Semantic Web to Automate License violation Detection in Open source

software.”

OWL Web Ontology Language

POM Project Object Model, an XML file that describes a software project

Proprietary Closed source software, developed in private

RDBMS Relational Database Management System

RDF Resource Description Framework

Reasoner Refers to a Semantic Web reasoner, which is used in a triplestore to infer

new facts from existing facts, based on queries, rules, and/or ontologies

SBSON Software Build System Ontology is an ontology and Linked Data

repository that models software projects, their dependencies, and other

build system information based on information contained in POM files

from the Apache Maven software repository

SDK Software Development Kit

 xii

Semantic Web An umbrella term for a group of standards and technologies that allows

the sharing of data across the Internet, akin to how the World Wide Web

is a group of standards and technologies for sharing documents

SPARQL A recursive acronym which stands for SPARQL Protocol and RDF

Query Language. It is a query language, similar to SQL, but for

querying triplestores.

SWRL Semantic Web Rule Language

Transitive Refers to a fact that is implied or calculated from other facts, rules,

queries, and/or ontologies

Triple A piece of data represented by three entitles: subject, predicate, object.

I.e. “María, is, happy.” Also known as a fact.

Triplestore The Linked Data database that holds triples and is query-able

URI Universal Resource Identifier, similar to a Uniform Resource Location

(URL)

Violation A breach of a contractual agreement in copyright law that has previously

been defined by a FLOSS license

 1

Chapter 1

1.1 Introduction

The role of a software engineer is threefold: develop software on time, on budget, and with quality

[1]. Developers are trained to plan and create software to meet both computer science and project

management perspectives. Meeting these often-conflicting goals and balancing these viewpoints

is already time consuming and difficult. Yet in everyday practice, it quickly becomes clear there

are other perspectives — legal and community perspectives, that must also be taken into account,

when producing software. Little if any time of a software engineer’s training is spent studying to

understand software from a community or legal perspective [2]. When these perspectives begin to

impact our software projects, developers often feel unprepared and overwhelmed. This lack of

attention may be due to unawareness of the field, or simply because it is difficult to navigate

through large projects to determine precedence, ownership, and copyright.

Intellectual property and its violations repeatedly made business and technology headlines over

the past years. Most notably, the widely popular Android mobile operating system garnered much

attention in the mainstream press for alleged copyright violations of open source Java code,

brought forth in a lawsuit approaching nine billion dollars in damages [3]. Copyright violations

involving Open Source Software (OSS) are more common than previously thought, which gives

credence to the complexity and scope of such problems. It is imperative for any company,

researcher, end-user, or software engineer touching OSS to comprehend these issues as the

potential consequences are dire.

The fact that community perspectives and judicial issues are missing from standard training does

not mean that these subjects have escaped the notice of software developers [2]. On the contrary,

OSS arose explicitly to foster a culture of sharing and collaboration among software developers,

while reusing existing source code [4]. As OSS has exploded in popularity, whole communities

and sets of rules have sprung up around not only the practical questions of what actually constitutes

source code sharing, but also around ethical and legal issues of fairness, freedom, power structures,

 2

autonomy, ownership, collectivity, and the like. These questions and their attempted answers have

been enshrined in copyright notices, also known as Open Source Licenses. Open source licenses

grant legal rights to a developer (or other stakeholders) to read, modify, and share the source code

of a project. Legal literacy is well out of the scope of a modern Software Engineering curriculum,

and yet is demanded in the day-to-day practice of sharing code.

Knowing what constitutes an appropriate use — and misuse! — of OSS is lacking in programmers

today. Even though open source and free software is well over 30 years old now, there are still

many myths and misconceptions surrounding the correct use of OSS. If license compliance is not

achieved, a license violation occurs. As its name implies, a license violation is an infraction of the

law. Its consequences can be as banal as a friendly email from a project owner reminding the

programmer how to properly comply with the terms of the license [5], or they can entail major

lawsuits involving millions in sales of currently shipping products with settlements of princely

undisclosed sums [6].

Unsurprisingly, given the potential seriousness of a license violation, many approaches and tools

have been developed [3], [7], [8], [9], [10] to detect possible license incompatibilities. However,

no two software projects are the same, each software license has varying terms and conditions, and

the usage of OSS is more nuanced and far-reaching than can be dealt with by any of the existing

tools. This continues to be true in spite of the recent push for intercompatibility between licenses;

measures taken so far have slightly alleviated but by no means resolved the problem.

The objective of this this dissertation, therefore, is to develop a new technique to support the

detection of license violations that will take into account the complexity and dependencies of real

projects where often multiple licenses are involved.

1.2 Motivation

The discipline of Software Engineering has always concerned itself with producing quality

software on time and on budget. Part of making high quality software includes not only rigorous

 3

creation processes, but also the surrounding issues of legality with regards to copyright laws and

Open Source Software.

As copyright law varies from nation-state to nation-state, lawyers and court systems concern

themselves with specific cases. As software engineers, we can also help fellow developers and

project stakeholders avoid problems of litigation, by checking the license compatibility before we

begin the coding process and integration of libraries. However, when the responsibility for this

preventative action falls on the shoulders of an unprepared programmer, it can cause unnecessary

strain.

Writing code is not always a smooth exercise. Developers have to focus on many simultaneous

factors, such as: business-critical hot-fixes, departmental deadlines, performance reviews, and

nonsensical bugs. Developers do not need the additional pressure of combing through terms and

conditions written in legalese in order to make decisions outside of their professional field of

expertise. However, the potential negative effects of one hasty wrong decision can be disastrous.

The aim in this present research is to introduce an approach which will ease the creation and

maintenance processes for software practitioners by guiding them through the identification and

analysis of copyright violations in their projects.

In addition to constructing a tool of practical value, we also discuss the complexities and

limitations of Free/Libre and Open Source Software (FLOSS), including the blended use of open

source licenses. The whole open source movement is an intriguing and ingenious method to

institute fairness among communities of developers, and ultimately to preserve within the industry

the basic human desire to help another person. My hope is to continue this tradition with this

research.

1.2.1 Motivating Examples

Many open source license violation lawsuits have made waves in the news over the years [3], [6],

[11], [12]. These monetarily and emotionally high-stakes cases merit research activities because

of the incredibly high legal consequences of being found in violation of copyright and the very

steep monetary penalties that follow. For example, the popular maker of network routers Cisco

j!

;-%!%B)/!6,!&$)!5*))!='+&;-*)!5'B8/-&"'8!̀5=5a!tVVu4!C"P)!>'%&!'+!&$)%)!9"()8%)!G"'9-&"'8!(-%)%R!

6'&$!.-*&")%!%)&&9)/!'B&%"/)!'+!('B*&4!o'&!'89,!;)*)!>'8)&-*,!/->-A)%!̀'+!-8!B8P8';8!%B>a!.-"/!

6,! 2"%('! &'! &$)! 5=5! 6B&! -9%'! .-*&! '+! &$)! -A*))>)8&! 2"%('! ;-%! *)EB"*)/! &'! >'/"+,! "&%! %'+&;-*)!

/)G)9'.>)8&!.*-(&"()%!-8/!.B69"%$!&$)!"8+*"8A"8A!%'B*()!('/)!"8!EB)%&"'84!!

#$"%! "%! 8'&! &$)! '89,! (-%)! '+! "&%! P"8/4! 0B%,0'H! $-%! %B(()%%+B99,! 6*'BA$&! 9"&"A-&"'8! -8/! %)&&9)/!

>B9&".9)!(-%)%!'+!9"()8%)!"8+*"8A)>)8&R!>'%&!8'&-69,!;"&$!D)*"Y'8!"8!SUUW!thu4!2B**)8&9,!&$)*)!"%!

-8! '8A'"8A! (-%)R! %&-*&)/! "8! SUVk! "8! Q->6B*AR! L)*>-8,R! 6)&;))8! -8! "8/).)8/)8&! '.)8! %'B*()!

('8&*"6B&'*!2$*"%&'.$!Q)99;"A!-8/!D^?-*)!tVSu4!#$)*)!"%!-9%'!&$)!"8+->'B%!(-%)!'+!:*-(9)!G%4!

L''A9)!;"&$!"&%!/"%.B&)/!p8"8)!9"8)%!'+!('/)q!-8/!8"8)!6"99"'8!/'99-*%!"8!/->-A)%R!*)()8&9,!*)%'9G)/!

"8! SUVh! t]u4! ̂'*)! *)%)-*($! %B**'B8/"8A! &$)%)! 9"()8%)! G"'9-&"'8%! -8/! &$)"*! .*)G)8&"'8! "%! -! >-"8!

/*"G)*!"8!&$"%!*)%)-*($4!

!&60"#(787(9*(#:);-<#(+#-#*+#*1=(>&#")"1>=(?>#"#()(2&;-<#(-"/6");(&2(-0'<&2>#+(02&*6(5>#(

9-)1>#(@(/-#*(2/0"1#(<&1#*2#8(A>&2(-"/6");(>)2(/*#(+#-#*+#*1=("#<#)2#+(0*+#"(5>#(BC%(D(

<&1#*2#8(A>&2("#<)5&/*2>&-(&2(E/"'&++#*('=(5>#(BC%(D8(A>02F()(G&/<)5&/*(/110"28(H/5#I(5>#()""/?(

;#"#<=("#-"#2#*52(5>#(JE</?K(/E(1/+#(E"/;(5>#(+#-#*+#*1=(BC%(D(-"/L#15(?>&1>(&2(5>#*(02#+(&*(

5>#(9-)1>#(@(-"/L#158(

@8!&$)!*)%)-*($!+")9/!'+!'.)8!%'B*()!9"()8%)!G"'9-&"'8%R!&$)*)!$-%!6))8!9"&&9)!)H.9'*-&"'8!"8&'!%'B*()!

('/)! 9"()8%)! G"'9-&"'8%! %.)("+"(-99,! B%"8A! &$)! =)>-8&"(! ?)6! -8/! C"8P)/! J-&-4! C"8P)/! J-&-! "%!

.-*&"(B9-*9,!%B"&)/!&'!&$"%!B%)!(-%)1!&$)!$")*-*($,!'+!9"6*-*")%!)-($!*)9)-%)/!B8/)*!&$)"*!*)%.)(&"G)!

9"()8%)!&)*>%!,)&!B%)/!&'A)&$)*!&'!+'*>!&$)!G-*"'B%!('>.'8)8&%!'+!-!.*'A*->4!#$"%!$")*-*($,!"%!8'&!

)-%"9,! (-.&B*)/! -8/! -8-9,Y)/! B%"8A! &*-/"&"'8-9! /)G)9'.>)8&! &''9($-"8%R! 6B&! &$)! =)>-8&"(! ?)6!

 5

provides well-suited techniques (knowledge modelling and knowledge inference) to represent and

tactfully analyze this problem space. For example, Figure 1.1 shows a very simple dependency

hierarchy, yet a more complex dependency hierarchy (in either breadth, width, or both) with

multiple levels of dependencies (like in Figure 1.2) is well suited to Linked Data.

Furthermore in this field of research, there has been inadequate analysis of transitive license

violations (only one such study [13] was conducted). While direct dependencies are somewhat

easier to detect (e.g. [7], [8]), finding indirect non-compatible relationships is much more

challenging, since these transitive relationships are often the result of third-party libraries or

components imported by dependency managers or package management systems. Figure 1.2 shows

a transitive dependency where the top-most project was imported due to the middle dependency.

In this research we take advantage of the Semantic Web and its reasoning services, which provides

a flexible approach for modelling (ontologies) and inference of such transitive dependencies

(SPARQL queries, SWRL rules)

Figure 1.2 An example project dependency hierarchy which includes a transitive violation.

There exists a transitive relationship that is forbidden; that is, the MPL 1.1 project cannot be

used in the GPL 3 project.

 6

1.2.2 Research Statements

As the hierarchy of imports increases — both horizontally and vertically — in a software project,

the likelihood of a potential license violation increases. Manual inspection of license terms is time

consuming and error prone. Therefore, we posit the following primary research statement:

An approach will be developed based upon a flexible license modelling method that

can detect both potential direct and transitive license violations.

The acceptance criteria used to validate the above research statement will be as follows; if the

technique detects both first and second order violations, then the research statement is considered

provable, otherwise it will be considered disproved. (A second order violation will be fully

described in the methodology section. Put simply, a direct import of one library to another is a first

order connection. A second order connection is a library that imports a library.) Thus, by proving

or disproving this research statement the main research goal of helping software engineers avoid

license violations when using OSS licenses through the use of the Semantic Web will be fulfilled.

A secondary research statement is as follows:

Furthermore, we expect that the most common type of violation will be a directly

dependent Type 1 Simple Violation, the second most common a transitive Type 2

Embedded, and the third a transitive Type 3 Compound Violation.

The thought processes behind such a statement are as follows. Type 1: Developers are generally

unaware, are not legal experts, and have other pressing concerns, such as finishing a project on

time. Type 2: While it is easy to manually check the immediate project’s license compatibility, it

is hard to manually corroborate a dependency’s dependencies. Type 3: Similar to the reasoning for

type 2, it is easy to manually check immediate first-order dependencies, but difficult to manually

check transitive dependencies.

These research statements will be addressed over the course of this memoir.

 7

1.3 Original Contribution

In order to make a novel contribution to the field, we set out exploring various facets of the domain.

The following summarizes some of the main contributions of the presented research.

Using Linked Data, we published a large “Internet-scale” data set of source code online called

SeCold (Source code ECOsystem Linked Data) [14]. As part of this work I was exposed to “big

data,” the Semantic Web, and the creation of Linked Data data sets. The published data set

consisted of 1.5 billion triples and 18 000 open source projects. This data set was publicly

accessible through a SPARQL query endpoint (as well as data dump files) to provide the research

community with Internet-scale clone and code search tools. We also introduced Doppel-Code, a

plug-in for the Eclipse IDE, which visualized and ranked clone results based on clone impact

factors [15]. Unlike other clone detection tools, Doppel-Code leveraged “both local and global

clone information, and therefore its application can be found beyond typical clone detection

applications, such as prioritizing of bug fixes as part of the triage problem [15].”

Next, we investigated the legal implications of publishing 18 000 projects together in one database

[16]. This lead to questioning the cohabitation of licenses. In investigating, we considered the

“‘Generational Limitation’ that affirms: ‘derivative works [must] be distributed on the same terms’

as the original license [16] [17].” As part of this study, we found that copyright law does not

broadly apply to data sets [18]. Thus with SeCold, we had not committed any license violations.

Subsequently, we focused on the use (or rather the reuse) of code clones. A code clone is generally

one line of code that is reused. They are categorized into a handful of types (imaginatively named

Types 1 to 4) differing in whitespace, variable names, additions or deletions of statements, and

syntax (while remaining semantically alike). We built another Eclipse plug-in for detecting code

clones, known as source code similarity search or more succinctly as clone search. This plug-in

was essentially an online clone search engine which is powered by SeCold as a back-end. As

SeCold was a Linked Data repository, we straightforwardly enriched the data set by adding a new

clone ontology [19]. Seen in the broad context of our research, this tool was an exploration of code

reuse on a micro level.

 8

Finally, as part of the Ambient Software Research Group at Concordia University, we expanded

upon SeCold by showcasing how it can be used as a platform, to benefit the Mining Software

Repositories (MSR) research community [20]. The first use case is Linked Data-based Fact

Browsing. “SeCold facilitates both browsing of source code (i.e. Linked Data-based Source Code

Browsing) and retrieval of related facts (e.g. similar source code) using the Linked Data [20].” The

second use case is License Violation Mining. SeCold could surface license information on the

source-code line level due to the integrating of various information silos into one Linked Data

platform. License violation detection between code clones could be performed with a SPARQL

query.

An initial implementation of a license violation detection tool was created as described in the

Preliminary Study section. Later on, a novel approach entitled Oswaldo1 was developed, to fulfil

the primary research statement.

1.3.1 Where’s Oswaldo? Potential Use Cases

Why make (another) license violation detection tool? Oswaldo is a query endpoint based on an

underlying ontology that can be utilized by various stakeholders in the software development

industry. Oswaldo allows for the reuse of predefined queries or by writing new custom queries to

define new types of license violations. In addition, this Semantic Web-based knowledge modelling

approach provides the ability to extend the existing license model as new knowledge becomes

available, furthering the flexibility and longevity of such a technique.

Developers can use Oswaldo to query for who uses their library as a dependency to detect potential

license violations. For example, the BusyBox authors whose open source project has a history of

violations (by the likes of Best Buy, JVS, Samsung, Westinghouse [21]) could identify additional

violations and email those organizations to ask them to comply with the terms of the license.

1 Oswaldo is loosely derived from the phrase “On using the Semantic Web to Automate License

violation Detection in Open source software.”

 9

Legal counsels of an organization could use Oswaldo and its analysis results to verify whether

their software contains any potential license violations, thus assessing and reducing the firm’s

current exposure to litigation risk. Also, being conscientious of which license combinations cause

the most violations aids lawyers in shaping company-wide legal policies, such as an internal list

of open source licenses approved for use and disapproved for use, thus proactively avoiding future

lawsuits.

Oswaldo is useful for researchers, since it consolidates and publicizes the license ontology and the

Maven data set through a SPARQL endpoint.

 10

Chapter 2

2.1 Background

2.1.1 The Protection of Intellectual Property and the Inception of

Open Source

The Open Source Software (OSS) movement sprung up in the late 90s as an alternative to

proprietary copyrighted software. OSS is defined as applying a copyright license to a piece of

software where the license adheres to set of principles including the right to change, modify, and

redistribute publically the source code. OSS is a branch of the Free/Libre and Open Source

Software (FLOSS) movement, also known as ‘copyleft,’ F/OSS, or FOSS, which is more fervent

and ideologically driven. Since its inception in 1997, FLOSS and OSS have become extremely

popular to the point where a majority of software projects released today contains some form of

OSS [22].

Proprietary software is privately developed software that remains the protected intellectual

property of the developer. This means that only the binary is sold or distributed to the end user:

the source code, like all creative works, is automatically subject to copyright law (unless otherwise

specified) [17]. Most countries with strong software industries, i.e. U.S., U.K., China, Canada,

Germany, France, etc., have similar copyright legal protections in place [17]. The purpose of these

laws has remained essentially the same since it was first developed with the introduction of the

printing press in the UK. Authors wanted assurance of compensation for their creative work, rather

than revenue going solely to the publisher who copied their work using the printing press [17].

Interestingly, copyright law does not cover the idea itself, merely the expression of the idea.

Instead, patent law creates legal protections for ideas. A simple example of this is that a company

like MySpace, for example, could have patented the idea of ‘online social networking.’ However,

since they did not do so, Facebook was able to make a new creative work (a web application) based

on the MySpace concept. Copyright laws, by contrast, would apply to the source code of MySpace

 11

and Facebook, so neither could use each other’s code unless they were given permission. Thus,

“the implementation of the source code can be copyrighted since it is the expression of the idea,”

rather than the idea itself [16].

Copyright laws were created with the goal of a fair distribution of profits. Paradoxically, Open

Source Software stemmed from a similar goal: fairness of use and modification. When big

corporations first began invoking copyright law to withhold source code, independent software

developers felt that was a violation of the existing sharing culture. According to the norms of that

culture, source code should be made available to independent programmers so that they would be

able to modify software according to their communities’ needs (often a small bug fix) [23].

Withholding source code made this customisation difficult, expensive or impossible.

The obvious response to proprietary licensing was to release a work into the public domain, which

relinquishes all copyright, effectively publishing the work in the open. However, this response did

not satisfy the independent developers who had opposed proprietary licensing, because

modifications to public domain source code remained permissible, and those modifications

(subject to copyright) may then be kept private.

Chiefly incensed among the independents who objected to the copyrighting was Richard Stallman.

Stallman pioneered the copyleft and Free Software movement by creating the GNU General Public

License2 to not only preserve the communal spirit of source code sharing from what he called

“software hoarding [24],” but also from malicious actors. Free does not refer to cost, but to

Freedom. Likewise, Stallman prefers the term Free Software to Open Source because he views

access to and modification of source code as an issue of justice: a check-and-balance and

fundamental human right, like Freedom of the Press, or Right of Assembly.3 His copyleft licensing

was a creative twist on (and ironic use of) copyright law. Free/Libre and Open Source Software

cleverly uses copyright laws to ensure that the work remains accessible rather than protected as

2 This thesis uses the American English spelling of the noun “license” rather than the British

spelling of “licence” simply because the former is more widespread in the literature.

3 I had the opportunity to hear Mr. Stallman speak at McGill University in May 2017.

 12

private property. Rather than releasing the work into the public domain (which would permit

copyrighting modifications), copyleft ensures that all modifications to the work will remain public,

and that, in consequence, “no proprietor can exclusively exploit a creative work [16].”

