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ABSTRACT

New Kernels For Density and Regression Estimation via Randomized Histogram

Ruhi Ruhi

In early 20’s, the first person to notice the link between Random Forests (RF)

and Kernel Methods, Leo Breiman (Breiman, 2000), pointed out that Random

Forests grown using independent and identically distributed random variables in

the tree construction is equivalent to kernels acting on true distribution. Later,

Scornet (Scornet, 2016b) defined Kernel based Random Forest (KeRF) estimates

and gave explicit expression for the kernels based on Centered RF and Uniform

RF. In this paper, we will study the general expression for the connection function

(kernel function) of an RF when splits/cuts are performed according to uniform

distribution and also according to any general distribution. We also establish the

consistency of KeRF estimates in both cases and their asymptotic normality.

Keywords: Random Forest, Kernel Methods, Consistency.
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1 Introduction

The Random Forest is one of the most popular and most powerful machine learning

algorithms. It is basically a trademark term used for an ensemble learning method

that consists of pooling together the estimates from many randomly generated

decision trees. A decision tree (for classification, regression etc.) is a sequentially

constructed partition of the space of input variable (co-variate) X. A tree estimate

is the average (for regression) or mode (for classification) of all Y -values (output)

that fall in the partition-cell containing a given input x.

Breiman’s work on CART (Classification and Regression Trees), ensemble estima-

tor and Random Forest (RF) helped to bridge gap between statistics and com-

puter science, particularly in the field of Machine Learning. Random Forests are

exceptionally viable and progressively utilized measurable machine learning tech-

niques. They give remarkable performances in many applied situations for classi-

fication and regression problems as they run productively on extensive databases

and also they can deal with huge number of input variable without variable dele-

tion and have ability to deal with small sample sizes and high dimensional feature

spaces. The corresponding R package randomForest can be freely downloaded on

the CRAN website (http://www.cran.r-project.org/).

On the hypothetical side, the account of Random Forests are less indisputable

and, in spite of their widespread use, little is known about their mathematical

properties. However, recent studies have been done towards narrowing the gap
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between theory and practice, which includes that of Denil et al.(2013) (Denil,

Matheson, & Freitas, 2013), who proved the consistency of a particular online for-

est, Wager(2014) (Wager, 2014) and Mentch and Hooker(2015) (Mentch & Hooker,

2016), who studied the asymptotic normality and Scornet et al.(2015) (Scornet,

2016a) who proved its consistency under appropriate assumptions.

1.1 Framework

Most of the following material is based on the papers Random Forest guided tour

(Biau & Scornet, 2016) and Random Forest and Kernel Methods (Scornet, 2016b)

by Erwan Scornet and Gérard Biau.

1.1.1 Notations and definitions

As explained by Scornet and Biau (Biau & Scornet, 2016), the general structure of

Random Forest is non-parametric regression estimation. Assume a training sample

of size n, D = {(X1, Y1), ..., (Xn, Yn)} of independent random variables distributed

as independent prototype pair (X, Y ) where E[Y 2] <∞. An input random vector

X∈ X ⊂ Rp is observed and the goal is to predict the square integrable random

response Y ∈ R by estimating the regression function,

r(x) = E[Y | X = x].

The aim to use the data set D to construct an estimate rn : X → R of the function

r. The regression function estimate rn is (mean squared error) consistent if

E[rn(X)− r(X)]2 → 0 as n→∞.

2



A random forest is a collection of M randomized regression trees (trees where

target variable can take continuous values). Let rn(x,Θj) be the predicted value

at point x for the j-th tree in the family, where Θ1,Θ2, ..,ΘM are independent

random variables, distributed as generic random variable Θ, independent of the

sample D (of sample size n). These random variables represent the randomization

procedure employed. The trees are combined to form the finite forest estimate

rM,n(x,Θ1, ..,ΘM) =
1

M

M∑
j=1

rn(x,Θj). (1.1)

By the law of large numbers, the finite forest estimate approaches to infinite forest

estimate (defining, r∞,n(x) = limM→∞rM,n(x,Θ)):

∀ x ∈ [0, 1]d, almost surely as M →∞,

r∞,n(x) = E[rn(x,Θ)].

There are large variety of forests depending on how trees are grown and how the

random variable Θ influences the tree construction. A basic framework to assess

the theoretical properties of forests involves models in which partitions do not

depend on the training set D. An example is the Centred Random Forests(Biau

& Scornet, 2016), for which X = [0, 1]d and has properties as follows:

(i) Samples are drawn without replacement;

(ii) at each node of each individual tree, a coordinate is uniformly chosen in {1,...,

d} and,

(iii) a split is performed at the center of the node along the selected coordinate.

The operations (ii)(iii) are recursively repeated k times, where k ∈ N is a parame-

ter. The algorithm stops when a binary tree with k levels is built, so that each tree

has exactly 2k leaves in the end. The final estimation at the point x is obtained by

taking the average of Yi corresponding to the Xi in the cell of x. The parameter
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k acts as a smoothing parameter that controls the size of the terminal node.

Another example is Uniform Forest, which is similar to Centred Forest except that

once a split direction is chosen, the splits are made uniformly on the side of the

cell, along the preselected co-ordinate (Arlot & Genuer, 2014).

1.2 Basics of Kernel and Kernel based Random

Forest(KeRF)

One way to break down the complexity of Random Forests is to express forest

estimate as a kernel estimate, i.e., estimate rn which takes the form

rn(x) =

∑n
i=1 YiKn(Xi,x)∑n
i=1 Kn(Xi,x)

,

where {(Xi, Yi); 1 ≤ i ≤ n} is the training set, (Kn)k is the k-th kernel functions

of the sequence of kernels ; n ∈ N is parameter to be determined.

Note that the Kn doesn’t necessarily belongs to Nadaraya-Watson kernels family

(Nadaraya, 1964) (Watson, 1964), which satisfy a translation-invariant homoge-

neous property of the form Kh(x, z) = 1
h
K((x − z)/h) for some smoothing pa-

rameter h > 0. The analysis of kernel is more complex, depending on the type of

forest under investigation.

1.2.1 Kernel based Random Forests (KeRF)

For all x ∈ [0, 1]d, we know (finite) random forest estimates satisfy

rM,n(x,Θ1, ...,ΘM) =
1

M

M∑
j=1

(
n∑
i=1

Yi1Xi∈An(x,Θj)

Nn(x,Θj)

)
(1.2)
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where An(x,Θj) is the cell containing x, determined by the random variable Θj

and data set D and,

Nn(x,Θj) =
n∑
i=1

1Xi∈An(x,Θj)

is the number of data points in An(x,Θj) (Scornet, 2016b).

This equation (1.2) is true in particular for non-adaptive forests (i.e., forests built

independently of data) as the quantity of observations in each cell cannot be

controlled. For example, given two cases with N1
n(x,Θj) > N2

n(x,Θj) then by

equation (1.2), r1
M,n(x,Θ1, ...,ΘM) < r2

M,n(x,Θ1, ...,ΘM). Thus cells containing

smaller number of data points tends to have greater estimate than those with

larger number of data points.

To solve this problem, Kernel based random forest(KeRF) estimates were defined,

which takes the form:

r̃M,n(x,Θ1, ...,ΘM) =

∑M
j=1

∑n
i=1 Yi1Xi∈An(x,Θj)∑M

j=1 Nn(x,Θj)
(1.3)

To study more about KeRF, Scornet (Scornet, 2016b) proved a proposition for

another form of KeRF estimates.

Proposition: Almost surely, for all x ∈ [0, 1]d,

r̃M,n(x,Θ1, ...,ΘM) =

∑n
i=1 YiKM,n(x,Xi)∑n
j=1 KM,n(x,Xj)

, (1.4)

where

KM,n(x, z) =
1

M

M∑
j=1

1z∈An(x,Θj). (1.5)

KM,n is connection function of the M finite forest.

(KM,n is a relative frequency of the set An containing x.)

Next,
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Defining infinite KeRF estimates r̃∞,n as

r̃∞,n = limM→∞r̃M,n(x,Θ1, ...,ΘM).

A proposition for infinite forest estimate (i.e., when number of trees M tends to

infinity) was proved by Scornet (Scornet, 2016b).

Note that the infinite random forests are said to be discrete (or continuous), if its

corresponding connection function Kn is piece-wise constant (or continuous).

Proposition: Consider an infinite discrete or continuous forest. Then, almost

surely, for all x,z ∈ [0, 1]d,

limM→∞KM,n(x, z) = Kn(x, z),

where

Kn(x, z) = PΘ[z ∈ An(x,Θ)]

Kn is called the connection function of infinite random forest. Thus, for all x∈

[0, 1]d,

r̃∞,n(x) =

∑n
i=1 YiKn(x,Xi)∑n
j=1 Kn(x,Xj)

, (1.6)

Thus, infinite KeRF estimates are kernel estimates with kernel function equal to

Kn.

The denominator of KeRF estimate can be adjusted to obtain a density estimator

as we shall see in Chapter 2 and Chapter 3.

1.2.2 Uniform KeRF

Uniform Random Forests were first studied by Biau et al.(Biau, Devroye, & Lugosi,

2008). In Uniform RF, the splits are drawn uniformly on the cell edges with no
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prior on split location.

Using notation Kuf
k to denote the connection function of uniform random forest

of level k.

Scornet (Scornet, 2016b) obtained an explicit expression Kuf
k for connection func-

tion for infinite uniform random forest as follows,

Proposition: For k ∈ N and for all x ∈ [0, 1]d,

Kuf
k (0,x) =

∑
k1,..,kd;

∑d
l=1 kl=k

k!

k1!...kd!

