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Abstract

Deep 3D Human Pose Estimation under Partial Body Presence

Saeid Vosoughi

3D human pose estimation is estimating the position of the main body joints in the

3D space from 2D images. It remains a challenging problem despite being well studied

in computer vision domain. This stems from the ambiguity caused by capturing 2D

imagery from 3D objects and thus the loss of depth information. 3D human pose

estimation is especially challenging when not all the human body is present (visible)

in the input 2D image. This work proposes solutions to reconstruct the 3D human

pose from a 2D image under partial body presence. Partial body presence includes

all the cases in which some of the body’s main joints do not fall inside the image.

We propose two different deep learning based approaches to address partial body

presence: 1) 3D pose estimation from 2D poses estimated from the 2D input image

and 2) 3D pose estimation directly from the 2D input image. In both approaches,

we use Convolutional Neural Networks (CNN) for regression. These networks are

designed and trained to work under partial body presence but output the full 3D

human pose (i.e., including not visible joints). In addition, we propose a detection

CNN network to detect those joints present in the input image. We then propose to

integrate both regression and detection networks so to estimate the partial 3D human

pose, in addition to the full 3D human pose estimated by the regression network.

Experimental results comparing the performance of the state-of-the-art demonstrate

the effectiveness of our approaches under partial body presence. Experimental results

also show that the direct regression of the 3D human pose from 2D images yields more

accurate estimation compared to having 2D pose estimation as an intermediate stage.
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Chapter 1

Introduction

1.1 Motivation

The purpose of 3D human pose estimation is to enable computers to estimate (recon-

struct) 3D human poses while being fed with 2D imagery [3]. Reconstruction of the

3D human poses from 2D imagery is a prominent field of research in computer vision

[1, 2, 4, 3]. Applications include human-computer interaction, virtual and augmented

reality, and robotics. In spite of the vast study of the subject in the literature, it is

still assumed a challenging problem. This stems from the inherent loss of the depth

information in the 2D images and from image related factors such as blur, noise,

occlusion, etc.

3D pose estimation from 2D images is less challenging while using depth images

captured by the depth sensors. Depth sensors render another channel pertaining to

the distance of the object from the camera aperture; that is, in the rendered images,

there exists some information representing the depth of the objects. On the other

hand, 2D images do not contain any explicit depth information. Such images provide

information on the intensity of the channels (grayscale, RGB, etc.) illustrating the

2D scenery.
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(a)2Dimages

(b)2Dposes

Figure1:Twodifferentinputtypesof3Dhumanposeestimation.

TheHumanVisualSystem(HVS)canperceivedepthfrom2Dimagescombining

eitherstereoormonocularclues[5].Despitetheabsenceofexplicitdepthinformation

in2Dimages,theHVSisnotfullyimpairedofestimatingthe3Dgeometrywhile

havingasingleviewofanobject.ThisperceptionoriginatesfromtheabilityofHVS

totakeadvantageofthevisualmemoryofobjectshapes[6]. ConsideringFigure1

(a)asanexample,theHVScanhaveanunderstandingofthe3Dhumanposebyjust

lookingatasingleview2Dimage.

1.2 ProblemStatement

Theproblemof3Dhumanposeestimationconsistsoftwodifferentformulationsin

termsofinput,whichcaneitherbea2Dimageora2Dposeassumedtobeavailable,

e.g.,extractedusing2Dposeestimationtechniques.Figure1illustratesthesetwo

types.
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3D human pose estimation has been previously studied while assuming the full

presence of the body parts in the input image. Full body presence means the full

shaped human body is present in the image. Here, self-occlusion is excluded, since in

these cases, the body is not partially present and the full shape of the body is present

to the camera. Partial body presence means the body is partially present in the input

image. This can be due to zoom-in photography, imperfect object (bounding box)

segmentation, occlusion, or when the whole skeleton of the subject is not aimed to be

reconstructed (see Figure 2). Figure 3 (a) shows a case of full body presence, while

Figure 3 (b) and (c) illustrate two cases of partial body presence. An example of

partial body presence where the whole subject body is not aimed to be reconstructed

is when somebody is communicating through video call (see Figure 2 (c)) where the

person is often filming oneself in the upper body parts (but not necessarily all of

them).

Assuming the need for 3D human pose estimation (e.g., to be used in augmented

reality), 3D pose estimators should be able to reconstruct the partial body pose from

this partial presence of the body parts. State-of-the-art assume the full presence

of the human body and thus do not have effective performance under these cases.

Figure 3 (d-f) show the performance of the well-known VNect method [1] applied to

the images in Figure 3 (a-c); while going from Figure 3 (a) to (c), the performance

is considerably affected. Partial 3D pose estimation under partial body presence can

also be viewed as a human pose estimation adaptive to the parts of the body present

in the input image and does not make any special assumption about it.

An ability of the HVS is perception of the full body pose when encountering

partial body images. An example is when half of the body’s rigid limbs are absent

from the input. In this case, the humans’ visual perception’s prior about the rigidity

helps reconstruct the full body pose even though some of the body parts are absent.
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(a) Zoom-in photography [7] (b) Imperfect Segmentation (c) Video Calling

(d) Occlusion [7] (e) Zoom-in photography [7]

Figure 2: Examples of partial body presence.

For example, by looking at Figure 3 (b), although the ankles are not present in the

image, the HVS can perceive the full body pose due to its priors about the rigidity of

the legs. State-of-the-art in 3D pose estimation do not estimate 3D full pose under

partial body presence.

1.3 Research Objectives

This thesis is concerned with performing 3D pose estimation on a single person from

a single view and using a single 2D monocular image, without assuming the existence

of 2D poses nor the existence of the full human body in the input image. We assume

that the subject is not intensely absent from the image such that significant pose

information to recover the body pose is lost, for example, when only the legs or

only the shoulder area is present. Figure 4 illustrates examples of not sufficient

4



(a) Full body presence (b) Partial body presence (c) Partial body presence

(d) VNect output for (a) (e) VNect output for (b) (f) VNect output for (d)

Figure 3: Input images with different body parts presence and the output of VNect
[1].

pose information, while Figure 3 illustrates examples of sufficient partial presence

of the pose information in the input. We design and train a deep neural network

(regression network) to regress the full body pose regardless of what joints are present

in the input image. We also design a detection stage consisting of detection networks

corresponding to each of the main body joints (17 in this work) to classify the presence

or absence of the body joints in the fed image. The output of this stage is meant to

determine what joints are present in the input image. Thus, our approach to estimate

3D pose under partial body presence consists of two stages: regression and detection,

and hence the output of our approach is twofold: the regression network outputs

the full pose reconstructed from the input image, and the regression and detection

networks output the body pose for the joints present in the input image.

5



(a)

(b)

Figure 4: Examples of intensely absent pose information.

1.4 Summary of Contributions

The main contribution of this thesis is handling the 3D human pose estimation under

partial presence of the body parts. To this end, this work first introduces a method

to employ deep neural networks to regress the full human body pose based on input

images partially containing the human body. Two different approaches are proposed

for this task, namely, using an intermediate 2D pose estimation stage and direct

regression of the 3D human pose. Secondly, this work proposes a deep detection

stage to classify the presence of each of the joints and provide the body presence

6



vector. Finally, the detection networks are integrated with the regression network

to enable partial estimation of the human pose based on the joints present. Both

joint and separate training of the regression and detection networks is proposed and

experimented in this work.

1.5 Thesis Outlines

The rest of the thesis is organized as follows. In Chapter 2, we present a review

of the background material related to our work. In the first part, we review the

basic concepts and mathematical formulation of 3D human pose estimation. In the

second part, a review of neural networks is presented as well as deep learning and

convolutional neural networks. We also discuss different functionalities of neural

networks, i.e., the regression and classification tasks.

In Chapter 3, we present a review of 3D human pose estimation literature. In this

chapter, the evolution of 3D human pose estimation is discussed as well as the most

related methods to our work.

In Chapter 4, we present the regression network while using a 2D pose estimator

as an intermediate task for regressing the 3D pose. This design consists of a 2D pose

estimation network followed by a network to extract 3D human pose from the 2D

poses. The input to the regression network is a 2D image.

In Chapter 5, we propose a direct 3D human pose estimation architecture using

a deep convolutional neural network which is fed with 2D intensity images. This

Chapter also presents the architectures used to perform the joints’ detection task.

The detection stage is integrated with poses extracted from the regression networks

to form the partial output poses. 1

1A paper based on this chapter has been published in IEEE International Conference on Image
Processing (ICIP) 2018, Athens, Greece [8].
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In Chapter 6, we present and discuss the experimental setup and the performance

evaluation of our method and compare it to the state-of-the-art.

