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ABSTRACT

On Certain Techniques in Convex Geometry

Mariam AlHilani

We recall a proof of Mahler’s conjecture in R
2 and the technique employed to prove

it. This technique shows that, by adding new vertices to a convex polygon K, one

increases the value of Mahler’s functional K 7→ V (K) · V (K∗), thus the minimum

of the functional is reached for the convex polygon with least number of vertices.

We then study similar techniques in connection to Petty’s conjecture in R
2 and R

3,

respectively. Petty’s conjecture states that the functional K 7→
V (ΠK)

V n−1(K)
, where K

is a compact convex set in R
n, reaches the maximum for the polytope of least vertices

in R
n. In R

2, we prove that the inequality holds for any convex body K by a similar

technique with that of Mahler’s problem, which is different from the original proof

of Petty’s inequality in R
2. In R

3, we validate the conjecture for a few specific cases.

More precisely, we compare the value of Petty’s functional of a convex body K in R
n,

for n = 2 and n = 3, with that of another convex body K ′ that is obtained by cutting

off a vertex of K with a plane, thus introducing more vertices. However, we provide

an example that shows that this technique cannot be applied to arbitrary polytopes

in R
3 to prove Petty’s conjecture in this class and then, by approximation, in general.
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Chapter 1

Introduction and Prerequisites

1.1 Introduction

We start with a brief introduction on convex geometry and summarize the prerequi-

sites needed for the rest of the thesis such as convex hull, duality, projection bodies

and other selected topics used in our study. We focus our attention on two famous

extremal problems: Mahler’s conjecture and Petty’s conjecture that we state at the

end of the first chapter. Both of these problems conjecture certain inequalities to hold

for all convex bodies in R
n and claim that the equality cases is reached for simplices.

Simplices are the simplest polytopes in any Euclidean space. These conjectures have

been proved only in R
2 and they are open in the general case.

In Chapter 2, we examine the proof of the planar Mahler’s conjecture following

the techniques used by Mahler himself for the symmetric case in dimension 2, [5],

as presented by Henze [4]. Our main objective is recalling the proof (different other

proofs were given later) that shows that by adding new vertices to a polytope, the

value of Mahler’s functional V (K) ·V (K∗) increases, therefore the simplest polytope,

the simplex, has the minimal Mahler’s functional.

In the next chapters, we examine some problems related to Petty’s conjecture
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using similar techniques inspired by Mahler’s proof. In Chapter 3, we consider Petty’s

conjecture in R
2 and we give a proof by induction to the inequality

V (ΠK)

V (K)
≤

V (ΠT )

V (T )
,

where T ⊂ R
2 is a triangle. In Chapter 4, we study using the same techniques for

the upper bound of
V (ΠK)

V 2(K)
for any convex body K ∈ R

3 and we prove that the

inequality holds for few specific cases of convex bodies.

Finally, in Chapter 5, we compare the value of Petty’s functional,
V (ΠK)

V n−1(K)
, for

n = 2 and n = 3, of a convex body K in R
n with that of another convex body K ′

that is obtained by cutting a vertex of K. In the last part of this chapter, we provide

a counterexample that this technique can be applied to arbitrary polytopes in R
3 to

prove Petty’s conjecture in this class and then, by approximation, in general.

1.2 Convex Bodies, Minkowski Sum of Convex Bod-

ies

Throughout the thesis, the ambient space is the real vector space R
n.

Definition 1.2.1. [9] A set K ⊂ R
n is convex if for any two points x and y ∈ K,

the line segment

(1− λ) x+ λ y ∈ K, ∀λ ∈ [0, 1], (1.1)

belongs to K.

Half spaces, ellipses with their interior, and triangles, with their interior are ex-

amples of convex sets. A convex set and, respectively, a non-convex set are illustrated

in Figure 1.1.
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Figure 1.1: convex and non-convex body

Example 1.2.1. A half-space M is defined by w · x ≤ α, where w is a fixed vector,

and α is a fixed real number. Let x, y ∈ M and let λ, β ≥ 0 such that λ + β = 1,

arbitrary otherwise. Thus, w · x ≤ α and w · y ≤ α and so

w · (λx+ βy) = λw · x+ βw · y ≤ λα + βα = α (1.2)

Then, λx+ βy ∈ M and M is convex.

A convex set can be constructed from a set of arbitrary points by taking their

convex hull.

Definition 1.2.2. [9] A point x is said to be a convex combination of x1, . . . , xp if

there exists λ1, . . . , λp with λ1 + . . .+ λp = 1 and λi ≥ 0, i = 1, . . . , p, such that

x = λx1 + . . .+ λp xp. (1.3)

Definition 1.2.3. [9] For an arbitrary set K ⊂ R
n, the set of all convex combinations
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of any finitely many elements of K is called the convex hull of K and is denoted by

convK.

Theorem 1.2.1. [9] The convex hull of the points x1, x2, . . . , xp is the set of points

of the form

x = λx1 + . . .+ λp xp where λ1 + . . .+ λp = 1, λi ≥ 0, i = 1, . . . , p. (1.4)

Corollary 1.2.1. Let x1, . . . , xp ∈ R
n. Then,

conv (x1, . . . , xp) = {λ1x1+ . . .+λpxp | λ1+ . . .+λp = 1, λi ≥ 0, i = 1, . . . , p}. (1.5)

A set T and convT are illustrated in Figure 1.2

Figure 1.2: T and conv T

Theorem 1.2.2. [9] Let x1, x2, . . . , xp be points of K, a convex body in R
n. Let

λi ≥ 0, i = 1, . . . , p, such that λ1 + . . . + λp = 1 be arbitrary otherwise. Then
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λ1x1 + . . .+ λpxp ∈ K.

Proof. We prove the theorem by induction. For p = 1, the claim is trivial. Suppose

it is true for some positive integer k, we will prove that it is also true for k + 1. let

y = λ1x1+ . . .+λk1xk+1 where x1, x2, . . . , xk+1 ∈ K and λ1+ . . .+λk+1 = 1. At least

one λi should be < 1, let’s assume that λk+1 < 1. Let

z =
Λ1

λ
· x1 + . . .+

Λk

λ
· xk (1.6)

where λ = λ1 + . . .+ λk = 1− λk+1 > 0.

By the hypothesis of induction, z ∈ K and, since K is convex and contains z and

xk+1, we get that the equality y = λz + λk+1xk+1 implies y ∈ K.

Proposition 1.2.1. If K ⊂ R
n is convex, then convK=K.

Definition 1.2.4. [8] For any convex sets K,L ⊂ R
n, the Minkowski sum of K and

L is the convex set obtained by vector addition:

K + L := {k + l | k ∈ K, l ∈ L}. (1.7)
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Figure 1.3: Minkowsi sum of K and L

Definition 1.2.5. [8] Let K be a convex compact set in R
n. The support function of

K, hK : Sn−1 → R, is defined by

hK(v) = sup {v · x | x ∈ K}. (1.8)

Note that if K contains the origin in its interior, then hK is positive for all di-

rections v, hK(v) being the distance from the origin to the hyperplane of normal v

supporting K. Moreover, a convex body K is completely determined by its support

function. Lastly, note that hK+L(v) = hK(v) + hL(v) for all v ∈ S
n−1.

Proposition 1.2.2. [3] If φ ∈ GLn where GLn is a non-singular linear transforma-

tions, then hφK(v) = ||φtv||hK(φ
tv).
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Proof.

hφK(v) = sup {v · x | x ∈ φK} (1.9)

= sup {v · φy | y ∈ K}

= sup {φtv · y | y ∈ K}

= ||φtv||hK(φ
tv/||φtv||).

The support function can be in fact extended to R
n \ {0} by homogeneity via the

formula hK(x) = hK(x/||x||). We will see this formula again later.

Definition 1.2.6. [8] A polytope P ⊂ R
n is the convex hull of a finite subset of Rn.

Let P be a nonempty polytope in R
n, then P = conv{x1, . . . , xm} whenre x1, . . . , xm

are points in R
n.

Theorem 1.2.3. [8] Every polytope P ⊂ R
n is the intersection of finitely many closed

half-spaces.

Proof. Let Pn be the set of polytopes with nonempty interior and let P ∈ P
n. We can

assume that dim P = n because flats and half-flats can be described as intersections

of finitely many closed half spaces. We denote by F1, . . . , Fm the faces of P and thus

Fi = Hi ∩ P where Hi is a support plane of P . We also denote by H−
i the closed

half-space bounded by Hi for i = 1, . . . ,m and containing P. Therefore, in order to

prove the theorem, we will have to prove

P = H−
1 ∩ . . . ∩H−

m. (1.10)

The first inclusion P ⊂ H−
1 ∩ . . . ∩H−

m is trivial.