(
1

d

)k

×
d∏

m=1

(
1− xm

km−1∑
j=0

(−ln xm)j

j!

)
(1.7)

with convention
∑−1

j=0
(−ln xm)j

j!
= 0.

The figure below represents the functions f1, f2, andf5 in two dimensions defined

by:

fk : [0, 1]× [0, 1]→ [0, 1]

z = (z1, z2) 7→ Kuf
k

(
0, | z− (

1

2
,
1

2
) |
)
,

where | z− x | = (| z1 − x1 |, ..., | zd − xd |).

7



Scornet(Scornet, 2016b) also proved the expression of connection function Kuf
k (x, z)

for level k = 1, 2 that has the form:

Kuf
1 (x, z) = 1− | z − x |

Kuf
2 (x, z) = 1− | z − x | + | z − x | ln

(
z

1− x

)
, (1.8)

for x, z ∈ [0,1].

But for levels k > 2, the general expression of Kuf
k couldn’t be derived. So, to

overcome this difficulty, he replaced (x, z) → Kuf
k (0, | z − x |) which is simpler

way to build an invariant-by-translation version of uniform kernel Kuf
k and the

infinite uniform KeRF estimate, denoted by r̃uf∞,n takes the form-

r̃uf∞,n(x) =

∑n
i=1 YiK

uf
k (0, | Xi − x |)∑n

j=1 K
uf
k (0, | Xj − x |)

.

Later, the theorem below (Scornet, 2016b) was proved to find consistency of infinite

uniform KeRF estimates.

Theorem 1.1. Assuming

Y = r(X) + ε

where ε is a centred Gaussian noise, independent of X, with finite variance σ2 <

∞. Moreover, X is uniformly distributed on [0, 1]d and r is Lipschitz of order 1.

Then, providing k →∞ and n/2k →∞, there exists a constant C1 > 0 such that

for all n > 1 and for all x ∈ [0, 1]d,

E
[
r̃uf∞,n(x)− r(x)

]2

≤ C1n
−2/(6+3d log2)(logn)2.
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1.2.2.1 Drawbacks of Scornet’s general expression of connection func-

tion Kuf
k of Uniform Random Forest

According to Scornet in his paper Random Forests and Kernel Methods(Scornet,

2016b), the general expression for connection function Kuf
k (x, z); k > 2 of uni-

form random forest is difficult to obtain. However, by using the method of order

statistics, the general expression can be obtained by alternate partitioning scheme,

which is shown in Chapter 2 of this thesis.

Also, the expression obtained in equation (1.8) by Scornet (Scornet, 2016b) has a

corrected form,

Kuf
2 (x, z) = 1− | z − x | + | z − x | ln

(
z(1− x)

)
, for x < z (1.9)

which is also proved in Chapter 2.

1.3 Outline of thesis

The main objective of this paper is to find the explicit expression of kernel estimate

for simplified randomization models, often called purely random forests. In this

model, the domain of the explanatory variable x is partitioned m times using a

random sample of size n, independent of the data D, from a distribution supported

on the domain of x. Note that m = mn depends on n, the size of the data.

We consider both uniform as well as non-uniform partitioning distributions. We

establish consistency, expansions for bias and variance and asymptotic normality

of the resulting estimators.

We denote the expression for the kernel for uniform partitioning as KU
m(x, z) and

for non-uniform partitioning as KG
m(x, z), where m is the number of splits.

9



We show in Chapter 2 that the expression for the kernel for uniform partitioning

is

for x, z ∈ [0,1]

KU
m(x, z) = (1− | z − x |)m.

A similar expression for the kernel can be obtained in the multivariate case; the

expression is of the form:

for x,z ∈ [0, 1]d

KU
m(x, z) =

d∏
i=1

(1− | zi − xi |)m.

The proof for multivariate case is straightforward and is not discussed in this

thesis.

The rest of the thesis is organized as follows:

Chapter 2 is devoted to the results on kernel estimates for uniform partitioning and

their asymptotic behavior. In Chapter 3, kernel estimates for general partitioning

are presented along with their asymptotic properties and simulations are presented

in Chapter 4.

10



2 Uniform Random Forest

In this chapter, we first obtain (Sec. 2.1) the correct expression for the uniform

random forest kernel considered by Scornet (Scornet, 2016b) when the partition

size is 4. As explained in Chapter 1, this kernel is not very convenient to work

with, hence we do not pursue this approach. Instead, we derive the kernel for the

alternative partitioning scheme proposed in Chapter 1 (Sec. 1.3: purely random

forest). The rest of the chapter is devoted to studying properties of the resulting

estimators.

2.1 Connection function for Scornet’s random

forest

Consider an interval [0,1] and let x, z ∈ [0,1].

Let a point (say) u1 be drawn uniformly on (0,1), which partitions the interval

[0,1] in 2 intervals : (0,u1) and (u1, 1).

The expression of kernel Kuf
1 , already proved by Scornet (Scornet, 2016b), has

form

Kuf
1 (x, z) = 1− | z − x | .

11



Now, another point is drawn uniformly from one of the two sub-intervals and split

is made at that point. This 2nd uniform split will be either in (0,u1) interval, if

x, z ∈ (0, u1),creating 2 new intervals (0,u1u2) and (u1u2, u1) or in the interval (u1,

1), if x, z ∈ [u1, 1], creating intervals (u1, u1 + (1− u1)u2) and (u1 + (1− u1)u2, 1).

For any two points x and z in (0,1) (assuming w.l.o.g., x < z ),

Probability that x and z are in same cell after 2 splits is Kuf
2 (x, z),

Kuf
2 (x, z) = P (max(x, z) < u1u2) + P (min(x, z) > u1u2,max(x, z) < u1)

+ P (min(x, z) > u1,max(x, z) < u1 + (1− u1)u2)

+ P (min(x, z) > u1 + (1− u1)u2)

= P (z < u1u2) + P (x > u1u2, z < u1) + P (x > u1, z < u1 + (1− u1)u2)

+ P (x > u1 + (1− u1)u2)

= P (ln(z) < lnu1 + lnu2) + P (lnx > lnu1 + lnu2, lnz < lnu1)

+ P (ln(1− x) < ln(1− u1), ln(1− z) > ln(1− u1) + ln(1− u2))

+ P (ln(1− x) < ln(1− u1) + ln(1− u2))

[We know u ∼ unif(0, 1) =⇒ −ln(u) ∼ exp(1)

(putting − lnui = Ti and− ln(1− ui) = T ∗i ; i = 1, 2)]

Kuf
2 (x, z) = P (T1 + T2 < −lnz) + P (T1 + T2 > −lnx, T1 < −lnz)

+ P (T ∗1 < −ln(1− x), T ∗1 + T ∗2 > −ln(1− z)) + P (T ∗1 + T ∗2 < −ln(1− x))

= P (S2 < −ln(z)) + P (S2 > −lnx, S1 < −lnz)

+ P (S∗1 < −ln(1− x), S∗2 > −ln(1− z)) + P (S∗2 < −ln(1− x))

where Si = T1 + ..+ Ti and

S∗i = T ∗1 + ..+ T ∗i

12



Also, we know that the random process {N(t); t ≥ 0} such that

N(t) = max{n : Sn ≤ t} where Sn = T1 + ..+ Tn ; Ti ∼ exp(λ)

is a Poisson Process with rate λ.

Kuf
2 = P (N(−ln(z)) ≥ 2) + P (N(−ln(z)) = 1, N(−lnx)−N(−lnz) = 0)

+ P (N(−ln(1− x)) = 1, N(−ln(1− z))−N(−ln(1− x)) = 0) + P (N(−ln(1− x)) ≥ 2)

[ where N(t) ∼ Pois(t) and N(t1)−N(t2) ∼ Pois(t1 − t2)]

=

[
∞∑
j=2

(−lnz)j
elnz

j!

]
+

[{
elnz(−lnz)1

}{
elnx−lnz(−lnx+ lnz)0

}]

+

[{
(−ln(1− x))1eln(1−x)

}{
eln(1−z)−ln(1−x)(−ln(1− z) + ln(1− x))0

}]

+

[
∞∑
j=2

eln(1−x) (−ln(1− x))j

j!

]

=

[
z

( ∞∑
j=0

(−lnz)j

j!
− (−lnz)0

0!
− (−lnz)1

1!

)]
+

[
(−zlnz)

(
x

z

)]

+

[
− (1− x).ln(1− x)

(
1− z
1− x

)]

+

[
(1− x)

( ∞∑
j=0

(−ln(1− x))j

j!
− (−ln(1− x))0 − (−ln(1− x))1

)]

= z(e−lnz − 1 + lnz)− xlnz − (1− z).ln(1− x) + (1− x)
(
e−ln(1−x) − 1 + ln(1− x)

)
= 1− z + zlnz − xlnz − (1− z)ln(1− x) + x+ (1− x)ln(1− x)

= 1− (z − x) + (z − x)lnz + (z − x)ln(1− x)

Hence,

Kuf
2 (x, z) = 1− | z − x | + | z − x | ln(z(1− x)) ; for x < z

13



This expression for k = 2 is the corrected form of the expression proved by Erwan

Scornet (Scornet, 2016b).

For k = 3 or more, the general expression of the connection function Kuf
k (x,z) is

difficult to obtain. So this method is not convenient for higher splits.