Although Stallman’s copyleft initiative was embraced by many developers, and in fact remains a

popular form (if not the most popular form) of opening sourcing, other developers objected to its

“moralizing and confrontational” tone [25]. In 1998, developers who preferred a more business-

friendly approach to Open Source Software formed an organisation called the Open Source

Initiative and agreed upon an Open Source Definition as a basis for determining whether a software

licence could be labelled with the open source certification mark [26]. The details of the Open

Source Definition will be described in some detail in the pages that follow.

2.1.1.1 Principles of Open Source Software

As defined by the Open Source Initiative, Open Source Software is more than simple access to

source code online. True Open Source Software conforms to a set of principles intended to actively

encourage sharing and reuse [27]. Those principles are the following:

1. Free redistribution of the software is permitted

2. Source code must be publicly available and accessible

3. Derivative works (modifications to the source code) must be allowed

4. Integrity of the author's source code e.g. derivative works may require a different name

5. No discrimination against persons or groups

6. No discrimination against fields of endeavor

7. Distribution of license means the license rights apply to whomever the software is given

8. License must not be specific to a product

9. License must not restrict other software that is distributed alongside the licensed

software

10. License must be technology-neutral

However open source is not just a set of philosophical principles. It is firmly rooted in copyright

law. “Because an open source license is unilateral, each grant is granted provided a set of

 13

conditions are satisfied; if one of such conditions is violated, then the grant is not given by the US

Court of Appeals for the Federal Circuit in Jacobsen v. Katzer [22] [28].”

Table 2.1 Ten common open source licenses and their traits.

License Requires
Attribution4

Requires Public
Source Code for
Derivative Works

Requires Same
License for
Derivative Works

Apache 2 Yes No No
Artistic 2 Yes No No
BSD5 — Berkeley
Software Distribution
License

Yes No No

EPL 1 — Eclipse
Public License

Yes Yes Yes

GPL 2 — GNU
General Public
License

Yes Yes Yes

GPL 3 Yes Yes Yes
LGPL 2.1 — GNU
Lesser General Public
License

Yes Yes Yes

LGPL 3 Yes Yes Yes
MIT —
Massachusetts
Institute of
Technology License

Yes No No

MPL 2 — Mozilla
Public License

Yes Yes Yes

2.1.1.2 Types of Open Source Licenses

Open source licenses generally fall into two categories: restrictive and permissive. An OSS license

is a legal instrument that allows the creative work (source code) to be used, modified and/or shared

4 “Requires Attribution” generally means posting in your software’s credits, the title of the OSS

project, and a copy of its license (with the optional but karma-filled posting of: the author, and a

link to the project’s website).

5 BSD can refer to a handful of variations on the same license. For the purposes of this paper the

common 2- and 3-clause variants are used.

 14

under defined terms and conditions [24] [27]. Restrictive licenses (colloquially referred to as

copyleft licenses) require derivative works to be licensed under the same terms. A derivative work

is defined as any work that stems or is adapted from the original work [13]. An example of a

restrictive license is the GPL 3. Permissive licenses on the other hand have fewer requirements on

derivative works; for example, the MIT License only requires author attribution and reproducing

the license with the disturbed software. The Table 2.1 above lists ten most frequent licenses with

pertinent features summarized [29].

2.1.2 Open Source Software and License Violations

2.1.2.1 Software Libraries, Repositories, Package Managers, Compliance, and

Incompatibility

Today source code is shared in many forms over the Internet. Probably the most common form of

sharing code is through the use of a software library. Libraries have become popular because they

are self-contained and perform a set of functions. Multiple libraries can be grouped together in a

build repository to form an SDK (Software Development Kit) or a complete subsystem. Usually a

library has one OSS license applied to it. This is often true for SDKs as well but not exclusively

so. With the proliferation of build repositories and package managers, such as RubyGems [30],

Maven [31], or CocoaPods [32], which make downloading and importing a library into your

project as trivial as a one-click affair, many projects and SDKs include libraries from various

authors with a plethora of OSS licenses. One can picture this scenario as a horizontal increase in

the project’s dependency graph. Furthermore, one library can use another library, leading to

hierarchies of libraries (seen as vertical increase in the dependency hierarchy). All of these

libraries’ licenses must be compatible with each other, or depending on the license at the very least

with its direct neighbours in the hierarchy.

When incompatible licenses are used together, a license violation occurs. A license violation

is defined as “the act of making use of a [licensed] work in a way that violates the rights expressed

by the original creator [33].” That is, not following the legal terms and conditions set out in the

 15

open source license.6 Software authors who commit a licence violation open themselves to the

possibility of being sued. Sometimes this risk can amount to millions of dollars, as in the recent

case of Oracle v. Google [3].

It should be noted that even though the term license violation is used throughout this thesis, a

definitive violation is only determined as such by judge or jury. Consequently, potential is the

operative word when discussing license violations. As many countries’ judicial systems are based

on the concept of precedent, lawyers can generally determine what constitutes an actual violation

based on prior rulings. Precedent is “a previous case or legal decision that may be or (binding

precedent) must be followed in subsequent similar cases [34].”

2.1.2.2 Code Clones

Licence violations can occur at different granularity levels, because incompatibilities can occur

not only on the macro scale of libraries, but also on the micro scale of source code fragments.

Popular websites such as GitHub (which contains millions of repositories of source code, both

open and proprietary) and Stack Overflow (a peer-to-peer self-help developer discussion forum)

provide valuable but potentially hazardous repositories of ready-made source code for developers.

Close attention must be paid when copying and pasting a few lines of source code into a project,

so as to not create any license conflicts. Lines that are copied and pasted in this way are commonly

known as “code clones”. Code clones are created from two code fragments which is “any sequence

of code lines (with or without comments) [35].” A code clone is formally defined: “a code fragment

CF2 is a clone of another code fragment CF1 if they are similar by some given definition of

similarity, that is, f(CF1) = f(CF2) where f is the similarity function [35].” Although code clones

are easily discovered by many existing tools [35], [19], they pose many threats because they are

not easily separable from the rest of the software project. Thus, they may easily create license

violations. Fortunately, there are existing tools available to software developers to mitigate the

risks of license violations of this kind, some of which are described in the related work section.

6 The term license compliance refers to the act of following the conditions of the license. Whereas

license compatibility generally signifies whether two licenses can be used together while

maintaining compliance with each license’s terms.

 16

2.1.2.3 License Proliferation

The creation of more and more open source licenses is known as License Proliferation [28] [36].

Since each license has its own unique wording and terms, which may or may not be compatible

with the terms used in another license, the proliferation of licenses greatly increases the likelihood

that licence violations will occur. For example, the government of Québec created not one, but a

family of three (3!) licenses, “Licence Libre du Québec” (LiLiQ), with Permission, Reciprocity,

and Strong Reciprocity variants [37]. The GNU Foundation has been trying to combat the legal

uncertainties of license proliferation by having their legal experts study popular licenses and

maintain a list of GPL-compatible licenses. This is published online and is an excellent resource

[38].

2.1.3 Ontologies and the Semantic Web

Humans make sense of the world around by classifying the various plants, animals, and objects of

their environment into groups. This activity leads to the development of formal classification

systems that identify the members of a class and model the relationships among these members.

Such systems are known as ontologies (literally, studies of being). Thomas Gruber distinguished

between taxonomies and ontologies as follows: “Ontologies are often equated with taxonomic

hierarchies of classes, class definitions, and the subsumption relation, but ontologies need not be

limited to these forms [39].” That is, an ontology is a representation of the world, but not an

exhaustive one.

Any concept classification can be modelled by an ontology. An example of this is language

instruction. Language teachers of Indo-European languages have traditionally taught their students

how to classify the words in a sentence according to their “part of speech” and their grammatical

function within the sentence: verbs (passive, active, etc.), nouns (including subject and object of

the sentence), adjectives, and adverbs. Take the phrase “María plants habanero peppers.” María,

the subject-noun, acts upon the object-noun, habanero peppers, by planting them, the verb.

Modelling the concept of a sentence using the subject-verb-object ontology is a useful tool to help

students interpret more complex grammatical structures. Similarly in software, computer scientists

model the real world to tackle complex problems such as voice recognition.

Vl

RQPQSQP!$:>5:<:?9;?B(6?("?9121BH(

'̂*)! +'*>-99,R! -8! '8&'9'A,! (-8! 6)! *).*)%)8&)/! -%! -! A*-.$R! ;"&$! 8'/)%! -8/! 9"8P%4! @8! &$"%! /-&-!

%&*B(&B*)R!&$)!8'/)%!*).*)%)8&!('8().&%!-8/!&$)!9"8P%!/)8'&)!&$)"*!-&&*"6B&)%4!<&&*"6B&)%!-*)!B%B-99,!

&,.)%R!.*'.)*&")%R!'*!*)9-&"'8%$".%!->'8A!&$)!('8().&%R!%B($!-%!p"%!-qR!p"8%&-8()!'+qR!'*!p*)9-&)/!

&'q4! #$)! 6)9';!5"AB*)!S4V! "99B%&*-&)%! &$)! *)9-&"'8%$".! ̂-*s-! $-%! &'! &$)! .)..)*%4! ̂-*s-! ̀('8().&a!

.9-8&%!̀-&&*"6B&)a!.)..)*%!̀('8().&a4!

!

!&60"#(@87(9(6")->("#-"#2#*5)5&/*(/E()*(#:);-<#(/*5/</6=8(

#$"%!A*-.$!*).*)%)8&-&"'8!'+!&$)!*)9-&"'8%$".!"%!-9%'!P8';8!-%!-!%)>-8&"(!8)&;'*P4!#$)%)!8)&;'*P%!

+'*>!&$)!6-%"%!'+!&$)!=)>-8&"(!?)64!#$)!=)>-8&"(!?)6!"%!/)+"8)/!-%!p-!('>>'8!+*->);'*P!&$-&!

-99';%! /-&-! &'! 6)! %$-*)/! -8/! *)B%)/! -(*'%%! -..9"(-&"'8R!)8&)*.*"%)R! -8/! ('>>B8"&,! 6'B8/-*")%

tjUu4q!#$)!=)>-8&"(!?)6!)>.9',%!'8&'9'A")%!+'*!P8';9)/A)!*).*)%)8&-&"'8R!;$"($!+-("9"&-&)%!&$)!

%$-*"8A! '+! /-&-! &$*'BA$! ('>>'8! ('8().&%4! ̀:8&'9'A")%! ;"&$!)EB"G-9)8&! ('8().&%! (-8!)-%"9,! 6)!

9"8P)/!&'A)&$)*!B%"8A!-!p%->)<%q!*)9-&"'8R!B89"P)!&*-/"&"'8-9!*)9-&"'8-9!/-&-6-%)%4a!!

RQPQSQR!$:<185/:(%:</5;>9;1?([56F:A15O(6?7(-5;>2:<(

@8"&"-99,!(*)-&)/!6,!&$)!?'*9/!?"/)!?)6!2'8%'*&"B>!̀ ?]2a!-%!-!>)&-/-&-!>'/)9!+'*!&$)!;)6R!

O)%'B*()! J)%(*".&"'8! 5*->);'*P! ̀OJ5a! $-%! 8';! 6*'-/)8)/! "8! %('.)! &'! "8(9B/)! >'*)! A)8)*-9!

('8().&B-9!/)%(*".&"'8%!'+!/-&-!-8/!;)6!*)%'B*()%R!&'!$)9.!+-("9"&-&)!/-&-!>)*A"8A!-8/!)G'9G"8A!

%($)>-%!tjVu4!OJ5!(*)-&)%!-!6-%"%!+'*!&$)!=)>-8&"(!?)64!p#$)!OJ5!-6%&*-(&!%,8&-H!"%!-!%)&!'+!

&*".9)%R! (-99)/! &$)! OJ5! A*-.$! tjVu4q! MB&! '&$)*;"%)R! -! p&*".9)q! "%! B%)/! &'! *).*)%)8&! /-&-4! #$)!

+'99';"8A!+'*>-9"%>!/)8'&)%!-!&*".9)1!!

� ��� �� �� � �!

 18

A triple is characterized by a graph-based representation with an ontological structure of subject,

predicate, object [41]. The subject and object are represented as nodes in the graph (María and

Peppers in Figure 2.1), and the predicate is the link between the nodes (plants in the same example).

Each component in an RDF triple is backed by a URI (Uniform Resource Identifier), apart from

the object which can either be a URI or a literal value, e.g. string, integer. The use of URIs allows

for concrete referencing and simple processing. This is a powerful way to describe relationships

between two objects. Continuing with our example we could have the following RDF triple:

!=	<http://example.com/garden#Maria,	

http://example.com/garden#Plants,	

http://example.com/garden#Habanero_Peppers>

2.1.3.3 Linked Data and Triplestores

The most common approach currently used to model data is a relational database, such as MySQL,

Oracle RDBMS, SQLite, which arrange data in tables, columns, and rows. Relational databases

do not explicitly use ontologies, but rather they use entity-relationships. Although this approach to

data storage and retrieval has many advantages, it also has many shortcomings, which include rigid

schemas, data migrations, sharding, data silos, etc. [16]

Linked Data is a form of data modelling that uses ontologies to overcome many of the limitations

of traditional table-based databases [16]. Linked Data was invented in 2006 by Tim Berners-Lee

(the inventor of the World Wide Web) under the umbrella of the Semantic Web movement at the

W3C [16] to share data between computers as easily as the web makes sharing information

between humans.

Linked Data builds upon RDF triples to represent data facts. These triples are stored in a database

known as a triplestore, and are used to build the object graph. The key feature of Linked Data is

that these object graphs can be queried against using a SPARQL query at a query endpoint.

SPARQL is an acronym for “SPARQL Protocol and RDF Query Language” [42] which is similar

to an SQL (Structured Query Language) query. A query endpoint is a standardized web service

available at a URI where an end-user can submit their SQARQL query, run it, and have structured

 19

Linked Data results returned. Moreover, because of the object graph, implied transitive relations

can be found between nodes even though two nodes are not directly linked. This is a powerful

feature when linking together two online Linked Data sets that share the same nodes or same

relations. For example, we know that María plants habanero peppers, tomatoes, and epazote7.

However, we further know that she only plants vegetables because habanero peppers, tomatoes,

and epazote each have an “is a” relation pointing to the “vegetable” node8. This combination of

graph representation and online sharing easily connects otherwise siloed data — allowing new

queries and furthermore new results to be performed and found.

2.1.3.4 Advantages of Linked Data

There are seven facets of Linked Data that set it apart from traditional relational databases [20].

These are:

1. Extensible Data Schema — a predefined schema is not required, unlike JSON, XML, and

relational database tables. A vocabulary set is used to “model concepts (e.g. Bug, Commit,

Variable Name, and Java Class) and relations (e.g. hasAuthor) in the domain of discourse.

At any time, the model can be extended by adding new terms. Moreover, it is possible to

have various revisions of the model at the same time [20].”

2. Feasible and Scalable Reasoning — complex logic and computationally intensive

reasoning is not mandated when using Linked Data (unlike the Semantic Web) [43]. Yet

transitive reasoning is still possible.

3. Online — Each object in the graph is represented by a URI, and thus is dereferenceable.

“That is, anybody on the Web should be able to access facts related to the target entity

using its URL via HTTP [20].”

4. Human Accessible — A human readable format must be accessible from a modern web

browser when navigating to the URI. Also, relations and related facts must be shown at

this URI.

7 Epazote leaves, used in Guatemalan and Mexican cuisine, are added to a dish, akin to cilantro.

8 The forgiving culinary definition of “vegetable” is used, which includes common fruits such as

peppers and tomatoes.

 20

5. Accessible to Software — A software application can use the URI to retrieve relations and

related facts in a standard format i.e. XML or JSON.

6. Queryable — Anyone (machine or human) is able to query the online repository and have

the matching resultant facts returned

7. Integrable — Facts can be easily integrated together to find transitive results. Since each

fact has its own online URI, not only can intra-data set queries be performed, but more

powerful inter-data sets queries can be executed just as easily. Thus, a federation of data

sets can be created. This capability to be simply agglomerated is very powerful [20].

In short, Linked Data models real world concepts, stores data, and enables complex queries with

new insightful results. The Semantic Web stack optimizes for different use cases than relational

databases. As a general rule, relational databases are better for tabular data, while Linked Data is

a better choice if one is representing complex data models with non-static queries.

2.1.3.5 Reasoners, Transitive Relationships, SPARQL Queries, SWRL Rules

Reasoners are programs that deduce implicit relationships from explicit triples. These implicit

relationships are otherwise known as transitive relationships. Reasoners use Description Logic

(DL) language, such as OWL-DL Ontologies (Web Ontology Language–Description Logic), to

restrict relationships and thus infer new relationships. Unlike RDF which only permits parent-child

relationships, OWL-DL can add many other constructs such as: unions, local scope, cardinality

restrictions, inverse relationships, disjointed relationships, etc. For example, male squash blossoms

are disjoint from female squash blossoms. The power of reasoners is that they make use of these

constructs and existing triples to provide de facto implied information for little work.

Reasoners are directly important to the research described in the paper because the reasoner’s

deduced transitive relationships will be used to model the various characteristics of open source

licenses. For example, certain licenses are incompatible with each other (parent-child hierarchical

relationship, inverse relationships). Yet there are other licenses that merely cannot be used in the

same project with each other (local scope, disjointed, etcetera).

 21

In order to tell a reasoner to execute a specific query, an SQL-inspired query language was devised,

called SPARQL (pronounced “sparkle”) [42]. For comprehension’s sake one can think of the

following analogy: SPARQL is to triplestores as SQL is to relational databases. In addition to

queries, rules can be specified. Instead of executing query after query to find license violations,

one can use the Semantic Web Rule Language (SWRL) to write rules to automatically identify the

license violations [44].

2.1.4 Modelling Source Code Using the Semantic Web

Source code was first modelled using the Semantic Web by Keivanloo et al. in 2012, which has

been previously discussed in the Original Contribution section.

Later on in 2014, the MARKOS (MARKet for Open Source) project [45] resulted from a Europe-

wide effort to model licenses using Semantic Web technologies. The MARKOS project models

many different aspects of a software project including “functional, structural and licensing aspects

of the software” but for the purposes of this research we are exclusively focused on the license

ontology (which is further described in the methodology section).

In 2018, Eghan et al. created the Ontology-based Trustworthiness Assessment Model (OntTAM)

[46] which builds upon various other ontologies including the Software Engineering Evolvable

Quality Assessment Metamodel (SE-EQUAM) [47], the Security Vulnerability Analysis

Framework (SV-AF) ontology [48], the Software Build Systems Ontology (SBSON) that models

build repositories, etc. [46] Here, the authors created an ontology which combines source code

facts from all 1500 projects in Maven. The authors’ main goal was to develop a metric of

trustworthiness to compare various open source dependencies, and then use this metric in the

OntTAM ontology and corresponding data set. The metric encompasses both security

vulnerabilities and open source license violations (and is based on the research presented in this

thesis). Please refer to Figure 4.2 for more detail of the OntTAM and SBSON ontologies.

 22

2.1.4.1 MARKOS Types of License Permissions/Violations

In order to find possible license violations, one must outline permissions that describe the various

use cases of two licenses, and of these use cases, which licenses are not allowed to be used together.

Happily, the MARKOS ontology [45] (in OWL format) includes various use cases as part of the

class “LicenseTerm” which has a subclass of “Permission”. There are six permissions listed in

Table 2.2 below.

Table 2.2 Permissions defined in the MARKOS ontology.

Permission Description

Adaptation An OSS license allows the original creative work to be adapted and

modified.

Distribution One can publicly distribute the source code.

LibraryUsageWithout

Reciprocity

Depending on whether the license is copyleft or ‘permissive,’ it may

require reciprocity. Reciprocity is defined as “the practice of

exchanging things with others for mutual benefit, especially privileges

granted by one country or organization to another [34].” When applied

to licenses, reciprocity means the source code from a derivative project

must be released under the same license as the derived project in order

for both libraries to be used together. E.g. María makes changes to a

seed planting season calendar app licensed under the GPL 3. Because

of the reciprocity requirement in the GPL 3, she must release her

changes under the same license when she posts her app online.

PatentGrant Some source code algorithms or processes are patented, and the author

agrees to grant permission to any downstream user of the source code.

Reproduction One is allowed to reproduce or make copies of the source code.

Sublicensing A user of this source code is permitted (or not) to sublicense the code

to anther license.

From the permissions described above (Table 2.2), it is clear that each permission can be violated.

Therefore, there are generally six types of violations that can occur. Reciprocity is important to

this research because its context is straightforwardly captured by an ontology and easily relatable

 23

to the Maven repository of projects. The reciprocity requirement mainly influences (but is not the

sole requirement for) the definition of license compatibility demarcated later on in this thesis.