For the other inclusion, let x ∈ R
n\P and let M be the union of the affine hulls of
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the n − 1 vertices of P and x. We choose y such that y ⊂ int (P )\M . Then, there

exists a point z such that z ∈ bd P ∩ [x, y]. In other words, z is in a support plane

of P which is equivalent to saying that z lies in some face F of P . Suppose that dim

F =: k ≤ n − 2. Caratheodory’s convex hull shows that z is in the convex hull of

some k + 1 ≤ n− 1 vertices of P and thus to M . But then we have y ∈ M which is

a contradiction. This shows that F is a facet and F = Fi for i = 1, . . . ,m. x doesn’t

belong to H−
i since y ∈ H−

i . Equation (1.10) is thus proven.

Let Kn be the set of nonempty compact, convex subsets of Rn. In fact, we consider

K
n the set of compact, convex subsets of Rn with nonempty interior, as if the interior

of K is the empty set, then as K 6= ∅, then K ∈ K
l with 1 ≤ l ≤ n− 1.

Definition 1.2.7. [8] The Hausdorff distance between two convex sets L and K in

K
n is defined by

δ(L,K) := max {sup
x∈L

inf
y∈K

|x− y|, sup
x∈K

inf
y∈L

|x− y|}. (1.11)

Alternatively, it can be defined by

δ(L,K) = min {λ ≥ 0 | L ⊆ K + λBn}. (1.12)

One can easily check that δ is a metric on K
n which is called the Hausdorff metric.

Theorem 1.2.4. [8] Let ε > 0. Then, for any K ∈ K
n there exists a polytope P ∈ K

n

such that P ⊂ K ⊂ P + εB thus, consequently, δ(P,K) ≤ ε.

Proof. Let Bi be the the balls with radius ε, and with their centers in K, that cover

K. By the definition of polytopes, we can find a polytope P that is the convex hull

of the centers of Bi. It is easy to see that this polytope P has the property claimed

by the theorem.
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Corollary 1.2.2. [8] For any K ∈ K
n there exists a sequence of polytopes, Pi, con-

verging to K in the Hausdorff metric.

Proof. According to Theorem 1.2.4 we can find a sequence of polytopes, Pn, such that

Pn ⊂ K ⊂ Pn + εB by taking, successively, ε = 1
n
.

Lemma 1.2.1. [8] Let K1, K2 ∈ K
n and let K2 ⊂ intK1. Then, there exists a number

η such that for any K ∈ K
n with δ(K1, K) < η satisfies the fact that K2 ⊂ K.

Proof. We have K2 ⊂ intK1, thus the function hK1
( . )−hK2

( . ) is positive on R
n\{0}

and, consequently, since the function is continuous on S
n−1 (compact), it attains a

minimum, η, that is positive on S
n−1. Now, let K ∈ K

n be such that δ(K1, K) < η.

Thus, |hK1
(u)− hK2

(u)| ≤ η, ∀u ∈ S
n−1. Then hK2

(u) ≤ hK1
(u)− η < hK(u) where

u ∈ S
n−1 and, finally, K2 ⊂ K.

Theorem 1.2.5. [8] The volume functional, Vn, is continuous on K
n with respect to

Hausdorff metric.

Proof. Let K ∈ K
n and let K̄ ∈ K

n. Without loss of generality, if Vn(K) = 0 satisfies

δ(K, K̄) = β ≤ 1, then K is contained in a hyperplane and K̄ ⊂ K + βB. Thus,

Vn(K̄) ≤ Vn(K + βBn) ≤ C(K) · β, and using Fubini’s theorem we can find C(K)

such that C(K) is independent of β. Now, we suppose that 0 ∈ intK. Let ε > 0, we

choose λ > 1 such that (λn − 1) · λn · Vn(K) < ε and σ > 0 such that σBn ⊂ intK.

According to Lemma 1.2.1, we can find a number β > 0 such that β ≤ (λ − 1)σ

and such that σBn ⊂ K̄ for any K̄ ∈ K
n while satisfying the fact that δ(k, K̄) < β.

Assuming that the latter is true, we have

K ∈ K̄ + βBn ⊂ K̄ + (λ− 1) σBn ⊂ K̄ + (λ− 1)K̄ = λK̄. (1.13)

Also, K̄ ∈ λK. Then,

Vn(K) ≤ Vn(K̄) = λnVn(K̄). (1.14)
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Thus,

Vn(K)− Vn(K̄) ≤ (λn − 1)Vn(K̄) ≤ (λn − 1)λnVn(K),

Vn(K̄)− Vn(K) ≤ (λn − 1)Vn(K) ≤ (λn − 1)λnVn(K). (1.15)

Therefore,

|Vn(K)− Vn(K̄)| ≤ (λn − 1)λnVn(K) ≤ ε, (1.16)

concluding the proof.

For simplicity, in our thesis, we omit the index n in Vn unless there is a risk of

confusion.

Corollary 1.2.3. Let K be a nonempty compact convex set in R
n. Then there exist a

sequence of nonempty polytopes Pi in R
n, and another sequence of nonempty polytopes

Qi in R
n, i ∈ N, such that Pi ⊆ K ⊆ Qi and Pi → K and Qi → K in the Hausdorff

metric.

Corollary 1.2.4. Let K be a nonempty compact convex set in R
n, then there exist

in R
n sequences of nonempty polytopes Pi and Qi, i ∈ N, such that Pi ⊆ K ⊆ Qi,

ΠPi → ΠK and ΠQi → ΠK in the Hausdorff metric.

1.3 Special Convex Bodies: the Polar and the Pro-

jection Body of K

Definition 1.3.1. [9] Let K be a set in R
n containing the origin. The polar or dual,

K∗, of the set K is defined by

K∗ = {x ∈ R
n | v · x ≤ 1 for all v ∈ K}. (1.17)
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Note that K∗ is always a convex set even if K is not convex.

Theorem 1.3.1. [7] If K ⊂ R
n is a convex body containing the origin, then K = K∗∗.

Proof. Let an arbitrary y ∈ K ⇒ for any x ∈ K
∗, we have x · y ≤ 1 ⇒ y ∈ K

∗∗.

Now, it is enough to prove

K∗∗ ⊂ K. (1.18)

Let x ∈ R
n \K. Then there exists a hyperplane H that separates x and K, each

of them being in a different half-space. As 0 ∈ K and

H = {w ∈ R
n | w · v = 1}

for v 6= 0, then

K ⊂ {w ∈ R
n | w · v < 1} and x · v > 1. (1.19)

From the two previous equations respectively we conclude that v ∈ K∗ and that

x /∈ K∗∗. Therefore, inclusion (1.18) has been proved via complements.

Example 1.3.1. [9] Let C ⊂ R
n be the unit n-cube centered at the origin. We want

to find its polar C∗. Thus

C = {(c1, . . . , cn) ∈ R
n | |c1| ≤ 1, . . . , |cn| ≤ 1}. (1.20)

For any (x1, . . . , xm) ∈ C∗, we have (c1, . . . , cn) of C such that ci = 1 if xi ≥ 0 or

ci = −1 if xi < 0. Thus,

(x1, . . . , xm).(c1, . . . , cn) = (c1 · x1, . . . , cn · xn) = |x1|+ . . .+ |xn| ≤ 1. (1.21)

On the other hand, suppose that (x1, . . . , xm) satisfies |x1| + . . . + |xn| ≤ 1, then for
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any (c1, . . . , cn) in C, we have

(x1, . . . , xm) · (c1, . . . , cn) = (c1.x1, . . . , cn.xn)

≤ |c1| · |x1|+ . . .+ |cn| · |xn|

≤ |x1|+ . . .+ |xn| ≤ 1. (1.22)

Thus (x1, . . . , xm) ∈ C∗. The convex body C∗ is the regular n-cross-polytope defined

by

C∗ = {(x1, . . . , xm) | |x1|+ . . .+ |xn| ≤ 1}. (1.23)

Now, we will find C∗∗, the polar of C∗.

Define (x1, . . . , 0) ∈ C∗ for every (c1, . . . , cn) ∈ C∗∗ such that x1 = 1 if c1 ≥ 0 and

x1 = −1 if c1 < 0. So,

(x1, . . . , 0) · (c1, . . . , cn) = |c1| ≤ 1. (1.24)

In the same way, we prove that |c2| ≤ 1, . . . , |cn| ≤ 1. Hence (c1, . . . , cn) ∈ C and

C∗∗ ⊂ C, while C ⊂ C∗∗ holds from the definition of the polar. Thus C = C∗∗.

Definition 1.3.2. [4] A non-zero vector p = (p1, p2) in R
2 is said to be polar to the

line lp = {x ∈ R
2 | p1 · x1 + p2 · x2 = 1} and vice versa.

The above definition leads us to the following (simplified) definition of the polar

set of a convex polygon in R
2:

Definition 1.3.3. [4] The polar set K∗ of a convex polygon K = conv {x1, . . . , xm}

is the convex hull of {vij | [xi, xj] is an edge of K} where vij is the polar point to the

line through xi and xj of the edge [xi, xj].

The goal of the rest of the section is to explain the projection body of a polytope

K, denoted by ΠK. We will see that, for any polytope K ⊂ R
n, ΠK is the Minkowski

12



sum of line segments orthogonal to the faces of K having length equal to the (n− 1)-

dimensional volume of the correspondent face.