In the next section, we consider the partitioning scheme of a purely random forest.

Recall that in this scheme a sample of size n of uniformly distributed points is

used to create a partition of the interval [0, 1]. We denote the resulting kernel by

KU
m(x, z) and corresponding estimate by rn(x).

2.2 Expression for Kernel by method of order

statistics

Observing KU
m(x, z) is the probability that x and z are connected in (infinite)

random forest after m splits, the function KU
m characterizes the shape of the cells

in the infinite forest.

Theorem 2.1. Let m ∈ N and consider a uniform random forest of level m. Then,

for all x, z ∈ [0,1],

KU
m(x, z) = (1− |x− z|)m.

Proof. w.l.o.g., assume x < z.

Let m points be drawn independently from uniform distribution on (0,1) and let

splits be made at those points for partitioning.

Assuming their order statistics to be

u(1) < u(2) < u(3) < .. < u(m).

Let u(j) < x < z < u(j+1) for some j ∈ {1,2,..,m}

14



We know that joint pdf of two order statistics, such that 1 6 i < j 6 m is

f(i)(j)(x(i), x(j)) =
m!

(i− 1)!(j − i− 1)!(m− j)!
[F (x(i))]

i−1

× [F (x(j))− F (x(i))]
j−i−1[1− F (x(j))]

m−jf(x(i))f(x(j)),

−∞ < x(i) < x(j) <∞

Now, Considering

P (x& z ∈j-th cell) = P (u(j) ≤ x, z ≤ u(j+1))

=

∫ x

0

∫ 1

z

fu(j),u(j+1)
(u(j), u(j+1))du(j)du(j+1)

=

∫ x

0

∫ 1

z

m!

(j − 1)!(j + 1− j − 1)!(m− j − 1)!
[F (u(j))]

j−1

× [F (u(j+1))− F (u(j))]
j+1−j−1[1− F (u(j+1))]

m−j−1f(u(j))f(u(j+1))

=

∫ x

0

∫ 1

z

m!

(j − 1)!(m− j − 1)!
uj−1

(j) (1− u(j+1))
m−j−1du(j)du(j+1)

=
m!

(j − 1)!(m− j − 1)!

∫ x

0

uj−1
(j) du(j)

∫ 1

z

(1− u(j+1))
m−j−1du(j+1)

=
m!

(j − 1)!(m− j − 1)!

(
(u(j))

j

j

∣∣∣∣x
0

.
(1− u(j+1))

m−j

m− j

∣∣∣∣z
1

)
=

m!

j!(m− j)!
xj (1− z)m−j

We know, KU
m(x,z) = P( x, z ∈ same cell).

P (x, z lies in same cell) =
m∑
j = 1

m!

(j − 1)!(m− j)!
xj (1− z)m−j

= (x+ 1− z)m

KU
m(x, z) = (1− |z − x|)m

Alternative proof :

15



w.l.o.g., assume x < z.

Let m points be drawn independently from uniform distribution on (0,1) and let

splits be made at those points for partitioning. Let split point be denoted by u.

Then,

P (x, z lies in same cell after m splits) = (P [u ∈ (0, x) ∪ (z, 1)])m

= (1− |z − x|)m

2.3 Asymptotic behavior of rn(x)

We know that the estimate takes the form,

rn(x) =

∑n
i=1 YiK

U
m(x,Xi)∑n

i=1 K
U
m(x,Xi)

.

As proved in Theorem 2.1,

KU
m(x,Xi) = (1− |x−Xi|)m.

So,

rn(x) :=
Nn(x)

Dn(x)
=

m
n

∑n
i=1 Yi(1− |x−Xi|)m

m
n

∑n
i=1(1− |x−Xi|)m

. (2.1)

where Nn(x) = m
n

n∑
i=1

Yi(1− |x−Xi|)m and Dn(x) = m
n

n∑
i=1

(1− |x−Xi|)m.

As we shall see below , the denominator Dn(x) converges to 2f(x). Therefore, the

Dn(x) can be modified to make it a density estimator (say) Fn(x) which is Dn(x)
2

.

2.3.1 Consistency and Asymptotic Normality of rn(x)

In this section, we explore large-sample properties of our estimator. To accomplish

this objective, we require some assumptions mentioned below:
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Assumptions (A1):

• f(x) & r(x) are at least twice differentiable.

• m = mn →∞ as n→∞ and

m
n
→ 0.

(In other words, m→ 0 but at slower rate than n−1)

Theorem 2.2. Assume (A1) holds. For x ∈ [0, 1],

Let Nn(x) = m
n

n∑
i=1

Yi(1− |x−Xi|)m be a uniform kernel regression estimator and

Dn(x) = m
n

n∑
i=1

(1− |x−Xi|)m be a uniform kernel density estimator.

Then,the following convergence in probability holds:

rn(x) :=
Nn(x)

Dn(x)
=

(
m
n

n∑
i=1

Yi(1− |x−Xi|)m
)

(
m
n

n∑
i=1

(1− |x−Xi|)m
) → r(x)f(x)

f(x)
= r(x) (2.2)

Proof. : We will first consider E[Dn(x)] of equation (2.2),

E[Dn(x)] = E
(
m

n

n∑
i=1

(1− |x−Xi|)m
)

= mE(1− | x−X1 |)m

= m

∫ 1

0

(1− | x− u |)mf(u)du

= m

∫ x

−(1−x)

(1− | s |)mf(x− s)ds ; putting x− u = s

= m

∫ x

−(1−x)

(1− | s |)m
[
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

]
ds

(using Taylor series expansions for f(x− s))

= m

∫ 0

−(1−x)

(1 + s)m
[
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

]
ds

+m

∫ x

0

(1− s)m
[
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

]
ds

17



=
m

m+ 1
f(x)

(
2− xm+1 − (1− x)m+1

)
+

m

m+ 1
f ′(x)

(
x(1− x)m+1 − (1− x)xm+1

)
+

m

(m+ 1)(m+ 2)
f ′(x)

(
(1− x)m+2 − xm+2

)
− m

m+ 1

f ′′(x)

2
.
(

(1− x)2xm+1 + x2(1− x)m+1
)

− m

(m+ 1)(m+ 2)
f ′′(x)

(
xm+2(1− x) + x(1− x)m+2

)
+

m

(m+ 1)(m+ 2)(m+ 3)
f ′′(x)

(
2− xm+3 − (1− x)m+3

)
.

(2.3)

Taking m→∞ , as 0 < x < 1 & 0 < (1− x) < 1

=⇒ xm → 0 and (1− x)m → 0

Hence,

E[Dn(x)]→ 2f(x)

Next,

Taking E[Nn(x)] of equation (2.2),

E[Nn(x)] = E
(
m

n

n∑
i=1

Yi(1− |x−Xi|)m
)

= mE(Y1(1− | x−X1 |)m)

= m

∫ ∫
v(1− | x− u |)mf(u, v)dudv

= m

∫ 1

0

(1− | x− u |)m
(∫

vf(v | u)dv︸ ︷︷ ︸
=r(u)

)
f(u)du ; putting x− u = s

= m

∫ x

−(1−x)

(1− | s |)mf(x− s)r(x− s)ds

= m

∫ 0

−(1−x)

(1 + s)mf(x− s)r(x− s)ds+m

∫ x

0

(1− s)mf(x− s)r(x− s)ds

= m

∫ 0

−(1−x)

(1 + s)m
[
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

]
[
r(x)− sr′(x) +

s2

2
r′′(x) +O(s3)

]
ds

+m

∫ x

0

(1− s)m
[
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

][
r(x)− sr′(x) +

s2

2
r′′(x) +O(s3)

]
ds
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=
m

m+ 1
f(x)r(x)

(
2− xm+1 − (1− x)m+1

)
+

m

m+ 1
(f(x)r(x))′

(
x(1− x)m+1 − (1− x)xm+1

)
+

m

(m+ 1)(m+ 2)
(f(x)r(x))′

(
(1− x)m+2 − xm+2

)
− m

2(m+ 1)
(f(x)r(x))′′

(
x2(1− x)m+1 + (1− x)2xm+1

)
− m

(m+ 1)(m+ 2)
(r(x)f(x))′′

(
x(1− x)m+2 − (1− x)xm+2

)
+

m

(m+ 1)(m+ 2)(m+ 3)
(f(x)r(x))′′

(
2− xm+3 − (1− x)m+3

)

(2.4)

Taking m→∞,

as 0 < x < 1 & 0 < (1− x) < 1

=⇒ xm → 0 and (1− x)m → 0

E[Nn(x)]→ 2f(x)r(x)

Hence,

E[Nn(x)]

E[Dn(x)]
→ 2r(x)f(x)

2f(x)
= r(x)

Further, we will show the consistency of our estimate.

For that we will prove V ar[Nn(x)]→ 0 and V ar[Dn(x)]→ 0.

