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Abstract 

This thesis builds on a growing body of research that seeks to understand how the built-in 

environmental attributes of the road network influence pedestrian route choice. Better understanding 

of these factors can help promotion of walkability. The thesis uses a high-quality GPS dataset of 

pedestrian trips recorded between October 17 to November 21, 2016, through the MTL Trajet app 

developed at Concordia University. Trip route characteristics are obtained by matching the GPS traces 

to a detailed GIS network dataset of road attributes. Additionally, built-in environment factors were 

captured by scenery quantification and micro-level land use analysis using Google Places API. Scenery 

was quantified by employing computer vision and machine learning techniques, with help of Google 

Street View API and deep learning frameworks. A path-size multinomial logit model is used to assess 

the utility of road and user features. Additionally, to improve prediction accuracy, a set of supervised 

learning classification techniques, including decision tree, random forest and gradient boosting tree 

were examined. The analysis of the results shows that the variation in scenery has a significant impact 

on pedestrians route choice. Additionally, machine learning classification techniques showed 

significant improvement of the accuracy ratio in comparison to discrete choice modeling framework.  
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1 Introduction 

1.1.1 Thesis Overview 

This thesis seeks to better understand the built environment factors and personal characteristics that 

influence pedestrian route choice in Montreal. The built environment is characterised by adjacent land 

use and scenery and their effects are investigated. The thesis analyses route trip data collected with a 

smartphone application and uses discrete choice models and supervised classification techniques to 

identify contributing factors and the best model in terms of prediction accuracy.  

The objectives of this thesis are: 

• To measure the effect of built-in environment factors, especially scenery, in a quantitative 

systematic approach in revealed preference setting by discrete choice modelling;   

• To investigate the improvement of prediction accuracy of pedestrian route choice model in 

frameworks other than traditional multinomial logit;  

• To investigate land uses in both macro and micro level and its effect on pedestrian route 

choice prediction accuracy.  

1.1.2 Thesis Motivation 

Pedestrian route choice is one of the new merging areas of transportation planning due to 

sustainable development organizing principles. Globally, huge increases in urbanization have 

caused a need for redefining urban planning principles. To address this issue, new urban planning 

theories, such as the New Urbanism have emerged in the literature (Leccese and McCormick 

2000). New Urbanism is an urban design movement that supports the promotion of 

environmentally friendly habits. This end is achieved by multiple principles, including promotion 

of compact, pedestrian-friendly, and mixed-use neighborhoods (Leccese and McCormick 2000). 

Therefore; there is an understanding among researchers that facilitating walking in urban 

agglomerations is a significant task that leads to sustainable development (Talen and Koschinsky 

2013). Quantifying factors that affect pedestrian perceptions of walking leads to understanding 

and promoting walking and walkability. This can be investigated by analyzing when people prefer 
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to walk instead of using other modes of transportation (mode choice) or analyzing factors affecting 

route choice (pedestrian route choice). Promoting walkability was one of the motivations to 

investigate pedestrian route choice.  

Another motivation for studying pedestrian route choice is lack of thorough representation of 

walking trips in transportation demand models. Modeling route choice behavior is important to 

forecast traveler behavior, to predict future traffic assignment on transportation networks, to 

understand traveler reaction and adaptation to facilities and information, and to evaluate traveler 

perceptions of route characteristics (Prato 2009). To develop a model, it is important to first 

identify important factors and then find the modeling framework that has predictive power and 

interpretability.  Pedestrian route choice models started to be addressed more extensively fairly 

recently (Broach and Dill 2015; Hintaran 2016; Hoogendoorn and Bovy 2004; Lue 2017). These 

studies have focused mostly on the impact of physical and geometrical factors of routes (e.g. the 

length of path, the gradient, number of turns, etc.). However, they mainly overlook other relevant 

factors that stated preference studies suggest that pedestrian consider attractive for a path. For 

example, it is stated that scenery plays an important role especially in recreational trips (Bovy and 

Stern 2012). These factors are mainly overlooked in studies due to the complexity of quantifying 

pedestrian path surroundings with a model-based approach or lack of data.  

Final motivation of this study was to model pedestrian route choice in a revealed preference setting 

rather than stated. It is shown in the literature that people may behave in a different way than what 

they state (Wardman 1988).  There are few studies shown in the literature that suggest using 

revealed route choice (Hintaran 2016; Lue and Miller 2018). This study was conducted to model 

pedestrian route choice in a revealed setting and investigate overlooked relevant factors with a 

predictive model.  

1.1.3 Thesis Approach  

This study used revealed preference Global Positioning System (GPS) data collected by a 

smartphone-based travel survey in Montreal to model pedestrian route choice via discrete choice 

modeling and machine learning supervised classification techniques. This data is further enhanced 

by adding geographical and land use information. Additionally, the aesthetic context of pedestrian 

route choice (i.e. scenery), is deeply investigated in a model-based, quantitative manner, by 



3 
 

employing recent developments in image processing (i.e. deep learning and machine learning). 

The data is analysed using both discrete choice modeling and supervised classification to analyze 

variables affecting route choice and additionally, acquire the highest prediction accuracy possible. The 

thesis involves the following steps: 

• Build a network data set of important characteristics for pedestrians 

• Convert the GPS traces into trips and match them to the network and develop a series of 

characteristics about the trips as well as the users;  

• Create a choice set of feasible alternative routes;  

• Use discrete choice modeling to estimate the relative utility of each road attribute on route 

choice.  

• Use supervised learning models with the same variables as used in the discrete choice modeling 

setting to compare prediction accuracy of the different approaches. 

The remaining sections of the thesis include the following: the literature review describes a 

background on past work and models related to this topic. The data collection and processing 

section describes the network, street attributes and smart-phone-based travel survey. The 

methodology describes the methods. Results chapter discusses the results obtained by the model.  
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2 Literature Review 

This chapter reviews the literature on pedestrian route choice, including proposed route choice 

modeling methods and the findings of previous pedestrian route choice studies. The first section 

provides an overview of choice models, pedestrian route choice and factors that have been found to 

influence pedestrian route choice. Additionally, machine learning frameworks are introduced and their 

previous application in transportation and route choice problem is discussed. 

2.1 Choice models 

Discrete choice models are designed to model behavioral processes that lead to a subject’s choice. 

There are many different approaches to capture human choice behavior, and they range from 

deterministic theories in economics to probabilistic or stochastic models in psychology. In the 

psychological views of decision making, alternatives are viewed as a set of known aspects. The 

randomness in choice comes from the decision rule. On the other hand, the economic view of 

decision making is based on the notion of precedence of desirability over availability. The 

expressed preferences are functions of the consumer’s taste template, experience and personal 

characteristics. The economic approach, based on the theory of Random Utility Maximization, has 

been used in transportation as well, (Ben-Akiva and Lerman 1985; Cascetta 2001; McFadden 

1986; Simon 1959).  

Discrete choice models (DCM) assume that each alternative in a choice experiment can be 

associated with a latent quantity, a utility. The utility of each alternative is based on multiple 

aspects (Schüssler 2010) , including: 

1- The attributes of the alternative 

2- Individual preferences captured via socio-economic proxies 

3- The choice situation and its similarities with other available alternatives 

Based on the concept of utility-maximization, the individual is assumed to select the alternative 

with the highest utility, given constraints from his or her activity agenda and risks involved in their 

decisions.  
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Representing route choice behavior is modeling the choice of a given route within a set of 

alternative routes. A route choice model associates a probability to each alternative, and the one 

with the highest probability is considered chosen (Bierlaire and Frejinger 2008).  

 

There are four elements in each discrete choice model: the choice set, attributes or factors of each 

member of choice set (alternatives), socio-economic factors to describe the decision-maker and 

finally, a random term, capturing unobserved error and uncertainties of the choice process 

(Antonini 2005). In the route choice context, the individual choosing a route is the decision-maker, 

the choice set is the list of plausible routes, alternative attributes to quantify characteristic of each 

alternative and finally, socio-economic attributes describe the decision-maker quantitatively. The 

random term is presented in random utility maximization theory to identify unobserved alternative 

attributes, unobserved socio-economic characteristics, measurements errors and instrumental 

variables. For each alternative in the choice set, a utility function consists of two components. 

These components are V, deterministic part of utility and ɛ representing the random part of the 

choice. The formulation is as follows (Manski 1977): 

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + ɛ𝑖𝑛 [1] 

 

Where V, the deterministic component of the utility, is a function of socio-economic characteristics 

of the decision-maker and alternatives’ attributes. It is defined as 𝑉𝑖𝑛 = 𝑓(𝛽, 𝑥𝑖𝑛) where 𝛽 is a 

vector of coefficients and 𝑥𝑖𝑛 is a vector of attributes of alternative 𝑖 when 𝑛 is the individual 

choosing (Schüssler 2010).  Within the random utility model framework travelers are assumed to 

maximize utility. There are several types of model formulations to solve this probabilistic setting, 

due to different assumption on the random term. 

2.1.1 Multinomial Logit 

The Multinomial Logit (MNL) model associates a probability to each alternative of a route based 

on its corresponding utility (Train 2009). The model has a logit structure, which assumes that the 

perceived attractiveness of the alternatives is mutually independent. The ratio of the choice 

probabilities for two alternatives is not affected by the systematic utilities of the other alternatives 

(Antonini 2005).  However, this assumption is not always true for route choice where alternative 

routes can have correlation due to overlapping paths. Since the error terms in the MNL model are 
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independently distributed, no correlations are included in the model. Because of the high likelihood 

of overlap of alternatives in real network, the MNL model is not the best modeling framework. 

Since model alternatives overlap, they do not hold the property of Independence of Irrelevant 

Alternatives (IIA). Additionally, it is plausible that different decision-makers have heterogeneous 

preferences, which is not reflected in MNL (Bliemer and Rose 2010). 

 

To allow the correlation among alternatives, models such as multinomial probit model was 

introduced (Bouthelier and Daganzo 1979). However, these models need extensive computational 

effort. To use MNL models which have good computational efficiency, there are some approaches 

introduced which are discussed briefly.  

Overcoming the IIA property is a major research issue in the field of discrete choice modelling. 

There are various model structures in use to overcome the overlap problem. These model structures 

can be classified as (Schüssler 2010): 

• Introducing adjustment terms in the deterministic part of the utility function (category 1)  

• Imposing a nesting structure (category 2) 

• Explicitly modeling the correlation using multivariate error terms (category 3)  

The first category of models consists of modifications of the Logit structure. These models assume 

that the utility of an alternative is influenced by its level of similarity with other alternatives and 

that it can be corrected accordingly (Schüssler 2010). They address similarities by correcting the 

systematic component of the utility function (V), by adding a deterministic adjustment term that 

measures the similarity (similarity attribute) to the utility function. The formulation is presented 

as follows: 

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝑓(𝐴𝑖𝑛) +  ɛ𝑖𝑛 

𝐴𝑖𝑛: adjustment term that measures the similarity between alternative i and all other alternatives 

j≠i  

 𝑓(): transformation of 𝐴𝑖𝑛 

Using the first class has the advantage of maintaining MNL structure model, which is applicable 

with reasonable computational difficulty. On the other hand, finding the right transformation of A, 

(i.e. f) is not straightforward. The C-logit and Path-size Logit (PSL) are suggested to address 

transformation function f(). They assume that if an alternative is similar to other alternative, its 
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utility should be reduced and therefore, the probability assigned to this alternative should be 

adjusted accordingly. These models will be introduced later in this section. 

 

The second class includes generalizations of the Logit structure. Generalizations of the Logit 

structure have a more complex error structure and are members of the Generalized Extreme Value 

(GEV) model family. Models of the GEV family take correlation patterns in the choice set into 

account. The unobserved portions of utility for all alternatives are jointly distributed as a 

generalized extreme value. This distribution allows for correlations over alternatives (Train 2009). 

