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ABSTRACT
On Certain Technigues in Convex Geometry

Mariam AlHilani

We recall a proof of Mahler's conjecture irR? and the technique employed to prove
it. This technique shows that, by adding new vertices to a caex polygonK, one
increases the value of Mahler's functionak 7! V(K) V(K ), thus the minimum
of the functional is reached for the convex polygon with leasiumber of vertices.

We then study similar techniques in connection to Petty's agecture in R? and R3,
V( K)

\VAL 1(K ) !
is a compact convex set ifR", reaches the maximum for the polytope of least vertices

respectively. Petty's conjecture states that the functioal K 7! whereK

in R". In R?, we prove that the inequality holds for any convex bod¥ by a similar
technique with that of Mahler's problem, which is di erent rom the original proof
of Petty's inequality in R?. In R3, we validate the conjecture for a few speci c cases.
More precisely, we compare the value of Petty's functionaf a convex bodyK in R",
for n = 2 and n = 3, with that of another convex body K °that is obtained by cutting

o a vertex of K with a plane, thus introducing more vertices. However, we pvale
an example that shows that this technique cannot be appliedtarbitrary polytopes

in R3 to prove Petty's conjecture in this class and then, by appramation, in general.
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Chapter 1

Introduction and Prerequisites

1.1 Introduction

We start with a brief introduction on convex geometry and sumnarize the prerequi-
sites needed for the rest of the thesis such as convex hullatity, projection bodies
and other selected topics used in our study. We focus our attégon on two famous
extremal problems: Mahler's conjecture and Petty's conjaare that we state at the
end of the rst chapter. Both of these problems conjecture c&in inequalities to hold
for all convex bodies inR" and claim that the equality cases is reached for simplices.
Simplices are the simplest polytopes in any Euclidean spacEhese conjectures have
been proved only inR? and they are open in the general case.

In Chapter 2, we examine the proof of the planar Mahler's coegture following
the techniques used by Mahler himself for the symmetric cage dimension 2, [5],
as presented by Henze [4]. Our main objective is recalling tipeoof (di erent other
proofs were given later) that shows that by adding new vertes to a polytope, the
value of Mahler's functionalV(K) V(K ) increases, therefore the simplest polytope,
the simplex, has the minimal Mahler's functional.

In the next chapters, we examine some problems related to Be$ conjecture



using similar techniques inspired by Mahler's proof. In Chaer 3, we consider Petty's
conjecture inR? and we give a proof by induction to the inequalityvv((KK)) VV((_I_-I;) ,

whereT  R?is a triangle. In Chapter 4, we study using the same technigsédor
V( K)
VZ(K)
inequality holds for few speci c cases of convex bodies.

the upper bound of for any convex bodyK 2 R3® and we prove that the

VK)o
\VAL 1(K ) !
n =2 and n = 3, of a convex bodyK in R" with that of another convex bodyK °

Finally, in Chapter 5, we compare the value of Petty's functioal, or

that is obtained by cutting a vertex ofK . In the last part of this chapter, we provide
a counterexample that this technique can be applied to arbiary polytopes in R3 to

prove Petty's conjecture in this class and then, by approxiation, in general.

1.2 Convex Bodies, Minkowski Sum of Convex Bod-
les
Throughout the thesis, the ambient space is the real vectopaceR".

De nition 1.2.1. [9] AsetK R" is convex if for any two pointsx andy 2 K,
the line segment

(1 )x+ y 2K; 8 2][01] (1.1)
belongs toK .

Half spaces, ellipses with their interior, and triangles, \th their interior are ex-
amples of convex sets. A convex set and, respectively, a mmmvex set are illustrated

in Figure 1.1.



Figure 1.1: convex and non-convex body

Example 1.2.1. A half-spaceM is de ned byw x , Wherew is a xed vector,
and is a xed real number. Letx;y 2 M and let ; O such that + =1,
arbitrary otherwise. Thus,w X andw y and so

w (X +y)=w X+ w y + = (1.2)

Then, x + y 2 M and M is convex.

A convex set can be constructed from a set of arbitrary pointBy taking their

convex hull.
De nition 1.2.2.  [9] A point X is said to be a convex combination ofy;:::;X, if
there exists 1;:::; p with 1+ + ,=1 and ; O0; i=1;:::;p, such that

X= Xp+ i+ pXp (1.3)

De nition 1.2.3.  [9] For an arbitrary setK  R", the set of all convex combinations



of any nitely many elements ofK is called the convex hull oK and is denoted by

convK .
Theorem 1.2.1. [9] The convex hull of the pointxy; X,;:::; X, is the set of points
of the form

X= Xi+:iii+ pX, where +:::+ ,=1; ; 0 i=1;:::;p: (1.4)

conv(xy; iy Xp) = f oaXa+ i+ pXp 1t i+t =15 0 i=1;:0p9 (1.5)

A set T and convT are illustrated in Figure 1.2

Figure 1.2: T and convT



Xg+ it pXp 2 KL

Proof. We prove the theorem by induction. Forp = 1, the claim is trivial. Suppose
it is true for some positive integerk, we will prove that it is also true fork + 1. let
Y= Xp+ it Xksr Wherexy;Xo;iiiiXesr 2 K and 1+ 11+ i = 1. At least

one ; should be< 1, let's assume that .1 < 1. Let

z= 1 x1+:::+—k Xk (1.6)

where = 1+ :::+ =1 ki1 > 0.
By the hypothesis of induction,z 2 K and, sinceK is convex and containg and

Xk+1, We get that the equalityy = z + 41Xk impliesy 2 K. O
Proposition 1.2.1. If K R" is convex, then conK =K.
De nition 1.2.4.  [8] For any convex set¥;L  R", the Minkowski sum ofK and

L is the convex set obtained by vector addition:

K+L:=fk+ljk2K;l 2Lg: 2.7)



K+L

Figure 1.3: Minkowsi sum ofK and L

De nition 1.2.5. [8] Let K be a convex compact set iR". The support function of

K,hg :S" 11 R, is dened by

hg (V) =supfv xjx2Kag: (1.8)

Note that if K contains the origin in its interior, then hy is positive for all di-
rections v, hg (v) being the distance from the origin to the hyperplane of noral v
supporting K. Moreover, a convex bodyK is completely determined by its support

function. Lastly, note that hx .+ (v) = hg (V) + h (v) forall v2 S 1,

Proposition 1.2.2. [3]If 2 GL, whereGL, is a non-singular linear transforma-

tions, thenhy (v) = jj tvjj hg ( 'v).



Proof.

hk (V) supfv xjx2 K g (2.9)

= supfv y jy2Kg
= supf 'v yjy2Kg

= i il he Ctvi i)

]

The support function can be in fact extended td&R" n f0g by homogeneity via the

formula hg (X) = hg (x5jxjj). We will see this formula again later.

De nition 1.2.6. [8] A polytopeP  R" is the convex hull of a nite subset oR".

are points in R".

Theorem 1.2.3. [8] Every polytopeP  R" is the intersection of nitely many closed

half-spaces.

Proof. Let P" be the set of polytopes with nonempty interior and leP 2 P". We can

assume that dimP = n because ats and half- ats can be described as intersectisn

prove the theorem, we will have to prove

P=H; \ ::\ H,: (1.10)

The rstinclusion P H; \ :::\ H,, is trivial.

