
Log4Perf: Suggesting and Updating Logging Locations for Web-based

Systems’ Performance Monitoring

Kundi Yao

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science(Software Engineering) at

Concordia University

Montréal, Québec, Canada

August 2018

© Kundi Yao, 2018

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Kundi Yao

Entitled: Log4Perf: Suggesting and Updating Logging Locations for Web-

based Systems’ Performance Monitoring

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science(Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr Tse-Hsun Chen

Examiner
Dr Nikolaos Tsantalis

Examiner
Dr Jinqiu Yang

Supervisor
Dr Weiyi Shang

Approved by
Dr Volker Haarslev, Graduate Program Director

21 August 2018
Dr Amir Asif, Dean

Faculty of Engineering and Computer Science

Abstract

Log4Perf: Suggesting and Updating Logging Locations for Web-based Systems’

Performance Monitoring

Kundi Yao

Performance assurance activities are an essential step in the release cycle of software systems. Logs

have become one of the most important sources of information that is used to monitor, understand

and improve software performance. However, developers often face the challenge of making logging

decisions, i.e., neither logging too little and logging too much is desirable. Although prior research

has proposed techniques to assist in logging decisions, those automated logging guidance techniques

are rather general, without considering a particular goal, such as monitoring software performance.

In this thesis, we present Log4Perf, an automated approach that provides suggestions of where to

insert logging statements with the goal of monitoring web-based systems’ software performance.

In particular, our approach builds and manipulates a statistical performance model to identify

the locations in the source code that statistically significantly influence software performance. To

evaluate Log4Perf, we conduct case studies on open source systems, i.e., CloudStore and OpenMRS,

and one large-scale commercial system. Our evaluation results show that Log4Perf can build well-

fit statistical performance models, indicating that such models can be leveraged to investigate the

influence of locations in the source code on performance. Also, the suggested logging locations are

often small and simple methods that do not have logging statements and that are not performance

hotspots, making our approach an ideal complement to traditional approaches that are based on

software metrics or performance hotspots. In addition, we proposed approaches that can suggest

the need for updating logging locations when software evolves. After evaluating our approach, we

manually examine the logging locations that are newly suggested or deprecated and identify seven

root-causes. Log4Perf is integrated into the release engineering process of the commercial software

to provide logging suggestions on a regular basis.

iii

Acknowledgement

First and foremost, I am profoundly grateful to my supervisor, Dr. Weiyi Shang, for his patient

guidance, encouragement, and contributive suggestions. My research would have been impossible to

complete without his aid and support, and I feel extremely lucky to have an intelligent and friendly

mentor who guides me in exploring innovative ideas and achieving research goals.

I would also like to show my sincere gratitude to my committee members, Dr. Nikolaos Tsan-

talis and Dr. Jinqiu Yang, for taking their precious time to consider my work and offer insightful

comments.

Assistance provided by Guilherme B. de Pádua has been a great help in experiment setting and

thesis writing. I would also like to send my gratitude to Steve Sporea, Andrei Toma, and Sarah

Sajedi from ERA Environmental Management Solutions for providing access to the enterprise system

used in our case study as well as valuable technical support.

I would like to send my appreciation to Dr. Weiyi Shang, Dr. Nikolaos Tsantalis, and Dr. Emad

Shihab, from whom I’ve learned not only valuable knowledge but also the attitudes towards research,

which will benefit my entire academic life. Also, I want to thank my fellow labmates from SENSE

and DAS lab: Jinfu Chen, Mehran Hassani, Guilherme B. de Pádua, Maxime Lamothe, Yi Zeng,

Zhenhao Li, Xiaowei Chen, Sophia Quach, Sarah Afjehei, Suihaib Mujahid, Giancarlo Sierra, Rabe

Abdalkareem and Sultan Wehaibi, for the support and encouragement, also for the best moments

we worked and enjoyed together.

Last but not least, I would like to send my most special thanks to my parents. I can never

achieve what I have now without their love and support, being your son is the proudest thing in my

life.

iv

Related publication

Kundi Yao, Guilherme B de Pádua, Weiyi Shang, Steve Sporea, Andrei Toma, and Sarah Sajedi.

Log4Perf: Suggesting Logging Locations for Web-based Systems’ Performance Monitoring. In Pro-

ceedings of the 2018 ACM/SPEC International Conference on Performance Engineering, pp. 127-

138. ACM, 2018.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Related work 4

2.1 Software performance monitoring . 4

2.2 Assist in logging decisions . 5

2.3 Performance modeling . 6

3 A motivating example 8

4 Suggesting logging locations for a single release 10

4.1 Approach . 10

4.2 Case study setup . 14

4.2.1 Subject systems and their workload . 14

4.2.2 Experimental environment . 16

4.3 RQ1: How well can we model system performance? 16

4.3.1 Motivation. 16

4.3.2 Approach. 17

4.3.3 Results. 17

4.4 RQ2: How large is the performance influence by the recommended logging locations? 19

4.4.1 Motivation. 19

4.4.2 Approach. 19

4.4.3 Results. 20

4.5 RQ3: What are the characteristics of the recommended logging locations? 20

4.5.1 Motivation. 20

vi

4.5.2 Approach. 22

4.5.3 Results. 22

5 Suggesting logging locations for evolving software 23

5.1 Approach . 23

5.2 Case study setup . 26

5.3 RQ4: Can we suggest logging locations while software evolves? 26

5.3.1 Motivation. 26

5.3.2 Approach. 27

5.3.3 Results. 27

5.4 RQ5: What are the root causes of the suggested logging location changes? 31

5.5 Motivation . 31

5.6 Approach . 31

5.7 Results . 32

6 Discussion 39

6.1 Performance influence from the inserted logging statement. 39

6.2 Not all web requests need additional logging. 40

6.3 How long do we need to test performance to suggest logging locations? 40

6.4 Aggressiveness of updating logging locations . 41

7 Threats to validity 42

7.1 External validity . 42

7.2 Internal validity . 43

7.3 Construct validity . 43

8 Conclusion 45

Bibliography 46

vii

List of Figures

1 An overview of our approach to suggest logging locations for performance monitoring. 11

2 Identifying the need of updating prediction model and log metrics 24

viii

List of Tables

1 Overview of our subject systems. 14

2 R2 values of the statistical performance models built by our approach. 18

3 The influences of our suggested logging locations on system performance. 21

4 Details of each group of subject systems . 26

5 OpenMRS Replacement decisions . 28

6 ES Replacement decisions . 28

7 OpenMRS log metric effectiveness evaluation . 30

8 ES log metric effectiveness evaluation . 30

9 Rationale behind logging statement’s replacement . 33

ix

Chapter 1

Introduction

The rise of large-scale software systems, such as web-based system like Amazon, has imposed an

impact on people’s daily lives from mobile devices users to space station operators. The increasing

importance and complexity of such systems make their quality a critical, yet a hard issue to address.

Failures in such systems are more often associated with performance issues, rather than with feature

bugs [WV00]. Therefore, performance assurance activities are an essential step in the release cycle

of large software systems.

Monitoring performance of large systems is a crucial task of performance assurance activities.

In practice, performance data is often collected either based on system-level information [CZG+05],

such as collecting CPU usage, or application-level information, such as response time or throughput.

In particular, Application Performance Management tools, such as Kieker [vHWH12], are widely

used in practice. They collect performance data from the systems when they are running in the

field environment. However, such system or application-level performance data often leads to the

challenges of pinpointing the exact location in the source code that is related to performance issues.

On the other hand, the knowledge of logs has been widely identified to improve the quality of

large software systems [KP99, JHHF09, CSJ+14, CSJ+16, SHNF15]. Prior research proposed and

used logs to monitor and improve software performance [JHHF09, CSJ+14, CSJ+16, SHNF15]. The

success of those performance assurance techniques depends on the well-maintained logging infras-

tructure and the high quality of the logs. Although prior research has proposed various approaches

to improve the quality of logs [ZRL+17, FZH+14, ZHF+15, YPH+12, YZP+11, LSZEH17, LSH17],

all of these approaches consider logs in general, i.e., not considering the particular need of using logs

for performance assurance activities. Therefore, the suggested improvement of logs may not be of

interest in performance assurance activities.

In this thesis, we present an approach that automatically provides logging location suggestion

1

for web-based systems based on the particular interest in performance modeling in two parts.

Part 1: Our approach first automatically inserts logging statements into the source code. After

conducting performance tests with the system, our approach builds statistical performance models

to represent the system performance (such as CPU usage) using logs that are generated by the

automatically inserted logging statements in the source code. By improving and analyzing statistical

performance models, our approach identifies the logging statements that are statistically significant

in explaining the system performance. Such logging statements are suggested to practitioners as

potential logging locations for the use of performance assurance activities.

Part 2: Software ever evolves while the locations in the source code that contributes to performance

modeling also evolve. Obviously, re-applying our approach in part 1 can produce up-to-date logging

locations. However, such a repetitive process not only requires extra effort but may also impact

developers and operators who leverage the logs. Therefore, the second part of our approach leverage

statistical analysis to evaluate whether the existing logging locations can still model system perfor-

mance in a new version. In addition, our approach suggests selecting the existing logging locations

that may keep in the new version.

We evaluate our approach with two open source systems, namely OpenMRS and CloudStore,

and one commercial system. Our evaluation results show that we can build high-quality statistical

performance models with R2 between 26.9% and 90.2%. By studying the suggested logging locations,

we find that they all have a high influence on the system performance. Also, these locations cannot

be identified using code complexity metrics or detected as performance hotspots. In addition, we

apply our approach in suggesting logging locations on multiple releases of our subject systems. By

manually examining the logging locations that are newly suggested or deprecated, we identify seven

root-causes. Such root-causes can be leveraged by practitioners for proactively inserting logging

statements.

This thesis makes the following contributions:

• To the best of our knowledge, our work is the first to provide logging suggestions with the

particular goal of performance monitoring.

• We propose a statistically rigorous approach to identifying source code locations that can

statistically explain system performance.

• The outcome of our approach can complement the use of traditional code metrics and perfor-

mance hotspots to assist performance engineers in practice.

• We identify seven root causes of suggesting or deprecating logging locations. Practitioners can

leverage these root causes in their proactive logging decisions.

2

Our approach is already adopted in an industrial environment and is integrated into a continuous

deployment environment. Developers receive logging suggestions from our automated approach

regularly to better monitor the system performance in the field.

The rest of this thesis is organized as follows: Chapter 2 presents the prior research that is related

to this thesis. Chapter 3 presents an example to motivate our work. Chapter 4 and 5 presents our

automated approach to suggest logging locations, including the results of evaluating our approach by

answering three research questions. Chapter 6 discuss related topics based on the results. Chapter 7

presents the threats to the validity of our study. Finally, Chapter 8 concludes this thesis.