Finally, Chapter 7 concludes this thesis by summarizing the main points and

contributions, and giving directions for further work.

8



Chapter 2

Background Material

2.1 Introduction

In this chapter, we discuss the background material required for our work. In sec-

tion 2.2, we discuss the problem of 3D human pose estimation and its general formu-

lations. In section 2.3, the basic concepts of neural networks will be presented with

focus on deep learning concepts.

2.2 Formulating 3D human Pose Estimation

3D human pose estimation is estimating the position of the body’s main joints in

the 3D space [3] from 2D images. The body joints are the connections between the

bones in a human body. By body’s main joints, we mean the ones which can give

us an overall view of the body skeleton (or pose) by connecting the corresponding

joints. Figure 5 illustrates presenting the pose using the main body joints. Figure 5

(a) is an example of a human image with highlighted joints locations; cross marks

on the figure show the locations of the main body joints. Figure 5 (b) illustrates the

corresponding 3D body pose based on the marked joints. Formulations of 3D human

9



(a) Highlighted joints’ locations (b) 3D body pose based on the marked joints

Figure 5: Human body’s main joints example.

pose estimation differ depending on the input, namely, 2D poses or 2D images. We

discuss these two formulations in sections 2.2.1 and 2.2.2, respectively.

2.2.1 3D Human Pose Estimation Using 2D Pose

The 2D human body pose can be defined as the projection of the 3D pose to the

image plane [9]. The 2D pose practically illustrates the spatial position of the body

joints on the 2D image. Assuming J the number of main body joints, the 2D human

pose matrix W ∈ R2×J is a 2-dimensional matrix in which each column represents

the 2D Cartesian coordinates (x and y) for one of the J main body joints [6, 10, 11].

By defining S ∈ R3×J as the 3D human pose matrix in which each column rep-

resents the 3D Cartesian coordinates (x, y, and z) for one of the j main body joints,

the 3D human pose estimation problem can be formulated as a transformation T

which maps the 2D joints’ coordinates to their corresponding 3D coordinates in the

3D space. Therefore, the estimation of 3D human body pose based on 2D poses can

be basically formulated as

S = T {W}. (1)

10



Different approaches can be employed to obtain the transformation T . One of the

widely-used approaches is minimization of the reprojection error,e.g., in [6]. In this

approach, different projection models may be adopted. Assuming a linear projec-

tion between the 2D and 3D poses and Π ∈ R2×3 as the camera calibration matrix

projecting the 3D pose to the 2D space, the relationship between the 2D and 3D

poses can be stated as

W = ΠS. (2)

The reprojection error is defined as the difference between the actual 2D poses and

the 2D poses extracted by projecting the 3D poses to the 2D space

e = d(W,ΠS), (3)

where d is a distance measure (e.g., mean squared error) and e is the reprojection

error. Therefore, the 3D human pose estimation can be formulated as the following

optimization problem

min
Π,S

d(W,ΠS), (4)

which jointly searches for the best camera calibration matrix Π and 3D pose based

upon minimization of the reprojection error in (3). The cost function (reprojection

error) e in (3) is usually simplified to limit the searching domain by making assump-

tions on the projection type (such as using the weak-perspective camera model in

[6]).

Another effective approach is modeling the 3D human pose as a linear combination

11



of some basis shapes

S =
K∑
i=1

ciBi, (5)

where Bi is one of the K basis shapes and ci is the corresponding weight. This

approach stems from the active shape model [12]. To model the complex variations

more effectively, some methods use sparse representation [2, 6, 13], where an over-

complete dictionary is adopted and S is expressed as a sparse combination of the basis

shapes from the basis shapes’ dictionary. The cardinality term (or similar terms) is

added to the cost function which represents the sum of the weights. This term

regularizes the growth of the weights to address the sparseness of the pose model.

Another widely-used approach for extracting 3D pose estimation from 2D poses is

using discriminative learning approaches. In these methods, a learning-based mapping

between the 2D and 3D poses are learned (e.g., using neural networks) and then it

can be used to make estimations about new queries. In this case, the discriminative

mapping accounts for the transformation T in (1).

2.2.2 3D Human Pose Estimation Using 2D Imagery

A digital image I(x, y) is represented by its gray levels of intensity (I) or its color

components. The image signal is a function of its spatial coordinates in the 2D space

(x and y) where the domain depends on the image size. A color image is represented

by three components, the most important of which are RGB (red, green, and blue)

and HSV (hue, saturation, and value) representations. The gray levels and the color

components are usually presented by a number in the (0,2b) range, where b is the

number of bits used to store each of the image pixels (typically b = 8).

Estimation of the 3D human body pose using 2D images can be formulated [14]

12



as

S = T {I}, (6)

where T is the transformation from the 2D imagery to 3D human poses and S ∈ R3×J

is the estimated human body pose in the 3D space. There exist different approaches

for modeling the transformation T . One approach is to first extract the 2D human

body pose matrix W ∈ R2×J using some 2D human pose estimation technique (e.g.,

discriminative methods) and then, the problem follows the discussions in section 2.2.1

(see [11]). Another approach is to view this problem as a discriminative mapping

between the 2D images and the 3D poses. In this case, poses are directly regressed

from 2D input images [15, 16].

2.3 Artificial Neural Networks

2.3.1 Neurons

Artificial neurons are the basic building blocks of artificial neural networks [17]. They

are inspired by biological neurons in humans’ and animals’ brains which learn struc-

tures by being exposed to different sorts of examples and experiences. Figure 6

illustrates a multiple-input artificial neuron. The input-output relationship for this

neuron can be written [17] as

y = f(n) = f(

p∑
i=1

w1,ixi + b) = f(Wx + b), (7)

where y is the output of the neuron, f is the activation function, b is the bias parame-

ter, W is the weights’ vector, and x is the input vector while assuming the neuron to

have p inputs. As can be seen in Figure 6, a weighted sum of the inputs (where W1,i

13



Figure 6: Multiple-input artificial neuron

is the weight for ith input xi) is added to a bias term b. In the figure, the value ”1” is

the identity element so that the bias term is simply added to the weighted sum of the

inputs. Then, an activation function f takes effect on this summation which results

in the output y. W and b are adjustable parameters which give learning capacity to

the network and the activation function (also called transfer function) is a specific

mathematical linear or non-linear function chosen based on the specifications of the

problem. Some of the most common activation functions are the identity (linear),

binary step, and rectified linear unit functions; these functions are plotted in Figure 7

(a)-(c), respectively.

(a) Identity (linear) (b) Binary step (c) Rectified linear unit (ReLU)

Figure 7: Plots of three common activation functions f(n).
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Figure 8: An example of a multilayer fully-connected feedforward neural network

2.3.2 Multilayer Neural Networks

Neurons can be grouped together to form networks representing more complex models

[18]. Figure 8 illustrates a fully-connected feedforward neural network. Each circle in

this figure represents a single multiple-input artificial neuron (node) as in Figure 6.

This neural network is called a feedforward neural network since each of its neurons

is only connected to neurons from the previous layers (connections between neurons

do not make a cycle). It is also fully-connected as each of the neurons is connected to

all of the neurons from the previous layer. The architecture of the network (number

of layers and nodes and the way they are connected) is determined by the application

and the learning capacity we need. Adding more neurons and layers to the neural

network increases the trainable parameters of the network which may help the learning

capacity provided that we have enough data to train the network.

2.3.3 Neural Networks’ Learning

Learning in the neural networks can be defined as utilizing a set of pre-verified data

to update the model so that the network’s output gets improved, i.e., approaches
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an optimal result. More intuitively, a neural network is learning as the adjustable

parameters of the network (weights and biases) are updated resulting in less error in

the output of the network [17].

A neural network is usually discriminatively trained using the backpropagation al-

gorithm [19]. The first step in the backpropagation algorithm is determining the cost

(loss) function of the network. The cost function depends on the network architec-

ture, activation function, and the type of error chosen for the training stage (based on

the task). Mean squared error and cross-entropy are two examples of the most com-

mon error functions. After determining the cost function, the neurons’ parameters

are initialized which can be done using different techniques, e.g., generating random

values for the parameters. The parameters are then iteratively updated using gradi-

ent methods in which the weights are updated so that the cost function approaches

its local minimum [17]. An iteration is defined as performing backpropagation on a

single data point and backpropagating the error once on the whole training data is

called an epoch. The idea in gradient methods is to modify the parameters in the

opposite direction of the gradient of the output. This approach helps the network

update itself so that the value of the cost function is decreased after each iteration. A

convex cost function C approaches the global minimum using gradient methods. Us-

ing the gradient (steepest) descent method, each of the model weights can be updated

using

wnew
i,j = wold

i,j + ∆wold
i,j = wold

i,j − α
∂C

∂wold
i,j

, (8)

where wi,j is the weight parameter for the ith layer and the jth node, α is the learning

rate, and C is the cost function. Decreasing the gradient of the cost function from

the weights helps update the weights so that the loss is decreased in each iteration.