Definition 1.3.4. [3] Let K be a convex body in R
n, n ≥ 2. Then ΠK, the projection

body of K, is a centered convex body defined via its support function by

hΠK(u) = Vn−1(K|u⊥) =
1

2

∫

Sn−1

|u · v| dSK(v), (1.25)

for all u ∈ Sn−1. Here dSK(.) is the surface area measure of K as the (n−1)-Hausdorff

measure of the boundary of K.

Definition 1.3.5. [3] Cauchy’s projection formula is

cn−1,iVi(K|u⊥) =
1

2

∫

Sn−1

|u · v| dSi(K, v), (1.26)

for all u ∈ Sn−1, i = 1, . . . , n − 1. Here dSi(K,v) is the i-th surface area measure

defined in [8], with dSn−1(K, v) = dSK(v) and cn−1,i =
(

n−1
i

)

.

Proposition 1.3.1. [3] ΠK = Π(−K).

The proof is immediate due to the fact that, in each direction, the projection of

K coincides with the projection of −K, the reflection of K.

Theorem 1.3.2. [3] Let K be a convex body in R
2. Then ΠK is the rotation by

π

2

about the origin of 24K := 2(K + (−K)), the symmetric difference of K, that is

the Minkowski sum of K with its reflection through the origin. Thus, every centered

convex body in R
2 is a projection body.

Proof. If ΠK is a convex body in R
2, and u, v ∈ S1 are unit vectors such that v is

orthogonal to u, then

hΠK(u) = V1(K|u⊥) = wK(u) = w4K(v) = h24K(v). (1.27)
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where wk is the width of K in the direction u, in other words the distance between

the two supporting lines of K with normals u and −u.

Therefore, the projection body ΠK is the rotation by
π

2
about the origin of the convex

body 24K.

If K is centered at the origin, then 4K = K ⇒ ΠK1 = K : K1 is
1

2
K rotated by

π

2

about the origin.

Example 1.3.2. Projection bodies; Some simple examples:

• If C is the unit disk in R
2. Then, ΠC is the centered disk of radius 2.

• If S is the centered unit square. Then, ΠS is the centered square such that

ΠK = 2K

Let C be the centered unit cube in R
n. Then, ΠK = 2K. We conclude this by

using the projection formula that defines the support function of the projection body

of C

hΠC(u) =
1

2

∫

Sn−1

|u · v| dS(C, v). (1.28)

Given the piecewise linear structure of the boundary of C, here S(C, .) is the sum of

point masses of weight 1 at the intersection of the coordinate axes with Sn−1. We

reduce the integral to a sum of the n terms |u.ei|, 1 ≤ i ≤ n with ei being the unit

vector in the i-th coordinate direction. Each term is the support function of the

[-ei,ei]. Thus, ΠC is the vector sum of all the [-ei,ei]. In other words, ΠC is the

centered unit cube expanded by a factor of 2.

The previous reasoning can be applied to any arbitrary polytope in R
n concluding

that the projection of a polytope is the Minkowski sum of line segments, or vectors,

orthogonal to the faces of K having length equal to the (n− 1)-dimensional volume

of the correspondent face.
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Lemma 1.3.1. [2] Let F1, . . . , Fn be the faces of a polytope K, let the outward facing

unit normal of Fi be vj and let A(Fi) be the area of each Fi. As ΠK is the Minkowski

sum of the area segments of K, then

V (ΠK) =
∑

1≤i<j<k≤n

|wi, wj, wk| (1.29)

where wi = A(Fi) vi for i = 1, . . . , n and |wi, wj, wk| is the determinant of the matrix

that has wi, wj, wk as columns.

In other words, V (ΠK) is equal to sum of all volumes of parallelepipeds that can

be formed by the 3-combination of vectors that are normal to the faces of K and have

length equal to the corresponding area of the face they are orthogonal to.

In what follows we will use the definition of the support function of a convex body

both as a function on S
n−1 and its extension by homogeneity, hK(x) = hK(x/||x||),

to R
n \ {0}.

Theorem 1.3.3. [3] The projection bodies of affinely equivalent convex bodies are also

affinely equivalent. If φ ∈ GLn where GLn is any non-singular linear transformation

from R
n to itself, then

Π(φK) = | detφ|φ−t(ΠK). (1.30)

Proof. As the name implies, two convex bodies are affinely equivalent if and only

if there is an affine transformation of Rn that sends one convex body into another,

where recall that an affine transformation is a linear transformations composed with a

translation, possibly by the zero vector. Note that the linear transformation involve

must be invertible as each convex body is sent into another convex body, thus a

compact convex set with non-empty interior is sent into another set, compact and

convex, with non-empty interior.
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We will start by proving formula (1.30). Let K be a convex body in R
n, φ ∈ GLn

an invertible linear transformation, u ∈ S
n−1 and let w be such that φ ·w = u. Then

hΠ(φK)(u) =
1

2

∫

Sn−1

|u · v| dS(φK, v)

=
n

2
V (φK, n− 1; [−u; u])

=
n

2
V (φK, n− 1;φ[−w;w])

=
n

2
| detφ|V (K,n− 1; [−w;w])

= | detφ|hΠK(w)

= | detφ|hΠK(φ
−1u). (1.31)

Above, we have used Cauchy’s projection formula from Definition 1.3.5 with i = n−1,

the invariance of mixed volumes under volume-preserving linear transformations, and

the following equation

nV (K,n− 1; [0, u]) = Vn−1(K | u⊥), (1.32)

where the mixed volumes V (K, [n− i], L, [i]) are defined, up to some constant, as the

ti coefficients in V (K + tL), the volume of the Minkowski sum of K with the dilation

tL, as a polynomial in t, [8].

For the change in support functions under linear transformations, we use Propo-

sition 1.2.2 and get

hφK(u) = hK(φ
tu) = ||φt(u)||hK(

φtu

||φtu||
). (1.33)

Thus,

hΠK(φ
−1u) = hφ−t(ΠK)(u). (1.34)

Equation (1.31), together with equation (1.34), completes the proof of the second
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part of Theorem 1.3.3.

Since it is obvious that any translation of a convex body leaves its projection

body unchanged, as only the areas of projections matter, the proof of the rest of the

theorem follows immediately.

Finally, we note another corollary of Theorem 1.2.4:

Corollary 1.3.1. If a sequence of polytopes, Pi, converges to K ∈ K
n in the Hausdorff

metric, then, ΠPi, converges to ΠK in the Hausdorff metric where ΠPi and ΠK are

the projection bodies of Pi and K, respectively.

Proof. Given that Pi converges to K ∈ K
n, it follows that S(Pi) converges to S(K),

where S(K) denotes the surface area of K, as i → ∞. Given that the support

function of the projection body of a convex body K in a given direction u ∈ S
n−1 is

the area of the projection of K on a hyperplane orthogonal to u, we thus obtain the

corollary.

1.4 Statement of Mahler’s Conjecture and, respec-

tively, Petty’s Conjecture

Let K
n
0 be the set of all compact, convex sets in R

n containing the origin in their

interior. The volume product functional, also known as the Mahler product, is the

map that assigns to each K ∈ K
n
0 , the value M(K) = V (K) · V (K∗), where recall

that K∗ is the polar of K and that the polar depends on the choice of the origin.

It is worth noting that M(TK) = M(K), for any general linear transformation T

of Rn. We thus say that M( . ) is linearly invariant. For an extensive discussion on

Mahler’s functional, including Mahler’s conjecture, we refer the reader to [4].

Note also that if the origin is taken closer and closer to the boundary of K,

then M(K) becomes larger and larger and is, thus, unbounded. Therefore, generally,
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one cannot have an upper bound for Mahler’s functional. However, it was proved

by Santaló that for centrally symmetric convex bodies whose center of symmetry

coincides with the origin, the maximum of Mahler’s product is reached for ellipsoids

and is equal to ω2
n, where ωn denotes the volume of the Euclidean unit ball in R

n. It

can be shown that if K is not centrally symmetric, there exists a choice of the origin

in the interior of K, choice called Santaló point, such that the same bound holds.

The lower bound of Mahler’s functional remains unknown except for dimension

n = 2. It has been conjectured, and proved by Mahler in the planar case that, for

any centrally convex body K ∈ K
n
0 , we have

M(K) ≥
4n

(n!)2
, (1.35)

with equality if and only if K is a parallelotope, [5].

The lower bound remained an open problem despite many attempts and it is called

Mahler’s Conjecture. Only some very special cases of Mahler’s conjecture have been

proved.

The conjecture has a non-symmetric analogue in which the lower bound is claimed

to be reached for simplices. Mahler has shown that the method used in the plane for

the centrally symmetric case, which we will present in Chapter 2, works also to prove

the non-symmetric planar case.

We will now focus on Petty’s conjecture. For this, recall that K
n is the set of

all compact, convex sets with non-empty interior. Petty’s functional is the map that

assigns to each K ∈ K
n the value P (K) :=

V (ΠK)

V n−1(K)
, where recall that ΠK is the

projection body of K.