3

Chapter 2

Related work

In this chapter, we present the prior research related to this thesis in three aspects: 1) software

performance monitoring, 2) assisting logging decisions and 3) software performance modeling.

2.1 Software performance monitoring

There exist three typical levels of software monitoring techniques. The first, system monitoring,

monitors the status of a running software based on the performance counters from the system.

Examples of such counters include CPU usage, memory usage, and I/O traffic. Rich data from these

counters is widely used to monitor system performance [CZG+05], allocate system resources, plan

capacities [ZRT+15] and predict system crash [CCG+04]. Despite the usefulness of such data, the

lack of domain knowledge of the software running on top of the system makes the data difficult to

use for improving the system in a detailed level (like improving source code).

The second type of widely used techniques is based on massive tracing. The tracing information

records every function call that is invoked during the running of the system. Prior research leverages

the tracking information to prove system quality and efficiency [ZE14, ZE15]. In order to generate

such tracing information, tools such as JProfiler [EJ] are widely used in practice and research.

The challenge of leveraging such tracing information is the extra overhead from the tracing tools.

Such overhead prevents the use of tracing in a large scale system or during the field running of the

system, hence tracing is often used in the development environment by developers. Nevertheless,

Maplesden et al. took advantage of patterns in tracing information. They built an automated tool

to detect such patterns with the goal of improving the performance investigations and the systems’

performance [MTHG15, MvRT+15].

To minimize the overhead from tracing, techniques are proposed to only trace a selected set of

function calls, such that the tracing information from the field is possible to be monitored. For

4

example, Application Performance Management tools [ABC+16] typically choose REST API call

entry points to monitor. However, trace information is often generated automatically without the

interference of developers’ knowledge. The collected trace information may not all be needed for

developers’ particular purpose while the actually needed information may be missing.

The third type of monitoring technique is based on logging. Developers write logging state-

ments in the source code to expose valuable information of runtime system behavior. A logging

statement, e.g., logger.info(“static string”+ variable), typically consists of a log level (e.g., trace/de-

bug/info/warn/error/fatal), a logged event using a static text, and variables that are related to the

event context. During system runtime, the invocation of these logging statements would generate

logs that are often treated as the most important, sometimes the only, source of information for

debugging and maintenance of large software systems. The logging information is generated based

on developers’ knowledge of the system, and are flexible to monitor various information in the code.

Due to the extensive value in logs, prior research has proposed to leverage logging data to improve

the efficiency and quality of large software systems [JHHF09, CSJ+14, CSJ+16, SHNF15]. The

advantage of using logging to monitor and analyze system performance motivates this thesis. In

particular, with our approach, the prior research that depends on logging may benefit from the

extra information that is captured from the suggested logging statements.

2.2 Assist in logging decisions

Although logging is a significant technique for software performance monitoring, the logging prac-

tice in general is not as straightforward as one would expect. Logging involves a trade-off between

the overhead it generates and having the appropriate information. In previous work, Zhao et al.

proposed an algorithm that touches such trade-offs. They increase the debugging assertiveness by au-

tomatically placing logs based on an overhead limit threshold [ZRL+17]. Even if no overhead existed,

there is still a need to balance between too much information and too little information [FZH+14].

Aiming to support the logging decisions, many previous works have contributed in ways to under-

stand, automate and suggest opportunities of where to log. Fu et al. performed an empirical study

on industry systems categorizing logged snippets of code. Their work also revealed the possibility of

predicting where to log according to the extracted logging features [FZH+14]. Zhu et al. follow up

the work and predict where to log as suggestions to developers. Similarly, a called Errlog presented

by Yuan et al. indicated the benefits of automatically detecting logging opportunities for failure

diagnosis using exception patterns and failure reports [YPH+12].

Previous research also presented other aspects to consider when taking logging decisions. Li et

al. modeled which log level should be used when adding new logging statements [LSH17]. In a

5

different work, Li et al. studied log changes and modeled those log changes to provide a just-in-time

suggestion to developers for changing logs [LSZEH17]. Different previous research has presented

what to log for a diverse set of concerns. Yuan et al. presented LogEnhancer that adds causally-

related information to existing logging statements. Their focus was on software failures and software

diagnosability [YZP+11]. Despite the above research effort, there exists no research focus on provid-

ing logging suggestions with the goal of monitoring system performance. In contrast with previous

research, this thesis focuses on logging suggestion for performance.

2.3 Performance modeling

Performance modeling is a typical practice in system performance engineering. Due to the more

complex nature of performance problems in distributed systems, simple raw metrics might not be

enough. Therefore, Cohen et al. introduced the concept and use of signatures and clustering from

logging data and system metrics to detect system states that are of significant impact in the sys-

tem’s performance [CZG+05]. With such data, Cohen et al. [CCG+04] used TAN (Tree-Augmented

Bayesian Networks) models to model the high-level system performance states based on a small sub-

set of metrics without a priori knowledge of the system. Brebner et al. have application performance

management (APM) data in multiple industry projects to build performance models. However, the

models that depend on APM can get very complex, and customization is needed [Bre16]. In order

to improve the quality of performance modeling and prediction. Stewart et al. [SKZ07] consider

the inconsistency of usage in enterprise and large e-commerce systems. In their work, they modeled

using measurement data and transaction mix, and they report a better prediction quality instead of

the existing scalar workload volume approach.

Since there could be too many performance metrics to be used in performance modeling, different

previous research addresses the issue. Xiong et al. [XPZG13] proposed an automatic creation and

selection of multiple models based on different metrics. They execute tests on virtual machines using

standard performance benchmarks. Shang et al. [SHNF15] presented an approach to automatically

group metrics in a smaller number of clusters. They used regression models on injected and real-life

scenarios, and their approach outperforms traditional approaches.

Besides the use of regression models, other statistical techniques have been used to facilitate

the communication of results, such as control charts [NAJ+12]. Many different modeling approaches

have been summarized by Gao et al. in three categories: rule-based models, data mining models and

queueing models. In their work, they used the models to compare the effectiveness of load testing

and provide insights on how to better do load testing [GJBL16]. Farshchi et al. [FSWG15] build

correlation model between logs and operation activity’s effect on system resources. Such correlation

6

is later leveraged to detect system anomalies.

The rich usage of performance modeling supports our approach that leverages such model to

suggest logging locations. We iteratively find the best logging locations that would provide the most

significant explanatory power to the performance of the system.

7

Chapter 3

A motivating example

Tom is a performance engineer of an e-commerce web system. He often uses the information from

web logs (e.g., page requests) to build performance models to understand system performance or to

detect performance issues.

Tom finds that the performance models are often unreliable in predicting the system’s perfor-

mance. He examines the performance of each log entry and found that some entries have a significant

variance. However, there is not enough information in the web logs to accurately pinpoint the issue

for further monitoring. Hence, knowing only which web requests were called is not enough to explain

the performance of the system.

Let us consider an example (Algorithm 1) in which the function processes a list of products for a

given signed-in customer. The products have an expiration date and, if they are expired, the program

needs to consult a different supplier. In this example, the method LoadProductStock response time

varies according to different factors, such as the number of products for that customer, and whether

the products are expired or not. If the products are not expired the method might return very fast;

while if the current customer has many expired products, there will be too many calls to consult

suppliers, leading to the significantly long response time.

Although Tom can identify and monitor some complex requests in the web logs, he finds that

some complex requests may not be so useful to monitor, since they have a steady performance

behavior. For those cases, the information provided by the web logs is sufficient. Nevertheless, for

the requests that their performance is not steady (e.g., Algorithm 1), there exists a high degree

of uncertainty. Due to this reason, Tom needs to manually go through all the web log entries to

find the scenarios (e.g., particular customer and product(s)) that required further monitoring and,

therefore, require more logging statements. For a large-scale system with a non-trivial workload, this

manual operation is not feasible, and, consequently, Tom needs a technique to automatically suggest

8

Algorithm 1 Example: Load products that has an expiration date.

1: function LoadProductStock(c)

2: products← product list of customer c

3: for each p in products do

4: if IsExpired(p) then

5: p.Stock ← StockFromSupplier(p)

6: end if

7: end for

8: end function

where the monitoring and logging are needed, without repetitive information. Such technique would

significantly reduce the uncertainty of monitoring or not the right places.

In this next chapter of this thesis, we will present an approach that seeks to suggest logging

locations by examining whether the location in the source code can provide significant explanatory

power to the systems’ performance.

9

Chapter 4

Suggesting logging locations for a

single release

4.1 Approach

In this chapter, we present our approach that can automatically suggest logging locations for soft-

ware performance monitoring. To reduce the performance overhead caused by introducing instru-

mentation into the source code, we first leverage the readily available web logs to build a sta-

tistical performance model, and we identify the web requests that are statistically significantly

performance-influencing. In the second step, we only focus on the methods that are associated with

the performance-influencing web requests and identify which method is statistically significantly

performance-influencing. Finally, we focus on the basic blocks in the source code that are associated

with the performance-influencing method, and we identify and suggest the code blocks where logs

should be inserted.

For each step, we apply a workload on the subject system while monitoring its performance.

Afterward, we build a statistical model for the performance of the subject system using the readily

available web logs and the automatically generated logs from instrumentation during the work-

load. Using the statistical performance model, we identify the statistically significant performance-

influencing logging statements. The overview of our approach is presented in Figure 1.

Step 1: Identifying performance-influencing web requests

In the first step, we aim to identify the web requests that influence system performance.

1.1 Parsing web logs

10

Figure 1: An overview of our approach to suggest logging locations for performance monitoring.

We run performance test for our subject systems and monitor their performance during the test.

After the performance test, we parse the generated web logs. In particular, we keep the time stamp

of the web log and the web request (e.g., a RESTful web request).

We then calculate log metrics based on those logs. Each value of each log metric L is the number

of times that each web request being executed during the period. For example, if a web request

index.jsp is executed 10 times during a 30-second time period, the metric index.jsp’s value is 10 for

that period.

1.2 Building statistical performance models using web logs

We follow a model building approach that is similar to the approach from prior software perfor-

mance research [SHNF15, CZG+05, XPZG13]. We build a linear regression model [Fre09] to model

11

the performance of the software. We choose linear regression model because: 1) the goal of the ap-

proach is not to build a perfect model but to interpret the model easily instead, and 2) prior research

used such modeling techniques to model software performance [CZG+05, XPZG13, FSWG15]. We

use the log metrics that are generated from web logs as independent variables. The dependent

variable of the model is the performance metrics that are collected during applying the load on the

software system, such as CPU usage.

After building a linear regression model for the performance of the software, we examine each

independent variable, i.e., log metric, to see how statistically significant it is to the model’s output,

i.e., performance metrics. In particular, we only consider the log metrics that have p-value ≤

0.05. Since each log metric represents the number of times that the associated source code of each

web request executes, the significance of a log metric shows whether the execution of the web log

associated source code has a statistically significant influence on the software performance. Based on

the list of statistically significant log metrics, we identify the performance-influencing web requests.