V ar[Dn(x)] = V ar
(m
n

n∑
i=1

(1− |x−Xi|)m
)

=
m2

n
V ar(1− | x−X1 |)m

=
m

n

[
mE(1− | x−X1 |)2m − 1

m
(mE(1− | x−X1 |)m)2

]
=
m

n

[
m

∫ 1

0

(1− | x− u |)2mf(u)du− 1

m
(mE(1− | x−X1 |)m)2

]
=
m

n

[
m

∫ x

−(1−x)

(1− | s |)2mf(x− s)ds− 1

m
(mE(1− | x−X1 |)m)2

]
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=
m

n

[
m

∫ 0

−(1−x)

(1 + s)2m

(
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

)
ds

+m

∫ x

0

(1− s)2m

(
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

)
ds

− 1

m
(mE(1− | x−X1 |)m)2

]
=
m

n

[
m

2m+ 1
f(x)(2− x2m+1 − (1− x)2m+1)

+
m

2m+ 1
f ′(x)(x(1− x)2m+1 − (1− x)x2m+1)

+
m

(2m+ 1)(2m+ 2)
f ′(x)((1− x)2m+2 − x2m+2)

− m

2(2m+ 1)
f ′′(x)(x2(1− x)2m+1 + (1− x)2x2m+1)

− m

(2m+ 1)(2m+ 2)
f ′′(x)((1− x)x2m+2 + x(1− x)2m+2)

+
m

(2m+ 1)(2m+ 2)(2m+ 3)
f ′′(x)(2− x2m+3 − (1− x)2m+3)

− 1

m
(mE(1− | x−X1 |)m)2

]

From assumption (A1),

m→∞ as n→∞ and m
n
→ 0

as 0 < x < 1 & 0 < (1− x) < 1

=⇒ xm → 0 and (1− x)m → 0

Thus,

V ar[Dn(x)]→ 0

Now,

V ar[Nn(x)] = V ar
(m
n

n∑
i=1

Yi(1− |x−Xi|)m
)

=
m2

n
V
(
Y1(1− | x−X1 |)m

)
=
m

n

[
mE(Y 2

1 (1− | x−X1 |)2m)− 1

m
{mE(Y1(1− | x−X1 |)m)}2

]
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=
m

n

[
m

∫ ∫
v2(1− | x− u |)2mf(u, v)dudv − 1

m
{mE(Y (1− | x−X1 |)m)}2︸ ︷︷ ︸

A

]

=
m

n

[
m

∫ ∫
v2(1− | x− u |)2mf(v|u)f(u)dudv − A

]

=
m

n

[
m

∫ x

−(1−x)

(1− | s |)2mf(x− s)
(∫

v2f(v|x− s)dv︸ ︷︷ ︸
=ζ(x−s)

)
ds− A

]

[
define:

∫
y2f(y|x)dy = ζ(x)

]
=
m

n

[
m

∫ x

−(1−x)

(1− | s |)2mf(x− s)ζ(x− s)ds− A

]

=
m

n

[
m

∫ x

−(1−x)

(1− | s |)2m

(
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

)

×
(
ζ(x)− sζ ′(x) +

s2

2
ζ ′′(x) +O(s3)

)
ds− A

]

=
m

n

[
m

∫ 0

−(1−x)

(1 + s)2m

(
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

)
×
(
ζ(x)− sζ ′(x) +

s2

2
ζ ′′(x) +O(s3)

)
ds

+m

∫ x

0

(1− s)m
(
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

)
×
(
ζ(x)− sζ ′(x) +

s2

2
ζ ′′(x) +O(s3)

)
ds− A

]

=
m

n

[
m

2m+ 1
(f(x)ζ(x))(2− x2m+1 − (1− x)2m+1)

+
m

2m+ 1
(f(x)ζ(x))′(x(1− x)2m+1 − (1− x)x2m+1)

+
m

(2m+ 1)(2m+ 2)
(f(x)ζ(x))′((1− x)2m+2 − x2m+2)

+
m

4m+ 2
(f(x)ζ(x))′′((1− x)2x2m+1 − x2(1− x)2m+1)

− m

(2m+ 1)(2m+ 2)
(f(x)ζ(x))′′((1− x)x2m+2 + x(1− x)2m+2)

+
m

(2m+ 1)(2m+ 2)(2m+ 3)
(f(x)ζ(x))′′(2− x2m+3 − (1− x)2m+3)− A

]
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From assumption (A1),

m→∞ as n→∞ and m
n
→ 0

as 0 < x < 1 & 0 < (1− x) < 1

=⇒ xm → 0 and (1− x)m → 0

Thus,

V ar[Nn(x)]→ 0

which implies that Nn(x)− E[Nn(x)]→ 0 in probability and

Dn(x)− E[Dn(x)]→ 0 in probability.

Thus,

rn(x)→ r(x)

in probability hence, is consistent.

Next, we study the asymptotic normality of our regression estimator Nn(x) and

density estimator Dn(x).

Theorem 2.3. Let m ∈ N be number of splits and n be the sample size.

Assuming (A1) holds, we have

√
n

m

Nn(x)− E(Nn(x))

Dn(x)− E(Dn(x))

 −→ N2

(0

0

 ,

f(x)ζ(x) f(x)r(x)

f(x)r(x) f(x)

)

where ζ(x) = E[Y 2 | X = x].

Proof. Consider√
n
m

(
E[Nn(x)]− 2f(x)r(x)

)
and

√
n
m

(
E[Dn(x)]− 2f(x)

)
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Recall equation (2.4)

√
n

m

(
E[Nn(x)]− 2f(x)r(x)

)
=

√
n

m

[
m

m+ 1
f(x)r(x)

(
2− xm+1 − (1− x)m+1

)
+

m

m+ 1
(f(x)r(x))′

(
x(1− x)m+1 − (1− x)xm+1

)
+

m

(m+ 1)(m+ 2)
(f(x)r(x))′

(
(1− x)m+2 − xm+2

)
− m

2(m+ 1)
(f(x)r(x))′′

(
x2(1− x)m+1 + (1− x)2xm+1

)
− m

(m+ 1)(m+ 2)
(r(x)f(x))′′

(
x(1− x)m+2 − (1− x)xm+2

)
+

m

(m+ 1)(m+ 2)(m+ 3)
(f(x)r(x))′′

(
2− xm+3 − (1− x)m+3

)
− 2f(x)r(x)

]

Taking m→∞,

as 0 < x < 1 & 0 < (1− x) < 1

=⇒ xm → 0 and (1− x)m → 0

This implies, √
n

m

(
E[Nn(x)]− 2f(x)r(x)

)
→ 0

Similarly, Recall equation (2.3)

√
n

m

(
E[Dn(x)]− 2f(x)

)
=

√
n

m

[
m

m+ 1
f(x)

(
2− xm+1 − (1− x)m+1

)
+

m

m+ 1
f ′(x)

(
x(1− x)m+1 − (1− x)xm+1

)
+

m

(m+ 1)(m+ 2)
f ′(x)

(
(1− x)m+2 − xm+2

)
− m

m+ 1

f ′′(x)

2
.
(

(1− x)2xm+1 + x2(1− x)m+1
)

− m

(m+ 1)(m+ 2)
f ′′(x)

(
xm+2(1− x) + x(1− x)m+2

)
+

m

(m+ 1)(m+ 2)(m+ 3)
f ′′(x)

(
2− xm+3 − (1− x)m+3

)
− 2f(x)

]
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Taking m→∞,

as 0 < x < 1 & 0 < (1− x) < 1

=⇒ xm → 0 and (1− x)m → 0

This implies, √
n

m

(
E[Dn(x)]− 2f(x)

)
→ 0

Consider,

√
n

m

(
rn(x)− r(x)

)
=

√
n

m

(
Nn(x)

Dn(x)
− r(x)

)
=

√
n

m

[
Nn(x)− E(Nn(x))

Dn(x)
− E(Nn(x))

E(Dn(x))

[Dn(x)− E(Dn(x))]

Dn(x)
+

E(Nn(x))

E(Dn(x))
− r(x)

]
(2.5)

Next, we define

σ11(x) :=
n

m
V ar[Nn(x)]→ f(x)ζ(x)

σ22(x) :=
n

m
V ar[Dn(x)]→ f(x)

σ12(x) = σ21(x) :=
n

m
Cov[Nn(x), Dn(x)]

Cov[Nn(x), Dn(x)] = Cov

(
m

n

n∑
i=1

Yi(1− |x−Xi|)m,
m

n

n∑
j=1

(1− | x−Xj |)m
)

=
m2

n2

∑
i

∑
j

cov(Yi(1− |x−Xi|)m, (1− | x−Xj |)m)

=
m2

n2

n∑
i=j=1

cov(Yi(1− |x−Xi|)m, (1− |x−Xi|)m)

+
m2

n2

∑
i 6=j

cov(Yi(1− |x−Xi|)m, (1− | x−Xj |)m)︸ ︷︷ ︸
=0

(as X ′is are i.i.d)

=
m2

n

[
E(Y1(1− | x−X1 |)2m)− E(Y1(1− | x−X1 |)m)E(1− | x−X1 |)m

]
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=
m2

n

[∫ ∫
v(1− | x− u |)2mf(u, v)dudv − E(Y1(1− | x−X1 |)m)E(1− | x−X1 |)m

]

=
m2

n

[∫
(1− | x− u |)2m

(∫
vf(v | u)dv︸ ︷︷ ︸

=r(u)

)
f(u)du− E(Y1(1− | x−X1 |)m)E(1− | x−X1 |)m

]

=
m2

n

[∫ 1

0

(1− | x− u |)2mf(u)r(u)du− E(Y1(1− | x−X1 |)m)E(1− | x−X1 |)m
]

=
m2

n

[∫ x

−(1−x)

(1− | s |)2mf(x− s)r(x− s)ds− E(Y1(1− | x−X1 |)m)E(1− | x−X1 |)m
]

(putting x− u = s)

=
m2

n

[∫ 0

−(1−x)

(1 + s)2m

(
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

)
×
(
r(x)− sr′(x) +

s2

2
r′′(x) +O(s3)

)
ds−

∫ x

0

(1− s)2m

(
f(x)− sf ′(x) +

s2

2
f ′′(x) +O(s3)

)
×
(
r(x)− sr′(x) +

s2

2
r′′(x) +O(s3)

)
ds− E(Y1(1− | x−X1 |)m)E(1− | x−X1 |)m

]

=
m

n

[
m

2m+ 1
f(x)r(x)(2− x2m+1 − (1− x)2m+1)

+
m

2m+ 1
(f(x)r(x))′[x(1− x)2m+1 − x2m+1(1− x)]

+
m

(2m+ 1)(2m+ 2)
(f(x)r(x))′[(1− x)2m+2 − x2m+2]

− m

2(2m+ 1)
(f(x)r(x))′′((1− x)2x2m+1 + x2(1− x)2m+1]

− m

(2m+ 1)(2m+ 2)
(f(x)r(x))′′[x(1− x)2m+2 + (1− x)x2m+2]

+
m

(2m+ 1)(2m+ 2)(2m+ 3)
(f(x)r(x))′′[2− x2m+3 − (1− x)2m+3]

− 1

m
(mE(Y1(1− | x−X1 |)m))(mE(1− | x−X1 |)m)

]

Letting m→∞

=⇒ σ12 =
n

m
Cov[Nn(x), Dn(x)]→ f(x)r(x)

Thus, by Cramér-Wold device the joint convergence stated in theorem 2.3 follows.