It is clear from the definition of the projection body, as well as the properties

of volume as the n-dimensional Lebesgue measure in R
n, that Petty’s functional is

translation invariant. Moreover, by Theorem 1.3 and, again the properties of volume,
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Petty’s functional is linearly invariant. Combining the previous two facts, we conclude

that the value of the functional is unchanged under any affine transformation applied

to K. Thus, P ( . ) is an affine invariant of K.

Both bounds of Petty’s functional, the lower one and the upper one, in K
n for

n ≥ 3 are not yet known. In 1971, Petty conjectured [2] that

ωn
n−1ω

2−n
n ≤

V (ΠK)

V n−1(K)
(1.36)

with equality if and only if K is an ellipsoid.

Regarding the upper bound, for centrally symmetric convex bodies K ∈ K
n,

Schneider [1] conjectured that 2n is the upper bound and that it is achieved, in par-

ticular, for parallelotopes, like a reverse of the symmetric case of Mahler’s conjecture.

In other words, Schneider hypothesized that

V (ΠK)

V n−1(K)
≤ 2n (1.37)

for any convex body K ∈ K
n symmetric with respect to the origin and we have

equality for direct sums of planar centrally symmetric convex bodies.

However, Brannen gave a counterexample where Petty’s functional,
V (ΠK)

V n−1
, ex-

ceeds 2n where n ≥ 3. In fact, he found centrally symmetric convex bodies K ⊂ R
n

such that P (K) =
9

8
· 2n for every n ≥ 3, [1].

Finally, Brannen [1] conjectured that, for all convex bodies K ∈ K
n, we have

V (ΠK)

V n−1
≤

(n+ 1) · nn

n!
(1.38)

and equality is satisfied if and only if K is a simplex.

It is this latter bound that we refer to as Petty’s conjecture and the one for which

we address Mahler’s technique in this thesis.
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Chapter 2

Mahler’s Conjecture in R
2

The aim of this chapter is to present a particular proof of the symmetric case of

Mahler’s conjecture in dimension two. This proof stands out for a certain technique

in which it is shown that decreasing the number of vertices of a polygon, Mahler’s

functional decreases as well. Consequently, one can use this fact to deduce that, in

the centrally symmetric planar case, the minimum of Mahler’s functional is reached

for the parallelogram,

In the next chapters, we will investigate uses of similar techniques, although not

identical, for other problems such as Petty’s conjectured inequality in dimension 2

and 3. Therefore, we regard this proof as the starting prototype.

Finally, let us mention that the proof that we will present below dates from 1939

and is due to Mahler himself [5], but our presentation follows a more modern update

of Henze, [4].

Proposition 2.0.1. Let T ⊂ R
2 be a triangle containing the origin in its interior

and let T ∗ be its polar. Denote T= conv {x, y, z}, T ∗= conv {x∗, y∗, z∗} and assume

that no two of x, y and z are linearly dependent. Then,

V (T ∗) =
2V (T )2

dxydyzdzx
, (2.1)
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where dxy = det







x1 y1

x2 y2






with x = (x1, x2) and y = (y1, y2).

Proof. We have that dxy, dyz and dzx are all different than zero since no two of x, y

and z are linearly dependent.

As we saw in the introduction, the definition of the polar body implies that x∗ is

the intersection of the lines that are polar to the points x and y that we will call lx

and ly, respectively. By solving the system of the two linear equations representing

the lines lx = {x ∈ R
2 | a1 · x1 + a2 · x2 = 1} and ly = {y ∈ R

2 | a1 · y1 + a2 · y2 = 1},

we get

x∗ =
1

dxy
(y2 − x2, x1 − y1). (2.2)

Similar calculations for y∗ and z∗ lead to

y∗ =
1

dyz
(z2 − y2, y1 − z1) and z∗ =

1

dzx
(x2 − z2, z1 − x1). (2.3)

Given that the area of a parallelogram can be represented by means of a determinant,
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we deduce the value of V (T ∗) as follows:

V (T ∗) =
1

2
det(y∗ − x∗, z∗ − x∗)

=
1

2
(dx∗y∗ + dy∗z∗dz∗x∗)

=
1

2







1

dxydyz
·

∣

∣

∣

∣

∣

∣

∣

y2 − x2 z2 − y2

x1 − y1 y1 − z1

∣

∣

∣

∣

∣

∣

∣

+
1

dyzdzx
·

∣

∣

∣

∣

∣

∣

∣

z2 − y2 x2 − z2

y1 − z1 z1 − x1

∣

∣

∣

∣

∣

∣

∣

+
1

dzxdxy
·

∣

∣

∣

∣

∣

∣

∣

x2 − z2 y2 − x2

z1 − x1 x1 − y1

∣

∣

∣

∣

∣

∣

∣






(2.4)

=
1

2dxydyzdzx
· (d2xy + d2yz + d2zx + 2dxydyz + 2dyzdzx + 2dzxdxy)

=
(dxy + dyz + dzx)

2

2dxydyzdzx

=
2 · V (T )2

dxydyzdzx
.

We will now investigate where the maximality of V (T ∗) is attained.

Let’s assume that dxy, dyz are strictly positive and that dzx < 0. The assump-

tion is reasonable without any loss of generality because no two of x, y and z are

linearly independent. Consequently, supposing that the origin does not belong to

T = conv {x, y, z}, dxy, dyz and dzx are not all of the same sign, thus the assumption.

We define a line d parallel to [x, z] and we choose y arbitrarily on d by the equation,

dxy + dyz − |dzx| = 2 · V (T ) (2.5)

Thus, 0 < dxy < 2 · V (T ) + |dzx| since dxy > 0. Let us define α and β such that

0 < α ≤ dxy ≤ β < 2 · V (T ) + |dzx| which implies a stretch S of d.
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Substituting our results in equation (2.1), we get

V (T ∗) =
2 · V (T )

dxy(2 · V (T ) + |dzx| − dxy)|dzx|
. (2.6)

Therefore, V (T ∗) depends on y ∈ S and reaches a maximum on S. Additionally,

2 · V (T )

V (T ∗) · |dzx|
= dxy(2 · V (T ) + |dzx| − dxy)

= (V (T ) +
|dzx|

2
)2 − ((V (T ) +

|dzx|

2
)2 − 2 · dxy · (V (T ) +

|dzx|

2
) + d2xy)

= (V (T ) +
|dzx|

2
)2 − (V (T ) +

|dzx|

2
− dxy)

2. (2.7)

Therefore
2 · V (T )

V (T ∗) · |dzx|
attains a maximum when dxy = V (T ) +

|dzx|

2
and, further-

more, V (T ∗) reaches its maximum when y is a boundary point of S.

Proposition 2.0.2. Given P ⊂ R
2, a centrally symmetric polygon with 2m ≥ 6

vertices containing the origin in its interior, we can find a centrally symmetric polygon

H ⊂ R
2 with 2(m− 1) vertices and containing the origin in its interior, such that

V (H) · V (H∗) < V (P ) · V (P ∗), (2.8)

where P ∗ and H∗ are the polars of P and H, respectively.

Proof. Let v1, . . . , vm, vm+1, . . . , v2m be the vertices of P such that vi = −vm+i,

where 1 ≤ i ≤ m, so that P is centrally symmetric. Let T = conv {v1, v2, v3},

T ′ = conv {vm+1, vm+2, vm+3} and M = conv {v1, v3, . . . , vm, vm+1, vm+3, . . . , v2m}.

Thus, P = M ∪ T ∪ T ′. Notice that T and T ′ are symmetric to each other with

respect to the origin and do not contain the origin. We could always find such T and

T ′ because the number of vertices of P is 2m ≥ 6.

To illustrate the procedure, see Figure 2.1 where we choose an example with
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Figure 2.2: P∗

Let l be a line parallel to the edge [v1, v3] and passing through v2. Now, we extend

[v3, v4] and [v2m, v1] toward l. If we move v2 on the part of l that is cut by the

extension of [v3, v4] and [v2m, v1], P will conserve its convexity and its area. Let us

call Tv the convex hull of v1, v′2 and v3, where v′2 is a any position of v2 on on the

part of l that is cut by the extension of [v3, v4] and [v2m, v1]. The above procedure is

illustrated below in Figure 2.3.
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and the equality is satisfied if and only if P is a parallelogram.

Proof. Consider first P = conv{v1, v2,−v1,−v2}, thus P is a parallelogram. Therefe-

ore, we can divide P into 4 triangles, T1, T2, T3 and T4, that have the same area

such that T1 = conv{v1, v2, 0}, T2 = conv{−v1, v2, 0}, T3 = conv{−v1,−v2, 0} and

T4 = conv{v1,−v2, 0}. The information above is illustrated in Figure 2.4.