Detailed theory about GEV models can be found in (McFadden 1978). Models derived from the 

GEV formulation include the MNL (when all correlations are zero), the Nested Logit (NL), Cross 

Nested Logit (CNL) model and the Paired Combinatorial Logit (PCL). In these models, 

alternatives of the choice set are subdivided into nests, where alternatives belonging to the same 

nest are correlated to each other. 

 

Modifications of the logit structure addressed correlation among factors, but they incorporated 

random taste heterogeneity appropriately. The third category of models handle limitations of the 

MNL model. The probit model assumes that the unobserved attributes are multivariate normal 

distributed. In comparison, MNL and other GEV models error terms are assumed to be IID Gumble 

distributed (Aldrich and Nelson 1984). 

 

Assumptions of the probit model is a limitation as well, since in different setups it may cause the 

assumption of normal distributions be inappropriate. For example, in transportation context, 

considering positive coefficient for distance traveled is not intuitive, so assigning a normal 

distribution to this coefficient with a zero mean is a strong assumption. The mixed logit (logit 

kernel) model tries to capture properties of both logit and probit model error terms. This model’s 

error terms includes both multivariate randomly distributed portion to account for unobserved 

attributes (Walker 2001). The reason for this error function is that the probit-portion in the utility 

function captures the correlation between alternatives. When the cross-alternative correlations in 

these models are not present, the model reduces to MNL (Bekhor, Ben-Akiva, and Ramming 

2006).  
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As discussed in this section, the first class accounts for correlation between alternatives through a 

transformation function f(). C-logit, a model of this category, introduces a “Commonality Factor” 

to correct for the overlap. The commonality factor is proportional to the overlap each alternative to 

other members of the choice set (Cascetta et al. 1996). The lack of theoretical guidance of this model 

is an obstacle to apply this model on choice problem (Frejinger 2008).  

 

The Path-size logit  was first introduced by (Ben-Akiva and Bierlaire 1999).  The utility function 

of path i for a decision-maker n is defined as follows and the probability of choosing a path are 

respectively presented as: 

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝛽𝑃𝑆ln (𝑃𝑆𝑖𝑛) +  ɛ𝑖𝑛 [2] 

𝑃(𝑖|𝐶𝑛) =  
𝑒𝜇(𝑉𝑖𝑛+ln(𝑃𝑆𝑖𝑛))

∑ 𝑒𝜇(𝑉𝑖𝑛+ln(𝑃𝑆𝑖𝑛))
𝑗∈𝐶𝑛

 
 
[3] 

 

 

  

 

Where: 

𝐶𝑛: the choice set for user n (includes chosen route) 

𝜇: the logit scale term 

𝑉𝑖𝑛: systematic utility for alternative i for user n 

𝑃𝑆𝑖𝑛: the path size factor for alternative i for user n 

 

𝑃𝑆𝑖𝑛 =  ∑
𝐿𝑎

𝐿𝑖
𝑎∈Γ𝑖

1

∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛

 
 
[4] 
 

 

Where: 

Γ𝑖: the set of links in path i 

𝐿𝑎: the length of link a 

𝐿𝑖: the length of path i 

𝛿𝑎𝑗: a dummy variable, equals 1 if link a is on path j and 0 otherwise 

∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛
 : the number of paths in choice set 𝐶𝑛 sharing link a 
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The correction factor aims to penalize the paths that overlap one another. If none of the links are 

present in other alternatives, the PS factor will be 1 and its natural logarithm zero, thus the 

formulation would be the same as the MNL. However, if the paths overlap, this value will have a 

value lower than 1 and therefore, its logarithm would be negative, so it will decrease the utility of 

the corresponding alternative. However, if an unlikely long path has an overlap with a likely one, 

it would decrease the utility for the likely one, thus being unrepresentative. 

 

There are other formulations that represent the same concept. Equation [5] presents the formulation 

suggested by (Ben-Akiva and Bierlaire 1999).  

𝑃𝑆𝑖𝑛 =  ∑
𝐿𝑎

𝐿𝑖
𝑎∈Γ𝑖

1

∑
𝐿𝐶𝑛

∗

𝐿𝑗
𝛿𝑎𝑗𝑗∈𝐶𝑛

 
 
[5] 
 

Where 𝐶𝑛 is the length of the shortest path in the choice set. 

Another formulation was introduced by (Ramming 2002) to account for the impact of unrealistic 

long paths in the choice set. It is called the ‘Generalized PS’ which is described in Equation [6]. 

𝑃𝑆𝑖𝑛 =  ∑
𝐿𝑎

𝐿𝑖
𝑎∈Γ𝑖

1

∑ (
𝐿𝑖

𝐿𝑗
)

𝜑

𝛿𝑎𝑗𝑗∈𝐶𝑛

 
 
[6] 
 

Where 𝜑 is an arbitrary parameter, controlling how route length would impact the correction 

factor. There are studies that show how to set this factor. It was concluded that φ=14 would provide 

the best fit (Hoogendoorn and Bovy 2004). If the 𝜑 is set to zero, the formula would be similar to 

[4]. 

There is another PS factor, introduced by (Bovy, Bekhor, and Prato 2008). It is represented in [7]. 

The main difference with [4] is the placement of logarithm in the formula. The authors showed it 

has more theoretical ground to weight it in this way. 

𝑃𝑆𝑖𝑛 =  ∑
𝐿𝑎

𝐿𝑖
𝑎∈Γ𝑖

𝑙𝑛(
1

∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛

) 
 
[7] 
 

Additionally, there are other types of PS factors such as Expanded Path Size Logit. This is used 

when choice set is generated stochastically (Frejinger, Bierlaire, and Ben-Akiva 2009). In this 

thesis, it is not investigated because choice set generation is not stochastic. 
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2.2 Choice modeling factors 

Choices in transportation can be categorized into strategic-, tactical- and operational levels. The 

strategic level refers to departure time and activity pattern choice. The tactical level relates to 

activity scheduling, activity area choice and route choice to reach activity areas; and operational 

level to walking behavior. Thus, pedestrian route choice can be considered as operating at the 

tactical level. Discrete choice models are widely used in transportation engineering in route choice 

(Hoogendoorn and Bovy 2004). 

The route choice decision-making process can be categorized into two main sequential activities, 

route generation and route choice. Route generation refers to determining possible routes between 

preset origin and destination locations of the trip (i.e. a candidate set of routes of alternatives). 

Route choice is the mechanism of selecting one item from the candidate set. Previous studies 

suggested that trip-makers will select from among no more than six alternatives (Bovy and Stern 

2012). The process of route choice is mainly explained through utility maximization framework, 

specifically through logit models (Ben-Akiva and Lerman 1985).  

 

There are multiple factors affecting route choice, one of which can be categorized into five distinct 

categories. Network characteristics, route characteristics, personal characteristics, trip 

characteristics and environmental characteristic are the main set of factors used to model route 

choice (Daamen 2004). Some possible parameters associated with these factors are presented in 

Table 1. Note that in this thesis the words feature, factor, variable and attribute are used 

interchangeably.  

 

 

 
Table 1 - Factors influencing route choice 

Types of factors Variables 

Network characteristics Number of available routes and overlapping routes 

Route characteristics Travel time and distance, scenery, directness, crowdedness, 

safety factors, weather protection, road type and gradient 



11 
 

Personal characteristics Age and gender 

Trip characteristics Trip purpose, time budget, mode used and departure time 

Circumstances Weather conditions, road and traffic information and road 

works 

accidents on the route and day or night 

 

While route choice factors are important for all modes, for each mode, they weigh differently in 

the route choice model. For example, route choice of drivers is mainly based on travel time while 

pedestrian route choice is mainly based on physical effort rather than travel time (Bovy and Stern 

2012). There have been multiple studies investigating the factors for pedestrian route choice 

(Hintaran 2016; Hoogendoorn and Bovy 2004), which were evaluated in the following section. 

2.3 Pedestrian route choice factors 

Pedestrian route choice modeling in a precise way is a challenging process; due to the complexity 

and largely subconscious nature of the problem (Hill 1982). Several studies, using surveys, found 

that trip length is the dominant factor influencing the pedestrian route choice (Guo and Loo 2013; 

Seneviratne and Morrall 1985; Verlander and Heydecker 1997; Van der Waerden, Borgers, and 

Timmermans 2004; Weinstein Agrawal, Schlossberg, and Irvin 2008). However, studies have 

shown that the shortest path may only be chosen around 20 percent of the time (Borst et al. 2009). 

Additionally,  the number of turns and gradient are also significant factors in route choices (Broach 

and Dill 2015). Transportation and land-use impacts on mode and route choice do not show 

consistent results (Badoe and Miller 2000), as some studies identify them as significant factors 

while other studies illustrate as marginal. Other significant factors that have been reported earlier 

in literature are related to the built environment and trip safety (Brown et al. 2007; Weinstein 

Agrawal et al. 2008).  

The built environment can be defined as the human-made space in which people live, work, and 

recreate on a day-to-day basis (Roof 2008). It is a multidimensional concept that can be perceived 

in five dimensions, which are density and intensity, land use mix, street connectivity and aesthetic 

qualities. Aspects of the built environment can be measured in three categories, which are observed 

measures, geographic measures and perceived measures (Brownson et al. 2009). Observed 

measures mainly measure the physical features of the environment such as sidewalk width, street 
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slope/grade, land use frontage. The observed data is obtained by observers, like surveyors or data 

collectors, which may lack enough accuracy. The observational data is collected in lack of 

geographical measures.  Geographic measures are mainly collected in zonal levels, and they 

include dimensions such as population density, land-use and street network. They are mainly set 

in geographic information system (GIS) programs. The main limitation of geographic measures is 

a lack of consistency between datasets needed for studies, because each dataset may be collected 

by a different agency, making it hard to be used together. Additionally, they may lack temporal 

consistency as well. In this study, the consistency of geographic measures has been considered by 

collecting data from the same source as much as possible. The perceived measures can be defined 

as people’s perception of the built environment. Its attributes include aesthetics, sounds, and safety. 

The main challenge using these measures is that it needs surveys which are lengthy and hard to 

incorporate in transportation models. For example, scenery is a perceived built environmental 

attribute which is shown as an attractive street characteristic in stated preference studies. These 

studies are often qualitative in describing scenery, and are mainly based on the stated preferences 

of the respondents.  

Researchers examined if features of the built environment in a micro level, such as width of the 

sidewalk, benches, trash bins, crossing aids: stoplights and crosswalks, had correlation with street 

segment pedestrian activity (Rodriguez, Brisson, and Estupinan 2009). They concluded greater 

pedestrian activity on segments are related with higher development intensity, mixed land uses, 

and more crossing aids. It was also noted that street connectivity and pedestrian friendly aids are 

related to higher pedestrian counts (Rodriguez et al. 2009). 

Other studies have found that higher density of intersections, wider sidewalks, higher density of 

pedestrian friendly parcels are associated as attraction for a route while attributes such as large street 

crossings, poor lighting, litter, absence of people, or steep slopes act as deterrents (Ferreira et al. 2016). 

For example, in a study exploring the relationship between street characteristics and perceived 

attractiveness for elderly residents, concluded that attributes such as low slopes, zebra crossings, trees, 

gardens, bus stops, business buildings, catering establishments, city centre, and traffic volume are 

associated with attraction. While attributes such as litter, high-rise buildings, high neighborhood 

density were negatively related to perceived attractiveness (Borst et al. 2009).  
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In a study, built environment factors on short walking trips (less than 45 minutes) were investigated 

in Valencia, Spain. It was a stated preference study, consisting of three focus groups of non-

shopping trips during the week. Some factors were unanimously considered positive, such as 

sidewalk width, the presence of trees, and low traffic volumes. Additionally, factors relating to safety, 

such as poor lighting or absence of people, were strong deterrents for walking for all groups. However, 

other factors such sidewalk cafes and bollards are considered as aesthetic improvements by some 

participants, while others found them as deterrents (Ferrer, Ruiz, and Mars 2015). 