Let Z1 ∼ N (0, σ11), the limiting distribution of regression estimate Nn(x) and
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Z2 ∼ N (0, σ22), the limiting distribution of density estimate Dn(x).

Then, by Central Limit Theorem,

√
n

m

(
Nn(x)− E(Nn(x))

)
d−→ Z1√

n

m

(
Dn(x)− E(Dn(x))

)
d−→ Z2

Thus, applying Slutsky’s Theorem to equation (2.5),

√
n

m

(
rn(x)− r(x)

)
d−→
(
Z1

2f(x)
− r(x)

2f(x)
Z2

)

since Dn(x)→ 2f(x) , Nn(x)→ 2f(x)r(x) and E(Nn(x))
E(Dn(x))

→ r(x).

Thus,

√
n

m

(
rn(x)− r(x)

)
∼ N

(
0,

σ11

4f 2(x)
− 2

r(x)

4f 2(x)
σ12 +

r2(x)

4f 2(x)
σ22

)
∼ N

(
0,
f(x)ζ(x)

4f 2(x)
− 2

r2(x)f(x)

4f 2(x)
+
r2(x)f(x)

4f 2(x)

)
∼ N

(
0,

1

4f(x)
(ζ(x)− r2(x))

)
= N

(
0,
V ar[Y | X = x]

4f(x)

)

and

√
n

m

Nn(x)− E(Nn(x))

Dn(x)− E(Dn(x))

 −→ N2

(0

0

 ,

σ11(x) σ12(x)

σ21(x) σ22(x)

)

−→ N2

(0

0

 ,

f(x)ζ(x) f(x)r(x)

f(x)r(x) f(x)

)
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3 Kernel for General partitioning distri-

bution

Recall that in Chapter 2, m points are drawn uniformly on (0,1) and splits are made

at those points. In this chapter, m points are drawn from a general distribution

G(·) and splits are performed at those points. We will study the expression for the

connection function and show that the corresponding estimate rn(x) is consistent

for r(x). We denote the resulting kernel by KG
m(x, z).

3.1 Expression for the connection function KG
m(x, z)

We know that KG
m(x, z) is the probability that x and z are connected in random

forests after m splits.

Theorem 3.1. Let m ∈ N. Then, for any two points x and z, the connection

function of a finite forest of level m takes the form:

KG
m(x, z) = (1− | G(z)−G(x) |)m

where G(·) is the distribution function of split points.

Proof. Let m points be chosen from any distribution with c.d.f. G(x) and splits

(yi; i = 1, 2, .,m) are made at these m points.
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Take order statistics of splits to be

y(0) 6 y(1) 6 y(2).. 6 y(m)

where y(i) ∼ general distribution function G with density g.

w.l.o.g., Assuming x < z.

Let x, z ∈ [y(i), y(i+1)] for some i,

P (x, z ∈ ith cell) = P (y(i) 6 x < z 6 y(i+1)) = P (yi 6 x, z 6 y(i+1))

=

∫ x

−∞

∫ ∞
z

gY(i),Y(i+1)
(y(i), y(i+1))dy(i)dy(i+1)

=

∫ x

−∞

∫ ∞
z

m!

(i− 1)!(i+ 1− i− 1)!(m− i− 1)!
[G(y(i))]

i−1

× [G(y(i+1))−G(y(i))]
i+1−i−1[1−G(y(i+1))]

m−i−1.g(y(i)).g(y(i+1))dy(i)dy(i+1)

=
m!

(i− 1)!(m− i− 1)!

∫ x

−∞
(G(y(i))

i−1g(y(i))dy(i)︸ ︷︷ ︸
=

[
(G(y(i)))

i

i

]x
−∞

∫ ∞
z

(1−G(y(i+1)))
m−i−1g(y(i+1))dy(i+1)︸ ︷︷ ︸

=

[
(1−G(y(i+1)))

m−i

m−i

]z
∞

=
m!

i!(m− i)!
.(G(x))i(1−G(z))m−i

P(x, z lies in same cell after m splits) =
m∑
i=0

m!

i!(m− i)!
.(G(x))i(1−G(z))m−i

= (1−G(z) +G(x))m

KG
m(x, z) = (1− |G(z)−G(x)|)m

Alternative proof :

w.l.o.g., assume x < z.

Let m points be chosen from any distribution with c.d.f. G(x) and splits are made

at these m points. Denoting split point by y.
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Then,

P (x, z lies in same cell after m splits) = (P [y ∈ (−∞, x) ∪ (z,∞)])m

= (1− |G(z)−G(x)|)m.

3.2 Asymptotic behavior of rn(x)

In the above section, we find that the connection function has the form:

KG
m(x, z) = (1− |G(x)−G(z)|)m.

Therefore, the estimate becomes:

rn(x) :=
Nn(x)

Dn(x)
=

m
n

∑n
i=1 Yi(1− |G(x)−G(Xi)|)m

m
n

∑n
i=1(1− |G(x)−G(Xi)|)m

. (3.1)

where Nn(x) = m
n

n∑
i=1

Yi(1− |G(x)−G(Xi)|)m and

Dn(x) = m
n

n∑
i=1

(1− |G(x)−G(Xi)|)m.

As we shall see below, the denominator Dn(x) converges to 2 f(x)
g(x)

. Therefore,

the Dn(x) can be modified to make it a density estimator (say) Fn(x) which is

1
2
g(x)Dn(x).

3.2.1 Consistency and Asymptotic Normality of rn(x)

In this section, we investigate large-sample properties of our estimator. For this,

we need the assumptions (A1), mentioned in the Chapter 2.

Theorem 3.2. Assume (A1) holds and m ∈ N is number of splits and n be sample

size.
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Let Nn(x) = m
n

n∑
i=1

Yi(1− |G(x)−G(Xi)|)m, the kernel regression estimator and

Dn(x) = m
n

n∑
i=1

(1− |G(x)−G(Xi)|)m, the kernel density estimator

where G(·) is the distribution function of split points with density g.

Then, the following convergence in probability holds:

rn(x) :=
Nn(x)

Dn(x)
=

(
m
n

n∑
i=1

Yi(1− |G(x)−G(Xi)|)m
)

(
m
n

n∑
i=1

(1− |G(x)−G(Xi)|)m
) →

r(x)f(x)
g(x)

f(x)
g(x)

= r(x) (3.2)

Proof. We will first consider E[Dn(x)] of equation (3.2),

E[Dn(x)] = E

(
m

n

n∑
i=1

(1− |G(x)−G(Xi)|)m
)

= mE(1− |G(x)−G(u)|)m

= m

∫ ∞
−∞

(1− |G(x)−G(u)|)mf(u)du

= m

∫ G(x)

−(1−G(x))

(1− |s|)mf(G−1(G(x)− s))
g(G−1(G(x)− s))

ds

Putting s = G(x)−G(u) =⇒ u = G−1(G(x)− s)

du = −1
g(G−1(G(x)−s))ds

Let ms = t =⇒ mds = dt

=

∫ mG(x)

−m(1−G(x))

(
1− |t|

m

)mf(G−1(G(x)− t
m

))

g(G−1(G(x)− t
m

))
dt

Letting m→∞

E[Dn(x)] −→
∫ ∞
−∞

e−|t|
f(x)

g(x)
dt =

2f(x)

g(x)
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Hence,

E[Dn(x)] −→ 2f(x)

g(x)
(3.3)

Next,

Taking E[Nn(x)] of equation 3.2,

E[Nn(x)] = E

(
m

n

n∑
i=1

Yi(1− |G(x)−G(Xi)|)m
)

= mE(Y1(1− |G(x)−G(X1)|)m)

= m

∫ ∫
v(1− |G(x)−G(u)|)mf(u, v)dudv

= m

∫ ∞
−∞

(1− |G(x)−G(u) |)m
(∫

vf(v | u)dv

)
︸ ︷︷ ︸

=r(u)

f(u)du

= m

∫ ∞
−∞

(1− |G(x)−G(u)|)mf(u)r(u)du

Putting G(x)−G(u) = s⇒ u = G−1(G(x)− s)

⇒ du =
−1

g(G−1(G(x)− s))
ds

= m

∫ G(x)

−(1−G(x))

(1− | s |)m
f(G−1(G(x)− t

m
))r(G−1(G(x)− t

m
))

g(G−1(G(x)− t
m

))
ds

=

∫ mG(x)

−m(1−G(x)

(
1− |t|

m

)mf(G−1(G(x)− t
m

))r(G−1(G(x)− t
m

))

g(G−1(G(x)− t
m

))
dt

[Letting ms = t]

Taking m→∞

E[Nn(x)] −→
∫ ∞
−∞

e−|t|
f(x)r(x)

g(x)
dt =

2f(x)r(x)

g(x)

Hence,

E[Nn(x)]

E[Dn(x)]
→

2f(x)r(x)
g(x)

2f(x)
g(x)

= r(x).
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Further, we will show the consistency of our estimate.

