
CONCORDIA UNIVERSITY

Data and Simulation Models

for Route Optimization in Vehicle

Routing Problem

by

Monika Sharma

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science

in the

Department of Computer Science and Software Engineering

Faculty of Engineering and Computer Science

November 2018

©Monika Sharma, 2018

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Monika Sharma

Entitled: Data and Simulation Models for Route Optimization

in V ehicle Routing Problem

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. Yann-Gael. Gueheneuc

Examiner

Dr. Emad Shihab

Examiner

Dr. Leila Kosseim

Supervisor

Dr. Brigitte Jaumard

Supervisor

Dr. Tristan Glatard

Approved
Chair of Department or Graduate Program Director

20

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

CONCORDIA UNIVERSITY

Abstract

Department of Computer Science and Software Engineering

Faculty of Engineering and Computer Science

Master of Computer Science

by Monika Sharma

The generalization of online commerce to a wide range of industries is transforming

customer’s practices by removing the requirement of visiting the physical stores. This has

made it essential to develop a system to improve pickup/delivery of items ordered online,

in particular, to avoid the extra costs associated with failed home pickup/deliveries.

This thesis aims to contribute to the development of such a system by developing failure

prediction data models and a prototype of a simulator leveraging these models to improve

the planning of routes.

We use Random Forest classifiers to build failure prediction models. Three data re-

sampling strategies are used to address class imbalance issue as the proportion of the

failed services is much less than that of the successful ones. To interpret classification

results, we extract Association Rules where the antecedent is a set of service features

and the consequent is a failed service status. To avoid the memory limitations often

caused for large datasets, we design a two-step algorithm to first extract Association

Rules on the failed services. Then the limited set of rules are obtained based on the

frequencies of the antecedents in the complete dataset and in the dataset containing

only failed services. The simulation model is developed using the SimGrid library. It

simulates route generated by the optimization model, introduces random service failures

and computes total traveled distance and time.

We obtain good prediction results on the real dataset (aggregated dataset). Our classifier

reaches an average sensitivity of 0.7 and an average specificity of 0.7 for the 5 studied

types of failure. Association Rules reassert the importance of confirmation calls to

prevent failures due to customers not at home, show the importance of the time window

size, slack time, and geographical location of the customer for the other failure types,

and highlight the effect of the retailer company on several failure types. The simulation

model is successfully validated using sample routes. To reduce the occurrence of service

failures, our data models could be coupled with optimizers through simulation or used

to define counter-measures to be taken by human dispatchers.

Acknowledgements

First, I wish to express my gratitude to my thesis supervisors, Dr. Brigitte Jaumard

and Dr. Tristan Glatard, for all their guidance and support throughout my time as a

master’s student at Concordia University. They have always been engaged and helpful

in my work and ready with feedback and comments that greatly assisted me during my

studies.

Second, I would also like to thank my family and friends. I would not have had this

amazing opportunity to pursue my dreams if it was not for your continuing support,

encouragement and love; and for always believing in me.

iii

Contents

Abstract ii

Acknowledgements iii

Abbreviations vi

1 Introduction 1

1.1 Background . 2

1.2 Goals and Contributions . 2

1.3 Plan of the Thesis . 3

2 Literature Review and Related Work 5

2.1 Failure Prediction Model . 6

2.2 Supervised Machine Learning Algorithms 8

2.3 Selected Methods . 9

2.3.1 Decision Trees . 9

2.3.2 Random Forest . 12

2.3.3 Re-sampling . 13

2.3.4 Evaluation Metrics . 15

2.4 Association Rules . 17

2.5 Tools Used . 17

2.6 Simulation Optimization . 18

2.6.1 Entities in SimGrid . 19

2.6.2 Building a simulation model with SimGrid 20

3 Failure Type Prediction in Pickup and Delivery 22

3.1 Problem Statement . 23

3.2 Input Data . 23

3.2.1 Data pre-processing . 24

3.2.2 Data Representation . 26

3.3 Implementation and Experimental Setup 27

3.3.1 Test and Training Datasets . 28

3.3.2 Creating a Random Forest Classifier 28

3.3.3 Sampling . 29

3.4 Association Rules . 30

3.5 Conclusion . 32

iv

CONTENTS v

4 Failure Prediction Model Results 33

4.1 Classification Results . 33

4.2 Important Features and Association Rules 35

4.2.1 Customer not at home (NAH) . 35

4.2.2 Stop Rescheduled (SR) . 36

4.2.3 Refused by Customer (RC) . 38

4.2.4 Canceled by Customer (CC) . 39

4.2.5 Not in Stock (NS) . 40

4.3 Conclusion and Suggested Counter Measures 41

4.3.1 Classification Results . 41

4.3.2 Important Features and Association Rules 42

4.3.3 Suggested Counter-Measures . 43

5 Simulation Model 47

5.1 Introduction on Simulation . 47

5.2 Model Description . 47

5.2.1 Platform Model . 48

5.2.2 Processes . 50

5.2.3 Deployment and Execution . 58

5.3 Conclusion . 58

6 SimVRP Validation 59

6.1 Experimental Setup . 59

6.2 Simulation Results . 60

6.3 Conclusion . 62

7 Conclusions 63

Bibliography 65

Abbreviations

Acronym What (it) Stands For

CDP Collection Delivery Point

DC Distribution Center

PDPTW Pickup And Delivery Problem with Time Windows

RF Random Forest

DT Decision Tree

VRP Vehicle Routing Problem

FP-Growth Frequent Pattern Growth

NAH Not At Home

SMOTE Synthetic Over-sampling TEchnique

ML Machine Learning

AI Artificial Intelligence

OOB Out Of Bag

vi

Chapter 1

Introduction

The worldwide increase in electronic commerce (e-commerce) has enabled consumers

and businesses to buy and sell a vast variety of items online. Retail shares a large part

of e-commerce: as an example, retail e-commerce sales in Canada were worth 24.03

billion US dollars in 2018, which is expected to grow to 31.98 billion US dollars in 2022

[3]. Figure 1.1 shows the growth of retail e-commerce in Canada.

Figure 1.1: Retail e-commerce revenue in Canada [3].

With increased e-retail, the demand for home delivery of items also increases. The

distribution of items from local distribution centers to end-customers is called The Last

Mile Distribution. This is an important step in supply chain logistics and comprises 28%

of the total delivery cost [26]. However, it is inefficient due to the involvement of many

stochastic parameters like traffic, weather, the behavior of the end customer, and failures.

Many items ordered online like day-to-day grocery items (which are refrigerated) and

1

Chapter 1 Introduction 2

others like electronic items which can not be left unattended, require customers presence

for delivery. Failures in such home deliveries are frequent for multiple reasons like the

customer is not at home or refusal of an item if the expectations are not met. Incorrect

customer address and late driver are other popular causes of failures. Failed home

deliveries cause loss to the carriers and retailers and often leave unhappy customers.

This can also leave a negative effect on the brand name of the product.

1.1 Background

The route for attended home deliveries/pickups (where the customer is required to be

present at home) is generated by solving an optimization problem known as Pickup

and Delivery Problem with Time Window (PDPTW). The current approaches to solve

PDPTW include heuristics, meta-heuristics and exact methods [7, 27, 30]. Some ma-

jor limitations of these approaches are that they are not robust to stochastic customer

demand and do not take failed home pickups/deliveries into account. The solution sug-

gested in the literature to minimize failure into the last mile include Collection Delivery

Point (CDP) [32], Reception Box, and Delivery Box [29]. CDP’s are proved very efficient

to improve last mile efficiency. However, with CDP’s true meaning of home deliveries

is not achieved and often customer’s satisfaction is compromised. In this thesis work,

we study the failures in PDPTW and develop data models which could be used with

optimization models to prevent failures.

1.2 Goals and Contributions

E-commerce has revolutionized the traditional shopping style and made it necessary

to have cost-effective and efficient pickup/delivery of items. To ensure efficient home

delivery of items, a system should be built which takes stochastic parameters into account

and avoid service failures for route optimization. It should be sensitive to customer’s

convenience in order to avoid unhappy customers. Such a system could be developed

by combining optimization models with data driven simulation models. An advance

simulation model can include service failures data models and stochastic parameters like

Chapter 1 Introduction 3

bad weather and traffic. Data models could be developed by studying failure reasons

and customer’s behaviour from existing datasets. The long term goal is to integrate

this simulation model into an optimization model to build a system which will generate

realistic routes and prevent failures.

The goal of this thesis is to contribute in the development of such a system by:

1. Developing failure prediction data models for different failure types.

2. Implementing a prototype simulation model for simulation optimization.

In this thesis work, we investigate five different failure types for attended home deliv-

eries in Pickup and Delivery Problem with historical data provided by ClearD [11] and

develop failure prediction models for each failure type. ClearD is a Montreal based com-

pany providing solutions for supply-chain optimization. They provided the dataset which

contains 523,643 customer pickup and delivery services scheduled between September

2017 and February 2018 in Canada. A failure model will predict if the service will fail

with a specific type. With the failure models, we are able to predict 70% of the failures.

We extract Association Rules to better understand the failure reasons for each failure

type. The Association Rules provides finer insights of the data and complement the clas-

sification results. To facilitate the integration of these failure models into optimization

model of ClearD, a simple simulation model is implemented. This simulation model is

built to provide a proof of concept for simulation-optimization that simulates a route.

The simulation model evaluates the quality of the route in terms of route length, time,

and failed pickup/deliveries, of the route generated by optimization model [31].

The contribution of the thesis work on service failure prediction and Association Rules

extraction has been accepted for publication in the IEEE Big Data Conference, 2018.

This work has also been patented by ClearD [11].

1.3 Plan of the Thesis

The thesis is organized as follows. In Chapter 2, we discuss in details the problem back-

ground in PDPTW, methods used to build failure prediction data models and extract

Chapter 1 Introduction 4

Association Rules, tools used to build simulation model. Chapter 3, introduces problem

statement, data set used and implementation of failure prediction data models. Chap-

ter 4 presents the result of failure models and Association Rules. Simulation model is

discussed in Chapter 5 followed by simple validation in Chapter 6. The thesis work is

concluded in Chapter 7.

Chapter 2

Literature Review and Related

Work

In this chapter, we review the background of Pickup and Delivery with Time Window,

define services and stops and investigate current approaches to optimize service failures

and their limitations. To build a data model for predicting service failure, we first review

briefly a few classical supervised machine learning algorithms. Our dataset, provided by

ClearD, has more successful services compared to failures. So, we discuss the problems

associated with the study of imbalanced datasets and review solutions suggested in lit-

erature. To validate the classification results and get a better understanding of failure

reasons, we extract Association Rules. The algorithm to find Association Rules is dis-

cussed in Section 2.4. In Section 2.6, we review simulation model in general, simulation

in PDPTW and their limitations. We discuss the SimGrid library, used to build the

simulation model, in Section 2.6.1.

Pickup and Delivery with Time Windows

Pickup and Delivery Problem with Time Windows (PDPTW) [31] is the problem of

serving a number of customer requests with time, capacity and precedence constraints.

It is a generalization of Vehicle Routing Problem (VRP) to design an optimal set of routes

to minimize the travelled distance. A route is defined as a sequence of stops associated

5

Chapter 2 Literature Review and Related Work 6

with customer locations, where services are delivered with time-window, capacity and

precedence constraints. Each stop has a pickup or a drop location. The pickup location

is generally a local distribution center and the drop location is end customer. A stop

is defined with a fixed demand, service time and must be processed in order to respect

precedence constraints. As shown in Figure 2.1, consider the route 2, C2 is a predecessor

pickup stop for stop represented by C4. So C2 must be visited before to pickup the item

which will be delivered at stop C4. The service time is an estimate of the time required

to make the pickup/delivery. Also, there is a time window attached to each stop that

defines the time interval to serve the stop. This time window is often required while

making attended pickup/deliveries where the customer is required to be present at home

when the service is performed. The generated set of routes are evaluated by travelling

time and distance, number of vehicles used and number of customer requests fulfilled.