Beyond reciprocity, some of the other permissions are harder to detect violations because they are

violated outside of the realm of a Software Engineering context. For example, the authors of

BusyBox sued Samsung in 2009 [21] and settled in 2010 [49] because Samsung was using

BusyBox’s FLOSS project without publicly publishing the source code (when distributing the

software with their hardware). This is a violation of the distribution term of the GPL 2 (which

would equate to the Distribution permission in the MARKOS ontology). This was only found by

manually checking the physical product (in this case a Samsung television) and verifying that the

FLOSS was indeed running on the TV hardware. We do not (yet!) have an automated way of

testing all the physical products in the world. Therefore, in creating a definition of license violation,

we must combine multiple permissions that are feasible to determine. These permissions provide

a basis to construct definitions of compatibility, incompatibility, and license violations, which will

be further described in the Methodology section.

2.1.5 Formal Concept Analysis

Formal Concept Analysis (FCA) was popularized by Rudolf Wille, a mathematician at the

Technische Universität Darmstadt, Germany, starting in 1982 with his seminal work

“Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts” [50]. The goal of

FCA is to categorize objects and their attributes into relationships and hierarchies. The following

notation can be used:

 B (G, M, I)

Where:

 B stands for Begriff (Concept)

 G for Gegenstand (Object)

 M for Merkmal (Attribute)

 I for Inzidenzrelation (Relation, or incidence relation)

 24

The combination of an object, attribute, and relation will produce a concept. A reader will note

that G, M, and I, form a triple. This information can be represented in tabular form (Figure 2.2).

Figure 2.2 An example context table showcasing hot chili peppers with their approximate

spiciness and colour.

Not only can the concept lattice be represented as a table, but also as a graph lattice (Figure 2.3):

Figure 2.3 Example concept lattice depicting hot peppers.

Context (G, M, I)
 Attributes (M)

mild medium hot orange red green

Ob
je
ct
s
(
G)

Habanero ⨯ ⨯

Scotch Bonnet ⨯ ⨯ ⨯

Ruqutu ⨯ ⨯ ⨯
Malagueta ⨯ ⨯
Piquín ⨯ ⨯
Serrano ⨯ ⨯
Jalapeño ⨯ ⨯
Poblano ⨯ ⨯

 25

Figure 2.4 Example calculated concepts table.

From FCA’s resultant tables and graph the reader can easily infer: (1) which objects share

attributes amongst themselves. (2) how this sharing naturally leads to the identification of sets of

similar objects (concepts) (shown in Figure 2.4). (3) how, from sets of objects, relationships and

hierarchies are easily recognized. The above reasons denote the major advantages of FCA as a

useful data analysis tool.

Concept 1 ({}, {mild, medium, hot, orange, red, green})
Concept 2 ({Scotch Bonnet, Ruqutu}, {hot, orange, red})
Concept 3 ({Habanero, Scotch Bonnet, Ruqutu}, {hot, orange})
Concept 4 ({Scotch Bonnet, Ruqutu, Malagueta}, {hot, red})
Concept 5 ({Piquín, Serrano}, {medium, red})
Concept 6 ({Jalapeño, Poblano}, {mild, green})
Concept 7 ({Habanero, Scotch Bonnet, Ruqutu, Malagueta}, {hot})
Concept 8 ({Scotch Bonnet, Ruqutu, Malagueta, Piquín, Serrano}, {red})
Concept 9 ({Habanero, Scotch Bonnet, Ruqutu, Malagueta, Piquín, Serrano, Jalapeño,

Poblano}, {})

 26

Chapter 3

3.1 Methodology

As detailed in the literature review, there exist a fair number of techniques and approaches to

model data, classify it, and detect license violations. This chapter introduces Oswaldo which

employs some of these methods, as well as outlines the basis for their use. The process is outlined

in Figure 3.1.

Figure 3.1 Oswaldo methodological process.

3.1.1 Preliminary Study

Part of the duties of a software developer include selecting and integrating various open source

projects and libraries and integrating them into a developing project. Questions that a developer

may pose to herself during the selection process can include: “Can I use this open source library

Preliminary
Study

Select data source
and generate
context table

Convert table to
CXT file

Generate FCA
lattice

Assess resultant
lattice

Modeling

Reuse/customize
ontological models
(MARKOS,
OntTAM)

Define and expand
the knowledge base
with new facts,
contraints, and
concepts

Collection

Select and create
ontological queries
for semantic
analysis

Convert queries
into rules

Assessment

Artifact specific
assessment

Assessment at
system level

 27

with the current ones I’m using?”; “What are the differences between the various licenses?”; “What

features define them?” [29], [36], [38] To answer these questions, a more apt tool is required.

A FCA lattice would be an ideal approach for the visualization of such information. If one were to

create a formal concept of the all the most common licenses, and each license’s attributes, a

concept lattice could be generated. A developer could find her currently in-use license, and then

attempt to trace her finger to the new project’s license that she would like to use. If there is no

connection between the two, then a license violation would result if she used both licenses together.

Conversely if there was a connection in the lattice, then in general she should be able to use both

licenses together.

The one caveat of this approach is the attribute “same license”. On rare occasions, a license will

require derivative works to be licensed only using its parent’s license. This difficulty is

increasingly becoming more well-known as the license proliferation problem [28], [36]. Many

licenses have explicitly stated compatibility with each other to circumvent this caveat.

For the development of a license compatibility tool, we take advantage of data from

ChooseALicense.com which is compiled and maintained by GitHub employees on behalf of the

software community. Herewithin, GitHub engineers compiled the most commonly used licenses,

as well as grouped their terms and conditions into several attributes [29]. Although this data is

presented in tabular form, it remains difficult for a human being to derive meaning from the table,

and thus apply its findings to their own project. FCA is thoroughly suited to overcome this

difficulty.

As part of our approach we converted the GitHub data to a context table for the most pertinent and

popular licenses (Figure 3.2 below).

 28

 Attributes (M)
 Co
m
me
rc
ia
l
us
e

Di
st
ri
bu
ti
on

Mo
di
fi
ca
ti
on

Pa
te
nt
 u
se

Pr
iv
at
e
us
e

Di
sc
lo
se
 s
ou
rc
e

Li
ce
ns
e
an
d

co
py
ri
gh
t
no
ti
ce

Ne
t
wo
rk
 u
se
 i
s

di
st
ri
bu
ti
on

Sa
me
 l
ic
en
se

St
at
e
ch
an
ge
s

Li
ab
il
it
y

Tr
ad
e
ma
rk
 u
se

Wa
rr
an
ty

Ob
je
ct
s
(
G)

AGPL 3 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯

⨯

Apache 2 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
Artistic 2 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
BSD 2 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
BSD 3 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
CC BY 4 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
CC BY-SA 4 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
CC0 1 ⨯ ⨯ ⨯ ⨯

 ⨯ ⨯ ⨯

Eclipse 1 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯

⨯ ⨯

⨯

EUPL 1.1 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
GPL 2 ⨯ ⨯ ⨯

⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯

GPL 3 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
LGPL 2.1 ⨯ ⨯ ⨯

⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯

LGPL 3 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
MIT ⨯ ⨯ ⨯

⨯

⨯

 ⨯ ⨯

MPL 2 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
MS-PL ⨯ ⨯ ⨯ ⨯ ⨯

⨯

 ⨯ ⨯

MS-RL ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
PostgreSQL ⨯ ⨯ ⨯

⨯ ⨯

 ⨯ ⨯

The Unlicense ⨯ ⨯ ⨯

⨯

 ⨯ ⨯

Figure 3.2 Context Table of Various Licenses and their Attributes, based on the data provided

by GitHub [29].

From the context table, we manually converted the data into CXT format. This format is a simple

text file to represent the context table, which is commonly used by FCA tools. With the CXT file,

we downloaded an FCA tool called RubyFCA [51], [52]. RubyFCA is a command line tool which

uses GraphViz and implements one of the original FCA algorithms by Bernhard Ganter [53]. Thus,

from the CXT file we generated the corresponding lattice (Figure 3.3):

ST

!&60"#(D8D(Q/*1#-5(<)55&1#(+#-&15&*6(G)"&/02(<&1#*2#2()*+(5>#&"()55"&'05#28(

#$"%! 9-&&"()! %$';%! &$)! A*'B."8A%! ;"&$"8! &$)! 9"()8%)%! 6-%)/! '8! &$)! $")*-*($,! '+! '6\)(&%! -8/!

-&&*"6B&)%4!5'*!)H->.9)R!9"()8%)%!"8!&$)!6'&&'>!9)+&!-*)!-99!%&*'8A9,!('.,9)+&!/B)!&'!&$'%)!8'/)%

 30

sharing the same license attribute. The lattice allows one to trace various licenses or groups of

licenses to their attributes, which is intuitively done with one’s finger. As a tool, this lattice is

valuable for a variety of stakeholders. For project authors newly minting a project as open source,

the lattice can help them compare the features of competing licenses. For an organization’s legal

counsel, this could help them in recommending and approving licenses to avoid and use based on

the organization’s specific needs.

Using FCA, developers can obtain answers to two of the three common questions when selecting

an open source library: “What are the differences between the various licenses?” and “What

features define them?” However, more investigation is needed in order to fully answer the third

common question: “Can I use this license with that license?” Answering this question requires

detecting current license violations in real-world projects.

3.1.2 Heterogeneous License Cohabitation

Existing license violation detection tools focus on finding violations through the use of source

code comparison [9], code clone detection techniques [3], sentence matching [8], assembler and

binary analysis [10]. These methods typically provide narrow solutions in terms of identifying

license violations; what they lack is wider context.

First, the issue of licensing compatibility is not just between two licenses, but between all licenses

in use in a current project! Many projects have multiple dependencies with varying licenses. All

terms and conditions of all licenses in use must all simultaneously be adhered to.

Second, how the project is used within the dependency hierarchy affects whether a license is

compatible with another license. Put simply, compatibility is not bidirectional. This context will

be discussed in detail below.

Even though licenses themselves have many terms and conditions, all major licenses do follow a

general set of principles (as described in the literature review [27]). A better approach that takes

into account the overall context is needed.

 31

3.1.3 License Compatibility and Compliance

The legal compatibility of two or more licenses while adhering to their dense terms and conditions

is a complex topic. It must be stated upfront that compatibility between two licenses is technically

outside the scope of Software Engineering, and instead it is best to defer to legal experts and

FLOSS advocacy organizations for specific questions [38]. As discussed in the literature review

for example, the GNU Foundation outlines which OSS licenses are compatible with the latest

version of the GPL. As the interplay of licenses is a multifaceted topic, this research seeks to help

shed light on these issues, and thus give meaning to this investigation.

Compatibility is a rather precarious choice of wording to describe the ability to use two licenses

together. The Oxford dictionary of English defines compatible as: “able to exist or occur together

without problems or conflict [34].” This simple definition of compatible does not fully capture the

relationship of using two licenses together. The word “compatible” is a puzzling choice because it

has connotations of bidirectional agreement. (The phrase “mutually compatible” comes to mind.)

License compatibility, despite being poorly named, is not bidirectional, but unidirectional.

How do two projects exist together, each with their own license? One imported project exists inside

a second actively developed project, which is normally distributed under the second project’s

license. For example, the Apache 2 license is compatible with the GPL 3 license in that “Apache

2 software can therefore be included in GPLv3 projects, because the GPLv3 license accepts our

software into GPLv3 works. However, GPLv3 software cannot be included in Apache projects

[54].” This is important to note because it makes preventing a license violation that much more

difficult for a Software Engineer. It also means that the required ontology to model these

relationships is that much more complex.

Some organizations have used the terms “upstream compatibility” and “downstream

compatibility” to denote the unidirectionality of compatibility between two licenses [55].

However, since the term “compatible” is widespread among various OSS communities online, we

continue its use by clarifying below.

 32

3.1.3.1 Definitions of Compatible and Incompatible

Compatible: can be copy-pasted or imported into (including linking).

There is one limitation to the above definition for this thesis, which mainly concerns the LGPL.9

“compatibleWith” when used in conjunction with the LGPL means a library can be linked, but

source code cannot copied and pasted into the project.

The LGPL defines linking as “a work that uses the library” either statically (compile-time) or

dynamically (run-time) where the source code of both projects is not combined. Each project is an

“independent work that stands by itself, and includes no source code from [the other].” This

separation does not apply to compiled code [56].

The reason for considering this limitation to the definition of “compatible” is simple. The LGPL

was created so that GPL projects could be relicensed under the LGPL and thus the project could

be linked to. (The L originally stood for “Library” because the general use case for the LGPL is

linking the project as a library [57]). We made this exception, otherwise many incorrect results

would turn up if the LGPL is considered incompatible with other licenses. Please see section 7.2

Future Work for a discussion on how to mitigate the limitations of this definition.

9 LGPL and AGPL are both slight exceptions to the definition of compatible. An AGPL 3-licensed

project can be imported into a GPL 3 project. But AGPL 3 code cannot be copy-pasted into a GPL

3 project. This is noted in the ontology used to gather the data.

]]

!

!&60"#(D8Y(T#-"#2#*5)5&/*(/E(5>#(

5"&-<#I(J9-)1>#(@(1/;-)5&'<#_&5>(

BC%(DK(

!

!&60"#(D8̀(T#-"#2#*5)5&/*(/E(5>#(

5"&-<#I(JBC%(D(&*1/;-)5&'<#_&5>(

9-)1>#(@K(

5'*!&$)!.B*.'%)%!'+!&$"%!/"%%)*&-&"'8!;)!B%)!&$)!+'99';"8A!8'&-&"'8!&'!/)8'&)!&$)!.*'\)(&!/).)8/)8(,!

$")*-*($,R! &$-&! "%R! &$)! +9';! '+! ('/)! +*'>! '8)! .*'\)(&! "8&'! -8'&$)*! ̀;$"($! /')%! 8'&! ">.9,!

('>.-&"6"9"&,!8'*!"8('>.-&"6"9"&,a1!

<.-($)!S! LMC!]

#$)! ̂ <Og:=! '8&'9'A,! -&&)>.&%! &'! &-P)! &$)! ('>.-&"6"9"&,! ('8().&! "8&'! -(('B8&! ;"&$! "&%

p('>.-&"69)?"&$q!.*'.)*&,!'8!&$)!"8/"G"/B-9!9"()8%)4!Q';)G)*R!&$)!p('>.-&"69)?"&$q!.*'.)*&,!"%!

"8('>.9)&)! +'*! >'%&! 9"()8%)%! "8(9B/)/! "8! &$)! '8&'9'A,4! ?$"9)! 'B*! '8&'9'A,! "%! 6-%)/! '8! &$)!

<̂Og:=!'8&'9'A,!-8/!&$)!p('>.-&"6"9)?"&$q!.*'.)*&,R!;)!$-/!&'!)H.-8/!"&!"8!'*/)*!&'!(-.&B*)!

&$)!/"++)*)8&!&,.)%!-8/!%('.)%!'+!9"()8%)!G"'9-&"'8%4!̀5"AB*)!]4j!%$';%!-8!)H->.9)!.*'\)(&!$")*-*($,!

;"&$!('>.-&"69)!9"()8%)%4a!<%!;)99R!&$)!p"8('>.-&"69)?"&$q!.*'.)*&,!;-%!-//)/!̀5"AB*)!]4k!%$';%!

-8!)H->.9)! "8('>.-&"69)! *)9-&"'8%$".a! 6)(-B%)! -%! -! *B9)R! '8&'9'A")%! +'99';! &$)! '.)8! ;'*9/!

-%%B>.&"'8x!&$-&!"%R!%">.9,!6)(-B%)!'8)!+-(&!"%!&*B)R!/')%!8'&!>)-8!&$)!'..'%"&)!"%!+-9%)4!#$)*)+'*)R!

;)!.*)%)8&!-!%)('8/!/)+"8"&"'84!

W*1/;-)5&'<#I(1)**/5('#(1/-=\-)25#+(*/"(&;-/"5#+(&*5/(]*/"(<&*3#+(5/̂8(

#$)! /"%(B%%"'8! '+! /)+"8"8A! ;$-&! "%! ('>.-&"69)! -8/! "8('>.-&"69)! >-,! %))>! 9"P)! -8!)H)*("%)! "8!

$)-*"8A!'8)Z% G'"())($'!"8!-8!"G'*,!&';)*R!6B&!&$"%!(9-*"+"(-&"'8!"%!"8!+-(&!G)*,!.*-A>-&"(!+'*!-!

]j

%'+&;-*)! /)G)9'.)*4! #$)! /';8%&*)->! y('8%B>"8AZ! .*'\)(&! v! "&%! -B&$'*w! v! "%! -(('B8&-69)! +'*!

('>.9,"8A!;"&$!-99!&$)!&)*>%!'+!-99!"&%!/).)8/)8&!9"()8%)%4!#$"%!"8(9B/)%!-8,!)>6)//)/!'*!$"//)8!

/).)8/)8(")%4!<(('*/"8A9,R!%"8()!;)!$-G)!/)+"8)/!;$-&!"%!('>.-&"69)!-8/!"8('>.-&"69)R!;)!>B%&!

$)8()!/)+"8)!9"()8%)!G"'9-&"'8%4!

SQPQX!-H>:<(13(*;1269;1?<(

@8! &$)! ('8&)H&! '+! 'B*! *)%)-*($R! &$*))! &,.)%! '+! :==! 9"()8%)! G"'9-&"'8%! -*)! /"%&"8AB"%$)/! -8/

"/)8&"+")/4!#$)!+'99';"8A!/)+"8"&"'8%!-*)!.B&!+'*;-*/1!!

!

!&60"#(D8a(

A=-#(7(.&;-<#(

O&/<)5&/*(

!

!

!&60"#(D8b(

A=-#(@(

P;'#++#+(

O&/<)5&/*(

!

!&60"#(D8c(A=-#(D(

Q/;-/0*+(

O&/<)5&/*(

!

-H>:(P(,;F>2:(*;1269;1?!v!?$)8!&;'!9"()8%)%!-*)!/"*)(&9,!B%)/!&'A)&$)*!̀)4A4!'8)!">.'*&%!&$)!

'&$)*aR!,)&!'8)!'+!&$)!9"()8%)Z%!&)*>%!/"%-99';!&$"%!('>6"8-&"'84!̀5"AB*)!]4ha!

-H>:(R(+FD:77:7(*;1269;1?!v!#$*))!9"()8%)%!-*)!B%)/!&'A)&$)*!"8!9"8)-*!+-%$"'8x!&$)!+"*%&!9"()8%)!

"%!-!/).)8/)8(,!'+!&$)!%)('8/!;$)*)!&$)!%)('8/!"&%)9+!"%!-!/).)8/)8(,!'+!&$)!&$"*/4!#$)!+"*%&!-8/!

 35

third licenses have incompatible terms. Thus, a transitive license violation potentially occurs.

(Figure 3.7)

Type 3 Compound Violation — Three licenses make up the dependency graph in a triangular

formation, where the third project has two dependencies. These two dependent projects are

incompatible, hence the potential license violation. (Figure 3.8)

Some key details about each type should be noted. Type 1 is the easiest violation to prevent. This

“easiness” is not why Type 1 is named “simple.” The usage of the dependency is simple. The

direct use of the dependency means the developer is aware of the use of that dependency, and can

read through both licenses terms to determine compatibility (or even search online for “license1

license2 compatible”).

Type 2 and Type 3 are both referred to as transitive because the interaction of their dependencies

is not direct but indirect. For Type 2, the developer of the third project is likely unaware of the

violation occurring in its dependency hierarchy. The developer would have to painstakingly search

through all of second’s project’s code to find the first project is used a dependency. Then she would

need to read through all three licenses to determine whether a violation has occurred. The crux of

Type 3 is that a developer can verify that her first dependency is compatible with the license of

her project, and do the same for her second dependency. Even though the developer thought she

completed her due diligence, she has not checked the compatibility between her two dependencies.

These two transitive types are particularly relevant to our research. The downstream user of a

dependency is highly unlikely to know about this potential violation as it is not only deep in the

dependency hierarchy, but also difficult to manually detect (manual tracing of dependencies is

required). Detecting license compatibility is indeed a difficult problem for developers and the

technique developed in this research has (like our character María) cultivated new ground to

finding these violations. This is exactly why these violation types have been defined.

 36

3.1.5 The Semantic Web and Linked Data

Now that three license violation types have been define, the reader can see the complexity in

detecting Types 2 and 3. Semantic Web technologies such as ontologies, reasoners, Linked Data

representations, and SPARQL endpoints are well suited to modelling and querying for these

transitive types of data [20]. Much less work (when comparing to traditional relational databases)

is needed to model the project relationships (because transitive relationships are inferred and

queryable). Similarly, the OntTAM project was a natural fit to build upon. Furthermore, Linked

Data ontologies are easily extensible and combinable using “equivalent URLs that point to the

same entity (i.e. owl:sameAs) [14].” As a Linked Data data set, which captures knowledge about

build management systems, and based on the metadata from the Maven project, it models

1 849 756 project releases. Additionally, incorporating a SPARQL query endpoint allows

developers and researchers to devise and execute their own queries. Furthermore, the query

endpoint could be used as an API to support any type of development environment or tool such as

an Eclipse plug-in, NetBeans, PHPStore, Android Studio, or Xcode. This internet-scale data set

approach is ideal for finding any license violations.