In a stated preference study, it was indicated that the primary factor is minimizing time and 

distance for pedestrian route choice. Additionally, safety, crossing delays, sidewalk conditions, a 

presence of other pedestrians were considered important. The participants of this study were 

morning commuters at five rail stations in San Francisco and Portland, Oregon (Weinstein 

Agrawal et al. 2008). 

In another stated preference study, it was found that shops, good scenery, and crowdedness can 

also play a role in pedestrian decision making (Puay Ping Koh and Wong 2013). Another study by 

the same authors investigated influence of infrastructural compatibility on pedestrian route choice 

(P P Koh and Wong 2013). It was conducted to investigate which one of the following factors 

were considered important: distance, comfort, rain shelters, stairs/slopes, traffic accident risk, 

detour, crowded walkway, security, the number of road crossings/delay, shops along the route, 

good scenery, and directional signs. The pedestrians at transit stations in Singapore were 

interviewed regarding their preferences for the first/last mile of their walking trips. It was found 

that in different areas, the important factors could vary. For example, traffic accident risk, rain 

shelters and stairs/slopes are associated with greater importance in residential areas than in mixed 

land use areas. In residential areas, distance had the top priority, with availability of public transit 

and convenience of walking being influential. Mixed land use was found to be very similar to 

residential area. In industrial areas, traffic accident risk was also an important factor. 

Pedestrian environment and its effect on the utility of walking is analyzed in a quantitatively as 

well, for example, the case study subway commuters’ paths from the station to their workplace in 

downtown Boston (Guo 2009). The results showed more intersections, wider sidewalks and flat 

topography have a positive effect on utility (Guo 2009). 
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In another study, researchers have explored revealed preference in pedestrian route choice using 

GPS data (Broach and Dill 2015). They studied attributes such as distance, turns, steep upslope, 

substandard street, busy streets, commercial neighborhoods, unsignalized arterial crossings, and 

unmarked collector crossing. It was found that turns, upslopes, busy streets and unsignalized 

intersections were associated with negative utility. For example, an upward slope of 10 percent is 

regarded twice costly as less steep ground. The commercial nature of a neighborhood had positive 

impact on utility, as being considered comparable to 27% shorter trip. 

The extent to which scenery in general is significant may depend on trip characteristics. For 

example, scenery is expected to be a significant factor for recreational trips, but it plays limited or 

no role for work-related walking trips (Bovy and Stern 2012). Some other studies found that the 

attractiveness of buildings (Guo and Loo 2013) can have positive impact as well. Therefore, 

understanding and clustering trip characteristics may lead to more accurate and reliable route 

choice models and related attributes (Bovy and Stern 2012; Hill 1982; Seneviratne and Morrall 

1985).  

2.4 Scenery in transportation context 

The importance of scenery, which is one of the factors associated with pedestrian route choice, has 

been noted by several studies (Owen et al. 2004). The extent to which scenery plays a substantial 

role in route choice behavior on trip purpose. Scenery is very important for recreational trips, but 

it plays no role for work-related walking trips (Bovy and Stern 2012). However, its investigation 

has been challenging, because of the complexity of quantifying it and its subjective nature. The 

way scenery was mainly addressed is that it was incorporated in stated preference studies and 

participants were asked questions which indirectly assessed aesthetic characteristics and found 

positive impact of scenery on route choice (Ball et al. 2001; Puay Ping Koh and Wong 2013). 

However, the extent to which it can have a positive impact has not been estimated in a revealed 

preference context. Few studies have tried to evaluate scenery in a systematic way in transportation 

context, not necessarily pedestrian route choice  (Alivand and Hochmair 2013; Chen et al. 2017; 

Quercia, Schifanella, and Aiello 2014). They are evaluated in the following section.  

Researchers have tried to address scenic route planning for drivers using geo-tagged pictures 

obtained from services such as Panoramio and Flickr (Zheng et al. 2013). Their main assumption 
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is that a multitude of photos taken along a roadway imply that this roadway is probably appealing 

and catches the public’s attention. In another study, researchers used Volunteered Geographic 

Information (VGI) data sources such as Panoramio and Flickr and websites where users uploaded 

tracks of traversed scenic routes (RouteYou, EveryTrail, and MyScenicDrive) (Alivand and 

Hochmair 2013). They assumed that users upload several scenic pictures during a day trip that are 

located along a route, it could be concluded that the traversed route is scenic. This assumption is 

derived from a work another work by Hochmair (Hochmair 2010). The roads that were already 

considered scenic by web services such as EveryTrail or GPSies, which were compared to the 

shortest path with respect to number of geo-tagged photos on Web 2.0 applications.  The results 

show that the frequency was greater along scenic routes than along fastest routes. The study was 

based on the simple idea of null-hypothesis testing of whether number of geo-tagged photos found 

along scenic and fastest routes is equal, or that it is even higher for fastest route. The results showed 

photos obtained from obsolete Panoramio service show a higher spatial association with user 

posted routes. 

Researchers attempted to integrate pedestrian perceptions of the urban context into their route 

choice model and specifically, route generation (Quercia et al. 2014). This approach is inspired 

from psycho-geography, which is defined as the study of the precise laws and specific effects of 

the geographical environment, consciously organized or not, on the emotions and behavior of 

individuals. Even though emotional responses are subjective and difficult to quantify, urban 

studies have repeatedly shown that specific visual cues in the urban contexts are consistently 

associated with attractiveness of city elements. For example, several studies (Peterson 1967; 

Salesses, Schechtner, and Hidalgo 2013) found that green spaces are mostly associated with 

attraction, while trash and broken windows with distaste.  

Quercia et al. approached quantifying pleasantness of urban context through a crowd-sourcing 

platform that showed two street scenes in London (out of hundreds), and users voted on which one 

looks more beautiful, quiet, and happy (Quercia et al. 2014). Then they assigned scores to locations 

along each of the three dimensions. The next step was that to generate routes regarding these 

dimensions. Figure 1 depicts the authors’ results of the proposed model given different route 

choice criteria. The results of their proposed model were validated through a stated preference 

study at two locations, in London, UK and in Boston, USA. To generalize the approach, they used 
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Flickr data to model beauty score obtained from the users. They suggested a regression model that 

could describe more than 30% of the variability of the beauty score by the presence of Flickr tags.  

While the model may be used to explain some patterns in choice to travel around the city of 

London, nevertheless some limitations can be identified. For example, this route generation does 

not account for the trip purpose, therefore it cannot be used to capture the relationship between 

different types of trip purposes (e.g. work, school, etc.) and the expected route choice, as it is 

expected for a complex transportation problem. Additionally, the effect of working vs non-

working hours were not investigate. Furthermore, their scenery prediction model shows a low R-

square, which can degrade the generalization abilities of the model. 

 
Figure 1- Alternative routes corresponding to different criteria between Euston Square and Tate Modern (Quercia et 

al. 2014) 

Runge et al. tried to investigate scenicness for driving using Google Street View (GSV) images 

(Runge et al. 2016). They tried to use GSV images to take actual view on specific route segments 

rather than approximate pictures taken from volunteered geographic information (VGI). Then they 

used a pre-trained convolutional neural network (Places-CNN) created by (Zhou et al. 2014) to 
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categorize images into different tags (It will be discussed with further detail in this section). They 

grouped tags generated from the CNN and regrouped them in 6 categories which they assumed 

can be considered scenic. The main limitation of this research is that they did not provide a reason 

for selection of these categories are selected. 

To address scenery in a systematic way, thanks to recent advancements in deep learning and data 

science, researchers were able to develop a scene classification model that significantly 

outperforms previous approaches (Zhou et al. 2017). They have used a repository of 10 million 

scene photographs, labeled with scene semantic categories, and applied a Convolutional Neural 

Networks (CNN).  This scene classification model is called CNN Places365. It consists of 434 

categories. 

In a recent study (Seresinhe, Preis, and Moat 2017), researchers have investigated over 200,000 

images through crowdsourcing from the existing online game Scenic-Or-Not. It was combined 

with the ability to extract hundreds of features from the images using the CNN Places365. The 

process of this study is that they have asked users to score images according to what they find 

scenic. This is called scenicness. Then they have acquired the tags using CNN Places365, and 

finally, they have modeled the effect of each tag on scenicness ratings using two modeling 

frameworks. The first is an elastic net model, whose sample of coefficients is depicted in Figure 

2. The second model in a convolutional neural network. 

Elastic net is a linear regression model trained with L1 and L2 prior as regularizer. Regularizations 

are terms added to the loss function of a problem to solve an ill-posed problem or to prevent 

overfitting (Bühlmann and Van De Geer 2011). The L1 regularization technique also called Lasso 

Regression adds a first order norm of the coefficients as a penalty term to the loss function. L2, 

also called as Ridge Regression, adds the second order norm. Elastic net uses both terms in its loss 

function.  This combination allows for learning a sparse model where few of the weights are non-

zero like Lasso, while still maintaining the regularization properties of Ridge. Elastic net is useful 

when there are multiple features that are correlated with one another (Bühlmann and Van De Geer 

2011). 

The second model is based on a convolutional neural network, applied via four different 

frameworks - AlexNet, VGG16, GoogleNet and ResNet152 (Seresinhe et al. 2017). The accuracy 
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rate of the predictions ranged between 0.445 to 0.654, which shows great improvement in 

comparison to previous work by Quercia et al. They have found that, for instance, as expected, 

natural features, such as ‘Coast’ and ‘Mountain’, are indeed associated with greater scenicness. 

Nevertheless, in urban built-up areas, the definition of scenicness is different. For example, man-

made features can also be rated as scenic; such as ‘Cottage’ and ‘Castle’, as well as bridge-like 

structures, such as ‘Viaduct’ and ‘Aqueduct’. Additionally, man-made features such as 

‘Construction Site’ and parking Lots’ are associated with lower scenicness in general as well as in 

urban built-up settings specifically. Figure 2 provides the elastic net coefficients, corresponding to 

scenicness proposed by Seresinhe et al.  

 

Figure 2 - Elastic net coefficients, corresponding to scenicness (Seresinhe et al. 2017) 
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2.5 Machine learning models 

The classic definition is that machine learning is a field of study stemming from computer science 

that gives computers the ability to learn without being explicitly programmed (Samuel 1959). The 

learning process can be defined as acquiring new or modifying existing knowledge, behaviors, 

skills, values, or preferences (Gross 2015). In more practical terms, machine learning researchers 

study and create algorithms that can learn from patterns or make predictions with data. This field 

of science is useful when rule-based algorithms are not capable of solving the problems.  

Machine learning addresses two main categories of tasks, making predictions and learning a 

pattern. Machine learning algorithms that tend to learn patterns are generally unsupervised. On the 

other hand, making predictions are categorized in supervised learning algorithms, which are the 

focus of this literature review due to their application in this thesis. 

Supervised learning is defined as learning a function that maps an input to an output based on 

example input-output pairs (Russell and Norvig 2016). The two main problems that supervised 

algorithms solve are regression and classification. Regression problems map a feature space of 

inputs to single or multiple continuous outputs. On the other hand, the main question that 

classification algorithms tend to answer is that whether a set of data belongs to a certain category, 

that is they map the input into a discrete output space. For example, the well-known problem of 

identifying spam emails is considered a classification problem.  

The first step in supervised learning is the observation of a phenomenon or random process which 

gives rise to an annotated training data set. The next step is to model this phenomenon by 

attempting to make a causal link between observation inputs and their corresponding observed 

observation outputs. This causal link is called the hypothesis/prediction function, where it is 

mainly referred to as a decision function in classifying tasks. What classifiers tend to do is 

maximize the conditional probability density function that governs the input-output space, which 

can then be used to define a suitable hypothesis.  

The hypothesis is restricted to minimizing some measure of error over the observed training set 

while also maintaining a simple functional form. The first condition ensures that a causal link is in 

fact extracted from the observed data. The second condition avoids overfitting, that is producing a 

too closely or exactly to a particular set of data and may therefore fail to fit additional data or 

predict future observations reliably.  
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There are multiple algorithms that handle classification problems. In this thesis, the algorithms 

that were used are discussed in this section. That is, Decision Trees, Random Forest and Gradient 

Boosting Classifiers.  