Figure 2.1: Pickup and Delivery Problem

In the next section, we discuss current approaches used to solve pickup and delivery

problem, measures taken to optimize service failure and their limitation. We also intro-

duce our approach for predicting service failures.

2.1 Failure Prediction Model

Pickup and Delivery Problem with Time Windows is a well studied problem. Many

approaches are suggested in the literature including heuristics, and meta-heuristics and

Chapter 2 Literature Review and Related Work 7

exact algorithms. A good example of efficient meta-heuristic is Adaptive Large Neigh-

bourhood Search (ALNS) [31] method. ALNS uses multiple greedy heuristics to avoid

obtaining local solutions. However, this method does not take service failures and

stochastic parameters into account. Other existing solutions approaches for PDPTW as

suggested in [7, 27, 30], to the best of our knowledge, do not take service failures into

account.

Service failure is an important problem in the last mile distribution and several alter-

native approaches are suggested in the literature to address the problem of failed home

deliveries. These approaches are broadly classified into changes in route, changes in

location, changes in time and customer behavior by [33]. For attended home deliver-

ies, CDP [32] is suggested as an alternative; Reception Box and Delivery Box [29] are

suggested for unattended deliveries but cannot work for ”large” electrical appliances.

CDPs like a convenience store, post office, railway station and popular store in the

customer area, are used by some carriers as an alternative to dropping the item. Often

a notification to the customer is made via message or a note left on the door. This way

the customer can collect the item from the CDP and in case of a return, often the item is

left to the CDP to be collected by the carriers. CDP as an alternative has been proved

an effective way for the first attempt failed home deliveries over traditional methods

where the carriers make another delivery attempt in 24 hours. In the work of [32] and

[29], an assumption that the customer can always pick up and drop the item from CDP

was made. However, certain age groups like elderly, may find it inconvenient to visit

CDP and uncomfortable to pickup/drop heavier parcels or may not be able to drive to

CDP’s. Also, CDP’s may not be the best alternative for all parcel, in particular parcels

containing large items.

An interesting approach is suggested in [33], where historical delivery data was used to

improve the efficiency of the home deliveries by developing address intelligence. The

study makes an assumption that the service failures are specific to the geographic re-

gion. Delivery efficiency of the geographic area is calculated using the demographic and

customer family characteristics using linear regression model. However, this study was

conducted in the Netherlands and lacked in exhaustive experiments on the data collected

Chapter 2 Literature Review and Related Work 8

from multiple countries and carriers. Also throughout the literature, the term parcel

has not been clearly defined in terms of the physical characteristics like weight, volume,

and cost of the item. Not all the items can be left unattended or at CDP’s.

As discussed in Chapter 1, service failure is an important problem and not only causes

additional costs to carriers but also damages the product’s brand name and retailer’s

reputation. There are many existing approaches (like CDPs, Delivery Box and Reception

Box) to address failures, however, we could not find any relevant data-driven models for

predicting the failures in advance to improve route quality.

Advanced techniques like Machine Learning (ML), Artificial Intelligence (AI), and Data

Analytic are largely explored in many fields including health care [10], finance stability

prediction [22], stock market [8] and analyzing the data generated on social networks.

However, the use of these techniques is limited in supply chain logistics. We aim at

predicting and explaining the cause of such failures focusing on the last-mile pickup and

delivery of items using machine learning algorithm. In the next section, we review the

most common supervised machine learning algorithms and ideal scenarios to use them.

2.2 Supervised Machine Learning Algorithms

Supervised learning is the process of learning from the historical data where the train-

ing dataset contains both input and output variables. Supervised learning problems

are divided into two broad categories: Classification and Regression. A classification

problem has a discrete real valued output variable, i.e., the class in which the instance

belongs. A regression problem has a continuous real value output variable. Some fre-

quently used supervised machine learning are linear regression, decision tree, support

vector machine (SVM) and random forest. There are pros and cons of these algorithms.

Linear regression could separate well the data which is linearly separable and works well

for non-redundant features. The decision tree is easy to understand but suffers from

over-fitting. SVMs are designed to reduce over-fitting but they are complex to explain

and communicate. Random Forest [5] is robust to over-fitting and easy to explain, how-

ever, takes a lot of time and memory to learn if parameters values are very large. We use

Chapter 2 Literature Review and Related Work 9

Random Forest supervised machine learning algorithm to forecast the failure types. One

important reason to use Random Forest classifier is that it provides list of important

features to explain the classification results. These important features help to better

understand the dataset which is one of the requirement for our problem. In Section

2.3, we discuss why we selected Random Forest for analysis of our data set. Therein,

we also review the Decision Tree & Random Forest algorithm [5] and data re-sampling

strategies in details.

2.3 Selected Methods

Random Forest is an ensemble ML method used for both classification and regression

learning problems [5]. Ensemble methods are popular ML algorithms which build many

individual classifiers and combine the prediction over all the classifiers to predict a new

data. Decision trees are basic building blocks of the Random Forest. However, decision

trees that are grown really deep to learn highly irregular patterns often overfit the

training sets. A slight noise in the data may cause the tree to grow in a completely

different manner. This means that a decision tree classifier fits training data too well

and may give 100 % accuracy on training data but may perform poorly on the test

data. In technical terms, we say that decision tree suffers from high variance [14]. The

solution is to use a collection of many high variance decision trees. Random Forest works

by training multiple decision trees on a different sub-sample the training data without

increasing the bias. The service failure dataset, we are studying in this thesis, is high

dimensional and may not be linearly separable which also motivates us to use Random

Forest classifier which works well with high dimensional linearly un-separable data [6].

2.3.1 Decision Trees

The Decision Tree is a supervised ML algorithm that learns by splitting the data based

on feature values. A Decision Tree is a directed acyclic graph in which any two nodes

are connected by only one path, where nodes correspond to some tests on data features,

a branch represents a decision path and a leaf corresponds to a class label. A Decision

Chapter 2 Literature Review and Related Work 10

Tree uses features of training data to split at each node. We use the Classification And

Regression Tree (CART) [6] implementation in scikit-learn [28] which makes binary split

by considering one feature at a time. We performed experiments to split a node with

both Gini Index and Entropy. We finally choose Gini index [6] to split at a node as it

perform best on our dataset.

Gini index : It is the measure of the impurity of the data in a node. Small values of

Gini index means that the node contains a large proportion of a single class. Let D be

the dataset, assume it contains n classes. Let p1, p2, .. pn be the frequencies of classes

in D.

gini(D) = 1−
n∑

j=1

pj
2. (2.1)

It is a measure of total variance in all n-classes.

Gini(D) after splitting the dataset into D1 and D2 on an attribute A, is calculated as

follows:

giniA(D) =
|D1|
|D| gini(D1) +

|D2|
|D| gini(D2). (2.2)

Reduction in impurity (ΔginiA (D)) = gini(D)− giniA(D) (2.3)

Consider the same data set D, with two classes represented by ’+’ and ’-’. Assume D

has 14 [9+, 5-] samples (’+’ and ’-’ represents positive and negative classes). Let Wind

(Weak, Strong), be an attribute in D which has two values. Gini index for this example

is calculated in the following way.

gini(D) = 1− (
9
14

)2 − (
5
14

)2
= 0.4591.

If we split D based on the attribute Wind,

giniWind(D) = |DWeak|
|D| gini(DWeak) +

|DStrong|
|D| gini(DStrong)

=
(

8
14

) [
1− (

6
8

)2 − (
2
8

)2]
+

(
6
14

) [
1− (

3
6

)2 − (
3
6

)2]

= 0.4284.

So, reduction in impurity,

(ΔginiWind (D)) = gini(D)− giniWind(D) = 0.4591− 0.4284 = 0.0307.

Chapter 2 Literature Review and Related Work 11

The reduction in impurity is calculated for all the attributes in D and the attribute with

the highest value of Reduction in Impurity is selected as the best splitting attribute.

Now we describe the CART algorithm to construct a Decision Tree [6]. A Decision Tree

is constructed in a top-down fashion, each time selecting the best attribute from the

available attributes. At the root node, we have all the data. We summarize the main

steps in CART assuming two classes in the data set in Algorithm 1.

Algorithm 1 Classification and Regression Tree (Adapted from [6])

Input- Samples: Dataset containing all the instances; Target attribute: List of

output classes; Attributes: list of attributes to be tested at each node for split.

Output: A Decision Tree.

CART(Samples, Target attribute, Attributes)

1: Create a Root node for the tree and assign all the Samples to it.

2: If all Samples are positive, return the single-node tree Root, with label = +

3: If all Samples are negative, return the single-node tree Root, with label = -

4: Otherwise,

A ← the attribute in Attributes with value vk that best classifies Samples.

The decision attribute to split at Root ← A.

Add two branches to the root node.

Let Samplesvk be the subset of Samples that have value vi < vk for A.

Add a node to the left branch and assign Samplesvk to it.

CART(Samplesvk , Target attribute, Attributes).

Add a node to the right branch and assign subset (Samples− Samplesvk) to it.

CART(Samples− Samplesvk , Target attribute, Attributes).

5: Return Root.

The default stopping criteria in Algorithm 1, is when the node has all its instances from

the same class. This often leads to over-fitting. So, in practice, the stopping criteria is

specified as the maximum depth of the tree or the maximum number of the leaf nodes.

The best attribute in Step 4 is calculated using Gini index as explained above.

Chapter 2 Literature Review and Related Work 12

2.3.2 Random Forest

Random Forest is a collection of many Decision Trees. The Random Forest classifier

predicts new data on each Decision Tree in the forest. For regression problems, the

output of each Decision Tree is combined and averaged to get the final prediction value

of the new data. For classification problems, the occurrence of each class in the output

of Decision Tree is counted. The data is then classified in the class that occurs more

often in the output. In the interest of our study to build classification models, we would

limit the discussion to the Random Forest classifier.

Constructing Random Forest

Random Forest is easy to construct once we know how to construct a Decision Tree.

From the training data set, a number of sub-samples (a sub-sample is a subset of the

training dataset) are drawn with replacement, and a Decision Tree is constructed on

each sub-sample. These Decision Trees build up a Random Forest. To build a Random

Forest classifier of k trees, k random sub-samples, each containing N (total number of

samples in the training dataset) or fewer samples are drawn from the training data.

These sub-samples are called bootstrap samples and may have duplicate instances of

the data as these instances are chosen randomly with replacement. This process of

generating multiple sub-samples is called bootstrap aggregation, i.e., bagging.

When constructing a Decision Tree in Random Forest, a subset of features is selected

at random before each split. The size of the subsets has an impact on the prediction

accuracy of the classifier. If the subsets have almost all the features of the data then

the trees will be highly correlated and the error rate will increase. If the subset of

features is too small, the tree will be weak which will again increase the error rate. In

scikit-learn,, the square root of the total number of features is used and the number of

features remains constant throughout the tree construction process. We summarize the

steps explained in [14] to construct a Random Forest in Algorithm 2.

Chapter 2 Literature Review and Related Work 13

Algorithm 2 Random Forest for Regression or Classification (From [14]).

Input:- D,N : Training dataset and size; p: Total number of features; B: Number

of Decision Trees; n min: Minimum number of samples in a node.

1: for b ← 1 to B do

2: Draw a bootstrap sample Z of size N from the training dataset D.

3: Grow a random-forest tree Tb from Z, by recursively repeating the following steps

for each terminal node of the tree, until the minimum node size n min is reached.

i. Select a random subset, m variables from p.

ii. Pick the best variable/split-point among the m. (Using Gini index or other

methods).

iii. Split the node into two child nodes.

4: Output the ensemble of trees T = {Tb : b ε B}
5: end for

Let Tb (i) denotes the predicted output of Decision Tree Tb, for sample i. To make

a prediction at a new point x:

Regression: ˆfB
rf (x) =

1
B

∑B
b=1 Tb (x) .

Classification: Let Ĉb (x) be the class predicted of bth random-forest tree.