The learning rate α is a hyper-parameter which determines the steps by which the
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Figure 9: An example of a two-layer feedforward neural network.

network parameters are updated. A large learning rate can make the learning process

unstable since the large steps in the cost function can result in overshooting the

minimum, and thus even not converging to the optimal solution. Small learning rates

mean slower learning speed, and thus the convergence time may be increased. Another

solution for determination of the learning rate is to start with large learning rates

and then decreasing it as we approach the minimum. Therefore, different functions

(which can depend on the number of iterations) can be used for the learning rate, e.g.,

dividing the learning rate by a value after each iteration (or a group of iterations).

The weights for the hidden layers are updated using the chain rule from calculus.

To explain the chain rule in training the neural networks, we assume a network with

2 layers (1 hidden layer and 1 output layer) as shown in Figure 9. Assuming each of

the layers having a single neuron, C the cost function, O2 the output of the output

layer, O1 the output of the hidden layer, and w1,i the weight for the ith input, the

partial derivative of the cost function with respect to this weight is

∂C

∂w1,i

=
∂C

∂O2

× ∂O2

∂O1

× ∂O1

∂w1,i

. (9)
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Thus, this weight can be updated in each iteration using

wnew
1,i = wold

1,i − α
∂C

∂O2

× ∂O2

∂O1

× ∂O1

∂w1,i

. (10)

ADAM [20] is one of the widely used optimization methods for backpropagating

the gradient errors in neural networks, due to its time and memory efficiency. ADAM

method selects separate learning rates for different network parameters based on an

estimation of the first and second moments of the gradients.

2.3.4 Deep Learning

Deep learning methods use models with multiple processing layers each of which

correspond to different levels of abstraction [21]. More intuitively, the idea in deep

neural networks is to use features extracted by each of the layers (which can be

viewed as a level of abstracting the information) as the input to another neural layer

so that we can have higher levels of abstraction. These features differ based on the

application.

In practice, deep neural networks have more than a single layer [22]. These net-

works are trained to find a discriminative representation of the data. The types of

layers in deep neural networks can differ based on the application. Some of the most

famous layer types are feedforward, convolutional, and recurrent neural layers. Using

these layers, different network types are designed based on the application, where

convolutional neural networks (CNNs) are widely used in computer vision.

2.3.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are designed for processing the data coming in

the form of multiple arrays, and thus are appropriate choices for dealing with image
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data [21]. CNNs take advantage of a number of layer types making them a great

fit for many computer vision applications. We introduce the main CNN layer types,

namely, Convolutional and Pooling layers, briefly in the following.

2.3.5.1 Layer Types

Convolutional Layers: a convolutional layer consists of a set of trainable parame-

ters (weights) which are called filter banks. The filter banks do not change spatially

and are kept the same for all inputs of each layer (pixels in 2D images, features in

higher layers). Convolutional layers apply a convolution operation between the input

of the layer and the filter bank. The convolution operation helps extract features

from the input benefiting from local conjunctions of the features in any neighborhood

of the pixels. The feature extraction process directly applied on an image (first layer)

can be considered as a sort of edge detection. In the rest of the layers, the extracted

features correspond to higher levels of abstraction. Sharing the weights (using the

same filter bank for all the inputs of each layer) helps making the extracted features

invariant to position.

The output of the convolution operation is then passed to an activation func-

tion. A widely-used example of the activation functions is the Rectified Linear Units

(ReLUs) expressed as

f(x) = max(0, x), (11)

where x is the input to the function and f(x) is the output of the ReLU function (see

Figure 7 (c)).

When the input to the first layer is a 2D image, the output features are edge-

related as they are weighted summation of input pixels. Features in next layers are

extracted by the convolutional layer itself and are not necessarily known to human
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Figure 10: An example of 2× 2 max-pooling process.

perception.

Pooling Layers: a pooling layer merges semantically relevant features into one.

Max-pooling layers are one of the most popular pooling layers which calculate the

maximum of the pixels’ intensities in a local patch of a feature map (e.g., input

image or output of any of the convolutional layers). For example, considering a 2× 2

max-pooling layer, for any 2 × 2 patch of the input, the maximum value is kept to

represent the whole patch. Therefore, the input will be downsized by a factor of 2 in

each direction. Figure 10 illustrates the process of 2× 2 max-pooling layer.

2.3.5.2 CNN Design

CNNs are usually formed by cascading a few number of convolutional (usually followed

by a nonlinear activation function such as ReLU) and pooling layers. They are then

followed by fully-connected neural networks (also called dense layers). This network

can be then trained by backpropagating the cost function gradients such that all the

weights are trained. Figure 11 illustrates an example of a CNN architecture with one

convolutional layer, one pooling layer, and two fully-connected layers. Different CNN

architectures can be designed using the explained layers depending on the application.

There are a number of useful methods which are used to improve the performance
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Figure 11: An example of a CNN

of CNNs. One of these methods is batch normalization [23]. In training CNNs, the

data is usually fed to the network in groups of data points which are called batches.

The batch size represents the number of data points (images in this work) which are

fed jointly to the network and it is a hyper-parameter chosen based on the available

computational capacity. In batch normalization, any batch is normalized before being

fed to the fully-connected neural layer to prevent change of the input distribution in

the middle of the training process.

Another useful method to enhance the performance of the CNNs is random dropout

of the feature detectors (network parameters) [24]. For example, in a 0.5 dropout,

half of the parameters are randomly removed in each training case. This method -

especially when dealing with small-size datasets - can reduce the possibility of the

overfitting problem by a great amount. Overfitting is a major problem in the learning

process while dealing with small datasets. In overfitting, the network - especially when

the network capacity is high - is so vulnerable to learning the data too closely that
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the learning process can be considered as a sort of memorization. Thus, overfitting

can prevent the network from performing the generalization task effectively.

2.3.5.3 CNN Tasks

The task, for which a CNN is designed, is a dominant factor in the architecture

design of the network. The main two classes of tasks in CNNs are classification and

regression tasks.

Classification: In this set of problems, the network’s output is a label which is

chosen among a limited set of possible outcomes (classes). Image classification is an

example of this task, where a limited number of image classes exists; therefore, any

image is assumed to belong to one of these classes. Detection problems are another

example of the classification task in which the output can take only two values,

namely, ”detected” and ”not detected”. Classification problems with 2 possible labels

are called binary classification problems.

Regression: Regression is the analysis of a quantity of interest using the informa-

tion from one or more other quantities [25]. In regression problems, the network is

designed to predict a real quantity (a continuous value). An example of the regression

task is depth estimation [26, 27] where the input is an image and the objective is to

estimate the depth values for each of the pixels. This depth is a continuous value,

i.e., it is not chosen among a limited set of possible outcomes and can take any value

in the valid range (e.g., positive values in depth estimation). Precipitation prediction

[28] is another example of the regression task; these problems are categorized as a

regression task since the output (precipitation amount) is a continuous quantity.
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Chapter 3

Literature Review

3.1 Introduction

Techniques to human pose estimation [3] have various forms ranging from pose es-

timation for a specific part of the human body to the full body pose estimation

(e.g.[1, 4, 2]). Pose estimation of specific human body parts includes hand pose es-

timation [29, 30, 31, 32], head pose estimation [33, 34, 35, 36], and upper-body pose

estimation [37].

Human pose estimation techniques can be categorized into 2D and 3D pose es-

timation in terms of the dimensionality of the output. 2D pose estimation aims to

find the location of the main body joints on the image plane, i.e., determining the

pixel with the most probability of being the location of some specific body joint. 2D

human pose estimation has been well studied (e.g., [4, 10, 38, 39, 40, 41, 42]). 3D

pose estimation is an active research field [1, 2, 6, 11, 13] but remains challenging due

to the ambiguity caused by the loss of depth information in the usual intensity images

but also due to image related issues such as blur, noise, occlusion, etc. Some meth-

ods use depth images containing explicit depth information for 3D pose estimation

[43, 44, 45, 46].
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The remaining of this chapter is organized as follows. In section 3.2, we discuss

the problem of structure from motion; section 3.3 summarizes literature of 3D human

pose estimation and section 3.4 highlights one of the widely-used approaches, namely,

the discriminative deep learning approach.

3.2 Structure from Motion Methods

Historically, the idea of extracting 3D structures from 2D imagery has been vastly

studied under structure-from-motion (SfM) [47, 48]. SfM is often focused on mapping

2D key points or features to the 3D space. SfM usually follows a 2D key point

detection or feature extraction stage. Some of the well-known feature extraction

methods are scale-invariant feature transform (SIFT) [49, 50] and speeded-up robust

features (SURF) [51].