2.5.1 Decision Tree Learning 

A decision tree is a mathematical representation of information, decisions by using graph theory. 

Its application is widespread in operations research and machine learning. It connects each 

decision with its possible consequence. Other information that can be represented include chance 

event outcomes, resource costs, and utility. Decision tree learning uses a decision tree to find the 

rules that lead observations about an item to conclusions about the item's target value. If the target 

value is a discrete set of values, the decision tree learning would be a classification tree, otherwise 

it is a regression tree. Classification trees are used to classify an object or an instance into a 

predefined set of classes based on their attribute values. Classification trees are frequently used in 

applied fields such as finance, marketing, engineering and medicine (Lior 2014).  

A decision tree classifier is a classifier expressed as a recursive partition of the instance space. The 

decision tree consists of different nodes. The first node is called root that has no incoming edges. 

All other nodes have exactly one incoming edge. A node with outgoing edges is referred to as an 

“internal” node or a “test” node. All other nodes are called “leaves” (also known as “terminal” 

nodes or “decision” nodes). In a decision tree, each internal node splits the instance space into two 

or more sub-spaces according to a certain discrete function of the input attributes values. In most 

cases, each test considers a single attribute, such that the instance space is partitioned according to 

the attributes value. In the case of numeric attributes, the condition refers to a range (Lior 2014). 

Each leaf is assigned to one class representing the most appropriate target value. It is also possible 

that a probability vector is assigned to each leaf to indicate the probability of the target attribute 

having a certain value (Lior 2014). When the attributes are numeric, decision trees can be 

geometrically interpreted as a collection of hyperplanes, each orthogonal to one of the axes (Lior 

2014). 

There are multiple algorithms proposed to address decision tree learning, which include ID3, C4.5, 

and CART. These algorithms usually work top-down, that is they start by choosing a variable at 

each step that best splits the set of items and do this procedure recursively. To measure the ‘best’ 
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split, various metrics have been introduced. These metrics are applied to each candidate subset, 

and the resulting values are aggregated, mainly averaged to provide a measure of the quality of the 

split. They include Gini impurity, information gain, variance reduction and gain ratio. To avoid 

splitting the instance space in a non-optimal way, these algorithms use a technique called pruning, 

which reduces the size of decision trees by removing sections of the tree that provide little power 

to classify instances. Pruning helps the decision tree classifier to avoid overfitting. In the following 

paragraphs, the advantages and disadvantages of these algorithms are introduced. 

The ID3 algorithm is a very simple decision tree algorithm (Quinlan 1986). Using information 

gain as a splitting criterion, the ID3 algorithm ceases to grow when all instances belong to a single 

value of a target feature or when best information gain is not greater than zero (Lior 2014). ID3 

does not apply any pruning procedure nor does it handle numeric attributes or missing values (Lior 

2014). ID3 can be considered as the simplest decision tree algorithm. On the other hand, it does 

not guarantee an optimal solution. Since it does not have a pruning technique, it can overfit the 

training data. Furthermore, since it was designed for nominal attributes, continuous data needs to 

be converted to nominal bins.  

C4.5, an evolution of ID3, uses gain ratio as splitting criteria. The splitting ceases when the number 

of instances to be split is below a certain threshold. C4.5 can handle numeric attributes. C4.5 uses 

a pruning procedure which removes branches that do not contribute to the accuracy and replace 

them with leaf nodes. C4.5 handles continuous attributes by splitting the attribute’s value range 

into two subsets (binary split). Specifically, it searches for the best threshold that maximizes the 

gain ratio criterion. All values above the threshold constitute the first subset and all other values 

constitute the second subset (Lior 2014).  

CART stands for Classification and Regression Trees (Breiman et al. 2005). Its structure is very 

similar to C4.5. An important advantage of CART over C4.5 is its ability to generate regression 

trees. Its distinguishable feature is that it constructs binary trees, namely each internal node has 

exactly two outgoing edges (Lior 2014).   
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2.5.2 Ensemble Methods 

Ensemble methods use multiple learning algorithms to obtain better predictive performance that 

could be obtained from any of the constituent learning algorithms alone (Kowsari et al. 2018). If 

an ensemble is properly constructed; it can outperform single classifier-based approaches 

(Dietterich 2000). This is also shown in empirical studies (Brown et al. 2005; Freund and Schapire 

1997).  

There are multiple ways to construct an ensemble classifier, which include dividing a training set, 

manipulating data distribution, manipulating input features and manipulating learning algorithms.  

Dividing a training set requires generating multiple data subsets from the base training dataset. For 

each of these subsets, multiple classifiers are constructed (Farrash 2016). Data subsets are 

generated by sampling and partitioning techniques. One of the most prevalent ensembles of 

classifiers that adopt dividing a training set is Bagging (Farrash 2016; Liang, Zhu, and Zhang 

2011).  

Breiman proposed bagging, which stands for bootstrap aggregating (Breiman 1996). It is an 

algorithm based on the idea of generating multiple subsets by repeatedly extracting samples with 

replacement (bootstrap) from the original dataset. Because of the boosting, that is sampling with 

replacement, any training instance may appear in a bootstrap more than once, while some training 

instances may not appear at all. It has been reported that on average 37% of training set instances 

do not appear in a bootstrap, particularly with large datasets (Skurichina and Duin 2002). After 

generating bootstraps, a base classifier model is built for each bootstrap by using a decision tree 

learning algorithm. The final ensemble decision is obtained by majority voting, that is selecting 

the best model with highest accuracy.  

Manipulating data distribution is typically done by boosting. Freund and Schapiro introduced the 

prominent boosting algorithm called AdaBoost(Freund and Schapire 1997). In this algorithm, 

multiple classifiers are iteratively constructed from the entire dataset rather than a sample of the 

training data. At each step, the new base classifier improves classification on training instances 

that are incorrectly classified in the previous iteration (Farrash 2016). The final ensemble 

prediction is created from weighted voting, wherein each classifier’s prediction is weighted 

according to its accuracy on the training datasets (Farrash 2016). 
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In manipulating input features, the training dataset is the same for all iterations of constructing 

multiple classifiers. The difference with other methods is that each classifier is built using different 

parts of a feature space, that is they sample from features rather than data points. Random forest is 

one of the most prevalent algorithms in this category, which was introduced by Breiman (Breiman 

2001). Random forest uses decision tree as the base classifier and the word ‘forest’ refers to 

aggregation of many tree models that are constructed with pruning of fully grown trees (Zhang 

and Wang 2009). Each tree is constructed from all instances, which are drawn from the original 

training dataset by sampling with replacement from their features (attributes). In each tree node, a 

splitting attribute is selected from a randomly chosen sample of the training dataset’s attributes 

(Farrash 2016). Ensemble prediction is made by majority voting. It is shown that the accuracy of 

random forest is most of the time greater or equal to AdaBoost (Breiman 2001). It also benefits 

from superiority in speed and robustness to outliers and noise (Breiman 2001). The structure of 

the random forest method is illustrated in Figure 3. 

 

Figure 3- Random forest (Tan, Steinbach, and Kumar 2005, Page 279 ) 

 

Manipulating learning algorithms is created by an ensemble through two possible approaches. The 

first approach is manipulating a base learning algorithm to create different models: changing the 

hyperparameters for the same classifier and combining them via an ensemble on the same training 

data set. The other approach is using multiple different learning algorithms that are each adopted 

to create a model from the same training dataset (Farrash 2016). These ensembles are called 
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heterogeneous ensembles of classifiers (Farrash 2016). The example of base classifiers for these 

models is artificial neural networks.  

2.5.3 Gradient Boosting Classifiers 

The Gradient Boosting (GB) classifier is a hybrid of the boosting and bagging approaches 

(Friedman 2001). In this algorithm, first, a random sample of the data is selected at each step of 

the boosting process. Second, boosting is based on a steepest gradient algorithm, with the gradient 

defined by deviance (twice the binomial negative log-likelihood) as a surrogate for 

misclassification rates. That is, in this step, the difference of the prediction and real value is 

generated (gradient) and then it is fed to the new classifier to be predicted. The gradient boosting 

is a general algorithm, that is it can use any base algorithm. The typical base algorithm is decision 

trees (Dietterich, Hao, and Ashenfelter 2008). Gradient tree boosting (GTB) consists mainly of 

fixed sized base learners, relatively small trees, with 6 terminal nodes being common size 

(Lawrence et al. 2004).  

As with the other ensemble methods, larger trees are not formed, rather each tree developed during 

the process (often 100– 200 trees) is summed, and each observation is classified according to the 

most common classification among the trees. The combined effect of these differences from other 

boosting methods reduces GB sensitivity to inaccurate training data, outliers, and unbalanced data 

sets since, among other things, the steepest gradient algorithm places emphasis on misclassified 

training data that are close to their correct classification, rather than the worst classified data. GB 

has been shown in most cases to produce substantially higher accuracies with independent data 

(data that were not used to develop the trees) than either Classification tree analysis (CTA) of other 

boosting methods (Breiman et al. 2005). Finally, unlike CTA, which is highly prone to overfitting 

to training data, GB is highly resistant to overfitting since very small classification trees are used 

at each step of the boosting process. 

With the gradient boosting algorithm, like other supervised classification models, the goal is to 

find the function f(x) using training sets where the misclassification error associated with the 

testing set will be as small as possible. To build f(x) in this setting, a probabilistic framework is 

applied. That is, first, a sigmoid function is applied to denote the probability of each point in a 
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class ([8]) , then the likelihood is calculated ([9]). Finally, values that correspond to the maximum 

of the log likelihood are chosen as the model parameters ([9]). 

P(y = 1|x)  =  
1

1 +  𝑒𝑥𝑝(− ∑ ℎ𝑚(𝑥))𝑀
𝑚 = 1

 [8] 

L(yi, f(xi)) = log(P(yi|xi)) [9] 

Q[f]  =  ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))

𝑛

𝑖 = 1

 [10] 

The algorithm is introduced below (Friedman 2002): 

Input: training set Z = (x1, y1), … , (xn, yn) 

M – number of iteration 

1. f0(x) = 𝑙𝑜𝑔
𝑝1

1−𝑝1 
   

2. For m = 1 … M: 

2.1. 𝑔𝑖 =  
𝑑𝐿(𝑦𝑖,𝑓(𝑥𝑖))

𝑑𝑓𝑚(𝑥𝑖)
  (gradient)    

2.2. Fit a decision tree ℎ𝑚(𝑥) to the target 𝑔𝑖 

2.3. ρ𝑚 =  argmax
ρ

Q[𝑓𝑚−1(𝑥)  +  ρ ℎ𝑚(𝑥)] 

2.4. 𝑓𝑚 (𝑥) =  𝑓𝑚 −1(𝑥) +  νρ𝑚 ℎ𝑚(𝑥) 

3. Return: 𝑓𝑚 (𝑥) 

Where: 

each ℎ𝑚 is a decision tree 

𝑔𝑖 is the gradient of likelihood  

ν is regularization (learning rate) which is recommended to be less than 0.1 

2.6 Machine learning models in transportation and choice modeling 

Machine learning algorithms have become useful in transportation planning problems in recent 

years. Dougherty reviewed these algorithms including artificial neural networks, decision trees 
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and other classification algorithms (Dougherty 1995). For example, in a study by (Yamamoto, 

Kitamura, and Fujii 2002), decision trees and production rules algorithms were used to investigate 

driver route choice. They used two surveys to collect data on driver route choice between two 

alternative routes on expressway networks, which sets the route choice problem to be consistent 

with a binary classification framework.  

In a recent study, researchers investigated using artificial neural network (NN) and Support Vector 

Machine (SVM) classifiers in route choice (Sun and Park 2017). They used a stated preference 

survey with 18 participants. With respect to attributes of three route alternatives including travel 

time, travel time fluctuations and fuel cost. The results show that the SVM has similar prediction 

accuracy as the NN, but it has a significantly higher computation efficiency (Sun and Park 2017). 