Step 2: Identifying performance-influencing methods

In the second step, we focus only on the performance-influencing web requests, and we aim to identify

which methods in the source code are statistically significantly influencing performance. To reduce

the performance overhead of the instrumentation, we note that every time we only focus on one

performance-influencing web request. If multiple web requests are found performance-influencing,

we repeat this step for every one of them.

12

2.1 Automatically inserting logging statements into methods

In this step, we automatically insert a logging statement into every method that is associated

with the performance-influencing web requests. We use source code analysis frameworks, such as

Eclipse JDT [Ecl] and .NET Compiler Platform (“Roslyn”) [Mica], to parse the source code and to

identify the associated methods in the source code. We automatically insert a logging statement

based on Log4j2 and Log4Net.Async at the beginning of each method source code. Since the goal of

our approach only suggests the location to insert logging statement, we only print the time stamp

and the method signature using the logging statement. After re-building the systems and applying

performance tests to each subject system, logs will be generated automatically.

Similar to step 1.1, we parse both the web logs and the logs that are generated by our inserted

logging statement. Then we generate log metrics based on these logs.

2.2 Reducing metrics

Intuitively, methods that never execute during a workload, or the execution of the method has

a constant value during the workload do not influence the performance of the system. Hence, we

first remove any log metric that has constant values in the dataset. Methods may often be called

together, or one method may always call another one. In such cases, not all methods need to be

logged. Hence, we perform a correlation analysis on the log metrics [Kuh08]. We used the Pearson

correlation coefficient among all performance metrics from one environment. We find the pair of log

metrics that have a correlation value higher than 0.9. From these two log metrics, we remove the

metric that has a higher average correlation with all other metrics. We repeat this step until there

exists no correlation higher than 0.9.

We then perform redundancy analysis on the log metrics. The redundancy analysis would con-

sider a log metric redundant if it can be predicted from a combination of other metrics [Har01]. We

use each log metric as a dependent variable and use the rest of the log metrics as independent vari-

ables to build multiple regression models. We calculate the R2 of each model and if the R2 is larger

than a threshold (0.9), the current dependent variable (i.e., log metric) is considered redundant. We

then remove the performance metric with the highest R2 and repeat the process until no log metric

can be predicted with R2 higher than the threshold. For example, if method foo can be linearly

modeled by the rest of the performance metrics with R2>0.9, we remove the metric for method foo.

2.3 Building statistical performance models using both web logs and our generated logs

In this step, we build a similar statistical model as step 1.2. As a difference, we do not include

the log metrics from web logs that are found not performance influencing from step 1.2. We follow

the same model building process and the same way of identifying statistically significant log metrics.

13

The outcome of this step is the methods that are statistically significantly performance-influencing.

Step 3: Identifying performance-influencing basic code blocks

A method may be long and consist of many basic blocks. It may be the case that only a small

number of basic blocks are performance-influencing. Therefore, in the final step, we focus only on

the performance-influencing methods, and we aim to identify which basic code block is performance-

influencing. Similarly, every time we only focus on one method. If multiple methods are found

performance-influencing, we repeat this step for each method.

We use the code analysis frameworks to identify basic blocks of each performance-influencing

methods. If a performance influencing method only contains one basic block, we do not proceed

with this step. For the methods with multiple basic blocks, similar to step 2.1, we automatically

insert logging statement into every basic block and generate log metrics by both the web logs and

our generated logs. We also follow a similar approach as step 2.2 and 2.3 to identify which code block

is statistically significantly influencing performance. We then automatically suggest to developers

the logging statement insertions into the basic code block, to assist in performance monitoring. If

none of the log metrics that are based on basic blocks are significant, we suggest to developers the

direct insertion of logging statement at the beginning of the method itself.

4.2 Case study setup

In this section, we first present the setup of our evaluation, including the subject systems, the

workload, and the experimental environment. Then we evaluate our approach by answering three

research questions. For each research question, we present the motivation for the question, the

approach that we use to answer the question and finally the results.

4.2.1 Subject systems and their workload

We evaluate our approach with open-source software, including OpenMRS and CloudStore, and one

commercial software, ES. The overview of the subject software is shown in Table 1.

Table 1: Overview of our subject systems.

Subjects Version SLOC (K) # files # methods Programming Language

CloudStore v2 7.7 98 995 Java

OpenMRS 2.0.5 67.3 772 8,361 Java

ES 2017 >2,000 >9,000 >100,000 .Net

14

OpenMRS

OpenMRS is an open-source patient-based medical record system commonly used in developing coun-

tries. OpenMRS is built by an open community that aims to improve healthcare delivery through

a robust, scalable, user-driven, open source medical record system platform. Their application de-

sign is customizable with low programming requirements, using a core application with extendable

modules. We choose OpenMRS since it is highly concerned with scalability and its performance has

been studied in prior research [CSH+16a]. OpenMRS provides a web-based interface and RESTFul

services. We deployed the OpenMRS version 2.0.5 and the data used are from MySQL backup files

that are provided by OpenMRS developers. The backup file contains data for over 5K patients and

476K observations. We use the RESTFul API test cases created by Chen et al. [CSH+16a]. The

tests are composed of various searches, such as: by patient, concept, encounter, and observation, and

editing/adding/retrieving patient information. The tests include randomness to simulate real-world

workloads better. We keep the workload running for five hours. To minimize the noise from the

system warmup and cool-down periods, we do not include the data from the first and last half an

hour of running the workload. In the end, we keep four hours of data from each performance test.

CloudStore

CloudStore is an open-source sample e-commerce web application developed to be used for the

analysis of cloud characteristics of systems, such as capacity, scalability, elasticity, and efficiency.

It follows the functional requirements defined by the TPC-W standard for verifiable transaction

processing and database benchmarks data [TPC]. It was developed to validate the European Union

funded project called CloudScale [Clo]. We choose CloudStore due to its importance in improving

cloud systems performance and scalability. It has also been studied in prior research [CSH+16a].

We deployed the CloudStore version v2 and the data used was generated using scripts provided

by CloudStore developers. The generated data for CloudStore contains about 864K customers,

777K orders, and 300 items. We use the test cases created by Chen et al [CSH+16a] to cover

searching, browsing, adding items to shopping carts, and checking out. The tests include randomness

to simulate real-world workloads better. For example, there is randomness to ensure that some

customers may check out, and some may not. We run the performance tests with the same length

as OpenMRS.

ES

ES is a commercial software that provides government-regulation related reporting services. The

service is widely used as the market leader of its domain. Because of a non-disclosure agreement, we

cannot reveal additional details about the system. We do note that it has over ten years of history

15

with more than two million lines of code that are based on Microsoft .Net. We run a typical loading

testing suite as the workload of the system.

4.2.2 Experimental environment

The experimental environment for the open-source software is set up on three separate machines.

The first machine is the database server; the second is the web server in which the web application

was deployed and, finally, the third machine simulates users using the JMeter load driver [Apaa].

These machines have the same hardware configuration, which is 8G of RAM and Intel Core i5-4690

@ 3.5 GHz quad-core CPU. They all run the Linux operating system and are connected to a local

network.

We use PSUtil [Gia] to monitor the performance of the software. To minimize the noise of other

background processes, we only monitor the process of the subject system that is under the workload.

We monitor the CPU usage during the workload for every 10 seconds. In particular, similar to prior

research [SSJH17, ASSH16], CPU percentage of the monitored process between two timestamps are

calculated as the CPU usage of the corresponding workload during the period.

The experimental environment for ES is an internal dedicated performance testing environment,

also with three machines. The testing environment is deployed with performance monitoring infras-

tructure. Similar to the open-source software, we monitor the CPU usage of the process of ES for

every 10-seconds and use a logging library to generate automatically instrumented logs.

To combine the two datasets of performance metrics and logs, and to further reduce the impact

of recording noises, we calculate the mean values of the performance metrics in every 30 seconds.

Then, we combine the datasets of performance metrics and system throughput based on the time

stamp on a per 30-seconds basis. A similar approach has been applied to address mining performance

metrics challenges [FJA+10]. We use Log4J2 ’s asynchronous logging to generate the automatically

instrumented logs since it is shown to have the smallest performance overhead [Apab].

4.3 RQ1: How well can we model system performance?

4.3.1 Motivation.

The success of our approach depends on the ability to build a well fit statistical models for software

performance. If the models built by our approach are of low quality, we cannot use such models

to understand the influence of logged source code locations (i.e., log metrics) to the software per-

formance (i.e., performance metrics). Additionally, the automatically inserted logging statements

16

have an impact on software performance. If the performance is influenced by those inserted log-

ging statements, instead of the existing source code itself, our model cannot be used to identify

performance-influencing source code locations to log.

Furthermore, if we identify too many locations that are statistically significantly influencing

performance, it is not practical for developers to log all locations nor can developers deeply investigate

every location to ensure the need for logging. Besides, if all the identified locations are already well

logged, developers may not need our approach’s logging suggestion.

4.3.2 Approach.

We measure the model fit to assess the quality of the statistical models for software performance.

In particular, we calculate the R2 of each model to measure model fit. If the model perfectly fits the

data, the R2 of the model is 1, while a zero R2 value indicates that the model does not explain the

variability of the dependent variable (i.e., performance metric). We also count the number of logging

locations that are suggested by our approach. For every suggested logging location, we manually

examine whether there already exists a logging statement.

4.3.3 Results.

Our model can well explain system performance. Shown by Table 2, our statistical perfor-

mance models have an R2 of 26.9% and 90.2%. Such high values of the model fit confirms that

our performance models can well explain system performance. By looking closely at the models,

we can see that the models with our automatically inserted logging statement typically has higher

R2 than the models that are only using web logs. For example, by insert logging statements into

two methods in OpenMRS, the fit of the performance model almost doubles (from 26.9% to 46.3%).

However, the models that are with inserted logging statements into basic code blocks have a rel-

atively smaller increase of R2 in comparison to the ones with method-level logging. In the same

example of OpenMRS, inserting the logs into basic code blocks only provides 1.6% increase of the

R2.

Our approach does not suggest an overwhelming amount of logging locations for per-

formance modeling. In total, our approach suggests three, two, and four locations for CloudStore,

OpenMRS, and ES respectively. We consider such an amount of suggestion as an appropriate amount

for practitioners. By measuring the total number of methods in the subject systems, we only suggest

to log in less than 0.5% of them. By providing such suggestions to our industrial practitioners, we

also received the feedback that such an amount of suggestions is not overwhelming. Hence, practi-

tioners can allocate resource to examine each suggestion and make the final decision on whether to

insert logging statements to those locations. Moreover, by manually examining each of the logging

17

Table 2: R2 values of the statistical performance models built by our approach.