For the other inclusion, letx 2 R"nP and let M be the union of the a ne hulls of



the n 1 vertices ofP and x. We choosey such thaty int (P)nM. Then, there
exists a pointz such thatz 2 bd P\ [x;y]. In other words, z is in a support plane
of P which is equivalent to saying thatz lies in some facd- of P. Suppose that dim
F =k n 2. Caratheodory's convex hull shows that is in the convex hull of

somek+1 n 1 vertices ofP and thus to M. But then we havey 2 M which is

belong toH; sincey 2 H; . Equation (1.10) is thus proven. ]

Let K" be the set of nonempty compact, convex subsetsi®f. In fact, we consider
K" the set of compact, convex subsets 8" with nonempty interior, as if the interior

of K is the empty set, thenak 6 ;,thenK 2 K'with1 | n 1.
De nition 1.2.7. [8] The Hausdor distance between two convex setsand K in
K" is de ned by
(L;K):=max fsupinf jx yj; supinf jx yijg: (1.11)
x2L ¥2K x2K Y2L
Alternatively, it can be de ned by

(L;K ) =min f oOjL K+ B"g: (1.12)

One can easily check that is a metric on K" which is called the Hausdor metric.

Theorem 1.2.4. [8] Let > 0. Then, for any K 2 K" there exists a polytop® 2 K"
such thatP K P + B thus, consequently, (P; K)

Proof. Let B; be the the balls with radius , and with their centers in K, that cover
K. By the de nition of polytopes, we can nd a polytope P that is the convex hull
of the centers ofB;. It is easy to see that this polytopeP has the property claimed

by the theorem. ]



Corollary 1.2.2. [8] For any K 2 K" there exists a sequence of polytopd’, con-

verging toK in the Hausdor metric.

Proof. According to Theorem 1.2.4 we can nd a sequence of polytop&%,, such that

Pn K Pn+ B by taking, successively, = 1. O

Lemma 1.2.1. [8]LetK;;K,2 K"andletK, intK ;. Then, there exists a number

such that for anyK 2 K" with (K.;K) < satis es the fact thatK, K.

Proof. We haveK, intK ;, thus the functionhy,(:) hg,(:)is positive onR"nf0Og
and, consequently, since the function is continuous d& ! (compact), it attains a
minimum, , that is positive on S" . Now, let K 2 K" be such that (K;K) <

Thus, jhg,(U)  hg,(u)j ; 8u2 S L Thenhg,(u) hg,(u)  <h g (u) where
u2 S tand, nally, K, K. O

Theorem 1.2.5. [8] The volume functional,V,, is continuous onK" with respect to

Hausdor metric.

Proof. Let K 2 K" and letK 2 K". Without loss of generality, if V,,(K) = 0 satis es
(K; K) = 1, then K is contained in a hyperplane anK K+ B . Thus,
W(K) WK+ B, C(K) ,and using Fubini's theorem we can ndC(K)
such that C(K) is independent of . Now, we suppose that @ intK . Let > 0, we
choose > 1suchthat(" 1) " V,(K)< and > Osuchthat B, intK.
According to Lemma 1.2.1, we can nd a number > 0 such that ( 1)
and such that B, K for any K 2 K" while satisfying the fact that (k;K) <

Assuming that the latter is true, we have

K2K+ B, K+( 1B, K+( 1K= K: (1.13)

Also, K 2 K . Then,

Vi(K)  Va(K)= "Vh(K): (1.14)

9



Thus,

Va(K) VoK) (" DVu(K) (" 1) "Va(K);

Va(K)  Va(K) (" DW(K) (" 1) "Va(K): (1.15)

Therefore,
Va(K)  Va(K)i (" 1) "Va(K) (1.16)
concluding the proof. O

For simplicity, in our thesis, we omit the indexn in V, unless there is a risk of

confusion.

Corollary 1.2.3. Let K be a nonempty compact convex set R'. Then there exist a
sequence of nonempty polytop&s in R", and another sequence of nonempty polytopes
QiinR",i2N,suchthatP;, K QjandP;! K andQ;! K in the Hausdor

metric.

Corollary 1.2.4. Let K be a nonempty compact convex set R", then there exist
in R" sequences of nonempty polytop& and Q;, i 2 N, such thatP; K  Q;,

P; ! Kand Q! K in the Hausdor metric.

1.3 Special Convex Bodies: the Polar and the Pro-
jection Body of K

De nition 1.3.1. [9] Let K be a set inR" containing the origin. The polar or dual,

K , of the setK is de ned by

K =fx2R"jv x 1 forall v2Kg: (1.17)

10



Note that K is always a convex set even K is not convex.
Theorem 1.3.1. [7]If K R"is a convex body containing the origin, thed = K

Proof. Let an arbitrary y2 K ) foranyx2 K ,wehavex y 1) y2K
Now, it is enough to prove

K K (1.18)

Let x 2 R" nK. Then there exists a hyperplandd that separatesx and K, each

of them being in a di erent half-space. As @ K and

H=fw2R"jw v=1g

for v 6 O, then
K f w2R"jw v<1g and x v> 1 (1.19)

From the two previous equations respectively we concludeahv 2 K and that

x 2 K . Therefore, inclusion (1.18) has been proved via complent&n m

Example 1.3.1. [9] Let C R" be the unitn-cube centered at the origin. We want

to nd its polar C . Thus

C=f(cy:iiia) 2R jjoj L::jaj 1o (1.20)

For any (X1;:::;Xm) 2 C , we have(c;;:::;¢) of C such thatc =1 if x; 0 or
¢ = 1if x; <O0. Thus,

(X i Xm)i(Cr i) = (6 X900 G Xp) = JXqf+ i+ jXa) L (1.21)

On the other hand, suppose thdixs;:::;Xm) satises jx1j + :::+ jx,j 1, then for

11



J Cij jXa+ iiitjca] jXn]

J Xgf+ i+ jxa L (1.22)

Thus (X1;:::;Xm) 2 C . The convex bodyC is the regularn-cross-polytope de ned

C =1f(Xy; i Xm) J X+ i+ ) 1o (1.23)

Dene (x1;:::;0) 2 C for every (¢;:::;6) 2 C such thatx; =1 if ¢ 0and

(X1;::5;0) (Cpyiini6) = jej Lt (1.24)

In the same way, we prove thaic,) 1;:::;jc) 1. Hence(c;:::;¢) 2 C and
C C, whileC C holds from the de nition of the polar. ThusC = C

De nition 1.3.2.  [4] A non-zero vectorp = (p.;p2) in R? is said to be polar to the

line I, = fx 2 R? j p1 X1+ p2 X»=1g and vice versa.

The above de nition leads us to the following (simpli ed) denition of the polar

set of a convex polygon irR?:

De nition 1.3.3. [4] The polar setK of a convex polygorK = convfXq;:::;Xmg
is the convex hull of v; j [Xi;X;] is an edge oK g wherev; is the polar point to the

line through x; and x; of the edgdXx;; X;].

The goal of the rest of the section is to explain the projectiobody of a polytope

K, denoted by K. We will see that, for any polytopeK R", K is the Minkowski

12



sum of line segments orthogonal to the faces Kf having length equal to the 6 1)-

dimensional volume of the correspondent face.

De nition 1.3.4. [3] Let K be a convex body ilR";n 2. Then K, the projection

body ofK , is a centered convex body de ned via its support function by

Z
h «(u)= Vy 1(Kju?) =

NI

ju vjdSc(v); (1.25)

Sn

forallu2 S" 1. HeredS (¢) is the surface area measure ¢f as the(n 1)-Hausdor

measure of the boundary oK .

De nition 1.3.5.  [3] Cauchy's projection formula is

Z

G 1iVi(Kju?) = Ju vidS(Kv); (1.26)

1
2 Sr’l
forallu2 S" 1 i=1;:::;n 1 HeredS(K.v) is the i-th surface area measure

de ned in [8], with dS, 1(K;v) = dSc(v) andc, 1= " b

Proposition 1.3.1. [3] K = ( K).

The proof is immediate due to the fact that, in each directionthe projection of

K coincides with the projection of K, the re ection of K.