]l

!06>9:5(X!

XQP&F>2:F:?969;1?(

#$)!.*'()%%!+'*!/)G)9'."8A!:%;-9/'!;-%!>'%&9,!%&*-"A$&+'*;-*/!̀5"AB*)!j4Va4!#'!%&-*&R!;)!(-.&B*)/!

-8/!>'/)99)/!&$)!9"()8%)!('>.-&"6"9"&,!"8+'*>-&"'8!6,!)H&)8/"8A!&$)! <̂Og:=!'8&'9'A,4!o)H&R!

;)! A)8)*-&)/! &$)! 9"()8%)! &*".9)%! -8/! B%)/! &$)>! &'! .'.B9-&)! &$)! C"8P)/! J-&-! %)*G)*4! <+&)*R! ;)

(*)-&)/!&$)!=M<OmC!EB)*")%!-8/!=?OC!*B9)%4!#$)!+"8-9!%&).!;-%!&'!-8-9,Y)!-8/!>-P)!%)8%)!'+

&$)!EB)*,!*)%B9&%!B%"8A!7H()9!-8/!%>-99!.*'A*->%4!!

!

!&60"#(Y87(W;-<#;#*5)5&/*(-"/1#22(E/"(1"#)5&*6(,2?)<+/8(

XQPQP!"?9121B;/62(!1F>69;D;2;9H(

#$)! <̂Og:=!'8&'9'A,!;-%!B%)/!-%!-!6-%"%!+'*!9"()8%)!('>.-&"6"9"&,!̀-8/!"8('>.-&"6"9"&,aR!%"8()!

<̂Og:=! -9*)-/,! $-%! -! 9"%&! '+! ('>>'89,! B%)/! 9"()8%)%4! 7-($! 9"()8%)! "%! 9"%&)/! -%! -8! :?C!

"8/"G"/B-9!;"&$!.)*>"%%"'8%4!Q';)G)*R!+'*!'B*!.B*.'%)%!'+!9"()8%)!('8+9"(&!/)&)(&"'8R!&$)!'8&'9'A,!

8))/)/!&'!6)!)H.-8/)/4!@8!&$"%!%)(&"'8!;)!$-G)!'B&9"8)/!&$)!%&).%!&'!>'/"+,!&$)!'8&'9'A,!&'!'B*!

8))/%4!

5"*%&R! <̂Og:=!('8&-"8%!&$)!+'99';"8A!>-\'*!:==!9"()8%)1!<LMCR!<.-($)R!<*&"%&"(R!0=JR!2MCR!

7MCR! 7FMCR! LMCR! CLMCR! ̂@#R! ̂MC4! 0B&! "&! "%! >"%%"8A! %'>)! '9/)*! G)*%"'8%! '+! &$)%)! 9"()8%)%1!

<*&"%&"(! VR! LMC! VR! CLMC! SR! ̂MC! V4! #$'%)! '9/)*! G)*%"'8%! -*)! '+! .-*&"(B9-*! "8&)*)%&! &'! 9"()8%)!

G"'9-&"'8%! 6)(-B%)! >-8,! '+! &$)! '*"A"8-9! 9"()8%)%! ;)*)! >-/)! 6)+'*)! 9"()8%)! .*'9"+)*-&"'8! ;-%!

"/)8&"+")/!-%!-!.*'69)>4!@8!%$'*&R!&$),!$-G)!6))8!-//)/!&'!&$)!'8&'9'A,4!

:),H$#!L!=1.$%!M&/$(0$!
51'G),&4&%&,*!N(91#'),&1(!
91#!C0J)%.1O0!C(,1%12*

:$($#),$!
M&/$(0$!8#&G%$0!L!
"1G-%),$!M&(I$.!
F),)!8#&G%$0,1#$

5#$),$!+"<>PM!
P-$#&$0!L!
+Q>M >-%$0

>$9&($!L!<()%*@$!
>$0-%,0

 38

The ontology does refer to each license by its name. However, in order to satisfy Linked Data

requirements, every fact must be uniquely identifiable. Thus there exists an individual annotation

“rdfs:seeAlso” with a URI to the license on the web. This would generally be sufficient if everyone

linked to the same license URI in their open source project, but of course this is not the case.

Variations on the same URI are common, including http vs. https, .txt vs. .html vs. .php, and source

domain i.e. gnu.org vs. opensource.org, etc. As such, all of these variants were meticulously added

to the ontology.

The next step was to define the compatibility relationships between each license. This process was

meticulously completed for 6 licenses (out of 21). (6 ⨯	21 = 126. 126 ÷ 441 = 29% of the top 21

most common licenses.) These six licenses are: GPL 1, GPL 2, GPL 3, Apache 1, Apache 2,

Apache 3. (See Table 4.1 below for the general idea.) This means that over 126 compatibilities

were manually verified and populated into the ontology. In fact, more than 126 compatibilities

were recorded, but for simplicity’s sake, we do not include them because not all compatibilities

were recorded for all 21 licenses. I.e. The triples of Apache 1 & 2 into MPL 1, 1.1 & 2 were

recorded but not Apache into CPL. This subset of six licenses was chosen because GPL and

Apache are consistently some of the most popular licenses online. Additionally, the process of

verifying whether the use of two licenses constitute a license violation is a very time consuming.

A reputable source had to be found online for each compatibility pair and then the result entered

into the ontology using the ontology editor application Protégé [58].

 39

Table 4.1 Tabular demonstration of the data entered into the ontology. This table is not

complete. The reader can read the table as follows: “Column importable into Row”. E.g.

“Apache 1.1 is compatible/importable into MPL 2.” This data has been made available online

as an OWL file [59].

 AGPL 3 Apache 1 Apache 1.1 …

AGPL 3

Apache 1 ⨯ …

Apache 1.1 ⨯ …

Apache 2 ⨯ …

Artistic 1

Artistic 2

BSD 2-clause

BSD 3-clause

CPL 1

EPL 1

EUPL 1.1

GPL 1 ⨯ ⨯ ⨯ …

GPL 2 ⨯ ⨯ ⨯ …

GPL 3 ⨯ ⨯ …

LGPL 2

LGPL 2.1

LGPL 3

MIT

MPL 1 ⨯ ⨯

MPL 1.1 ⨯ ⨯

MPL 2

 40

4.1.2 Generating Triples

With the license compatibility relationships modelled, the next step was to create some triples from

the build ontology. This process was fairly straightforward as we could build from the previous

work: the OntTAM/SBSON ontologies and data set [46], outlined in Figure 4.2. The first step was

to execute TripleConstructor.java, which takes the license URI from SBSON and compares that to

the license URI in MARKOS and generates the triple: “Release, coveringLicense, License”, which

means “this release is covered by this license.” This triple represents the match between the license

entity (in MARKOS) and its equivalent Release (in SBSON).

Figure 4.2 The Software Trustworthy Ontology Hierarchy. License Information and MARKOS

are combined to make Oswaldo which contributes to this model.

 41

Once the triples are generated, it is a simple process to populate the data set, that is load them into

Virtuoso Server [60], by following these steps:

• Copy the MARKOS owl file into the directory ~/virtuoso/dataset

• Run TripleLoader.java file in Eclipse

• Check that the triples are loaded using the SQL query using the interactive SQL command

line tool isql: select * from DB.DBA.load_list;

The result of this processing step is a populated Linked Data data set, which is ready to be used

through a SPARQL endpoint.

4.1.3 Queries

Since the types of license violations have already been defined, the next step was to create

SPARQL queries to detect each type of license violation.

Please note the following technical language of the ontology included in the following queries:

• Dependency Target is the dependency being imported into the second project.

• Dependency Source is the project “receiving” the imported code. The reader can think of

this from the perspective of a developer, where this is their current source code being

actively developed, and which is importing third-party code (depicted below in Figure 4.3).

These naming conventions are based on the ones used by the SBSON (Software Build System

Ontology) [46].

A further note should be pointed out regarding that the choice of directionality of the arrows in our

dependency figures. The arrows show the flow of code and do not show the dependency graph

(unlike the SBSON project), because this research is principally concerned with derivative works

and what license the third-party code is ultimately disturbed under in a downstream project that

uses that third-party code.

jS

!&60"#(Y8D(A?/(#:);-<#(1<)22#2(?&5>()*()""/?(5/(2>/?(5>#(E</?(/E(1/+#(E"/;(5>#(5)"6#5(

+#-#*+#*1=(5/(5>#(2/0"1#8(

XQPQSQP!-H>:(P(,;F>2:(*;1269;1?(

"Dh:/9;M:E(

5"8/! &;'! .*'\)(&%! ̀*).'%"&'*")%aR! ;$)*)!)-($! .*'\)(&! $-%! -! /"++)*)8&! 9"()8%)R! -8/! '8)! .*'\)(&! "%!

">.'*&)/!"8&'!&$)!'&$)*R!-8/!&$"%!">.'*&"8A!*)9-&"'8%$".!"%!8'&!-99';)/!6,!&$)!&)*>%!'+!)"&$)*!9"()8%)4

j]

_8:5HE(

!

���������������

���

�����������������������������

������������������������

��

����������������������

���

�

������������������

��������

������������������������������

���

��

�

��

��

�

��

�

��������������������������������

��

!&60"#(Y8Y(A>#(.C9Td%(e0#"=(5/(+#5#15()(-/5#*5&)<(A=-#(7(.&;-<#(O&/<)5&/*8(

$:<8291

#$)!EB)*,!;"99!*)&B*8!.-"*%!'+!.*'\)(&%!;$)*)!&$)!+"*%&!.*'\)(&!"%!">.'*&)/!"8&'!&$)!%)('8/!.*'\)(&!

-8/!&$)!9"()8%)!'+!&$)!+"*%&!.*'\)(&!(-88'&!6)!">.'*&)/!"8&'!&$)!9"()8%)!'+!&$)!%)('8/!.*'\)(&x!&$B%!

)-($!.-"*"8A!*).*)%)8&%!-!9"()8%)!G"'9-&"'8R!)4A4!*).'%"&'*,VR!9"8PR!*).'%"&'*,SR!9"()8%)VR!9"()8%)S4!

XQPQSQR!-H>:(R(+FD:77:7(*;1269;1?(

#$)!8)H&!EB)*,!;-%!;*"&&)8!&'!/"%('G)*!G"'9-&"'8%!6)&;))8!&;'!9"()8%)%!;"&$!'8)!"8&)*>)/"-*,4!@&!

"%!+'*!#,.)!S!7>6)//)/!G"'9-&"'8%4!#-P)!8'&)!'+!$';!%">.9)!"&!"%!&'!>-P)!&$)!EB)*,!&*-8%"&"G)x!&$"%!

"%!%">.9,!-($")G)/!B%"8A!&$)!&*".9)!p���q

jj

"Dh:/9;M:E(

5"8/!&$*))!.*'\)(&%!̀*).'%"&'*")%aR!;$)*)!)-($!.*'\)(&!$-%!-!/"++)*)8&!9"()8%)R!-8/!'8)!.*'\)(&!"%!

">.'*&)/!"8&'!-!%)('8/!.*'\)(&!&$-&!"%!">.'*&)/!"8&'!-!&$"*/!.*'\)(&R!-8/!&$"%!">.'*&"8A!$")*-*($,!"%!

8'&!-99';)/!6,!&$)!&)*>%!'+!&$)!+"*%&!'*!&$"*/!9"()8%)4!

_8:5HE(

!

���������������

���

�����������������������������

�����������������������

��

����������������������

���

���������������

���

�

������������������

��������

�������������������������������

���

���

�

�������������������������������

��

���

�

��

��

��

�

��

��

��

�

jk

���

���������������������������

��

!&60"#(Y8̀(A>#(.C9Td%(e0#"=(5/(+#5#15()(-/5#*5&)<(A=-#(@(P;'#++#+(O&/<)5&/*8(

$:<829E(

#$)!EB)*,!;"99!*)&B*8!&*"'%!'+!.*'\)(&%R!;$)*)!&$)!+"*%&!.*'\)(&!"%!v!6B&!%$'B9/!8'&!6)!v!">.'*&)/!

"8&'!&$)!&$"*/!.*'\)(&!̀&$*'BA$!-8!"8&)*>)/"-*,!%)('8/!.*'\)(&a4!7-($!&*"'!'+!.*'\)(&%!*).*)%)8&%!-!

#,.)! S! 9"()8%)! G"'9-&"'84! 74A4! *).'%"&'*,VR! 9"8P<R! *).'%"&'*,SR! 9"8P0R! *).'%"&'*,]R! 9"()8%)VR!

9"()8%)SR!9"()8%)]4!

XQPQSQS!-H>:(S(!1F>18?7(*;1269;1?(

#$)!+'99';"8A!EB)*,!(-.&B*)%!&$)!&$"*/!-8/!+"8-9!9"()8%)!G"'9-&"'81!#,.)!]!2'>.'B8/4!!

"Dh:/9;M:E(

5"8/!&$*))!.*'\)(&%!̀*).'%"&'*")%aR!;$)*)!)-($!.*'\)(&!$-%!-!/"++)*)8&!9"()8%)R!-8/!&$)!+"*%&!.*'\)(&!

"%!">.'*&)/!"8&'!&$)!&$"*/!.*'\)(&!-%!;)99!-%!&$)!%)('8/!.*'\)(&!"%!">.'*&)/!"8&'!-!&$"*/!.*'\)(&R!-8/!

&$"%!">.'*&"8A!$")*-*($,!"%!8'&!-99';)/!6,!&$)!&)*>%!'+!&$)!+"*%&!'*!%)('8/!9"()8%)4!

_8:5HE(

!

���������������

���

�����������������������������

������������������������

��

����������������������

���

���������������

���

�

������������������

��������

 46

?linkA a build:DependencyLink.

?linkA build:hasDependencyTarget ?repository1.

?linkA build:hasDependencySource ?repository3.

?linkB a build:DependencyLink.

?linkB build:hasDependencyTarget ?repository2.

?linkB build:hasDependencySource ?repository3.

?repository1 markosLicense:coveringLicense ?license1.

?repository2 markosLicense:coveringLicense ?license2.

?repository3 markosLicense:coveringLicense ?license3.

?license1 markosCopyright:compatibleWith ?license3.

?license2 markosCopyright:compatibleWith ?license3.

?license1 markosCopyright:incompatibleWith ?license2.

FILTER (?license1 != ?license2 && ?license1 !=

?license3 && ?license2 != ?license3)

}

Figure 4.6 The SPARQL query to detect a potential Type 3 Compound Violation.

Result:

The query will return triplets of projects, where the first project is imported into the third project

while the second project is imported into the third but the first and second project should not be

used together. Every triplet returned from the query signifies a Type 3 license violation, e.g.

repository1, linkA, repository2, linkB, repository3, license1, license2, license3.

4.1.4 Rules

Similarly, the SWRL rules for the three violation types are as follows. As a reminder, SWRL rules

and SPARQL queries differ in that the SWRL rules permit for automatic inferencing and

materialization. Based on a given SWRL rule, the reasoner infers new facts from existing facts. If

new facts are inferred, these are automatically added to the triplestore (materialization). For

example, if new projects and dependencies are added to the triplestore, the SWRL rules will

 47

automatically generate the corresponding potential license violations facts. However, the Virtuoso

Server triplestore that was used in these experiments does not support SWRL rules, which is why

these rules are outlined in the figures below (Figure 4.7, Figure 4.8, Figure 4.9), and the results are

instead compiled using SPARQL queries.

isA(?link,build:DependencyLink) ̂

hasDependencyTarget(?link,?repository1) ̂

hasDependencySource(?link,?repository2) ̂

coveringLicense(?repository1,?license1) ̂

coveringLicense(?repository2,?license2) ̂

incompatibleWith(?license1,?license2) ̂

differentFrom(?license2,?license3)

=> hasSimpleViolation(?repository1,?repository2)

Figure 4.7 Type 1 SWRL Rule.

isA(?linkA,build:DependencyLink) ̂

isA(?linkB,build:DependencyLink) ̂

hasDependencyTarget(?linkA,?repository1) ̂

hasDependencySource(?linkA,?repository2) ̂

hasDependencyTarget(?linkB,?repository2) ̂

hasDependencySource(?linkB,?repository3) ̂

coveringLicense(?repository1,?license1) ̂

coveringLicense(?repository2,?license2) ̂

coveringLicense(?repository3,?license3) ̂

incompatibleWith(?license1,?license2) ̂

differentFrom(?license1,?license2) ̂

differentFrom(?license1,?license3) ̂

differentFrom(?license2,?license3)

=> hasEmbeddedTransitiveViolation(?repository1,?repository3)

Figure 4.8 Type 2 SWRL Rule.

 48

isA(?linkA,build:DependencyLink) ̂

isA(?linkB,build:DependencyLink) ̂

hasDependencyTarget(?linkA,?repository1) ̂

hasDependencySource(?linkA,?repository3) ̂

hasDependencyTarget(?linkB,?repository2) ̂

hasDependencySource(?linkB,?repository3) ̂

coveringLicense(?repository1,?license1) ̂

coveringLicense(?repository2,?license2) ̂

coveringLicense(?repository3,?license3) ̂

compatibleWith(?license1,?license3) ̂

compatibleWith(?license2,?license3) ̂

incompatibleWith(?license1,?license2) ̂

differentFrom(?license1,?license2) ̂

differentFrom(?license1,?license3) ̂

differentFrom(?license2,?license3)

=> hasCompoundTransitiveViolation(?repository1,?repository2)

Figure 4.9 Type 3 SWRL Rule.

4.1.5 Global Analysis

Since the previous SPARQL queries and SWRL rules will focus on producing results for specific

license violation combinations, further analysis from this combined data is vital to produce a macro

perspective that explores trends and compares results. To perform this type of global analysis of

the most common license violation pairs and triples (results are discussed in the next section)

various queries and small programs were written to derive those violations for each license type.

A program was writing for each type of violation. Essentially each program took as input the

results of one of the above SPAQRL queries in CSV format. The most frequent license

combination was found using a simple for-loop. The counts and combinations were outputted as

CSV. This CSV result was then imported into Excel and graphed. These small programs are

included as appendices called Type1Analysis.swift, Type2Analysis.swift, Type3Analysis.swift.

 49

Chapter 5

5.1 Results and Evaluation

After defining what new license violations to look for, devising queries for them, amassing the

results in CSV format, and finally performing some global analysis, we must now focus on

reviewing the found results and evaluate them in critical discussion. Before considering the

findings into context, one must recall the primary research statement that states:

An approach will be developed based upon a flexible license modelling method that

can detect both potential direct and transitive license violations.

Along with the secondary research statement:

Furthermore, we expect that the most common type of violation will be a directly

dependent Type 1 Simple Violation, the second most common a transitive Type 2

Embedded, and the third a transitive Type 3 Compound Violation.

In order to disprove or accept these hypotheses, there should be a substantial number of violations

of each type found (Types 1, 2, and 3). Furthermore, if transitive violations of Types 2 and 3 are

found, this would indicate that such violations are indeed an area of interest for the research

community.

5.1.1 Experimental Setting

The experiments were conducted on an 8-core Intel Core i7-950 clocked at 3.07GHz and 24

gigabytes of RAM. The Linked Data data set is hosted using OpenLink’s Virtuoso Universal

Server software [60]. The data set is derived from the Apache Maven Project [31]. The data set

contains 371 262 projects, and 1 849 756 project releases. Altogether these project releases

collectively have 27 934 538 dependencies. Of these, the median is 2 dependencies per project

release.

 50

5.1.2 Detected Violations: Trends & Influences

In performing the three queries for detecting the different types of license violations (introduced

in Chapter 4 Implementation), our study produced these results:

Table 5.1 Total number of violations reported from the analysis of our data set.

Type 1 Simple Violations 131 996
Type 2 Embedded Violations 288 153
Type 3 Compound Violations 654 964

As the study yielded over 131 000 simple violations and numerous transitive violations of various

types, we may conclude that our technique Oswaldo can detect software license violations. It must

be noted that these results are only a subset of the unidirectional compatibility that might exist

since we only consider 6 of 21 licenses (due to limited availability of compatibility relationships

that are vetted by lawyers). Furthermore, because both simple and transitive violations in Open

Source Software projects were detected in the Maven repository of software projects, we conclude

our primary research statement as confirmed, which will be discussed in further detail below.

From the identified violations, we can first note that Type 3 is seemingly the most common type

of violation, followed by Type 2, then 1. This is contrary to our secondary research statement

which posited that the most found violations would be of Type 1, followed by Type 2, followed

by Type 3. Accordingly, our second research statement is disproved. (Please note that Types 2 and

3 results do not include results from Type 1.) The following three sections investigate found

examples of each type of license violation and deliberate their characteristics vis-à-vis the two

research statements.

 51

5.1.3 Type 1 Simple Violations

Figure 5.1 Most Numerous License Violation Pairs for Type 1 Simple Violations.

