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ABSTRACT

On Certain Techniques in Convex Geometry

Mariam AlHilani

We recall a proof of Mahler's conjecture inR2 and the technique employed to prove

it. This technique shows that, by adding new vertices to a convex polygonK , one

increases the value of Mahler's functionalK 7! V(K ) � V(K � ), thus the minimum

of the functional is reached for the convex polygon with least number of vertices.

We then study similar techniques in connection to Petty's conjecture in R2 and R3,

respectively. Petty's conjecture states that the functional K 7!
V(� K )

V n� 1(K )
, whereK

is a compact convex set inRn , reaches the maximum for the polytope of least vertices

in Rn . In R2, we prove that the inequality holds for any convex bodyK by a similar

technique with that of Mahler's problem, which is di�erent from the original proof

of Petty's inequality in R2. In R3, we validate the conjecture for a few speci�c cases.

More precisely, we compare the value of Petty's functional of a convex bodyK in Rn ,

for n = 2 and n = 3, with that of another convex body K 0 that is obtained by cutting

o� a vertex of K with a plane, thus introducing more vertices. However, we provide

an example that shows that this technique cannot be applied to arbitrary polytopes

in R3 to prove Petty's conjecture in this class and then, by approximation, in general.
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Chapter 1

Introduction and Prerequisites

1.1 Introduction

We start with a brief introduction on convex geometry and summarize the prerequi-

sites needed for the rest of the thesis such as convex hull, duality, projection bodies

and other selected topics used in our study. We focus our attention on two famous

extremal problems: Mahler's conjecture and Petty's conjecture that we state at the

end of the �rst chapter. Both of these problems conjecture certain inequalities to hold

for all convex bodies inRn and claim that the equality cases is reached for simplices.

Simplices are the simplest polytopes in any Euclidean space. These conjectures have

been proved only inR2 and they are open in the general case.

In Chapter 2, we examine the proof of the planar Mahler's conjecture following

the techniques used by Mahler himself for the symmetric casein dimension 2, [5],

as presented by Henze [4]. Our main objective is recalling theproof (di�erent other

proofs were given later) that shows that by adding new vertices to a polytope, the

value of Mahler's functionalV(K ) � V(K � ) increases, therefore the simplest polytope,

the simplex, has the minimal Mahler's functional.

In the next chapters, we examine some problems related to Petty's conjecture
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using similar techniques inspired by Mahler's proof. In Chapter 3, we consider Petty's

conjecture inR2 and we give a proof by induction to the inequality
V(� K )
V(K )

�
V(� T)
V(T)

,

where T � R2 is a triangle. In Chapter 4, we study using the same techniques for

the upper bound of
V(� K )
V 2(K )

for any convex bodyK 2 R3 and we prove that the

inequality holds for few speci�c cases of convex bodies.

Finally, in Chapter 5, we compare the value of Petty's functional,
V(� K )

V n� 1(K )
, for

n = 2 and n = 3, of a convex bodyK in Rn with that of another convex bodyK 0

that is obtained by cutting a vertex ofK . In the last part of this chapter, we provide

a counterexample that this technique can be applied to arbitrary polytopes in R3 to

prove Petty's conjecture in this class and then, by approximation, in general.

1.2 Convex Bodies, Minkowski Sum of Convex Bod-

ies

Throughout the thesis, the ambient space is the real vector spaceRn .

De�nition 1.2.1. [9] A set K � Rn is convex if for any two pointsx and y 2 K ,

the line segment

(1 � � ) x + � y 2 K; 8� 2 [0; 1]; (1.1)

belongs toK .

Half spaces, ellipses with their interior, and triangles, with their interior are ex-

amples of convex sets. A convex set and, respectively, a non-convex set are illustrated

in Figure 1.1.
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Figure 1.1: convex and non-convex body

Example 1.2.1. A half-spaceM is de�ned by w � x � � , wherew is a �xed vector,

and � is a �xed real number. Let x; y 2 M and let �; � � 0 such that � + � = 1,

arbitrary otherwise. Thus,w � x � � and w � y � � and so

w � (�x + �y ) = �w � x + �w � y � �� + �� = � (1.2)

Then, �x + �y 2 M and M is convex.

A convex set can be constructed from a set of arbitrary pointsby taking their

convex hull.

De�nition 1.2.2. [9] A point x is said to be a convex combination ofx1; : : : ; xp if

there exists� 1; : : : ; � p with � 1 + : : : + � p = 1 and � i � 0; i = 1; : : : ; p, such that

x = � x 1 + : : : + � p xp: (1.3)

De�nition 1.2.3. [9] For an arbitrary set K � Rn , the set of all convex combinations
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of any �nitely many elements ofK is called the convex hull ofK and is denoted by

convK .

Theorem 1.2.1. [9] The convex hull of the pointsx1; x2; : : : ; xp is the set of points

of the form

x = � x 1 + : : : + � p xp where � 1 + : : : + � p = 1; � i � 0; i = 1; : : : ; p: (1.4)

Corollary 1.2.1. Let x1; : : : ; xp 2 Rn . Then,

conv(x1; : : : ; xp) = f � 1x1 + : : :+ � pxp j � 1 + : : :+ � p = 1; � i � 0; i = 1; : : : ; pg: (1.5)

A set T and convT are illustrated in Figure 1.2

Figure 1.2: T and convT

Theorem 1.2.2. [9] Let x1; x2; : : : ; xp be points ofK , a convex body inRn . Let

� i � 0, i = 1; : : : ; p, such that � 1 + : : : + � p = 1 be arbitrary otherwise. Then
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� 1x1 + : : : + � pxp 2 K .

Proof. We prove the theorem by induction. Forp = 1, the claim is trivial. Suppose

it is true for some positive integerk, we will prove that it is also true for k + 1. let

y = � 1x1 + : : : + � k1 xk+1 wherex1; x2; : : : ; xk+1 2 K and � 1 + : : : + � k+1 = 1. At least

one � i should be< 1, let's assume that� k+1 < 1. Let

z =
� 1

�
� x1 + : : : +

� k

�
� xk (1.6)

where� = � 1 + : : : + � k = 1 � � k+1 > 0.

By the hypothesis of induction,z 2 K and, sinceK is convex and containsz and

xk+1 , we get that the equality y = �z + � k+1 xk+1 implies y 2 K .

Proposition 1.2.1. If K � Rn is convex, then convK = K .

De�nition 1.2.4. [8] For any convex setsK; L � Rn , the Minkowski sum ofK and

L is the convex set obtained by vector addition:

K + L := f k + l j k 2 K; l 2 Lg: (1.7)
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Figure 1.3: Minkowsi sum ofK and L

De�nition 1.2.5. [8] Let K be a convex compact set inRn . The support function of

K , hK : Sn� 1 ! R, is de�ned by

hK (v) = sup f v � x j x 2 K g: (1.8)

Note that if K contains the origin in its interior, then hK is positive for all di-

rections v, hK (v) being the distance from the origin to the hyperplane of normal v

supporting K . Moreover, a convex bodyK is completely determined by its support

function. Lastly, note that hK + L (v) = hK (v) + hL (v) for all v 2 Sn� 1.

Proposition 1.2.2. [3] If � 2 GLn whereGLn is a non-singular linear transforma-

tions, then h�K (v) = jj � tvjj hK (� tv).
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Proof.

h�K (v) = sup f v � x j x 2 �K g (1.9)

= sup f v � �y j y 2 K g

= sup f � tv � y j y 2 K g

= jj � tvjj hK (� tv=jj � tvjj ):

The support function can be in fact extended toRn n f 0g by homogeneity via the

formula hK (x) = hK (x=jjxjj ). We will see this formula again later.

De�nition 1.2.6. [8] A polytopeP � Rn is the convex hull of a �nite subset ofRn .

Let P be a nonempty polytope inRn , then P = convf x1; : : : ; xmg whenrex1; : : : ; xm

are points in Rn .

Theorem 1.2.3. [8] Every polytopeP � Rn is the intersection of �nitely many closed

half-spaces.

Proof. Let Pn be the set of polytopes with nonempty interior and letP 2 Pn . We can

assume that dimP = n because 
ats and half-
ats can be described as intersections

of �nitely many closed half spaces. We denote byF1; : : : ; Fm the faces ofP and thus

Fi = H i \ P where H i is a support plane ofP. We also denote byH �
i the closed

half-space bounded byH i for i = 1; : : : ; m and containing P. Therefore, in order to

prove the theorem, we will have to prove

P = H �
1 \ : : : \ H �

m : (1.10)

The �rst inclusion P � H �
1 \ : : : \ H �

m is trivial.