The other choice problem that is addressed by machine learning techniques is mode choice. For 

example, there have been studies modeling  mode choice as a pattern recognition problem in which 

multiple human behavior patterns reflected from explanatory variables determine the choices 

between alternatives or classes (Xie, Lu, and Parkany 2003). In a study, the capability and 

performance on work travel mode choice decision trees and neural networks is compared to 

multinomial logit model (MNL). The researcher used diary datasets from the San Francisco Bay 

Area Travel Survey (BATS) 2000 for model estimation and evaluation (Xie et al. 2003). The 

prediction results showed that the two data mining models offer comparable but slightly better 

performance than the MNL model in terms of the modeling results, while the decision tree model 

yielded highest estimation efficiency and most explicit interpretability and the neural network 

model gave a superior prediction performance in most cases (Xie et al. 2003). For their specific 

problem, the NN model (88.0%) shows a best overall performance over the other two models 

(86.0% and 86.7% for the DT and MNL model) 

In another recent study, both Machine Learning and Discrete Choice modeling frameworks were 

used to predict the car ownership using transportation household survey data from Singapore 

(Paredes et al. 2017). The researchers compared a multinomial logit model against various machine 

learning models (e.g. Random Forest, Support Vector Machines) by using two datasets, one of 

them 2008 data to estimate models and 2012 ownership to predict the accuracy using the models 

already derived (Paredes et al. 2017). Their study found that machine learning models are inferior 

to the discrete choice model when using discrete choice features. However, after data engineering, 
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these models showed better performance in addressing choice. The prediction accuracy of machine 

learning models before data processing ranged from 0.642 to 0.742 and the multinomial logit 

model performance was 0.743. After feature engineering, the machine learning models ranged 

from 0.749 to 0.799 in accuracy. The feature engineering set dummy variables for discrete choice 

modeling dataset, while they have also incorporated other variables which cannot be discretized 

in the machine learning dataset (Paredes et al. 2017).  

Using a Dutch travel diary data from the years 2010 to 2012 with variables on the built and natural 

environment as well as on weather conditions, researchers investigated multinomial logit models 

and compared the predictive performance of seven selected machine learning classifiers for travel 

mode choice analysis (Hagenauer and Helbich 2017). The results showed that machine learning 

models, specifically random forest, showed slightly better performance. Additionally, they 

investigated the importance of each factor using both Machine learning models and multinomial 

logit models. The results suggested that the analysis of variable importance with respect to the 

different classifiers and  travel modes can be helpful for improved model analysis (Hagenauer and 

Helbich 2017).  

2.7 Conclusion of literature review and contributions 

In this thesis, the objective was to use smart-phone based raw GPS data to analyze revealed 

pedestrian trajectories to model route choice. As identified in the Literature Review, pedestrian 

route choice models use various input variables (factors), some of which are shown in Table 1.  

The main contributions of this research are in two levels, which are introducing new variables 

quantitatively that may be explanatory and using machine learning algorithms that were not tested 

in route choice and compare their performance with discrete choice models. 

To reduce the cost of acquiring perceived built environment measures, which is costly due to large 

surveys and low levels of participation, it is valuable to have a model to estimate scenery rather 

than doing the surveys.  Additionally, understanding whether scenery would affect pedestrian route 

choice in a revealed preference setting rather than stated preference can be considered a 

contribution, because it has been done so rarely. Furthermore, the extent of different trip purposes 

on route choice when accounting for scenery is investigated.  
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The other novel approach in this study is the use of micro-level scale land use tags as a route 

attribute for each alternative. As discussed in the Literature Review, there are inconsistent finding 

regarding the interaction of land use and extent of its effect on route choice (Badoe and Miller 

2000). This study investigated over 110 different places type in modeling route choice to seek 

whether each one influenced pedestrian route choice behavior or not. 

There are multiple features which may affect route choice, however they may not be found 

significant due to assumptions of discrete choice models, especially, linearity of feature utility 

function. To address this matter in this study, with help of supervised learning algorithms, all the 

variables are used to build SVM, Random Forest and Gradient tree bosting models and their 

accuracy is compared with the traditional discrete choice framework. 
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3 Data Collection and Processing 

To capture pedestrian behavior in a cohesive way, multiple data sets have been used. Because of 

the variety of data sources, each data set is described, and the processing techniques is presented 

in detail. The data consist of GPS data, image data and text labels.  Figure 4 shows the data 

processing process in chronological order. The data used in this thesis is composed of the following 

five datasets: 

1. MTL Trajet Database 

2. Google Maps API data (Mainly Google Directions API) 

3. Google Street View Images dataset 

4. Places365 CNNs image tags 

5. The level of scenery as defined by the coefficients shown in (Seresinhe et al. 2017) 

3.1 MTL Trajet Database 

This research has been conducted based on data collected through the App MTL Trajet. MTL 

Trajet was an instance of the smartphone travel survey app, DataMobile (Patterson 2017; Patterson 

et al. 2018; Patterson and Fitzsimmons 2016). The data is acquired by TRIP lab, Concordia 

University, Montreal, Canada, through an ongoing project which is now referred to as the 

Itinerum™ platform. MTL Trajet was released as part of a large-scale pilot study in a study that 

lasted 30 days. It is one of 70 projects in the 2015-2017 Montréal, Smart and Digital City Action 

Plan. The original purpose of the application was to collect travel behaviour information. The 

mobile application records the location of the respondent smartphones as they travel. The 

application captures movement, and if the user does not move for more than two minutes, a prompt 

is sent to ask whether he or she has ended the trip, the trip mode, and trip purpose. These prompts 

are used to validate which transportation mode has been chosen. Additionally, the socio-

demographic information was asked in the initiation of the survey. These user descriptions include 

age bracket, sex, occupation, licence or transit pass, number of people within household, number 

of cars within household, latitude and longitude of participant's home, work and study location; 

primary and secondary travel mode(s) to work and/or to school. 
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The MTL Trajet dataset contains over 33 million location (primarily GPS) points. To detect trips 

and segments we used the rule-based trip-breaking algorithm developed in (Patterson and 

Fitzsimmons 2016). The algorithm detects segments based on 3-min gap in data while controlling 

for velocity and parameters relating to the public transit network (i.e. transit junctions and metro 

station location). Applying the trip-breaking algorithm on MTL Trajet dataset resulted in 623,718 

trips, among which 102,904 trips were validated by respondents (Yazdizadeh, Patterson, and 

Farooq 2018).  

 

Validated mode data was derived from the survey questions presented to respondents upon 35 

installations. Respondents were asked the location of home, work and school, as well as the 

mode(s) of transport used for trips to these locations. Only validated trips from users who had 

declared they used only one mode option to travel between home and work or home and school 

were used. This procedure provided us with 10,518 validated trips (Yazdizadeh et al. 2018). With 

respect to trip purpose detection, six activity categories were used to predict trip purpose: 

“education,” 40 “health,” “leisure,” “shopping/errands,” “return home” and ‘work.” This dataset 

contained 4,996,501 rows (coordinates), collected from 2,414 distinct users, resulting to 10,800 

trips. The Walking trips were only 1531. 

After considering three filters, that is the speed should be consistent and less than 3 m/s three trip 

alternative and trip length more than 250 meters, 240 trips were selected. This data set can be 

considered a reasonable representative of the pedestrian route choice. This data spanned from 

2016-10-17 to 2016-11-21. As can be seen in the Table 2, there is a good spread of people over 

age, however, there is no pedestrian recorded who is over 65. This can be associated with low 

penetration level of cell phones among elder people. As pedestrian have stated through multiple 

choice questions in the app, there has been a majority of educational and ‘other’ trips despite 

‘other’ tag being not informative. Table 3 shows the travel mode preference by trip type. As can 

be seen, there are reasonable amount of people (212 out of 240), who prefer to walk to their study 

destination as primary mode choice. Figure 5 depicts the frequency of trips recorded per unique 

user.  
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Figure 4- Data processing procedures and their outcome at each level 
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Figure 5-Frequency of trips recorded per unique user 

Table 2-Sociodemographic characteristics and stated purpose of the pedestrian 

Age Interval Frequency Purpose Frequency 

16-24 47 Education 87 

25-34 74 Health 6 

35-44 53 Meal/snack/coffee 13 

45-54 53 Leisure 21 

55-64 13 Pickup 3 

65 or more 0 Other 78 

Sum 240 Sum 240 
Table 3 - Travel mode preference by trip type 

Mode Main 

travel 

mode to 

work 

Alternative 

travel mode to 

work 

Main 

travel 

mode to 

study 

Alternative 

travel mode 

to study 

On foot 140 64 212 4 

Bicycle 64 14 9 13 

Transit 27 1 16 5 

Car 2 4 2 0 
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3.2 Map Matching Process 

The location data is obtained by sampling the positions typically using GPS to produce data that 

in database terms is commonly referred to as trajectories. Unfortunately, this data is not precise 

due to the measurement error caused by the limited GPS accuracy, and the sampling error caused  

by the sampling rate (Brakatsoulas et al. 2005). A pre-processing step that matches the trajectories 

to the road network is needed. This technique is commonly referred to as map matching. Map-

matching algorithms integrate positioning data with spatial road network data (roadway 

centerlines) to identify the correct link on which an observed point is located (Quddus, Ochieng, 

and Noland 2007). Researchers have reviewed multiple map-matching algorithms and their 

corresponding navigation sensors, test environment and accuracy (Quddus et al. 2007). There are 

available software packages that performs map matching as Open Source Routing Machine 

(OSRM). The Open Source Routing Machine or OSRM is a C++ implementation of a high-

performance routing engine for shortest paths in road networks, it also supports map matching. 

Literature indicates its usage by as a map matching tool in academic research context (Yang and 

Meng 2015). Due to its reasonable results and ease of use, it was used to perform map matching 

on the GPS points. A sample of its performance is depicted in  Figure 6. 
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Figure 6-Map-matching comparison for a sample trip 

3.3 Google Maps Directions API  

The Google Maps Directions API is a service that calculates possible routes between given 

locations. It is possible to search for routes using different modes of transportation, including 

transit, driving, walking or cycling. There is evidence in the literature that shows usage of this API 

as a choice set generator in transportation context (Eluru, Chakour, and El-Geneidy 2012). In this 

thesis, this API was used to identify the alternative paths for a walking trip. The results were 

obtained in Encoded Polyline format, which were decoded and transformed to Spatial Reference 

System Identifier (SRID) of Montreal (4326), via PostGIS functions. Figure 7 shows all lines 

derived from Google Maps Direction API. 
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Figure 7 - Choice Set Lines 

The queries of Google Maps Direction API resulted in two or three alternatives for each trip. Those 

trips with three alternatives were considered in the final set. For each alternative, distance, number 

of turns and elevation along sample points were taken. This led to calculating slope on GPS point 

interval. The description of the variables according to alternatives are presented in Table 4. As can 

be seen in this table, the traveled distances range from 284 meters to over 2505 meters, which 

shows a wide variety of pedestrian trips. Additionally, the average slope percentage is almost zero, 

which means that this feature cannot be accounted for in a route choice model. The alternatives 

that have the highest overlap percentage with the revealed path of each choice set were considered 

the chosen alternative. 
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Table 4 - Description of attributes acquired by Google Directions API 

Attribute Mean 
Standard 

Deviation 
Minimum 25% 50% 75% Maximum 

Distance 

(meters) 
1243.14 468.09 284.0 905.75 1155.00 1586.75 2510 

Number of 

turns 
3.99 2.129 0 2 4 5 11 

Average 

Slope 

Percentage 

0.156 2.85 -15.63 -0.930 0.037 1.10 23.548 

 

3.4 Google Street View 

The Google Street View Image API module was used to collect the images along the routes of the 

analyzed trips. Through this module it is possible to query the street view by coordinates, with 

optional parameters of heading and field of view (fov). The heading indicates the compass heading 

of the camera and fov (default is 90) determines the horizontal field of view of the image.  In this 

study, 12 images were queried for each coordinate. This number was chosen to change heading 

twelve times with thirty-degree intervals. This was chosen to ensure validity of tags obtained by 

the CNN Places365 model, which will be further discussed in the following subsection. A sample 

of twelve images acquired by for a coordinate is portrayed in Figure 8. 