Figure 2.4: P

Therefore,

V (P ) =
1

2
dv1,v2 +

1

2
dv1,−v2 +

1

2
dv1,v2 +

1

2
d−v1,v2 = 2dv1,v2 . (2.10)

Using the same notation as in the previous lemma, we have P ∗ = conv{v∗1, v
∗
2,−v∗1,−v∗2} =

conv{±v∗1,±v∗2}, where V ∗
1 =

1

dv1v2

∣

∣

∣

∣

∣

∣

∣

v22 −v12

v11 −v21

∣

∣

∣

∣

∣

∣

∣

and V ∗
2 =

1

dv1v2

∣

∣

∣

∣

∣

∣

∣

−v12 −v22

v11 v21

∣

∣

∣

∣

∣

∣

∣

given

that v1= (v11, v12) and v2= (v11, v12). Thus, V (P ∗) =
4

dv1v2
which implies that

M(P ) = 8.
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We will prove the remaining part by induction. Let P = conv{±v1, . . .±vm} such

that m ≥ 3. By the induction hypothesis, and the previous lemma, there exists a

q-gon Q with 2(m− 1) vertices such that

M(P ) > M(Q) ≥ 8. (2.11)

This also settles the fact that strict inequality occurs if Q has more than 4 sides and,

thus, we conclude the proof.

Finally, Mahler noticed that for any centrally symmetric convex body K in R
2,

one can find a sequence of centrally symmetric polygons in R
2 that converges to K.

Since M(K) is a continuous functional, see Theorem 1.2.5, we have M(K) ≥ 8, but

the equality is lost in this case.

As observed by Mahler himself, the same argument may be used in the non-

symmetric planar case, but it would be more subtle, because we do not control the

choice of the origin and the polar of a set depends on the choice of the origin. In

the symmetric case, we have used the fact that, by eliminating opposite vertices, the

origin remains the center of symmetry, and/or mass, of the resulting convex polygon.

For simplicity, to illustrate the method, we presented here Mahler’s proof only in

the symmetric case as, for further analysis, in Petty’s conjecture the position of the

origin is irrelevant.
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Chapter 3

Petty’s Conjecture in R
2

3.1 Calculation of the Upper Bound (Triangle)

Proposition 3.1.1. Let T be a triangle in R
2, then

V (ΠT )

V (T )
= 6. (3.1)

Proof. Let T be a triangle as presented in Figure 3.1.

Denoting by h1, h2 and h3 the heights issued from each vertex onto a, b and c,

respectively, we have V (T ) =
a · h1

2
=

b · h2

2
=

c · h3

2
=: m.

Next we will use the fact that the projection body is the sum of Minkowski sum

of segments to construct ΠT and calculate its volume.

Step 1: We take the side of length a by its middle point and place it at the origin

as in Figure 3.2.
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Now, we notice that V (K) = (P6 + P1)/2.

By plugging in our results in
V (ΠK)

V (K)
≤ 6, which we want to show, we have that the

inequality is equivalent to

P1 + P2 + P3 + P4 + P5 + P6

(1/2) · (P6 + P1)
≤ 6

P1 + P2 + P3 + P4 + P5 + P6 ≤ 3 · (P6 + P1) (3.4)

P2 + P3 + P4 + P5 ≤ 2 · P6 + 2 · P1.

Note further that P3 + P4 = 2 · V (K) = P6 + P1, so we can reduce the inequality to

the following

P2 + P5 ≤ P6 + P1 = 2 · V (K).
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Figure 3.9: dissertation of K

As we can see in Figure 3.9, we have V (K) = P1 + (1/2) · P2 + (1/2) · P5.

Thus, 2 · V (K) = 2 · P1 + P2 + P5.

Therefore, our main inequality becomes equivalent to 0 ≤ 2 · P1 ⇒ 0 ≤ P1, which

is always true, concluding the proof.
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3.3 General Proof by Induction

Proposition 3.3.1. Let Q ⊂ R
2 be a convex planar polygon. Then, Q satisfies

Petty’s conjecture in R
2, namely

V (ΠQ)

V (Q)
≤

V (ΠT )

V (T )
, (3.5)

for any triangle T ⊂ R
2.

Proof. In Section 3.2, we proved that
V (ΠK)

V (K)
≤

V (ΠT )

V (T )
= 6 for any convex polygo-

nal body K in R
2 with 4 sides.

Now, supposing that
V (ΠK)

V (K)
≤ 6 for any convex polygonal body K in R

2 with n

sides, we will prove that
V (ΠQ)

V (Q)
≤ 6 (or, equivalently, that V (ΠQ) ≤ 6 · V (Q)) for

any convex body Q with n+ 1 sides in R
2.

Figure 3.10: Q
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As it is shown in Figure 3.10, the polygonal body Q can be divided into 2 convex

bodies, K and T , so V (Q) = V (K) + V (T ).

We have started with Q having n+ 1 sides; a1, . . . , an+1.

Now, from the way we have cut Q, the convex polygonal body K has n sides;

a1, . . . , an−1, d. Thus, due to our assumption,
V (ΠK)

V (K)
≤ 6 and, consequently, V (ΠK) ≤

6 · V (K)

Furthermore, T has 3 sides: d, an, an+1 and, as shown in Section 3.1,
V (ΠT )

V (T )
= 6, or

V (ΠT ) = 6 · V (T ).

Recall that V (ΠQ) is equal to the sum of the area of the parallelograms formed

by the 2-combinations of the lengths of the sides of Q. Denote by V (ij) the area of

the parallelogram formed by the 2 sides i and j, where i and j are any of the sides

shown in Figure 3.10. From the additivity property of the area, we thus obtain the

following equality:

V (ΠQ) = V (ΠK)−V (da1)−. . .−V (dan−1)+V (ΠT )−V (dan)−V (dan+1)+V (ana1)+

. . .+ V (anan−1) + V (an+1a1) + . . .+ V (an+1an).

Replacing our above result in V (ΠQ) ≤ 6 · V (Q), we obtain the equivalent claim:

V (ΠK)− V (da1)− . . .− V (dan−1) + V (ΠT )− V (dan)− V (dan+1) + V (ana1) + . . .+

V (anan−1) + V (an+1a1) + . . .+ V (an+1an) ≤ 6 · V (K) + 6 · V (T ).

Since V (ΠK) ≤ 6 · V (K) and V (ΠT ) = 6 · V (T ), this latter inequality becomes:

V (ana1)+ . . .+V (anan−1)+V (an+1a1)+ . . .+V (an+1an) ≤ V (da1)+ . . .+V (dan+1).

Note that V (da1) = V (ana1)+V (an+1a1) . . . V (dan−1) = V (anan−1)+V (an+1an−1)

and V (dan) = V (an+1an) as these parallelograms share the same base and same

height.

Thus, our inequality is equivalent now to

0 ≤ V (dan+1)

which is always true.
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Due to Corollary 1.3.1, Proposition 3.3.1 can be extended to arbitrary convex

bodies in R
2:

Corollary 3.3.1. Let Q ⊂ R
2 be a compact convex set with nonempty interior. Then,

Q satisfies Petty’s conjecture in R
2, namely

V (ΠQ)

V (Q)
≤

V (ΠT )

V (T )
, ∀T triangle ⊂ R

2. (3.6)
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Chapter 4

Petty’s Conjecture in R
3

4.1 Calculation of the Upper Bound (Tetrahedron)

Proposition 4.1.1. Let T ⊂ R
3 be an arbitrary, non-degenerate tetrahedron. Then,

V (ΠT )

V 2(T )
= 18. (4.1)

Proof. We will prove Proposition 4.1.1 using a right tetrahedron T that has 3 faces

as right isosceles triangles. Consequently, the value of Petty’s functional would be

the same for any tetrahedron since Petty’s functional is affine invariant as we have

showed earlier.

Thus let T be the tetrahedron with the following vertices as in Figure 4.1:

A = (0, 0, 0)

B = (1, 0, 0)

C = (0, 1, 0)

D = (0, 0, 1).

In order to calculate V(ΠT ), we first need the unit normals to each face. The di-

rections of the normals to the faces of this tetrahedron are the same for any right

tetrahedron T that has 3 faces as right isosceles triangles.
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Now, we calculate the normals:

• Normal to the triangle ABC:

(A− B) = (−1, 0, 0) and (A− C) = (0,−1, 0)

Thus, the normal to the face ABC is (A− B)× (A− C) = (0, 0, 1).

• Normal to the triangle ADC:

(A−D) = (0, 0,−1) and (A− C) = (0,−1, 0)

Thus, the normal to the face ACD is (A−D)× (A− C) = (1, 0, 0).

• Normal to the triangle ADB:

(A− B) = (−1, 0, 0) and (A−D) = (, 0,−1)

Thus, the normal to the face ABD is (A− B)× (A−D) = (0, 1, 0).

• Normal to the triangle DBC:

(B −D) = (1, 0,−1) and (B − C) = (1,−1, 0)

Thus, the normal to the face BCD is (B −D)× (B − C) = (1, 1, 1).

This last vector is the only one that is not normalized to have unit length one.

Thus, we do so and after normalizing it, we obtain the unit normal to the face

BCD as
(1, 1, 1)

(12 + 12 + 12)1/2
=

(1, 1, 1)

31/2
.

Thus, for any such tetrahedron where

length of AB = length of AC = length of AD = a, (4.2)

we have A =
a2

2
= Area(ABC) = Area(ABD) = Area(ACD).

Additionally, Area(BCD) =
31/2

4
· (a · 21/2)2 = a2 ·

31/2

2
= 31/2 · A, since BCD is an

equilateral triangle with side a.