For the other inclusion, let x 2 RnnP and let M be the union of the a�ne hulls of
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the n � 1 vertices ofP and x. We choosey such that y � int (P)nM . Then, there

exists a point z such that z 2 bd P \ [x; y]. In other words, z is in a support plane

of P which is equivalent to saying thatz lies in some faceF of P. Suppose that dim

F =: k � n � 2. Caratheodory's convex hull shows thatz is in the convex hull of

somek + 1 � n � 1 vertices ofP and thus to M . But then we havey 2 M which is

a contradiction. This shows thatF is a facet andF = Fi for i = 1; : : : ; m. x doesn't

belong toH �
i sincey 2 H �

i . Equation (1.10) is thus proven.

Let Kn be the set of nonempty compact, convex subsets ofRn . In fact, we consider

Kn the set of compact, convex subsets ofRn with nonempty interior, as if the interior

of K is the empty set, then asK 6= ; , then K 2 K l with 1 � l � n � 1.

De�nition 1.2.7. [8] The Hausdor� distance between two convex setsL and K in

Kn is de�ned by

� (L; K ) := max f sup
x2 L

inf
y2 K

jx � yj; sup
x2 K

inf
y2 L

jx � yjg: (1.11)

Alternatively, it can be de�ned by

� (L; K ) = min f � � 0 j L � K + �B ng: (1.12)

One can easily check that� is a metric on Kn which is called the Hausdor� metric.

Theorem 1.2.4. [8] Let � > 0. Then, for any K 2 Kn there exists a polytopeP 2 Kn

such thatP � K � P + �B thus, consequently,� (P; K ) � � .

Proof. Let B i be the the balls with radius� , and with their centers in K , that cover

K . By the de�nition of polytopes, we can �nd a polytope P that is the convex hull

of the centers ofB i . It is easy to see that this polytopeP has the property claimed

by the theorem.
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Corollary 1.2.2. [8] For any K 2 Kn there exists a sequence of polytopes,Pi , con-

verging toK in the Hausdor� metric.

Proof. According to Theorem 1.2.4 we can �nd a sequence of polytopes,Pn , such that

Pn � K � Pn + �B by taking, successively,� = 1
n .

Lemma 1.2.1. [8] Let K 1; K 2 2 Kn and letK 2 � int K 1. Then, there exists a number

� such that for anyK 2 Kn with � (K 1; K ) < � satis�es the fact that K 2 � K .

Proof. We haveK 2 � int K 1, thus the function hK 1 ( : ) � hK 2 ( : ) is positive onRn nf 0g

and, consequently, since the function is continuous onSn� 1 (compact), it attains a

minimum, � , that is positive on Sn� 1. Now, let K 2 Kn be such that � (K 1; K ) < � .

Thus, jhK 1 (u) � hK 2 (u)j � �; 8u 2 Sn� 1. Then hK 2 (u) � hK 1 (u) � � < h K (u) where

u 2 Sn� 1 and, �nally, K 2 � K .

Theorem 1.2.5. [8] The volume functional,Vn , is continuous onKn with respect to

Hausdor� metric.

Proof. Let K 2 Kn and let �K 2 Kn . Without loss of generality, if Vn (K ) = 0 satis�es

� (K; �K ) = � � 1, then K is contained in a hyperplane and�K � K + �B . Thus,

Vn ( �K ) � Vn (K + �B n ) � C(K ) � � , and using Fubini's theorem we can �ndC(K )

such that C(K ) is independent of� . Now, we suppose that 02 int K . Let � > 0, we

choose� > 1 such that (� n � 1) � � n � Vn (K ) < � and � > 0 such that �B n � int K .

According to Lemma 1.2.1, we can �nd a number� > 0 such that � � (� � 1)�

and such that �B n � �K for any �K 2 Kn while satisfying the fact that � (k; �K ) < � .

Assuming that the latter is true, we have

K 2 �K + �B n � �K + ( � � 1) �B n � �K + ( � � 1) �K = � �K: (1.13)

Also, �K 2 �K . Then,

Vn (K ) � Vn ( �K ) = � nVn ( �K ): (1.14)

9



Thus,

Vn (K ) � Vn ( �K ) � (� n � 1)Vn ( �K ) � (� n � 1)� nVn (K );

Vn ( �K ) � Vn (K ) � (� n � 1)Vn (K ) � (� n � 1)� nVn (K ): (1.15)

Therefore,

jVn (K ) � Vn ( �K )j � (� n � 1)� nVn (K ) � �; (1.16)

concluding the proof.

For simplicity, in our thesis, we omit the indexn in Vn unless there is a risk of

confusion.

Corollary 1.2.3. Let K be a nonempty compact convex set inRn . Then there exist a

sequence of nonempty polytopesPi in Rn , and another sequence of nonempty polytopes

Qi in Rn , i 2 N, such thatPi � K � Qi and Pi ! K and Qi ! K in the Hausdor�

metric.

Corollary 1.2.4. Let K be a nonempty compact convex set inRn , then there exist

in Rn sequences of nonempty polytopesPi and Qi , i 2 N, such that Pi � K � Qi ,

� Pi ! � K and � Qi ! � K in the Hausdor� metric.

1.3 Special Convex Bodies: the Polar and the Pro-

jection Body of K

De�nition 1.3.1. [9] Let K be a set inRn containing the origin. The polar or dual,

K � , of the setK is de�ned by

K � = f x 2 Rn j v � x � 1 for all v 2 K g: (1.17)

10



Note that K � is always a convex set even ifK is not convex.

Theorem 1.3.1. [7] If K � Rn is a convex body containing the origin, thenK = K �� .

Proof. Let an arbitrary y 2 K ) for any x 2 K � , we havex � y � 1 ) y 2 K �� .

Now, it is enough to prove

K �� � K: (1.18)

Let x 2 Rn n K . Then there exists a hyperplaneH that separatesx and K , each

of them being in a di�erent half-space. As 02 K and

H = f w 2 Rn j w � v = 1g

for v 6= 0, then

K � f w 2 Rn j w � v < 1g and x � v > 1: (1.19)

From the two previous equations respectively we conclude that v 2 K � and that

x =2 K �� . Therefore, inclusion (1.18) has been proved via complements.

Example 1.3.1. [9] Let C � Rn be the unitn-cube centered at the origin. We want

to �nd its polar C � . Thus

C = f (c1; : : : ; cn ) 2 Rn j j c1j � 1; : : : ; jcn j � 1g: (1.20)

For any (x1; : : : ; xm ) 2 C � , we have(c1; : : : ; cn ) of C such that ci = 1 if x i � 0 or

ci = � 1 if x i < 0. Thus,

(x1; : : : ; xm ):(c1; : : : ; cn ) = ( c1 � x1; : : : ; cn � xn ) = jx1j + : : : + jxn j � 1: (1.21)

On the other hand, suppose that(x1; : : : ; xm ) satis�es jx1j + : : : + jxn j � 1, then for
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any (c1; : : : ; cn ) in C , we have

(x1; : : : ; xm ) � (c1; : : : ; cn ) = ( c1:x1; : : : ; cn :xn )

� j c1j � j x1j + : : : + jcn j � j xn j

� j x1j + : : : + jxn j � 1: (1.22)

Thus (x1; : : : ; xm ) 2 C � . The convex bodyC � is the regularn-cross-polytope de�ned

by

C � = f (x1; : : : ; xm ) j jx1j + : : : + jxn j � 1g: (1.23)

Now, we will �nd C �� , the polar of C � .

De�ne (x1; : : : ; 0) 2 C � for every (c1; : : : ; cn ) 2 C �� such that x1 = 1 if c1 � 0 and

x1 = � 1 if c1 < 0. So,

(x1; : : : ; 0) � (c1; : : : ; cn ) = jc1j � 1: (1.24)

In the same way, we prove thatjc2j � 1; : : : ; jcn j � 1. Hence (c1; : : : ; cn ) 2 C and

C �� � C, while C � C �� holds from the de�nition of the polar. ThusC = C �� .

De�nition 1.3.2. [4] A non-zero vectorp = ( p1; p2) in R2 is said to be polar to the

line lp = f x 2 R2 j p1 � x1 + p2 � x2 = 1g and vice versa.

The above de�nition leads us to the following (simpli�ed) de�nition of the polar

set of a convex polygon inR2:

De�nition 1.3.3. [4] The polar setK � of a convex polygonK = convf x1; : : : ; xmg

is the convex hull off vij j [x i ; x j ] is an edge ofK g wherevij is the polar point to the

line through x i and x j of the edge[x i ; x j ].

The goal of the rest of the section is to explain the projection body of a polytope

K , denoted by � K . We will see that, for any polytopeK � Rn , � K is the Minkowski

12



sum of line segments orthogonal to the faces ofK having length equal to the (n � 1)-

dimensional volume of the correspondent face.

De�nition 1.3.4. [3] Let K be a convex body inRn ; n � 2. Then � K , the projection

body ofK , is a centered convex body de�ned via its support function by

h� K (u) = Vn� 1(K ju? ) =
1
2

Z

Sn � 1
ju � vj dSK (v); (1.25)

for all u 2 Sn� 1. Here dSK (:) is the surface area measure ofK as the(n� 1)-Hausdor�

measure of the boundary ofK .