Then ĈB
rf (x) = majority vote

{
Ĉb (x)

}B

1
.

2.3.3 Re-sampling

The dataset (discussed in Chapter 3) used in our study is very imbalanced as the number

of failed samples account for 7.53% of the total number of samples. There are several

issues associated with the study of an imbalanced dataset. One of the most common

issues is that the learned model is completely biased toward the majority class (class

with a large number of instances) and will not detect instances from the minority class

(class with the lesser number of instances). The class imbalance problem is well known

and has been studied greatly in the literature [9, 23]. There are many approaches to solve

this problem like cost-sensitive learning, recognition-based learning and re-sampling of

Chapter 2 Literature Review and Related Work 14

the training set [25]. In our study, we use re-sampling methods on our dataset because

it is suitable for sufficiently large data set [25] and relatively easy to understand.

Re-sizing the training set involves re-sampling the original training data. There are two

ways to re-sample the data either by over-sampling or under-sampling. The process of

adding data to the minority class is called over-sampling and the process of removing

data from the majority class is called under-sampling. The data from the majority class

could be removed randomly or strategically to minimize the loss of information in the

majority class. On the other hand, to add data in minority class, one way is to simply

replicate the minority class data or generate new synthetic data from the available data.

We use Synthetic Minority Over-sampling TEchnique (SMOTE) [8] to over-sampling

(generate new data in the minority class) and NearMiss [25] for under-sampling (remove

data from the majority class).

SMOTE

SMOTE [8] is a data resampling technique in which new minority class data is generated

using the training data set. One way to reduce class-imbalance is by adding more

samples in the minority class. SMOTE-regular generates new data by finding the k-

nearest neighbors for each minority class instance. Then one of the k-nearest neighbors

is selected at random and the new minority class data is placed on the line between these

two instances. For example, consider an instance Ri = (6, 4) in the minority class and

let Rk = (4, 3) be its nearest neighbor selected randomly from the k-nearest neighbors.

The new instance (Rnew) is created in the following way.

Rnew = Ri + rand[0− 1]× (Rk −Ri)

= Ri + rand[0− 1]× (Rk1 −Ri1, Rk2 −Ri2)

= (6, 4) + rand[0− 1]× (4− 6, 3− 4)

or Rnew = (6, 4) + rand[0− 1]× (−2,−1)

where rand [0-1] generates a random number between 0 and 1. We could specify the

number of nearest neighbors and an over-sampling ratio to better match the dataset

used.

Chapter 2 Literature Review and Related Work 15

NearMiss

NearMiss [25] is an under-sampling strategy for the majority class which uses k-nearest

neighbors for deciding which data to keep in the majority class. There are three variant

of the NearMiss algorihm: NearMiss-1, NearMiss-2 and NearMiss-3. NearMiss-1 retains

majority class instances whose mean distance to k nearest neighbors (in the minority

class) is the lowest i.e., the instance close to some minority class instance are kept.

NearMiss-2 keeps majority class instances for which the mean distance to the k farthest

point is the lowest i.e., majority class instances which are close to all minority class

instances are kept. We use NearMiss-3 which is a two-step algorithm. First, for each

minority class instance, k-nearest neighbors from the majority class is selected. Then,

samples in the majority class with the highest average distance to the k-nearest neighbor

in the minority class are selected. The number of nearest neighbors and sampling ratio

are input to the algorithm and adjusted to fit the dataset.

Random Undersampling

We also assessed a straightforward random resampling strategy which is often used for

skewed datasets. SMOTE and NearMiss use Euclidean distance to compute the nearest

neighbor which may not be efficient for encoded data values. We have performed random

under-sampling [4] in which instances from the majority class are selected randomly until

the dataset has equal class proportion.

2.3.4 Evaluation Metrics

We consider the classical evaluation metrics to measure the efficiency and reliability of

the model [14, 34], which we recall in Table 2.1.

Chapter 2 Literature Review and Related Work 16

Metric Definition

True Positive (tp) Number of positive samples that are predicted Positive

True Negative (tn) Number of negative samples that are predicted Negative

False Positive (fp) Number of negative samples that are predicted Positive

False Negative (fn) Number of positive samples that are predicted Negative

Positives (P) tp + fn

Negative (N) tn + fp

Accuracy
tp+tn

tp+tn+fp+fn

Sensitivity
tp

tp+fn

Specificity tn
tn+fp

Table 2.1: Performance Evaluation Metrics

Accuracy measures the portion of test samples classified correctly. In general, accuracy

is a good measure, however for an imbalanced dataset, where class proportion differs

significantly, accuracy alone is not sufficient to interpret the results. For such datasets,

Confusion Matrix [34] parameters are often used to evaluate the performance of the

classifier. Sensitivity measures the ability of a classifier to correctly identify positive class

samples while specificity measures the classifiers ability to correctly identify negative

class samples [14, 34].

Out Of Bag Error (OOB) (Adapted from [14]): Random Forest uses a bootstrap

sample to construct a tree (Section 2.3.2). Usually, the size of a bootstrapped sample

is smaller than the original data set [14]. The left out data of each bootstrap sample is

used to validate the performance of the tree constructed on a bootstrap sample other

than the left out sample. The error on the left out data is called OOB error [14] and

it is important to analyze the performance of individual trees. This way, each tree is

constructed and validated on a different data and there is no need to do cross-validation

test to get the test error [14]. In Section 2.4, we review the underlying ideas in association

rules and discuss in detail in Chapter 3.

Chapter 2 Literature Review and Related Work 17

2.4 Association Rules

An important outcome of Random Forests is the list of important features describing the

output of the classifier. The importance of a feature Xm is defined as the total decrease

in node impurity (defined in Section 2.3.1), weighted by the probability of reaching that

node, averaged over all trees of the Random Forest. The probability of reaching a node

is approximated by the proportion of samples reaching this node [24]. However, feature

importance provides limited insights to interpret classification results. One of the reasons

is that correlation among a group features reduces the mean importance in this group of

features, as discussed in [15]. To further interpret the results, we extracted the so-called

Association Rules [1].

Association Rules are explained with the market-basket model to describe relationships

in items and baskets (set of items). The number of items in each basket is less than the

number of baskets. An association rule is defined as: I → j where I is a set of items and

j is an item [21]. This association rule is interpreted as if all of the items in I appear

in some basket (consists of a set of items), then j is likely to appear in that basket as

well. Here I is called antecedent and j is called consequent. The confidence of the rule

I → j is defined as the ratio of the support (number of baskets for which I is a subset)

for I
⋃ {j} to the support for I. We use the Frequent Pattern Growth (FP-Growth)

[18], an efficient and scalable algorithm for mining association rules. It uses an extended

prefix tree to find the frequent patterns and overcome the main memory limitation often

caused by frequent items in Apriori algorithm [17]. We discuss in detail how to model

our dataset to get the basket of items and the algorithm to extract association rules in

Chapter 3.

2.5 Tools Used

We used scikit-learn version 0.19.1 [28], a machine learning library in Python for de-

signing the data model using the Random Forest. It is an open source free software,

provides a large number of ML algorithms for regression, classification and clustering

algorithms. Imbalanced-learn version 0.3 [20] provides support for a large number of

Chapter 2 Literature Review and Related Work 18

re-sampling techniques for class imbalance problems. We also use Apache Spark version

2.3.1 [35], to find Association Rules using the FP-Growth algorithm.

In the next section (Section 2.6), we review the simulation model in general, advantages

of building a simulation model for real life problems and how simulation optimization

could be used together to improve the performance of the system. We also review

SimGrid [19] library in the next section.

2.6 Simulation Optimization

A simulation model is the representation of a physical or abstract system which mimics

a system’s important characteristics and behavior. In computer science, a simulation

model is a software program that is implemented in some programming language to

represent a system. Simulation is the process of executing a simulation model. Simula-

tions can be used for deterministic as well as stochastic problems without mathematical

sophistication. In this thesis, we build a prototype simulation model for pickup and

delivery of last mile logistics in the supply chain.

A major limitation of mathematical models is that they do not take stochastic param-

eters into account while route planning. The pickup and delivery system, modeled by

optimization models, is complex and involves random parameters like weather, traffic,

and service failures. So the routes generated by optimizer are often modified often by

the dispatchers to make them more realistic. These parameters are difficult to capture

using only an optimization model. ClearD uses databases for integrating real time traf-

fic. Different failures type and weather conditions are not taken into account in the

current optimization model. The simulation models can model the randomness and in-

tegrate failure models. Such simulation model then can be used into the optimization

model guide the route planning process and generate more realistic routes. This is called

Simulation-based Optimization (S-O) [13] where the optimization model takes feedback

from the simulation model as shown in Figure 2.2.

The use of simulation model in the last mile is not new. An advanced simulation

model developed in [16] takes variable number of costs like time window size, manned vs

Chapter 2 Literature Review and Related Work 19

unmanned delivery, cost of failed deliveries etc to calculate the total cost of the route. A

simulation model was developed in [12] to analyze the carbon footprints of vehicles last

mile. Feasibility of cargo bike delivery [2] options is studied using simulation to suggest

an economic, environment friendly alternative. In all the above work, the simulation

model is used to study the effect of introducing new parameters or to see the feasibility

of a method. The simulation models are not used with optimization model to improve

the solution, obtained with mathematical models.

Our goal is to build a simple simulation model, referred as SimVRP in this thesis, with

SimGrid to provide a proof of concept for a data driven simulation model to evaluate the

route cost. Different data models to predict failure types and weather conditions could

be integrated into our simulation model to flag for service failure or driver arriving late.

This simulation model could be integrated in the optimization model to optimize service

failures and improve route quality. SimGrid is a versatile network simulator extensively

used in many research studies to learn the behavior of large-scale distributed systems

such as Grids, Clouds and Peer to Peer systems [19]. It is scalable for all the above

mentioned domains.

Figure 2.2: Optimization Process

2.6.1 Entities in SimGrid

SimGrid [19] allows users to describe the application as a set of independently commu-

nicating processes. Entities in SimGrid are agents, location, task, path, and channel.

Chapter 2 Literature Review and Related Work 20

Agent/Process: A process is defined by a code, private data and the location at which

it executes.

Location: A location/host is the place in the simulated topology where an agent runs.

It is defined by computational power and mailboxes that enables communication with

other agents and private data that can be only accessed by agents at the same location.

Task: A task is an activity in the simulated application and defined by an amount of

computing, a data size, and private data.

Path: A path is an agglomeration of communication resources representing a set of

physical network links.

Channel: Communication between agents is embedded in the channel abstraction.

A channel embodies the concept of communication of ports opened by agents at the

location.

2.6.2 Building a simulation model with SimGrid

A SimGrid program should define the resources i.e the virtual platform, process, alloca-

tion of processes to host.

Platform: Platform defines objects like hosts, links and routing table to specify the

path. A host could be a single computer system, disk, clusters [19]. These hosts are

the entities where an event occurs. Links connect two different hosts and are means of

communication. The links are characterized by bandwidth and latency. A platform in

SimGrid is defined in an XML file.

Process: Each process in the application should be defined by describing the activities

to be performed. There could be multiple processes in SimGrid executing at different

hosts at the same time.

Deployment: Deployment describes the mapping of the processes to the platform. A

process is mapped to the host using ”MSG function register” when the simulation is

started.

In this chapter, we discussed the problem background and solutions suggested in the

literature. We discussed different machine learning algorithms that we will use to build

Chapter 2 Literature Review and Related Work 21

failure prediction data models. We also discussed the SimGrid library used to build

the simulator model. In the next chapter we discuss the dataset and implementation of

failure prediction models.

Chapter 3

Failure Type Prediction in Pickup

and Delivery

Service failures are frequent in Pickup and Delivery and have important consequence

in a carrier’s business. Failures are not known when the route is planned and difficult

to predict. Being able to forecast the most frequent failure types could help carriers

to understand and plan routes in an effective way. The carriers could choose to make

one more call to the customer and ask to stay at home or make the delivery attempt

some other time during the day by changing the time window. Carriers could also de-

cide to change the route of the services in order to better accommodate them in the route.