Cloud Store

Steps: Web request name Method name/Block location
R2

Original With logging statement as a metric

Step 1: Web logs only N/A 90.20% N/A

Step 2: With method instrumentation

"cloudstore/ " HomeController.getProductUrl()) (No block) 78.50% 80.50%

"cloudstore/buy" DaoImpl.getCurrentSession()(No block) 49.40% 49.50%

"cloudstore/search" ItemDaoImpl.findAllByAuthor() 78.00% 81.20%

Step 3: With block instrumentation "cloudstore/search" ItemDaoImpl.java, line 233 to 243 81.30% 81.60%

OpenMRS

Steps: Web request name Method name/Block location
R2

Original With logging statement as a metric

Step 1: Web logs only N/A 26.90% N/A

Step 2: With method instrumentation concept/
ConceptServiceImpl.getAllConcepts()

ConceptServiceImpl.getFalseConcept()
46.30% 47.80%

Step 3: With block instrumentation concept/
ConceptServiceImpl.java, line 300 to 302

ConceptServiceImpl.java, line 929 to 930
47.90% 48.00%

ES

Steps: Web request name Method name/Block location
R2

Original With logging statement as a metric

Step 1: Web logs only N/A 43.80% N/A

Step 2: With method instrumentation

Web request A
file1.m()

file2.n()
75.90% 76.40%

Web request B (No significance) 30.00% N/A

Web request C
file3.o()

file4.p()
42.90% 43%

Step 3: With block instrumentation
Web request A

file1, block.r

file2, block.x
70.80% 70.80%

Web request C
file3, block.y

file4, block.z
76.00% 76.30%

“No block” means that the method only has one basic block in the method body.

“No significance” means that none of the methods are significant in the performance model.

We only present the class names, the method names and the file names due to the limit of space, without

showing the package names and the full path of the files.

18

locations, we find that None of the suggested logging locations contain logging statements.

This implies that our approach may provide additional information about the system performance

other than what is already known by developers.

The logging locations suggested by our approach significantly improve the performance

models that are with a high model fit. None of those locations initially contain a logging

statement.

4.4 RQ2: How large is the performance influence by the rec-

ommended logging locations?

4.4.1 Motivation.

In the previous research question, we find that, with our approach, we can suggest logging locations

that are statistically significant for performance modeling. Even though these logging locations are

statistically significant, the effect of the logging location may still be trivial. Therefore, in this

research question, we would like to examine the magnitude of the influence on system performance

by our suggested logging locations.

4.4.2 Approach.

To understand the magnitude of the influence on system performance by our recommended logging

locations, we first calculate Pearson correlation between the system performance, i.e., CPU, and

with the appearance of the suggested logging locations. Higher correlation implies that the suggested

logging locations may have a higher influence on the system performance.

To quantify the influence, we follow a similar approach used in prior research [SMK+11, Moc10].

To quantify this magnitude, we set all of the metrics in the model (each as a suggested logging

location) to their mean value and record the predicted system performance. Then, to measure the

effect of every logging location, we keep all of the metrics at their median value, except for the metric

whose effect we wish to measure. We double the median value of that metric and re-calculate the

predicted system performance. We then calculate the percentage of difference caused by doubling

the value of that metric. For example, if the CPU is 60% at all metrics with median value and 90%

by increasing one log metrics, the effect is 0.5, i.e.,
90%− 60%

60%
. The effect of a metric can be positive

or negative. A positive effect means that a higher chance of execution the suggested logging location

may increase the system performance, e.g., higher CPU usage. This approach permits us to study

metrics that are of different scales, in contrast to using odds ratios analysis, which is commonly used

19

in prior research [SJI+10].

4.4.3 Results.

The appearance of the suggested logging locations influences the system performance.

Table 3 shows that the appearance of the suggested logging locations typically has a strong cor-

relation to system performance. In CloudStore, all of the logging locations have a strong corre-

lation to CPU usage, while the correlations are moderate in OpenMRS. The relative effect shows

the influence of one method while controlling all other methods. DaoImpl.getCurrentSession()

in CloudStore has the largest effect when the appearance of the method is double to its median

value: the CPU usage increases 124%. Table 3 shows that even method with a small effect, e.g.,

ConceptServiceImpl.getFalseConcept(), can increase the CPU usage by 19% if doubling its ap-

pearance.

The influence on the system performance may be both positive or negative. We find

that some suggested logging locations in ES may have a negative influence on the CPU usage of

the system, i.e., the higher the appearance of the logging location, the lower the CPU usage. By

manually examining those methods, we find that these methods are related to synchronized external

dependency, i.e., the invocation of these methods will cause the system to wait, leading to lower

CPU usage. By having these logs, developers can consider addressing such synchronized dependency

based on how often real-life users call these methods.

Our suggested logging locations have influences on system performance; while such influence

can be both positive and negative.

4.5 RQ3: What are the characteristics of the recommended

logging locations?

4.5.1 Motivation.

In the previous research questions, we leverage our approach to suggest logging locations to assist

in performance modeling. If we can study the characteristic of these locations in the source code

being performance influential, we may provide more general guidance for a developer to log similar

locations in the source code.

Furthermore, prior research has proposed various techniques to provide general guidance on

logging locations [FZH+14, ZHF+15] or to monitor hot methods in performance. Our approach may

be of less interest if prior techniques also suggest such locations to log.

20

Table 3: The influences of our suggested logging locations on system performance.

Cloud Store

Suggested logging locations Influence

Web request name Method name/Block location Peason correlation Relative effect

cloudstore/ HomeController.getProductUrl() +0.80 +0.19

cloudstore/buy DaoImpl.getCurrentSession() +0.70 +1.24

cloudstore/search ItemDaoImpl.findAllByAuthor() +0.87 +0.60

cloudstore/search ItemDaoImpl.java, line 233 to 243 +0.73 +0.25

OpenMRS

Suggested logging locations Influence

Web request name Method name/Block location Peason correlation Relative effect

concept/ ConceptServiceImpl.getFalseConcept() +0.51 +0.19

concept/ ConceptServiceImpl.getAllConcepts() +0.53 +0.22

concept/ ConceptServiceImpl.java, line 300 to 302 +0.56 +0.25

concept/ ConceptServiceImpl.java, line 929 to 930 +0.56 +0.22

ES

Suggested logging locations Influence

Web request name Method name/Block location Peason correlation Relative effect

Web request A file1.m() -0.27 -0.34

Web request A file2.n() +0.81 +1.17

Web request C file3.o() -0.40 -0.80

Web request C file4.p() +0.56 +0.49

Web request A file1, block.r -0.26 -0.39

Web request A file2, block.x +0.78 +1.11

Web request C file3, block.y -0.11 -0.28

Web request C file4, block.z +0.86 +0.88

A relative positive effect means that more appearances of the logging location may

result in CPU usage increase.

We only present the class names, the method names and the file names due to the

limit of space, without showing the package names and the full path of the files.

21

4.5.2 Approach.

For each of the suggested logging locations, we manually examine the surrounding source code to

understand their characteristics. In particular, the size of the source code, such as lines of code,

one of the factors prior study used to model logging decisions [ZHF+15]. Moreover, uncertainty

concerning control flow branches is also considered in logging decisions [ZRL+17]. Therefore, we

measure the source lines of code (SLOC) of the suggested methods and blocks and the cyclomatic

complexity of the methods that are suggested to be logged.

Furthermore, we massively instrument the execution of all subject systems with JProfiler and

Visual Studio Profiling tool [EJ , Micb]. We measure both inclusive and exclusive execution time of

each method and rank all the methods by their execution time. We would like to examine whether

our suggested methods are one of the hot methods, i.e., with the highest executed time.

4.5.3 Results.

The suggested logging locations are not in complex methods. By measuring the SLOC

and cyclomatic complexity, we find that the suggested logging locations are in the methods with

small sizes and low complexity. The methods that are suggested to be logged have a SLOC of

4, 5 and 15 in CloudStore, and methods in OpenMRS consists of only 3 and 6 SLOC. In ES, all

suggested methods have a SLOC less than 35. Similarly, the values of the cyclomatic complexity of

the suggested methods in CloudStore are only 1, 2 and 2; the same values are merely 1 and 2 in

OpenMRS. The small sizes and the low complexity of the methods imply that practitioner may use

our approach in tandem with other approaches that are based on source code metrics.

Most of the suggested logging locations are not the performance hotspot. By examining

the results of detecting hotspots using both inclusive and exclusive execution time, we find that

our suggested logging locations are not typical performance hotspots. In particular, only one of

the logging locations (ItemDaoImpl.findAllByAuthor()) is in the top 10 of hotspots in the source

code (excluding methods in the library). We consider the reason is that our approach does not aim

to identify the methods that are invoked often, but the ones that can explain the system perfor-

mance variance. Therefore, our approach may complement the detection of performance hotspots

in performance assurances activities.

The suggested logging locations are typically not in complex methods nor performance

hotspots. Performance engineers can use our approach to complement those traditional

measurements in performance engineering activities.

22

Chapter 5

Suggesting logging locations for

evolving software

5.1 Approach

In this chapter, we present our approach that can automatically suggest logging locations while the

software evolves. Intuitively, developers may run our approach as described in Chapter 4. However,

our approach requires iterations of performance testing, which may cost extra resource for the

development team, leading to the delay of having logging statements in their software.

Moreover, a decision to update logging locations does not mean the every existing logging loca-

tions needs to be discarded. Simply discarding all existing logging locations is impetuous because

some logging locations may still potentially influence performance, though they may not perform as

significant as previous. Such logging locations should be kept as complimentary, together with new

logging locations from re-applying our logging suggestion approach to the updated software system.

Therefore, we design an approach which 1) suggests whether the existing logging information

needs improvement and 2) suggests which logging statements can be kept in the new version in

order to minimize the iteration of performance testing.

The overview of our approach is shown in Figure 2.

Step 1: identifying the need of updating logging locations

We aim to identify whether our existing logging locations are still effective in modeling the sys-

tem’s performance. If the model built from existing logging locations cannot provide an accurate

performance prediction, we need to identify new logging locations for the software.

23

Source
code

Statistical model
for the old

version
Old version

New version Performance
data

Resampled data Old version
prediction error

statistical
analysis

New version
prediction error

Final decision on
model replacement

Iterating 100 times

(a) Step 1: identifying the need of updating logging locations

Log metric
Performance
data with one

metric replaced

Prediction error
with one metric

replaced

Final decision on log
metric replacement

Statistical model for
the new versionNew version Prediction error

for each logging
location

random
replacement

statistical
analysisIterating 100 times

(b) Step 2: identifying the logging statement that can be kept in the new version

Figure 2: Identifying the need of updating prediction model and log metrics

We use the prediction errors as a measurement to evaluate the existing logging locations and

model on the new version of the system. While we conduct performance test, we measure the

performance counters, i.e., CPU usage, while collecting the logs that generated from the existing

logging locations. We use the current performance model (see Chapter 4) and the logs to predict

the system performance. Finally, we compare the predicted value and the actual value of the system

and calculate prediction error as |predictedCPU − actualcpu|/actualCPU . The distribution of the

prediction error of the new version represents how good is the existing logging locations and model

on the new version of the system.