De�nition 1.3.5. [3] Cauchy's projection formula is

cn� 1;i Vi (K ju? ) =
1
2

Z

Sn � 1
ju � vj dSi (K; v ); (1.26)

for all u 2 Sn� 1, i = 1; : : : ; n � 1. Here dSi (K ;v) is the i -th surface area measure

de�ned in [8], with dSn� 1(K; v ) = dSK (v) and cn� 1;i =
� n� 1

i

�
.

Proposition 1.3.1. [3] � K = �( � K ).

The proof is immediate due to the fact that, in each direction, the projection of

K coincides with the projection of� K , the re
ection of K .

Theorem 1.3.2. [3] Let K be a convex body inR2. Then � K is the rotation by
�
2

about the origin of 24 K := 2( K + ( � K )), the symmetric di�erence of K , that is

the Minkowski sum ofK with its re
ection through the origin. Thus, every centered

convex body inR2 is a projection body.

Proof. If � K is a convex body inR2, and u; v 2 S1 are unit vectors such thatv is

orthogonal to u, then

h� K (u) = V1(K ju? ) = wK (u) = w4 K (v) = h24 K (v): (1.27)

13



wherewk is the width of K in the direction u, in other words the distance between

the two supporting lines ofK with normals u and � u.

Therefore, the projection body �K is the rotation by
�
2

about the origin of the convex

body 24 K .

If K is centered at the origin, then4 K = K ) � K 1 = K : K 1 is
1
2

K rotated by
�
2

about the origin.

Example 1.3.2. Projection bodies; Some simple examples:

� If C is the unit disk in R2. Then, � C is the centered disk of radius2.

� If S is the centered unit square. Then,� S is the centered square such that

� K = 2 K

Let C be the centered unit cube inRn . Then, � K = 2 K . We conclude this by

using the projection formula that de�nes the support function of the projection body

of C

h� C (u) =
1
2

Z

Sn � 1
ju � vj dS(C; v): (1.28)

Given the piecewise linear structure of the boundary ofC, hereS(C; :) is the sum of

point masses of weight 1 at the intersection of the coordinate axes withSn� 1. We

reduce the integral to a sum of then terms ju:ei j, 1 � i � n with ei being the unit

vector in the i -th coordinate direction. Each term is the support functionof the

[-ei ,ei ]. Thus, � C is the vector sum of all the [-ei ,ei ]. In other words, � C is the

centered unit cube expanded by a factor of 2.

The previous reasoning can be applied to any arbitrary polytope inRn concluding

that the projection of a polytope is the Minkowski sum of linesegments, or vectors,

orthogonal to the faces ofK having length equal to the (n � 1)-dimensional volume

of the correspondent face.
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Lemma 1.3.1. [2] Let F1; : : : ; Fn be the faces of a polytopeK , let the outward facing

unit normal of Fi bevj and let A(Fi ) be the area of eachFi . As � K is the Minkowski

sum of the area segments ofK , then

V(� K ) =
X

1� i<j<k � n

jwi ; wj ; wk j (1.29)

wherewi = A(Fi ) vi for i = 1; : : : ; n and jwi ; wj ; wk j is the determinant of the matrix

that haswi ; wj ; wk as columns.

In other words, V(� K ) is equal to sum of all volumes of parallelepipeds that can

be formed by the 3-combination of vectors that are normal to the faces ofK and have

length equal to the corresponding area of the face they are orthogonal to.

In what follows we will use the de�nition of the support function of a convex body

both as a function onSn� 1 and its extension by homogeneity,hK (x) = hK (x=jjxjj ),

to Rn n f 0g.

Theorem 1.3.3. [3] The projection bodies of a�nely equivalent convex bodies are also

a�nely equivalent. If � 2 GLn whereGLn is any non-singular linear transformation

from Rn to itself, then

�( �K ) = j det � j � � t (� K ): (1.30)

Proof. As the name implies, two convex bodies are a�nely equivalent if and only

if there is an a�ne transformation of Rn that sends one convex body into another,

where recall that an a�ne transformation is a linear transformations composed with a

translation, possibly by the zero vector. Note that the linear transformation involve

must be invertible as each convex body is sent into another convex body, thus a

compact convex set with non-empty interior is sent into another set, compact and

convex, with non-empty interior.
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We will start by proving formula (1.30). Let K be a convex body inRn , � 2 GLn

an invertible linear transformation, u 2 Sn� 1 and let w be such that � � w = u. Then

h�( �K )(u) =
1
2

Z

Sn � 1
ju � vj dS(�K; v )

=
n
2

V(�K; n � 1; [� u; u])

=
n
2

V(�K; n � 1; � [� w; w])

=
n
2

j det � j V (K; n � 1; [� w; w])

= j det � j h� K (w)

= j det � j h� K (� � 1u): (1.31)

Above, we have used Cauchy's projection formula from De�nition 1.3.5 withi = n� 1,

the invariance of mixed volumes under volume-preserving linear transformations, and

the following equation

nV (K; n � 1; [0; u]) = Vn� 1(K j u? ); (1.32)

where the mixed volumesV(K; [n � i ]; L; [i ]) are de�ned, up to some constant, as the

t i coe�cients in V(K + tL ), the volume of the Minkowski sum ofK with the dilation

tL , as a polynomial int, [8].

For the change in support functions under linear transformations, we use Propo-

sition 1.2.2 and get

h�K (u) = hK (� tu) = jj � t (u)jjhK (
� tu

jj � tujj
): (1.33)

Thus,

h� K (� � 1u) = h� � t (� K )(u): (1.34)

Equation (1.31), together with equation (1.34), completesthe proof of the second
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part of Theorem 1.3.3.

Since it is obvious that any translation of a convex body leaves its projection

body unchanged, as only the areas of projections matter, theproof of the rest of the

theorem follows immediately.

Finally, we note another corollary of Theorem 1.2.4:

Corollary 1.3.1. If a sequence of polytopes,Pi , converges toK 2 Kn in the Hausdor�

metric, then, � Pi , converges to� K in the Hausdor� metric where � Pi and � K are

the projection bodies ofPi and K , respectively.

Proof. Given that Pi converges toK 2 Kn , it follows that S(Pi ) converges toS(K ),

where S(K ) denotes the surface area ofK , as i ! 1 . Given that the support

function of the projection body of a convex bodyK in a given direction u 2 Sn� 1 is

the area of the projection ofK on a hyperplane orthogonal tou, we thus obtain the

corollary.

1.4 Statement of Mahler's Conjecture and, respec-

tively, Petty's Conjecture

Let Kn
0 be the set of all compact, convex sets inRn containing the origin in their

interior. The volume product functional, also known as the Mahler product, is the

map that assigns to eachK 2 Kn
0 , the value M (K ) = V(K ) � V(K � ), where recall

that K � is the polar ofK and that the polar depends on the choice of the origin.

It is worth noting that M (TK ) = M (K ), for any general linear transformationT

of Rn . We thus say that M ( : ) is linearly invariant. For an extensive discussion on

Mahler's functional, including Mahler's conjecture, we refer the reader to [4].

Note also that if the origin is taken closer and closer to the boundary of K ,

then M (K ) becomes larger and larger and is, thus, unbounded. Therefore, generally,
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one cannot have an upper bound for Mahler's functional. However, it was proved

by Santal�o that for centrally symmetric convex bodies whose center of symmetry

coincides with the origin, the maximum of Mahler's product is reached for ellipsoids

and is equal to! 2
n , where! n denotes the volume of the Euclidean unit ball inRn . It

can be shown that ifK is not centrally symmetric, there exists a choice of the origin

in the interior of K , choice called Santal�o point, such that the same bound holds.

The lower bound of Mahler's functional remains unknown except for dimension

n = 2. It has been conjectured, and proved by Mahler in the planar case that, for

any centrally convex bodyK 2 Kn
0 , we have

M (K ) �
4n

(n!)2 ; (1.35)

with equality if and only if K is a parallelotope, [5].

The lower bound remained an open problem despite many attempts and it is called

Mahler's Conjecture. Only some very special cases of Mahler's conjecture have been

proved.

The conjecture has a non-symmetric analogue in which the lower bound is claimed

to be reached for simplices. Mahler has shown that the methodused in the plane for

the centrally symmetric case, which we will present in Chapter 2, works also to prove

the non-symmetric planar case.

We will now focus on Petty's conjecture. For this, recall that Kn is the set of

all compact, convex sets with non-empty interior. Petty's functional is the map that

assigns to eachK 2 Kn the value P(K ) :=
V(� K )

V n� 1(K )
, where recall that � K is the

projection body ofK .

It is clear from the de�nition of the projection body, as well as the properties

of volume as then-dimensional Lebesgue measure inRn , that Petty's functional is

translation invariant. Moreover, by Theorem 1.3 and, againthe properties of volume,
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Petty's functional is linearly invariant. Combining the previous two facts, we conclude

that the value of the functional is unchanged under any a�ne transformation applied

to K . Thus, P( : ) is an a�ne invariant of K .