 

Figure 8-Sample of images acquired for a coordinate by Google Street View API 
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3.5 CNN Places365 Description 

To calculate scenicness, the images were first transformed to their corresponding tags and later, 

the tags were used to calculate scenic index for each coordinate using scenery. The CNNPlaces365 

model introduced by Zhou et al. was used (Zhou et al. 2017). Images corresponding to coordinates 

obtained by Google Street View were the inputs of the model and the outputs were the tags with 

their probability. An illustration of output of the model for a single image is depicted in Figure 11. 

As seen in this illustration, there is a distinct probability assigned to each scene category. 

According to Zhou et al., this model has an accuracy of 87 percent (Zhou et al. 2017). That is, at 

least one of the scene categories in top five predictions associated with an image is truly the tag 

that a human can identify, so it can be used as a rather reliable source of data. coordinates show 

frequency of unique scene tag over 50 for all coordinates of the study. As seen in this figure, the 

residential neighborhood and street tags are the two most frequent. This was expected because 

images from Google Street View were mainly street image in residential neighborhoods. However, 

there are irrelevant tags associated with each picture as well, which can be eliminated by 

probability ratios. In this thesis, all the probabilities for twelve images with the same tag has been 

summed for each of the coordinates and the top five has been selected as the meaningful tags. As 

shown in Figure 10, the probabilities will change the values and order of tags. For example, the 

second most frequent tag in Figure 10 is parking_garage/outdoor, instead of street. This procedure 

ensured the validity of the tags. 
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Figure 9 -Frequency of unique scene tag for all coordinates 

 

Figure 10 - CNN Places probability of summation 
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Figure 11 - Demo of CNNPlaces 365 Predictions, retrieved 4/17/2018 

3.6 Scenic index calculation 

The final step to calculate scenicness for each coordinate was to employ the Elastic Net model 

proposed by Seresinhe et al. The image tags for each coordinate were the inputs of the model and 

the outputs were the scenic score. However, since there were twelve pictures for each coordinate, 

it was necessary to filter weight the tags that were the most relevant in each coordinate. To this 

end, the summation of probabilities (SP) of each tag for a coordinate were calculated. The top five 

SP values were kept for further calculation. These SP values were used as weights to scenicness 

coefficients reported by Seresinhe et al. [11] illustrates this formulation. The scenic coefficients 

for each tag is shown in Figure 2. The results of this calculation were then averaged for all 

coordinates of each alternative, and the results are illustrated in Table 5.  
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𝑆𝐼𝐶 = ∑ 𝐸𝑁𝐶𝑖 ∗ 𝑠𝑝𝑖

𝑖∈𝑆𝐶

 [11] 
 

Where: 

SIC: scenic index of a coordinate 

SC: set of top five tags associated with a coordinate 

ENC: elastic net coefficient of tag i 

sp: summation of probability of tag i for twelve images  

 

Table 5- First order statistics of the scenic index  

 Mean 
Standard 

Deviation 
Minimum 25% 50% 75% Max. 

Average 

Scenicness Index 
-0.134 0.0636 -0.390 -0.169 -0.127 -0.091 0.114 

Variance of 

scenic index 
0.014 0.024 0.000 0.002 0.006 0.016 0.196 

3.7 Google Places API 

Google Places API is part of Google Maps service, which provides access to information about 

more than 100 million places around the World. These places are, usually, public places like 

touristic attractions, hospitals, and stores, malls, companies etc. There are over a hundred distinct 

places types that was tagged to locations. This API is used for academic purposes as well (e.g. See  

(Ermagun et al. 2017)). 

In this thesis, this service was used to investigate effects of land use on pedestrian route choice. It 

was employed to see whether each place type would show any effect or not. For each alternative, 

sample points were extracted from alternative lines. For each sample point, a radius of 25 meters 

was queried by this API. That is, the place tags in proximity of 25 meters of each point were 

collected. These tags corresponded to macro and micro level land uses. Macro level land uses 

corresponded to a set of micro level land uses. In this thesis, food, residential, health, financial are 

considered macro level tags. For example, the food tag is a macro tag, which consists of restaurant 

and café and food related micro tags. The macro tags are health, food and finance. Figure 12 shows 
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a wide variety of the place tags that are associated to all the path alternatives. The top three are 

food, restaurant and health tags. In this thesis, the question of whether all the land uses have the 

same effect on pedestrian route choice is investigated by considering each of these place tags. As 

shown in this table, most tags can be considered commercial land uses, however; other types of 

place tags, such as public transportation infrastructure like transit_station also had high frequency. 

The tags of the corresponding coordinates of each alternative were used for further analysis. 

 

Figure 12-Frequency of places types over 50 of all alternatives 

3.8 Path Size Factor 

To calculate the path-size factor, the alternatives were split into their constructing points. Then, these 

points were used to create all the links related to alternatives. This procedure was scripted with help of 

PostGIS and Python. Finally, using the formulation presented in Table 7, the path size factor for each 

of the alternatives was calculated. denotes path size (PS) factor formulation characteristics of this 

study. The formulations of the PS factors guarantee a maximum value of zero. When ln(PS) has a value 

of zero, it means that there is no overlap within the choice set. As it is shown in Table 6- Path size 

factor formulation characteristics , the variables are close in the values of mean and standard 

distribution and the maximum is always negative, which means that all paths have at least one 
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overlapped linked. This makes usage of PS factor valuable. It is noticeable that for ln(PS3), 𝜑 was set 

to 14 based on finding of value proposed by Hoogendoorn et al. (Hoogendoorn-Lanser 2005). 

Table 6- Path size factor formulation characteristics 

Variable  Mean Standard  

Deviation 

min 25% 50% 75% Max 

ln(PS1) -0.506 0.219 -1.098 -0.658 -0.490 -0.338 -0.044 

ln(PS2) -0.455 0.245 -1.095 -0.621 -0.453 -0.281 0.087 

ln(PS3) -0.498 0.336 -4.021 -0.694 -0.489 -0.278 0.466 

PS4 -0.072 0.077 -0.484 -0.099 -0.044 -0.018 0 

 

Table 7 - Path size factor formulation summary 

Variable Name Path size Equation Study 

ln(PS1) 
𝑃𝑆𝑖𝑛 =  ∑

𝐿𝑎

𝐿𝑖
𝑎∈Γ𝑖

1

∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛

 (Ben-Akiva and Bierlaire 1999) 

ln(PS2) 
𝑃𝑆𝑖𝑛 =  ∑

𝐿𝑎

𝐿𝑖
𝑎∈Γ𝑖

1

∑
𝐿𝐶𝑛

∗

𝐿𝑗
𝛿𝑎𝑗𝑗∈𝐶𝑛

 (Ben-Akiva and Bierlaire 1999) 

ln(PS3) 
𝑃𝑆𝑖𝑛 =  ∑

𝐿𝑎

𝐿𝑖
𝑎∈Γ𝑖

1

∑ (
𝐿𝑖

𝐿𝑗
)𝜑𝛿𝑎𝑗𝑗∈𝐶𝑛

 (Ramming 2002) 

PS4 
𝑃𝑆𝑖𝑛 =  ∑

𝐿𝑎

𝐿𝑖
𝑎∈Γ𝑖

𝑙𝑛(
1

∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛

) (Bovy et al. 2008) 

  

3.9 Other data sources 

Additionally, the number of signalized intersections for each alternative was calculated. This was 

made possible by using the Traffic lights - all intersections data set of the Montreal data. This 

dataset contains the location of all the traffic lights managed by the City of Montreal. It consists 

of the reference number of the intersection where the light is located, the names of the two streets 

that form the intersection, and the geographic coordinates of the center point of the intersection. 
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This data was imported in imported in QGIS as a layer and number of intersections with each 

alternative was counted. This number was reported as number of signalized intersection for each 

alternative.  

All collected features are shown in Table 14 
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Appendix 
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Table 14-variables of supervised learning models 

. This collected data set consists of geometrical features of alternatives such as distance and number 

of turns, built environment factors such as scenery and place tags and socio-demographic features 

of the trip makers. The details of the modeling procedure are described in Methodology section. 
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4 Methodology 

In this thesis, the two main frameworks are discrete choice modeling and classification models. In 

this chapter, the data processing for each of the models, the frameworks main components and 

determination of hyperparameters of supervised learning algorithms are presented. 

The data was divided in test and training sets. The training data is 85 percent of the data. This data 

composition is used for both modeling frameworks; however, their formats differ. Three model 

groups were built in this study. The first is discrete choice model (Model 1). Then, variables that 

were found important in this setting were used to train supervised classifiers (Model 2). Finally, 

Model 3 was built with all the variables using supervised classification. In Model 3, all micro level 

land uses were used. Table 8 illustrates the data and the variables for all the models. 

Table 8 - Overall introduction to Models and their features 

Model Features 

Discrete choice model (Model 1) Limited 

Supervised learning (Model 2) Limited 

Supervised Learning (Model 3) All 

For all three models, the prediction accuracy was used as measure of performance. Accuracy ratio 

is number of correct predictions to total number of predictions. To ensure validity of the models, 

the accuracy ratio was reported for the test set (see Comparison of models section). In the following 

sections, the details of parameters of each model is described.  

4.1 Discrete choice model 

As discussed in the Literature Review, the path-size logit model is an accepted method for 

analyzing route choice behavior, and therefore, is used in this study as well. The models were 

estimated using Python Biogeme 2.6.a. It is designed to estimate discrete choice models (Bierlaire 

2016). This software package is commonly used in route choice modeling (Grond 2016; Lue and 

Miller 2018). 

To create a discrete choice model, the evaluated variables included:  
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• Geometrical factors: distance, number of signalized intersection, number of turns and slope 

• Scenery variables (maximum, minimum, average and variance scenic index) 

• Macro level land uses: health, financial, food, residential land uses, points of interest 

• User specific variables: age, gender, primary/secondary preferred mode and trip purposes 

• Path size factors 

The values that did not show significance were: number of signalized intersection and slope, all 

though were right-sided. The micro level features were not investigated due to lack of 

interpretability. For example, considering that people have chosen a route just because it has more 

bars may be irrelevant, although a model may indicate as such. Additionally, the interaction of 

user specific variables with other variables were investigated, yet a meaningful relationship which 

also had right sidedness were not found. The variables that were right sided but suffered from 

statistical insignificance were number of signalized intersection and slope. The only path size 

factor that showed importance was ln(PS3). The utility function of the best path size logit model 

is presented in equation [12]. 

𝑈𝑖 =  𝛽𝐷 ∗ 𝐷𝑖 + 𝛽𝑁𝑂𝑇 ∗  𝑁𝑂𝑇𝑖 +  𝛽𝑉𝑆𝐼 ∗ 𝑉𝑆𝐼 + 𝛽𝐹𝐿𝑈 ∗ 𝐹𝐿𝑈 + 𝛽𝑃𝑆 ∗  ln(𝑃𝑆3)𝑖 [12] 

Where:  

D: distance 

NOT: number of turns  

VSI: variance scenic index 

FLU: Food land uses 

ln(PS3): path size factor introduced by Ramming. 