Theorem 1.3.2. [3] Let K be a convex body ifR?>. Then K is the rotation byz
about the origin of24 K := 2(K +( K)), the symmetric di erence of K, that is
the Minkowski sum ofK with its re ection through the origin. Thus, every centered

convex body inR? is a projection body.

Proof. If K is a convex body inR?, and u;v 2 S! are unit vectors such thatv is

orthogonal to u, then

h «(U) = Va(Kju?) = Wi (U) = Wak (V) = hag k (V): (1.27)

13



wherew, is the width of K in the direction u, in other words the distance between
the two supporting lines ofK with normals u and u.

Therefore, the projection body K is the rotation by > about the origin of the convex
body 24 K.

If K is centered at the origin, thed K = K ) Ki=K :Kjiis % K rotated by >

about the origin. O
Example 1.3.2. Projection bodies; Some simple examples:
If C is the unit disk in R2. Then, C is the centered disk of radiug.

If S is the centered unit square. Then, S is the centered square such that

K=2K

Let C be the centered unit cube iRR". Then, K =2 K. We conclude this by
using the projection formula that de nes the support functon of the projection body

of C 7

NI

h c(u)= ju vjdS(C;v): (1.28)

gn
Given the piecewise linear structure of the boundary o, here S(C;:) is the sum of
point masses of weight 1 at the intersection of the coordinataxes withS" 1. We
reduce the integral to a sum of then terms ju:ej, 1 i n with e being the unit
vector in the i-th coordinate direction. Each term is the support functionof the
[-e,e]. Thus, C is the vector sum of all the [g,e]. In other words, C is the

centered unit cube expanded by a factor of 2.

The previous reasoning can be applied to any arbitrary polgpe inR" concluding
that the projection of a polytope is the Minkowski sum of linesegments, or vectors,
orthogonal to the faces oK having length equal to the 6 1)-dimensional volume

of the correspondent face.

14



Lemma 1.3.1. [2] Let F4;:::;F, be the faces of a polytope , let the outward facing
unit normal of F; bev; and letA(F;) be the area of eaclr;. As K is the Minkowski

sum of the area segments &, then

X
V( K)= Wi W Wi (1.29)
1 i<j<k n
wherew; = A(F;)v; for i =1;:::;n andjw;;w;; wj is the determinant of the matrix

that hasw;; w;; wi as columns.

In other words, V( K) is equal to sum of all volumes of parallelepipeds that can
be formed by the 3-combination of vectors that are normal tahie faces oK and have
length equal to the corresponding area of the face they aretlmwgonal to.

In what follows we will use the de nition of the support functon of a convex body
both as a function onS" ! and its extension by homogeneityhx (X) = hk (XSjjXij),

to R" nf0g.

Theorem 1.3.3. [3] The projection bodies of a nely equivalent convex bodies are also
a nely equivalent. If 2 GL, whereGL,, is any non-singular linear transformation
from R" to itself, then

( K)=jdetj ' K): (1.30)

Proof. As the name implies, two convex bodies are a nely equivalentf iand only
if there is an a ne transformation of R" that sends one convex body into another,
where recall that an a ne transformation is a linear transfamations composed with a
translation, possibly by the zero vector. Note that the lineatransformation involve
must be invertible as each convex body is sent into another reex body, thus a
compact convex set with non-empty interior is sent into andter set, compact and

convex, with non-empty interior.

15



We will start by proving formula (1.30). Let K be a convex body irR", 2 GL,

an invertible linear transformation,u 2 " ! and let w be such that w = u. Then

ju vjdS(K;v)
S 1

V(K;n 1;[ u;u])

hok)u) =

V(K;n 1 [ w;w))
. gjdet ViGN L[ ww))
= jdet jh x(w)

= jdet jh «( 'u): (1.31)

Above, we have used Cauchy's projection formula from De nitin 1.3.5 withi = n 1,
the invariance of mixed volumes under volume-preservingnéar transformations, and

the following equation
nV(K;in  L[0ul)= Vyh 1o(Kju’); (1.32)

where the mixed volumed/(K; [n i];L; [i]) are de ned, up to some constant, as the
t' coe cients in V(K + tL), the volume of the Minkowski sum ofK with the dilation
tL, as a polynomial int, [8].

For the change in support functions under linear transforntens, we use Propo-

sition 1.2.2 and get

tu
= —): 1.33
1 tUJJ) ( )

h (u) = he(fu) = ji “(u)ijh(

Thus,
h«( 'uy=nh ¢ k)(u): (1.34)

Equation (1.31), together with equation (1.34), completeshe proof of the second

16



part of Theorem 1.3.3.
Since it is obvious that any translation of a convex body le@g its projection
body unchanged, as only the areas of projections matter, tipgoof of the rest of the

theorem follows immediately. m
Finally, we note another corollary of Theorem 1.2.4:

Corollary 1.3.1. If a sequence of polytope®;, converges t&K 2 K" in the Hausdor
metric, then, P;, converges to K in the Hausdor metric where P; and K are

the projection bodies oP; and K, respectively.

Proof. Given that P; converges toK 2 K", it follows that S(P;) converges toS(K ),
where S(K) denotes the surface area dk, asi ! 1 . Given that the support
function of the projection body of a convex bod in a given directionu2 S" !is
the area of the projection ofK on a hyperplane orthogonal tau, we thus obtain the

corollary. ]

1.4 Statement of Mahler's Conjecture and, respec-
tively, Petty's Conjecture

Let Ky be the set of all compact, convex sets iR" containing the origin in their
interior. The volume product functional, also known as the Mhler product, is the
map that assigns to eaclK 2 Kg, the valueM (K) = V(K) V(K ), where recall
that K is the polar ofK and that the polar depends on the choice of the origin.

It is worth noting that M (TK) = M (K), for any general linear transformationT
of R". We thus say that M ( : ) is linearly invariant. For an extensive discussion on
Mahler's functional, including Mahler's conjecture, we rer the reader to [4].

Note also that if the origin is taken closer and closer to the lmdary of K,

then M (K) becomes larger and larger and is, thus, unbounded. Therefpgenerally,

17



one cannot have an upper bound for Mahler's functional. Hower; it was proved
by Santab that for centrally symmetric convex bodies whos center of symmetry
coincides with the origin, the maximum of Mahler's products reached for ellipsoids
and is equal to! ﬁ, where! ,, denotes the volume of the Euclidean unit ball iR". It
can be shown that ifK is not centrally symmetric, there exists a choice of the oriig
in the interior of K, choice called Santab point, such that the same bound hadd

The lower bound of Mahler's functional remains unknown expeé for dimension
n = 2. It has been conjectured, and proved by Mahler in the plamacase that, for
any centrally convex bodyK 2 K3, we have

4n

M (K) W; (1.35)

with equality if and only if K is a parallelotope, [5].

The lower bound remained an open problem despite many attetspand it is called
Mahler's Conjecture. Only some very special cases of Mahseconjecture have been
proved.

The conjecture has a non-symmetric analogue in which the lewbound is claimed
to be reached for simplices. Mahler has shown that the methaded in the plane for
the centrally symmetric case, which we will present in Chapt 2, works also to prove
the non-symmetric planar case.

We will now focus on Petty's conjecture. For this, recall tha K" is the set of

all compact, convex sets with non-empty interior. Petty'sdnctional is the map that
V( K)

——*__where recall that K is the
Vn 1(K)

assigns to eaclK 2 K" the value P(K) :=
projection body ofK .

It is clear from the de nition of the projection body, as wellas the properties
of volume as then-dimensional Lebesgue measure R", that Petty's functional is

translation invariant. Moreover, by Theorem 1.3 and, agaithe properties of volume,

18



Petty's functional is linearly invariant. Combining the previous two facts, we conclude
that the value of the functional is unchanged under any a ne tansformation applied
to K. Thus, P( :) is an a ne invariant of K.