Intuitively, one may use a threshold (e.g., 5%) to determine whether the prediction error is too

high, needing to update the logging locations. However, such thresholds may vary between systems,

releases and even different workloads. In addition, the choice of thresholds is typically based on

experience or gut feeling. Therefore, we use the old version to calculate prediction error using its

performance testing data as a baseline.

It is obvious that the directly using the model and data both from the old version (although

from different runs) would have a lower prediction error than using the model from the old version

and data from the new version. In order to avoid such bias, we use boostrap [Rob] to generate a new

dataset from the old version to calculate the distribution of prediction error from the old version.

24

Finally, with the two distribution of prediction errors at hand, we compare the two distributions

similar as previous studies[CSH+16b], using Wilcoxon rank sum test [MCM12] and Cliff’s d [Cli93].

In particular, Wilcoxon rank sum test is used to compare the mean values of prediction errors, and

determine whether if two distributions of prediction errors are significantly different from each other.

If our predictions vary a lot from each other, our suggested logging locations may not be a suitable

option for an upgraded system. We consider the results reside in 95% confidential interval (p-

value 6 0.05) as indicators of statistically significant difference. However, even if two datasets are

significantly different, the actual effect may be trivial. Therefore, we also calculate the actual effect

size using Cliff’s d, to further illustrate the impact size on predicted performance changes.

Cliff’s d is widely used in previous studies to quantify difference between two datasets. The

threshold of Cliff’s d is defined as:

effect size =

trivial if Cliff ′s d 6 0.147

small if 0.147 < Cliff ′s d 6 0.33

medium if 0.33 < Cliff ′s d 6 0.474

large if 0.474 < Cliff ′s d

We repeat this process (starting from resampling the old version’s data using bootstrap) for 100

times. For each time, we provide results of whether the two sets of distributions are statistically

significant and its effect size. We report this reports to developers in order to determine the need

for updating logging locations.

Step 2: identifying the logging statement that can be kept in

the new version

In this step, we would like to identify the logging statements that still can help model performance

in the current model and the ones that cannot. In general, we replace the values of each metric for

logging statement and evaluate the impact on model prediction error. Replacing a metric that still

helps model performance would significantly increase the prediction error while replacing a metric

that cannot help model performance would not impact the prediction error significantly.

In particular, for each metric in the model, we replace their values by randomly selecting a value

from the range between its minimum and maximum values in the original data. After replacing

the values, we re-calculate the distribution of prediction errors. We compare the distribution of

prediction errors with and without replacing values of that metric using Wilcoxon rank sum test

and Cliff’s d. Then we evaluate whether to keep the metric based on whether the difference is

statistically significant (p-value 6 0.05) and its effect sizes. In order to reduce the bias from our

25

Table 4: Details of each group of subject systems

Project Version compare # Source lines added # Source lines deleted # Source file changed

OpenMRS

2.0.5 to 2.0.6 544 83 29

2.1.0 to 2.1.1 499 64 24

2.1.1 to 2.1.2 273 74 21

2.1.2 to 2.1.3 261 31 9

ES

2018Jan to 2018Mar >30K >20K >300

2018Mar to 2018Apr >30K >20K >500

2018Apr to 2018Jun >20K >10K >200

metric value random replacement, we repeat this process by 100 times, similar to step 1.

5.2 Case study setup

In this section, we present the setup of our evaluation for suggesting logging locations as the software

evolves. In particular, we choose the same subject systems are shown in Section 4.2. However, since

we need to consider the evolution of each subject systems, we identify different releases of each subject

system. During our study, we find that CloudStore only has two releases and there only exist minor,

i.e., documentation, changes between the two releases. Therefore, we do not consider CloudStore in

this study. In addition, we find that OpenMRS 2.0 and 2.1 consist parallel development. Hence, we

suggest logging locations for OpenMRS 2.0 and 2.1 as two different subjects. The details of each

subject system are shown in Table 4.

The experimental environment and data preprocessing for the subjects are completely the same

as our previous experiments in Section 4.2. The load drivers are configured exactly the same way

between releases of the same subject. In addition, in order to avoid the impact from databases, we

restore the database after finishing each performance test.

5.3 RQ4: Can we suggest logging locations while software

evolves?

5.3.1 Motivation.

From the previous chapter, we evaluate the impact of our suggested logging locations to perfor-

mance variance. Although a source code location invocation can contribute to influencing software

performance in some extends, source code changes are inevitable during the software development

26

process. It is not realistic to expect several logging locations maintain valid indicators all the time

as a panacea to performance monitoring, performance influencing locations also required to evolve

as source code evolves. Thus, suggesting logging locations as software evolves is important. In this

RQ, we would like to see if our proposed approach can determine the need for updating logging

locations.

5.3.2 Approach.

We apply our approach to 2.0.5, 2.0.6, 2.1.0 and 2.1.3 versions of OpenMRS 2.0 and 2.1, respectively.

We also apply our approach to the four releases from ES. For each release, we make our decision

of whether to update logging locations based on the distribution of model prediction errors (see

Section 5.1). In addition, for the releases that we decide to update logging locations, we apply

our approach to select the possible logging locations to keep. We examine whether the results can

support us in making those decisions.

5.3.3 Results.

Our approach can clearly demonstrate the need of updating logging locations. Table 5

and 6 show our results in the need of updating logging locations. In three releases in our experiment,

we make the decision of updating locations. In all of the three releases, all the predictions errors

have statistically significant difference between old and new releases with all effects sizes large. On

the other hand, for the releases that we decide to keep the logging locations, the majority of the

prediction errors have insignificant difference, or with small or negligible effect sizes. The clear

difference between the results when we decide to keep and to update logging locations demonstrates

that our approach can be easily adopted by practitioners without a need for tuning thresholds. By

comparing the results in Table 4, we find that between those releases where logging locations changes

are recommended, there does not always exist larger sizes of code churn. Therefore, simply deciding

whether to update logging statements from the magnitude of source code changes is untenable.

27

Table 5: OpenMRS Replacement decisions

Group I II III IV

Version 2.0.5 ->2.0.6 2.1.0 ->2.1.1 2.1.1 ->2.1.2 2.1.2 ->2.1.3

p-value >0.05 0 0 0 0

Effect size when p-value <0.05

Large 100 0 0 100

Medium 0 29 0 0

Small 0 71 100 0

Negligible 0 0 0 0

Decision Replace Keep Keep Replace

Table 6: ES Replacement decisions

Group I II III

Version 2018Jan –>2018Mar 2018Mar –>2018Apr 2018Apr –>2018Jun

p-value >0.05 18 93 0

Effect size when p-value <0.05

Large 0 0 100

Medium 0 0 0

Small 22 0 0

Negligible 60 7 0

Decision Keep Keep Replace

Most of the old logging locations are suggested to be discarded if decided to update

logging locations. We choose versions where we decide to update logging locations from Table 5

and 6. As we can see in Table 7 and 8, most of the previously suggested logging locations should

be discarded after software system updates. According to our result, replacing most of the existing

logging locations with random data do not produce statistically significant impact on the model.

Therefore, most of the existing logging locations would not influence performance in the new version.

The only outstanding logging location is BaseOpenmrsObject.81 in OpenMRS when updating from

release 2.1.2 to 2.1.3. Replacing this logging location with random data would introduce statistically

significantly different prediction error, while the effect sizes are small in most of the iterations. We

first made a decision of discarding this logging location. However, when applying our approach to

suggest logging locations for OpenMRS 2.1.3, this location is suggested by our approach again. This

fact shows us that even the small significant impact on the model is important.

Our approach can effectively suggest the need of updating logging locations. If it is decided

to update logging locations, most of the existing logging locations need to be discarded.

29

Table 7: OpenMRS log metric effectiveness evaluation

OpenMRS

Group I IV

Version 2.0.5 –>2.0.6 2.1.2 –>2.1.3

Log Metric ConceptServiceImpl.300 ConceptServiceImpl.929 BaseOpenmrsObject.81

p-value >0.05 100 100 0

Effect Size & p-value <0.05

Large 0 0 0

Medium 0 0 0

Small 0 0 86

Negligible 0 0 14

Decision Discard Discard Keep

Table 8: ES log metric effectiveness evaluation

Project ES

Version 2018Apr –>2018Jun

Log Metric X52 X3 X24 X43 X0

p-value >0.05 100 100 100 100 80

Effect Size & p-value <0.05

Large 0 0 0 0 0

Medium 0 0 0 0 0

Small 0 0 0 0 0

Negligible 0 0 0 0 20

Decision Discard Discard Discard Discard Discard

5.4 RQ5: What are the root causes of the suggested logging

location changes?

5.5 Motivation

From the previous research question, we find that some of the previously suggested logging locations

can no longer provide enough explanatory power to interpret performance variances in our target

systems. However, the reasons behind such replacements are still obscure. In this research question,

we would like to understand the root causes of causes of such replacement. The identified root causes

can provide more information for the practitioners to support their logging decisions.

5.6 Approach

In order to untangle the possible reasons behind a required logging replacement, we manually exam-

ine the code commits between two consecutive software releases if there exist a suggested replacement

by our approach.

First of all, from the perspective of already suggested logging locations, we review the direct

source code changes within the current method or control block. However, the most intuitive ap-

proach barely provide contributive outcomes, since our suggested logging locations usually reside in

non-complex and short methods, which are rarely changed. Regardless of stability in these meth-

ods, we find the performance influencing parts are more likely to be introduced by methods in its

invocation tree. Hence we examine the call hierarchy of method that contains the logging location

and explore the derivation of performance changes. This would inform us which part of source code

may potentially impact system performance. Similarly, we also manually check the call hierarchy

starting from newly suggested logging locations, to see if an emerging log metric is introduced by

source code changes.

Although source code changes can explain most of the variations in performance behavior, other

potential factors, such as database schema updates, can also contribute to a significant deviance

in performance prediction. In that case, we also gather changes to all artifacts in each project

made between the consecutive releases, such as configuration file changes and database updates, to

synthesize a comprehensive understanding of the rationale behind those related source code changes.

Since ES is a large-scale system, there exist thousands of source code files changed between every

two releases. During the evaluation process, we can hardly guarantee the overall understanding

of this system due to its overwhelming size. Except from comparing the difference between two

consecutive releases, especially in source code and configuration changes, we need some external

31

assistance from developers with experience in the system. To further understand the root causes

behind the changes to logging locations, we consulted several senior developers of ES. If there still

exist undetermined changes, we turn to the developers who are responsible for those specific code

commits.