Both bounds of Petty's functional, the lower one and the upper one, in Kn for

n � 3 are not yet known. In 1971, Petty conjectured [2] that

! n
n� 1! 2� n

n �
V (� K )

V n� 1(K )
(1.36)

with equality if and only if K is an ellipsoid.

Regarding the upper bound, for centrally symmetric convex bodies K 2 Kn ,

Schneider [1] conjectured that 2n is the upper bound and that it is achieved, in par-

ticular, for parallelotopes, like a reverse of the symmetric case of Mahler's conjecture.

In other words, Schneider hypothesized that

V(� K )
V n� 1(K )

� 2n (1.37)

for any convex bodyK 2 Kn symmetric with respect to the origin and we have

equality for direct sums of planar centrally symmetric convex bodies.

However, Brannen gave a counterexample where Petty's functional,
V(� K )
V n� 1

, ex-

ceeds 2n wheren � 3. In fact, he found centrally symmetric convex bodiesK � Rn

such that P(K ) =
9
8

� 2n for every n � 3, [1].

Finally, Brannen [1] conjectured that, for all convex bodiesK 2 Kn , we have

V(� K )
V n� 1

�
(n + 1) � nn

n!
(1.38)

and equality is satis�ed if and only if K is a simplex.

It is this latter bound that we refer to as Petty's conjectureand the one for which

we address Mahler's technique in this thesis.
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Chapter 2

Mahler's Conjecture in R2

The aim of this chapter is to present a particular proof of thesymmetric case of

Mahler's conjecture in dimension two. This proof stands outfor a certain technique

in which it is shown that decreasing the number of vertices ofa polygon, Mahler's

functional decreases as well. Consequently, one can use this fact to deduce that, in

the centrally symmetric planar case, the minimum of Mahler's functional is reached

for the parallelogram,

In the next chapters, we will investigate uses of similar techniques, although not

identical, for other problems such as Petty's conjectured inequality in dimension 2

and 3. Therefore, we regard this proof as the starting prototype.

Finally, let us mention that the proof that we will present below dates from 1939

and is due to Mahler himself [5], but our presentation follows a more modern update

of Henze, [4].

Proposition 2.0.1. Let T � R2 be a triangle containing the origin in its interior

and let T � be its polar. DenoteT= conv f x; y; zg, T � = conv f x � ; y� ; z� g and assume

that no two of x; y and z are linearly dependent. Then,

V(T � ) =
2V(T)2

dxy dyzdzx
; (2.1)
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wheredxy = det

0

B
@

x1 y1

x2 y2

1

C
A with x = ( x1; x2) and y = ( y1; y2).

Proof. We have that dxy , dyz and dzx are all di�erent than zero since no two ofx; y

and z are linearly dependent.

As we saw in the introduction, the de�nition of the polar body implies that x � is

the intersection of the lines that are polar to the pointsx and y that we will call lx

and ly, respectively. By solving the system of the two linear equations representing

the lines lx = f x 2 R2 j a1 � x1 + a2 � x2 = 1g and ly = f y 2 R2 j a1 � y1 + a2 � y2 = 1g,

we get

x � =
1

dxy
(y2 � x2; x1 � y1): (2.2)

Similar calculations fory� and z� lead to

y� =
1

dyz
(z2 � y2; y1 � z1) and z� =

1
dzx

(x2 � z2; z1 � x1): (2.3)

Given that the area of a parallelogram can be represented by means of a determinant,
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we deduce the value ofV(T � ) as follows:

V(T � ) =
1
2

det(y� � x � ; z� � x � )

=
1
2

(dx � y � + dy � z� dz� x � )

=
1
2

0

B
@

1
dxy dyz

�

�
�
�
�
�
�
�

y2 � x2 z2 � y2

x1 � y1 y1 � z1

�
�
�
�
�
�
�
+

1
dyzdzx

�

�
�
�
�
�
�
�

z2 � y2 x2 � z2

y1 � z1 z1 � x1

�
�
�
�
�
�
�

+
1

dzxdxy
�

�
�
�
�
�
�
�

x2 � z2 y2 � x2

z1 � x1 x1 � y1

�
�
�
�
�
�
�

1

C
A (2.4)

=
1

2dxy dyzdzx
� (d2

xy + d2
yz + d2

zx + 2dxy dyz + 2dyzdzx + 2dzxdxy )

=
(dxy + dyz + dzx )2

2dxy dyzdzx

=
2 � V(T)2

dxy dyzdzx
:

We will now investigate where the maximality ofV(T � ) is attained.

Let's assume thatdxy , dyz are strictly positive and that dzx < 0. The assump-

tion is reasonable without any loss of generality because notwo of x, y and z are

linearly independent. Consequently, supposing that the origin does not belong to

T = conv f x; y; zg, dxy , dyz and dzx are not all of the same sign, thus the assumption.

We de�ne a lined parallel to [x; z] and we choosey arbitrarily on d by the equation,

dxy + dyz � j dzx j = 2 � V(T) (2.5)

Thus, 0 < d xy < 2 � V(T) + jdzx j sincedxy > 0. Let us de�ne � and � such that

0 < � � dxy � � < 2 � V(T) + jdzx j which implies a stretchS of d.
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Substituting our results in equation (2.1), we get

V(T � ) =
2 � V(T)

dxy (2 � V(T) + jdzx j � dxy )jdzx j
: (2.6)

Therefore,V(T � ) depends ony 2 S and reaches a maximum onS. Additionally,

2 � V(T)
V(T � ) � jdzx j

= dxy (2 � V(T) + jdzx j � dxy )

= ( V(T) +
jdzx j

2
)2 � ((V(T) +

jdzx j
2

)2 � 2 � dxy � (V(T) +
jdzx j

2
) + d2

xy )

= ( V(T) +
jdzx j

2
)2 � (V(T) +

jdzx j
2

� dxy )2: (2.7)

Therefore
2 � V(T)

V(T � ) � jdzx j
attains a maximum whendxy = V(T) +

jdzx j
2

and, further-

more, V(T � ) reaches its maximum wheny is a boundary point ofS.

Proposition 2.0.2. Given P � R2, a centrally symmetric polygon with2m � 6

vertices containing the origin in its interior, we can �nd a centrally symmetric polygon

H � R2 with 2(m � 1) vertices and containing the origin in its interior, such that

V(H ) � V(H � ) < V (P) � V(P � ); (2.8)

whereP � and H � are the polars ofP and H , respectively.

Proof. Let v1; : : : ; vm ; vm+1 ; : : : ; v2m be the vertices ofP such that vi = � vm+ i ,

where 1 � i � m, so that P is centrally symmetric. Let T = conv f v1; v2; v3g,

T0 = conv f vm+1 ; vm+2 ; vm+3 g and M = conv f v1; v3; : : : ; vm ; vm+1 ; vm+3 ; : : : ; v2mg.

Thus, P = M [ T [ T0. Notice that T and T0 are symmetric to each other with

respect to the origin and do not contain the origin. We could always �nd such T and

T0 because the number of vertices ofP is 2m � 6.

To illustrate the procedure, see Figure 2.1 where we choose anexample with
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Figure 2.2: P�

Let l be a line parallel to the edge [v1; v3] and passing throughv2. Now, we extend

[v3; v4] and [v2m ; v1] toward l. If we move v2 on the part of l that is cut by the

extension of [v3; v4] and [v2m ; v1], P will conserve its convexity and its area. Let us

call Tv the convex hull of v1; v0
2 and v3, wherev0

2 is a any position ofv2 on on the

part of l that is cut by the extension of [v3; v4] and [v2m ; v1]. The above procedure is

illustrated below in Figure 2.3.
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and the equality is satis�ed if and only ifP is a parallelogram.

Proof. Consider �rst P = convf v1; v2; � v1; � v2g, thus P is a parallelogram. Therefe-

ore, we can divideP into 4 triangles, T1, T2, T3 and T4, that have the same area

such that T1 = convf v1; v2; 0g, T2 = convf� v1; v2; 0g, T3 = convf� v1; � v2; 0g and

T4 = convf v1; � v2; 0g. The information above is illustrated in Figure 2.4.

Figure 2.4: P

Therefore,

V(P) =
1
2

dv1 ;v2 +
1
2

dv1 ;� v2 +
1
2

dv1 ;v2 +
1
2

d� v1 ;v2 = 2dv1 ;v2 : (2.10)

Using the same notation as in the previous lemma, we haveP � = convf v�
1; v�

2; � v�
1; � v�

2g =

convf� v�
1; � v�

2g, where V �
1 =

1
dv1v2

�
�
�
�
�
�
�

v22 � v12

v11 � v21

�
�
�
�
�
�
�

and V �
2 =

1
dv1v2

�
�
�
�
�
�
�

� v12 � v22

v11 v21

�
�
�
�
�
�
�

given

that v1= ( v11; v12) and v2= ( v11; v12). Thus, V(P � ) =
4

dv1v2

which implies that

M (P) = 8.
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We will prove the remaining part by induction. Let P = convf� v1; : : : � vmg such

that m � 3. By the induction hypothesis, and the previous lemma, there exists a

q-gon Q with 2(m � 1) vertices such that

M (P) > M (Q) � 8: (2.11)

This also settles the fact that strict inequality occurs ifQ has more than 4 sides and,

thus, we conclude the proof.