Both bounds of Petty's functional, the lower one and the uppeone, in K" for

n 3 are not yet known. In 1971, Petty conjectured [2] that

V( K)

TR (1.36)

with equality if and only if K is an ellipsoid.

Regarding the upper bound, for centrally symmetric convexdadiesK 2 K",
Schneider [1] conjectured that 2 is the upper bound and that it is achieved, in par-
ticular, for parallelotopes, like a reverse of the symmetricase of Mahler's conjecture.

In other words, Schneider hypothesized that

VCK) o

for any convex bodyK 2 K" symmetric with respect to the origin and we have

equality for direct sums of planar centrally symmetric corex bodies.

V( K)
yn 1’

ceeds 2 wheren 3. In fact, he found centrally symmetric convex bodiesk  R"

However, Brannen gave a counterexample where Petty's funmtial, ex-

9
such that P(K) = a 2" for everyn 3, [1].
Finally, Brannen [1] conjectured that, for all convex bodieX 2 K", we have

V( K) (n+1) n"
vn 1 n!

(1.38)

and equality is satis ed if and only if K is a simplex.
It is this latter bound that we refer to as Petty's conjectureand the one for which

we address Mabhler's technique in this thesis.
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Chapter 2

Mahler's Conjecture in  R?

The aim of this chapter is to present a particular proof of thesymmetric case of
Mahler's conjecture in dimension two. This proof stands oufor a certain technique
in which it is shown that decreasing the number of vertices & polygon, Mahler's
functional decreases as well. Consequently, one can uses tlaict to deduce that, in
the centrally symmetric planar case, the minimum of Mahles' functional is reached
for the parallelogram,

In the next chapters, we will investigate uses of similar téoiques, although not
identical, for other problems such as Petty's conjecturechequality in dimension 2
and 3. Therefore, we regard this proof as the starting protgpe.

Finally, let us mention that the proof that we will present bebw dates from 1939
and is due to Mahler himself [5], but our presentation follogva more modern update

of Henze, [4].

Proposition 2.0.1. Let T  R? be a triangle containing the origin in its interior
and letT be its polar. DenoteT= conv fx;y;zg, T = conv fx ;y ;z g and assume

that no two ofx; y and z are linearly dependent. Then,

2V(T)?

V)= §a, 0,

(2.1)
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0 1

X
whered,, = det B PR with x = (X1;x2) andy = (y1;Y2).
X2 Y2

Proof. We have thatd,y, dy, and d,; are all di erent than zero since no two ofx; y
and z are linearly dependent.

As we saw in the introduction, the de nition of the polar body mplies that x is
the intersection of the lines that are polar to the pointsx and y that we will call I,
and ly, respectively. By solving the system of the two linear equiains representing
the linesly = fx2 R?ja; x;+a& Xp=1gandly=fy2R%ja; y;+ a, y.=1g,
we get

1
X = d—(yz X2, X1 Y1): (2.2)
Xy

Similar calculations fory andz lead to
1 1
y = d—(Zz Yo;¥1 Z1) and z :d—(xz 25,21 Xy): (2.3)
yz

ZX

Given that the area of a parallelogram can be represented byeans of a determinant,
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we deduce the value oY/ (T ) as follows:

V(T) = %det(y X;Z X)
1
= é(dxy"'dyzdzx)
0
1 ?@ 1 Y2 X2 Zp Y2 1 Z; Y2 X2 Zp
= = +
2 dxydyz dyZdZX

X1 Y1 Y1 2Za Yi Z1 Z3 X1

1

X V4 X
N g 1d 2 2 Y2 2 g (2.4)
XY 71 X1 X1 W1

1
= srag. (@ &+ &+ 2dydy, + 20,0y + 2didy)
Xy Yyz Uzx
_ (Ogy + dy, + dZX)Z
B 20y Ol Oy
_ 2 V(T2
- dxydyzdzx.

We will now investigate where the maximality ofV (T ) is attained.

Let's assume thatd,,, dy, are strictly positive and that d,, < 0. The assump-
tion is reasonable without any loss of generality because hwo of x, y and z are
linearly independent. Consequently, supposing that the igyin does not belong to
T =convfx;y;zg, dy, d, and d,, are not all of the same sign, thus the assumption.

We de ne alined parallel to [x; z] and we choosg arbitrarily on d by the equation,

Gy + yz | Oixj =2 V(T) (2.5)

Thus, 0<d,, < 2 V(T)+ jd,j sincedy, > 0. Letus dene and such that

0< Cyy < 2 V(T)+ jd,xj which implies a stretchS of d.
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Substituting our results in equation (2.1), we get

2 V(T)
V(T )= —— — 2.6
) 4@ VM) 0] )it (20
Therefore,V (T ) depends ony 2 S and reaches a maximum ois. Additionally,
2 V(T L
i i i
= (v + 2 v+ B 29, v+ B e
i i
= (V(T)+ J%XJ)Z V(T)+ ;XJ dey)?: 2.7)
2 V(T) . . : Jdzx]
Thereforem attains a maximum whend,, = V(T) + > and, further-

more, V(T ) reaches its maximum whery is a boundary point ofS.

Proposition 2.0.2. Given P R?, a centrally symmetric polygon with2m 6
vertices containing the origin in its interior, we can nd a centrally symmetric polygon

H R? with 2(m 1) vertices and containing the origin in its interior, such that

V(H) V(H)<V(P) V(P); (2.8)

whereP andH are the polars ofP and H, respectively.

Proof. Let vi;:::;Vmi:Vm+1,:::;Vom be the vertices of P such that v = vy,
where 1 i m, so that P is centrally symmetric. Let T = convfvy;Vvy; Va0,
T% = cONV fVins1;Vim+2;Vmszg @and M = conV fva; V) 1205 Vin; Vined s Vinaa s 255 Vom0

Thus, P = M [ T[ T% Notice that T and T® are symmetric to each other with
respect to the origin and do not contain the origin. We couldl&vays nd such T and

T%because the number of vertices ¢f is 2n 6.

To illustrate the procedure, see Figure 2.1 where we choose axample with
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8 vetices, thus m = 4, T = conv{vy,ve,v3}, T = conv{vs,ve, v} and M =

conv {Ul, U3, V4, Us, U7, v8}'

Figure 2.1: P

Furthermore, consider P*, M*, T* and T the polars of P, M,T and T’, respec-

tively:

*

P* = conv{vy,..., 05,V 41, V5, 1} Where v}

T rm?

corresponds to the segment, or
edge, [v;,vj41] of P with 1 <j <2(m —1);

T* = conv {v}, 2", v5} where z* corresponds to the edge [vy, v3];

T™ = conv {v}, 1, —2*, v g} = conv {vi, —2* vi} = conv {—v], —2*, —vi};

M*= conv { z*,v3, ..., Um, —2%, U3, . .., Vo t= conv { z*,vs, vy, —2%, v7, Vg }.

We notice that T* and 7" are in M* and that P* = M*\ (T*UT"™).

The above definitions are illustrated in Figure 2.2.
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v¥2

v*7

v¥5

Figure 2.2: P

Let | be a line parallel to the edgeV;; v3] and passing throughv,. Now, we extend
[vs; V4] and [Vom;v4] toward |. If we move v, on the part of | that is cut by the
extension of {3;v4] and [vom; V1], P will conserve its convexity and its area. Let us
call Tv the convex hull ofvy; v2 and vz, wherev) is a any position ofv, on on the
part of | that is cut by the extension of {/3;v4] and [vom; va]. The above procedure is

illustrated below in Figure 2.3.
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Figure 2.3:

Now, if we place vy on the intersection of [ with [vs,v4] or [ven,,v1], the area of
the polar of Tv, denoted by Tw*, attains it maximal value as seen from Proposition
2.0.1. We do the same with v,,,2 = —vy (in our case —vy = vg).