5.7 Results

After examining the related source code and other artifact changes, we identify the possible root

causes behind performance influencing source code locations and deprecations. The result is shown

in Table 9.

32

Table 9: Rationale behind logging statement’s replacement

Log metric information Possible causes of logging emergence or replacement

Project Version Log Metric Database query changed Massive data query Conditional filter related Repetitive invocation Properties changes Influence from other methods in the call graph Utility methods

OpenMRS

2.0.5
ConceptService.300 X X X X

ConceptService.929 X X

2.0.6

PersonAttribute.111 X X X X

Format.45 X X

Person.317 X X

Person.601 X X X X

Person.606 X X X X

Patient.52 X X X X

Encounter.381 X X

2.1.2 & 2.1.3 BaseOpenmrsObject.81 X X X X

2.1.3
Concept.1027 X X X

Person.186 X X X

ES

2018Apr

X0 X X

X3 X X X

X24 X X X

X43 X X

X52 X X X

2018Jun

X14 X X X

X17 X X X

X28 X X X

Database query changed

For database centric systems, database schema updates together with queries modifications widely

exist. When some complex query logic is changed, the influence can be negative, as we explained

in RQ2. However, the CPU usage on the web server side is possibly low, due to waiting for the

database server to respond, where resources are largely consumed by processing complex queries.

In such a case, database queries change can potentially affect performance in the entire software

system, even with a lower CPU usage.

In our case studies, ES is a data-centric system with frequent updates related to its database.

For example, X3 exists inside a method where user-defined report template is loaded. The logging

locations are executed every time when loading a specific user’s preference on the components and

a corresponding dynamic web form displaying user’s previously saved data is generated. However,

after the update, except mere preference on components, more information about the user are also

eagerly fetched from the database. Such a behavior is identified in prior research as one of the

performance anti-patterns of database-centric systems [CSJ+14]. According to the issue report that

is associated with the corresponding code changes, we find the newly fetched data is used as input

parameters for a function modification. With this change inside database query, we believe the extra

fetches procedure may result in the software system’s performance variance.

Massive data query

Web-based systems build an intuitive interface for users to manipulate and to view their data.

However, fetching a large amount of data from the database can be costly, since resources of the

web server are not fully utilized when it is waiting for the database server to respond. Performance

optimizing in such locations may significantly enhance system efficiency and improve the users’

experience. Our approach can successfully detect methods where complex database queries with

massive data manipulation are located, and these methods are proven to have an influence on

system performance at runtime.

Take X24 in ES as an example of a massive query, this method invokes a complex SQL query.

The query is used to fetch previously saved reports and corresponding information from a user group.

We believe such a large level data query can be extremely influential to system performance once it

is invoked. Accordingly, the method is marked as one of our suggested logging locations. Between

the two releases, we find several query changes in X24, we believe some newly added access right

filtering and database structure update should be responsible for the logging deprecation.

34

Conditional filter related

In our approach, inserted logging statements are simply used to pinpoint source code locations, and

monitor the trajectory of the system’s runtime execution flow. However, if a conditional statement

is introduced to and modified in the source code, a new route could possibly be executed in the call

graph during runtime. In that case, our performance prediction model together with its metrics can

also be affected.

X52 in ES is mainly responsible for fetching a quick link list that contains the most commonly

used links by a current user. The suggested logging locations reside in a method where user’s

preference on miscellaneous UI components. The widget layouts are dynamically generated after a

successful login. However, from the two versions’ data, we are surprised to find that the previously

suggested method performs well in explaining performance variances of the system. To be more

specific, this method is not even triggered in the new version. After taking a closer look at the

source code and bug report, we find a recent update added restrictions to users with limited access

rights. Such changes will hide visibility on documents and links from non-admin users, this will

further prohibit the automated quick link list component from initializing. As a result, we consider

this could be one of the major reasons for the logging replacement.

Similarly, X28 is also influenced by newly added access right conditions. X28 fetches the con-

figuration information about a widget from the database, this function is used to form a dashboard

for users. However, for those users who do not have a preference record in the system, there is no

preset widget for users to begin within earlier versions. After the later version is released, a default

widget is added to the user dashboards, accompanied with SQL queries modification and database

update.

In OpenMRS version 2.0.5, we notice that logging location ConceptServiceImpl.929, which resides

in method getFalseConcept(), is usually invoked inside condition judgements. In other words, once

this method is executed, we know the execution flow steps into a different branch that can be

performance influential.We can understand the importance of such methods in predicting software

performance. However, its explanatory power shrank a lot after the system update. By checking the

source code, we find that a newly added filtering condition may prohibit function getFalseConcept()

and its related methods from being executed.

Repetitive invocation

Repetitive invocation indicates methods or other code elements that locate in an iterative process.

This kind of repetitive execution can significantly slow down system efficiency and prolong pro-

cessing time, depending on the complexity of logic inside the loop and number of iterations. Such

phenomenon is also studied in prior research as a One-by-One Processing anti-pattern [CSJ+14].

35

The following examples illustrate performance variance behind logging locations with the repetitive

invocation.

The most representative example of repetitive invocation would be X17 from ES. The location

resides in a method where all available items form a menu, together with their detailed information

like URL fetched from the database. The method is called as part of loading users’ preference.

Afterward, a customized menu of the user will be generated. Inside our suggested logging location,

there exists a for loop, where all items are reviewed and filtered. Placing logging statements in these

locations can be beneficial for monitoring system’s performance.

Another example for repetitive invocation would be Person.601 and Person.608, both of these

two locations reside in the same method getPersonName() in OpenMRS. In this method, all known

names of a person are retrieved and iterated through two for loops. The first suggested logging

locations reside in the first loop which gets a person’s preferred name. Similarly, the second logging

locations reside in another loop right after the first for look. The second for loop iterates through

all names of a person. After selecting a valid preferred name from the person, the method returns a

person’s name only if it is not empty. In this context, we consider this kind of iteration can explain

the rationale behind these performance influential logging locations.

Properties changes

Although analyzing performance variances from static source code changes is feasible in some ex-

tends, the runtime information can also be important to determine source code’s execution path. For

example, getter and setter methods are commonly used to read and store property values, and they

do not usually have a complex structure and logic inside the method body. However, the property

value can possibly be used as conditions when processing some performance influential methods. In

that case, properties changes are considered one of the potential performance influencing factor.

When comparing OpenMRS version 2.1.2 and 2.1.3, we find a newly suggested logging location

Concept.1027, which locates inside a method getRetired(). The method decides whether a “retired”

property should be added and updated. It may seem not very influential from the method itself,

but we find that the value of this property is used to filter out unqualified conditions. Incidentally,

we find this property value is used in another performance influential logging location ConceptSer-

viceImpl.300. From its call graph we notice a method getAllConcepts(), which fetches all sorted

concepts from database. In addition, method getAllConcepts() takes a boolean-typed parameter

“isIncludeRetired”, which decides if retired concepts will be returned. Different SQL query com-

mand will be generated upon the “retired” property value. In conclusion, in spite of the seemingly

trivial performance influential effect from getter and setter methods, can become a substantial root

cause on performance variances.

36

Influence from other methods in the call graph

According to our previous finding, the suggested logging locations are located inside the non-complex

and short methods. The reason these functions are selected as our target is most likely due to a

complex method in its call graph. To be more specific, when our logging statement is executed, it is

usually accompanied by other complicated logics or database interactions from its invocation tree.

Here we would like to take Concept.1027 as an example again. When we trace back in its call

graph, we find delegated properties and requested resources are fetched and stored iteratively for

all concepts. We believe the method that calls Concept.1027 should be responsible for performance

variances. However, since this method is part of a packed RESTful module, our logging statements

can only mark its invoked method as performance influencing location. The result also shows that

our suggested logging locations can interpret performance influencingl locations in related to external

function invocations.

Another example would be Person.186 from OpenMRS 2.1.3. The suggested logging location

resides in method getBirthDateTime, which first fetches a person’s time and date of birth, then

format it according to a date-time pattern. This method is invoked when editing a person’s infor-

mation. All attributes of the current person’s object will be copied to a newly initiated object by

sequence, which makes the current method together with all related attributes resetting methods

produce performance variance.

Utility methods

Apart from the root causes that we list above, there is another special root cause that associates with

the utility methods. Utility methods usually indicate low-level functions that are frequently invoked

and widely used across the system. If a utility method is suggested as a performance influential

logging location, it would be difficult to identify the real root causes of this kind of logging location’s

appearance or replacement, since the method is usually invoked by a large number of methods across

the whole project. However, the extensive invocation also makes monitoring such utility methods

beneficial for performance monitoring and source code optimization purposes.

For example, X0 locates at the entry of a method that returns a previously stored session object.

As one of the most invoked utility methods, we find hundreds of related methods in the call hierarchy

graph. In addition, a large amount of source code changes locate in those methods. Furthermore,

we also notice that some front-end source code (like javascript files) changes may also increase

uncertainty to the performance.

In OpenMRS 2.1.2, we find our suggested logging location BaseOpenmrsObject.81 is inside a

utility method names equals(). Method equals() is frequently invoked to determine whether two

objects refer to the same object, or owns a same universally unique identifier(UUID) property. The

37

method is used when interceptors are executed, including Aspect-Oriented Programming (AOP) and

hibernate interceptors. Moreover, we examine the source code and find that method equals() are

usually invoked within nest loops, which can be another factor to explain its widespread influence

on performance changes.

We identify seven root causes of logging location changes, including database query changed,

massive data query, conditional filter related, repetitive invocation, properties changes, in-

fluence from other methods in the call graph and utility methods. We find the reason

behind the existence and deprecation of suggested logging locations stem from a various of

combined factors.

38

Chapter 6

Discussion

In this chapter, we discuss the related topics based on our results.

6.1 Performance influence from the inserted logging state-

ment.

The invocation of logging statements themselves has a performance overhead. To minimize such

performance overhead, we opt to reduce the instrumentation scope at every run of the system by

focusing on only one web request, web page or method at each time. Moreover, we also leveraged

async-logging provided by the logging library to reduce overhead. However, introducing those logging

statements still brings overhead to the system.

Therefore, we measure the influence of the inserted logging statement to the fit of the model.

We consider the invocation to the logging library itself as a method to monitor and create a log

metric measuring the times that the logging library is called to generate logs. For every model that

we built in our case study (see Table 2), we add the new log metric as an independent variable. By

adding this independent variable into the model, we can study whether the log metric provides an

increase of R2, which represents the additional explanatory power of the execution of the inserted

logging statement to the system performance. The increase of R2 measures the explanatory power

of the model that is provided only by the execution of the logging statements, but not the software

system itself.