Finally, Mahler noticed that for any centrally symmetric convex body K in R2,

one can �nd a sequence of centrally symmetric polygons inR2 that converges toK .

SinceM (K ) is a continuous functional, see Theorem 1.2.5, we haveM (K ) � 8, but

the equality is lost in this case.

As observed by Mahler himself, the same argument may be used inthe non-

symmetric planar case, but it would be more subtle, because we do not control the

choice of the origin and the polar of a set depends on the choice of the origin. In

the symmetric case, we have used the fact that, by eliminating opposite vertices, the

origin remains the center of symmetry, and/or mass, of the resulting convex polygon.

For simplicity, to illustrate the method, we presented hereMahler's proof only in

the symmetric case as, for further analysis, in Petty's conjecture the position of the

origin is irrelevant.
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Chapter 3

Petty's Conjecture in R2

3.1 Calculation of the Upper Bound (Triangle)

Proposition 3.1.1. Let T be a triangle inR2, then

V(� T)
V(T)

= 6: (3.1)

Proof. Let T be a triangle as presented in Figure 3.1.

Denoting by h1; h2 and h3 the heights issued from each vertex ontoa; b and c,

respectively, we haveV(T) =
a � h1

2
=

b� h2

2
=

c � h3

2
=: m.

Next we will use the fact that the projection body is the sum of Minkowski sum

of segments to construct �T and calculate its volume.

Step 1: We take the side of lengtha by its middle point and place it at the origin

as in Figure 3.2.

29















Now, we notice thatV(K ) = ( P6 + P1)=2.

By plugging in our results in
V(� K )
V(K )

� 6, which we want to show, we have that the

inequality is equivalent to

P1 + P2 + P3 + P4 + P5 + P6

(1=2) � (P6 + P1)
� 6

P1 + P2 + P3 + P4 + P5 + P6 � 3 � (P6 + P1) (3.4)

P2 + P3 + P4 + P5 � 2 � P6 + 2 � P1:

Note further that P3 + P4 = 2 � V(K ) = P6 + P1, so we can reduce the inequality to

the following

P2 + P5 � P6 + P1 = 2 � V(K ):

36



Figure 3.9: dissertation ofK

As we can see in Figure 3.9, we haveV(K ) = P1 + (1 =2) � P2 + (1 =2) � P5:

Thus, 2� V(K ) = 2 � P1 + P2 + P5:

Therefore, our main inequality becomes equivalent to 0� 2 � P1 ) 0 � P1, which

is always true, concluding the proof.
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3.3 General Proof by Induction

Proposition 3.3.1. Let Q � R2 be a convex planar polygon. Then,Q satis�es

Petty's conjecture in R2, namely

V(� Q)
V(Q)

�
V(� T)
V(T)

; (3.5)

for any triangle T � R2.

Proof. In Section 3.2, we proved that
V(� K )
V(K )

�
V(� T)
V(T)

= 6 for any convex polygo-

nal body K in R2 with 4 sides.

Now, supposing that
V(� K )
V(K )

� 6 for any convex polygonal bodyK in R2 with n

sides, we will prove that
V(� Q)
V(Q)

� 6 (or, equivalently, that V(� Q) � 6 � V(Q)) for

any convex bodyQ with n + 1 sides in R2.

Figure 3.10: Q
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As it is shown in Figure 3.10, the polygonal bodyQ can be divided into 2 convex

bodies,K and T, so V(Q) = V(K ) + V(T).

We have started with Q having n + 1 sides;a1; : : : ; an+1 .

Now, from the way we have cutQ, the convex polygonal bodyK has n sides;

a1; : : : ; an� 1; d. Thus, due to our assumption,
V(� K )
V(K )

� 6 and, consequently,V(� K ) �

6 � V(K )

Furthermore, T has 3 sides:d; an ; an+1 and, as shown in Section 3.1,
V(� T)
V(T)

= 6, or

V(� T) = 6 � V(T).

Recall that V(� Q) is equal to the sum of the area of the parallelograms formed

by the 2-combinations of the lengths of the sides ofQ. Denote by V(ij ) the area of

the parallelogram formed by the 2 sidesi and j , where i and j are any of the sides

shown in Figure 3.10. From the additivity property of the area, we thus obtain the

following equality:

V(� Q) = V(� K ) � V(da1) � : : :� V (dan� 1)+ V(� T) � V(dan ) � V(dan+1 )+ V(ana1)+

: : : + V(anan� 1) + V(an+1 a1) + : : : + V(an+1 an ).

Replacing our above result inV(� Q) � 6 � V(Q), we obtain the equivalent claim:

V(� K ) � V(da1) � : : : � V (dan� 1) + V(� T) � V(dan ) � V(dan+1 ) + V(ana1) + : : : +

V(anan� 1) + V(an+1 a1) + : : : + V(an+1 an ) � 6 � V(K ) + 6 � V(T).

SinceV(� K ) � 6 � V(K ) and V(� T) = 6 � V(T), this latter inequality becomes:

V(ana1) + : : : + V(anan� 1) + V(an+1 a1) + : : : + V(an+1 an ) � V(da1) + : : : + V(dan+1 ).

Note that V(da1) = V(ana1)+ V(an+1 a1) : : : V(dan� 1) = V(anan� 1)+ V(an+1 an� 1)

and V(dan ) = V(an+1 an ) as these parallelograms share the same base and same

height.

Thus, our inequality is equivalent now to

0 � V(dan+1 )

which is always true.
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Due to Corollary 1.3.1, Proposition 3.3.1 can be extended toarbitrary convex

bodies inR2:

Corollary 3.3.1. Let Q � R2 be a compact convex set with nonempty interior. Then,

Q satis�es Petty's conjecture in R2, namely

V(� Q)
V(Q)

�
V(� T)
V(T)

; 8 T triangle � R2: (3.6)
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Chapter 4

Petty's Conjecture in R3

4.1 Calculation of the Upper Bound (Tetrahedron)

Proposition 4.1.1. Let T � R3 be an arbitrary, non-degenerate tetrahedron. Then,

V(� T)
V 2(T)

= 18: (4.1)

Proof. We will prove Proposition 4.1.1 using a right tetrahedronT that has 3 faces

as right isosceles triangles. Consequently, the value of Petty's functional would be

the same for any tetrahedron since Petty's functional is a�ne invariant as we have

showed earlier.

Thus let T be the tetrahedron with the following vertices as in Figure 4.1:

A = (0 ; 0; 0)

B = (1 ; 0; 0)

C = (0 ; 1; 0)

D = (0 ; 0; 1).

In order to calculate V(� T), we �rst need the unit normals to each face. The di-

rections of the normals to the faces of this tetrahedron are the same for any right

tetrahedron T that has 3 faces as right isosceles triangles.
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Now, we calculate the normals:

� Normal to the triangle ABC :

(A � B) = ( � 1; 0; 0) and (A � C) = (0 ; � 1; 0)

Thus, the normal to the faceABC is (A � B) � (A � C) = (0 ; 0; 1).

� Normal to the triangle ADC :

(A � D) = (0 ; 0; � 1) and (A � C) = (0 ; � 1; 0)

Thus, the normal to the faceACD is (A � D) � (A � C) = (1 ; 0; 0).

� Normal to the triangle ADB :

(A � B) = ( � 1; 0; 0) and (A � D) = ( ; 0; � 1)

Thus, the normal to the faceABD is (A � B) � (A � D) = (0 ; 1; 0).

� Normal to the triangle DBC :

(B � D) = (1 ; 0; � 1) and (B � C) = (1 ; � 1; 0)

Thus, the normal to the faceBCD is (B � D) � (B � C) = (1 ; 1; 1).

This last vector is the only one that is not normalized to haveunit length one.

Thus, we do so and after normalizing it, we obtain the unit normal to the face

BCD as
(1; 1; 1)

(12 + 12 + 12)1=2
=

(1; 1; 1)
31=2

.

Thus, for any such tetrahedron where

length of AB = length of AC = length of AD = a; (4.2)

we haveA =
a2

2
= Area( ABC ) = Area( ABD ) = Area( ACD ).

Additionally, Area( BCD ) =
31=2

4
� (a � 21=2)2 = a2 �

31=2

2
= 31=2 � A, sinceBCD is an

equilateral triangle with sidea.

Thus, for calculatingV(� T), we will use the following vectors, called area vectors:

� v1 = ( A; 0; 0);
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� v2 = (0 ; A; 0);

� v3 = (0 ; 0; A);

� v4 =
(1; 1; 1)

31=2
� 31=2 � A = ( A; A; A ).