For that we will consider V ar[Nn(x)]→ 0 and V ar[Dn(x)]→ 0.

V ar[Dn(x)] = V ar

(
m

n

n∑
i=1

(1− |G(x)−G(Xi)|)m
)

=
m2

n
V ar(1− |G(x)−G(u)|)m

=
m2

n

[
E(1− |G(x)−G(u)|)2m − (E(1− |G(x)−G(u)|)m)2

]
=
m

n

[
m

∫ ∞
−∞

(1− |G(x)−G(u) |)2mf(u)du− 1

m

(
mE(1− |G(x)−G(u)|)m

)2]
[

Putting G(x)−G(u) = s⇒ u = G−1(G(x)− s) ⇒ du =
−1

g(G−1(G(x)− s))
ds

]

=
m

n

[
m

∫ G(x)

−(1−G(x))

(1− |s|)2mf(G−1(G(x)− s))
g(G−1(G(x)− s))

ds− 1

m

(
mE(1− |G(x)−G(X1)|)m

)2]
=
m

n

[ ∫ mG(x)

−m(1−G(x)

(
1− |t|

m

)2mf(G−1(G(x)− t
m

))

g(G−1(G(x)− t
m

))
dt︸ ︷︷ ︸

=A

− 1

m

(
mE(1− |G(x)−G(X1)|)m

)2]

(
putting ms = t

)
Let m→∞, then,

A→
∫ ∞
−∞

e−2|t| f(x)

g(x)
dt =

f(x)

g(x)

From assumption (A1),

m →∞ as n→∞ and m
n
→ 0.

Hence,

V ar[Dn(x)]→ 0
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V ar[Nn(x)] = V ar

(
m

n

n∑
i=1

Yi(1− |G(x)−G(Xi |)m
)

=
m2

n

[
E(Y 2

1 (1− |G(x)−G(X1)|)2m)−
(
E(Y1(1− |G(x)−G(X1)|)m)

)2]
=
m

n

[
m

∫ ∫
v2(1− |G(x)−G(u) |)2mf(u, v)dudv

− 1

m

(
mE(Y1(1− |G(x)−G(X1)|)m)

)2]
=
m

n

[
m

∫ ∞
−∞

(1− |G(x)−G(X1)|)2m

(∫
v2f(v|u)dv

)
︸ ︷︷ ︸

=ζ(u)

f(u)du

− 1

m

(
mE(Y1(1− |G(x)−G(X1)|)m)

)2]
=
m

n

[
m

∫ G(x)

−(1−G(x))

(1− | s |)2m f(G−1(G(x)− s))ζ(G−1(G(x)− s))
g(G−1(G(x)− s))

ds

− 1

m

(
mE(Y1(1− |G(x)−G(X1)|)m)

)2]

=
m

n

[ ∫ G(x)

−m(1−G(x))

(
1− |t|

m

)2mf(G−1(G(x)− t
m

))ζ(G−1(G(x)− t
m

))

g(G−1(G(x)− t
m

))
dt︸ ︷︷ ︸

A

− 1

m

(
mE(Y1(1− |G(x)−G(X1)|)m)

)2]

Let m→∞, then,

A→
∫ ∞
−∞

e−2|t| f(x)ζ(x)

g(x)
dt =

f(x)ζ(x)

g(x)

From assumption (A1),

m→∞ as n→∞ and m
n
→ 0

Hence,

V ar[Nn(x)]→ 0

which implies that Nn(x)− E[Nn(x)]→ 0 in probability and

Dn(x)− E[Dn(x)]→ 0 in probability.
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Thus,

rn(x)→ r(x)

in probability hence, is consistent.

In this paper, we do not investigate the above result for non-absolute continuous

distribution G(·).

Now, we state the asymptotic normality of our density and regression estimator.

Theorem 3.3. Let m ∈ N be number of splits and n be sample size.

Assuming (A1) holds. Consider any distribution function G(·) with density func-

tion g(·), then

√
n

m

Nn(x)− E(Nn(x))

Dn(x)− E(Dn(x))

 −→ N2

(0

0

 ,

f(x)ζ(x)
g(x)

f(x)r(x)
g(x)

f(x)r(x)
g(x)

f(x)
g(x)

)

where ζ(x) = E[Y 2|X = x].

Now, similar to Chapter 2 it follows that

√
n

m

(
rn(x)− r(x)

)
→ N

(
0,
V ar[Y |X = x]g(x)

4f(x)

)
.

3.3 Finding the order of the bias

Considering V ar[Dn(x)] from Section 3.2.1, i.e.,

V ar[Dn(x)] = V ar

(
m

n

n∑
i=1

(1− |G(x)−G(Xi)|)m
)

=
m

n

[ ∫ mG(x)

−m(1−G(x))

(
1− |t|

m

)2mf(G−1(G(x)− t
m

))

g(G−1(G(x)− t
m

))
dt− 1

m

(
mE(1− |G(x)−G(X1)|)m

)2]
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Consider the integral

I =

∫ mG(x)

−m(1−G(x))

(
1− |t|

m

)2mf(G−1(G(x)− t
m

))

g(G−1(G(x)− t
m

))
dt. (3.4)

As the bias only depends on the function f, to find the order of the bias, we consider

f

(
G−1

(
G(x)− t

m

))
− f(G−1(G(x))) ( Let f(G−1(x)) = h(x))

=h

(
G(x)− t

m

)
− h(G(x))

=

[
h(G(x))− t

m
h′(G(x)) +

1

2

t2

m2
h′′(G(x))− · · ·

]
− h(G(x))

=
−t
m
h′(G(x)) +

1

2

t2

m2
h′′(G(x))− · · ·

Now, from equation (3.4), the integral will approach

I →
∫ mG(x)

−m(1−G(x))

(
1− |t|

m

)2m(
−t
m
h′(G(x)) + 1

2
t2

m2h
′′(G(x)) + · · ·

)
g

(
G−1(G(x)− t

m
)

) dt

and hence, the optimum order of m will be (by equating leading terms of variance

and squared bias)

m

n
=

1

m2
=⇒ n = m3 or m = n1/3

Special case:

If G(x) = 1
2

(i.e., symmetric G centred at x)

then the integral (3.4) will become:

I =

∫ m/2

−m/2

(
1− |t|

m

)2m(
− t

m
h′(1

2
) + 1

2
t2

m2h
′′(1

2
) + ..

)
g

(
G−1(1

2
− t

m
)

) dt
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Therefore, optimum order will be:

m

n
=

1

m4
=⇒ n = m5 or m = n1/5

So, the optimal choices are :


m
n

= 1
m4 =⇒ m5 = n ; when G(x) = 1/2

m
n

= 1
m2 =⇒ m3 = n ; otherwise

The kernel regression and density estimator, for G(x) = 1/2, thus becomes

Nn(x) =
m

n

n∑
i=1

Yi(1− |G(x)−G(Xi)|)m =
m

n

n∑
i=1

Yi(1− |1/2−G(x−Xi)|)m

Dn(x) =
m

n

n∑
i=1

(1− |G(x)−G(Xi)|)m =
m

n

n∑
i=1

(1− |1/2−G(x−Xi)|)m
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4 Simulation Experiments

In order to illustrate mathematical results from previous sections, we perform some

simulations with R. We try to compare the true densities and estimated densities

for uniform and non-uniform case for different values of m (number of splits).

4.1 Density Estimation

• Uniform Kernel Density Estimation

For this simulation, we consider the estimator:

Dn(x) = A · m
n

n∑
i=1

(1− |x−Xi|)m

where A = 1
2

is the multiplicative factor to make the density estimator

consistent.

To estimate a uniform kernel, we assume X ∼ Beta(3, 10) to be the true

distribution with density function,

f(x) =
x2(1− x)9

B(3, 10)
; 0 6 x 6 1

where B(3, 10) = Γ(3)Γ(10)
Γ(13)

.

We show the estimate for different values of m (number of splits) in figures

below:
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m= 20 (fig.4.1) , 32 (fig.4.2), 39 (fig.4.3)

Figure 4.1: Uniform Kernel Density Estimate for m = 20

Figure 4.2: Uniform Kernel Density Estimate for m = 32
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Figure 4.3: Uniform Kernel Density Estimate for m = 39

From the plots above, it can be observed that as the value of m increases, the

estimated density gives a good fit of the true density as expected. However,

for m > 39, the estimated density tends to exceed the bounds of the true

density.