We study the following frequent failure types:

1. Customer not at home (NAH): This failure type happens when the customer is

not at home at the time of pickup/delivery.

2. Stop rescheduled by the dispatcher (SR): When the services are rescheduled due

to an unexpected event, for instance, construction in the delivery area, or inbound

delays at the dispatch center.

22

Chapter 3 Failure Type Prediction in Pickup and Delivery 23

3. Refused by the customer (RC): This failure type happens when the item was

delivered to the customer’s place, but the customer refused to accept it, e.g.,

because it did not match the expectations.

4. Canceled by the customer (CC): This failure type happens when the customer

cancels the service due to unavailability of cash.

5. Not in stock (NS): The item related to service is not in stock at the local DC on

the day of delivery.

In this chapter, we formalize the problem statement and discuss input data, implemen-

tation details of the failure models and association rules.

3.1 Problem Statement

The problem of Failure Type Prediction in Pickup and Delivery can be written as follows:

From service data set, for a given failure type, predict if the stop will fail with this type.

This is a binary classification problem for which we will apply Random Forest classifier

(see Chapter 2). The dataset contains successful and failed services (due to various

reasons). For each failure type, we predict the failure type in one against all fashion i.e.,

we represent one specific failure type as the target failure class and all the remaining

failure types and successful services as the secondary class. In the data set for each

failure model, the services failed with specific failure type are represented by 1 and

other services are represented by 0. Each failure model will predict 1 if the stop fails

with a specific failure type and 0 otherwise.

3.2 Input Data

Data is key for a successful implementation of any machine learning or big data model

and its performance heavily relies on the quality and quantity of data. The original

dataset for our study contains 523,643 customer pickup and delivery services provided

Chapter 3 Failure Type Prediction in Pickup and Delivery 24

by ClearD. The data set is very imbalanced with a count of failed services equals 39,438,

which is 7.53% of the data set. We discuss the measures taken to overcome class imbal-

ance issue in details in Section 2.3.3.

Id Feature name Description Type

Customer geographical location (C)
C1 Longitude Longitude of the customer location Numerical
C2 Latitude Latitude of the customer location Numerical
C3 Door number Door number in the customer address Categorical
C4 Street label Street number in the customer address Categorical
C5 Apartment number Apartment number in the customer address Categorical
C6 City City in the customer address Categorical
C7 Province Province of the customer location Categorical
C8 Zip code Postal code in the customer address Categorical
C9 Zone Zone identifier of the customer location Categorical

Route schedule (R)
R1 Truck Vehicle allocated to the service Categorical
R2 Driver Driver identifier Categorical
R3 Route order Order of the stop in the route Numerical
R4 Planned Service Date Time Service time planned by the optimizer Numerical
R5 Distance from Previous Stop Distance from the previous stop in the route (km) Numerical
R6 Time from Previous Stop Time from the previous stop in the route (min) Numerical
R7 Time Window Start Time Start time of the service time window (min since 00:00) Numerical
R8 Time Window End Time End time of the service time window (min since 00:00) Numerical
R9 Time Window Size Service time window span (min) Numerical

R10 Start Slack
Time difference between pickup time and start of time window (min). May
be negative when the service is performed before the time window starts.

Numerical

R11 End Slack
Time difference between end of time window and pickup time (min). May
be negative when the service is performed after the time window ends.

Numerical

Phone calls (P)
P1 Automatic Calls If automated calls are allowed (yes or no) Categorical
P2 Call Status Status of phone call to customer (completed: 5, failed: 6) Categorical
P3 Detailed Call Status Detailed status of the call (answered: 2, voice mail: 3, other failures: 4-21) Categorical

Date and time (D)
D1 Week of Year Week number of the year (1-52) Categorical

D2 Time of Day
Time in the day (early morning: 1, morning: 2, afternoon:
4, early evening: 5, evening: 6, late evening: 7, night: 8)

Categorical

D3 Day of Week Day of the week (1-7) Categorical

3.1.a. Stops

Id Feature Description Type

S1 Service Type Service type (Pickup or Delivery) Categorical
S2 Retailer Retailer identifier Categorical
S3 Item Volume Volume of the item to be picked up or delivered (cf) Numerical
S4 Item Weight Weight of the item (lbs) Numerical
S5 Item Manufacturer Item manufacturer Categorical
S6 Estimated Service Time Estimated service time (s) Numerical

3.1.b. Services

Table 3.1: Features of stops and services (S)

3.2.1 Data pre-processing

Categorical Variables

Scikit-learn [28] implements Classification and Regression Tree (CART) to construct

a forest model. In theory, a CART could be constructed using both numerical and

Chapter 3 Failure Type Prediction in Pickup and Delivery 25

categorical values, however, categorical features must be converted into numeric features.

So we encoded non-numeric categorical data and mapped them to numeric values using

scikit-learn’s function called LabelEncoder. This function sorts the input data and

assigns a unique numeric value to each non-numeric data.

Missing Values

The Random Forest classifier does not take input data object with missing entries (NULL

values). So in the pre-processing step, we replaced missing values with a constant default

value of -100. We also process the data to remove duplicate rows. Normalization is not

required for Random Rorest classifier as the splitting criteria based on feature values

does not consider the variance in the data values.

Feature Extraction

Feature extraction is the process of extracting new informative features from the ex-

isting feature set. In the feature set of the dataset for this study, TimeWindowPicku-

pEndTime and TimeWindowPickupStartTime contain values in the form HH:MM:SS.

To use them in the service failure models, we convert them into numeric values. For

example, TimeWindowPickupEndTime = 8 : 31 : 42 is converted into numeric value of

512 minutes. We also formulated some new features which are commonly used and easy

to interpret in the context of services in pickup and delivery problem.

T imeWindowSize = T imeWindowPickupEndT ime−T imeWindowPickupStartT ime,

StartSlack = PickupDateT ime− T imeWindowPickupStartT ime,

EndSlack = T imeWindowPickupEndT ime− PickupDateT ime.

PickupDateTime is the expected date and time the customer is be visited. TimeWin-

dowSize determines the size of time window provided for attended pickup and delivery

(pickup and delivery which require customer to be at home). With this feature, we an-

alyze the effect of small and large time windows on ‘customer not at home’ failure type.

Chapter 3 Failure Type Prediction in Pickup and Delivery 26

StartSlack is time difference between expected PickupDateTime and TimeWindowPick-

upStartTime. EndSlack is the time difference between TimeWindowPickupEndTime

and PickupDateTime. We also want to see the effect of large StartSlack and EndSlack

on ‘customer not at home’ failure type.

We also extracted Week of Year, Time of Day and Day from PickUpDateTime to ob-

serve the impact of any specific time during the day on service failures. It will be

interesting to see if failures are specific to a day like weekend or weekday or any specific

week in the year.

Table 3.1 shows the features describing the stops and their services. Features describe

the customer location, position of the stop in the route produced by the optimizer,

phone call status (phone calls are placed to the customer at specific times before the

service), date, and service characteristics. Some features may be correlated: for instance,

features describing geographical location are strongly interdependent which decrease

the importance score produced by Random Forest [15]. This becomes important while

interpreting the results based on the feature importance score.

An important note on the choice of the features used in this study, is that the features

are not collected explicitly to study the problem of service failure predictions. Some

of the features might also seem irrelevant initially for the study of specific failure type.

Our goal, as stated in Chapter 1 is to also identify the features which are leading to

specific service failures. Additional features for specific failure types could be collected

to further improve the performance based on the suggestion made at the end of Chapter

4.

3.2.2 Data Representation

In this section, we describe a key challenge associated with our study. The dataset

contains records where each stop is associated with one or more services, represented

as a vector of variable size (3 services per stop on average). This is a problem since

classifiers cannot work on spaces containing vectors of variable size. A solution could

be to create one record for each service and to replicate the stop features in all the

Chapter 3 Failure Type Prediction in Pickup and Delivery 27

services associated with the stop. However, such a replication would likely lead the

classifier to over-fit particular stops, and to rely, for instance, on the exact latitude and

longitude of the stop to predict failures. This is not desirable in our case since we aim

at predicting failures in situations more general than particular stop locations that may

never re-occur.

Dataset Type Dataset Size Failure Rate (%)

Original 523,643 7.53

Aggregated 183,872 6.68

Table 3.2: Statistics of the Original and Aggregated Dataset

Instead, we aggregated the services of a particular stop in a master service, for which

the value of categorical service features (Service Type, Retailer, and Item Manufacturer)

was determined as the most frequent value among services in the stop, and the value of

numerical features (Item Volume, Item Weight, and Estimated Service Time) was the

sum of the values among services in the stop. The status and failure type of the stop were

set as the most frequent failure type among its services. The resulting aggregated dataset

contains 183,872 stops with 6.68% of failures. We present some important statistics of

the original and aggregated dataset in Table 3.2. Indeed, the fraction of failed services is

small but it is not negligible in terms of cost. Our investigated failure types account for

55.23% of the failures in the aggregated dataset. Figure 3.1 shows the failure distribution

by failure type in the aggregated dataset.

3.3 Implementation and Experimental Setup

As discussed in Section 2.5 of Chapter 2, Scikit-learn is used for implementation of

different failure models and Pyspark for finding Association Rules.

Chapter 3 Failure Type Prediction in Pickup and Delivery 28

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

N
AH SR RC CC N

S

Fr
eq

ue
nc

y
(%

)

Failure type

Figure 3.1: Distribution of failure types.

3.3.1 Test and Training Datasets

After pre-processing the dataset, we partitioned the aggregated data into test and train

data sets for the classifier. The training data set is used for training the classifier and the

test data set is used to validate the performance on the unseen data. The data set was

randomly split between training and test sets to ensure the similar class proportion using

train test split() method of scikit learn. The training set constitutes 80% of the data and

the remaining 20% is used for testing. We constructed ten different training and test

datasets from the aggregated dataset using a different random seed in train test split()

method to ensure that the classifier performs consistently.

3.3.2 Creating a Random Forest Classifier

Creating a random forest classifier in Scikit-learn is easy. The ensemble package contains

a class RandomForestClassifier which is imported in the program to create an instance

of random forest classifier. To find suitable values of the classifier hyper parameters,

we performed a grid search on a training dataset with different numbers of estimators,

maximum depths of a tree, split criteria and minimum numbers of samples to split on

a node. Table 3.3 shows the selected parameter values. We initialize the parameters

Chapter 3 Failure Type Prediction in Pickup and Delivery 29

in the classifier with the best parameters obtained from the grid search. The model is

trained using fit() method on training data set. Predictions for unseen test data is made

using predict() method (results are discussed in Chapter 4).

Parameter Description Selected value Grid search

Estimators Number of trees in the random forest 100 10, 50, 100, 200, 500

Max depth Maximum depth of the trees 6 5, 6, 7, 8, 9, 10, 20, 50

Split criterion Impurity criterion used in tree nodes Gini Gini, Entropy

Max features Number of features to consider in each split
√
n features –

Min samples to split Minimum number of samples required to split a node 10 –

Min sample in leaf Minimum number of samples required in a leaf node 5 –

OOB Score Out of bag error True –

Table 3.3: Hyper Parameter settings used in Random Forest

3.3.3 Sampling

We used three different re-sampling strategies to address class imbalance of the dataset.

Re-sampling is performed on the training data set before the fit() method is called.

First, we over-sampled the minority class using SMOTE [8]. SMOTE generates syn-

thetic entries in the minority class, failed stops, using random linear combinations of

existing failed stops. We applied SMOTE-regular using 2 nearest neighbors, and an

oversampling ratio equal to the ratio between the number of elements in the majority

class and the number of elements in the minority class (so that the resulting dataset is

evenly distributed among both classes).

For under-sampling, we used NearMiss-3, which, for every element in the minority class,

determines its nearest neighbors and keeps only the furthest ones. We applied this

method with 3 nearest neighbors.