Figure 4.1: Right TetrahedronT

Recall that V(� T) is equal to the sum of volumes of the parallelepipeds formedby

the 3-combination of the area vectorsv1, v2, v3 and v4, volumes which we list below:

� Volume of the parallelepiped formed byv1, v2 and v3 is V1= kv1, v2, v3k= A3.
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� Volume of the parallelepiped formed byv1, v2 and v4 is V2= kv1, v2, v4k= A3.

� Volume of the parallelepiped formed byv1, v3 and v4 is V3= kv1, v3, v4k= A3.

� Volume of the parallelepiped formed byv2, v3 and v4 is V4= kv2, v3, v4k= A3.

We have denoted byku; v; wk the absolute value of the determinant whose rows

are the coordinates of the vectorsu; v; w in R3.

Therefore,V(� T) = V1 + V2 + V3 + V4 = 4 � A3

On the other hand, V(T) =
1
6

� a3 =
2 � 21=2

6
� A3=2 and, consequently,V(T)2=

8
36

� A3.

Finally, substituting the above values in equation (4.1), weget

V(� T)
V 2(T)

=
4 � A3

8
36

� A3
= 18; (4.3)

which concludes the proof.

4.2 Validation of Petty's Conjecture for K a Par-

allelepiped

Proposition 4.2.1. Let K � R3 be an arbitrary parallelepiped. ThenK satis�es

Petty's conjecture in R3, i.e.

V(� K )
V 2(K )

�
V(� T)
V 2(T)

; (4.4)

whereT � R3 is a tetrahedron.

Proof. We have calculated in Section 4:1 that the value of Petty's functional is

V(� T)
V 2(T)

= 18; (4.5)
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for any tetrahedron T � R3.

Thus, given any parallelepipedK , it su�ces to prove that

V(� K )
V 2(K )

� 18: (4.6)

Recall that V(� K ) is equal to the sum of areas of the parallelepipeds formed by

the 3-combination of the 6 vectors that are perpendicular toeach face ofK and that

have a length equal to the area of the correspondent face. Since a parallelepiped has

pairs of parallel faces with same area, we have 3 di�erent area vectors, each of which

is repeated twice. Thus, we de�neV(� K 0), the area of the parallelepiped formed by

the combination of the 3 vectors as shown in Figure 4.2. Consequently, since we are

in R3,

V (� K ) = V(� K 0) � 23: (4.7)

Figure 4.2: ParallelepipedK
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In order to prove equation (4.6), we will writeV(� K ) in terms of V(K ).

First, we note the di�erence in volume between a parallelepiped M and another

parallelepiped ~M that is formed by changing only the length of the three vectors that

form M , thus multiply each vector by a positive constant� , � and, respectively,
 as

shown in Figure 4.3.

Figure 4.3: The parallelepipedsM and ~M

We get, directly from the volume formula as determinant, that

V( ~M ) = 2 3 � � � � � 
 � V (M ): (4.8)

The body � K 0 is the parallelepiped presented in Figure 4.4. From the de�nition

of projection bodies in Section 1.3, and the fact thatC � h2, A � h5 and B � h6, are

the areas of the faces ofK (h2; h5; h6 are chosen accordingly and presented in Figure

4.2), we have the following results:
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Figure 4.4:

length of vector 1 = C � h2 (4.9)

length of vector 2 = A � h5 (4.10)

length of vector 3 = B � h6: (4.11)

Consequently, we �nd� , � and 
 in order to write V(� K 0) in terms of V(K ) and,

further, V(� K ) in terms of V(K ).

We notice that � K 0 and K only di�er by the lengths of the 3 vectors that form

the two parallelepipeds (the projection has conserved the angles between the normals

to the faces).

Now let �; � and 
 be such that,

length of vector 1 = � � B (4.12)
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length of vector 2 = � � C (4.13)

length of vector 3 = 
 � A: (4.14)

Using equations (4.9) to (4.14), we get,

� =
C � h2

B
(4.15)

� =
A � h5

C
(4.16)


 =
B � h6

A
: (4.17)

Therefore, sinceV(� K 0) = � � � � 
 � V (K ) and V(� K ) = 2 3 � V (� K 0), we have:

V(� K ) = 2 3 � � � � � 
 �V (K ) = 2 3 �
C � h2

B
�
A � h5

C
�
B � h6

A
�V(K ) =2 3 �h2 �h5 �h6 �V (K ):

Finally, we will prove that h2 . h5 . h6 = V( K ).

Proof. To prove the above claim, it is enough to show thatV(K ) is equal to the

volume of the rectangular box (a box with right dihedral angles) formed by the sides

h2, h5 and h6.

Let K 1 be same parallelepiped asK , but with the side C replaced byh6. Then,

V(K )=V( K 1). Let K 2 be same parallelepiped asK 1 with side B replaced byh2.

Then, V(K ) = V(K 1) = V(K 2). Thirdly, let K 3 be same parallelepiped asK 2 with

sideA replaced byh5. Then, V(K ) = V(K 1) = V(K 2) = V(K 3) = h2 � h5 � h6.

We now obtain that
V(� K )
V 2(K )

=
23:V 2(K )

V 2(K )
= 23; (4.18)

which con�rms that Petty's Conjecture is satis�ed for K :
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23 =
V(� K )
V 2(K )

�
V(� T)
V 2(T)

= 18: (4.19)
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Chapter 5

The Cut-o� Vertex Method and

Petty's Functional

5.1 The problem in R2

Proposition 5.1.1. Let T be a triangle inR2 and let Q be a quadrilateral formed by

cutting o� one of the vertices ofT0, a triangle in R2. Then

V(� Q)
V(Q)

�
V(� T)
V(T)

: (5.1)

Proof. We have calculated in Section 3:1 that, for any triangle T � R2, the value of

Petty's functional is

V(� T)
V(T)

= 6: (5.2)

Thus, it su�ces to prove that

V(� Q)
V(Q)

� 6: (5.3)

We thus calculateV(Q) and V(� Q). Note that T and Q are illustrated in Figure
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5.1.

Figure 5.1: The polygonsT and Q

Given the a�ne invariance of Petty's functional, we may choose to cut o�
� � 1

�
,

� � 1, of the two sides ofT attached to one of the vertices. This means that our new

sided is parallel to the basec and that the measures ofQ are d; c;
a
�

and
b
�

.

Consequently,V(T) =
c � h

2
= m.

Furthermore, from the trapezoid's area formula, we have:

V(Q) =
c + d

2
�

h
�

=
h � c
2 � �

+
d � h
2 � �

=
m
�

+
d � h
2 � �

.

Note that � Q is formed by 6 parallelograms, as
� 4

2

�
= 6:

Parallelogram 1 is formed byc and d and, since the two sides are parallel, we have

V(P1) = 0.

Parallelogram 2 is formed by
a
�

and c and soV(P2) =
2 � m

�
.

Parallelogram 3 is formed by
b
�

and c and soV(P3) =
2 � m

�
.

Parallelogram 4 is formed by
a
�

and
b
�

and soV(P4) =
2 � m
� 2

.

Parallelogram 5 is formed by
a
�

and d and soV(P5) =
h
�

� d.
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Parallelogram 6 is formed by
b
�

and d and soV(P6) =
h
�

� d.

Thus,

V(� Q) = V(P1) + V(P2) + V(P3) + V(P4) + V(P5) + V(P6)

= 4 �
m
�

+
2 � m
� 2

+
2 � h � d

�
:

We substitute our results in equation (5.3) and obtain

4 � m
�

+
2 � m
� 2

+
2 � h � d

�
�

6 � m
�

+
6 � d � h

2 � �
(5.4)

2 � m
� 2

+
2 � h � d

�
�

2 � m
�

+
3 � d � h

�
(5.5)

2 � m
�

+ 2 � h � d � 2 � m + 3 � d � h (5.6)

2 � m
�

� 2 � m + d � h: (5.7)

Knowing that
2 � m

�
� 2 � m since � � 1 and that d � h � 0, equation (5.7) is

satis�ed and so is then equation (5.1).

5.2 An example of the problem in R3

In this section, we will give an example that by adding new vertices to a convex

polytope in R3, Petty's functional does not necessarily decrease. Speci�cally, we

show that
V(� Q)
V 2(Q)

>
V(� P)
V 2(P)

(5.8)

whereP is a convex polytope inR3 and Q is P cut by a hyperplane eliminating one

vertex, but introducing this way more vertices.

Example 5.2.1. Let P be a convex body inR3 that is the union ofC1 and C2 where

C1 is a cube andC2 is a regular pyramid with a base square and whose lateral faces
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Figure 5.2: P and Q

are isosceles triangles. Now, we cutP by the vertex ofC2 by a plane parallel to its

base and we call itQ. We illustrate the convex bodies considered in Figure 5.2.