The automatically inserted logging statements do not contribute significantly to the performance

models. We find that the log metric that measures the execution of the logging statements provides

only little explanatory power to the models. In particular, the maximum of the increase of the R2

is only 3.4% (see Table 2). Therefore, the inserted logging statement do not have a large impact to

39

bias the explanatory power of our suggested logging locations.

6.2 Not all web requests need additional logging.

After applying our approach, inserting logging statements may not provide statistically significantly

more explanation power to the model. For example, in the Web Request B of ES, after insert-

ing logging statements into all associated method, none of them are statistically significant in the

performance model. Such results imply that over-inserting logging statements into the source code

may only provide repetitive information that is already available from other logs, whiling leading to

more noise to practitioners [YLZ+14]. By looking at the web request and the methods that do not

need additional logging, we find that these cases are typically simple sequential executions with low

complexity. For example, ItemDaoImpl.findAllByAuthor() in CloudStore has a loop as an extra

basic block. However, our results show that inserting logging statement into the loop would not

improve the performance model. That implies that the number of iterations of the loop may not

influence performance significantly.

6.3 How long do we need to test performance to suggest log-

ging locations?

Performance testing is a time-consuming task [ASSH16]. However, our approach requires multiple

iterations of conducting performance tests. Even though it is straightforward to deploy the multiple

performance tests in separate testing environments to reduce the time, such a solution may still

be resource-costly. In order to minimize the cost of the resource, we investigate whether we may

shorten the duration of the performance tests and still yield similar results.

For every performance test, we take the data from the period of the first hour, the first two hours

and the first three hours. We then follow the same steps as Chapter 4 and examine whether we

can suggest the same locations to insert logging statements. We find that we can achieve the same

logging suggestions by only running one hour, two hours and three hours of the test in four, one, and

six models, respectively. We need the complete four hours only in two models. This result shows

that practitioners may be able to reduce the test duration in practice to receive the suggestion in a

more timely manner.

40

6.4 Aggressiveness of updating logging locations

In our case study, interestingly we find that our previously removed logging location can by sug-

gested again. In Table 7, if we remove metric BaseOpenmrsObject.81 due to its small effect size on

performance variance, the logging location will be suggested again in the new performance model.

This implies that our decision on removing the logging location may be too aggressive since extra

resources are needed when our approach suggests the logging location back into the source code.

However, we consider this decision is a tradeoff that should be determined by the practitioners when

using our approach. On one hand, not removing the logging locations that have small effect sizes

may saves resources when determining the logging locations for the new version. On the other hand,

the logging locations may be associated with other locations in the source code that provides more

contribution to the system’s performance modeling. However, since the old logging location with

small effect sizes is kept in the code, it may prevent us to identify other locations that potentially be

more important due to their correlations. Hence, to avoid such cases, we opt for a more aggressive

decision in our case studies (see Section 5.3).

41

Chapter 7

Threats to validity

This chapter discusses the threats to the validity of our study.

7.1 External validity

Our evaluation is conducted on CloudStore, OpenMRS and ES. All subject systems have years of his-

tory and there is prior performance engineering research studying these systems’ workload [CSH+16a].

Nevertheless, more case studies on other software in other domains are needed to evaluate our ap-

proach. All our subject systems are developed based on either Java or .Net. Our approach may

not be directly applicable for other programming languages, especially dynamic languages such

as Python. Further work may investigate approaches to minimize the uncertainty in performance

characterization of dynamic languages.

Our approach currently only focuses on web application. We leverage web logs in the first step

in order to scope down the amount of source code to instrument. However, other researchers and

practitioners may adapt our approach by applying our approach by starting on a few hot locations

in the source code. Yet, without evaluation with such an approach, we cannot claim the usefulness

of our approach on other types of systems.

In this thesis, we focus on pinpointing performance influencing source code locations using in-

serted logging statements. However, external changes like configuration changes, API migrations,

database structure updates and workload variances can also potentially affect system performance.

In our testing environment, we try to minimize the influences by applying same testing load and

identical database for different versions. But these factors should still be noticed for practitioners

when implementing our approach.

42

7.2 Internal validity

Our approach is based on the system performance that is recorded by Psutil. The quality of recorded

performance can impact the internal validity of our study. Similarly, the frequency of recording

system performance by Psutil may also impact the results of our approach. Further work may further

evaluate our approach by varying such frequency. Our approach depends on building statistical

models. Therefore, with a smaller amount of performance data, our approach may not perform

well due to the quality of the statistical model. Determining the optimal amount of performance

data needed for our approach is in our plan. Although our approach builds statistical models using

logs, we do not aim to predict nor claim causal relationship between the dependent variable and

independent variables in the models. The only purpose of building regression models is to capture

the relation between logs and system performance.

7.3 Construct validity

Our approach uses linear regression models to model system performance. Although linear regression

models have been used in prior research in performance engineering [SHNF15, XPZG13], there exist

other statistical models that may model system performance more accurately. Our goal is not to

accurately predict system performance but rather capture the relationship between logs and the

system performance. Further work may investigate the use of other models.

We chose to design our approach in an aggressive manner when deciding potential logging lo-

cations. For example, we choose a low p-value to ensure the statistical significance of the logging

location. Our approach may miss potential possible logging locations. However, our goal is to pri-

oritize on the precision of the suggestion hence making the suggestion less intrusive to practitioners.

By working with our industrial collaboration, we find that a large number of logging suggestions can

be overwhelming since practitioners prefer to manually verify each logging location before having

actual changes to the source code.

The overhead of the logs may influence system performance. Although we evaluate the impact of

logs on system performance by examining the explanatory power of logging statements themselves,

the overhead may still impact the results of our approach. Minimizing such overhead is in our further

plan.

Our evaluation of our approach is based on modeling system CPU usage. There exist other

performance metrics, such as memory and response time, that can be modeled by logs when eval-

uating our approach. Also, the performance of the subject systems is recorded while running their

performance tests. If a logging location is not executed by performance tests, it cannot be identified

by our approach. To address this threat, we sought to use the performance test that mimics the

43

field workload from our industrial collaborators. However, a different workload may lead to differ-

ent performance influencing locations in the source code. Therefore, when applying our approach,

practitioners should always be aware of the impact from the workload (the performance tests on the

system). Hence, evaluation with more performance metrics and more performance tests may lead

to a better understanding of the usefulness of our approach.

Although we suggest logging locations for performance assurance activities, we do not claim that

they are the only relevant logging locations. Additionally, the R2 of our models is between 26.9%

and 90.2%. The R2 shows that logs cannot explain all the variance in the system performance.

The unexplained variance of performance may due to other performance influencing source code or

external influence of the system (e.g., network latency). In our future work, we plan to model other

influencing factors of system performance to improve our approach.

Our approach is based on automated code analysis and code manipulation, when changing and

rebuilding the software is needed. Such an approach may require extra resources to the performance

infrastructure. In our future work, we plan to alter the source code adaptively during the runtime

of performance testing or in the field to improve our approach.

In our context, suggested logging locations are derived from our prediction model. Although

their usefulness is validated through a statistically rigorous approach, the actual efficacy is still

undetermined. Consequently, we consult several senior developers about our suggested logging

locations for both versions, since they process abundant experience understanding and contributing

to the system, and we received confirmation on the validity of our suggested locations.

44

Chapter 8

Conclusion

Logging information is one of the most significant sources of data in performance monitoring and

modeling. Due to the extensive use of logs, all too often, the success of various performance modeling

and analysis techniques often rely on the availability of logs. However, existing empirical studies

and automated techniques for logging decisions do not consider the particular need for system per-

formance monitoring. In this thesis, we propose an approach to automatically suggest where to

insert logging statements with the goal of support performance monitoring for web-based systems.

Our approach suggests inserting logging statement into the source code locations that can comple-

ment the explanation power of statistical performance models. By evaluating our approach on two

open source systems (CloudStore and OpenMRS) and one commercial system (ES), we find that

our approach suggests logging locations that improve the statistical performance models and those

suggested logging locations have a high influence on system performance while not being traditional

complex methods nor performance hotspots. In addition, after applying our approach on suggesting

logging locations on multiple releases of our subject systems, we manually identified root causes of

logging statement suggestion and deprecation. Practitioners can integrate our approach into the

release pipeline of their system to have logging suggestions periodically. In addition, the root causes

can be learned by practitioners to assist in proactively putting logging statement in their source

code for performance monitoring purposes.

45

Bibliography

[ABC+16] Tarek M. Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E. Hassan, and Weiyi

Shang. Studying the effectiveness of application performance management (apm) tools

for detecting performance regressions for web applications: An experience report. In

Proceedings of the 13th International Conference on Mining Software Repositories, MSR

’16, pages 1–12, New York, NY, USA, 2016. ACM.

[Apaa] Apache. Jmeter. http://jmeter.apache.org/. Accessed: 2015-06-01.

[Apab] Apache. Log4J2 Async. https://logging.apache.org/log4j/2.x/manual/async.

html/. Accessed: 2017-10-09.

[ASSH16] H. M. Alghmadi, M. D. Syer, W. Shang, and A. E. Hassan. An automated approach for

recommending when to stop performance tests. In 2016 IEEE International Conference

on Software Maintenance and Evolution (ICSME), pages 279–289, Oct 2016.

[Bre16] Paul Charles Brebner. Automatic performance modelling from application performance

management (apm) data: An experience report. In Proceedings of the 7th ACM/SPEC

on International Conference on Performance Engineering, ICPE ’16, pages 55–61, New

York, NY, USA, 2016. ACM.

[CCG+04] Ira Cohen, Jeffrey S Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons. Corre-

lating instrumentation data to system states: A building block for automated diagnosis

and control. In OSDI, volume 4, pages 16–16, 2004.

[Cli93] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.

Psychological bulletin, 114(3):494, 1993.

[Clo] CloudScale. CloudStore. https://github.com/CloudScale-Project/CloudStore/.

Accessed: 2017-10-09.

46

http://jmeter.apache.org/
https://logging.apache.org/log4j/2.x/manual/async.html/
https://logging.apache.org/log4j/2.x/manual/async.html/
https://github.com/CloudScale-Project/CloudStore/

[CSH+16a] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder

Flora. Cacheoptimizer: Helping developers configure caching frameworks for hibernate-

based database-centric web applications. In Proceedings of the 2016 24th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering, FSE 2016,

pages 666–677, New York, NY, USA, 2016. ACM.

[CSH+16b] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder

Flora. Cacheoptimizer: Helping developers configure caching frameworks for hibernate-

based database-centric web applications. In Proceedings of the 24th ACM SIGSOFT

International Symposium on the Foundations of Software Engineering, FSE ’16, 2016.

[CSJ+14] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser,

and Parminder Flora. Detecting performance anti-patterns for applications developed

using object-relational mapping. In Proceedings of the 36th International Conference on

Software Engineering, ICSE 2014, pages 1001–1012, New York, NY, USA, 2014. ACM.