Tomasi and Kanade in [47] develop a factorization method based on the decom-

position of the input data (2D keypoints/feature) into two different matrices; one

of these matrices correspond to the motion parameters and the other one to the 3D

structure. In [47], the object is assumed to be rigid. Bregler et al. [48] generalize this

method to deformable shapes assuming the deformable shapes as a linear combination

of some basis rigid shapes.

Another class of relevant topics to human pose estimation is objects’ pose esti-

mation and tracking [52] which is usually formulated as matching some key points or

features in a target image with those in new queries (input images). Zhou et al. [6]

present a 3D car model estimation using 2D annotations as well as 3D human pose

estimation.
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3.3 3D Human Pose Estimation Methods

3D human pose estimation outputs an estimate of joints’ 3D positions (or the angles)

using 2D information, which is usually given in terms of either 2D images or joints’

2D locations (2D pose). 3D pose estimation methods based on 2D joints’ location

assume that the 2D joints have been given or already extracted using some 2D pose

estimation technique. They use various techniques such as sparse representation[6,

11], factorization [13], and neural networks[53] to estimate the 3D poses from 2D

poses. Zhou et al. in [6, 11] propose to use a convex approach while using sparse

representation for the 3D human pose estimation from 2D landmarks. The method

in [11] presents a 2D joints’ uncertainty map predictor to handle the cases when

2D joints’ information is not available. Wandt et al. [13] try to factorize 2D poses

in camera parameters, base 3D human poses, and mixing coefficients. They also

show that making periodic assumptions on the mixing coefficients can improve the

performance in 3D human pose estimation. Tekin et al. [54] have introduced some

method to fuse two different streams, one acting on 2D joints information and the

other on the images to extract the 3D pose information. Martinez et al. [53] discuss

different natures of the error between the ground truth and estimated poses while

having a 3D pose estimator with a 2D pose estimator as an intermediate stage; that

is, they compare the results while extracting the 3D pose directly from the ground

truth 2D poses and while regressing the 3D pose from 2D poses extracted by some

off-the-shelf 2D pose estimation techniques.

3D pose estimation methods directly from 2D images can be categorized to those

using a single view for the estimations [55] and those leveraging multi-view imagery[37,

56, 57]. Single-view methods are used for cases in which there is only a single camera

capturing image or video from the scene, and thus its view is the only present in-

formation to estimate the 3D pose. In these methods, even when using the datasets
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providing the data from different viewpoints, frames from each viewpoint are consid-

ered as separate data points and each frame is treated as an individual single-view

image. On the other hand, in multi-view cases, there are a few cameras filming from

different viewpoints. The cases consisting of multi-view are easier to extract the depth

information since, in the single-view, there is more loss of the depth information in

the captured imagery.

3D pose estimation techniques can also be categorized into those estimating the

pose assuming a single person present in the window (e.g., [58]) and those doing the

estimation for multiple people [57].

Another important classification of direct 3D pose estimation methods is those

performing the estimation on a single image(e.g.[15, 55]) as opposed to the ones per-

forming on a sequence of images (video) [11, 14]. Zhou et al. [11] use an expectation-

Maximization algorithm on the whole image sequence. They add a temporal smooth-

ness prior to the penalty (cost) function to take advantage of the existing information

over time. Tekin et al. [14] compensate for the motion to keep the subject centered

and then regress the 3D pose in the central frame directly from a spatiotemporal

volume of bounding boxes.

Another classification of human pose estimation methods is generative and dis-

criminative approaches. Generative approaches use some a priori information to per-

form the estimation and thus include a modeling stage in advance to extracting the

3D poses[59]. An example of these priors is the size of each of the body parts and

their topology as used in [59]. Discriminative approaches are the data-driven model-

free methods which learn a mapping between the input images (also features or 2D

poses) and the desired output(e.g.[15, 55, 60, 61]). The method in [60] leverages a

large database of 3D human motion capture combined with a human model from 3D

computer graphics to generate training pairs of 3D human pose with their realistic
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2D silhouettes. Ning et al. in [61] use the bag of (visual) words approach to discrim-

inatively estimate 3D pose from a 2D image. Deep learning approaches are another

category of discriminative approaches which have been widely used in 3D human pose

estimation.

3.4 Discriminative Deep Learning Approaches

Deep learning is a general concept for learning data representation using deep multi-

layer networks [21] which has drawn significant attention since its early introduction.

Numerous papers have utilized deep learning concepts to address the problem of 3D

human pose estimation[1, 2, 11, 15, 16, 55, 58]. Among these methods, some perform

an initial 2D pose estimation stage and then use that information to estimate the

3D pose[11]. Mehta et al. [1] use 2D pose estimation to locate the subject and thus

do not need tightly cropped windows. Some deep learning methods [15, 16] perform

direct estimation of the 3D poses without any need to regress the 2D pose in advance.

Brau and Jiang [58] perform direct regression of the 3D poses; however, they add a

2D projection layer to enforce pose constraints on the estimated output. Pavlakos

et al. [55] handle the estimation by discretization of the 3D space and regressing

per-voxel likelihood for the joints in the discrete 3D space.

3.5 Most Related Work

To the best knowledge of the author, no publication exists that handles 3D human

pose estimation from 2D images under partial body presence. In this section, we

discuss methods most related to ours. The method [62] estimates the pose partially;

however, it is based on depth sensors and not monocular 2D imagery. The method

in [16] has a detection network as a pre-training stage; however, it still does not take
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into account partial body presence. It also performs joint training of the detection

and regression networks. The detection stage in this work is not the same as ours

in the sense that [16] detects the presence of joints concerning whether or not they

encounter self-occlusion (and not partial body presence as defined in this work).

The methods VNect by Mehta et al. [1] and InWild by Zhou et al. [2] do not

take into account partial body presence; however, they are close to our work as

they perform 3D human pose estimation directly from 2D images using deep CNNs.

VNect method [1] uses a CNN architecture combined with kinematic skeleton fitting

to regress 2D and 3D joints’ locations, jointly; see Figure 12. InWild method [2]

cascades a 2D regression network with a 3D depth regression network to extract the

3D human pose from 2D images; as shown in Figure 13.

Figure 12: The block diagram of VNect method [1].

Figure 13: The block diagram of InWild method [2].
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Chapter 4

3D Pose Regression Based on 2D

Pose Regression from Partial Body

Images

4.1 Introduction

In this chapter, we present our first approach to regress the 3D human pose from

a 2D image using 2D pose regression as an intermediate stage under partial body

(Part2D3D). In this approach, the image is primarily fed to a CNN to regress the 2D

joints’ locations directly from the input images. The following step is to map the 2D

poses to the corresponding 3D poses.

The rest of this chapter is organized as follows: in section 4.2, we present the

architecture used in our network to perform the regression; then, section 4.3 presents

the training details of our method.
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4.2 Proposed Network Architecture

The network architecture in our approach contains two separate networks used for

the two different stages of the 3D pose regression, namely, extracting the 2D poses

and mapping the 2D poses with the corresponding 3D poses. These networks will be

presented in sections 4.2.1 and 4.2.2, respectively

4.2.1 2D Pose Estimation

We perform 2D pose estimation by direct discriminative regression of 2D poses from

2D input images using CNNs. The used CNN is illustrated in Figure 14, where the

input is a single 2D intensity image and the output is 2D human pose, which is a

matrix showing the position of the body’s main joints using 2D Cartesian coordinates.

The network consists of five convolutional layers with kernel sizes of 9×9, 9×9, 5×5,

3×3, and 3×3. The depths of these layers are 128, 256, 256, 128, and 64, respectively.

It also contains three max-pooling layers each of which downsize the input features

by the factor of 2×2. Each of these layers is followed by a batch normalization and a

rectified linear unit. Then, we have two layers of fully-connected feedforward (dense)

layers with 4096 neurons, each followed by a 0.5 dropout and a linear activation

function.

The output of this network is normalized by dividing the 2D coordinates by the

width and height of the input image size (both equal to 150 in this work since the input

to our network is a 150×150 image). This normalization is done on the ground truth

2D poses since we want this network to address 2D pose estimation for partial cases.

In other words, in this step, we assume to have a (hypothetical) full body image,

and we try to extract its (full) 2D pose from the partial body input. Therefore,

although this output has the same nature as 2D human pose, it is not exactly meant

to determine the joints’ locations on the input image. This output gives a normalized
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Figure14:Theproposed2Dposeregressionnetwork.Alloftheconvolutionallayers
arefollowedbyaRectifiedLinearUnit(ReLU). MPindicatesa2x2max-pooling
layer.Thedense(fully-connectedfeedforward)layersattheendofthenetworkare
followedbyalinearactivationfunction.

full2Dpose(inwhicheachofthecoordinatesisanumberbetween0and1),generated

tomakeabasisforextractionof3Dhumanposeinformation.