Finally, we assessed a straightforward random undersampling of the majority class, as we

suspected that SMOTE and NearMiss would be disturbed by their use of the Euclidean

distance to determine nearest neighbors, which is questionable in our dataset.

Chapter 3 Failure Type Prediction in Pickup and Delivery 30

3.4 Association Rules

We extracted Association Rules from the aggregated dataset, to check the consistency

of the classification results and to provide further insights on their interpretation. To do

so, we categorized numerical features into deciles, and we represented stops with vectors

containing (1) such categorized features, (2) the initial categorical features, and (3) a

binary feature representing the stop status (success or failure type). An Association

Rule, written as “antecedent ⇒ consequent”, consists of two tuples, an antecedent and

a consequent [1]. We focus on the rules where the consequent is a singleton containing a

stop status. To represent features in the antecedent, we postfix numerical features with

Dx, to indicate that the value is in the xth decile, and categorical features with Vx, to

indicate that the value is x. A hypothetical example of rule is:

StartSlack D3,Day V4 ⇒ FAIL NAH,

which measures the association between failure type “Customer not at home”, and stops

where Start Slack is in the third decile and Day has value 4. It should be noted that

Association Rules provide a measure of co-occurrence rather than causality.

To measure the relevance of a rule x ⇒ y, we define its interest ratio (IR) by comparing

the frequencies of tuple x in the complete dataset C versus in the set F of failed stops

(the stops that contain y):

φ =
supF (x)

|F |
|C|

supC(x)
,

where supS(x), the support of tuple x in set S, is the number of occurrences of x in

S. We focus on the cases where supF (x) �= 0, which gives φ �= 0. Then we define the

interest ratio as follows:

IR(x ⇒ y) = max

{
φ,

1

φ

}
.

The interest ratio measures the effect of x on the probability to fail with type y. Another

way to understand it is to express its relation to the failure probability conditional to

the presence of x:

P (y|x) = supF (x)

supC(x)
,

Chapter 3 Failure Type Prediction in Pickup and Delivery 31

which gives:

P (y|x) = IR(x ⇒ y)P (y) (φ ≥ 1),

or:

P (y|x) = P (y)

IR(x ⇒ y)
(φ ≤ 1).

We also compute the confidence of rule x ⇒ y with the usual definition:

conf(x ⇒ y) =
supC(x ∪ y)

supC(x)
.

The following relation should finally be noted:

conf(x ⇒ y) = φ
|F |
|C| .

We look for rules with high interest ratio (large or small φ), and high frequency in the

failed set (supF (x) ≥ s, where s is the desired support threshold in F). We find them

using the following approach:

1. Find the set I of items x in F s.t. supF (x) ≥ s.

2. For every x in I, compute supC(x).

We perform step 1 using the FP-growth algorithm, as implemented in Apache Spark

version 2.3.1. Note that finding the frequent itemsets in F requires much less memory

than in C since |F | << |C|. We implemented step 2 using a single pass on C, which

does not raise any memory issue since |I| is small. To obtain a limited set of rules, we

then select the Association Rules x ⇒ y such that x ∈ I and:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

IR(x ⇒ y) ≥ min IR

size(x ⇒ y) ≤ 2

size(x ⇒ y) = 2 ⇒ ∃r ∈ R1, r ≺ΔIR (x ⇒ y)

Chapter 3 Failure Type Prediction in Pickup and Delivery 32

where size(x ⇒ y) is the size of the rule, i.e., the number of elements in x. Ri is the set

of rules of size i and ≺ΔIR is a partial order on R = ∪iRi defined as follows:

∀r1, r2 ∈ R1 ×R2, r1 = (x1 ⇒ y), r2 = (x2, x3 ⇒ y) :

r1 ≺ΔIR r2 ⇔

⎧⎪⎪⎨
⎪⎪⎩
IR(r2)− IR(r1) ≥ ΔIR

x1 = x2 or x1 = x3

3.5 Conclusion

In this chapter, we discussed data pre-processing, aggregation and creating a Random

Forest classifier. Data aggregation helped to create an un-biased classifier. Re-sampling

the training data enabled detection of minority class instances to improve models sen-

sitivity. Association rules are extracted to interpret the results obtained from Random

Forest classier and to get more insights of the data set. We discuss the results in Chapter

4.

Chapter 4

Failure Prediction Model Results

In this chapter, we discuss the results obtained on failure prediction data models. First,

we present the predictive results obtained for each failure type classifier with different

re-sampling methods. We then discuss important features and association rules. At the

end of the chapter, we conclude the Association Rules and classification results.

4.1 Classification Results

In this section, we present the results obtained from Random forest classifier. Figure 4.1

shows the sensitivity (ratio of true positives) and specificity (1 - ratio of false positives)

obtained for the different failure types and resampling methods. Without resampling, the

sensitivity to failure remains 0, as expected in such an imbalanced dataset. Oversampling

with SMOTE improves the sensitivity to an average of 0.36 while maintaining a high

specificity of 0.92. Undersampling with NearMiss and Random Undersampling further

increases the sensitivity to an average of about 0.7, with a specificity close to 0.7. This

appears to be the best compromise between sensitivity and specificity. On average,

Random Undersampling performs slightly better than NearMiss. In the remainder, we

focus on results obtained with Random Undersampling.

The classification performance is quite stable across failure types. With Random Un-

dersampling, the best specificity values are obtained for NAH and NS failure type, while

33

Chapter 4 Failure Prediction Model Results 34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

Se
ns

iti
vi

ty

False positive rate (1-speci city)

No resampling
SMOTE

NearMiss
Random Undersampling

(a) Customer not at home (NAH)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

Se
ns

iti
vi

ty

False positive rate (1-speci city)

No resampling
SMOTE

NearMiss
Random Undersampling

(b) Stop rescheduled (SR)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

Se
ns

iti
vi

ty

False positive rate (1-speci city)

No resampling
SMOTE

NearMiss
Random Undersampling

(c) Refused by customer (RC)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

Se
ns

iti
vi

ty

False positive rate (1-speci city)

No resampling
SMOTE

NearMiss
Random Undersampling

(d) Canceled by customer (CC)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

Se
ns

iti
vi

ty

False positive rate (1-speci city)

No resampling
SMOTE

NearMiss
Random Undersampling

(e) Not in Stock (NS) (f) Average performance of the resampling methods

Figure 4.1: Performance of the classifier for different types of failures and resampling
methods

RC failure type is slightly under average. Sensivitiy values are close to average for all

failure types, NS being slightly above.

Chapter 4 Failure Prediction Model Results 35

4.2 Important Features and Association Rules

In this section we discuss important feature and association rules for different failure

types.

4.2.1 Customer not at home (NAH)

Figure 4.2(a) shows the feature importance resulting from the classification of failures of

type “Customer not at home”. Feature labels refer to the ones in Table 3.1, and feature

importance is computed as explained in Section 2.4. Feature importance is largely dom-

inated by a single feature, Detailed Call Status (P3), peaking at an importance of 0.27.

The next 18 features have similar importance values, ranging from 0.026 to 0.05. The re-

maining 13 features are between 0.00 and 0.022. Figure 4.2(b) shows the antecedents of

the Association Rules with consequent FAIL NAH, selected as described in Section 3.4,

with their confidence and interest ratio (IR). For clarity, the elements of rules of size 1

are omitted in rules of size 2. For instance, Rule 1 means that (Detailed Call Status V3

⇒ FAIL NAH) has a confidence of 0.036 and an interest ratio of 2.45, and Rule 2 means

that (Detailed Call Status V3, Estimated Service Time D2 ⇒ FAIL NAH) has a confi-

dence of 0.06 and an interest ratio of 4.07. Rules with φ ≥ 1 are represented in red,

and rules with φ < 1 are in green. For instance, Rule 1, shown in red, means that

Detailed Call Status=3 increases failure probability by a factor of 2.45, while Rule 13,

shown in green, means that Detailed Call Status=2 decreases failure probability by a

factor of 2.06.

The rules in Figure 4.2(b) are consistent with the features importance in Figure 4.2(a),

Detailed Call Status (P3) being the most important feature. They show that P3=3,

which means that a call landed on voicemail, increases the failure probability by 2.45

times (Rule 1). This ratio increases to 3.67 if the call was marked failed (Rule 3: P2=5),

to 4.07 if the estimated service time is shorter than 8 minutes (Rule 2: S6 in D2 (240-

480]), or to 3.12 if the item volume is low (Rule 5: S3 in D1 [0.0, 0.002]), perhaps

because less voluminous items are cheaper on average and customers give less value to

them. The failure probability also increases if the item is delivered by specific companies

Chapter 4 Failure Prediction Model Results 36

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

P3 S6 S3 C4 C2 R5 C1 C8 R6 R11
C3 R2 C6 R4 S2 R1 R10

S4 D1 R8 R7 R3 C5 P2 D3 R9 C9 S1 D2 S5 C7 P1

Fe
at

ur
e

im
po

rt
an

ce

(a) Feature importance

Id Rule conf (%) IR

1 (P3) Detailed Call Status V3 3.6 2.45
2 (S6) Estimated Service Time D2 6.0 4.07
3 (P2) Call Status V5 5.4 3.67
4 (S2) Retailer V3 4.6 3.12
5 (S3) Item Volume D1 4.6 3.12
6 (C9) Zone V22 4.0 2.77
7 (D3) Day of Week V4 4.0 2.73
8 (S2) Retailer V39 4.0 2.72
9 (D3) Day of Week V2 4.0 2.72
10 (R7) Time Window Start Time D1 3.9 2.68
11 (D3) Day of Week V3 3.9 2.65
12 (D2) Time of Day V2 3.8 2.61

13 (P3) Detailed Call Status V2 0.7 2.06
14 (S4) Item Weight D1 0.6 2.4
15 (C5) Apartment number D1 0.7 2.22
16 (R9) Time Window Size D2 0.7 2.17

(b) Association Rules filtered with s=0.1,
min IR=1.4, ΔIR=0.1.

Figure 4.2: Customer not at home (NAH)

(Rule 4: S2=3 and Rule 8: S2=39), in the Montreal/Laval area (Rule 6: C9=22), on

a Tuesday, Wednesday or Thursday (Rule 9: D3=2, Rule 11: D3=3, Rule 7: D3=4), if

the time window starts between 6am and 8am (Rule 10: R7 in D1 (359.99, 480.0]), or if

the service is planned between 10am and 12pm (Rule 12: D2=2).

Conversely, P3=2, which means that a call was answered by a human, reduces the failure

probability by 2.06 times (Rule 13). Failure probability is further reduced if the item

is lighter than 2 lbs (Rule 14: S4 in D1 [0.0, 2.0]), perhaps because drivers can leave

small items unattended at the customer’s door when they agreed during a phone call.

Finally, failure probability is also reduced if the address has no apartment number (Rule

15: C5 in D1) or if the time window provided to the customer is short (Rule 16: R9 in

D2 (120.0, 180.0]).

From our analysis, we observe that confirmation call status has a huge impact on NAH

failure types. Failed confirmation call along with other parameters like call type, item

and time specific information increases the chances of failure.