This way P has been reduced to 2(m — 1) vertices, let us call it H. Thus, H is a
centrally symmetric polygon with 2(m — 1) vertices such that

H = conv {vh,v3,...,0m_1, =V, Umi2,...,Vam} and V(P) = V(H). The latter comes
from the geometry of the triangles, the bases of the new triangles, as well as their
heights, are the same as those of the old triangles, thus leaving their area unchanged.

Finally, knowing that V(Tv*) > V(T*) = V(T"™), we have:

V(H*) = V(P*) + V(T*) + V(T'™) = 2- V(Tv*) < V(P*). (2.9)

Consequently, we have just proved inequality (2.8) claimed by the proposition.
O

Theorem 2.0.1. Let P be centrally symmetric convex polygon in R?, then M(P) > 8
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and the equality is satis ed if and only ifP is a parallelogram.

Proof. Consider rst P = convfvy;Vv,; Vi; VoQ, thus P is a parallelogram. Therefe-

ore, we can divideP into 4 triangles, T1, T,, T3 and T4, that have the same area

such that T; = convfvy;vy;0g, T, = convf vi;Vvp;0g, T3 = convf v;; V,;0g and

V,; 0g. The information above is illustrated in Figure 2.4.

T4 = convfvy;

Figure 2.4: P
Therefore,
1 1 1 1
V(P)= édvl:VZ + édvl; v t édvl;VZ + éd vive = 20y, (2.10)
Using the same notation as in the previous lemma, we hake = convfv,;v,; v;; V,0=
1 Vv Vv 1 Vv Vv _
convf v;; Vv,0, whereV, = g *2 2 and Vv, = . 2 *2 given
2 v Vo 2 vp Vg

that vi= (Vvi1;V12) and vo= (Vi14;Vi,). Thus, V(P ) = g which implies that
V1V2

M (P) = 8.
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We will prove the remaining part by induction. LetP =convf wvi;::: vy,gsuch
that m 3. By the induction hypothesis, and the previous lemma, therexists a

g-gon Q with 2(m 1) vertices such that

M(P)>M (Q) 8& (2.11)

This also settles the fact that strict inequality occurs ifQ has more than 4 sides and,

thus, we conclude the proof. m

Finally, Mahler noticed that for any centrally symmetric corvex body K in R?,
one can nd a sequence of centrally symmetric polygons R? that converges toK .
SinceM (K) is a continuous functional, see Theorem 1.2.5, we havk(K) 8, but
the equality is lost in this case.

As observed by Mahler himself, the same argument may be usedthe non-
symmetric planar case, but it would be more subtle, becauseewdo not control the
choice of the origin and the polar of a set depends on the chmiof the origin. In
the symmetric case, we have used the fact that, by eliminagnopposite vertices, the
origin remains the center of symmetry, and/or mass, of the selting convex polygon.

For simplicity, to illustrate the method, we presented heréMahler's proof only in
the symmetric case as, for further analysis, in Petty's coegture the position of the

origin is irrelevant.
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Chapter 3

Petty's Conjecture in ~ R?

3.1 Calculation of the Upper Bound (Triangle)

Proposition 3.1.1. Let T be a triangle inR?, then

V(T)_ ..
V(T)

(3.1)

Proof. Let T be a triangle as presented in Figure 3.1.

Denoting by hy; h, and h;z the heights issued from each vertex onta; band c,
ah,_bhy chs_

2 2 2
Next we will use the fact that the projection body is the sum of NMhkowski sum

respectively, we haveV (T) =

of segments to construct T and calculate its volume.
Step 1. We take the side of lengtla by its middle point and place it at the origin

as in Figure 3.2.
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Now, we notice thatV (K) = ( Pg + P1)=2.

V( K)

V(K) 6, which we want to show, we have that the

By plugging in our results in

inequality is equivalent to

Py+ Py+ Py+ Py+ Ps+ Pg
(1=2) (Pe+ P1)
Pi+ P+ P3+ Py+ Ps+ Pg 3 (Ps+ P1) (3.4)

6

P+ P;+ P, + Ps 2 Pg+2 Pq:

Note further that P+ P, =2 V(K) = Pg+ P;, so we can reduce the inequality to

the following

P+ Ps Pg+P;=2 V(K):
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Figure 3.9: dissertation ofK

As we can see in Figure 3.9, we hawe(K) = P, +(1=2) P,+(1=2) Ps:
Thus, 2 V(K)=2 Py+ P+ Ps:
Therefore, our main inequality becomes equivalentto02 P;) 0 Py, which

is always true, concluding the proof.
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3.3 General Proof by Induction

Proposition 3.3.1. Let Q R? be a convex planar polygon. ThenQ satis es

Petty's conjecture in R?, namely

viQ V().
viQ  v(M)’

(3.5)

for any triangle T R2.

: V( K) V(T
t
Proof. In Section 3.2, we proved that V(K) V(D)

= 6 for any convex polygo-

nal body K in R? with 4 sides.

V( K)
V(K)
v( Q)
V(Q)

any convex bodyQ with n + 1 sides in R2.

Now, supposing that 6 for any convex polygonal body in R? with n

sides, we will prove that 6 (or, equivalently, that V( Q) 6 V(Q)) for

Figure 3.10:Q
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As it is shown in Figure 3.10, the polygonal bodf) can be divided into 2 convex

bodies,K and T, soV(Q) = V(K)+ V(T).

6 V(K)
V( T)

Furthermore, T has 3 sidesd; a,; a,+1 and, as shown in Section 3.1 =6, or

V(T)

V( T)=6 V(T).

Recall that V( Q) is equal to the sum of the area of the parallelograms formed
by the 2-combinations of the lengths of the sides @. Denote by V(ij ) the area of
the parallelogram formed by the 2 sides and j, wherei and j are any of the sides
shown in Figure 3.10. From the additivity property of the areawe thus obtain the
following equality:

V( Q= V( K) V(da) ::i V(day )+V( T) V(da)) V(das:1)+V(ana)+
ik V(@nan 1)+ V(ansia) + i+ V(ana an).

Replacing our above result iiv( Q) 6 V(Q), we obtain the equivalent claim:
V( K) V(da) @ V(da, 1)+ V( T) V(da) V(dana)+ V(anay)+ :::+

V(anan 1)+ V(@aaa)+ i+ V(anaaa) 6 V(K)+6 V(T).
SinceV( K) 6 V(K)andV( T)=6 V(T), this latter inequality becomes:
V(anay)+ :::+ V(apa, 1)+ V(ansia)+ iiit V(apsia,) V(da)+ :::+ V(dag+).

Note that V(da;) = V(ana1)+ V(an+1 @) :::V(da, 1) = V(anan 1)+ V(ansan 1)
and V(da,) = V(an+1a,) as these parallelograms share the same base and same
height.

Thus, our inequality is equivalent now to

0 V(dan)

which is always true. ]
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Due to Corollary 1.3.1, Proposition 3.3.1 can be extended tarbitrary convex

bodies inR2:

Corollary 3.3.1. LetQ R?be a compact convex set with nonempty interior. Then,

Q satis es Petty's conjecture in R?, namely

viQ Vv,
viQ v’

8T triangle RZ (3.6)
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Chapter 4

Petty's Conjecture in RS

4.1 Calculation of the Upper Bound (Tetrahedron)
Proposition 4.1.1. Let T R3 be an arbitrary, non-degenerate tetrahedron. Then,

V(T)_
vV(T)

18: (4.1)

Proof. We will prove Proposition 4.1.1 using a right tetrahedronl that has 3 faces
as right isosceles triangles. Consequently, the value oft®& functional would be
the same for any tetrahedron since Petty's functional is a re invariant as we have
showed earlier.