Let h0 be the height ofC2. In order to form Q, we cut o� with a parallel plane to

the base ofC2 an amount (1 � � ) of h0, 0 < � < 1, so that �h 0 is left and the same

proportion goes to every side that is attached to the vertex that is cut. Thus we obtain

the following results:

V(P) = V(C1) + V(C2) and V(Q) = V(C1) + (1 � (1 � � )3)V(C2).

Let a be the length of each side of the cubeC1 and b be the length of the side of the

triangle that is formed by the projection of the tetrahedronC2 on thexz-plane. Let � be

the angle between each face ofC2 and the base and let� be such thatV(C2) = �V (C1),

then:

� =
tan �

6
.
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Proof. In Figure 5.3, we see the projection of the tetrahedronC2 on the xz-plane

assuming that the origin is placed at the center of symmetry of the base ofC2.

Figure 5.3: The projection ofC2 on the xz-plane

We have that sin � =
h0

b
and cos � =

a
2 � b

. We substitute the previous two

equations inV(C2) =
a2 � h0

3
and we obtain

V(C2) =
a2 � b� sin�

3
=

a3 � sin�
6 � cos�

=
a3 � tan �

6
= V(C1) �

tan �
6

: (5.9)

Note that V(C1) = a3.

Thus, now we have,

V(P) =
�

1 +
tan �

6

�
V(C1) and V(Q) =

�
1 +

tan �
6

� (1 � (1 � � )3)
�

V(C1).

Therefore, the previously conjectured inequality

V(� Q)
V 2(Q)

�
V(� P)
V 2(P)

is equivalent to V(� Q) � V 2(P) � V(� P) � V 2(Q) (5.10)
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and becomes

V(� Q) �
�

1 +
tan �

6

� 2

� V (� P) �
�

1 +
tan �

6
� (1 � (1 � � )3)

� 2

: (5.11)

We now calculateV(� P) and V(� Q). As shown in Figure 5.2 the vectors1; : : : ; 9 are

the vectors that are perpendicular to each face ofP and that have length equal to the

area of the corresponding face. LetV(ijk ) represent the volume of the parallelepiped

formed by the vectorsi , j and k where the vectorsi; j; k can be any of the indices

1; : : : ; 9.

Recall that V(� P) is equal to sum of all volumes of parallelepipeds that can be

formed by the3-combination of vectors1; : : : ; 9. Consequently,V(� P) is the sum of

the following volumes that we divided into sets:

Set X : V(124), V(125), V(134), V(135). Let VX be such that all the volumes in this

set are equal toVX , thus they all are equal to each other.

Set Y1: V (127), V(129), V(137), V(139), V(146), V(148), V(156), V(158). Let VY1

be such that all the volumes in this set are equal toVY1 .

SetZ1: V (167), V(169), V(178), V(189). Let VZ1 be such that all the volumes in this

set are equal toVZ1 .

Set Y: V(246), V(247), V(248), V(249), V(256), V(257), V(258), V(259), V(346),

V(347), V(348), V(349), V(356), V(357), V(358), V(359). Let VY be such that all

the volumes in this set are equal toVY .

Set Z : V(267), V(269), V(278), V(279), V(289), V(367), V(369), V(378), V(379),

V(389), V(467), V(468), V(469),V(478),V(489), V(567), V(568), V(569), V(578),

V(589). Let VZ be such that all the volumes in this set are equal toVZ .

Set W: V(678), V(679), V(689), V(789). Let VW be such that all the volumes in this

set are equal toVW .
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Notice that V(ijk )=0 in the following cases:

Case 1: ijk is a 3� combination of vectors1; 4; 5; 7; 9 because these vectors are in the

same plane.

Case 2: ijk is a 3� combination of vectors1; 2; 3; 6; 8 because these vectors are in the

same plane also.

Case 4: ijk consists of the vectors4 and 5 and any other third vector (because the

vectors4 and 5 are in the same direction so the height of the parallelepiped is0).

Case 5: ijk consists of the vectors1 and 10 and any other third vector (because the

vectors 1 and 10 are in the same direction so the height of the parallelepiped is0)

where vector10 is the corresponding vector to the face that is formed by cuttingP in

order to form Q.

Case 6: ijk consists of the vectors2 and 3 and any other third vector (because the

vectors2 and 3 are in the same direction so the height of the parallelepiped is0).

Now, knowing that the volume is the absolute value of the determinant, we will

calculateVX , VY1 , VZ1 , VY , VZ and VW :

VX = a2 � a2 � a2= a6;

VY1 =

�
�
�
�
�
�
�
�
�
�

0 0 � a2

0 a2 0

h1 0 h2

�
�
�
�
�
�
�
�
�
�

= a4 � h1;

VZ1 =

�
�
�
�
�
�
�
�
�
�

0 0 � a2

0 h1 h2

� h1 0 h2

�
�
�
�
�
�
�
�
�
�

= a2 � h2
1;

VY =

�
�
�
�
�
�
�
�
�
�

0 � a2 0

a2 0 0

0 h1 h2

�
�
�
�
�
�
�
�
�
�

= a4 � h2;
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VZ =

�
�
�
�
�
�
�
�
�
�

0 a2 0

0 h1 h2

h1 0 h2

�
�
�
�
�
�
�
�
�
�

= a2 � h1 � h2;

VW =

�
�
�
�
�
�
�
�
�
�

0 h1 h2

h1 0 h2

0 h1 h2

�
�
�
�
�
�
�
�
�
�

= 2 � h2
1 � h2,

whereh1 is the height of vectors6; 7; 8 and 9 projected on thexy-plane andh2 is the

height of vectors6; 7; 8 and 9 projected on thez-axis as shown in Figure 5.4.

Figure 5.4: vectors 6; 7; 8; 9

Now, we will expressh1 and h2 in terms of a and � :

length of vector6 = length of vector7 = length of vector8 = length of vector9 =
a � b

2
whereb is the height of the triangular faces ofP.

Thus, cos� =
2 � h1

a � b
and sin� =

2 � h2

a � b
.
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Consequently,h1 =
a � b� cos�

2
and h2 =

a � b� sin�
2

.

Since cos� =
a

2 � b
, we have

h1 =
a2

4
and h2 =

a2

4
� tan �:

Therefore,

V(� P) = V(SetX ) + V(SetY1) + V(SetZ1) + V(SetY) + V(SetZ) + V(SetW)

= 4 � VX + 8 � VY1 + 4 � VZ1 + 16 � VY + 20 � VZ + 4 � VW

= 4 � a6 + 8 �
a6

4
+ 4 �

a6

16
+ 16 �

a6 � tan �
4

+ 20 �
a6 � tan �

16
+ 4 �

a6 � tan �
32

= a6 � (
25
4

+
43
8

� tan � ): (5.12)

The projection body� Q is formed by the vectors1; 2; 3; 4; 5; 60; 70; 80; 90; 10 where

vectors 1; 2; 3; 4; 5 are same for � P and � Q and vectors60; 70; 80; 90; 10 have same

direction as vectors6; 7; 8; 9; 1 respectively, but with di�erent magnitudes.V(� Q) is

the sum of the following volumes that we divided into sets:

Set X 0: V (124), V(125), V(134), V(135).

Set Y 0
1: V (1270), V(1290), V(1370), V(1390), V(1460), V(1480), V(1560), V(1580).

Set Z 0
1: V (16070), V(16090), V(17080), V(18090).

Set Y 0: V (2460), V(2470), V(2480), V(2490), V(2560), V(2570), V(2580), V(2590),

V(3460), V(3470), V(3480), V(3490), V(3560), V(3570), V(3580), V(3590).

Set Z 0: V (26070), V(26090), V(27080), V(27090), V(28090), V(36070), V(36090), V(37080),

V(37090), V(38090), V(46070), V(46080), V(46090),V(47080),V(48090), V(56070), V(56080),

V(56090), V(57080), V(58090).

Set W 0: V (607080), V(607090), V(608090), V(708090).

Set X 00: V (10 2 4), V(10 2 5), V(10 3 4), V(10 3 5), or equivalently,V(1024),

V(1025), V(1034), V(1035).

Set Y 00
1 : V (10 2 70), V(10 2 90), V(10 3 70), V(10 3 90), V(10 4 60),
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V(10 4 80), V(10 5 60), V(10 5 80), or equivalently,V(10270), V(10290), V(10370),

V(10390), V(10460), V(10480), V(10560), V(10580) .

Set Z 00
1 : V (10 60 70), V(10 60 90), V(1 70 80), V(10 80 90), or equivalently,

V(106070), V(106090), V(107080), V(108090).

As vectors6 and 60, 7 and 70, 8 and 80, 9 and 90, 1 and 10 or 1 and 10 have the

same direction as each other, but di�erent length because of the cut, we have:

length of60 = (1 � (1 � � )2) length of6,

length of70 = (1 � (1 � � )2) length of7,

length of80 = (1 � (1 � � )2) length of8,

length of90 = (1 � (1 � � )2) length of9,

length of10 = (1 � � )2 length of1.