The most common found example for Type 1 Simple Violations in our data set is Apache 2 code

being incorporated into GPL 2 licensed code, which represents 49.3% of all Type 1 violations and

6.1% of all three found violation types. This violation is not surprising for two reasons. First, many

software developers are simply not aware nor well-versed in open source license compliance, and

as these are the two most common licenses in the world, this pairing reflects their usage in the

wild. Second, there is likely some confusion about Apache 2’s compatibility with the GPL. On the

GNU website, the Free Software Foundation publishes a list of licenses that are compatible with

1

1

8

8

11

15

25

38

49

66

76

122

152

375

667

870

1037

1345

2140

2368

2970

12024

16939

25584

65105

0 10000 20000 30000 40000 50000 60000 70000

EUPL 1.1 ►GPL 3

MPL 1 ►LGPL 2.1

MPL 1.1 ►LGPL 2

AGPL 3 ►GPL 2

Apache 2 ►MPL 1

MPL 1 ►AGPL 3

Artistic 1 ►GPL 3

CPL 1 ►GPL 3

Apache 1.1 ►GPL 2

MPL 1 ►GPL 2

EUPL 1.1 ►Apache 2

MPL 1.1 ►GPL 2

Apache 1.1 ►GPL 3

GPL 3 ►GPL 2

MPL 1.1 ►LGPL 3

MPL 1.1 ►GPL 3

AGPL 3 ►Apache 2

Apache 2 ►MPL 1.1

MPL 1.1 ►AGPL 3

MPL 1.1 ►LGPL 2.1

EPL 1 ►GPL 2

EPL 1 ►GPL 3

GPL 2 ►Apache 2

GPL 3 ►Apache 2

Apache 2 ►GPL 2

Number of Potential Violations

Li
c
e
ns
e
P
ai
r

Most Common Type 1 License Violation Pairs

 52

the GPL. This page identified Apache 2 as compatible, but in the license discussion, the authors

explain that Apache 2 is only compatible with GPL 3, not GPL 2 [38].

Whereas the first license pair of Apache 2 	 GPL 2 could be interpreted as: the programmer

attempted to perform due diligence but failed to read the fine print, the second violation pair of

GPL 3 	 Apache 2 could be seen as more blatant. The GPL 3 is widely known to be a more

restrictive license. The programmer who committed this type of violation 1) must have either

wilfully broken copyright law, or 2) must have been unaware that open source licenses differ vastly

in their allowances. First, if the developer knew the terms of the GPL 3 license and chose to import

the project into the Apache 2 project as is, and not change the license of her downstream project

(according to the reciprocity clause in the GPL 3’s terms and conditions) this would amount to an

intentional violation of copyright law, thus the programmer (or the organization) would be held

liable if sued (and if that intentionality could be proven, would most likely result in a stronger

sentence). Second, if the developer was unaware of how OSS licenses work, they could still be

taken to court. If taking the latter more charitable vantage point, one would conclude that (despite

the compatibility listing [38]) the developer was ignorant of the fact that license compatibility is

unidirectional. Thus, this assumption induced a violation of the GPL 3 because that project was

imported into an Apache 2 project.

When comparing the number of found Type 1 violations to Types 2 and 3, we can observe that

Types 2 and 3 are more frequent. This may be because a Type 1 Simple Violations is a better-

known compatibility/incompatibility. That is, it is much more likely to be discovered by

developers, since it only involves two licenses, and is a straightforward relationship. The transitive

types on the other hand, have not been considered in the research community before this thesis,

and some apparent violations may very well be acceptable (depending on the mix of conditions)

and not violations at all.

For example, the European Union Public License (EUPL) explicitly states which licenses it is

compatible with. This is a known compatibility. Whereas for transitive interactions, the EUPL may

then be imported into an intermediary project, say a project under the Licence Libre du Québec–

Réciprocité (LiLiQ-R), which is then imported into a tertiary project under Common Development

 53

and Distribution License (CDDL). Each step (EUPL to LiLiQ-R, and LiLiQ-R to CDDL) are

known to be compatible. Even though the direct relation of EPUL to CDDL is not compatible, the

use of an intermediary license may enable compatibility. This chain of licenses would be flagged

as a violation by Oswaldo, although it could in fact be lawful (verifiable by a lawyer). The

existence of such ambiguity would then contribute to the number of Type 2 violations found.

5.1.4 Type 2 Embedded Violations

Figure 5.2 Most Numerous License Violation Pairs for Type 2 Embedded Violations.

For Type 2 Embedded Violations, the most prevalent triple of licenses is EPL 1 	 Apache 2 	

GPL 3, where EPL 1 is incompatible with GPL 3, which represents 24.3% of all Type 2 relations.

This incompatibility is particularly tough for a human to spot because the EPL 1 is importable into

Apache 2, and Apache 2 is importable into GPL 3. It would require a manual analysis of the

Apache 2 project to discover the embedded EPL 1 dependency, which is incompatible with the

GPL 3, as stated by the FSF’s legal team in their compatibility list [38].

2

5

130

704

6404

26461

254447

0 50000 100000 150000 200000 250000 300000

Apache 2 ►MPL 2 ►MPL 1

GPL 3 ►LGPL 3 ►Apache 2

CPL 1 ►Apache 2 ►GPL 3

Apache 2 ►MPL 2 ►GPL 2

Apache 1.1 ►Apache 2 ►GPL 3

MPL 1.1 ►Apache 2 ►GPL 3

EPL 1 ►Apache 2 ►GPL 3

Number of Potential Violations

Li
c
e
ns
e
Tr
i
pl
e

Most Common Type 2 License Violation Triples

 54

MPL 1.1 	 Apache 2 	 GPL 3 is the second most common Type 2 dependency triple, where the

MPL 1.1 cannot be imported into the GPL 3. The FSF states: “Software under previous versions

of the MPL can be upgraded to version 2.0, but … software that's only available under previous

versions of the MPL is still incompatible with the GPL [38].” Consequently, it would be

theoretically conceivable to resolve the 26 461 found violations by upgrading the MPL from

version 1.1 to version 2. In practice, however, this migration process can be cumbersome;

obtaining consent concerning the license upgrade may be required from all project authors (i.e.

anyone who made contributions), which could be in the thousands for a popular project. “Without

copyright assignment or a CLAs [Contributor License Agreements], changing a software license

requires the consent of every contributor to that system [61].” For many projects, this license

evolution process is infeasible, which then returns us to the initial unresolved Type 2 conflict

between MPL 1.1 and GPL 3. This conflict continues to stand as an actual violation.

Finding these well-known Type 2 violations with Oswaldo leads to another question; why have so

many Type 2 violations not been found by project authors? We can theorize why. First, it is

difficult and extensively time-consuming for a programmer to trace import statements in the source

code to reveal the exact dependency hierarchy of a project. This nuisance is one of the reasons

why no detailed license inspection for these transitive dependencies is performed. Second, as

FLOSS licenses have many terms and conditions, programmers may be lacking ‘FLOSS literacy.’

That is, they may not know enough of the basics to properly use licenses. Third, there does not

exist a centralized, concise, and well-defined set of rules or guidelines for the use of and interaction

among all major licenses. This makes it difficult for a developer to not only to select an appropriate

license but also to aid the detection of license violations by the developer.

 55

5.1.5 Type 3 Compound Violations

Figure 5.3 Most Numerous License Violation Pairs for Type 3 Compound Violations.

After executing the Type 3 Compound Violation query, the most widespread license conflict that

we observed in our data set was MPL 1.1 LGPL 2.1 	 Apache 2 (shown below in Figure 5.4),

which represents 52.2% of all Type 3 violation relations. Within this use case, MPL 1.1 is

discordant with LGPL 2.1. However, some of these triples may not be a violation. If the LGPL 2.1

project is only linked to then according to the terms of the LGPL, this is not a violation.

As previously discussed when clarifying the meaning of compatibility, according to the LGPL

linking stands for “a work that uses the library.” This usage can be static (compile-time) or

dynamic (run-time) as long as both projects’ source code is kept separate. Each project is an

“independent work that stands by itself, and includes no source code from [the other].” It is

perfectly acceptable to combine compiled code however [56].

16

32

34

688

839

21975

21975

24821

37495

547089

0 100000 200000 300000 400000 500000 600000

Apache 1.1 + MPL 1 ►Apache 2

Apache 2 + MPL 1 ►MPL 2

Apache 2 + MPL 1.1 ►MPL 2

MPL 1 + LGPL 2.1 ►Apache 2

Apache 1.1 + MPL 1.1 ►Apache 2

GPL 2 + Apache 2 ►GPL 3

Apache 2 + GPL 2 ►GPL 3

MPL 1.1 + LGPL 3 ►Apache 2

AGPL 3 + Apache 2 ►GPL 3

MPL 1.1 + LGPL 2.1 ►Apache 2

Number of Potential Violations

Li
c
e
ns
e
Tr
i
pl
e

Most Common Type 3 License Violation Triples

kh

'̂*)'G)*R!P))."8A!&$"%!/)+"8"&"'8!"8!>"8/R!9"8P"8A!"%!6,!+-*!&$)!>'%&!9"P)9,!B%)!+'*!&$)!CLMC!%"8()!

&$"%!9"()8%)!;-%!%.)("-99,!(*)-&)/!+'*!9"8P"8A!9"6*-*")%!tklu4!@+!&$)!.*'\)(&!;-%!8'&!9"8P)/R!6B&!%'B*()[

('/)[('>6"8)/R!&$)8!&$"%!9"()8%)!&*".9)!('>6"8-&"'8!;'B9/!6)!-!/)+"8"&"G)!G"'9-&"'84!Q';)G)*R!&$)!

/';8%&*)->!.*'\)(&!"%!<.-($)!SR!;$"($!"%!-!;)-P)*!('.,9)+&!9"()8%)4!#$"%!>-P)%!"&!$"A$9,!9"P)9,!

&$-&! &$)! CLMC! .*'\)(&! "%! 6)"8A! 9"8P)/! ̀-8/! 8'&! ('>6"8)/! ;"&$a! &$)! <.-($)! .*'\)(&4! #$B%R! "&! "%!

*)('>>)8/)/! &$-&! &$)! *)-/)*! $'9/%! &$"%! (-G)-&! "8! >"8/! ;$"9)! >'G"8A! '8&'! &$)! 8)H&! #,.)!]!

)H->.9)4!!

="8()!;)!$-G)!('8%"/)*)/!&$)!/)+"8"&"'8!'+!p9"8P"8Aq!6,!&$)!CLMCR!;)!%$'B9/!-9%'!('8%"/)*!&$)!

/)+"8"&"'8! '+! 9"8P"8A! 6,! &$)! ̂MC! -%! ;)994! #$)! ̂MC! -99';%! +'*! %&-&"(! 9"8P"8A! B89"P)! &$)! CLMC

p̀J"%&*"6B&"'8! '+! -! C-*A)*! ?'*Pq! thSu! th]ua4! #$"%! >"%>-&($! '+! /)+"8"&"'8%! ('B9/! 9)-/! &'! >B($!

('8+B%"'8! ;$)8! "8&)A*-&"8A! &$)%)! .*'\)(&%! -8/! &$)"*! 9"()8%)%4! @+! &$)! ̂MC! .*'\)(&! ;)*)! 9"8P)/!

/"*)(&9,!&'!&$)!CLMC!.*'\)(&!-!G"'9-&"'8!('B9/!'((B*!̀#,.)!Va4!0B&!&$"%!"%!8'&!&$)!(-%)!-%!&$)!9"8P"8A!

'((B*%!"8%"/)!&$)!<.-($)!S!.*'\)(&!̀#,.)!]a4!Q';)G)*R!&$)!+-(&!%&"99!%&-8/%!&$-&!&$)!CLMC!"%!%&"99!

>'%&!9"P)9,!/,8->"(-99,!9"8P)/!&'!&$)!<.-($)!S!.*'\)(&R!-8/!&$)*)+'*)!&$"%!"%!9"P)9,!8'&!-!G"'9-&"'84

!

!&60"#(̀8Y(A=-#(D(T#<)5&/*2>&-(?&5>(4=*);&1(%&*38(

#$)!%)('8/!>'%&!+'B8/!9"()8%)!&*".9)&!;"&$!]l!jTk!*)%B9&%R!"%!<LMC!]!Ö!<.-($)!S!!LMC!]4!<A-"8R!

&$)!"8('8A*B"&,!"%!6)&;))8!&$)!&;'!%"69"8A!9"()8%)%!"8!&$)!/).)8/)8(,!$")*-*($,1!<LMC!]!(-88'&!

6)!">.'*&)/!"8&'!<.-($)!S4!Q';)G)*R!<.-($)!S!(-8!6)!.B99)/!"8&'!<LMC!]4!0)(-B%)!&$)%)!9"()8%)%!

-*)!%"69"8A%R!-8/!&$)!<.-($)!S!('/)!;"99!6)!*)9"()8%)/!-%!LMC!]!('/)R!"&!"%!('8(9B%"G) &$-&!&$)%)!

&;'!.*'\)(&%!(-8!('>"8A9)!&'A)&$)*!;"&$'B&!-8,!.*'69)>%4!!

 57

Looking at the third found triple of MPL 1.1 LGPL 3 	 Apache 2 licence dependencies, this

license hierarchy is similar to the first Type 3 example discussed above.

Let us continue to the fourth and fifth Type 3 examples: Apache 2 GPL 2 	 GPL 3. Apache 2

code is not importable into GPL 2, and vice versa. Again, a conflict may likely not occur between

these two licenses due to their transformation into GPL3 code.

Considering the subsequent triple of Apache 1.1 + MPL 1.1 	 Apache 2, the two dependencies are

incompatible, where Apache 1.1 code cannot be used in MPL 1.1 code. However, this particular

triple is slightly and subtly different. In this case, a violation could possibly occur because the

MPL’s definition of linking is different. The MPL allows static linking of source code, i.e. the file

can be placed in the project and built. (This placement is allowed because the license can be applied

on a file-level, as opposed to a project-level. See section “3.7. Larger Works” of the MPL 1.1 [62].)

However, Oswaldo does not model pure file-based relationships; the project relationships are

derived from Apache Maven’s POM (Project Object Model) files, and these POM-file-derived

relationships may not take into account manually imported and statically linked MPL files. Thus,

a violation could very well occur if the programmer has not paid attention to the combination of

all three of these licenses’ terms. Therefore, Oswaldo currently cannot distinguish if a reported

Type 3 result is an actual violation.

Below we consider the remaining license triads that include potential violations:

• MPL 1 + LGPL 2.1 	 Apache 2

• Apache 2 + MPL 1.1 	 MPL 2

• Apache 2 + MPL 1 	 MPL 2

• Apache 1.1 + MPL 1 	 Apache 2

These license triples all succumb to the complexities described above, mainly the mixing of

differing definitions of linking and the modelling shortcomings of the Apache Maven’s POM files.

kW

:8)!>'*)!)H->.9)!'+!">.'*&-8()!>B%&!6)!/"%(B%%)/4!#$)*)!)H"%&!>'/"+")/!G)*%"'8%!'+!&$)!LMC!S!

9"()8%)!;$"($!"8(9B/)!-!*)(".*'("&,!(9-B%)!;$)*)!-8,!>'/"+"(-&"'8%!'*!/)*"G-&"G)!;'*P%!>B%&!6)!

9"()8%)/!B8/)*!&$)!LMC!S!'89,!̀-8/!8'&!-8,!+B&B*)!G)*%"'8%!'+!&$)!LMCa4!#$"%!"%!">.'*&-8&!6)(-B%)!

"&!>)-8%!&$-&!&$-&!G)*%"'8!'+!&$)!LMC!S!"%!8'&!('>.-&"69)!;"&$!&$)!LMC!]4!:8)!.*'>"8)8&!)H->.9)!

'+!&$"%!"%!C"8BH!"&%)9+R!;$)*)!&$)!'*"A"8-9!-B&$'*!'+!&$)!'.)*-&"8A!%,%&)>R!C"8B%!#'*G-9/%R!*)+B%)%

&'!B.A*-/)!&'!LMC!]!thju4!̀C"8BHZ%!9"()8%)!"%!&$)!LMC!S!'89,!G)*%"'84a!2'>6"8"8A!&;'!y.-*)8&-9Z!

/).)8/)8(")%!;$)*)!'8)!.*'\)(&!"%!LMC!S!'89,!-8/!&$)!'&$)*!.*'\)(&!"%!LMC!]!;'B9/!(*)-&)!-!9"()8%)

G"'9-&"'8! "8! &$)! ($"9/! .*'\)(&4! g)).! "8! >"8/! &$-&! &$)! :%;-9/'! 9"()8%)! >'/)9! (B**)8&9,! (-88'&

/"%&"8AB"%$!6)&;))8!&$"%!%B6&9)!/"++)*)8()4!:%;-9/'!%">.9,!('8%"/)*%!-99!LMC!S!9"()8%)%!&'!6)!&$)!

%->)4! '̂/)99"8A!&$"%!%B6&9)&,!;'B9/!9"P)9,!"8(*)-%)!&$)!EB-9"&,!-8/!8B>6)*!'+!#,.)!]!G"'9-&"'8%!

+'B8/4!

YQPQYQP!-H>:(S(+̀6F>2:(

7G)8!&$'BA$!;)!/"/!8'&!+"8/!-!(9)-*!#,.)!]!G"'9-&"'8!B%"8A!:%;-9/'R!&$*))!9"()8%)%!B%)/!&'A)&$)*!

(-8! *)%B9&! "8! -! *)-9! G"'9-&"'84! 5'*!)H->.9)R! -! /)G)9'.)*! B%)%! &$*))! .*'\)(&%! &'A)&$)*! "8! &$)

)9-&"'8%$".!%$';8!6)9';!"8!5"AB)!k4k4!#$)!(B**)8&9,!/)G)9'.)/!.*'\)(&!"%!0=J[9"()8%)/!-8/!$-%!

&;'!/).)8/)8(")%1!'8)!.*'\)(&!&$-&!"%!9"()8%)/!B8/)*!<.-($)!SR -8/!-8'&$)*!<*&"%&"(V4

!&60"#(̀8̀(A=-#(D(O&/<)5&/*(/110""&*6('#5?##*(5>#(9-)1>#(@(-"/L#15()*+(9"5&25&1(7(-"/L#15F(

'#1)02#('/5>()"#(02#+(5/6#5>#"(&*(5>#(V.4(-"/L#158(

@8!&$"%!B%-A)!%()8-*"'R!&$)!G"'9-&"'8!'((B*%!6)&;))8!&$)!&;'!/).)8/)8(")%4!<*&"%&"(!V!(-88'&!6)!

B%)/!;"&$"8!<.-($)!S!('/)4!?$)8!&$)!0=J!.*'\)(&!"%!('>."9)/!-8/!*B8R!%'!-*)!"&%!/).)8/)8(")%!

 59

which would then mean the resultant binary contains code from all three projects. Thus a Type 3

violation would occur.

In conclusion, even though the evidence for Type 3 violations in this study is might seem

unconvincing, there remains a convincing argument and strong possibility that such violations do

occur. The situation is more complicated than what is currently modelled in our ontology.

Presently, Oswaldo only models six out of twenty-one most-popular open source licenses, and thus

may be missing pertinent incompatible license relationships. This expansion of the ontology and

further investigation is left to future research.

5.1.6 Evaluating Actual (and Notional) License Violations

In order to further explore our primary research statement, we must investigate if the found

violations are indeed actual violations. We conduct this investigation while keeping in mind that

ultimately the final decision of any violation discussed here will be left to lawyers specializing in

copyright violations and the courts. There are multiple facets to an actual violation result. The first

is the definition of a violation. And the second facet is the structure of the violation itself.

Creating a definition of a violation is not a simple task either. Each license may define exactly

what this term means in its context. Thus, one must investigate various licenses and their detailed

terms and conditions. Hereto (with respect to bundling and importing code between

heterogeneously-licensed projects) we explore what constitutes a violation in the GPL, LGPL, and

MPL.

For the GPL, the book Understanding Open Source and Free Software Licensing delves into the

specifics of a violation: “Accordingly, if the other program were licensed under a proprietary

license and the library under the GPL and the program and library were distributed together under

the proprietary license, the GPL would be violated, as the program plus library would be

considered a derivative work that would be subject to limitations on copying, distribution, and

modification that are inconsistent with the GPL.” Furthermore, “the use of a GPL-licensed

program with a proprietary-licensed library (or any other program, whether under a proprietary

license or some other non-GPL license) is not a violation of the GPL license. Rather, the GPL

 60

license comes into play only when the GPL-licensed software is copied, distributed, or modified—

none of which is implicated by the simple use of the software [17].” Essentially the question of

committing a violation boils down to whether a derivative work is created or not, when combining

dependencies into a new project.