4.2.2 2DPoseto3DPose Mapping

Themappingfrom2Dposesto3Dposesisperformedusingafully-connectedfeed-

forwardneuralnetwork.Theinputtothisnetworkisthenormalized2Dposeandthe

outputisthe3Dhumanpose.Thisnetworkismeanttolearndifferentbodyposes

byencounteringdifferentscenarios.Thearchitectureconsistsoftwofully-connected

(dense)layersofsize2048.Figure15illustratestheproposed2Dposeto3Dpose

mappingstage.EachofthelayersarefollowedbyaReLUactivationfunction. We

useda0.5dropoutoneachlayertopreventoverfitting.

4.3 TrainingDetails

Thelossfunctionusedfortrainingthenetworksisthemeansquarederror

MSE(ygt,yest)=
1

DJ

J

k1=1

D

k2=1

(ygtk1,k2−y
est
k1,k2
)2, (12)

31



Figure15:Proposed2Dposeto3Dposemappingnetwork;eachofthedenselayers
arefollowedbyaReLUanda0.5dropout.

whereygtandyestareJ×Dmatricescontaining,respectively,thegroundtruthsand

estimatedvaluesofthebodyjoints’locations.Inthesematrices,eachrowrepresents

theCartesiancoordinatesofoneofthebody’smainjoints.Jisthetotalnumber

ofbody’smainjointsandDisthedimensionalityofthecoordinateswhichequals2

forthe2Dextractionnetworkandequals3forthe2Dto3Dmappingnetwork.The

networksaretrainedusingADAMoptimization[20]withalearningrateof0.0001

Wefeedthenetworkwithfullandpartialbodyimages. Tomakesurethatthe

networkiseffectivelytrained,sotomaintainthehumanbodystructure,weprovide

thenetworkwiththefullposes(2Dposesastheoutputofour2Dposeestimatorand

3Dposesfrommapping2Dto3Dposes).Therefore,allthedatathatispresented

tothenetworkrespectsthehumanbodystructure,i.e.,theyarethefullposeofthe

humanbodywhetherornotitisfullypresentintheinputimage.Inotherwords,

thenetworkistrainedusingbothcasesofpartialandfullbodypresenceastheinput

whilehavingthefullbodyposefedasthegroundtruthforbothofthecases.

ExperimentalsetupandsimulationresultsofourapproachPart2D3D,i.e.,3D

poseestimationusing2DposeestimationarepresentedanddiscussedinChapter6.
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Chapter 5

Direct 3D Pose Estimation from

Partial Body Images

5.1 Introduction

In this chapter, we present our method for direct estimation of 3D human poses under

partial body presence (Part3D). It consists of a regression CNN network to regress

the 3D human pose directly from 2D input images under partial body presence and

a detection CNN network to detect the joints present in the input image. Figure 16

illustrates an overview of our proposed method having two different outputs. The

first output is the 3D full body pose extracted by the regression network, where the

input image can contain the body parts either fully or partially. The second output

is the 3D partial body pose generated by integrating the regression and detection

networks. As the detection networks are meant to determine the joints present in

the input image, this output is the partial pose resulting from the 3D location of the

joints present in the input image.

The rest of this chapter is organized as follows: in section 5.2, we present the

architectures used in our regression and detection networks; then, section 5.3 presents
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Figure16:Anoverviewoftheproposedmethod.

thetrainingdetailsofourmethod.

5.2 NetworkArchitecture

5.2.1 RegressionNetwork’sArchitecture

Theproposedregressionnetworkregressesthebody’sjoints’locationsinthe3Dspace

forallthejoints-regardlessofwhetherornotitisfedwithanimagecontainingthe

fullsubjectbody.Figure17illustratestheCNNsusedfortheregressionstage. As

seen,thenetwork’sinputisa3-channelimage. Theinputimageisfirstresizedto

150×150.Theinputisthenfedtotheconvolutionallayers.Ourregressionnetwork

consistsoffiveconvolutionallayersandtwofully-connectedfeedforwardlayers,the

detailsofwhichareasfollows.

Layer1:thislayerconsistsofaconvolutionallayerofsize128witha9×9kernel

followedbyaRectifiedLinearUnitastheactivationfunction.

Layer2:thislayerconsistsofaconvolutionallayerofsize256witha9×9kernel.The
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Figure17:The3Dposeregressionnetwork;Alloftheconvolutionallayersarefollowed
byaRectifiedLinearUnit(ReLU);thedenselayersattheendofthenetworkare
followedbyalinearactivationfunction. MPindicatesa2x2max-poolinglayer.

activationfunctionistheRectifiedLinearUnitandisfollowedbya2×2max-pooling

layerwhichresizestheoutputfeaturesfrom150×150to75×75.

Layer3:thislayerconsistsofaconvolutionallayerofsize256witha5×5kernel

andaRectifiedLinearUnitactivationfunction,followedbya2×2max-poolinglayer

whichresizestheoutputfeaturesfrom75×75to37×37.

Layer4:thislayerisaconvolutionallayerofsize128witha3×3kernel,anda

RectifiedLinearUnitactivationfunction,followedbya2×2max-poolinglayerwhich

resizestheoutputfeaturesfrom37×37to18×18.

Layer5:thislayerisaconvolutionallayerofsize64witha3×3kernel,followedby

RectifiedLinearUnitastheactivationfunction.

Layer6: thisisafully-connectedfeedforwardlayerofsize4096thatisfedwith

featuresextractedbythe5thlayerafterbeingflattened,i.e.,theoutputoftheprevious

layerisconcatenatedandconvertedtoavector.Theactivationfunctionofthislayer

isalinearactivationfunction.

Layer7:thisisafully-connectedfeedforwardlayerofsize4096;itsoutputisavector

ofsize51whichpresentsthepredicted3Dlocationsofhumanbody’smain17joints.

Itisfollowedbyalinearactivationfunction.

Alloftheconvolutionallayersarefollowedbyabatchnormalizationlayerto

increasethestabilityofthelearningprocess.Eachofthefeedforwardlayersisfollowed
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bya0.5dropoutregularizationtopreventoverfitting.

5.2.2 DetectionNetworks’Architecture

Theproposeddetectionstageclassifiesthepresenceorabsenceofeachofthehuman

body’smainjoints.Itsoutputisabinaryvectorofsize17indicatingpresenceor

absenceofthejointsintheinputimage.Thedetectionstageincludes17detection

networks,eachofwhichclassifiesthepresenceorabsenceofoneof17mainbody

joints. Figure18illustratesthenetworkarchitectureforeachofthe17detection

networks. Asseen,adetectionnetworkconsistsof2convolutionallayersandone

fully-connectedfeedforwardlayerasfollows,wheretheinputisa2Dinputimage.

Figure18:Theproposeddetectionnetwork. Theconvolutionallayersarefollowed
byaRectifiedLinearUnit(ReLU). MPindicatesa2x2max-poolinglayer. The
feedforwardlayerisfollowedbyasoftmaxactivationfunction.

Layer1:thisisaconvolutionallayerofsize32witha9×9kernel,followedbya

RectifiedLinearUnitastheactivationfunction.A2×2max-poolinglayerfollows

whichresizestheoutputfeaturesfrom150×150to75×75.

Layer2:thisisaconvolutionallayerofsize32witha9×9kernel,followedbya

RectifiedLinearUnitactivationfunction.Itisfollowedbya2×2max-poolinglayer

whichresizestheoutputfeaturesfrom75×75to37×37.

Layer3:thisisafully-connectedfeedforwardlayerofsize64thatisfedwithfeatures
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extracted by the 2nd layer after being flattened. The activation function is a softmax

activation function. The softmax function is defined as

f(xi) =
exi∑k
j=0 e

xj

i = 0, 1, ..., k, (13)

where xi is the input of the softmax function, and f is the output. k is the number

of classes which is equal to 2 in this case, where k = 0 represents the ”absent” class

and k = 1 represents the ”present” class. Therefore, this layer has a binary output

classifying the presence or absence of the corresponding body joint in the input image.

Both of the convolutional layers are followed by a batch normalization layer and

the feedforward layer is followed by a 0.5 dropout regularization to prevent overfitting;

this network is not much prone to overfitting considering its size, however.

5.3 Training Details

We used the mean squared error as in (12) as the loss function of our regression

network. The cost function we used for the detection networks is the cross-entropy

CEj = −[θjlog(pj) + (1− θj)log(1− pj)], (14)

where CEj is the cross-entropy for the jth data point (joint), θj is 1 if the joint is

present in the input and 0 if not, and pj is the probability by which the network

has estimated the joint to be present. The optimization technique for the purpose of

training the networks is ADAM optimization [20].