We get the later result from Thal�es theorem after projectionC2 on the xz-plane and

then by calculating the area of the square.

Therefore, we can write the value associated to each of the sets above as the fol-

lows:

Set X 0= Set X = 4 � VX

Set Y 0
1= (1 � (1 � � )2) Set Y1= 8 � (1 � (1 � � )2) � VY1

Set Z 0
1= (1 � (1 � � )2)2 Set Z1= 4 � (1 � (1 � � )2)2 � VZ1

Set Y 0= (1 � (1 � � )2) Set Y= 16� (1 � (1 � � )2) � VY

Set Z 0= (1 � (1 � � )2)2 Set Z= 20� (1 � (1 � � )2)2 � VZ

Set W 0= (1 � (1 � � )2)3 Set W= 4 � (1 � (1 � � )2)3 � VW

Set X 00= (1 � � )2 Set X = 4(1 � � )2VX

Set Y 00
1 = (1 � � )2(1 � (1 � � )2) Set Y1= 8(1 � � )2(1 � (1 � � )2)VY1

Set Z 00
1 = (1 � � )2(1 � (1 � � )2)2 Set Z1= 4(1 � � )2(1 � (1 � � )2)2VZ1 .

Therefore,
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V(� Q) = V(Set X 0) + V(Set Y0
1) + V(Set Z0

1) + V(Set Y0) + V(Set Z0) + V(Set W0)

+ V(Set X 00) + V(Set Y00
1 ) + V(Set Z00

1 )

= 4 � VX + 8 � (1 � (1 � � )2) � VY1 + 4 � (1 � (1 � � )2)2 � VZ1

+ 16 � (1 � (1 � � )2) � VY + 20 � (1 � (1 � � )2)2 � VZ + 4 � (1 � (1 � � )2)3 � VW

+ 4(1 � � )2VX + 8(1 � � )2(1 � (1 � � )2)VY1 + 4(1 � � )2(1 � (1 � � )2)2VZ1

= 4 � a6 + 8 � (1 � (1 � � )2) �
a6

4
+ 4 � (1 � (1 � � )2)2 �

a6

16

+ 16 � (1 � (1 � � )2) �
a6 � tan �

4
+ 20 � (1 � (1 � � )2)2 �

a6 � tan �
16

+ 4 � (1 � (1 � � )2)3 �
a6 � tan �

32
+ 4(1 � � )2a6

+ 8(1 � � )2(1 � (1 � � )2)
a6

4

+ 4(1 � � )2(1 � (1 � � )2)2 a6

16

= 4 � a6 + 2 � (1 � (1 � � )2) � a6 + (1 � (1 � � )2)2 �
a6

4

+ 4 � (1 � (1 � � )2) � a6 � tan � + 5 � (1 � (1 � � )2)2 �
a6 � tan �

4

+ (1 � (1 � � )2)3 �
a6 � tan �

8
+ 4(1 � � )2a6

+ 2(1 � � )2(1 � (1 � � )2) � a6

+ (1 � � )2(1 � (1 � � )2)2 a6

4
: (5.13)

Plugging in our previous results in equation (5.11) and, simplifying both sides by

a6, we get
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[ 4 + 2 � (1 � (1 � � )2) + (1 � (1 � � )2)2 �
1
4

+ 4 � (1 � (1 � � )2) � tan � + 5 � (1 � (1 � � )2)2 �
tan �

4

+ (1 � (1 � � )2)3 �
tan �

8
+ 4(1 � � )2

+ 2(1 � � )2(1 � (1 � � )2)

+ (1 � � )2(1 � (1 � � )2)2 1
4

] �
�

1 +
tan �

6

� 2

� (
25
4

+
43
8

� tan � ) �
�

1 +
tan �

6
� (1 � (1 � � )3)

� 2

: (5.14)

Denote byf (�; � ) the left-hand side of the previous inequality and byg(�; � ) its

right-hand side. Note that these are continuous functions on(0; 1) � (0; �= 2) for any

0 < � < 1 and 0 < � < �= 2.

We expandf (�; � ) � g(�; � ) using Wolfram Alpha in order to make the calculation

easier. We get

f (�; � ) � g(�; � ) =

[� 6 �
2 � tan �

8
+ � 5 �

3 tan � � 6
4

+ � 4 �
6 � tan �

4
+ � 3 � (4 � 4 tan � )

+ � 2 � (tan � � 6) + 8� tan � + 8] � (1 +
tan �

6
)2

� (
25
4

+
43
8

� tan � ) � (1 +
tan �

6
� (� 3 � 3 � � 2 + 3 � � ))2: (5.15)

We solve for� the equationf (�; � ) � g(�; � ) = 0 using Wolfram Alpha and we

get a unique solution that is� = 1 which is, a priori, known because in this case we

did not cut any subset fromP and consequentlyP = Q and P(P) = P(Q). Thus, for

� = 1, inequality (5.14) is satis�ed for any � .

Using the same software, we solvef (�; � ) � g(�; � ) � 0 when � 2 [0; 1] and

� 2 [0; �
2 ] and we get the following solution:
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� � 1 = 0 and 0:684611< tan � < 11:5029which is equivalent to34:395974245� <

� < 85:03152046� (in degrees).

� � 2 = 0:321719and 0:660805< tan � which is equivalent to33:456953714� < �

(in degrees).

For 0 � � � 1, only for � 1 and � 2, the inequality is satis�ed for sometan � that does

not depend on� . For 0 < � < 0:321719and 0:321719< � < 1, tan � depends on�

for the inequality to be satis�ed. We provide below some cases:

� Example 1: Let � = 0:1, f (�; � ) � g(�; � ) � 0 is satis�ed when 0:681372<

tan � < 14:8048or consequently34:269407868� < � < 86:13561013� .

� Example 2: Let � = 0:3, f (�; � ) � g(�; � ) � 0 is satis�ed when 0:663332<

tan � < 151:812 or consequently33:557565103� < � < 89:62263127� .

� Example 3: Let� = 0:4, f (�; � ) � g(�; � ) � 0 is satis�ed when0:651013< tan �

or consequently33:064649512� < � .

� Example 4: Let� = 0:5, f (�; � ) � g(�; � ) � 0 is satis�ed when0:637098< tan �

or consequently32:50114552� < � .

� Example 5: Let� = 0:7, f (�; � ) � g(�; � ) � 0 is satis�ed when0:604926< tan �

or consequently31:170852112� < � .

� Example 6: Let� = 0:9, f (�; � ) � g(�; � ) � 0 is satis�ed when0:56687< tan �

or consequently29:547605382� < � .

We notice that as� % 1 the range of� for which f (�; � ) � g(�; � ) � 0 is satis�ed

increases.

For instance, if we plug in� =
�
4

in the inequality, the conjecture will be satis�ed

for any 0 � � � 1 and 0 � � �
�
2

.

Furthermore, if we plug in � =
�
4

in the inequality, we will get
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[ 4 + 2 � (1 � (1 � � )2) + (1 � (1 � � )2)2 �
1
4

+ 4 � (1 � (1 � � )2) + 5 � (1 � (1 � � )2)2 �
1
4

+ (1 � (1 � � )2)3 �
1
8

+ 4(1 � � )2

+ 2(1 � � )2(1 � (1 � � )2)

+ (1 � � )2(1 � (1 � � )2)2 1
4

] �
�

1 +
1
6

� 2

� (
25
4

+
43
8

) �
�

1 +
1
6

� (1 � (1 � � )3)
� 2

: (5.16)

which can be reduced to:

[
� 6

8
+

� 3� 5

4
+

5� 4

4
� 5 � � 2 + 8� + 8] � (

7
6

)2 (5.17)

� (
93
8

) � (1 +
1
6

� (1 � (1 � � )3))2:

Using Wolfram Alpha, the above inequality is satis�ed for any� < 1 and, in

fact, � > 1. Also, since we know that for� = 1 we have equality betweenf (�; � )

and g(�; � ), the monotonicity of Petty's functional is satis�ed, as in the planar case,

when� =
�
4

.

However, we will present now a counter example for the speci�c case when� = 0:5,

a = 1 and � =
�
6

. In this case, after substituting the corresponding values, as above,

in
V(� Q)
V 2(Q)

�
V(� P)
V 2(P)

; (5.18)

we get,
1805
256

�
25
4

(5.19)

which is false.

Thus, we have proved:
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Theorem 5.2.1. There exists a polytopeP in R3, and there exists an a�ne hyper-

plane H � R3, such that P \ H + contains exactly one vertex ofP and the convex

bodyQ = P \ H � has a larger Petty ratio than that ofP:

V(� Q)
V 2(Q)

�
V(� P)
V 2(P)

: (5.20)

Thus, the cut-o� method does not always decrease the value ofPetty's functional

and hence, unlike the planar case, cannot be used to prove Petty's conjecture in R3.

2
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