The LGPL states: “the object code form of an Application may incorporate material from a

header file that is part of the Library. You may convey such object code under terms of your

choice, provided that, … you do both of the following: a) Give prominent notice with each copy

of the object … b) Accompany the object code with a copy of the GNU GPL and this license

document [65].” Put simply, in order to comply with the LGPL, the software developer needs to

make a bundle of two things: the project binary and the source code from the LGPL library (which

includes the LGPL license file). This is a fairly easy requirement to spot and fulfill when one has

a Type 1 Simple dependency. However, when one has to deal with a Type 2 Embedded dependency

this task becomes inherently more difficult. For example, the intermediary dependency may not

require the propagation of source code, but the top-most dependency may require propagation.

Since one inherently uses the top-most dependency through the use of the intermediary

dependency, one would cause a violation if one does not end up distributing the source code to the

top-most library. Since the decision was taken to mark the LGPL as compatible with various

licenses in Oswaldo (as described previously), the number of found violations is likely

underrepresented. This supposition is due to the fact that linking information (i.e. statically or

dynamically linked dependencies) are currently not modelled.

The MPL has a subtly different definition of a violation, because the MPL has different

requirements for non-MPL-licensed juxtaposed code. The MPL 2 states in Section 3.3 Distribution

of a Larger Work: “If the Larger Work is a combination of [MPL-]Covered Software with a work

governed by one or more Secondary Licenses, and the Covered Software is not Incompatible With

Secondary Licenses, this License permits You to additionally distribute such Covered Software

under the terms of such Secondary License(s), so that the recipient of the Larger Work may, at

their option, further distribute the Covered Software under the terms of either this License or such

Secondary License(s) [63].” Therefore, one is allowed to mix (copy and paste) an MPL-licensed

file into a project under another license (provided both licenses’ terms can be satisfied

 61

simultaneously). The resulting binary of this work can then be distributed under either license.

Thus, a violation would only occur if: 1. The other license was known to be incompatible, 2. Some

condition of the MPL was not followed i.e. the copyright notice was removed from the MPL-

licensed file. The key difference to bear in mind here is that MPL violations deriving from multi-

licensed projects are file-based unlike the GPL and LGPL that are project-based.

Now that the detailed terms and conditions of licenses have been examined to determine the

veracity of a violation, let us conclude that all three licenses (GPL, LGPL, MPL) clearly show that

they can be violated when improperly combining projects together. Even though many licenses

have detailed conditions for multi-project use cases, the ultimate judgement on whether an actual

violation has occurred, is the decision of a lawyer or judge.

5.1.6.1 Notional Example

Next, we explore the detailed structure of the projects which make up a transitive violation by

meticulously cloning each project repository (and each of its dependencies) to determine if indeed

an actual violation has occurred. Specifically, the way the linking of projects is structured. We

start off with a found Type 2 example of EPL 1 	 Apache 2 	GPL 3.

Oswaldo found the following potential violation:

Project 1: Aether Util
http://aseg.cs.concordia.ca/segps/ontologies/domain-
specific/2015/02/build.owl#org.eclipse.aether:aether-util:1.0.2.v20150114

↓
Project 2: Maven Aether Provider
http://aseg.cs.concordia.ca/segps/ontologies/domain-
specific/2015/02/build.owl#org.apache.maven:maven-aether-provider:3.3.9

↓
Project 3: Office Floor Extras Feature
http://aseg.cs.concordia.ca/segps/ontologies/domain-
specific/2015/02/build.owl#net.officefloor.eclipse:net.officefloor.extras.feature:2
.18.0

A manual inspection of the Extras Feature project did not reveal any import statements in the Java

code that linked to the Maven Aether Provider project. Furthermore, many of the other Office

 62

Floor projects (58 other projects in total) were reported as potential violations. A subset of such

projects were:

• net.officefloor.core:officeframe

• net.officefloor.ui

• net.officefloor.woof.feature

• net.officefloor.plugin:officeplugin_base

• net.officefloor.core:officebuilding

After extensive additional manual investigation of multiple Java files in multiple projects which

resulted in no concrete link found, the veracity of the POM file came into question. In fact,

scrutinizing the POM files showed that they inherit dependencies from their parent POM files. To

conclude, all 58 of these Office Floor subprojects have to therefore be excluded from the results.

5.1.6.2 Actual Example

Alongside the 58 subprojects, Oswaldo found one more potential violation of Type 2: EPL 1 	

Apache 2 	 GPL 3, where the first project cannot be used in the third project.

Project 1: Aether Util
http://aseg.cs.concordia.ca/segps/ontologies/domain-
specific/2015/02/build.owl#org.eclipse.aether:aether-util:1.0.2.v20150114

↓
Project 2: Maven Aether Provider
http://aseg.cs.concordia.ca/segps/ontologies/domain-
specific/2015/02/build.owl#org.apache.maven:maven-aether-provider:3.3.9

↓
Project 3: Office Floor
http://aseg.cs.concordia.ca/segps/ontologies/domain-
specific/2015/02/build.owl#net.officefloor:officefloor:2.18.0

(N.B. Project 3 is the parent project of the 58 subprojects!)

In order to validate that all three projects are linked through import statements, we must:

• identify the use of project 2 (from project 3),

• identify the use of project 1 (from project 2).

h]

?)! 6)A-8! 6,! %(*B&"8"Y"8A! &$)! :++"()! 59''*! .*'\)(&4! :B*! -8-9,%"%! %$';)/! &$-&! &$)! +"9)!

�������������������������!;$"($!">.'*&%!&$)!+"9)!��������������������������!'8!9"8)!]]4!

!

!&60"#(̀8a(Q<)22C)5>!)15/"=W;-<8L)G)(/E(5>#(-"/L#15(,EE&1#(!<//"F(G#"2&/*(@87c8g8(

<%!.-*&!'+!&$)!-8-9,%"%R!-!A*).!%)-*($!;-%!.)*+'*>)/!&'!9'(-&)!&$)!">.'*&!+"9)!"8!&$)! -̂G)8!<)&$)*!

M*'G"/)*!.*'\)(&!̀%&-&)>)8&!á]]R!$"A$9"A$&)/!"8!5"AB*)!k4ha4!

hj

!

!&60"#(̀8b(N)G#*T#-/2&5/"=.=25#;f5&<28L)G)(/E(5>#(-"/L#15(N)G#*(9#5>#"(C"/G&+#"F(G#"2&/*(

D8D8[8(

2'8&"8B"8A!&$)!"8G)%&"A-&"'8!&$*'BA$!&$)!/).)8/)8(,!$")*-*($,!&'!G)*"+,!&$)!9"()8%)!G"'9-&"'8R!;)!

%)-*($!"8!&$)!\B%&!+'B8/!�������������������������������!+"9)!̀5"AB*)!k4la!'+!&$)! -̂G)8!<)&$)*!

M*'G"/)*! .*'\)(&! -8/! "/)8&"+,! &$)! ">.'*&! %&-&)>)8&! '8! 9"8)!]k! .'"8&"8A! &'!

���������������������������!'+!&$)!<)&$)*!F&"9!.*'\)(&!̀5"AB*)!k4Wa4!!

hk

!

!&60"#(8̀c(4#E)0<59"5&E)15A=-#T#6&25"=8L)G)(/E(5>#(-"/L#15(9#5>#"(f5&<F(G#"2&/*(

78g8@8G@g7̀g77Y8(

?)!$-G)!%$';8!&$-&!-99!&$*))!.*'\)(&%!-*)!"8/))/!B%)/!&'A)&$)*!-%!+'B8/!6,!:%;-9/'4!<!#,.)!S!

G"'9-&"'8!'((B*%!6)(-B%)!'+!-8!"8('>.-&"6"9"&,!6)&;))8!&$)!&'.[>'%&!̀M*'\)(&!Va!-8/!&$)!6'&&'>[

>'%&!.*'\)(&!̀M*'\)(&!]aR!&$*'BA$!-8!"8&)*>)/"-*,!.*'\)(&!̀M*'\)(&!Sa4!@8!&$"%!G"'9-&"'8Z%!(-%)R!;)!

$-G)!&$)!7MC!V!&$-&!"%!"**)('8("9-69)!;"&$!&$)!LMC!]4!:8!&$)!LMC[('>.-&"69)!9"()8%)!9"%&!;)6.-A)R!

&$)!7MC!)8&*,!%&-&)%1!p#$)!7(9".%)!MB69"(!C"()8%)!"%!%">"9-*!&'!&$)!2'>>'8!MB69"(!C"()8%)R!-8/!

'B*!('>>)8&%!'8!&$)!2MC!-..9,!)EB-99,!&'!&$)!7MC!t]Wu4q!#$)!2MC!)8&*,!%-,%!B8)EB"G'(-99,1!

p#$"%!"%!-!+*))!%'+&;-*)!9"()8%)4!F8+'*&B8-&)9,R!"&%!;)-P!('.,9)+&!-8/!($'"()!'+!9-;!(9-B%)!>-P)!"&!

"8('>.-&"69)!;"&$!&$)!LoF!LMC!t]Wu4q!#$-&!(9)-*9,!%&-&)%!&$-&!&$)!7MC!V!"%!8'&!('>.-&"69)!;"&$!

&$)!LMC!]4!#$B%R!;)!(-8!('8(9B/)!&$-&!&$"%!"%!-!('8+"*>)/!G"'9-&"'8!%B*+-()/!6,!:%;-9/'4!

 66

5.1.6.3 Frequency of Violation Types Reconsidered

The following table is presented again with updated totals, taking into account some of the

complexities discussed above. As each of the found license combinations were examined with

some combinations suspected to likely not be license violations, these were subtracted from the

totals as noted in the following paragraphs.

Table 5.2 Total number of violations revisited.

 Original Revised
Type 1 Simple Violations 131 996 131 996
Type 2 Embedded Violations 288 153 281 744
Type 3 Compound Violations 654 964 921

As our definition of compatible already makes an exception for the LGPL, the number of Type 1

Simple Violations do not need to be adjusted.

The amount of Type 2 violations was amended to specifically exclude the triple Apache 1.1 	

Apache 2 	 GPL 3 because this is a likely a case of the Apache licence being upgraded to version

2 and thus removes the conflict. A second triple was removed of GPL 3 	 LGPL 3 	 Apache 2 due

to the likelihood of being dynamically linked.

Type 3 violations were retallied by excluding any triples with any version of the LGPL (because

the primary use-case is meant for dynamic linking) and any triples where a weak copyleft

dependency is relicensed under a strong copyleft that then makes the code compatible. To be clear,

the following triples were kept:

• Apache 1.1 + MPL 1.1 	 Apache 2

• Apache 2 + MPL 1.1 	 MPL 2

• Apache 2 + MPL 1 	 MPL 2

• Apache 1.1 + MPL 1 	 Apache 2

 67

Now we can revisit the secondary research statement is:

Furthermore, we expect that the most common type of violation will be a directly

dependent Type 1 Simple Violation, the second most common a transitive Type 2

Embedded, and the third a transitive Type 3 Compound Violation.

Accordingly, we conclude that the secondary research statement is false. Indeed, Type 2

Embedded Violations are the most common, followed by Type 1 Simple Violations, followed by

Type 3 Compound Violations.

5.1.7 Findings

Based on the three license-specific definitions and project structures discussed and explored

previously, do transitive violations actually exist? Yes, our evaluation of Maven clearly shows that

transitive violations do exist.

We observed a large number of Type 1 Simple Violations (over 130k). Given that even the most

straightforward relationship type (a direct one-to-one relationship) resulted in license violations,

this may indicate that there exists a large knowledge gap of — or worse, a blatant disregard for —

FLOSS licenses and their inter-usage. Also of note, is that even though the total number of Type

1 Simple Violations is less than the number of transitive violations, there is more difference and

variety in the licenses involved in a violation. This may be because using two licenses together is

more common than using three together. It may also be due to the fact that Oswaldo currently

models only a subset (6 of 21 licenses) of unidirectional compatibility.

An even larger amount of Type 2 Embedded Violations was found (over 281k). The fact that there

is an even larger number, and this transitive violation type has never been considered before, is

intriguing. Transitive violations are indeed a problem in the software development community,

overlooked until now. This is most likely due to the time-intensive process to check all

dependencies (and all of the dependencies’ dependencies) through import statements or package

managers for compatibility between various licenses. And since having never been considered

 68

before, there is less of a user awareness of what constitutes transitive violations, making it difficult

to check for and resolve a problem that one did not know existed.

The results for Type 3 Compound Violations were more intricate, and thus many results were

excluded resulting in only 921 triples. Further complicating the situation of Type 3 violations is

that for the modelled licenses, without the direct input of a copyright lawyer, these rules can just

not be defined well enough with respect to differing linking definitions between various licenses

as well as subsumption and relicensing clauses. However, a concrete triple was thoroughly

explored which shows that a Type 3 violation can indeed exist.

5.1.8 Threats to Validity

In what follows, we discuss some potential threats to validity for our research and the experiments

conducted.

We have searched extensively and made strenuous effort to ensure the “compatibleWith”

relationship in the ontology is correct, however this is not legal advice and any liability of the reuse

of these relationships rests upon the developer reusing them. In future, this research would benefit

from a review and approval from multiple legal counsel familiar with copyright laws worldwide.

Only a very limited number of license violations are currently modelled in Oswaldo’s ontology.

By extending the ontology model, the chances to potentially identify extended violations will

increase. In order to find all possible violations, 882 compatibility relationships would need to be

defined since there are 21 licenses (including each license version). That is, there is a 21 by 21

matrix, equalling 441 relationships. Yet compatibility is not bidirectional but unidirectional. Thus,

the amount is doubled to 882. Still, this number could be much larger if more than the 21 major

licenses (and license versions) were added to the ontology.

We assume the license information from Maven to be accurate (which, as shown with the notional

example, is not always the case). A POM file assumes that all files in one project are licensed the

same, thus the granularity of the license information is project-level. In fact, some variance in style

occurs on how developers mark that a project is released under a certain license. Sometimes the

 69

developer puts a “LICENSE.txt” file in the root directory of the repository, thus all the files in the

repo are supposedly released under that one license. However, another style exists where the

license is copied and pasted at the top of each source file. This can be one example of a project

having multiple licenses. We are assuming Maven’s data is correct. We also do not address the

complications of projects that are dual- or tri-licensed. For example, Mozilla tri-licensed the

popular Firefox web browser (under MPL 1.1, LGPL 2.1, GPL 2) for a number of years to make

the project compatible with the GPL and LGPL, for the benefit of GNU and Linux users before

they created the MPL version 2 (which is now compatible with the GPL license family) [66], [67].

5.1.9 Evaluation Summary

As our evaluation shows, Oswaldo can detect many violations that were previously not considered

by the research community (Type 2 and Type 3 violations). Violation types were defined and

searched for in the Maven data set which contains hundreds of thousands of projects (371 262

total). Two of the three types of violations were found and expanded upon. The third type was

expanded upon on as well. The first directly dependent type (where one project is imported into

another) was defined as a Type 1 Simple Violation. 131 996 of these license violations were found.

The second transitive type is a Type 2 Embedded Violation, where ultimately 281 744 of these

violations were observed by Oswaldo. In evaluating some of the Type 2 results were discarded

due to inconsistencies in Maven’s POM.xml files (Project Object Model). We ascertained a

project’s POM file would inherit the dependencies of its parent POM file. (Which we later showed,

the parent project did contain an actual violation.) The third type of license violation was classified

as a Type 3 Compound Violation. In the end, there were 921 Type 3 violations, after setting aside

results due to critical evaluation including: differences in how various licenses permit static and

dynamic linking, and the ontology currently models compatibility relationships between six of

twenty-one most-popular open source licenses due to lack of verifiable information from legal

professionals. Overall, both direct and transitive violations were shown to be a problem in current

open source projects.

 70

Chapter 6

6.1 Related Work

First, we briefly review code clones as they are the finest granularity of code reuse. Finally, we

move onto currently defined license violations and detection techniques.

6.1.1 Code Clone Detection

Using code clones to detect small-scale license violations were touched upon by Monden et al.

[68] Three quality metrics for code clone detection were compared and contrasted: 1. MLC:

maximum length of clones, 2. NCP: number of clone pairs, and 3. LSim: clone-based local

similarity (“the percentage of duplication within a suspicious pair”). MLC and LSim were found

to be the most effect measures for judging the quality of clones found by the existing CCFinderX

tool. These two measures were then combined and evaluated for an even higher level of accuracy.

Disappointingly, the authors did not find any actual license violations in OSS. License violations

were merely used as a theoretical use case for their comparison study.

The Binary Analysis Tool (BAT) developed by Hemel et al. [10] employs three different

techniques to detect code clones of OSS in proprietary binaries for the express purpose of finding

violations of popular GPL projects. The authors used the comparison of string literals, data

compression, and binary deltas. String literals are searched for using GNU strings tool, and then

they are ranked based on likelihood of being a code clone. Data compression was used to reveal

code clones by the following logic. Both the proprietary binary in question and the precompiled

OSS binary are concatenated together and compressed into one file. At the same time, the size of

the compressed proprietary binary plus the size of the compressed open source binary (two separate

files, as opposed to one file) is calculated. If the total size of the first combined compressed file is

substantially smaller than the size of the summation of the second separate files, then this is a

likely indication of redundancy, and thus code cloning. In a similar manner to data compression,

the size of a binary delta is computed to determine code clones. A delta (also known as a diff or

patch) is made from the proprietary binary to the open source binary. If the delta is substantially

 71

smaller than the open source binary, then this is likely evidence of a code clone. There are various

limitations to all three approaches, such as false positives of string literal matches from other

packages, small binaries are not suitable for data compression, binary delta and data compression

methods are architecture dependent, and require precompiled open source binaries, etc.

Interestingly BAT does find many true code clones, but falls short by leaving the verification as a

manual process, i.e. whether a code clone is also a license violation.

6.1.2 License Violation Detection Tools and Approaches

Di Penta, German, Guéhéneuc, and Antoniol conducted a study on the evolution of software

licenses [69]. Six open source projects were focused on: ArgoUML, Eclipse-JDT, FreeBSD kernel,

Mozilla Suite, OpenBSD kernel, and Samba. The authors also proposed “an approach to

automatically track the licensing evolution of systems, identifying changes in licenses and

copyright years.” The method consisted of 1. extracting the licensing statements from the

comments at the top of each file, 2. using the diffs from the version control system to find when

those lines changed, 3. using the license detection tool FOSSology [7] to classify the license, and

4. extracting and identifying any changes in the copyright years. They found that OSS projects do

change licenses over time and these changes were not just to new versions of the existing license.

i.e. “from one license to another, license additions, e.g., files without license were updated with a

license, and license modifications.” Sometimes projects who switched licenses altogether had

intended and unintended effects on downstream users of these projects.

In relation to this dissertation, seminal research was conducted in 2010 and entitled, “License

Integration Patterns: Addressing License Mismatches in Component-Based Development” [22].

The use of two or more software components with differing license terms was explored by Daniel

German and Ahmed Hassan at the University of Victoria and Queen’s University. They introduced

this concept as the “license-mismatch problem” which is analogous to this dissertation’s

terminology of license incompatibility or violation. The authors created a “model to describe

licenses, and the implications of licenses on the reuse of components.” This model describes what

usage scenarios result in a derived work or not, those being: 1. Linking, 2. Fork, 3. Subclass, 4.

Intercommunication Protocol 5. Plugin. Interestingly, the authors briefly model the open source

licenses using a graph: each software application is a node, and each component (dependency) is

lS

-!8'/)R!;"&$!)/A)%!9"8P"8A!&$)!&;'4!#;)9G)!.-&&)*8%!&'!*)%'9G)!'*!("*(B>G)8&!&$)!.*'69)>!'+!9"()8%)!

"8('>.-&"6"9"&,!;)*)!/)%(*"6)/!+'*!&$)!9"()8%'*!-8/!9"()8%))!-%!'B&9"8)/!"8!5"AB*)!h4V4!

!&60"#(a87(W+#*5&E&#+(-)55#"*2(5/()++"#22(5>#(<&1#*2#\;&2;)51>(-"/'<#;(R@@S8(

#$)! -B&$'*%! &$)8! /"%(B%%)/! "8! /)&-"9! +'B*! '+! &$'%)! .-&&)*8%! "8(9B/"8A! &$)! "8&)8&R! >'&"G-&"'8R!

-..9"(-6"9"&,R! -/G-8&-A)%R! /"%-/G-8&-A)%R! -8/! P8';8! B%)%4! =-/9,! &$)! p>'/)9q! &$)! -B&$'*%!

/)G)9'.)/!"%!>)*)9,!.*)/"(-&)!(-9(B9B%!̀+"*%&['*/)*!9'A"(a!-8/!8'&!-8!-B&'>-&)/!%,%&)>!8'*!)-%"9,!

-(()%%"69)!&'!9-,.)*%'8%4!̀<!9"&&9)!.''*9,R!&$)!-B&$'*%!;)*)!9-H!"8!&$)!B%)!'+!&$)"*!9-8AB-A)!-8/!

('8+'B8/! ('.,*"A$&! 9-;! -8/! .-&)8&! 9-;! "8! &$)! "8&*'/B(&'*,! %)(&"'8%4a! #$)! +B&B*)! ;'*P! %)(&"'8!