• Non-Uniform Kernel Density Estimation

To estimate a non-uniform kernel, we assume X ∼ Laplace(0, 1) to be the

true distribution with density function

g(x) =
1

2
e−|x|, ∞ < x <∞

and distribution function

G(x) =


1
2
ex if x 6 0

1− 1
2
e−x if x > 0
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– Centred Non-Uniform Density Estimation

Here G(x)= 1
2

(i.e., symmetric G centred at x) and we consider the

estimator:

Dn(x) = A · m
n

n∑
i=1

(1− |1/2−G(x−Xi)|)m

where A = 1
2
g(x) is multiplicative factor to make the estimator consis-

tent.

We show the estimate for different values of m (number of splits) in

figures below:

m= 5 (fig.4.4), 8 (fig.4.5), 15 (fig.4.6).

Figure 4.4: Centred Non-Uniform Density Estimate for m = 5
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Figure 4.5: Centred Non-Uniform Density Estimate for m = 8

Figure 4.6: Centred Non-Uniform Density Estimate for m = 15
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From the plots above, it can be observed that the estimated density

takes the curvature of the true density, but clearly, it does not provide

a good fit as m increases.

– Non-Centred Non-Uniform Density Estimation

Here, we consider the estimator:

Dn(x) = A · m
n

n∑
i=1

(1− |G(x)−G(Xi)|)m

where A = 1
2
g(x) is multiplicative factor to make the estimator consis-

tent.

We show the estimate for different values of m (number of splits) in

figures below:

m= 5 (fig.4.7), 10 (fig.4.8), 15 (fig.4.9)

Figure 4.7: Non-Centred Non-Uniform Density Estimate for m = 5
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Figure 4.8: Non-Centred Non-Uniform Density Estimate for m = 10

Figure 4.9: Non-Centred Non-Uniform Density Estimate for m = 15
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From the plots above, it can be observed that as we increase the value of

m, the estimated density gives a good fit of the true density as expected.

4.2 Regression Estimation

Consider the regression model

Yi = r(Xi) + 0.075εi where, εi ∼ N (0, 1)

r(·) is the true distribution.

• Uniform Kernel Regression Estimation

Here, we consider the uniform regression estimator

Nn(x) =
m

n

n∑
i=1

Yi(1− |x−Xi|)m

We assume X ∼ Beta(3, 10) to be the true distribution with density function

f(x) =
x2(1− x)9

B(3, 10)
; 0 6 x 6 1

where B(3, 10) = Γ(3)Γ(10)
Γ(13)

.

We show the estimate for different values of m (number of splits) in figures

below:

m= 15 (fig.4.10), 30 (fig.4.11), 39 (fig.4.12)
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Figure 4.10: Uniform Kernel Regression Estimate for m = 15

Figure 4.11: Uniform Kernel Regression Estimate for m = 30
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Figure 4.12: Uniform Kernel Regression Estimate for m = 39

From the plots above, it can be observed that the estimated regression ap-

proaches the bounds of the true function. However, it does not provide a

good fit.

• Non-Uniform Kernel Regression Estimation

To estimate a non-uniform kernel, we assume X ∼ Laplace(0, 1) to be the

true distribution with density function

g(x) =
1

2
e−|x|, ∞ < x <∞

and distribution function

G(x) =


1
2
ex if x 6 0

1− 1
2
e−x if x > 0
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– Centred Non-Uniform Regression Estimation

Here G(x)= 1
2

(i.e., symmetric G centred at x) and we consider the

regression estimator

Nn(x) =
m

n

n∑
i=1

Yi(1− |1/2−G(x−Xi)|)m

We show the estimate for different values of m (number of splits) in

figures below:

m= 5 (fig.4.13), 20 (fig.4.14), n1/5 (fig.4.15)

Figure 4.13: Centred Non-Uniform Regression Estimate for m = 5
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Figure 4.14: Centred Non-Uniform Regression Estimate for m = 20

Figure 4.15: Centred Non-Uniform Regression Estimate for m = n1/5
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From the plots above, it can be observed that the estimated regression tries

to fit the true function but there is a problem of over-fitting, as it tends to

pass through every point. Hence, it does not provide a good fit.

– Non-Centred Non-Uniform Regression Estimation

Here, we consider the regression estimator:

Nn(x) =
m

n

n∑
i=1

Yi(1− |G(x)−G(Xi)|)m

We show the estimate for different values of m (number of splits) in

figures below:

m= 2 (fig.4.16), 5 (fig.4.17), n1/3 (fig.4.18)

Figure 4.16: Non-Centred Non-Uniform Regression Estimate for m = 2
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Figure 4.17: Non-Centred Non-Uniform Regression Estimate for m = 5

Figure 4.18: Non-Centred Non-Uniform Regression Estimate for m = n1/3
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From the plots above, it can be observed that the estimated regression tries to fit

the true function but there is a problem of over-fitting, as it tends to pass through

every point. Hence, it does not provide a good fit.
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5 Conclusion and Future work

In this paper, we sought to define a new estimators for both density and regression

kernels. Scornet (Scornet, 2016b) had an expression for kernel Kuf
k which only had

simple representation for level k = 1, 2. However, when levels were greater than

2, the expression became extremely complicated to compute. We used different

partitioning scheme to find the general expression for the both uniform and non-

uniform kernels and from that we had a density and regression estimators.

We studied the consistency and asymptotic normality of the estimators and finally

used simulation to evaluate the performance of the estimators.

In Chapter 4, we realized that the new density estimators provide good fit to the

true function but depends heavily on m, the number of splits, whiles the new

regression estimators did not provide a good fit to the true function.

In future, research can be done on:

• developing procedure for the optimal data-based choice of m, and

• extending the results to directional data.

• investigating if theorem 3.2 holds for non-absolute continuous distribution

G.
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A R Codes

A.1 Uniform density estimator

• For m=20

set.seed(16)

n=500

x=sort(runif(n))

#true den.

fx= dbeta(x,3,10)

rx=function(v,m,xi){

b=beta(3,10)

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(2*n))*sum((1-abs(v[i]-xi))^m)

}

return(a)

}

xi = rbeta(n,3,10)

v = sort(rbeta(n,3,10))
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vx = rx(v,m=20,xi)

plot(x,fx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Uniform Density Estimator for m=20")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(0.6,3.4,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

• For m=32

set.seed(16)

n=500

x=sort(runif(n))

#true den.

fx= dbeta(x,3,10)

rx=function(v,m,xi){

b=beta(3,10)

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(2*n))*sum((1-abs(v[i]-xi))^m)

}

return(a)

}

xi = rbeta(n,3,10)

v = sort(rbeta(n,3,10))

vx = rx(v,m=32,xi)
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plot(x,fx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Uniform Density Estimator for m=32")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(0.6,3.4,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

• For m=39

set.seed(16)

n=500

x=sort(runif(n))

#true den.

fx= dbeta(x,3,10)

rx=function(v,m,xi){

b=beta(3,10)

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(2*n))*sum((1-abs(v[i]-xi))^m)

}

return(a)

}

xi = rbeta(n,3,10)

v = sort(rbeta(n,3,10))

vx = rx(v,m=39,xi)
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plot(x,fx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Uniform Density Estimator for m=39")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(0.6,3.4,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

A.2 Non-Uniform Density Estimator

A.2.1 Centered Density Estimator

• m=5

set.seed(16)

n=500

library(rmutil)

#true density

x=sort(rnorm(n))

gx= dlaplace(x)

rx=function(v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(dlaplace(v[i])/2)*(m/n)*sum((1-abs(0.5-pnorm(v[i]-xi)))^m)

}

return(a)

}
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xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(v,m=5,xi)

plot(x,gx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Non-Uniform Centered Density Estimator for m=5")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(1.2,0.5,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

• m=8

set.seed(16)

n=500

library(rmutil)

#true density

x=sort(rnorm(n))

gx= dlaplace(x)

rx=function(v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(dlaplace(v[i])/2)*(m/n)*sum((1-abs(0.5-pnorm(v[i]-xi)))^m)

}

return(a)

}
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xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(v,m=8,xi)

plot(x,gx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Non-Uniform Centered Density Estimator for m=8")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(1.2,0.5,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

• m= 15

set.seed(16)

n=500

library(rmutil)

#true density

x=sort(rnorm(n))

gx= dlaplace(x)

rx=function(v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(dlaplace(v[i])/2)*(m/n)*sum((1-abs(0.5-pnorm(v[i]-xi)))^m)

}

return(a)

}
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xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(v,m=15,xi)

plot(x,gx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Non-Uniform Centered Density Estimator for m=15")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(1.2,0.5,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

A.2.2 Non-Centered Density Estimator

• m= 5

set.seed(16)

n=500

library(rmutil)

#true density

x=sort(rnorm(n))

gx= dlaplace(x)

rx=function(v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(dlaplace(v[i])/2)*(m/n)*sum((1-abs(plaplace(v[i])-pnorm(xi)))^m)

}

return(a)

}
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xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(v,m=5,xi)

plot(x,gx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Non-Uniform Non-Centered Density Estimator for m=5")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(1.3,0.5,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

• m= 10

set.seed(16)

n=500

library(rmutil)

#true density

x=sort(rnorm(n))

gx= dlaplace(x)

rx=function(v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(dlaplace(v[i])/2)*(m/n)*sum((1-abs(plaplace(v[i])-pnorm(xi)))^m)

}

return(a)

}
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xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(v,m=10,xi)

plot(x,gx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Non-Uniform Non-Centered Density Estimator for m=10")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(1.3,0.5,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

• m= 15

set.seed(16)

n=500

library(rmutil)

#true density

x=sort(rnorm(n))

gx= dlaplace(x)

rx=function(v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(dlaplace(v[i])/2)*(m/n)*sum((1-abs(plaplace(v[i])-pnorm(xi)))^m)