To describe the variables in Table 9, the coefficients and their interpretation are discussed in results 

section. Additionally, introduction of Rho-square and Rho-square-bar is necessary. In discrete 

choice model, the log likelihood at equal shares (null log likelihood) is the same in all the estimated 

models. It describes the value of the log-likelihood function when all parameters are zero, i.e., 

when the alternatives are assumed to have equal probability to be chosen. It is computed as in [13].  
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Table 9 - Discrete choice model (Model 1) results 

Variable Coefficient t-test 

Variance scenic index 15.8 3.61 

Length (per 100 m) -0.637 -3.47 
Food land-use 0.448 3.49 

Number of turns -0.242 -3.69 

ln(PS) 1.26 3.18 
ρ

2of model 0.231  

ρ
2

 of model 0.212  
 

Log Likelihood (equal shares)  = Number of observations ∗  ln (0.5) [13] 

In logistic regression analysis, there is no agreed upon analogous measure, but there are several 

competing measures each with limitations to describe overall goodness of fit of the model.  The 

McFadden rho (ρ2) parameter is one of them and has a value between 0 and 1. Rho-squared is 

computed as equation [14]. 

ρ
2

= 1 −  
 Log Likelihood (estimated model)

Log Likelihood (equal shares)
 

[14] 

The adjusted ρ2, or ρ2, parameter considers the number of parameters included in a model and is 

computed as equation [15].  

ρ
2

 = 1 −
 Log Liklihood (estimated model)

Number of parameters Log Likelihood (equal shares)
 

[15] 
 

This value is reported by Python Biogeme, however, because this metric is not applicable to 

supervised classification techniques, the prediction accuracy is used in this thesis. To find the 

prediction accuracy, the models were simulated for the test set. To elaborate on this, the discrete 

choice model was created with the training set, and the coefficients were obtained. Using these 

coefficients and the test set, the simulations were made by Python Biogeme. The output was a file 

containing probability for each alternative and the choice. The alternative with the highest 

probability is the chosen predicted alternative. If it is the same as the revealed alternative, then it 

is considered as true prediction for a trip. This prediction accuracy is then converted to alternative 

based prediction accuracy to be comparable with the supervised learning models.  
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4.2 Supervised learning models 

In this setting, the data format was changed from wide to long. That is each alternative was an 
instance. There were two sets of features to build machine learning models. The first set was the 
variables that showed significance in discreet choice model (Model 2). The second set consists of 
all variables that were available (Model 3). The details of the second set of features are 
demonstrated in Table 14 
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Table 14-variables of supervised learning models 

. These variables correspond to geographical aspects (number of intersection, distance, etc.), 

scenery, sociodemographic, purpose and land uses, both macro and micro levels. These variables 

are the inputs of the prediction (X matrix). The labels corresponding to each instance were a 

dummy variable, 0 or 1, which showed the instance was a chosen route or not (Y vector). As 

previously stated, the training and testing data were the same for all models. In this thesis, three 

supervised learning algorithms were employed, including Decision Tree (DT), Random Forest 

(RF) and Gradient Tree Boosting (GTB). The models were trained using Scikit-learn package in 

Python programming language, which is one of the most widely used packages in data science 

(Pedregosa et al. 2011). 

For each classifier, there are multiple hyperparameters that can affect the performance of the 

model. Hyperparameters are parameters that are not directly learnt within estimators. Number of 

leaves in a decision tree is an example of hyper-parameters. To find the optimal value for these 

values, which would both increase the performance measure of the model and affect the generality 

of the model, using validation set seems reasonable. Figure 13 shows this data splitting visually. 

However, it would decrease the number of sample size which can be used for training the data. To 

address this problem, cross-validation technique is used. A simple algorithm for this general 

procedure is called k-fold cross validation. In k-fold, the training set is split into k smaller set, then 

a model is trained using 𝑘 − 1 of the folds as training data, and the resulting model is validated on 

the remaining part of the data (i.e., it is used as a test set to compute a performance measure such 

as accuracy). 

 

Figure 13 - Training, validation and test set 

The performance measure reported by k-fold cross-validation is then the average of the 

performance measure of all folds of the data. This approach can be computationally expensive but 
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can be data efficient, which is a major advantage in problem such as inverse inference where the 

number of samples is very small. 

4.2.1 Decision Tree 

The decision tree, like other machine learning algorithms, consist of hyperparameters. To fit a 

decision tree, the hyper parameters, their description and the initial values are described in Table 

11. To find the best parameters, the grid search technique was used. Grid search technique is 

exhaustive search over specified parameter values for an estimator. In another words, all the values 

were tested for each fold of validation set.  The best parameters were selected based on the average 

accuracy over cross validation.  

Table 10- Hyperparameters of Decision Tree 

Hyper parameter Description Values 
Best 

parameters 

Model 2 

Best 

parameters 

Model 3 

max_depth 
The maximum depth of the 

tree.  

Range of 10 to 

500 with 20 as 

steps 
370 110 

min_samples_split 

The minimum number of 

samples required to split an 

internal node 

Range of 1to 

20 with 2 as 

steps 
3 7 

4.2.2 Random Forest  

As already discussed, random forest is an ensemble of decision trees. This model also has hyper-

parameters similar to decision trees. the hyper parameters, their description and the initial values 

are described in Table 11. The grid search technique was applied here to find the best 

hyperparameter values. Additionally, best values are reported in Table 12. 
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Table 11 - Hyperparameters of Random Forest 

Hyper parameter Description Values 
Best 

parameters 

Model 2 

Best 

parameters 

Model 3 

N_estimator 
The number of trees in the 

forest 

10,20,50,100,200, 

400,600,800,1000 400 400 

max_depth 

The maximum depth of the 

tree. If None, then nodes 

are expanded until all 

leaves are pure or until all 

leaves contain less than 

min_samples_split samples 

3,5,10, 20, 30, 40, 

50, 60, 70, 80, 90, 

100, None 
3 100 

min_samples_split 

The minimum number of 

samples required to split an 

internal node 

2, 5, 10, 90 2 2 

min_samples_leaf 

The minimum number of 

samples required to be at a 

leaf node 

1, 2, 4 2 1 

4.2.3 Gradient Boosting Tree (GBT) 

Gradient boosting is another ensemble model employed in this study. This model also has hyper-

parameters similar to Random Forest. Table 12 shows the description of the hyperparameters and 

their corresponding value. The grid search technique was used to find the best hyperparameter 

values. Additionally, best values are reported in Table 12.  

Table 12 - Gradient Tree Boosting Hyper-parameters 

Hyper 

parameter 

Description Values Model 2 best 

parameters  

Model 3 best 

parameters 
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N_estimator The number of boosting 

stages to perform 

200, 400, 

600, 800, 

1000, 1200, 

1400, 1600, 

1800, 2000 

 

600 1400 

max_depth maximum depth of the 

individual regression 

estimators. The 

maximum depth limits 

the number of nodes in 

the tree.  

10, 20, 30, 

40, 50, 60, 

70, 80, 90, 

100, 110 

 

90 40 

min_samples_leaf The minimum number of 

samples required to be at 

a leaf node 

1, 2, 4 1 2 

min_sample_split The minimum number of 

samples required to split 

an internal node 

2, 5, 10 5 10 
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5 Results 

The discrete choice model coefficients and their interpretation are described in this chapter. 

Furthermore, the accuracy of these three models are compared and the effects of different factors are 

assessed as follows.  

5.1 Length 

As expected, the length had a negative coefficient on utility. This result is supported by both intuition 

and literature (Broach and Dill 2015; Guo and Loo 2013). In this study, this parameter was not sensitive 

to neither gender nor purpose of the trip. 

5.2 Number of Turns 

Number of turns is negatively associated with utility, as expected from the literature (Broach and Dill 

2015). An excessive number of turns can cause more decision processing burden for the pedestrian, 

therefore associated with less utility, in contrast, straight lines need fewer decision process, therefore 

more attractive.  

5.3 Scenery 

In this thesis, the scenery was measured in four ways, which were average, maximum and 

minimum and variance of scenic index. The only variable that showed importance were variance 

of scenic index, with a coefficient of 15.4. Additionally, considering user characteristics (trip 

purpose, gender and primary and secondary intern action with scenery did not provide any 

meaningful coefficient, either due to statistical significance or right-sidedness.  

This value indicates that people prefer places with more variation in scenery, which also reflects 

land use mix. More diverse land uses would result in more variance in scenic index. This confirms 

previous findings. Through the studies on walking from the fields of transportation, urban design 

and planning, and public health, it has been suggested that neighborhoods with higher residential 

and employment densities, more connected street patterns, and a variety of destinations show 

higher rate of walking (Cervero et al. 2009). This finding provides a quantitative approach for 

measuring land use mix in a standard way, which can be applied to other places as well.  



56 
 

5.4 Land Uses 

The only macro level land use that showed importance were food related land ones. Other land 

uses such as financial, health and commercial did not show any significance. As previously stated, 

it has been shown in the literature that network density has strong correlation with pedestrian 

activity. Food land uses may indicate network density, which can be the reason why it is positively 

contributing to the utility.  

5.5 Comparison of models 

In this section, the comparison between supervised classifiers and discrete choice model (DCM) 

was done. Machine learning models are derived to reduce the prediction error instead of the 

estimation error, machine learning models outperform discrete choice models on this class 

prediction task. However, they lack model and parameter interpretability, desirable parameter 

properties, and behavioral theory soundness.  There were many features that showed insignificance 

due to structure of discrete choice model, but they may be explanatory in other frameworks. In this 

part, model accuracies are presented in Table 13. It is possible to compare model 1 and model 2, 

because they have the same dataset. As the results show, the DCM model had lower prediction 

accuracy in comparison to other algorithms in model 2. It indicates that supervised learning models 

with same variables can show better accuracy, however they lose explanatory power.  

In model 2, as expected, ensemble methods showed better predictive performance. In other words, 

the DT model showed slightly lower prediction accuracy (lower by 2 percent). To compare model 

2 and 3, as it is seen in Table 13, using more data improved each prediction accuracy of modeling 

frameworks. For example, DT in model 2 has lower prediction accuracy than DT in Model 3. It 

indicates that although some variables showed lack of significance in DCM setting, they contain 

information that can lead to prediction accuracy improvement 

As can be seen in this table, the GTB in model 3 showed the best result. It was expected due to 

advantages of GTB in handling outliers. By comparing this with DCM model, it indicated that by 

using built environment and user specific features with GTB model, it is possible to improve the 

results from 67 to 76 percent, which accounts for 9 percent improvement. This finding is also 
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supported by the literature, that is machine learning frameworks are capable of finding patterns 

that DCMs cannot find (Paredes et al. 2017).  

Table 13- Comparison of accuracy of models 

Model Modeling framework Accuracy 

1 DCM  0.67 

2 

DT 0.72 

RF 0.74 

GTB 0.74 

3 DT 0.73 

RF 0.75 

GTB 0.76 
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6 Summary and Conclusion 

The pedestrian route choice is of interest for researchers to promote sustainability. Additionally, it 

is challenging due to subconscious nature of human choice. This research was conducted to model 

pedestrian route choice in a revealed setting using GPS data. The emphasis in this thesis was to 

better understand the built environment factors and personal characteristics that influence pedestrian 

route choice. Since stated preference studies on pedestrian route choice have shown their importance, 

however, they were not quantified due to complexity of measurement. The built environment is 

characterised by adjacent land use and scenery and their effects were investigated in this thesis. 

This study consists of two main contributions. The first one is investigation of the effect of scenery 

and other built environment factors on pedestrian route choice. This was addressed using image 

recognition and deep learning techniques to estimate a measure for quantifying scenery. 

Additionally, incorporation of micro-level land uses was considered using Google Places API. The 

results showed that built environment factors could influence the pedestrian route choice, 

particularly food related land uses. The variance of scenic index was found to be significant, which 

combines both scenery and land use mix effects. The second contribution is usage of other 

frameworks rather than traditional discrete choice modeling framework to gain computational 

accuracy. This was possible using supervised machine learning techniques. Decision Tree, 

Random Forest and Gradient Tree Boosting were employed. The results showed that ensemble 

methods (Gradient Boosting Trees) showed improvement in prediction accuracy, at the expense 

of lack of interpretability. These models may be a reasonable substitute for the route choice step 

in traditional demand modeling.  