9)-G)%!>B($!&'!6)!/)%"*)/!6)(-B%)!"&!/')%!8'&!(9)-*9,!'B&9"8)!/"*)(&"'8%!+'*;-*/4!!

"̂(*'%'+&! O)%)-*($! @8/"-! -8/! &$)! o-&"'8-9! @8%&"&B&)! '+! #)($8'9'A,! g-*8-&-P-! .B69"%$)/! p<8!

7>."*"(-9!=&B/,!'+!C"()8%)!D"'9-&"'8%!"8!:.)8!='B*()!M*'\)(&%q!"8!SUVS!tlUu4!F%"8A!&$)!8';[

/)+B8(&!L''A9)!2'/)!.*'\)(&!$'%&"8AR!VjS]!.*'\)(&%!;)*)!-8-9,Y)/4!p?)!'6%)*G)/!-!9-(P!'+!.*'.)*!

B%)! '+! &$)! -(().&'*! 9"()8%)! "8!]! 'B&! '+! &$)! j! (-%)%! '+! G"'9-&"'8%Rq! 8'&"8A! &$-&! &$)! /';8%&*)->!

/)G)9'.)*!;-%!&$)!%'B*()!'+!&$)!+-B9&4!?$)8!('>.-*"8A!.*'\)(&!-(&"G"&,!̀$';!-(&"G)9,!>-"8&-"8)/!

 73

a project is) with code reuse, the authors found that “projects that were actively developed and

updated were reused more frequently and this is true for both corporate firms, as well as the open

source world.”

As recently as 2015, research has been conducted by Wu et al. [71] on the evolution of the licenses

specified in the header of each file, with the explicit goal of finding license inconsistencies. They

categorize the evolution of licenses as a license addition/removal, upgrade/downgrade, or change.

These categorizations are then used to judge whether the new modification/evolution of the license

results in an inconsistency. The authors used a series of tools (CCFinder [72] and Ninka [8]) to

identify code clones and licenses. They found that 7.2 percent of file groups “contain one or more

license inconsistencies.” Notably the authors remark, “It is not a trivial task to find the repositories

of these upstream projects.”

In 2016, the SWAT–SOCCER Labs at Polytechnique Montréal published the paper “On the

Detection of Licenses Violations in the Android Ecosystem.” The group found that the most

common licenses used for project releases were: GPL 3 (35%), Apache 2 (24%), and MIT (12%).

“Out of the 857 studied apps, we found 17 apps with clear license violations.” Most of these

violations were the result of the GPL and another license conflicting. Interestingly, “licenses

violations persist through multiple releases of the apps before they are eventually resolved,” which

took “19 releases [on] average” to fix [73].

“Automating the license compatibility process in open source software with SPDX” was published

in 2017 by Kapitsaki el al. [13] The authors created SPDX Violation Tools to assist in the detection

of license compatibility issues using a tool that looks at Software Package Data Exchange (SPDX)

files of various projects. They devised a compatibility algorithm to surface license violations,

which employed a directed acyclic (hierarchical) license compatibility graph. The algorithm

traversed the graph to compare the licenses in use in a given project and dependencies. This

approach is a rather precarious choice because license compatibility is not strictly hierarchical

(although the authors did make some concessions for this fact) nor solely acyclic. For example,

two licenses can be mutually compatible with one another. Sadly, the results found showed that “a

 74

significant number of projects contain violations (11 out of 20 packages or 55%)” which included

such popular projects as Hadoop, FileZilla, HandBrake.

 75

Chapter 7

7.1 Conclusion

This research investigated the juncture between the fields of law and Software Engineering with a

specific focus on incompatibilities between various Free/Libre and Open Source Licenses. License

Violations are defined as the misuse of two or more licenses, where one (or more) license

conditions disallow this combination. This study went beyond existing research to merely finding

a new technique to detect license violations, and considered for the first time new transitive types

of incompatibilities. License compatibility is widely misunderstood and poorly named as

compatibility is unidirectional — that is not always reversible. To help alleviate this difficulty,

three specific types of violations were outlined: Type 1 Simple Violations, Type 2 Embedded

Transitive Violations, Type 3 Compound Transitive Violations. Concrete examples of Types 1 and

2 were found and analyzed.

A total of 131 996 Type 1 Simple Violations were found, and of those, the most prevalent pairing

was Apache 2 	 GPL 2 with 65 105 examples discovered (49%). Embedded Transitive Violations

were numerous with 281 744 found, and of those, the most common triple was EPL 1 	 Apache 2

	 GPL 3 with 254 447 examples (90%). Type 3 Compound Transitive Violations were critically

examined and the found results were discussed due to the complexities of license terms in the

found triples, however, a concrete example was outlined and expanding the license compatibility

ontology is needed.

The primary research statement of this dissertation has been fulfilled; we were able to show that

Oswaldo can detect license violations of both direct and transitive types using a flexible and

extensible approach. However, the second research statement — set to determine which violation

type is the most occurrent in the wild, and thus the most problematic — cannot truly be analyzed

because of the lack of acceptable results for Type 3. With that said, Type 2 Embedded Transitive

violations are indeed more numerous and widespread than classical Type 1 Simple Violations.

 76

Nevertheless, both simple and transitive violations were shown to be a current problem in FLOSS.

The detection of these violations is useful for software developers who use diversely-licensed

software and may want to detect violations after-the-fact, legal counsel who create proactive

guidelines for groups and organizations, as well as researchers interested in the interplay and

incompatibility of open source licenses in use in the community on an internet scale. This research

has contributed a novel technique to detect license violations and uniquely expanded upon the

problem of license incompatibility by introducing transitive violations and exploring their

attributes in thousands of open source projects.

Overall, given the reality that Free/Libre and Open Source Software is not going away anytime

soon. Its legal complexities are something to contend with, yet manageable with proper tools and

processes. When Richard Stallman, the creator of FLOSS, spoke at a conference in Montréal in

2017 [74], he argued that FLOSS should be used as a check-and-balance — a tool — to counter

an overreaching state or wayward enterprise akin to how functional democracies view freedom of

the press and their role in keeping politicians and powerful societal actors honest, held accountable,

or at the very least, equipping the public to make informed decisions. This idea of open source as

a check-and-balance has previously been dismissed as an example of Richard Stallman’s eccentric

frivolity. But recent events where professional journalists revealed that Uber programmed their

mobile app to act in very dubious and unlawful ways [75], [76], have given more weight and

relevance of his ideas. Viewable and modifiable source code, which is not at all incompatible with

many tech companies’ business plans, could be such a safeguard for the future.

7.2 Future Work

First, Oswaldo only modelled six out of twenty-one most-popular open source licenses, and thus

may be missing pertinent incompatible license relationships. This expansion of the ontology and

further investigation is left to future researchers.

Oswaldo, as a tool, could be further automated. For example, constantly scan the Maven data set

for updates and incrementally update the triplestore with new facts. (This could be accomplished

with SWRL rules, but as mentioned previously, Virtuoso Server does not support this feature.)

 77

Additional work could then be done to use the twelve patterns from German & Hassan [22] to

suggest ways to resolve these license violations.

The ontology in Oswaldo simplifies the relationship between two licenses down to a binary:

compatible or incompatible. This was done to capture the most common usage scenario for a

developer; using a dependency in a project and then distributing and running said project. An open

source license has many grants, and not every developer uses the source code in the same way. In

future, our ontology should be further developed to express compatibility/incompatibility for the

five use cases outlined previously: 1. Linking, 2. Fork, 3. Subclass, 4. Intercommunication

Protocol, 5. Plugin [22], as well as expanded for other common license grants, e.g. source code is

publicly available, or license is distributed alongside the product [27].

This expansion would alleviate the problem with our current definition of “compatibleWith.”

Currently, the LGPL is “compatibleWith” another license if the use case is restricted to linking

only. The definition used in this thesis may then miss some violations of the LGPL terms.

Recently, a license violation metric was developed as part of a trustworthy measure of software

projects combining this research along with my labmates’ research on bug and security

vulnerability prevalence as well as software build systems [46]. The goal of such a metric is to

help programmers choose a trustworthy dependency among many options.

No detailed survey has been conducted of the developer community regarding ‘FLOSS literacy.’

First a definition of FLOSS literacy would need to be outlined, such as how much a programmer

knows: about the proper use of licenses; what are the defining principles of FLOSS, and what are

the common basic requirements of FLOSS reuse. From casual conversations with fellow

developers in my professional life, I have heard various myths and misunderstandings regarding

FLOSS and licenses. It is a complex topic not easily distilled and disseminated throughout various

communities (e.g. new graduates or seasoned developers using the GPL, or bloggers using

Creative Commons). A survey should be devised to measure how ‘literate’ a person is, and further

elaborated into how literate various groups are. Based on these results more concerted efforts can

 78

be directed toward educating these individuals and communities, thus reducing license violations

as well as generally promoting FLOSS.

In a certain light, this dissertation is a small admission that our self-made systems are somewhat

irrational and do not necessarily match initial — nor evolving — intentions. Recent work by An

et el. [3] has investigated the use of code snippets from Stack Overflow in open source Android

projects. Such research is interesting as an intellectual pursuit but does nothing to change the status

quo. Developers will continue to post snippets online intended to be unreservedly reused and other

developers will continue to employ those fragments in their projects. These developers will do so

being fully conscious that they are not adhering to the licensing conditions, but are most probably

adhering to the original intent of posting source code online; to share and share alike. As an aside,

I personally would love to see Stack Overflow change their policy for source code posted on their

site to be free of any restrictions whatsoever (be that a dedication to the public domain, where

applicable, or use of the so-called “Unlicense” [77]). Stack Overflow is likely hesitant to change

their policy because of many copycat sites reusing their content for ad views, as well as the concern

over their ranking of search results, if other sites reuse the same content. Similarly, this research

does not affect the status quo currently. It is up to developers to fix their own mistakes. The old

adage comes to mind: “you can lead a horse to water, but you can't make it drink.” This fixing

must be undertaken by the community in future.

 79

7.3 Publications

Ellis Eghan, Sultan Alqahtani, Christopher Forbes, and Juergen Rilling, “API Trustworthiness:

An Ontological Approach for Software Library Adoption,” 26th Software Quality Journal

(SQJ) on Trustworthy Systems and Software, 2018 (accepted).

Iman Keivanloo, Christopher Forbes, Aseel Hmood, Mostafa Erfani, Christopher Neal, George

Peristerakis, and Juergen Rilling, “A Linked Data Platform for Mining Software Repositories,”

9th Working Conference on Mining Software Repositories (MSR), 2012.

Iman Keivanloo, Christopher Forbes, and Juergen Rilling, “Similarity Search Plug-in: Clone

Detection Meets Internet-scale Code Search,” 4th ICSE Workshop on Search-Driven

Development: Users, Infrastructure, Tools and Evaluation (SUITE), 2012.

Christopher Forbes, Iman Keivanloo, and Juergen Rilling, “When Open Source Turns Cold on

Innovation — The Challenges of Navigating Licensing Complexities in New Research

Domains,” 34th International Conference on Software Engineering (ICSE), Poster Track, 2012.

Christopher Forbes, Iman Keivanloo, and Juergen Rilling, “Doppel-Code: A Clone Visualization

Tool for Prioritizing Global and Local Clone Impacts,” 36th IEEE International Computer

Software and Applications Conference (COMPSAC), 2012.

Iman Keivanloo, Christopher Forbes, Juergen Rilling, and Philippe Charland, “Towards Sharing

Source Code Facts Using Linked Data,” 3rd ICSE Workshop on Search-Driven Development:

Users, Infrastructure, Tools and Evaluation (SUITE), 2011.

 80

7.4 Bibliography

[1] R. Pressman, Software Engineering: A Practitioner's Approach, New York, NY: McGraw-

Hill, 2010.

[2] M. J. Hawthorne and D. E. Perry, "Software Engineering Education in the Era of

Outsourcing, Distributed Development, and Open Source Software: Challenges and

Opportunities," in 27th International Conference on Software Engineering, Saint Louis, MO,

USA, 2005.

[3] L. An, O. Mlouki, F. Khomh and G. Antoniol, "Stack Overflow: A Code Laundering

Platform?," in International Conference on Software Analysis, Evolution, and

Reengineering, Klagenfurt, Austria, 2017.

[4] S. Weber, The Success of Open Source, Cambridge, MA, USA: Harvard University Press,

2004.

[5] Free Software Foundation, "Violations of the GNU Licenses," Free Software Foundation, 2

March 2017. [Online]. Available: https://www.gnu.org/licenses/gpl-violation.en.html.

[Accessed 2 June 2017].

[6] Software Freedom Law Center, "BusyBox Developers Agree to End GPL Lawsuit Against

Verizon," Software Freedom Law Center, 17 March 2008. [Online]. Available:

https://www.softwarefreedom.org/news/2008/mar/17/busybox-verizon/. [Accessed 19 June

2017].

[7] R. Gobeille, "The FOSSology Project," in International Working Conference on Mining

Software Repositories , Leipzig, Germany, 2008.

[8] D. M. German, Y. Manabe and K. Inoue, "A Sentence-matching Method for Automatic

License Identification of Source Code Files," in International Conference on Automated

Software Engineering, Antwerp, Belgium, 2010.

[9] G. M. Kapitsaki, N. D. Tselikas and I. E. Foukarakis, "An Insight into License Tools for

Open Source Software Systems," The Journal of Systems and Software, vol. 102, pp. 72-87,

2015.

 81

[10] H. Armijn, K. Trygve Kalleberg, R. Vermaas and E. Dolstra, "Finding Software License

Violations Through Binary Code Clone Detection," International Working Conference on

Mining Software Repositories, May 2011.

[11] B. Smith, "FSF Settles Suit Against Cisco," Free Software Foundation, 20 May 2009.

[Online]. Available: https://www.fsf.org/news/2009-05-cisco-settlement.html. [Accessed 19

June 2017].

[12] J. Brodkin, "VMware alleged to have violated Linux’s open source license for years," Ars

Technica, 6 March 2015. [Online]. Available: https://arstechnica.com/tech-

policy/2015/03/vmware-alleged-to-have-violated-linuxs-open-source-license-for-years/.

[Accessed 19 June 2017].

[13] G. M. Kapitsaki, F. Kramer and N. D. Tselikas, "Automating the License Compatibility

Process in Open Source Software with SPDX," Journal of Systems and Software, vol. 131,

pp. 386-401, 2017.

[14] I. Keivanloo, C. Forbes and J. Rilling, "Towards Sharing Source Code Facts Using Linked

Data," in International Workshop on Search-Driven Development: Users, Infrastructure,

Tools, and Evaluation, Waikiki, USA, 2011.

[15] C. Forbes, I. Keivanloo and J. Rilling, "Doppel-Code: A Clone Visualization Tool for

Prioritizing Global and Local Clone Impacts," in International Conference on Computer

Software and Applications, Izmir, Turkey, 2012.

[16] C. Forbes, I. Keivanloo and J. Rilling, "When Open Source Turns Cold on Innovation - The

Challenges of Navigating Licensing Complexities in New Research Domains," in

International Conference on Software Engineering (ICSE), Zürich, Switzerland, 2012.

[17] A. M. St. Laurent, Understanding Open Source and Free Software Licensing, Sebastopol,

California: O’Reilly Media, 2004.

[18] P. Miller, R. Styles and T. Heath, "Open Data Commons, A License for Open Data," in

Workshop on Linked Data on the Web (LDOW), Beijing, China, 2008.

[19] I. Keivanloo, C. Forbes and J. Rilling, "Similarity Search Plug-in: Clone Detection Meets

Internet-scale Code Search," in ICSE Workshop on Search-Driven Development - Users,

Infrastructure, Tools and Evaluation, Zurich, Switzerland, 2012.

 82

[20] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis and J. Rilling, "A

Linked Data Platform for Mining Software Repositories," in International Conference on

Mining Software Repositories (MSR), Zurich, Switzerland, 2012.

[21] Software Freedom Law Center, "Best Buy, Samsung, Westinghouse, And Eleven Other

Brands Named In SFLC Lawsuit," Software Freedom Law Center, 14 December 2009.

[Online]. Available: https://www.softwarefreedom.org/news/2009/dec/14/busybox-gpl-

lawsuit/. [Accessed 2 July 2017].

[22] D. M. German and A. E. Hassan, "License Integration Patterns: Addressing License

Mismatches in Component-based Development," in Proceedings of the 31st International

Conference on Software Engineering, Vancouver, Canada, 2009.

[23] S. Williams and R. M. Stallman, Free as in Freedom, Boston, MA: Free Software

Foundation, 2010.

[24] R. Stallman, Free Software, Free Society: Selected Essays of Richard M. Stallman, Boston,

MA: Free Software Foundation, 2015.

[25] D. R. Booth, Peer Participation and Software: What Mozilla Has to Teach Government,

Cambridge, MA: The MIT Press, 2010.

[26] Open Source Initiative, "History of the OSI," September 2012. [Online]. Available:

https://opensource.org/history. [Accessed 10 December 2017].

[27] Open Source Initiative, "The Open Source Definition," 22 March 2007. [Online]. Available:

https://opensource.org/osd. [Accessed 10 December 2017].

[28] L. Rosen, Open Source Licensing: Software Freedom and Intellectual Property Law, Upper

Saddle River, New Jersey: Prentice Hall.

[29] GitHub, Inc., "Choose a License," [Online]. Available:

https://choosealicense.com/appendix/. [Accessed 9 10 2017].

[30] Ruby Together, "RubyGems.org | your community gem host," [Online]. Available:

https://rubygems.org/. [Accessed 3 January 2018].

[31] The Apache Software Foundation, "Apache Maven Project," 31 December 2017. [Online].

Available: https://maven.apache.org/. [Accessed 3 January 2018].

 83

[32] The CocoaPods Dev Team, "CocoaPods," [Online]. Available: https://cocoapods.org/.

[Accessed 3 January 2018].

[33] O. Seneviratne, L. Kagal, D. Weitzner, H. Abelson, T. Berners-Lee and N. Shadbolt,

"Detecting Creative Commons License Violations on Images on the World Wide Web," in

International World Wide Web Conference (WWW), Madrid, Spain, 2009.

[34] Oxford University Press, Oxford Dictionary of English, Oxford: Oxford University Press,

2010.

[35] C. K. Roy, J. R. Cordy and R. Koschke, "Comparison and Evaluation of Code Clone

Detection Techniques and Tools: A Qualitative Approach," Science of Computer

Programming, vol. 74, no. 7, pp. 470-495, 2009.

[36] R. W. Gomulkiewicz, "Open Source License Proliferation: Helpful Diversity or Hopeless

Confusion," Washington University Journal of Law & Policy, vol. 30, no. 1, pp. 261-291,

2009.

[37] Gouvernement du Québec, "Licence - Forge gouvernementale," 24 January 2018. [Online].

Available: https://forge.gouv.qc.ca/licence/. [Accessed 2 February 2018].

[38] Free Software Foundation, "Various Licenses and Comments About Them," GNU Project,

4 April 2017. [Online]. Available: https://www.gnu.org/licenses/license-list.html. [Accessed

22 July 2017].

[39] T. R. Gruber, "A Translation Approach to Portable Ontology Specifications," Knowledge

Acquisition, vol. 5, no. 2, pp. 199-220, June 1993.

[40] World Wide Web Consortium, "W3C Semantic Web Activity," 11 December 2013. [Online].

Available: https://www.w3.org/2001/sw/. [Accessed 24 February 2018].

[41] W3C, "Resource Description Framework (RDF): Concepts and Abstract Syntax," 10

February 2004. [Online]. Available: https://www.w3.org/TR/rdf-concepts/. [Accessed 4

January 2018].

[42] W3C, "SPARQL Query Language for RDF," 15 January 2008. [Online]. Available:

https://www.w3.org/TR/rdf-sparql-query/. [Accessed 4 January 2018].

[43] T. Berners-Lee, "Linked Data," 27 July 2006. [Online]. Available:

https://www.w3.org/DesignIssues/LinkedData.html. [Accessed 4 January 2018].

 84

[44] W3C, "SWRL: A Semantic Web Rule Language Combining OWL and RuleML," 21 May

2004. [Online]. Available: https://www.w3.org/Submission/SWRL/. [Accessed 4 January

2018].

[45] G. Bavota, A. Ciemniewska, I. Chulani, A. De Nigro, M. Di Penta, D. Galletti, R. Galoppini,

T. F. Gordon, P. Kedziora, I. Lener, F. Torelli, R. Pratola, J. Pukacki, Y. Rebahi and S. García

Villalonga, "The MARKet for Open Source: An Intelligent Virtual Open Source

Marketplace," in Conference on Software Maintenance, Reengineering, and Reverse

Engineering (CSMR-WCRE), Antwerp, Belgium, 2014.

[46] E. Eghan, S. Alqahtani, C. Forbes and J. Rilling, "API Trustworthiness: An Ontological

Approach for Software Library Adoption," Software Quality Journal on Trustworthy

Systems and Software, 2018 (accepted).