4.2.2 Stop Rescheduled (SR)

Figure 4.3(a) shows the feature importance resulting from the classification of failures of

type “Stop rescheduled”. The failure importance is more uniformly distributed than for

NAH. Four features stand out: S2 (Retailer), D1 (Week of Year), R9 (Time Window Size)

Chapter 4 Failure Prediction Model Results 37

and R2 (Driver). Feature importance remains quite constant for the next 8 features,

and it seems to decrease linearly to 0 for the remaining features.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

S2 D1 R9 R2 C1 C8 S4 R11
C2 R1 R10

P3 S6 C4 S3 C3 R4 R8 C6 R6 R3 R7 R5 P2 C9 D3 C5 S5 D2 C7 S1 P1

Fe
at

ur
e

im
po

rt
an

ce

(a) Stop rescheduled (SR)

Id Rule conf (%) IR

1 (S2) Retailer V39 1.5 1.88
2 (P3) Detailed Call Status V3 2.5 3.16
3 (S4) Item Weight D5 1.9 2.41
4 (D3) Day of Week V5 1.8 2.30
5 (D2) Time of Day V4 1.7 2.07
6 (C7) Province V2 1.7 2.06
7 (C9) Zone V209 1.6 2.05
8 (P2) Call Status V5 1.6 2.01

9 (R10) Start Slack D9 1.4 1.80
10 (C9) Zone V209 1.6 1.95
11 (P2) Call Status V5 1.6 1.94
12 (C7) Province V2 1.6 1.93

13 (S2) Retailer V3 0.5 1.78

14 (R11) End Slack D6 1.4 1.77
15 (C9) Zone V209 1.6 1.97
16 (C7) Province V2 1.6 1.95

17 (R9) Time Window Size D3 1.4 1.77
18 (P3) Detailed Call Status V3 2.4 3.03
19 (S4) Item Weight D5 1.9 2.38
20 (D3) Day of Week V5 1.8 2.27
21 (C1) Longitude D3 1.7 2.09
22 (R7) Time Window Start Time D1 1.7 2.07
23 (R8) Time Window End Time D2 1.7 2.05
24 (C2) Latitude D3 1.5 1.92
25 (S3) Item Volume D3 1.5 1.91
26 (P2) Call Status V5 1.5 1.9
27 (R10) Start Slack D9 1.5 1.89
28 (C2) Latitude D2 1.5 1.88

29 (R9) Time Window Size D2 0.5 1.74
30 (P3) Detailed Call Status V2 0.3 2.30
31 (C7) Province V1 0.4 1.98

32 (S4) Item Weight D5 1.4 1.74
33 (P2) Call Status V5 1.5 1.84

34 (P3) Detailed Call Status V3 1.4 1.7
35 (P2) Call Status V5 2.0 2.54
36 (S6) Estimated Service Time D2 1.7 2.06
37 (C9) Zone V209 1.6 2.01
38 (C7) Province V2 1.5 1.91
39 (D2) Time of Day V1 1.5 1.82

40 (R10) Start Slack D8 1.3 1.67
41 (P2) Call Status V5 1.4 1.79

42 (S3) Item Volume D3 1.3 1.6
43 (S2) Retailer V39 1.5 1.88

44 (R11) End Slack D7 1.2 1.54
45 (P2) Call Status V5 1.3 1.68
46 (R9) Time Window Size D3 1.3 1.67

47 (S2) Retailer V149 1.2 1.51
48 (C9) Zone V209 1.5 1.87
49 (R9) Time Window Size D3 1.5 1.84
50 (C7) Province V2 1.4 1.72
51 (P2) Call Status V5 1.3 1.66

52 (S3) Item Volume D2 1.2 1.48
53 (S2) Retailer V39 1.4 1.69
54 (R9) Time Window Size D3 1.3 1.64

55 (R3) Route order D10 1.1 1.43

56 (S6) Estimated Service Time D1 1.1 1.42
57 (S2) Retailer V39 1.5 1.90
58 (R9) Time Window Size D3 1.4 1.77

(b) Association Rules filtered with s=0.1,
min IR=1.4, ΔIR=0.1.

Figure 4.3: Stop rescheduled (SR)

The Association Rules in Figure 4.3(b) confirm the importance of the Retailer: some

companies increase the failure rate (Rule 1: S2=39, Rule 47: S2=149), and other ones

reduce it (Rule 13: S2=3). The failure rate is also increased by high start slack (defined

in Section 3.2.1) times (Rule 9: R10 in D9 (120.0, 129.0], Rule 40: R10 in D8 (115.0,

Chapter 4 Failure Prediction Model Results 38

120.0]), and by high end slack (defined in Section 3.2.1) times (Rule 14: R11 in D6

(116.0, 120.0], Rule 44: R11 in D7 (120.0, 128.0]). The time window size also has an

effect on the failure rate: D3 (180.0, 240.0] increases the failure rate (Rule 17, 46, 49,

54 and 58), while D2 (120.0, 180.0] reduces it (Rule 29). As for NAH, a call landing

on voicemail (P3=3) increases the failure probability (Rule 34). Interestingly, services

executed toward the end of the route tend to be rescheduled more often (Rule 55: R3 in

D10 (16.0, 36.0]), and so do services with a short estimated job time (Rule 56: S6 in D1

(0.99, 240.0]). Finally, failures are also more frequent for services with a median weight

(Rule 32: S4 in D5(382.0, 4,7016.0]) or for volumes lower than 18.3 cf (Rule 42: S3 in

D3 (1.45, 18.3], Rule 52: S3 in D2 (0.002, 1.45]).

In conclusion, Stop Rescheduled (SR) failure type is more related to route specific pa-

rameters, longer start slack and time window size.

4.2.3 Refused by Customer (RC)

Figure 4.4(a) shows the feature importance resulting from the classification of failures

of type “Refused by customer”. Feature S2, Retailer, is standing out again. The im-

portance seems to decrease linearly for the next features, with a slight increase for C2

(Latitude) and S4 (Item Weight), and a slight drop between R3 and P3.

The Association Rules in Figure 4.4(b) show the effect of R9 (Time Window Size): when

in D3 (180.0, 240.0] (Rule 1), it reduces the failure rate by a factor of 1.78, while when

in D4 (240.0, 300.0] (Rule 5), it increases it by a factor of 1.74. The failure rate also

increases for company 8 (Rule 7: S2=8), for an estimated service time in D3 (480.0,

720.0] (Rule 11), in the Toronto area (Rule 16: C1 in D4 (-79.469, -79.254], Rule 18: C2

in D3 (43.595, 43.737], Rule 30: C9=23), for the highest start slack times (Rule 19: R10

in D10 (129.0, 751.0]), for services scheduled between 11:39am and 12:08pm (Rule 24:

R7 in D6 (700.0, 728.0]), and for voluminous items (Rule 28: S3 in D6 (49.02, 59.6]).

We conclude that Refused by Customer (RC) failure type is mostly related to route

specific features and high slack time and few geographic regions.

Chapter 4 Failure Prediction Model Results 39

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

S2 C8 R9 S6 R2 R1 C4 R8 C3 C6 R11
P3 R7 C5 R4 S3 S4 R10

S1 R6 R5 S5 R3 D1 C9 C1 D3 D2 C2 P2 C7 P1

Fe
at

ur
e

im
po

rt
an

ce

(a) Feature importance

Id Rule conf (%) IR

1 (R9) Time Window Size D3 0.3 1.78
2 (P3) Detailed Call Status V2 0.3 2.02
3 (S5) Item Manufacturer V-100.0 0.3 1.95
4 (C5) Apartment number D1 0.3 1.93

5 (R9) Time Window Size D4 1.0 1.74
6 (P2) Call Status V5 1.1 1.86

7 (S2) Retailer V8 1.0 1.73
8 (S3) Item Volume D6 1.3 2.24
9 (S6) Estimated Service Time D3 1.3 2.24
10 (P2) Call Status V5 1.1 1.83

11 (S6) Estimated Service Time D3 0.9 1.53
12 (S3) Item Volume D6 1.2 2.09
13 (C7) Province V2 1.1 1.84
14 (S4) Item Weight D1 1.0 1.75
15 (P2) Call Status V5 1.0 1.66

16 (C1) Longitude D4 0.9 1.53
17 (P2) Call Status V5 1.0 1.65

18 (C2) Latitude D3 0.9 1.51

19 (R10) Start Slack D10 0.9 1.43
20 (R9) Time Window Size D4 1.0 1.69
21 (S2) Retailer V8 1.0 1.69
22 (S4) Item Weight D1 1.0 1.61
23 (P2) Call Status V5 0.9 1.55

24 (R7) Time Window Start Time D6 0.9 1.43
25 (D2) Time of Day V4 1.0 1.68
26 (S4) Item Weight D1 0.9 1.58
27 (P2) Call Status V5 0.9 1.56

28 (S3) Item Volume D6 0.8 1.41
29 (S4) Item Weight D1 1.0 1.61

30 (C9) Zone V23 0.8 1.41
31 (P2) Call Status V5 0.9 1.56

32 (C5) Apartment number D2 0.8 1.41

(b) Association Rules filtered with s=0.1,
min IR=1.4, ΔIR=0.1.

Figure 4.4: Refused by customer (RC)

4.2.4 Canceled by Customer (CC)

Figure 4.5(a) shows the feature importance resulting from the classification of failures

of type “Canceled by customer”. As in the two previous failure types, Retailer (S2) is

standing out, and the importance seems to decrease linearly among the other features.

The Association Rules in Figure 4.5(b) show the importance of Time Window Size (R9),

as in the previous failure type: services tend to fail less when R9 is in D3 (180.0, 240.0]

(Rule 1), and they fail more when R9 is in D2 (120.0, 180.0] (Rule 8, 12, 24, 36, 50 and

55) or in D4 (240.0, 300.0] (Rule 19). Two particular companies also have increased

failure rates (Rule 13: S2=8, Rule 25: S2=3). The failure rate is also increased in the

Montreal area (Rule 5: C6=2118, Rule 5: C2 in D7 (45.452, 45.52], Rule 72: C2 in

D8 (45.52, 45.619], Rule 10: C1 in D8 (-73.586, -73.289], Rule 22: C1 in D7 (-73.754,

-73.586], Rule 33: C9=22), when a call lands on voicemail (Rule 45: P3=3), when the

service is toward the end of the route (Rule 64: R3 in D10 (16.0, 36.0]), when the service

time window starts around mid-day (Rule 69: R7 in D6 (700.0, 728.0]) or ends between

Chapter 4 Failure Prediction Model Results 40

4pm and 5pm (Rule 70: R8 in D9 (960.0, 1020.0]), and when the item has a very low

or close-to-average volume (Rule 51: S3 in D1 [0.0, 0.002], Rule 59: S3 in D6 (49.02,

59.6]).

In conclusion, Canceled by customer (CC) are associated with route specific feature and

specific geographical regions.

4.2.5 Not in Stock (NS)

Figure 4.6(a) shows the feature importance resulting from the classification of failures of

type “Not in stock”. The most important feature is the week of the year (D1), followed

by features related to geographical location (C2, C1, C8 and C9), features related to the

route (R9, R11 and R10), the company (S2) and the volume (S3).

This is consistent with the Association Rules in Figure 4.6(b). Note that we used dif-

ferent filtering parameters for this failure type, due to the important number of rules

with high IR. Rule 2 has an extremely high IR of 110.43, for a confidence of 37.4%: it

means that company 158 had a not-in-stock failure rate of 37.4% in province 1 (Québec).

Some geographical locations spanning from Gatineau to Sorel-Tracy have increased fail-

ure rates (Rule 8, 42 and 51: C1 in D7 (-73.754, -73.586], Rule 12 and 55: C1 in D6

(-75.601, -73.754], Rule 9: C2 in D8 (45.52, 45.619], Rule 14: C2 in D9 (45.619, 46.328],

Rule 60: C2 in D7 (45.452, 45.52]) while other ones have decreased failure rates (On-

tario, Rule 49: C7=2). Two specific weeks have increased failure rates: week 36 (Rule

19), which was the week of Labor Day in 2017, and week 44 (Rule 50), which was the

week of Haloween. As for route features, time windows shorter than 2 hours (Rule 5:

R9 in D1 [0.0, 120.0]), negative end slack times (Rule 32: R11 in D1 (-537.001, 62.0]),

and start slack times between 53 and 63 minutes (Rule 21: R10 in D3 (53.0, 63.0]) have

increased failure rates, while time windows between 2 and 3 hours (Rule 72: R9 in D3

(180.0, 240.0]) reduce the failure rate. Specific companies increase the failure rate (Rule

1: S2=158, Rule 41: S2=7) while other ones reduce it (Rule 71: S2=3).

We observe that Not in Stock (NS) failure type is specific to certain retailers which could

be further investigated to address this failure type.