Thus let T be the tetrahedron with the following vertices as in Figure 4.

A =(0;0;0)

B =(1;0,0)
C=(0;10)
D =(0;0;2).

In order to calculate V( T), we rst need the unit normals to each face. The di-
rections of the normals to the faces of this tetrahedron aréné same for any right

tetrahedron T that has 3 faces as right isosceles triangles.
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Now, we calculate the normals:

Normal to the triangle ABC:
(A B)=( L00and(A C)=(0; 10
Thus, the normal to the faceABC is (A B) (A C)=(0;0;1).

Normal to the triangle ADC :
(A D)=(0;0, )and(A C)=(0; 1,0
Thus, the normal to the faceACD is(A D) (A C)=(1;0;0).

Normal to the triangle ADB :
(A B)=( L0G0O)and(A D)=(;0; 1)
Thus, the normal to the faceABD is(A B) (A D)=(0;10).

Normal to the triangle DBC :

(B D)=(;0, 1)and(B C)=(1; 1,0

Thus, the normal to the faceBCD is(B D) (B C)=(1;1;1).

This last vector is the only one that is not normalized to haveunit length one.

Thus, we do so and after normalizing it, we obtain the unit nanal to the face
111 _ @151)

BCD as (12 +12+ 12)1:2_ 31=2

Thus, for any such tetrahedron where

length of AB = length of AC =length of AD = a; 4.2)

2
we haveA = % = Area(ABC) = Area(ABD ) = Area(ACD).
1=2 1=2

Additionally, Area(BCD) = BT (a 292 = @° 37 =32 A, sinceBCD is an

equilateral triangle with sidea.

Thus, for calculatingV ( T), we will use the following vectors, called area vectors:
vi = (A;0;0);
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v, = (0;A;0);

vz =(0;0;A);
1:1;1 -
Vs = (31:2) 372 A= (AAA).

Figure 4.1: Right TetrahedronT

Recall that V( T) is equal to the sum of volumes of the parallelepipeds formég

the 3-combination of the area vectors;, Vs, vz and v4, volumes which we list below:

Volume of the parallelepiped formed by, v, and vs is Vi= kvi, Vo, vak= A3,
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Volume of the parallelepiped formed by, v, and vy is Vo= kv, Vs, vsk= A3,
Volume of the parallelepiped formed by, vs and v, is Va= kvi, Vs, vsk= A3,

Volume of the parallelepiped formed by, vs and v, is V4= Kvy, Vs, vik= A3,

We have denoted byku; v; wk the absolute value of the determinant whose rows

are the coordinates of the vectors; v:w in R3.

Therefore,V( T)= Vi+ Vo + Va+ V; =4 A3

1=2
On the other hand, V(T) = Els a’ = 2 g
8
— A%
36

Finally, substituting the above values in equation (4.1), weet

A3%2 and, consequently,V(T)?=

V( T) 4A

= =18; (4.3)
vT) 8
36 A
which concludes the proof. ]
4.2 Validation of Petty's Conjecture for K a Par-

allelepiped

Proposition 4.2.1. Let K R3 be an arbitrary parallelepiped. TherK satis es

Petty's conjecture inR3, i.e.

VOCK) v,
VAK) VT’

(4.4)

whereT RS2 is a tetrahedron.

Proof. We have calculated in Section 4 that the value of Petty's functional is

V(T)_
V2(T)

18; (4.5)
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for any tetrahedronT RS.
Thus, given any parallelepiped, it su ces to prove that

V( K)

vk 8 (4.6)

Recall that V( K) is equal to the sum of areas of the parallelepipeds formed by
the 3-combination of the 6 vectors that are perpendicular teach face oK and that
have a length equal to the area of the correspondent face. &na parallelepiped has
pairs of parallel faces with same area, we have 3 di erent ae&ectors, each of which
is repeated twice. Thus, we de ne/( K9, the area of the parallelepiped formed by
the combination of the 3 vectors as shown in Figure 4.2. Consetly, since we are
in R3,

V( K)=V( K9 22 (4.7)

Figure 4.2: ParallelepipedK
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In order to prove equation (4.6), we will writeV( K) in terms of V(K).

First, we note the di erence in volume between a parallelepgd M and another
parallelepipedMr that is formed by changing only the length of the three vectarthat
form M, thus multiply each vector by a positive constant , and, respectively, as

shown in Figure 4.3.

Figure 4.3: The parallelepiped$1 and M

We get, directly from the volume formula as determinant, tha

V(Nr) =23 V(M): (4.8)

The body K?is the parallelepiped presented in Figure 4.4. From the de tion
of projection bodies in Section 1.3, and the fact tha€ h,, A hs and B hg, are
the areas of the faces d (h,; hs; hg are chosen accordingly and presented in Figure

4.2), we have the following results:
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Figure 4.4:

length of vector 1 =C h, (4.9)
length of vector 2 =A hsg (4.10)
length of vector 3 =B hg: (4.11)

Consequently, we nd , and in order to write V( K9 interms of V(K) and,

further, V( K) in terms of V(K).

We notice that K %and K only di er by the lengths of the 3 vectors that form

the two parallelepipeds (the projection has conserved thegles between the normals

to the faces).

Now let ; and be such that,

length of vector 1= B (4.12)
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length of vector2= C (4.13)

length of vector 3= A: (4.14)

Using equations (4.9) to (4.14), we get,

C hy
= 4.1
- (4.15)
A hs
= 2 (4.16)
_ B hg.
= == (4.17)
Therefore, sincevV( K9 = V(K)andV( K)=23% V( K9, we have:

3 C hy A hs B hg
B C A
Finally, we will prove that h, . hs . hg = V(K).

V( K)=23 V(K)=2 V(K)=23 h, hs hg V(K):

Proof. To prove the above claim, it is enough to show tha¥ (K) is equal to the
volume of the rectangular box (a box with right dihedral angds) formed by the sides
h,, hs and hg.

Let K, be same parallelepiped aK , but with the side C replaced byhg. Then,
V(K)=V(K;). Let K, be same parallelepiped ak ; with side B replaced by h,.
Then, V(K) = V(K1) = V(K3). Thirdly, let K3 be same parallelepiped akK, with
side A replaced byhs. Then, V(K)= V(K.) = V(K;) = V(K3)= hy hs hg.

We now obtain that
V( K) _ 23:V2(K) ey
V(K) = VZ(K) =2° (4.18)

which con rms that Petty's Conjecture is satis ed for K :
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- VOK) VT _ g
2= VIK) VAT = 18: (4.19)
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Chapter 5

The Cut-o Vertex Method and

Petty's Functional

5.1 The problem in R?

Proposition 5.1.1. Let T be a triangle inR? and letQ be a quadrilateral formed by

cutting o one of the vertices of T® a triangle in R2. Then

viQ V(T
viQ V(M)

Proof. We have calculated in Section:3 that, for any triangle T  R?, the value of

(5.1)

Petty's functional is

VT _ ..

v =6 (5.2)
Thus, it su ces to prove that

V(Q .

V(Q) 6: (5.3)

We thus calculateV (Q) and V( Q). Note that T and Q are illustrated in Figure
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5.1

Figure 5.1: The polygonsT and Q

Given the a ne invariance of Petty's functional, we may choe to cut o

1, of the two sides ofl attached to one of the vertices. This means that our new

. . a b
sided is parallel to the basec and that the measures ofQ ared; c; — and —.