Thus, for calculating V (ΠT ), we will use the following vectors, called area vectors:

• v1 = (A, 0, 0);
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• v2 = (0, A, 0);

• v3 = (0, 0, A);

• v4 =
(1, 1, 1)

31/2
· 31/2 · A = (A,A,A).

Figure 4.1: Right Tetrahedron T

Recall that V (ΠT ) is equal to the sum of volumes of the parallelepipeds formed by

the 3-combination of the area vectors v1, v2, v3 and v4, volumes which we list below:

• Volume of the parallelepiped formed by v1, v2 and v3 is V1= ‖v1, v2, v3‖= A3.
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• Volume of the parallelepiped formed by v1, v2 and v4 is V2= ‖v1, v2, v4‖= A3.

• Volume of the parallelepiped formed by v1, v3 and v4 is V3= ‖v1, v3, v4‖= A3.

• Volume of the parallelepiped formed by v2, v3 and v4 is V4= ‖v2, v3, v4‖= A3.

We have denoted by ‖u, v, w‖ the absolute value of the determinant whose rows

are the coordinates of the vectors u, v, w in R
3.

Therefore, V (ΠT ) = V1 + V2 + V3 + V4 = 4 · A3

On the other hand, V (T ) =
1

6
· a3 =

2 · 21/2

6
· A3/2 and, consequently, V (T )2=

8

36
· A3.

Finally, substituting the above values in equation (4.1), we get

V (ΠT )

V 2(T )
=

4 · A3

8

36
· A3

= 18, (4.3)

which concludes the proof.

4.2 Validation of Petty’s Conjecture for K a Par-

allelepiped

Proposition 4.2.1. Let K ⊂ R
3 be an arbitrary parallelepiped. Then K satisfies

Petty’s conjecture in R
3, i.e.

V (ΠK)

V 2(K)
≤

V (ΠT )

V 2(T )
, (4.4)

where T ⊂ R
3 is a tetrahedron.

Proof. We have calculated in Section 4.1 that the value of Petty’s functional is

V (ΠT )

V 2(T )
= 18, (4.5)
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for any tetrahedron T ⊂ R
3.

Thus, given any parallelepiped K, it suffices to prove that

V (ΠK)

V 2(K)
≤ 18. (4.6)

Recall that V (ΠK) is equal to the sum of areas of the parallelepipeds formed by

the 3-combination of the 6 vectors that are perpendicular to each face of K and that

have a length equal to the area of the correspondent face. Since a parallelepiped has

pairs of parallel faces with same area, we have 3 different area vectors, each of which

is repeated twice. Thus, we define V (ΠK ′), the area of the parallelepiped formed by

the combination of the 3 vectors as shown in Figure 4.2. Consequently, since we are

in R
3,

V (ΠK) = V (ΠK ′) · 23. (4.7)

Figure 4.2: Parallelepiped K
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In order to prove equation (4.6), we will write V (ΠK) in terms of V (K).

First, we note the difference in volume between a parallelepiped M and another

parallelepiped M̃ that is formed by changing only the length of the three vectors that

form M , thus multiply each vector by a positive constant α, β and, respectively, γ as

shown in Figure 4.3.

Figure 4.3: The parallelepipeds M and M̃

We get, directly from the volume formula as determinant, that

V (M̃) = 23 · α · β · γ · V (M). (4.8)

The body ΠK ′ is the parallelepiped presented in Figure 4.4. From the definition

of projection bodies in Section 1.3, and the fact that C · h2, A · h5 and B · h6, are

the areas of the faces of K (h2, h5, h6 are chosen accordingly and presented in Figure

4.2), we have the following results:
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Figure 4.4:

length of vector 1 = C · h2 (4.9)

length of vector 2 = A · h5 (4.10)

length of vector 3 = B · h6. (4.11)

Consequently, we find α, β and γ in order to write V (ΠK ′) in terms of V (K) and,

further, V (ΠK) in terms of V (K).

We notice that ΠK ′ and K only differ by the lengths of the 3 vectors that form

the two parallelepipeds (the projection has conserved the angles between the normals

to the faces).

Now let α, β and γ be such that,

length of vector 1 = α · B (4.12)
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length of vector 2 = β · C (4.13)

length of vector 3 = γ · A. (4.14)

Using equations (4.9) to (4.14), we get,

α =
C · h2

B
(4.15)

β =
A · h5

C
(4.16)

γ =
B · h6

A
. (4.17)

Therefore, since V (ΠK ′) = α · β · γ · V (K) and V (ΠK) = 23 · V (ΠK ′), we have:

V (ΠK) = 23 ·α·β ·γ ·V (K) = 23 ·
C · h2

B
·
A · h5

C
·
B · h6

A
·V (K) =23 ·h2 ·h5 ·h6 ·V (K).

Finally, we will prove that h2 . h5 . h6 = V(K).

Proof. To prove the above claim, it is enough to show that V (K) is equal to the

volume of the rectangular box (a box with right dihedral angles) formed by the sides

h2, h5 and h6.

Let K1 be same parallelepiped as K, but with the side C replaced by h6. Then,

V(K)=V(K1). Let K2 be same parallelepiped as K1 with side B replaced by h2.

Then, V (K) = V (K1) = V (K2). Thirdly, let K3 be same parallelepiped as K2 with

side A replaced by h5. Then, V (K) = V (K1) = V (K2) = V (K3) = h2 · h5 · h6.

We now obtain that

V (ΠK)

V 2(K)
=

23.V 2(K)

V 2(K)
= 23, (4.18)

which confirms that Petty’s Conjecture is satisfied for K:
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23 =
V (ΠK)

V 2(K)
≤

V (ΠT )

V 2(T )
= 18. (4.19)
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Chapter 5

The Cut-off Vertex Method and

Petty’s Functional

5.1 The problem in R
2

Proposition 5.1.1. Let T be a triangle in R
2 and let Q be a quadrilateral formed by

cutting off one of the vertices of T ′, a triangle in R
2. Then

V (ΠQ)

V (Q)
≤

V (ΠT )

V (T )
. (5.1)

Proof. We have calculated in Section 3.1 that, for any triangle T ⊂ R
2, the value of

Petty’s functional is

V (ΠT )

V (T )
= 6. (5.2)

Thus, it suffices to prove that

V (ΠQ)

V (Q)
≤ 6. (5.3)

We thus calculate V (Q) and V (ΠQ). Note that T and Q are illustrated in Figure
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5.1.

Figure 5.1: The polygons T and Q

Given the affine invariance of Petty’s functional, we may choose to cut off
α− 1

α
,

α ≥ 1, of the two sides of T attached to one of the vertices. This means that our new

side d is parallel to the base c and that the measures of Q are d, c,
a

α
and

b

α
.

Consequently, V (T ) =
c · h

2
= m.

Furthermore, from the trapezoid’s area formula, we have:

V (Q) =
c+ d

2
·
h

α
=

h · c

2 · α
+

d · h

2 · α
=

m

α
+

d · h

2 · α
.

Note that ΠQ is formed by 6 parallelograms, as
(

4
2

)

= 6:

Parallelogram 1 is formed by c and d and, since the two sides are parallel, we have

V (P1) = 0.

Parallelogram 2 is formed by
a

α
and c and so V (P2) =

2 ·m

α
.

Parallelogram 3 is formed by
b

α
and c and so V (P3) =

2 ·m

α
.

Parallelogram 4 is formed by
a

α
and

b

α
and so V (P4) =

2 ·m

α2
.

Parallelogram 5 is formed by
a

α
and d and so V (P5) =

h

α
· d.
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Parallelogram 6 is formed by
b

α
and d and so V (P6) =

h

α
· d.

Thus,

V (ΠQ) = V (P1) + V (P2) + V (P3) + V (P4) + V (P5) + V (P6)

= 4 ·
m

α
+

2 ·m

α2
+

2 · h · d

α
.

We substitute our results in equation (5.3) and obtain

4 ·m

α
+

2 ·m

α2
+

2 · h · d

α
≤

6 ·m

α
+

6 · d · h

2 · α
(5.4)

2 ·m

α2
+

2 · h · d

α
≤

2 ·m

α
+

3 · d · h

α
(5.5)

2 ·m

α
+ 2 · h · d ≤ 2 ·m+ 3 · d · h (5.6)

2 ·m

α
≤ 2 ·m+ d · h. (5.7)

Knowing that
2 ·m

α
≤ 2 · m since α ≥ 1 and that d · h ≥ 0, equation (5.7) is

satisfied and so is then equation (5.1).

5.2 An example of the problem in R
3

In this section, we will give an example that by adding new vertices to a convex

polytope in R
3, Petty’s functional does not necessarily decrease. Specifically, we

show that

V (ΠQ)

V 2(Q)
>

V (ΠP )

V 2(P )
(5.8)

where P is a convex polytope in R
3 and Q is P cut by a hyperplane eliminating one

vertex, but introducing this way more vertices.