Chapter 4 Failure Prediction Model Results 41

4.3 Conclusion and Suggested Counter Measures

In this section, we conclude classification results and discuss the performance explanation

for SMOTE. We conclude feature importance and Association Rules and suggest some

counter measures to prevent failures.

4.3.1 Classification Results

Random Forests showed good performance when applied to the dataset pre-processed

with Random Undersampling: they reach an average sensitivity of 0.7 and an average

specificity of 0.7. Thus, 70% of the failures of the studied types could be predicted, which

represents 4,750 failed stops per year in the studied dataset. This prediction ability is

an opportunity to save on pickup and delivery costs.

The classification performance could be further improved by (1) improving the quality

of the dataset, in particular through a better definition and separation of failure types,

(2) improving the dataset aggregation technique to deal with records of non-uniform

sizes; our technique essentially averages the features of the services in a stop, which

leads to information loss, (3) improving the strategy to deal with dataset imbalance,

perhaps through a more specific oversampling method. Regarding point (3), the poor

performance of SMOTE compared to the other resampling methods is illustrated in

Figure 4.7. The linear combinations of services generated by SMOTE are not realistic.

In particular, the generated services do not respect natural boundaries such as lakes

or uninhabitated regions, not to mention roads or actual addresses. This behavior is

not surprising, since no such constraints were included in the oversampling method.

Similar inconsistencies are also very likely to happen in other features. On the contrary,

NearMiss and Random Undersampling maintain a realistic distribution of services, at

the cost of reducing the dataset. A more constrained oversampling technique might be

able to address this limitation.

Chapter 4 Failure Prediction Model Results 42

Figure 4.7: NAH: 2-D projection of training datasets

4.3.2 Important Features and Association Rules

Overall, we observed a good agreement between the feature importance obtained from

Random Forest and the selected Association Rules. Nevertheless, most Association

Rules have a low confidence value, below 5%, which shows that failures are predicted

from combinations of features rather than straighforward associations. We conclude

that Association Rules, computed and selected using the methods we presented, are a

relevant addition to RF feature importance to provide finer-grained interpretation.

It should be noted that our extraction of Association Rules focused on rules where the

antecedent occurs more than s times among the failed stops. This explains why the

selection was biased towards rules with φ > 1 (rules displayed in red).

Chapter 4 Failure Prediction Model Results 43

4.3.3 Suggested Counter-Measures

The Retailer has a measurable effect on all the failure types. Specific investigations

among the companies with failure rates higher than average should be conducted, to

better understand the failure causes.

Failure of type “Customer not at home” (NAH) are very dependent on confirmation calls.

In case such calls are not answered, additional ones should be scheduled, in particular if

the estimated service time is short, if the item volume is low, if the item is not delivered

on a Monday or Friday, if the time window starts before 8am, or if the service is planned

between 10am and 12pm. In addition to these indicators, our trained Random Forest

model could be used to recommend additional calls specifically for services predicted to

fail. There might even be situations were multiple unanswered calls should result in the

service to be removed from the route, if the specificity could be made close enough to 1.

Failures of type “Stop rescheduled” (SR) are associated with many features related to

the route (R3, R9, R10, R11) and a few other ones related to the type of service (S3,

S4, S6). Such information could be included in optimizers, to facilitate the building

of routes with less failures of this type. Start slack times longer than 2 hours lead to

increased failure rates, which suggests that failures might happen due to delays in the

route: dispatch centers might decide to skip stops when the service won’t happen in the

time window, which happens with higher probability when the start slack time is high.

Likewise, services scheduled toward the end of the route are rescheduled more often than

average, perhaps again due to delays in the route. The Time Window Size also has an

effect on the failure rate: increased failure rates are observed for window size longer than

3 hours.

Failures of type “Refused by customer” (RC) are also associated with route-related

features (R7, R9 and R10), perhaps because delays lead impatient customers to refuse

items. In addition, they seem to occur more frequently at specific geographical locations

(Toronto area). Again, this information could be used by optimizers to build routes

with less of such failures. Such zones might also be further investigated to understand

the reasons for refused items. In addition, specific items (volume in D6 and estimated

Chapter 4 Failure Prediction Model Results 44

service time in D3) have an increased failure rate of this type, which might be reported

to the manufacturers.

Failures of type “Canceled by customer” (CC) are also associated with route-related and

geographical features (Montreal area), which could again be used by optimizers.

Finally, failures of type “Not in Stock” (NS) are strongly related to one specific retailer

for which more than 10% of the services fail, and even 37% in Québec. This should be

reported to the retailer and further investigated.

Chapter 4 Failure Prediction Model Results 45

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

S2 C8 R9 S6 R2 R1 C4 R8 C3 C6 R11
P3 R7 C5 R4 S3 S4 R10

S1 R6 R5 S5 R3 D1 C9 C1 D3 D2 C2 P2 C7 P1

Fe
at

ur
e

im
po

rt
an

ce

(a) Feature importance

Id Rule conf (%) IR

1 (R9) Time Window Size D3 0.2 2.06
2 (S5) Item Manufacturer V-100.0 0.2 2.41
3 (C5) Apartment number D1 0.2 2.38
4 (C7) Province V2 0.2 2.18

5 (C6) City V2118 1.0 2.00

6 (C2) Latitude D7 1.0 2.00
7 (S2) Retailer V3 1.5 3.14
8 (R9) Time Window Size D2 1.3 2.62
9 (C9) Zone V22 1.1 2.21

10 (C1) Longitude D8 0.9 1.86
11 (S2) Retailer V3 1.3 2.66
12 (R9) Time Window Size D2 1.1 2.34

13 (S2) Retailer V8 0.9 1.80
14 (S3) Item Volume D6 1.1 2.25
15 (C1) Longitude D4 1.1 2.24
16 (S6) Estimated Service Time D3 1.1 2.23
17 (D2) Time of Day V4 1.0 2.12
18 (R11) End Slack D10 1.0 1.98

19 (R9) Time Window Size D4 0.9 1.79
20 (D2) Time of Day V4 1.1 2.18
21 (R11) End Slack D10 0.9 1.91

22 (C1) Longitude D7 0.9 1.77
23 (S2) Retailer V3 1.4 2.81
24 (R9) Time Window Size D2 1.3 2.56

25 (S2) Retailer V3 0.9 1.74
26 (S4) Item Weight D1 1.3 2.68
27 (P3) Detailed Call Status V3 1.3 2.57
28 (C9) Zone V22 1.2 2.50
29 (C7) Province V1 1.0 1.97
30 (R11) End Slack D4 0.9 1.86
31 (D2) Time of Day V1 0.9 1.85

32 (C5) Apartment number D3 0.8 1.74

33 (C9) Zone V22 0.8 1.60
34 (P3) Detailed Call Status V3 1.4 2.90
35 (S3) Item Volume D1 1.1 2.34
36 (R9) Time Window Size D2 1.1 2.30
37 (D3) Day of Week V2 1.0 2.05
38 (C6) City V2118 1.0 2.02
39 (C1) Longitude D8 0.9 1.92
40 (D3) Day of Week V4 0.9 1.90
41 (S4) Item Weight D1 0.9 1.86
42 (C1) Longitude D7 0.9 1.78
43 (S6) Estimated Service Time D2 0.9 1.76
44 (D2) Time of Day V4 0.8 1.74

45 (P3) Detailed Call Status V3 0.8 1.57
46 (S3) Item Volume D1 1.2 2.38
47 (P2) Call Status V5 1.1 2.35
48 (S6) Estimated Service Time D2 1.1 2.27
49 (C7) Province V1 1.0 1.94
50 (R9) Time Window Size D2 0.9 1.81

51 (S3) Item Volume D1 0.8 1.56
52 (C7) Province V1 0.9 1.94
53 (R11) End Slack D4 0.9 1.84
54 (S2) Retailer V3 0.8 1.74
55 (R9) Time Window Size D2 0.8 1.71
56 (D2) Time of Day V1 0.8 1.69
57 (S4) Item Weight D1 0.8 1.69

58 (C5) Apartment number D2 0.7 1.48

59 (S3) Item Volume D6 0.7 1.48
60 (S6) Estimated Service Time D3 1.1 2.18
61 (C9) Zone V209 1.0 2.08
62 (C7) Province V2 1.0 1.96
63 (S4) Item Weight D1 0.8 1.65

64 (R3) Route order D10 0.7 1.47

65 (S6) Estimated Service Time D3 0.7 1.47
66 (C7) Province V2 0.8 1.71
67 (S5) Item Manufacturer V-100.0 0.8 1.66
68 (S4) Item Weight D1 0.8 1.63

69 (R7) Time Window Start Time D6 0.7 1.47

70 (R8) Time Window End Time D9 0.7 1.46
71 (S4) Item Weight D1 0.8 1.60

72 (C2) Latitude D8 0.7 1.42

73 (C1) Longitude D4 0.7 1.40

(b) Association Rules filtered with s=0.1,
min IR=1.4, ΔIR=0.1.

Figure 4.5: Canceled by customer (CC)

Chapter 4 Failure Prediction Model Results 46

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

D1 C2 C1 C8 C9 R9 R11
S3 S2 R10

C4 S4 R1 S6 R2 C3 R6 R5 C7 R4 R8 C6 R7 P3 R3 D3 S5 C5 P2 D2 S1 P1

Fe
at

ur
e

im
po

rt
an

ce

(a) Feature importance

Id Rule conf (%) IR

1 (S2) Retailer V158 10.4 30.81
2 (C7) Province V1 37.4 110.43
3 (P2) Call Status V5 11.0 32.40
4 (S4) Item Weight D1 10.9 32.26

5 (R9) Time Window Size D1 1.5 4.40
6 (S2) Retailer V158 10.4 30.81
7 (S4) Item Weight D1 5.9 17.48
8 (C1) Longitude D7 4.9 14.52
9 (C2) Latitude D8 4.2 12.30
10 (C9) Zone V22 3.5 10.29
11 (C3) Door number D1 3.4 10.07
12 (C1) Longitude D6 3.3 9.73
13 (S6) Estimated Service Time D3 3.2 9.32
14 (C2) Latitude D9 3.1 9.19
15 (C7) Province V1 3.0 8.87
16 (D2) Time of Day V4 1.9 5.75
17 (S6) Estimated Service Time D1 1.7 5.10
18 (D3) Day of Week V6 1.7 4.94

19 (D1) Week of Year V36 1.2 3.50
20 (C7) Province V1 1.9 5.59

21 (R10) Start Slack D3 1.2 3.49
22 (C9) Zone V22 2.9 8.45
23 (C3) Door number D1 2.8 8.22
24 (S6) Estimated Service Time D3 2.6 7.75
25 (C7) Province V1 2.4 7.18
26 (D2) Time of Day V4 1.8 5.33
27 (S6) Estimated Service Time D1 1.6 4.76
28 (S4) Item Weight D4 1.6 4.62
29 (R9) Time Window Size D1 1.5 4.40
30 (R11) End Slack D1 1.5 4.35
31 (D3) Day of Week V6 1.5 4.29

32 (R11) End Slack D1 1.1 3.35
33 (C9) Zone V22 2.5 7.38
34 (C7) Province V1 2.3 6.83
35 (S4) Item Weight D4 1.5 4.51
36 (D2) Time of Day V4 1.5 4.47
37 (S6) Estimated Service Time D1 1.5 4.40
38 (S4) Item Weight D1 1.4 4.23
39 (R9) Time Window Size D1 1.4 4.19
40 (D3) Day of Week V6 1.3 3.95

41 (S2) Retailer V7 1.1 3.35
42 (C1) Longitude D7 4.3 12.67
43 (C9) Zone V22 2.8 8.14
44 (C7) Province V1 2.3 6.81
45 (S6) Estimated Service Time D1 1.7 5.10
46 (D2) Time of Day V4 1.6 4.65
47 (S4) Item Weight D4 1.6 4.62
48 (D3) Day of Week V6 1.3 3.97

49 (C7) Province V2 0.1 2.80

50 (D1) Week of Year V44 0.9 2.70

51 (C1) Longitude D7 0.7 2.11

52 (C9) Zone V23 0.7 2.07
53 (S4) Item Weight D1 1.1 3.26

54 (C6) City V2118 0.7 2.06

55 (C1) Longitude D6 0.7 1.96

56 (S6) Estimated Service Time D3 0.7 1.96
57 (C3) Door number D1 2.8 8.35
58 (C9) Zone V22 1.7 5.14
59 (C7) Province V1 1.4 4.03

60 (C2) Latitude D7 0.7 1.95

61 (C9) Zone V22 0.7 1.94
62 (C3) Door number D1 4.9 14.54
63 (S3) Item Volume D4 1.5 4.52
64 (R8) Time Window End Time D1 1.1 3.38
65 (S4) Item Weight D4 1.1 3.23
66 (S6) Estimated Service Time D1 1.0 3.06
67 (D3) Day of Week V2 0.9 2.65
68 (S3) Item Volume D2 0.9 2.62
69 (R11) End Slack D2 0.8 2.51
70 (P3) Detailed Call Status V3 0.8 2.46

71 (S2) Retailer V3 0.2 1.93

72 (R9) Time Window Size D3 0.2 1.93

(b) Association Rules filtered with s=0.1,
min IR=1.9, ΔIR=0.5.