We have tested two different approaches to train the regression and detection

networks. The first approach is joint training, in which the networks are combined

and trained simultaneously. The second approach is to train the networks separately.

These two approaches are explained in the following.
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5.3.1 Joint Training

In the joint training approach, the regression and detection networks are assumed

to be combined together, and thus only a single cost function is defined for the

whole network. The cost function is a weighted sum of the individual cost functions.

Therefore, the overall cost function of the joint training network Ct is defined as

Ct = αCreg + β

J∑
j=1

Cdet
j = αMSE + β

J∑
j=1

CEj (15)

where Creg is the cost function of the regression network (mean squared error) as in

(12), Cdet
j is the cost function of the detection network (cross-entropy) corresponding

to the jth body joint as in (14), and J is the number of main body joints. In this

equation, α and β are the cost function weights of the regression and the detection

networks in the overall cost function, respectively. α and β are hyper-parameters

determining the impact of their corresponding cost functions on the overall cost func-

tion. We set α = 1 and β = 0.1, where all the 17 detection networks share the same

weight.

We have used the same feature extraction process for the regression and detection

networks in this approach; that is, we have kept the convolutional layers for all of the

networks and the networks differ only in their fully-connected layers. We used the

convolutional layers from the regression network since they are deeper and have more

computational capacity. Figure 19 shows the joint regression and detection network.

We used a learning rate of 0.0001 (which is set experimentally by trying different

values and monitoring the convergence of the network) and a batch size of 32. The

weights are initialized randomly, and the data is shuffled before every epoch. By

shuffling the data, we mean reorganizing the data points randomly so that they are

fed to the network in a different order for every epoch.
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Figure19:Jointregressionanddetectionnetwork.

5.3.2 SeparateTraining

Inthisapproach,thedetectionandregressionnetworksaretreatedastwocompletely

separatenetworks. Therefore,foreachofthem,thenetworkisinitialized,trained,

andfine-tunedseparatelyasanindividualnetwork. Weusedalearningrateof0.0001

forboththeregressionandthedetectionnetwork.Thebatchsizefortheregression

network’strainingis32whilethebatchsizeforthedetectionnetworks’trainingis

256. Havinggreaterbatchsizesusuallyhelpsthenetworkconvergemorerapidly.

However,becauseofthelimitationofthecomputationalinfrastructurewecouldnot

usegreaterbatchsizefortheregressionnetwork(notingthattheregressionnetwork

hasmuchmoretrainableparametersthanthedetectionnetwork).Theweightsare

initializedrandomly,andthedataisshuffledbeforeeachepoch.

Theregressionnetworkistrainedbyfeedingthefullposeasthegroundtruth

outputofthenetworkwhilegivingbothfullandpartialbodypresencecasesasthe

input. Thisapproachisadoptedtoenablethenetworktolearnthewholehuman
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body structure and enable the network to make full body estimations (although not

accurate for all the body joints) under both the full and partial body presence cases.

The experimental setup and the simulation results of our method Part3D for direct

estimation of the 3D human pose from a partial body input image are presented and

discussed in Chapter 6.
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Chapter 6

Experimental Setup and Results

6.1 Introduction

In this Chapter, we provide and discuss the experimental setup and the results of our

methods presented in Chapter 4 and 5. In section 6.2, we present the experimental

setup for our work; in section 6.3 we discuss the evaluation protocol; then, section 6.4

presents and discusses the simulation results of our methods.

6.2 Experimental Setup

The network architectures have been selected experimentally by evaluating the per-

formance of different architectures. We have started with a network having a single

convolutional layer as well as a single dense layer. Then, we added more layers (with

different depths and kernel sizes) and evaluated the performance of the new network.

Each layer was added only if it improves the performance. This process is stopped

when a layer either does not improve the network performance or makes the network

excessively large such that the training or predicting process gets very slow.

Since we have employed three different approaches for the regression network,
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the network architecture design has been performed only for the first network (we

started with direct pose estimation with separate training). We started with one

convolutional layer and went up until 7 convolutional layers. For other two, we used

the same convolutional layers and only tested the network with one more and one

less layer to evaluate the effectiveness of our architecture. For the detection network,

we tried 1 to 5 convolutional layers. The experimentations showed that having more

than 2 layers does not improve the performance considerably; it reduces the efficiency,

however, as we have 17 detection networks.

We use the Human3.6M dataset [63] to assess the performance of our methods.

The Human3.6M dataset is a widely-used 3D human pose estimation dataset and

includes 3.6 million frames in video sequences of frame size 1000 × 1000 on seven

subjects, and each subject performs 15 different actions (e.g., Directions, Discussion,

and Eating) while being filmed from four different viewpoints. We have used five

subjects (i.e., S1, S5, S6, S7, and S8) for training and two subjects (i.e., S9 and S11)

for testing. We have assessed our methods on all of the scenarios of the selected

subjects.

To provide the networks with partial body images, firstly, we segment the subject

in each of the original images using the bounding boxes provided in the dataset;

that is, we draw a square region fully covering the subject body. Then we store two

different images each of size 150×150: 1) the segmented image which accounts for the

full body case and 2) the corresponding partial body version which is generated using

a random window selection approach. Therefore, we have equal size of full and partial

body presence cases as the input. In other words, for any full body presence case,

there exists a case of partial body presence, both of which share the same subject and

3D full pose. We have used 150 × 150 input images since using this dimensionality,

we did not need to upsample many of the images, and thus we could use input images
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(a) (b) (c)

Figure 20: Example of our random window selection method: (a) an original image
from the dataset; (b) image with perfectly segmented subject; (c) a randomly selected
window.

with the original quality.

To generate partial body images (windows), we use a random window selection,

where the top-left and bottom-right corners of the window are selected randomly with

a uniform distribution. This is to make sure we have different cases of partial body

presence cases generated among our new set of data. To ensure that sufficient joints

exist in the input image, i.e., the image is not intensely cropped that it is not possible

to extract pose information from the image, the randomly cropped window size must

be larger than a quarter of the original image. Figure 20 illustrates an example of

this random window selection: Figure 20 (a) is an original image from the dataset,

Figure 20 (b) is the square bounding box drawn around the subject, and Figure 20

(c) is an example of a randomly selected window.

For training, using our above-mentioned random selection of windows, we ex-

tracted two windows from each of the video frames of the training set in [63] and one

window from each of the video frames of the validation (test) set. In total, we have

used 623,900 extracted windows for training and 548,819 for testing. The ground

truth 3D poses and 2D poses are provided in the dataset. We have downsampled

the video frames by a factor of five, before the random window selection, to avoid
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Figure 21: The main body joints used in this work.

redundancy in the training and each video frame is treated as an independent data

point. The processing time of every epoch on the whole training data using a Titan

Xp GPU was approximately 6 hours for the regression network and 30 minutes for

the detection networks and the processing time for every new test image in valida-

tion stage was approximately 1∼2 seconds for the regression network and less than 1

second for the detection networks.

In this thesis, we assume 17 joints as the main body joints to form the human

body pose. Figure 21 shows and indexes the main body joints used in our method and

Table 1 lists these joints. One can use the same architecture with different number

of the joints, however, since the features extracted for different number of joints do

not seem to vary, and thus changing the number of the body joints should not much

affect the performance.

To prepare the output for the detection network, we need to generate the joints’
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existencevectorwhichisavectorofsize17. Eachoftheelementsofthisvector

isabinaryvaluewhichis1ifthecorrespondingjointispresentintheimageand

0ifnot. Thedatasetdoesnotprovidethisdata. Toextractthesebinaryground

truthnumbers,weusethedatafrom2Dposegroundtruthwhichareprovidedin

thedataset. The2Dposegroundtruthdeterminestheexactlocationofeachof

thejointsintheimageplane. Aftereachrandomwindowselection,allthejoints’

coordinatesarecomparedtotheselectedwindowtoseeifthejointfallsintothe

chosenwindow. Usingthiscomparison,the17binaryvaluescorrespondingtothe

main17bodyjointsaredeterminedandusedasthegroundtruthtothedetection

stage.Figure22illustratestheprocessofjoints’existencevectorgeneration.

Figure22:Theprocessofjoints’existencevectorgeneration.