Example 5.2.1. Let P be a convex body in R
3 that is the union of C1 and C2 where

C1 is a cube and C2 is a regular pyramid with a base square and whose lateral faces
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Figure 5.2: P and Q

are isosceles triangles. Now, we cut P by the vertex of C2 by a plane parallel to its

base and we call it Q. We illustrate the convex bodies considered in Figure 5.2.

Let h′ be the height of C2. In order to form Q, we cut off with a parallel plane to

the base of C2 an amount (1 − α) of h′, 0 < α < 1, so that αh′ is left and the same

proportion goes to every side that is attached to the vertex that is cut. Thus we obtain

the following results:

V (P ) = V (C1) + V (C2) and V (Q) = V (C1) + (1− (1− α)3)V (C2).

Let a be the length of each side of the cube C1 and b be the length of the side of the

triangle that is formed by the projection of the tetrahedron C2 on the xz-plane. Let θ be

the angle between each face of C2 and the base and let β be such that V (C2) = βV (C1),

then:

β =
tan θ

6
.
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Proof. In Figure 5.3, we see the projection of the tetrahedron C2 on the xz-plane

assuming that the origin is placed at the center of symmetry of the base of C2.

Figure 5.3: The projection of C2 on the xz-plane

We have that sin θ =
h′

b
and cos θ =

a

2 · b
. We substitute the previous two

equations in V (C2) =
a2 · h′

3
and we obtain

V (C2) =
a2 · b · sin θ

3
=

a3 · sin θ

6 · cos θ
=

a3 · tan θ

6
= V (C1) ·

tan θ

6
. (5.9)

Note that V (C1) = a3.

Thus, now we have,

V (P ) =

(

1 +
tan θ

6

)

V (C1) and V (Q) =

(

1 +
tan θ

6
· (1− (1− α)3)

)

V (C1).

Therefore, the previously conjectured inequality

V (ΠQ)

V 2(Q)
≤

V (ΠP )

V 2(P )
is equivalent to V (ΠQ) · V 2(P ) ≤ V (ΠP ) · V 2(Q) (5.10)

54



and becomes

V (ΠQ) ·

(

1 +
tan θ

6

)2

≤ V (ΠP ) ·

(

1 +
tan θ

6
· (1− (1− α)3)

)2

. (5.11)

We now calculate V (ΠP ) and V (ΠQ). As shown in Figure 5.2 the vectors 1, . . . , 9 are

the vectors that are perpendicular to each face of P and that have length equal to the

area of the corresponding face. Let V (ijk) represent the volume of the parallelepiped

formed by the vectors i, j and k where the vectors i, j, k can be any of the indices

1, . . . , 9.

Recall that V (ΠP ) is equal to sum of all volumes of parallelepipeds that can be

formed by the 3-combination of vectors1, . . . , 9. Consequently, V (ΠP ) is the sum of

the following volumes that we divided into sets:

Set X: V (124), V (125), V (134), V (135). Let VX be such that all the volumes in this

set are equal to VX , thus they all are equal to each other.

Set Y1: V (127), V (129), V (137), V (139), V (146), V (148), V (156), V (158). Let VY1

be such that all the volumes in this set are equal to VY1
.

Set Z1: V (167), V (169), V (178), V (189). Let VZ1
be such that all the volumes in this

set are equal to VZ1
.

Set Y : V (246), V (247), V (248), V (249), V (256), V (257), V (258), V (259), V (346),

V (347), V (348), V (349), V (356), V (357), V (358), V (359). Let VY be such that all

the volumes in this set are equal to VY .

Set Z: V (267), V (269), V (278), V (279), V (289), V (367), V (369), V (378), V (379),

V (389), V (467), V (468), V (469),V (478),V (489), V (567), V (568), V (569), V (578),

V (589). Let VZ be such that all the volumes in this set are equal to VZ.

Set W : V (678), V (679), V (689), V (789). Let VW be such that all the volumes in this

set are equal to VW .
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Notice that V (ijk)=0 in the following cases:

Case 1: ijk is a 3−combination of vectors 1, 4, 5, 7, 9 because these vectors are in the

same plane.

Case 2: ijk is a 3−combination of vectors 1, 2, 3, 6, 8 because these vectors are in the

same plane also.

Case 4: ijk consists of the vectors 4 and 5 and any other third vector (because the

vectors 4 and 5 are in the same direction so the height of the parallelepiped is 0).

Case 5: ijk consists of the vectors 1 and 10 and any other third vector (because the

vectors 1 and 10 are in the same direction so the height of the parallelepiped is 0)

where vector 10 is the corresponding vector to the face that is formed by cutting P in

order to form Q.

Case 6: ijk consists of the vectors 2 and 3 and any other third vector (because the

vectors 2 and 3 are in the same direction so the height of the parallelepiped is 0).

Now, knowing that the volume is the absolute value of the determinant, we will

calculate VX , VY1
, VZ1

, VY , VZ and VW :

VX= a2 · a2 · a2= a6;

VY1
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 −a2

0 a2 0

h1 0 h2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a4 · h1;

VZ1
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 −a2

0 h1 h2

−h1 0 h2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a2 · h2
1;

VY=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −a2 0

a2 0 0

0 h1 h2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a4 · h2;
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VZ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 a2 0

0 h1 h2

h1 0 h2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a2 · h1 · h2;

VW =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 h1 h2

h1 0 h2

0 h1 h2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2 · h2
1 · h2,

where h1 is the height of vectors 6, 7, 8 and 9 projected on the xy-plane and h2 is the

height of vectors 6, 7, 8 and 9 projected on the z-axis as shown in Figure 5.4.

Figure 5.4: vectors 6, 7, 8, 9

Now, we will express h1 and h2 in terms of a and θ:

length of vector 6 = length of vector 7 = length of vector 8 = length of vector 9 =
a · b

2

where b is the height of the triangular faces of P .

Thus, cos θ =
2 · h1

a · b
and sin θ =

2 · h2

a · b
.
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Consequently, h1 =
a · b · cos θ

2
and h2 =

a · b · sin θ

2
.

Since cos θ =
a

2 · b
, we have

h1 =
a2

4
and h2 =

a2

4
· tan θ.

Therefore,

V (ΠP ) = V (SetX) + V (SetY1) + V (SetZ1) + V (SetY ) + V (SetZ) + V (SetW )

= 4 · VX + 8 · VY1
+ 4 · VZ1

+ 16 · VY + 20 · VZ + 4 · VW

= 4 · a6 + 8 ·
a6

4
+ 4 ·

a6

16
+ 16 ·

a6 · tan θ

4
+ 20 ·

a6 · tan θ

16
+ 4 ·

a6 · tan θ

32

= a6 · (
25

4
+

43

8
· tan θ). (5.12)

The projection body ΠQ is formed by the vectors 1, 2, 3, 4, 5, 6′, 7′, 8′, 9′, 10 where

vectors 1, 2, 3, 4, 5 are same for ΠP and ΠQ and vectors 6′, 7′, 8′, 9′, 10 have same

direction as vectors 6, 7, 8, 9, 1 respectively, but with different magnitudes. V (ΠQ) is

the sum of the following volumes that we divided into sets:

Set X ′: V (124), V (125), V (134), V (135).

Set Y ′
1 : V (127′), V (129′), V (137′), V (139′), V (146′), V (148′), V (156′), V (158′).

Set Z ′
1: V (16′7′), V (16′9′), V (17′8′), V (18′9′).

Set Y ′: V (246′), V (247′), V (248′), V (249′), V (256′), V (257′), V (258′), V (259′),

V (346′), V (347′), V (348′), V (349′), V (356′), V (357′), V (358′), V (359′).

Set Z ′: V (26′7′), V (26′9′), V (27′8′), V (27′9′), V (28′9′), V (36′7′), V (36′9′), V (37′8′),

V (37′9′), V (38′9′), V (46′7′), V (46′8′), V (46′9′),V (47′8′),V (48′9′), V (56′7′), V (56′8′),

V (56′9′), V (57′8′), V (58′9′).

Set W ′: V (6′7′8′), V (6′7′9′), V (6′8′9′), V (7′8′9′).

Set X ′′: V (10 2 4), V (10 2 5), V (10 3 4), V (10 3 5), or equivalently, V (1′24),

V (1′25), V (1′34), V (1′35).

Set Y ′′
1 : V (10 2 7′), V (10 2 9′), V (10 3 7′), V (10 3 9′), V (10 4 6′),
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V (10 4 8′), V (10 5 6′), V (10 5 8′), or equivalently, V (1′27′), V (1′29′), V (1′37′),

V (1′39′), V (1′46′), V (1′48′), V (1′56′), V (1′58′) .

Set Z ′′
1 : V (10 6′ 7′), V (10 6′ 9′), V (1 7′ 8′), V (10 8′ 9′), or equivalently,

V (1′6′7′), V (1′6′9′), V (1′7′8′), V (1′8′9′).

As vectors 6 and 6′, 7 and 7′, 8 and 8′, 9 and 9′, 1 and 10 or 1 and 1′ have the

same direction as each other, but different length because of the cut, we have:

length of 6′ = (1− (1− α)2) length of 6,

length of 7′ = (1− (1− α)2) length of 7,

length of 8′ = (1− (1− α)2) length of 8,

length of 9′ = (1− (1− α)2) length of 9,

length of 1′ = (1− α)2 length of 1.