[47] A. Hmood, I. Keivanloo and J. Rilling, "SE-EQUAM — An Evolvable Quality Metamodel,"

in Computer Software and Applications Conference Workshops (COMPSACW), Izmir,

Turkey, 2012.

[48] S. Alqahtani, E. Eghan and J. Rilling, "SV-AF — A Security Vulnerability Analysis

Framework," in International Symposium on Software Reliability Engineering (ISSRE),

Ottawa, Canada , 2016.

[49] Software Freedom Law Center, "Motion Against Westinghouse Digital Electronics in GPL

Compliance Lawsuit," Software Freedom Law Center, 7 June 2010. [Online]. Available:

https://www.softwarefreedom.org/news/2010/jun/07/motion-against-westinghouse-digital-

electronics-gp/. [Accessed 2 July 2017].

[50] R. Wille, "Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts,"

Ordered Sets, vol. 83, pp. 445-470, 1982.

[51] Y. Hasebe and K. Kuroda, "Extraction of English Ditransitive Constructions Using Formal

Concept Analysis," Pacific Asia Conference on Language, Information and Computation,,

vol. 23, no. 2, p. 678–685, December 2009.

[52] Y. Hasebe and K. Kuroda, "RubyFCA: Command line tool for Formal Concept Analysis

written in Ruby," GitHub Inc., 4 May 2017. [Online]. Available:

https://github.com/yohasebe/rubyfca. [Accessed 29 December 2017].

 85

[53] B. Ganter, "Two Basic Algorithms in Concept Analysis," 1984.

[54] Apache Software Foundation, "Apache License v2.0 and GPL Compatibility," Apache

Software Foundation, 2017. [Online]. Available: https://www.apache.org/licenses/GPL-

compatibility.html. [Accessed 2 July 2017].

[55] European Commission, "EUPL compatible open source licences," European Commission,

24 May 2017. [Online]. Available:

https://joinup.ec.europa.eu/community/eupl/og_page/eupl-compatible-open-source-

licences. [Accessed 22 July 2017].

[56] B. M. Kuhn, A. K. Sebro and D. Gingerich, "Chapter 10 The Lesser GPL," Free Software

Foundation & Software Freedom Law Center, 25 October 2016. [Online]. Available:

https://copyleft.org/guide/comprehensive-gpl-guidech11.html. [Accessed 10 November

2017].

[57] Free Software Foundation, "GNU's Bulletin, vol. 1," GNU Project, 10 January 1991.

[Online]. Available: https://www.gnu.org/bulletins/bull10.html#SEC6. [Accessed 4

November 2017].

[58] M. A. Musen, "The Protégé Project: A Look Back and a Look Forward," AI Matters, vol. 1,

no. 4, pp. 4-12, 2015.

[59] C. Forbes, "markos-oss-licenses.owl," 22 April 2017. [Online]. Available:

https://github.com/chrisjf/markos/blob/master/MARKOS/markos-oss-licenses.owl.

[Accessed 22 April 2017].

[60] OpenLink Software, "OpenLink Virtuoso," [Online]. Available:

https://virtuoso.openlinksw.com/. [Accessed 3 January 2018].

[61] C. Jensen and W. Scacchi, "License Update and Migration Processes in Open Source

Software Projects," in International Conference on Open Source Systems, Salvador, Brazil,

2011.

[62] Mozilla Foundation, "Mozilla Public License Version 1.1," 1999. [Online]. Available:

https://www.mozilla.org/en-US/MPL/1.1/. [Accessed 9 December 2017].

[63] Mozilla Foundation, "Mozilla Public License Version 2.0," 3 January 2012. [Online].

Available: https://www.mozilla.org/en-US/MPL/2.0/. [Accessed 9 December 2017].

 86

[64] S. Shankland, "Torvalds: No GPL 3 for Linux," 30 January 2006. [Online]. Available:

https://www.cnet.com/news/torvalds-no-gpl-3-for-linux/. [Accessed 9 December 2017].

[65] Free Software Foundation, "GNU Lesser General Public License Version 3," 29 June 2007.

[Online]. Available: https://www.gnu.org/licenses/lgpl-3.0.html. [Accessed 9 December

2017].

[66] Mozilla Foundation, "License Boilerplate," 27 August 2015. [Online]. Available:

https://website-archive.mozilla.org/www.mozilla.org/mpl/MPL/boilerplate-1.1/. [Accessed

19 January 2018].

[67] A. Kauffmann, "La nouvelle version 2 de la Mozilla Public License tend vers l’unité,"

Framasoft, 22 January 2012. [Online]. Available: https://framablog.org/2012/01/22/pozilla-

public-license-version-2/. [Accessed 19 January 2018].

[68] A. Monden, S. Okahara, Y. Manabe and K. Matsumoto, "Guilty or Not Guilty: Using Clone

Metrics to Determine Open Source Licensing Violations," IEEE Software, vol. 28, no. 2, pp.

42 - 47, March 2011.

[69] M. Di Penta, D. M. German, Y.-G. Guéhéneuc and G. Antoniol, "An Exploratory Study of

the Evolution of Software Licensing," in International Conference on Software Engineering,

Cape Town, South Africa, 2010.

[70] A. Mathur, H. Choudhary, P. Vashist, W. Thies and S. Thilagam, "An Empirical Study of

License Violations in Open Source Projects," in Software Engineering Workshop, Heraclion,

Greece, 2012.

[71] Y. Wu, Y. Manabe, T. Kanda, D. M. German and K. Inoue, "A Method to Detect License

Inconsistencies in Large-Scale Open Source Projects," in Proceedings of the 12th Working

Conference on Mining Software Repositories, Florence, Italy, 2015.

[72] T. Kamiya, S. Kusumoto and K. Inoue, "CCFinder: A Multilinguistic Token-based Code

Clone Detection System for Large Scale Source Code," IEEE Transactions on Software

Engineering, vol. 28, no. 7, pp. 654-670, 2002.

[73] O. Mlouki, F. Khomh and G. Antoniol, "On the Detection of Licenses Violations in the

Android Ecosystem," in International Conference on Software Analysis, Evolution, and

Reengineering, Suita, Japan, 2016.

 87

[74] McGill University, "Richard Stallman "Freeing Science — From Software to Medicine"

Lecture," 12 May 2017. [Online]. Available:

https://www.mcgill.ca/medicine/channels/event/richard-stallman-freeing-science-software-

medicine-lecture-267808. [Accessed 3 January 2018].

[75] M. Isaac, "How Uber Deceives the Authorities Worldwide," New York Times, 3 March

2017. [Online]. Available: https://www.nytimes.com/2017/03/03/technology/uber-greyball-

program-evade-authorities.html. [Accessed 3 January 2018].

[76] A. Hern, "Uber employees 'spied on ex-partners, politicians and Beyoncé'," The Guardian,

13 December 2016. [Online]. Available:

https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-

politicians-beyonce. [Accessed 3 January 2018].

[77] "Unlicense Yourself: Set Your Code Free," [Online]. Available: https://unlicense.org/.

[Accessed 2 January 2018].

[78] The Apache Software Foundation, "Apache License v2.0 and GPL Compatibility," [Online].

Available: https://www.apache.org/licenses/GPL-compatibility.html. [Accessed 22 July

2017].

package ca.concordia.cs.aseg.secont.virtuoso;

import java.io.FileNotFoundException;

import virtuoso.jena.driver.VirtGraph;

import virtuoso.jena.driver.VirtuosoQueryExecution;

import virtuoso.jena.driver.VirtuosoQueryExecutionFactory;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.graph.Triple;

import com.hp.hpl.jena.query.QuerySolution;

import com.hp.hpl.jena.query.ResultSet;

import com.hp.hpl.jena.rdf.model.RDFNode;

public class TripleConstructor {

 private static String materializationGraphIRI;

 private static String graphCodeIRI = "http://code-data.com";

 private static String graphHistoryIRI = "http://history-data.com";

 private static String graphBuildIRI = "http://build-data.com";

 private static String graphSecurityIRI = "http://sevont-data.com";

 private static String graphMainIRI = "http://svaf-data.com";

 private static String graphSchemaIRI = "http://svaf-schema.com";

 private static String graphRulesIRI = "svaf-rule-sets";

 public static String url = "jdbc:virtuoso://slicer:1111";

 public static String password = "dba";

 public static String username = "dba";

 public static void main(String[] args) throws FileNotFoundException {

 //inferLicenses();

 inferTransitiveDependencies();

 }

 public static VirtGraph getConnectionToStore() {

 VirtGraph set = new VirtGraph(materializationGraphIRI, url, username,

 password);

 return set;

 }

 private ResultSet getInferredTriples(VirtGraph set, String query) {

 VirtuosoQueryExecution vqe = VirtuosoQueryExecutionFactory.create(

7.5 Appendices

7.5.1 TripleConstructor.java

Christopher Forbes
7.5 Appendices

Christopher Forbes
7.5.1 TripleConstructor.java

 query, set);

 ResultSet results = vqe.execSelect();

 return results;

 }

 private void materializeInferredTriples(VirtGraph set, ResultSet results,

 boolean isLiteralObject) {

 while (results.hasNext()) {

 QuerySolution result = results.nextSolution();

 RDFNode s = result.get("S");

 RDFNode p = result.get("P");

 RDFNode o = result.get("O");

 Node S = Node.createURI(s.toString());

 Node P = Node.createURI(p.toString());

 Node O;

 if (isLiteralObject)

 O = Node.createLiteral(o.toString());

 else

 O = Node.createURI(o.toString());

 set.add(new Triple(S, P, O));

 }

 }

 private static void inferLicenses() {

 materializationGraphIRI = "http://svaf-data.com";

 String query = // "DEFINE input:inference '"+graphRulesIRI+"'\n"

 "PREFIX markosLic:<http://www.markosproject.eu/ontologies/licenses#>\n"

 + "PREFIX markos:<http://www.markosproject.eu/ontologies/oss-

licenses#>\n"

 + "PREFIX maven: <http://aseg.cs.concordia.ca/segps/ontologies/

system-specific/2015/02/maven.owl#>\n"

 + "CONSTRUCT {?s markosLic:coveringLicense ?l.}\n" + "FROM <"

 + graphBuildIRI + ">\n" + "FROM <" + graphSchemaIRI + ">\n"

 + "where {\n" + "?l a ?class.\n"

 + "?class rdfs:subClassOf+ markos:OpenSourceLicenseTemplate.\n"

 + "?l rdfs:seeAlso ?url1.\n"

 + "?s maven:hasLicenseUrl ?url2.\n"

 + "FILTER(?url2=str(?url1)).\n" + "}";

 // System.out.println(query);

 VirtGraph set = TripleConstructor.getConnectionToStore();

 System.out.println("graph.getCount() before = " + set.getCount());

 System.out

 .println("materializing inferred Maven licenses to the graph");

 TripleConstructor constructor = new TripleConstructor();

 ResultSet resultSet = constructor.getInferredTriples(set, query);

 constructor.materializeInferredTriples(set, resultSet, false);

 System.out.println("graph.getCount() after = " + set.getCount());

 System.out.println("Done !!");

 }

 private static void inferTransitiveDependencies() {

 materializationGraphIRI = "http://build-data.com";

 String transOptionalQuery =

 "PREFIX build: <http://aseg.cs.concordia.ca/segps/ontologies/

domain-specific/2015/02/build.owl#>\n"

 + "PREFIX maven: <http://aseg.cs.concordia.ca/segps/ontologies/

system-specific/2015/02/maven.owl#>\n"

 + "SELECT ?projC ?projB\n"

 + "FROM <"+ graphBuildIRI + ">\n"

 + "where {\n"

 +"?link build:hasDependencySource ?projC.\n"

 +"?link build:hasDependencyTarget ?projA.\n"

 +"?link build:hasNumberOfExclusions \"0\".\n"

 +"?projC build:hasOptionalBuildDependencyOn ?projA.\n"

 +"?projA build:hasNonOptionalBuildDependencyOn ?projB.\n"

 + "}";

 String transNonOptionalQuery =

 "PREFIX build: <http://aseg.cs.concordia.ca/segps/ontologies/

domain-specific/2015/02/build.owl#>\n"

 + "PREFIX maven: <http://aseg.cs.concordia.ca/segps/ontologies/

system-specific/2015/02/maven.owl#>\n"

 + "SELECT ?projC ?projB\n"

 + "FROM <"+ graphBuildIRI + ">\n"

 + "where {\n"

 +"?link build:hasDependencySource ?projC.\n"

 +"?link build:hasDependencyTarget ?projA.\n"

 +"?link build:hasNumberOfExclusions \"0\".\n"

 +"?projC build:hasNonOptionalBuildDependencyOn ?projA.\n"

 +"?projA build:hasNonOptionalBuildDependencyOn ?projB.\n"

 + "}";

 System.out.println(transOptionalQuery);

 System.out.println(transNonOptionalQuery);

 /*VirtGraph set = TripleConstructor.getConnectionToStore();

 System.out.println("graph.getCount() before = " + set.getCount());

 System.out

 .println("materializing inferred Maven transitive dependencies

to the graph");

 TripleConstructor constructor = new TripleConstructor();

 ResultSet resultSet = constructor.getInferredTriples(set, query);

 constructor.materializeInferredTriples(set, resultSet, false);

 System.out.println("graph.getCount() after = " + set.getCount());*/

 System.out.println("Done !!");

 }

}

//

// Type1Analysis.swift

// Violations Analysis

//

// Created by Christopher Forbes on 2017-07-22.

// Copyright © 2017 Christopher Forbes. All rights reserved.

//

import Foundation

private struct SimpleViolation {

 let link: String

 let repository1: String

 let repository2: String

 let license1: String

 let license2: String

}

// This code lists all the violation pairs i.e. so you can see which combo of

// licenses is the most problematic.

class Type1Analysis {

 // link, repository1, repository2, license1, license2

 var counts: Dictionary<String, Int> = [:]

 func start() {

 DispatchQueue.global(qos: .userInitiated).async {

 self.gatherViolations()

 self.printResults()

 }

 }

 func gatherViolations() {

 let path = "/Users/chris/Documents/Projects/Violations Analysis/Results

Unzipped/Type 1.csv"

 let url = URL(fileURLWithPath: path)

 guard let data = try? Data(contentsOf: url) else { return }

 guard let content = String(data: data, encoding: .ascii) else

{ return }

 var rows = content.split(separator: "\n").map(String.init)

 rows.remove(at: 0) // remove the first "header" row

 for row in rows {

 let columns = row.components(separatedBy: ",")

7.5.2 Type1Analysis.swift

Christopher Forbes
7.5.2 Type1Analysis.swift

 let license1raw = columns[3]

 let license2raw = columns[4]

 let license1 = removeQuotationMarks(from: license1raw)

 let license2 = removeQuotationMarks(from: license2raw)

 let violation = SimpleViolation(link: columns[0], repository1:

columns[1], repository2: columns[2], license1: String(license1),

license2: String(license2))

 // Count pairs

 let pair = "\"\(violation.license1) into \(violation.license2)\""

 var count: Int

 if let previous = counts[pair] {

 count = previous + 1

 } else {

 count = 1

 }

 counts.updateValue(count, forKey: pair)

 }

 }

 func removeQuotationMarks(from licenseURL: String) -> String {

 // "http://www.markosproject.eu/ontologies/oss-licenses#GPL-2.0"

 let startIndex = licenseURL.index(licenseURL.startIndex, offsetBy: 53)

 let endIndex = licenseURL.index(licenseURL.endIndex, offsetBy: -1)

 let license = licenseURL[startIndex..<endIndex]

 return String(license)

 }

 func printResults() {

 for pair in counts {

 print("\(pair.key),\(pair.value)")

 }

 }

}

//

// Type2Analysis.swift

// Violations Analysis

//

// Created by Christopher Forbes on 2017-08-24.

// Copyright © 2017 Christopher Forbes. All rights reserved.

//

import Foundation

private struct EmbeddedViolation {

 let linkA: String

 let linkB: String

 let repository1: String

 let repository2: String

 let repository3: String

 let license1: String

 let license2: String

 let license3: String

}

// This code lists all the violation triples

// i.e. so you can see which combo of licenses is the most problematic.

class Type2Analysis {

 //

"linkA","repository1","repository2","linkB","repository3","license1","lice

nse2","license3"

 var counts: Dictionary<String, Int> = [:]

 func start() {

 DispatchQueue.global(qos: .userInitiated).async {

 self.gatherViolations()

 self.printResults()

 }

 }

 func gatherViolations() {

 let path = "/Users/chris/Documents/Projects/Violations Analysis/Results

Unzipped/Type 2.csv"

 let url = URL(fileURLWithPath: path)

 guard let data = try? Data(contentsOf: url) else { return }

 guard let content = String(data: data, encoding: .ascii) else

{ return }

7.5.3 Type2Analysis.swift

Christopher Forbes
7.5.3 Type2Analysis.swift

 var rows = content.split(separator: "\n").map(String.init)

 rows.remove(at: 0) // remove the first "header" row

 for row in rows {

 let columns = row.components(separatedBy: ",")

 let license1raw = columns[5]

 let license2raw = columns[6]

 let license3raw = columns[7]

 let license1 = removeQuotationMarks(from: license1raw)

 let license2 = removeQuotationMarks(from: license2raw)

 let license3 = removeQuotationMarks(from: license3raw)

 let violation = EmbeddedViolation(linkA: columns[0],

 linkB: columns[3],

 repository1: columns[1],

 repository2: columns[2],

 repository3: columns[4],

 license1: license1,

 license2: license2,

 license3: license3)

 // Count triples

 let combo = "\"\(violation.license1) into \(violation.license2)

into \(violation.license3)\""

 var count: Int

 if let previous = counts[combo] {

 count = previous + 1

 } else {

 count = 1

 }

 counts.updateValue(count, forKey: combo)

 }

 }

 func removeQuotationMarks(from licenseURL: String) -> String {

 // "http://www.markosproject.eu/ontologies/oss-licenses#GPL-2.0"

 let startIndex = licenseURL.index(licenseURL.startIndex, offsetBy: 53)

 let endIndex = licenseURL.index(licenseURL.endIndex, offsetBy: -1)

 let license = licenseURL[startIndex..<endIndex]

 return String(license)

 }

 func printResults() {

 for pair in counts {

 print("\(pair.key),\(pair.value)")

 }

 }

}

//

// Type3Analysis.swift

// Violations Analysis

//

// Created by Christopher Forbes on 2017-08-25.

// Copyright © 2017 Christopher Forbes. All rights reserved.

//

import Foundation

private struct CompoundViolation {

 let linkA: String

 let linkB: String

 let repository1: String

 let repository2: String

 let repository3: String

 let license1: String

 let license2: String

 let license3: String

}

// This code lists all the violation triples

// i.e. so you can see which combo of licenses is the most problematic.

class Type3Analysis {

 //"linkA","repository1","repository3","linkB","repository2","license1","lic

ense2","license3"

 var counts: Dictionary<String, Int> = [:]

 func start() {

 DispatchQueue.global(qos: .userInitiated).async {

 self.gatherViolations()

 self.printResults()

 }

 }

 func gatherViolations() {

 let path = "/Users/chris/Documents/Projects/Violations Analysis/Results

Unzipped/Type 3.csv"

 let url = URL(fileURLWithPath: path)

 guard let data = try? Data(contentsOf: url) else { return }

 guard let content = String(data: data, encoding: .ascii) else

{ return }

 var rows = content.split(separator: "\n").map(String.init)

7.5.4 Type3Analysis.swift

Christopher Forbes
7.5.4 Type3Analysis.swift

 rows.remove(at: 0) // remove the first "header" row

 for row in rows {

 let columns = row.components(separatedBy: ",")

 let license1raw = columns[5]

 let license2raw = columns[6]

 let license3raw = columns[7]

 let license1 = removeQuotationMarks(from: license1raw)

 let license2 = removeQuotationMarks(from: license2raw)

 let license3 = removeQuotationMarks(from: license3raw)

 let violation = CompoundViolation(linkA: columns[0],

 linkB: columns[3],

 repository1: columns[1],

 repository2: columns[4],

 repository3: columns[2],

 license1: license1,

 license2: license2,

 license3: license3)

 // Count triples

 let combo = "\"\(violation.license1) and \(violation.license2) into

\(violation.license3)\""

 var count: Int

 if let previous = counts[combo] {

 count = previous + 1

 } else {

 count = 1

 }

 counts.updateValue(count, forKey: combo)

 }

 }

 func removeQuotationMarks(from licenseURL: String) -> String {

 // "http://www.markosproject.eu/ontologies/oss-licenses#GPL-2.0"

 let startIndex = licenseURL.index(licenseURL.startIndex, offsetBy: 53)

 let endIndex = licenseURL.index(licenseURL.endIndex, offsetBy: -1)

 let license = licenseURL[startIndex..<endIndex]

 return String(license)

 }

 func printResults() {

 for pair in counts {

 print("\(pair.key),\(pair.value)")

 }

 }

}