6.3 EvaluationProtocol

TheperformanceassessmenttakesplaceonthelasttwosubjectsoftheHuman3.6M

dataset(S9andS11)whichweuseforvalidation.Toevaluatetheperformanceofthe
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regression stage, we use the mean-per-joint-error (expressed in millimeter)

L(ygt, yest) =
1

J

J∑
j=1

||Cygt
j − C

yest
j ||2, (16)

where ygt is the ground truth joints’ position matrix, yest is the estimated joints’

position matrix, || · ||2 is the Euclidean norm, C
ygt
j is the vector of the jth column of

the matrix ygt, C
yest
j is the vector of the jth column of the matrix yest, and J is the

number of the joints (either J = 17 for full body pose or J = J ′, where J ′ is the

number of joints present). The mean-per-joint-error L(·) in (16) is calculated after

aligning the root joint (a joint assumed as the reference; pelvis in this work); that

is, the locations of the root joints of the ground truth and the estimated poses are

aligned. We have calculated L(ygt, yest) both on the full body skeleton (J = 17) and

the joints which are present inside the window (J = J ′). These two measurements

are used to assess the performance of our methods for the two different outputs; that

is, the full body pose estimation and the partial body pose estimation (the joints

present in the input image). We present these errors both on the individual scenarios

and on the whole dataset.

The detection stage is evaluated separately for each of the body joints. As the

evaluation measure, we use the binary accuracy which is the percentage of the detec-

tions in which the presence or absence of the corresponding joint has been successfully

detected; this metric can be formulated as:

ACC =
Number of true detections

Number of detections
. (17)
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6.4 Simulation Results

We compare our methods to two of the state-of-the-art, namely, ”VNect” method

[1] and the ”InWild” method [2]. The authors provide their trained networks and

open-source code for experimentation. Since we need to assess the methods with the

data prepared for the partial body presence cases, we need open-source methods for

comparison.

6.4.1 Objective Evaluation

To asses the results from the regression task, we present the outputs for our methods

as well as their comparison with VNect [1] and InWild [2] methods. The results of

our methods are presented for the 3 different approaches used in this work; namely,

3D pose regression using 2D pose estimation (Part2D3D), direct 3D pose estimation

with joint training of the regression and detection networks (Part3D), and direct 3D

human estimation with separate training (Part3Ds). The outputs to be discussed

are the ”full pose estimation from full body presence”, ”full pose estimation from

partial body presence”, and ”partial pose estimation from partial body presence”.

The results with these three outputs are summarized in Table 2 and detailed based

on the 15 scenarios of the Human3.6M dataset in Tables 3, 4, and 5, respectively.

Table 2 summarizes the performance of our and related methods. It shows promis-

ing performance of our method compared to related work; our method well recovers

part of the joints not present in the input. It is also noteworthy that our three ap-

proaches have very close overall performance. This can be interpreted by considering

the fact that all three networks have the same architecture in terms of the convolu-

tional layers. This causes the networks to have similar feature extraction stages and

also their learning capacity to be very close to each other. The difference between

them stems from the difference in the nature of their specific training process, where
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they take advantage of 2D pose information, 3D pose information, or 3D pose infor-

mation as well as joints’ presence data. Considering their difference in Table 2, we

can see that, among the three approaches adopted in this work, 3D pose estimation

with separate training of regression and detection networks has the best performance.

This can be interpreted by considering the fact that the feature extraction stage of

this approach is only dedicated to the regression task (and not shared with the detec-

tion task as in joint training). Therefore, among these experimentations, the direct

regression being separately trained is proposed as the main approach of this work.

The approach employing the 2D intermediate stage has the worst performance among

our approaches. This can be explained by noting the fact that while having a 2D in-

termediate stage, there are two different sources of error (i.e., 2D pose estimation

error and mapping error) being added, and causing a more overall error in the 3D

pose estimation.

Table 4 and 5 show the state-of-the-art are ineffective under partial body presence

in the input images (for all 15 scenarios). This is since they are not designed and

trained for these sets of queries. In other words, when these networks are fed with

an input image partially containing the human body, they search for the full body

parts, and thus they fail to use the information present in the image.

As can be seen in Table 3, the state-of-the-art methods have a better performance

on the 3D human pose estimation while having full body presence cases in the input

images. This is due to different nature of these methods with ours which aims to

estimate the 3D human pose based on various cases of body presence and is robust

to absence of body joints (which is unknown in general) in the input images.

Figure 23 illustrates the comparison of the learning rates of the separate and joint

training approaches for the direct estimation of the 3D human pose. This figure shows

the test (validation) error after different epochs. As can be seen, the separate training
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Figure 23: Estimation of learning rates for separate and joint training.

approach has better performance as well as more rapid convergence.

Table 6 presents the data for the performance of the detection stage for the 17

main human body joints as well as the average. This performance is measured using

binary accuracy as discussed in (17) and expressed in percentage. The results are

presented for both joint training and separate training of the detection stage. As can

be seen in the table, the network being trained jointly with the regression network has

a performance similar to separately trained networks. The joint training provides the

network with more training information, i.e., it shares the detection information with

the regression network and vice versa. However, we see that it does not necessarily

improve the performance of the networks. This can be due less learning capacity

which is caused by sharing the convolutional layers between regression and detection

networks. In other words, in this approach, there is a single feature extraction stage

for all the networks, and thus there exist trainable parameters compared to separate

training of the networks.
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6.4.2 Subjective Evaluation

We present the subjective evaluation of our method (Part3D)1 and related work in

Figure 24. These results show the complete failure of the state-of-the-art under partial

body presence.

Input Ours (Part3D) VNect [1] InWild [2]

Figure 24: Subjective results under partial body presence.

Figure 25 presents some examples of our method’s performance under full body

presence for subjects 9 and 11 of the Human3.6M dataset. Figure 26 and Figure 27

present the subjective evaluation of our method under partial body presence for sub-

ject 9 and 11 of the Human3.6M dataset, respectively. These figures show the sub-

jective effectiveness of our method for partial body presence cases.

6.4.3 Discussion

As can be seen in Table 3, 4 and 5, the performance of our methods is different for the

different actions (scenarios). Figure 28 illustrates the average of full pose estimation

from full body presence and partial pose estimation from partial body presence for

different scenarios using direct pose estimation with separate training (Part3Ds). As

1A demo of our work (direct estimation with separate training) is under
https://users.encs.concordia.ca/∼amer/Part3DPose/Partial3DHumanPose mp4.avi

50

https://users.encs.concordia.ca/~amer/Part3DPose/Partial3DHumanPose_mp4.avi


can be seen, the ”smoking” scenario has the highest error, which shows generalizing

from the training set to the validation set is more challenging for this scenario.

A shortcoming of our method compared to related work is its performance under

full body presence. However, even though Table 3 shows that on average each joint is

being estimated 16 centimeters further from its true value, our subjective inspection

yield that our method is effective in following the human body structure; this means

it does not make meaningless estimations in its failure cases under full body presence.

A challenging case for our method is when there are not sufficient body parts

present in the input image, and thus not enough information exists to help reconstruct

the 3D human pose; an example is in Figure 29; although we have followed our

constraint in the random window selection (having windows larger than a quarter of

the original window), there is not enough body parts in the input image to regress

the human pose and estimate its orientation effectively.
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Joints Name

1 Pelvis

2 Right Hip

3 Right Knee

4 Right Ankle

5 Left Hip

6 Left Knee

7 Left Ankle

8 Neck Back

9 Head Back

10 Head Front

11 Neck Front

12 Right Shoulder

13 Right Elbow

14 Right Wrist

15 Left Shoulder

16 Left Elbow

1v Left Wrist

Table 1: List of human body’s main joints; the joints’ numbering follows the indexes
in Figure 21.
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Method
Full Estimation
from Full Body

Input

Full Estimation
from Partial
Body Input

Partial Estima-
tion from Par-
tial Body Input

Ours-with 2D
(Part2D3D)

167.09 210.17 188.83

Ours-
direct/joint
(Part3D)

166.41 200.33 180.32

Ours-
direct/separate

(Part3Ds)

160.69 191.81 177.82

VNect 80.5 396.44 338.01

InWild 64.90 400.50 332.48

Table 2: Overview of joints’ regression stage on Human3.6M dataset measured on the
whole dataset for all tested methods (mean-per-joint-error in mm). Lowest error is
bold and second lowest underlined.
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Scenario InWild
[2]

VNect
[1]

Ours
with 2D

(Part2D3D)

Ours
Direct/Joint
(Part3D)

Ours
Direct/Separate
(Part3Ds)