We get the later result from Thalès theorem after projection C2 on the xz-plane and

then by calculating the area of the square.

Therefore, we can write the value associated to each of the sets above as the fol-

lows:

Set X ′= Set X= 4 · VX

Set Y ′
1= (1− (1− α)2) Set Y1= 8 · (1− (1− α)2) · VY1

Set Z ′
1= (1− (1− α)2)2 Set Z1= 4 · (1− (1− α)2)2 · VZ1

Set Y ′= (1− (1− α)2) Set Y=16 · (1− (1− α)2) · VY

Set Z ′= (1− (1− α)2)2 Set Z= 20 · (1− (1− α)2)2 · VZ

Set W ′= (1− (1− α)2)3 Set W= 4 · (1− (1− α)2)3 · VW

Set X ′′= (1− α)2 Set X= 4(1− α)2VX

Set Y ′′
1 = (1− α)2(1− (1− α)2) Set Y1= 8(1− α)2(1− (1− α)2)VY1

Set Z ′′
1= (1− α)2(1− (1− α)2)2 Set Z1= 4(1− α)2(1− (1− α)2)2VZ1

.

Therefore,
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V (ΠQ) = V (Set X ′) + V (Set Y ′
1) + V (Set Z ′

1) + V (Set Y ′) + V (Set Z ′) + V (Set W ′)

+ V (Set X ′′) + V (Set Y ′′
1 ) + V (Set Z ′′

1 )

= 4 · VX + 8 · (1− (1− α)2) · VY1
+ 4 · (1− (1− α)2)2 · VZ1

+ 16 · (1− (1− α)2) · VY + 20 · (1− (1− α)2)2 · VZ + 4 · (1− (1− α)2)3 · VW

+ 4(1− α)2VX + 8(1− α)2(1− (1− α)2)VY1
+ 4(1− α)2(1− (1− α)2)2VZ1

= 4 · a6 + 8 · (1− (1− α)2) ·
a6

4
+ 4 · (1− (1− α)2)2 ·

a6

16

+ 16 · (1− (1− α)2) ·
a6 · tan θ

4
+ 20 · (1− (1− α)2)2 ·

a6 · tan θ

16

+ 4 · (1− (1− α)2)3 ·
a6 · tan θ

32
+ 4(1− α)2a6

+ 8(1− α)2(1− (1− α)2)
a6

4

+ 4(1− α)2(1− (1− α)2)2
a6

16

= 4 · a6 + 2 · (1− (1− α)2) · a6 + (1− (1− α)2)2 ·
a6

4

+ 4 · (1− (1− α)2) · a6 · tan θ + 5 · (1− (1− α)2)2 ·
a6 · tan θ

4

+ (1− (1− α)2)3 ·
a6 · tan θ

8
+ 4(1− α)2a6

+ 2(1− α)2(1− (1− α)2) · a6

+ (1− α)2(1− (1− α)2)2
a6

4
. (5.13)

Plugging in our previous results in equation (5.11) and, simplifying both sides by

a6, we get
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[ 4 + 2 · (1− (1− α)2) + (1− (1− α)2)2 ·
1

4

+ 4 · (1− (1− α)2) · tan θ + 5 · (1− (1− α)2)2 ·
tan θ

4

+ (1− (1− α)2)3 ·
tan θ

8
+ 4(1− α)2

+ 2(1− α)2(1− (1− α)2)

+ (1− α)2(1− (1− α)2)2
1

4
] ·

(

1 +
tan θ

6

)2

≤ (
25

4
+

43

8
· tan θ) ·

(

1 +
tan θ

6
· (1− (1− α)3)

)2

. (5.14)

Denote by f(α, θ) the left-hand side of the previous inequality and by g(α, θ) its

right-hand side. Note that these are continuous functions on (0, 1)× (0, π/2) for any

0 < α < 1 and 0 < θ < π/2.

We expand f(α, θ)−g(α, θ) using Wolfram Alpha in order to make the calculation

easier. We get

f(α, θ)− g(α, θ) =

[α6 ·
2− tan θ

8
+ α5 ·

3 tan θ − 6

4
+ α4 ·

6− tan θ

4
+ α3 · (4− 4 tan θ)

+ α2 · (tan θ − 6) + 8α tan θ + 8] · (1 +
tan θ

6
)2

− (
25

4
+

43

8
· tan θ) · (1 +

tan θ

6
· (α3 − 3 · α2 + 3 · α))2. (5.15)

We solve for α the equation f(α, θ) − g(α, θ) = 0 using Wolfram Alpha and we

get a unique solution that is α = 1 which is, a priori, known because in this case we

did not cut any subset from P and consequently P = Q and P (P ) = P (Q). Thus, for

α = 1, inequality (5.14) is satisfied for any θ.

Using the same software, we solve f(α, θ) − g(α, θ) ≤ 0 when α ∈ [0, 1] and

θ ∈ [0, π
2
] and we get the following solution:
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• α1 = 0 and 0.684611 < tan θ < 11.5029 which is equivalent to 34.395974245◦ <

θ < 85.03152046◦ (in degrees).

• α2 = 0.321719 and 0.660805 < tan θ which is equivalent to 33.456953714◦ < θ

(in degrees).

For 0 ≤ α ≤ 1, only for α1 and α2, the inequality is satisfied for some tan θ that does

not depend on α. For 0 < α < 0.321719 and 0.321719 < α < 1, tan θ depends on α

for the inequality to be satisfied. We provide below some cases:

• Example 1: Let α = 0.1, f(α, θ) − g(α, θ) ≤ 0 is satisfied when 0.681372 <

tan θ < 14.8048 or consequently 34.269407868◦ < θ < 86.13561013◦.

• Example 2: Let α = 0.3, f(α, θ) − g(α, θ) ≤ 0 is satisfied when 0.663332 <

tan θ < 151.812 or consequently 33.557565103◦ < θ < 89.62263127◦.

• Example 3: Let α = 0.4, f(α, θ)−g(α, θ) ≤ 0 is satisfied when 0.651013 < tan θ

or consequently 33.064649512◦ < θ.

• Example 4: Let α = 0.5, f(α, θ)−g(α, θ) ≤ 0 is satisfied when 0.637098 < tan θ

or consequently 32.50114552◦ < θ.

• Example 5: Let α = 0.7, f(α, θ)−g(α, θ) ≤ 0 is satisfied when 0.604926 < tan θ

or consequently 31.170852112◦ < θ.

• Example 6: Let α = 0.9, f(α, θ)− g(α, θ) ≤ 0 is satisfied when 0.56687 < tan θ

or consequently 29.547605382◦ < θ.

We notice that as α ↗ 1 the range of θ for which f(α, θ)− g(α, θ) ≤ 0 is satisfied

increases.

For instance, if we plug in θ =
π

4
in the inequality, the conjecture will be satisfied

for any 0 ≤ α ≤ 1 and 0 ≤ θ ≤
π

2
.

Furthermore, if we plug in θ =
π

4
in the inequality, we will get
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[ 4 + 2 · (1− (1− α)2) + (1− (1− α)2)2 ·
1

4

+ 4 · (1− (1− α)2) + 5 · (1− (1− α)2)2 ·
1

4

+ (1− (1− α)2)3 ·
1

8
+ 4(1− α)2

+ 2(1− α)2(1− (1− α)2)

+ (1− α)2(1− (1− α)2)2
1

4
] ·

(

1 +
1

6

)2

≤ (
25

4
+

43

8
) ·

(

1 +
1

6
· (1− (1− α)3)

)2

. (5.16)

which can be reduced to:

[
α6

8
+

−3α5

4
+

5α4

4
− 5 · α2 + 8α + 8] · (

7

6
)2 (5.17)

≤ (
93

8
) · (1 +

1

6
· (1− (1− α)3))2.

Using Wolfram Alpha, the above inequality is satisfied for any α < 1 and, in

fact, α > 1. Also, since we know that for α = 1 we have equality between f(α, θ)

and g(α, θ), the monotonicity of Petty’s functional is satisfied, as in the planar case,

when θ =
π

4
.

However, we will present now a counter example for the specific case when α = 0.5,

a = 1 and θ =
π

6
. In this case, after substituting the corresponding values, as above,

in

V (ΠQ)

V 2(Q)
≤

V (ΠP )

V 2(P )
, (5.18)

we get,

1805

256
≤

25

4
(5.19)

which is false.

Thus, we have proved:
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Theorem 5.2.1. There exists a polytope P in R
3, and there exists an affine hyper-

plane H ⊂ R
3, such that P ∩ H+ contains exactly one vertex of P and the convex

body Q = P ∩H− has a larger Petty ratio than that of P :

V (ΠQ)

V 2(Q)
≥

V (ΠP )

V 2(P )
. (5.20)

Thus, the cut-off method does not always decrease the value of Petty’s functional

and hence, unlike the planar case, cannot be used to prove Petty’s conjecture in R
3.

2
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