[CSJ+16] T. H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora. Finding and

evaluating the performance impact of redundant data access for applications that are

developed using object-relational mapping frameworks. IEEE Transactions on Software

Engineering, PP(99):1–1, 2016.

[CZG+05] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Armando

Fox. Capturing, indexing, clustering, and retrieving system history. In Proceedings of

the Twentieth ACM Symposium on Operating Systems Principles, SOSP ’05, pages

105–118, New York, NY, USA, 2005. ACM.

[Ecl] Eclipse. Eclipse Java development tools (JDT). http://www.eclipse.org/jdt/. Ac-

cessed: 2017-10-09.

[EJ] EJ Technologies. JProfiler. https://www.ej-technologies.com/products/

jprofiler/overview.html/. Accessed: 2017-10-09.

[FJA+10] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Ying Zou, and

Parminder Flora. Mining performance regression testing repositories for automated

performance analysis. In Quality Software (QSIC), 2010 10th International Conference

on, pages 32–41. IEEE, 2010.

[Fre09] David A Freedman. Statistical models: theory and practice. cambridge university press,

2009.

47

http://www.eclipse.org/jdt/
https://www.ej-technologies.com/products/jprofiler/overview.html/
https://www.ej-technologies.com/products/jprofiler/overview.html/

[FSWG15] M. Farshchi, J. G. Schneider, I. Weber, and J. Grundy. Experience report: Anomaly

detection of cloud application operations using log and cloud metric correlation anal-

ysis. In 2015 IEEE 26th International Symposium on Software Reliability Engineering

(ISSRE), pages 24–34, Nov 2015.

[FZH+14] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei

Zhang, and Tao Xie. Where do developers log? an empirical study on logging practices

in industry. In Companion Proceedings of the 36th International Conference on Software

Engineering, ICSE Companion 2014, pages 24–33, New York, NY, USA, 2014. ACM.

[Gia] Giampaolo Rodola. psutil. https://github.com/giampaolo/psutil/. Accessed:

2017-02-02.

[GJBL16] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu. A framework to evaluate the effectiveness

of different load testing analysis techniques. In 2016 IEEE International Conference on

Software Testing, Verification and Validation (ICST), pages 22–32, April 2016.

[Har01] FE Harrell. Regression modeling strategies. 2001. Nashville: Springer CrossRef Google

Scholar, 2001.

[JHHF09] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. Au-

tomated performance analysis of load tests. In ICSM ’09: 25th IEEE International

Conference on Software Maintenance, 2009.

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[Kuh08] Max Kuhn. Building predictive models in r using the caret package. Journal of Statis-

tical Software, Articles, 28(5):1–26, 2008.

[LSH17] Heng Li, Weiyi Shang, and Ahmed E. Hassan. Which log level should developers choose

for a new logging statement? Empirical Softw. Engg., 22(4):1684–1716, August 2017.

[LSZEH17] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E. Hassan. Towards just-in-time sugges-

tions for log changes. Empirical Softw. Engg., 22(4):1831–1865, August 2017.

[MCM12] David S Moore, Bruce A Craig, and George P McCabe. Introduction to the Practice of

Statistics. WH Freeman, 2012.

[Mica] Microsoft. .NET Compiler Platform ("Roslyn"). https://github.com/dotnet/

roslyn/. Accessed: 2017-10-09.

48

https://github.com/giampaolo/psutil/
https://github.com/dotnet/roslyn/
https://github.com/dotnet/roslyn/

[Micb] Microsoft. Visual Studio Profiling Tools. https://docs.microsoft.com/en-us/

visualstudio/profiling/. Accessed: 2017-10-09.

[Moc10] Audris Mockus. Organizational volatility and its effects on software defects. In Pro-

ceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of

Software Engineering, FSE ’10, pages 117–126, New York, NY, USA, 2010. ACM.

[MTHG15] David Maplesden, Ewan Tempero, John Hosking, and John C. Grundy. Subsuming

methods: Finding new optimisation opportunities in object-oriented software. In Pro-

ceedings of the 6th ACM/SPEC International Conference on Performance Engineering,

ICPE ’15, pages 175–186, New York, NY, USA, 2015. ACM.

[MvRT+15] David Maplesden, Karl von Randow, Ewan Tempero, John Hosking, and John Grundy.

Performance analysis using subsuming methods: An industrial case study. In Proceed-

ings of the 37th International Conference on Software Engineering - Volume 2, ICSE

’15, pages 149–158, Piscataway, NJ, USA, 2015. IEEE Press.

[NAJ+12] Thanh H.D. Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora. Automated detection of performance regressions using

statistical process control techniques. In Proceedings of the 3rd ACM/SPEC Interna-

tional Conference on Performance Engineering, ICPE ’12, pages 299–310, New York,

NY, USA, 2012. ACM.

[Rob] Rob Tibshirani. Bootstrap. https://cran.r-project.org/web/packages/

bootstrap/bootstrap.pdf/. Accessed: 2017-02-27.

[SHNF15] Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. Automated

detection of performance regressions using regression models on clustered performance

counters. In Proceedings of the 6th ACM/SPEC International Conference on Perfor-

mance Engineering, ICPE ’15, pages 15–26, New York, NY, USA, 2015. ACM.

[SJI+10] Emad Shihab, Zhen Ming Jiang, Walid M. Ibrahim, Bram Adams, and Ahmed E.

Hassan. Understanding the impact of code and process metrics on post-release defects:

A case study on the eclipse project. In Proceedings of the 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, ESEM ’10, pages

4:1–4:10, New York, NY, USA, 2010. ACM.

[SKZ07] Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting nonstationarity for

performance prediction. In ACM SIGOPS Operating Systems Review, volume 41, pages

31–44. ACM, 2007.

49

https://docs.microsoft.com/en-us/visualstudio/profiling/
https://docs.microsoft.com/en-us/visualstudio/profiling/
https://cran.r-project.org/web/packages/bootstrap/bootstrap.pdf/
https://cran.r-project.org/web/packages/bootstrap/bootstrap.pdf/

[SMK+11] Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.

High-impact defects: A study of breakage and surprise defects. In Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations

of Software Engineering, ESEC/FSE ’11, pages 300–310, New York, NY, USA, 2011.

ACM.

[SSJH17] Mark D. Syer, Weiyi Shang, Zhen Ming Jiang, and Ahmed E. Hassan. Continuous

validation of performance test workloads. Automated Software Engineering, 24(1):189–

231, 2017.

[TPC] TPC Benchmark W (TPC-W). http://www.tpc.org/tpcw/. Accessed: 2015-06-01.

[vHWH12] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A framework for

application performance monitoring and dynamic software analysis. In Proceedings of

the 3rd ACM/SPEC International Conference on Performance Engineering, ICPE ’12,

pages 247–248, New York, NY, USA, 2012. ACM.

[WV00] E.J. Weyuker and F.I. Vokolos. Experience with performance testing of software sys-

tems: issues, an approach, and case study. Transactions on Software Engineering,

26(12):1147–1156, Dec 2000.

[XPZG13] Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. vperfguard: An auto-

mated model-driven framework for application performance diagnosis in consolidated

cloud environments. In Proceedings of the 4th ACM/SPEC International Conference on

Performance Engineering, ICPE ’13, pages 271–282, New York, NY, USA, 2013. ACM.

[YLZ+14] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang,

Pranay U. Jain, and Michael Stumm. Simple testing can prevent most critical failures:

An analysis of production failures in distributed data-intensive systems. In Proceedings

of the 11th USENIX Conference on Operating Systems Design and Implementation,

OSDI’14, pages 249–265, Berkeley, CA, USA, 2014. USENIX Association.

[YPH+12] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee, Xiaoming Tang,

Yuanyuan Zhou, and Stefan Savage. Be conservative: Enhancing failure diagnosis with

proactive logging. In OSDI ’12: Proceedings of the 10th USENIX conference on Oper-

ating Systems Design and Implementation, volume 12, pages 293–306, 2012.

50

http://www.tpc.org/tpcw/

[YZP+11] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Improving

software diagnosability via log enhancement. In ASPLOS ’11: Proc. of the 16th inter-

national conference on Architectural support for programming languages and operating

systems, 2011.

[ZE14] Sai Zhang and Michael D. Ernst. Which configuration option should i change? In

Proceedings of the 36th International Conference on Software Engineering, ICSE 2014,

pages 152–163, New York, NY, USA, 2014. ACM.

[ZE15] Sai Zhang and Michael D. Ernst. Proactive detection of inadequate diagnostic messages

for software configuration errors. In Proceedings of the 2015 International Symposium

on Software Testing and Analysis, ISSTA 2015, pages 12–23, New York, NY, USA,

2015. ACM.

[ZHF+15] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei Zhang.

Learning to log: Helping developers make informed logging decisions. In Proceedings

of the 37th International Conference on Software Engineering - Volume 1, ICSE ’15,

pages 415–425, Piscataway, NJ, USA, 2015. IEEE Press.

[ZRL+17] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan Zhou.

The game of twenty questions: Do you know where to log? In Proceedings of the 16th

Workshop on Hot Topics in Operating Systems, HotOS ’17, pages 125–131, New York,

NY, USA, 2017. ACM.

[ZRT+15] Zhenyun Zhuang, Haricharan Ramachandra, Cuong Tran, Subbu Subramaniam, Chav-

dar Botev, Chaoyue Xiong, and Badri Sridharan. Capacity planning and headroom

analysis for taming database replication latency: Experiences with linkedin internet

traffic. In Proceedings of the 6th ACM/SPEC International Conference on Performance

Engineering, ICPE ’15, pages 39–50, New York, NY, USA, 2015. ACM.

51

	List of Figures
	List of Tables
	Introduction
	Related work
	Software performance monitoring
	Assist in logging decisions
	Performance modeling

	A motivating example
	Suggesting logging locations for a single release
	Approach
	Case study setup
	Subject systems and their workload
	Experimental environment

	RQ1: How well can we model system performance?
	Motivation.
	Approach.
	Results.

	RQ2: How large is the performance influence by the recommended logging locations?
	Motivation.
	Approach.
	Results.

	RQ3: What are the characteristics of the recommended logging locations?
	Motivation.
	Approach.
	Results.

	Suggesting logging locations for evolving software
	Approach
	Case study setup
	RQ4: Can we suggest logging locations while software evolves?
	Motivation.
	Approach.
	Results.

	RQ5: What are the root causes of the suggested logging location changes?
	Motivation
	Approach
	Results

	Discussion
	Performance influence from the inserted logging statement.
	Not all web requests need additional logging.
	How long do we need to test performance to suggest logging locations?
	Aggressiveness of updating logging locations

	Threats to validity
	External validity
	Internal validity
	Construct validity

	Conclusion
	Bibliography