Consequently,V(T) = % =m

Furthermore, from the trapezoid's area formula, we have:
ctd h hc dh_m dh

V(Q) = —— —F 2—+ 5= — + 5

. 4 _ n.
Note that Q is formed by 6 parallelograms, as, = 6:
Parallelogram 1 is formed byc and d and, since the two sides are parallel, we have

V(Pl) =0.

Parallelogram 2 is formed byE and c and soV (P,) = 2—
. b 2 m
Parallelogram 3 is formed by— and c and soV (P3) = ——
. a b 2 m
Parallelogram 4 is formed by— and — and soV(Ps) = ——.
Parallelogram 5 is formed byE and d and soV (Ps) = h d.
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Parallelogram 6 is formed by—b and d and soV (Ps) = d.

Thus,

V( Q) V(P1)+V(P2)+ V(P3)+ V(P4)+ V(P5)+ V(P6)

=4T+22m+2hd:

We substitute our results in equation (5.3) and obtain

4 m 2m 2hd 6m 64dNh
+ + +

: - (5.4)

2;71+2hd 2m+3dh (5.5)
2M . 2 hd 2m+3 dh (5.6)
2m 2 m+d h: (5.7)

. 2 : : .
Knowing that cm 2 m since 1l and thatd h 0, equation (5.7) is

satis ed and so is then equation (5.1). ]

5.2 An example of the problem in R3

In this section, we will give an example that by adding new véces to a convex
polytope in R3, Petty's functional does not necessarily decrease. Spamilly, we

show that
V(Q _ V(P
V3(Q)  V3(P)

(5.8)

whereP is a convex polytope inR® and Q is P cut by a hyperplane eliminating one

vertex, but introducing this way more vertices.

Example 5.2.1. Let P be a convex body ifR® that is the union of C,; and C, where

C, is a cube andC, is a regular pyramid with a base square and whose lateral faces
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Figure 5.2: P and Q

are isosceles triangles. Now, we clR by the vertex ofC, by a plane parallel to its
base and we call iQ. We illustrate the convex bodies considered in Figure 5.2.

Let h° be the height ofC,. In order to form Q, we cut o with a parallel plane to
the base ofC, an amount(1 ) of h° 0< < 1, so that h %is left and the same
proportion goes to every side that is attached to the vertex that is cut. Thus we obtain

the following results:
V(P)= V(Ci)+ V(C) andV(Q) = V(C)+(1 (1 )°)V(Cy).

Let a be the length of each side of the cuBe and b be the length of the side of the
triangle that is formed by the projection of the tetrahedro@, on thexz-plane. Let be
the angle between each face ©f and the base and let be such thav (C,) = V (C,),

then:
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Proof. In Figure 5.3, we see the projection of the tetrahedro, on the xz-plane

assuming that the origin is placed at the center of symmetryfdhe base ofC,.

Figure 5.3: The projection ofC, on the xz-plane

: ho a . .
We have that sin = — and cos = > b We substitute the previous two
2 0

equations inV(C,) = and we obtain

a? b sin ad sin ad tan tan

V(C,) = = = =V(C) —: 5.9
Note that V(C,) = ad. O
Thus, now we have,
tan tan

vV(P)= 1+ V(C) and V(Q)= 1+ @ @ )% V(C).

6

Therefore, the previously conjectured inequality

v(Q V(P)
VEQ)  VE(P)

is equivalentto V( Q) V3(P) V( P) V*Q) (5.10)
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and becomes

2 2

fan aa )P (5.11)

6

tan
+

V(i Q 1+

V( P) 1

the vectors that are perpendicular to each face Bf and that have length equal to the
area of the corresponding face. Le¥ (ijk ) represent the volume of the parallelepiped

formed by the vectors, | and k where the vectors;j;k can be any of the indices

the following volumes that we divided into sets:

SetX: V(124), V(125), V(134), V(135). Let Vx be such that all the volumes in this
set are equal toVy , thus they all are equal to each other.

SetYy: V(127), V(129), V(137), V(139), V(146), V(148), V(156), V(158). Let W,
be such that all the volumes in this set are equal 9, .

SetZ;: V(167), V(169), V(178), V(189). Let V7, be such that all the volumes in this
set are equal toVz,.

SetY: V(246), V(247), V(248), V(249), V(256), V(257), V(258), V(259), V(346),
V(347), V(348), V(349), V(356), V(357), V(358), V(359). Let Vi be such that all
the volumes in this set are equal tgy .

SetZ: V(267), V(269), V(278), V(279), V(289), V(367), V(369), V(378), V(379),
V(389), V(467), V(468), V (469),V (478)V (489), V(567), V(568), V(569), V(578)
V(589). Let Vz be such that all the volumes in this set are equal ¥&.

SetW: V(678), V(679), V(689), V(789). Let |,y be such that all the volumes in this

set are equal tovyy .
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Notice that V (ijk )=0 in the following cases:
Case 1:ijk is a3 combination of vectorsl; 4;5; 7; 9 because these vectors are in the
same plane.
Case 2:ijk is a3 combination of vectorsl; 2; 3; 6; 8 because these vectors are in the
same plane also.
Case 4:ijk consists of the vectorgl and 5 and any other third vector (because the
vectors4 and 5 are in the same direction so the height of the parallelepipedQps
Case 5:ijk consists of the vectord and 10 and any other third vector (because the
vectors 1 and 10 are in the same direction so the height of the parallelepiped (s
where vectorl0 is the corresponding vector to the face that is formed by cuttifyin
order to form Q.
Case 6: ijk consists of the vector® and 3 and any other third vector (because the

vectors2 and 3 are in the same direction so the height of the parallelepipedQps

Now, knowing that the volume is the absolute value of the determinant, we will
CaICUIater, VY11 V211 Vy, V7 and W -

V= a? a a’= a°

0O 0 &
W,= 0 a2 0 =a* hg
hy, 0 h,

V21: 0 hl h2 = a-2 h%a
hy 0 h

W= a 0 0 =a* hy
0 hy hy
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0 a2 0
V2= 0 h; hy =a hy hy
hy 0 h,

0 hy hy
VW: hl 0 h2 =2 h% h21
0 hy hy

whereh; is the height of vectors; 7; 8 and 9 projected on thexy-plane andh, is the

height of vectors6; 7; 8 and 9 projected on thez-axis as shown in Figure 5.4.

Figure 5.4: vectors 67;8;9

Now, we will expres$; and h, in terms of a and
b
length of vector6 = length of vector7 = length of vector8 = length of vector9 = aT
whereb is the height of the triangular faces of.
hy

Thus, cos = 2 andsin = 2 h2.
ab ab
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a b cos a b sin

Consequentlyh; = > and h, = —
. _a
Sincecos = > b we have
a? a2
h, = 7 and h, = 7 tan :
Therefore,
V( P) = V(SetX)+ V(SetY,) + V(SetZ;) + V(SetY) + V(SetZ) + V(SetW)

4 Vg +8 Vg, +4 Vo, +16 W +20 Vo +4 Viy

ab ab a® tan a® tan a® tan
= 4 a%+8 —+4 —+1 +2 +4
a+8 7 16710 —3 0 —5 32
25 43
= a® (=+ = tan ): 5.12
(4 8 ) ( )

The projection body Q is formed by the vectorsl; 2; 3; 4;5; 6% 7% 8% 9% 10 where
vectors 1;2;3:4;5 are same for P and Q and vectors6® 7% 8% 9% 10 have same
direction as vectors6; 7; 8; 9; 1 respectively, but with di erent magnitudes.V( Q) is
the sum of the following volumes that we divided into sets:

SetX % V(124), V(125), V(134), V(135).