}

return(a)

}

xi = rnorm(n)
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v = sort(rlaplace(n))

vx = rx(v,m=15,xi)

plot(x,gx,type = ’l’,col= "blue",lwd=2,ylab = "Density",

main = "Non-Uniform Non-Centered Density Estimator for m=15")

lines(v,vx,col="Red", lty=3,lwd=2)

legend(1.3,0.5,legend = c("True Density","Estimated Density"),

col = c(’Blue’,"red"),lty=1:2)

A.3 Uniform Regression Estimator

• m= 15

set.seed(1)

n=500

x=sort(runif(n))

#true density

fx= dbeta(x,3,10)

x1=sort(rbeta(n,3,10))

yi=fx+(0.075)*rnorm(n)

rx=function(y,v,m,xi){

#b=beta(3,10)

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(15-(1/(b*n)))/n)*sum(y[i]*(1-abs(v[i]-xi))^m)

}

return(a)

}
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xi = rbeta(n,3,10)

v = sort(rbeta(n,3,10))

vx = rx(y=yi,v,m=15,xi)

plot(v,vx,type = "l", col=’red’, lwd=2,xlab="x", ylab =

’Regression Density’,

main = "Regression Estimator for m=15") #estimated regression

lines(x,fx, lwd=2, col=’Blue’, lty=2) #True regrssion function

points(x,yi, col=’black’, pch=20) #Scattered

legend(0.37,3.4,legend = c("Estimated Regression Function",

"True Regression Function"

,"Scattered Plot"),col = c(’red’,"blue","black"),lty=c(1,2,3))

• m= 30

set.seed(1)

n=100

x=sort(runif(n))

#true density

fx= dbeta(x,3,10)

x1=sort(rbeta(n,3,10))

yi=fx+(0.075)*rnorm(n)

rx=function(y,v,m,xi){

b=beta(3,10)

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=((15-(1/(b*n)))/n)*sum(y[i]*(1-abs(v[i]-xi))^m)
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}

return(a)

}

xi = rbeta(n,3,10)

v = sort(rbeta(n,3,10))

vx = rx(y=yi,v,m=30,xi)

plot(v,vx,type = "l", col=’red’, lwd=2, ylab = ’Regression Density’,

main = "Regression Estimator for m=30") #estimated regression

lines(x,fx, lwd=2, col=’Blue’, lty=2) #True regression function

points(x,yi, col=’black’, pch=20) #Scattered plot

legend(0.37,3.4,legend = c("Estimated Regression Function",

"True Regression Function","Scattered Plot"),

col = c(’red’,"blue","black"),lty=1:2:3)

• m=39

set.seed(1)

n=100

x=sort(runif(n))

#true density

fx= dbeta(x,3,10)

x1=sort(rbeta(n,3,10))

yi=fx+(0.075)*rnorm(n)

rx=function(y,v,m,xi){

b=beta(3,10)

a = rep(0,length(v))

for(i in 1:(length(v))){
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a[i]=((15-(1/(b*n)))/n)*sum(y[i]*(1-abs(v[i]-xi))^m)

}

return(a)

}

xi = rbeta(n,3,10)

v = sort(rbeta(n,3,10))

vx = rx(y=yi,v,m=39,xi)

plot(v,vx,type = "l", col=’red’, lwd=2, ylab = ’Regression Density’,

main = "Regression Estimator for m=39") #estimated regression

lines(x,fx, lwd=2, col=’Blue’, lty=2) #True regression function

points(x,yi, col=’black’, pch=20) #Scattered plot

legend(0.37,3.4,legend = c("Estimated Regression Function",

"True Regression Function","Scattered Plot"),

col = c(’red’,"blue","black"),lty=1:2:3)

A.4 Non-Uniform Regression Estimator

A.4.1 Centered Regression Estimator

• m=5

set.seed(7)

n=500

x=sort(rnorm(n))

#true density

fx= dlaplace(x)

yi=fx+(0.075)*rnorm(n)
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rx=function(y,v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(2*n))*sum(y[i]*(1-abs(0.5-pnorm(v[i]-xi)))^m)

}

return(a)

}

xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(y=yi,v,m=5,xi)

plot(x,fx,type = "l", col=’red’, lwd=2,xlab="x", ylab =

’Regression Density’,

main = "Non-Uniform Centered Regression Estimator for m=5")

#True regression

lines(v,vx, lwd=2, col=’Blue’, lty=2) #Estimated regression function

points(x,yi, col=’black’, pch=20) #Scattered

legend(0.383,0.51,legend = c("True Regression Function",

"Estimated Regression Function","Scattered Plot"),

col = c(’red’,"blue","black"),lty=c(1,2,3))

• m=20

set.seed(7)

n=500

x=sort(rnorm(n))
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#true density

fx= dlaplace(x)

yi=fx+(0.075)*rnorm(n)

rx=function(y,v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(2*n))*sum(y[i]*(1-abs(0.5-pnorm(v[i]-xi)))^m)

}

return(a)

}

xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(y=yi,v,m=20,xi)

plot(x,fx,type = "l", col=’red’, lwd=2,xlab="x", ylab =

’Regression Density’,

main = "Non-Uniform Centered Regression Estimator for m=20")

#True regression

lines(v,vx, lwd=2, col=’Blue’, lty=2) #Estimated regression function

points(x,yi, col=’black’, pch=20) #Scattered

legend(0.383,0.51,legend = c("True Regression Function",

"Estimated Regression Function","Scattered Plot"),

col = c(’red’,"blue","black"),lty=c(1,2,3))

• m=n1/5
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library(rmutil)

set.seed(7)

n=500

x=sort(rnorm(n))

#true density

fx= dlaplace(x)

# x1=sort(rbeta(n,3,10))

yi=fx+(0.075)*rnorm(n)

rx=function(y,v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(2*n))*sum(y[i]*(1-abs(0.5-pnorm(v[i]-xi)))^m)

}

return(a)

}

xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(y=yi,v,m=(n^(1/5)),xi)

plot(x,fx,type = "l", col=’red’, lwd=2,xlab="x", ylab =

’Regression Density’,

main = "Non-Uniform Centered Regression Estimator for m=n^1/5")

#True regression

lines(v,vx, lwd=2, col=’Blue’, lty=2) #Estimated regrssion function

points(x,yi, col=’black’, pch=20) #Scattered
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legend(0.28,0.51,legend = c("True Regression Function",

"Estimated Regression Function","Scattered Plot"),

col = c(’red’,"blue","black"),lty=c(1,2,3))

A.4.2 Non-Centered Regression Estimator

• m=2

set.seed(7)

n=500

x=sort(rnorm(n))

#true density

fx= dlaplace(x)

yi=fx+(0.075)*rnorm(n)

rx=function(y,v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(1.8*n))*sum(y[i]*(1-abs(plaplace(v[i])-pnorm(xi)))^m)

}

return(a)

}

xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(y=yi,v,m=2,xi)

plot(x,fx,type = "l", col=’red’, lwd=2,xlab="x", ylab =
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’Regression Density’,

main = "Non-Uniform Non-Centered Regression Estimator for m=2")

#True regression

lines(v,vx, lwd=2, col=’Blue’, lty=2) #estimated regression function

points(x,yi, col=’black’, pch=20) #Scattered

legend(0.4,0.51,legend = c("True Regression Function",

"Estimated Regression Function","Scattered Plot"),

col =c(’red’,"blue","black"),lty=c(1,2,3))

• m=5

set.seed(7)

n=500

x=sort(rnorm(n))

#true density

fx= dlaplace(x)

yi=fx+(0.075)*rnorm(n)

rx=function(y,v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(1.8*n))*sum(y[i]*(1-abs(plaplace(v[i])-pnorm(xi)))^m)

}

return(a)

}

xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(y=yi,v,m=5,xi)
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plot(x,fx,type = "l", col=’red’, lwd=2,xlab="x", ylab =

’Regression Density’,

main = "Non-Uniform Non-Centered Regression Estimator for m=5")

#True regression

lines(v,vx, lwd=2, col=’Blue’, lty=2) #estimated regression function

points(x,yi, col=’black’, pch=20) #Scattered

legend(0.4,0.51,legend = c("True Regression Function",

"Estimated Regression Function","Scattered Plot"),

col = c(’red’,"blue","black"),lty=c(1,2,3))

• m=n1/3

set.seed(7)

n=500

x=sort(rnorm(n))

#true density

fx= dlaplace(x)

yi=fx+(0.075)*rnorm(n)

rx=function(y,v,m,xi){

a = rep(0,length(v))

for(i in 1:(length(v))){

a[i]=(m/(2*n))*sum(y[i]*(1-abs(plaplace(v[i])-pnorm(xi)))^m)

}

return(a)

}
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xi = rnorm(n)

v = sort(rlaplace(n))

vx = rx(y=yi,v,m=(n^(1/3)),xi)

plot(x,fx,type = "l", col=’red’, lwd=2,xlab="x", ylab =

’Regression Density’,

main = "Non-Uniform Non-Centered Regression Estimator for m=n^1/3")

#True regression

lines(v,vx, lwd=2, col=’Blue’, lty=2) #estimated regrssion function

points(x,yi, col=’black’, pch=20) #Scattered

legend(0.34,0.51,legend = c("True Regression Function",

"Estimated Regression Function","Scattered Plot"),

col =c(’red’,"blue","black"),lty=c(1,2,3))
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