Directions 54.82 62.6 170.11 163.54 154.14

Discussion 60.70 78.1 174.32 154.37 155.45

Eating 58.22 63.4 145.43 151.22 142.27

Greeting 71.41 72.5 163.87 144.74 142.55

Phone
Call

62.03 88.3 149.93 166.18 153.55

Posing 65.53 63.1 196.89 179.07 174.76

Purchases 53.83 74.8 152.19 137.76 132.49

Sitting 55.58 106.6 201.40 170.74 178.95

Sitting
Down

75.20 138.7 176.01 203.82 192.76

Smoking 111.59 78.8 225.80 264.46 254.62

Taking
Photo

64.15 93.8 147.40 159.60 150.31

Waiting 66.05 73.9 159.64 144.25 146.12

Walking 51.43 55.8 187.88 180.06 176.92

Walking
Dog

63.22 82.0 135.00 131.13 127.35

Walking
Together

55.33 59.6 153.02 149.42 139.82

Total 64.90 80.5 167.09 166.41 160.69

Table 3: Average mean-per-joint-error of full body pose estimation based on full
body images from Human3.6M dataset in mm. Lowest error is bold and second
lowest underlined.
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Scenario InWild
[2]

VNect
[1]

Ours
with 2D

(Part2D3D)

Ours
Direct/Joint
(Part3D)

Ours
Direct/Separate
(Part3Ds)

Directions 491.17 370.07 215.01 187.13 178.92

Discussion 473.96 389.39 228.94 195.49 190.57

Eating 480.61 402.73 175.38 178.84 168.69

Greeting 497.63 387.13 213.98 187.26 178.11

Phone
Call

463.24 396.00 179.17 185.60 173.53

Posing 506.48 425.14 251.03 223.71 216.72

Purchases 488.37 376.01 202.73 173.50 163.21

Sitting 494.55 418.73 239.15 215.24 210.59

Sitting
Down

470.45 436.89 210.31 234.94 222.52

Smoking 456.14 460.92 274.28 297.52 296.61

Taking
Photo

457.41 385.29 184.35 188.93 176.24

Waiting 471.57 372.12 204.63 177.27 172.82

Walking 483.46 409.19 244.83 229.11 225.63

Walking
Dog

456.84 344.36 178.20 168.40 157.21

Walking
Together

486.74 370.92 192.36 183.44 170.54

Total 400.50 396.44 210.17 200.33 191.81

Table 4: Average mean-per-joint-error of full body pose estimation based on partial
input images from Human3.6M dataset in mm. Lowest error is bold and second
lowest underlined.
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Scenario InWild
[2]

VNect
[1]

Ours
with 2D

(Part2D3D)

Ours
Direct/Joint
(Part3D)

Ours
Direct/Separate
(Part3Ds)

Directions 428.02 285.16 187.59 163.53 161.17

Discussion 428.94 330.79 210.28 178.58 180.69

Eating 433.95 348.60 151.95 158.90 153.80

Greeting 433.13 303.43 180.85 156.42 154.04

Phone
Call

418.55 342.34 163.84 170.35 164.97

Posing 451.79 339.57 212.32 184.57 183.27

Purchases 423.92 292.78 171.83 144.67 141.08

Sitting 457.83 371.41 227.27 203.38 205.00

Sitting
Down

428.93 392.29 183.01 207.33 201.72

Smoking 435.88 428.91 250.58 272.21 276.12

Taking
Photo

411.69 338.94 172.66 177.21 171.16

Waiting 418.09 305.38 182.46 156.80 157.35

Walking 443.44 361.72 228.43 215.32 216.72

Walking
Dog

399.03 290.22 166.14 160.05 154.15

Walking
Together

430.66 304.13 175.54 168.76 160.89

Total 332.48 338.01 188.83 180.32 177.82

Table 5: Average mean-per-joint-error of partial body pose estimation based on
partial input images from Human3.6M dataset in mm. Lowest error is bold and
second lowest underlined.
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Joint Ours
Joint Training

(Part3D)

Ours
Separate Training
(Part3Ds)

Pelvis 92.50 92.55

Right Hip 90.46 90.25

Right Knee 86.81 84.67

Right Ankle 86.47 85.65

Left Hip 90.87 91.04

Left Knee 86.61 83.72

Left Ankle 85.68 85.64

Neck Back 93.17 93.13

Head Back 90.82 89.64

Head Front 94.83 94.88

Neck Front 93.11 91.33

Right Shoulder 90.49 90.13

Right Elbow 83.23 90.69

Right Wrist 77.75 80.51

Left Shoulder 91.64 89.25

Left Elbow 85.23 84.10

Left Wrist 80.30 70.10

Average 88.23 88.00

Table 6: Results of joints’ detection stage on Human3.6M dataset measured using
binary accuracy (percentage) as in (17). 57



Figure 25: Subjective results of our method (Part3D) under full body presence.
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(a) Input (b) Estimated Full Body
(c) Estimated Present

Joints

Figure 26: Subjective results of our method (Part3D) under partial body presence
for subject 9 of the Human3.6M dataset.
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(a) Input (b) Estimated Full Body
(c) Estimated Present

Joints

Figure 27: Subjective results of our method (Part3D) under partial body presence
for subject 11 of the Human3.6M dataset.
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Figure 28: Average of full pose estimation from full body presence and partial pose
estimation from partial body presence for different scenarios using direct pose esti-
mation with separate training(Part3Ds).

(a) (b)

Figure 29: An example of not-sufficient partial body presence that causes our method
to not detect orientation.
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Chapter 7

Conclusion

7.1 Summary and Conclusion

In this thesis, we presented methods to handle the 3D human pose estimation from

2D images under partial body presence. Although the human pose estimation for the

full body [1, 2] (assuming the body is captured entirely in the input image) and for

specific body parts (e.g., the head [33]) have been well addressed in the literature,

we aimed to reconstruct a) the 3D full body pose from partial presence of the human

body and b) the 3D partial pose of only the joints present in the input image.

In Chapter 4, we presented a method for regressing the full body pose from the

partial body presence cases. Using an intermediate 2D pose regression network, here

we divide the 3D pose regression into two steps: a) 2D pose regression from the 2D

input image and b) 3D human pose regression from the extracted 2D human pose. In

this approach, the task of the first network was to regress the full 2D pose regardless

of the joints present and then the joints’ locations were normalized to a distance

between 0 and 1. The 3D pose regressor gets the normalized 2D poses as the input

and regresses the 3D poses based on 2D results. The first step of this method is

implemented using CNNs and the second step is implemented using fully-connected
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feedforward neural networks.

In Chapter 5, we proposed a method for direct regression of the 3D human pose

from 2D images with partial body presence, but without 2D pose estimation. We

trained a CNN to estimate the full 3D human pose directly from the partial 2D

image. We also proposed a detection stage which detects the joints present in the

image. Integration of the results from the pose regression stage and the detection stage

forms the partial output pose. For this method, we have used both joint training of

the regression and detection networks and training them separately.

In Chapter 6, the results of our simulations were presented and compared to two

of the state-of-the-art methods [1, 2]. Experimental observations demonstrate the

effectiveness of our method. Although these methods have better performance while

being fed with the cases of full body presence, our methods yield significantly better

performance under partial body presence.

Our framework enables the 3D human pose estimation methods to work effectively

under partial body presence. We also showed that the location of the joints absent

from the input image can be successfully reconstructed (see Table 4). The network’s

performance for the joints absent is not as good as for the joints present, however.

This is evident from the fact that the error for all the joints is more than when just

measuring the error for the joints present in partial cases (see Table 2). We also

examined different approaches for partial 3D human pose estimation, namely, using

2D intermediate stage, direct pose estimation with joint training of the regression

and detection networks, and direct pose estimation with separate training of the

networks. We showed that using similar convolutional layers, these methods have

close performance; however, the direct estimation with separate training turned out

to have the best performance among our three approaches due to the dedicated feature

extraction in the regression network.

63



7.2 Future Work

In the following, we sum up some of the possible extensions for future work:

• An important extension to this work can be improvement of the performance

while being fed by full body cases using a pre-training stage. Pre-training the

network with the full body presence images and then training using both full

and partial body cases may improve the performance under full body presence;

however, the performance under partial body presence may be affected as well.

• Adding background subtraction can be an effective extension to this work. Re-

moving background decreases the results’ dependence on the environmental

conditions since the background of the images can vary by a significant amount.

• Extending this work to video data is another possible extension. Although

this work can be applied to video data by assuming different video frames as

individual image data, there exists useful temporal information in the videos

which can be helpful for 3D human pose estimation. An approach to consider is

using the temporal information to track the pose in different video frames after

estimating the pose in the first frame. Another approach is to feed multiple

images (consecutive frames) to the CNN and try to estimate the poses for

different moments jointly.

• Another possible extension to this work is adding priors (such as the priors

used in [59] about the size of each of the body parts and their topology) about

the human body. This prior can make the network generate more reasonable

estimations according to the human body structure. The network is already

familiar with human body structure since it has only been fed with poses fol-

lowing the human body structure. Adding explicit priors can guarantee the

structure of the predictions, however.
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• This work can be also extended to multi-person cases in which both the detec-

tion and regression stages work while having more than a single person present

in the input image.
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