6.1 Future Work 

This thesis sought to measure built environment factors and especially scenery, on the pedestrian 

route choice. The methodology presented in our work is a novel approach to capture pedestrian 

route choice behavior, however additional improvements could be achieved by measuring how 

people interact with their environment. For example, there exists new data collection hardware 

that can track eye movements of people. These tools can be applied to measure how the person 

interacts with the environment visually. This way of measuring is out of context of transportation 
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due to lack of practicality, but it can be investigated if the walking behavior and the factors 

affecting it are part of human behavior studies. 

Another improvement could focus on further enhancing some variables that are shown to be 

significant such as side walk width or weather. This was mainly due to lack of valid data sources 

for these variables. If the data were available, this can be addressed. Similarly, one might improve 

the proposed model by incorporating artificial intelligence frameworks such as reinforcement 

learning and contextual bandits, which are suitable for iterative choice analysis. 
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Table 14-variables of supervised learning models 

Variable Description Values 

travel_mode_study 

A dummy variable indicating primary 
travel mode to work, Values correspond to 

the following respectively: On foot, 
Bicycle, Public transportation, Car, Car 
and public transportation, Other modes, 

Other combinations 

0,1,2,3,4,5,6 

travel_mode_alt_study 

A dummy variable indicating secondary 
travel mode to study, Values correspond to 
the following respectively: not applicable, 
on foot, bicycle, public transportation, car, 
car and public transportation, other modes, 

other combinations 

0,1,2,3,4,5,6,7 

travel_mode_work 

A dummy variable indicating primary 
travel mode to work, Values correspond to 

the following respectively: On foot, 
Bicycle, Public transportation, Car, Car 
and public transportation, Other modes, 

Other combinations 

0,1,2,3,4,5,6 

travel_mode_alt_work 

A dummy variable indicating second travel 
mode to work, Values correspond to the 

following respectively: not applicable, on 
foot, bicycle, public transportation, car, car 

and public transportation, other modes, 
other combinations 

0,1,2,3,4,5,6,7 
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Sex 
Participant gender , Values correspond to 
the following respectively: Male, Female, 

Other/Neither 
0, 1, 2 

age_16_24 A dummy variable indicating whether the 
participant has age between 16 to 24 0,1 

age_25_34 A dummy variable indicating whether the 
participant has age between 25 to 34 0,1 

age_35_44 A dummy variable indicating whether the 
participant has age between 35 to 44 0,1 

age_45_54 A dummy variable indicating whether the 
participant has age between 45 to 54 0,1 

age_55_64 A dummy variable indicating whether the 
participant has age between 55 to 64 0,1 

age_65 A dummy variable indicating whether the 
participant has more than 65 years old 0,1 

purpose_education A dummy variable indicating whether the 
trip purpose was educational 0,1 
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purpose_health A dummy variable indicating whether the 
trip purpose was health 0,1 

purpose_other A dummy variable indicating whether the 
trip purpose was not specified 0,1 

purpose_meal_snack_coffee A dummy variable indicating whether the 
trip purpose was having meal snack coffee 0,1 

purpose_leisure A dummy variable indicating whether the 
trip purpose was leisure 0,1 

purpose_pick_up 
A dummy variable indicating whether the 
trip purpose was to pick up other family 

members 
0,1 

Distance The distance of each alternative in meters float 

duration_seconds The estimated duration of each alternative 
in seconds float 

number_of_turns The number of turns in each alternative integer 

avg_num_places 
Average number of place types in all 

coordinates that correspond to an 
alternative 

float 
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var_num_places 
Variance of number of place types in all 

coordinates that correspond to an 
alternative 

float 

avg_rating_avg 

Average of rating averages, The ratings for 
places provided by Google Places API 

were averaged for each coordinate. Then 
for each alternative, these values were 

averaged 

float 

var_rating_average 

Variance of rating averages, The ratings 
for places provided by Google Places API 
were averaged for each coordinate. Then 

for each alternative, these values variances 
were calculated 

float 

avg_scenic_index 
Average scenic index, The average of 
scenic indices of coordinates of each 

alternative 
float 

var_scenic_index Variance of scenic index, The variance of 
scenic indices of each alternative float 

max_scenic_index Maximum scenic index, The maximum of 
scenic indices of each alternative float 
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min_scenic_index Minimum scenic index float 

sum_scenic_index Summation of scenic index float 

Numpoints Number of signalized intersection in each 
alternative integer 

sum_accout Summation of all accounting land uses in each 
alternative integer 

sum_tags_art_gallery Summation of all art gallery land uses in each 
alternative integer 

sum_tags_atm Summation of all Automated Teller Machine 
land uses in each alternative integer 

sum_tags_bakery Summation of all bakery land uses in each 
alternative integer 

sum_tags_bank Summation of all bank land uses in each 
alternative integer 

sum_tags_bar Summation of all bar land uses in each 
alternative integer 

sum_tags_beauty_salon Summation of all beauty salon land uses in 
each alternative integer 

sum_tags_bicycle_store Summation of all bicycle store land uses in 
each alternative integer 

sum_tags_book_store Summation of all book store land uses in each 
alternative integer 

sum_tags_bowling_alley Summation of all bowling alley land uses in 
each alternative integer 
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sum_tags_bus_station Summation of all bus station land uses in each 
alternative integer 

sum_tags_cafe Summation of all cafe  land uses in each 
alternative integer 

sum_tags_car_dealer Summation of all car dealer land uses in each 
alternative integer 

sum_tags_car_rental Summation of all car rental land uses in each 
alternative integer 

sum_tags_car_repair Summation of all car repair land uses in each 
alternative integer 

sum_tags_car_wash Summation of all car wash land uses in each 
alternative integer 

sum_tags_cemetery Summation of all cemetery land uses in each 
alternative integer 

sum_tags_church Summation of all church land uses in each 
alternative integer 

sum_tags_city_hall Summation of all city hall land uses in each 
alternative integer 

sum_tags_clothing_store Summation of all clothing store land uses in 
each alternative integer 

sum_tags_convenience_store Summation of all convenience store land uses 
in each alternative integer 

sum_tags_courthouse Summation of all courthouse land uses in each 
alternative integer 

sum_tags_dentist Summation of all dentist land uses in each 
alternative integer 
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sum_tags_department_store Summation of all department store land uses in 
each alternative integer 

sum_tags_doctor Summation of all doctor land uses in each 
alternative integer 

sum_tags_electrician Summation of all electrician land uses in each 
alternative integer 

sum_tags_electronics_store Summation of all electronics store land uses in 
each alternative integer 

sum_tags_embassy Summation of all embassy land uses in each 
alternative integer 

sum_tags_establishment Summation of all establishment land uses in 
each alternative integer 

sum_tags_finance Summation of all finance land uses in each 
alternative integer 

sum_tags_fire_station Summation of all fire station land uses in each 
alternative integer 

sum_tags_florist Summation of all florist land uses in each 
alternative integer 

sum_tags_food Summation of all food related land uses in 
each alternative integer 

sum_tags_funeral_home Summation of all funeral home land uses in 
each alternative integer 

sum_tags_furniture_store Summation of all furniture store land uses in 
each alternative integer 
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sum_tags_gas_station Summation of all gas station land uses in each 
alternative integer 

sum_tags_general_contractor Summation of all general contractor land uses 
in each alternative integer 

sum_tags_grocery_or_supermarket Summation of all grocery or supermarket land 
uses in each alternative integer 

sum_tags_gym Summation of all gym land uses in each 
alternative integer 

sum_tags_hair_care Summation of all hair careland uses in each 
alternative integer 

sum_tags_hardware_store Summation of all hardware store land uses in 
each alternative integer 

sum_tags_health Summation of all health land uses in each 
alternative integer 

sum_tags_home_goods_store Summation of all home goods store land uses 
in each alternative integer 

sum_tags_hospital Summation of all hospital land uses in each 
alternative integer 

sum_tags_insurance_agency Summation of all insurance agency land uses 
in each alternative integer 

sum_tags_jewelry_store Summation of all jewelry store land uses in 
each alternative integer 
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sum_tags_laundry Summation of all laundry land uses in each 
alternative integer 

sum_tags_lawyer Summation of all lawyer land uses in each 
alternative integer 

sum_tags_library Summation of all library land uses in each 
alternative integer 

sum_tags_liquor_store Summation of all liquor store land uses in each 
alternative integer 

sum_tags_local_government_office Summation of all local government office land 
uses in each alternative integer 

sum_tags_locality Summation of all locality land uses in each 
alternative integer 

sum_tags_locksmith Summation of all locksmith land uses in each 
alternative integer 

sum_tags_lodging Summation of all lodging land uses in each 
alternative integer 

sum_tags_meal_delivery Summation of all meal delivery land uses in 
each alternative integer 

sum_tags_meal_takeaway Summation of all meal take away land uses in 
each alternative integer 

sum_tags_mosque Summation of all mosque land uses in each 
alternative integer 

sum_tags_movie_rental Summation of all movie rental land uses in 
each alternative integer 
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sum_tags_movie_theater Summation of all movie theater land uses in 
each alternative integer 

sum_tags_moving_company Summation of all moving company land uses 
in each alternative integer 

sum_tags_museum Summation of all museum land uses in each 
alternative integer 

sum_tags_neighborhood Summation of all neighborhood land uses in 
each alternative integer 

sum_tags_night_club Summation of all night club land uses in each 
alternative integer 

sum_tags_painter Summation of all painter land uses in each 
alternative integer 

sum_tags_park Summation of all park land uses in each 
alternative integer 

sum_tags_parking Summation of all parking land uses in each 
alternative integer 

sum_tags_pet_store Summation of all pet store land uses in each 
alternative integer 

sum_tags_pharmacy Summation of all pharmacy land uses in each 
alternative integer 

sum_tags_physiotherapist Summation of all physiotherapist land uses in 
each alternative integer 

sum_tags_place_of_worship Summation of all worship related land uses in 
each alternative integer 
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sum_tags_plumber Summation of all plumber land uses in each 
alternative integer 

sum_tags_point_of_interest Summation of all points of interest in each 
alternative integer 

sum_tags_police Summation of all police land uses in each 
alternative integer 

sum_tags_political Summation of all political land uses in each 
alternative integer 

sum_tags_post_office Summation of all post office land uses in each 
alternative integer 

sum_tags_premise Summation of all premises in each alternative integer 

sum_tags_real_estate_agency Summation of all real estate agency land uses 
in each alternative integer 

sum_tags_restaurant Summation of all restaurant land uses in each 
alternative integer 

sum_tags_roofing_contractor Summation of all roofing contractor land uses 
in each alternative integer 

sum_tags_route Summation of all route tags in each alternative integer 

sum_tags_school Summation of all school land uses in each 
alternative integer 

sum_tags_shoe_store Summation of all shoe store land uses in each 
alternative integer 

sum_tags_shopping_mall Summation of all shopping mall land uses in 
each alternative integer 
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sum_tags_spa Summation of all spa land uses in each 
alternative integer 

sum_tags_storage Summation of all storage land uses in each 
alternative integer 

sum_tags_store Summation of all store land uses in each 
alternative integer 

sum_tags_sublocality Summation of all sub locality in each 
alternative integer 

sum_tags_sublocality_level_1 Summation of all land uses in each alternative integer 

sum_tags_subway_station Summation of all sublocality_level_1 in each 
alternative integer 

sum_tags_supermarket Summation of all supermarket land uses in 
each alternative integer 

sum_tags_synagogue Summation of all synagogue land uses in each 
alternative integer 

sum_tags_train_station Summation of all train station in each 
alternative integer 

sum_tags_transit_station Summation of all transit stations in each 
alternative integer 

sum_tags_travel_agency Summation of all travel agency land uses in 
each alternative integer 

sum_tags_university Summation of all university land uses in each 
alternative integer 

sum_tags_veterinary_care Summation of all veterinary care land uses in 
each alternative integer 
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