SetY®2 V(1279), V(129), V(13M), V(139P), V(146), V (148, V (1569, V (158).
Setz% V(16°79, V (16%99, V(17%89, V (18%9.

Set YO V(246), V(2479), V(248), V(249), V(256), V(257), V(258), V (259,
V(346), V (347, V(348), V(349), V(356), V(357), V(358), V(359).

Setz% V(26°79, V (2699, V (2789, V(27%99), V(28%99), V/(36%79, V(36%9), V (3789,
V (37999, V(38%9, V (46°79, V (46%9), V (46%99),V (47%89),V (4899, V (5679, V (56%89,
V (5699, V (5789, Vv (58%99.

SetW?® V (697%89, V(6°7%99), V (65899, V (7°8°99).

SetX® V(10 2 4) V(10 2 5), V(10 3 4) V(10 3 5) or equivalently,V (1%24),
V (125), V(1%34), V (1935),

SetY® V(10 2 A, V(10 2 9, V(10 3 B, V(10 3 P, V(10 4 6),
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V(10 4 8,V(10 5 &, V(10 5 &), or equivalently,V (127, V(1%29%), V(187),
V(13B9), V(1%6), V(14), V(156), V(158 .

Setz? v(10 & 79, V(10 & 99, v@a 7 8, v(10 & 99, or equivalently,
V(1%°79, V(1%%99, V(1°7%9, Vv (1%8%99.

As vectors6 and 6° 7 and 7° 8 and 8% 9 and 9° 1 and 10 or 1 and 1° have the

same direction as each other, but di erent length because of the cut, we have:

length of6°= (1 (1  )?) length of#6,
length of 7°= (1 (1 )2 length of7,
length of 8°= (1 (1  )?) length of8,
length of °= (1 (@ )2 length of9,
length of 1°= (1 )? length of 1.

We get the later result from Thaks theorem after projectiorC, on the xz-plane and
then by calculating the area of the square.
Therefore, we can write the value associated to each of the sets above as the fol-
lows:
SetX% Set X= 4
Sety:=(1 (1 )?)Sety;=8 (1 (1 )d) W,
SetZ?= (1 (1 )?%?Setz;=4 (1 1 )32 Vg
SetY& (1 (1 )?) Sety=16 (1 (1 ) W
SetZz%= (1 (1 )?»2Setz=20(1 (1 )%? V%
SetW: = (1 (1 )?»®Setw=4 (1 (1 )3 W
SetX% (1 )2SetX= 4(1 )2\
SetY: (1 )21 (1 )H)SetYi=8(1 )X (1 )W,
Setz%& (1 )21 (1 )?»2Setz;=4(1 )1 1 )HVg,.

Therefore,
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vV( Q)

V(Set X9+ V(Set Y) + V(Set Z9) + V(Set YO + V(Set 2% + V(Set W9

V(Set X%+ V(Set Y"§+ V(Set 2%

4 Vg +8 (1 (1 )® W, +4 (1 (1 )?? Vg,

16 (1 (1 ) W+20 1 (1 )»2 V+4 1 (@1
41 )PWw+8(L )1 (1 P)W+4L )1 (1

4 a°+8 (1 (1 )3 aZG+4 @ @ ) £

16
e a e Za” ¥20 (1 (1 )2 aelt%:”
6

s @ TSy

6
B )L @ DG

a6
e @ e

6

4 +2 (1 (1 ) a+@1 @1 )?? aZ
41 @ Y &tan +5 @ @ ) E Za”
@ a p ¥ oAy
20 )@ @ ) &

at
1 )a @ )2)22-

)%)® Vi

)2)2\/21

(5.13)

Plugging in our previous results in equation (5.11) and, simplifying both sides by

ab, we get
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[4+2 @ @ M@ @ PP g

v 401 @ )tan +5 (1 (1 )2 ta%
NG L MTCR
+ 21 )Y@ @ )
R R R R T
( )@ ( )9) Z ] 5
2
(275+4§3 tan ) 1+ta(r3l @ ) (5.14)

Denote byf (; ) the left-hand side of the previous inequality and tgf ; ) its
right-hand side. Note that these are continuous functions d0;1) (0; =2) for any
0< < land0O< < = 2

We expandf (; ) g(; ) using Wolfram Alpha in order to make the calculation

easier. We get

f(; ) d(; )=
[62;an+53tan4 6+46tan+3(4 Atan )
+ 2 (tan 6)+8 tan +8] (1+ t""%)z
(2{#%3 tan ) (1+tag (3 3 2+3 )2 (5.15)

We solve for the equationf(; ) g(; ) =0 using Wolfram Alpha and we
get a unique solution that is =1 which is, a priori, known because in this case we
did not cut any subset fromP and consequentif? = Q and P(P) = P(Q). Thus, for

=1, inequality (5.14) is satis ed for any .
Using the same software, we solve(; ) 9a(; ) 0 when 2 [0;1] and

2 [0; 5] and we get the following solution:
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1 =0 and 0:684611< tan < 11:5029which is equivalent ta34:395974245<
< 8503152046 (in degrees).

» = 0:321719and 0:660805< tan which is equivalent 1033456953714 <

(in degrees).

For O 1, only for ; and », the inequality is satis ed for sometan that does
not depend on . For 0< < (0:321719and 0:321719< < 1, tan depends on

for the inequality to be satis ed. We provide below some cases:

Example 1: Let =0:1, f(; ) g(; ) 0is satised when0:681372<
tan < 14:8048or consequently34:269407868< < 86:13561013

Example 2: Let =0:3,f(; ) 9(; ) Ois satised when0:663332<
tan < 151812 or consequently33557565103< < 8962263127.

Example 3: Let =0:4,f(; ) g(; ) Oissatised when0:651013< tan
or consequently33:064649512<

Example 4: Let =0:5,f(; ) g(; ) Ois satised when0:637098< tan
or consequently3250114552 <

Example 5: Let =0:7,f(; ) g(; ) Ois satis ed when0:604926< tan
or consequently31:170852112<

Example 6: Let =0:9,f(; ) 9(; ) Ois satised when0:56687< tan
or consequently29:547605382<

We notice that as % 1 the range of forwhichf(; ) g(; ) Ois satised

increases.

For instance, if we plug in 2 in the inequality, the conjecture will be satis ed

for any O 1andO

1] N_|

Furthermore, if we plug in in the inequality, we will get

4
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[ 4+2 (1 (@ )P+ @ ) :

4

Fa@o@ M5 @A PP
P @@ PP graa Y
+21 )@ @ )Y
L@ @ )y 1+ 1 2

( A CENCEED DA 6

2
(275+ %3) 1+% @ @ )» : (5.16)
which can be reduced to:

[ §6+ ::’15+574 5 2+8 +8] (g)2 (5.17)

93 1 .
(P @+z @ @ >

Using Wolfram Alpha, the above inequality is satis ed for any < 1 and, in
fact, > 1. Also, since we know that for = 1 we have equality betweenh(; )
andg(; ), the monotonicity of Petty's functional is satis ed, as in the planar case,
when = —.

4
However, we will present now a counter example for the speci ¢ case when0:5,

a=1and = 5 In this case, after substituting the corresponding values, as above,
in
W9 VP, 519
we get,
1805 25
Se6 2 (5.19)

which is false.
Thus, we have proved:
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Theorem 5.2.1. There exists a polytope? in R3, and there exists an a ne hyper-
planeH R3, such thatP \ H* contains exactly one vertex oP and the convex

bodyQ = P\ H has a larger Petty ratio than that ofP:

v(iQ V(P).
V3Q)  VAP)’

(5.20)

Thus, the cut-o method does not always decrease the value Bétty's functional

and hence, unlike the planar case, cannot be used to prove &t conjecture in R3.

2
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