Figure 4.6: Not in stock (NS)

Chapter 5

Simulation Model

5.1 Introduction on Simulation

The goal of SimVRP is to simulate the routes generated by the optimization model and it

is used as a cost function to evaluate the quality of the routes. A route is evaluated based

on time and distance taken by a vehicle and the total number of service failures into

the route. SimVRP finds the total traveled distance and time for a route and predicts

the number of failed services with different failure reasons. The SimVRP prototype, we

developed as a part of this thesis, simulates service failures at random. In Chapter 2, we

discussed different components needed to build a simulation model in SimGrid. In this

Chapter, we discuss the details of the different components in SimVRP like platform,

processes and deployment and how they model the route generated by the optimization

model.

5.2 Model Description

A simulation model in SimGrid is defined by a platform, a set of processes, and a

deployment of the processes on the platform (Chapter 2). In SimVRP, platform models

the road network. Processes describe the events in a route like loading the items in the

truck, delivering to a customer place and returning back to depot. The deployment file

47

Chapter 5 Simulation Model 48

describes the mapping of processes to hosts in the platform. Figure 5.1 describes the

work flow in simulation model.

Figure 5.1: SimVRP Workflow

In the rest of the chapter, we describe how the road network is modeled by SimGrid plat-

form, different data structures for modeling objects in the road network and processes

to be executed on different hosts in the platform.

5.2.1 Platform Model

SimVRP models road network as a computer network and represents different compo-

nents of road network in the last mile like trucks, local DC or depot(s), end customers

and the path connecting them as objects of a computer network. These objects are

defined in the SimVRP platform. Depot(s), stores and customers are modeled as hosts

in the platform. A host is characterized by a unique name, processing speed and num-

ber of cores. The path connecting two physical locations (i.e., Customer-Customer,

Depot-Customer or Customer-Depot) is represented by a network link. Each link in the

platform is defined by a source and destination host, bandwidth and latency. A truck is

modeled as SimGrid task which contains a route representation. A task in SimGrid has

Chapter 5 Simulation Model 49

four components as shown in the Figure 5.2.

Figure 5.2: SimGrid Task

Host name is the name of the host in the platform represented by a unique host id.

Processing amount represents computational size (flops) required to process the task at

a host. Message size is the task size in bytes. Data is user information which can be

retrieved at the host. In current version of SimVRP, we do not use processing amount

and message size field in the SimGrid task. So we set them to zero. User data contains

route representation. SimVRP processes primarily work on User data and exchange

information contained in this part.

The platform in SimVRP is generated from a time matrix. The time matrix is a square

matrix of real values which denotes the smallest amount of time needed to travel between

two locations. The travel time is constant and does not consider the traffic and weather

conditions. The number of hosts is the number of rows in the matrix and there exists a

link between all hosts in the platform. The latency on the links is defined from the travel

time between two stops in the time matrix. We assign each link a constant bandwidth

of 1bps as there is no capacity constraint on the road and each communication task size

is 0 bytes.

In SimVRP, each host has a constant processing speed of 1flop. This is primarily be-

cause, we do not execute SimGrid tasks and stops (i.e., depot, customer and stores) are

represented by similar hosts. In future version of SimVRP, depot and stores could be sep-

arated from individual customer by assigning different processing speed. The platform

is generated once before the simulation is started and remains unchanged throughout

the simulation.

Chapter 5 Simulation Model 50

5.2.2 Processes

There are two main processes in SimVRP, representing the depot and the customer stops.

As we discussed in Section 5.2.1, these processes exchange SimGrid tasks containing a

route representation. Route-specific information like customer location, different item

to be served at a stop, item-specific information like weight and volume, information of

the vehicle like maximum capacity, current remaining capacity, driver information are

represented in simTruck. A simTruck is composed of many data structures shown in

Figure 5.3 and encapsulated in the User data part of SimGrid task. Let’s first introduce

the data structures used to build simTruck and how they are initialized.

Simulated Entities

simItem: This data structure represents items in the last mile and describes item-

specific attributes like size, weight and volume and a unique good id. These attributes

are initialized with attributes of the item and used to ensure that the sum of the volume

of items never exceeds the maximum capacity of simTruck. In the last mile, the driver

must keep track of the items present in the vehicle for efficiently performing the services.

To achieve this, simTruck maintains a Boolean variable in Truck, for each item, to

determine if the item is available in Truck. in Truck is set to 1 if the item is present

and 0 otherwise.

simService: This data structure represents a pickup or delivery service. It has a unique

service id and a simItem associated to it. type describes the service type (Pickup/Deliv-

ery). Each service in simVRP has a predecessor and successor that represents services

which must be performed before and after the current service respectively. A service can

have three different status: Pending, Completed or Failed which is described by status

attribute. By default, status is set to Pending during initialization and changes during

simulation. Failed services in SimVRP are tracked with status reason, set to ‘undefined‘

during the initialization process and later updated if the service fails. In the current

version of SimVRP, we introduce 5 different service failure types at random which in

future could be extended to include predictive data models for a wider range of failure

type as developed in Chapter 3.

Chapter 5 Simulation Model 51

Figure 5.3: Data Structure in SimVRP

simStop: This data structure represents an actual physical location like customer ad-

dress, store or depot and modeled as host in the platform file. Each stop has unique

stop id and name stop host. Each simStop contains a list of simService to be performed

on this stop. It has a time window for service processing and this is determined with

time window attribute which stores start and end of the time window in seconds. A

service is not be processed outside of the service time window. Processing time for each

service in seconds is stored in service time attribute.

simRoute: This data structure represents a route in the last mile and is defined by

a unique route id. It maintains a list of simStop to be served in the route. It also

maintains the total number of simStops and simServices for each route. So a simRoute

is a collection of simStop in the order to be performed in the route.

simDriver: This data structure represents a driver in the last mile. Each driver has a

unique Id and is characterized by travel efficiency and service efficiency.

Chapter 5 Simulation Model 52

simTruck: This data structure represents a real truck in the road network. It maintains

a unique id and encapsulates a simRoute and a simDriver. In the current version of

SimVRP, the driver is just associated with each simTruck and its profile is not taken

into account. The attributes truck max capacity and current capacity determines the

maximum and current capacity of the truck.

Route Initialization

From the real routes (generated by the route planning software i.e., optimizer of ClearD),

different data structures are created and initialized as discussed above. This modification

and initialization happen inside a parser. This function is not a SimVRP process and

its task is to create and initialize simTruck before the actual simulation process. It

accepts a set of routes generated by the optimizer and transforms each route into a

simTruck by creating instances of the different data structure shown in Figure 5.3. For

each route generated by the optimizer, the parser function creates a simTruck, simRoute

and simDriver. simStop is initialized by the total number of stops in an optimizer route.

simService data structure, for each stops, holds service to be performed at a stop in the

route.

Interaction between two process in SimVRP (process depot and process customer) is

shown in Figure 5.4. process depot initiates communication in SimVRP. It creates a Sim-

Grid task with simTruck and sends it to the 1st simStop in SimRoute. process customer

receives a SimGrid task from process customer and itself. It processes the services and

send the tasks to next simStop in the simRoute. This process continues and the last

stop send the task back to depot.

Chapter 5 Simulation Model 53

Figure 5.4: process depot and process customer interaction in SimVRP for a sim-
Route

process depot: This process is deployed at the hosts representing depot in SimVRP

platform as shown in Figure 5.4. The main steps in process depot are explained in

Algorithm 3. It creates a SimGrid task (data type msg task t) and assigns task’s data

with simTruck. This process is suspended temporarily by process sleep() to keep driver’s

start time into account when the simulation is started. The task is sent to the mail-

box of the host (destination host) representing 1st stop in simRoute. Before the task is

sent, simulation timestamp is recorded. This process also receives a task sent by pro-

cess customer. On receiving a task, it updates the traveled time and traveled distance

in simTruck. traveled time is recorded by reading the difference in simulation time be-

fore the task was sent and after the task has been received. The route time is computed

from the difference of these two times. process depot is implemented to model behavior

of a depot in the last mile where in practice multiple vehicles start their route. It can

send multiple tasks (which encapsulates simTruck) to different hosts at the same time.

process customer: This process is deployed at the hosts representing customer/store

Chapter 5 Simulation Model 54

in SimVRP platform as shown in Figure 5.4. It describes core functionalities in SimVRP.

The main steps in this process are summarized in Algorithm 4.

Algorithm 3 process depot

Input- simTruck: Parser generated data structure containing a route represen-

tation; driver start time: Start time for the driver; Distance Matrix[][]: A two

dimentional Distance Matrix.

1: process sleep(driver start time) � Wait until the start time of the driver.

2: simulation start time ← get clock() � Record the simulation time stamp.

3: simStop ← 1st stop in simTruck

4: host id ← simStop name

5: task task s = task create(host id, 0, 0, simTruck) � Create a task t with the 1st

stop in the parser route.

6: task send(task s, host id) � Send this task to the stop id.

7: rec simTruck ← receive task() � Recieve the truck sent back to the depot.

8: simulation end time = get clock() � Record tasks arrival time.

9: traveled time ← simulation end time− simulation start time � Compute

simulation time.

10: UpdateDistance(simTruck,Distance Matrix) � Update the distance.

11: Stop simulation.

Receiving a Task: process customer receives a SimGrid task sent by process depot in

its mailbox by reading the MSG incoming queue. It can receive only one SimGrid task

at a time. simTruck is extracted from the data part of the received task and the task

is destroyed. This state of SimVRP relates to a state in the last mile where a vehicle

arrives at the customer location to perform a pickup/delivery service.

Updating travelled distance: Next step in process customer is to update the trav-

eled distance in simTruck. travel distance attribute of simTruck is updated to consider

the distance travelled between sending host and receiving host. This distance is taken

from distance matrix for the associated hosts i.e., the sending host and receiving host

as shown in Algorithm 5.

Chapter 5 Simulation Model 55

Algorithm 4 process customer

Input- failure rate: Service failure rate; Distance Matrix[][]: A two dimensional

distance matrix.

1: task receive(&task, host get name(host self()) � Receive a task.

2: rec simTruck ← task get data(task) � Extract simTruck from the task.

3: UpdateDistance(simTruck,Distance Matrix) � Update the distance.

4: current stop ← Get current simStop from simTruck � Get the current stop in

the route

5: now ← get clock() � Record task arrival time.

6: end time window ← End time window of current stop

7: if end time window < now then � Driver arrived late, do not process the stop.

8: simServices ← Services in current stop

9: for service in simService do

10: service status ← Failed

11: status reason ← Driver late

12: end for

13: else � Check if the driver arrived early.

14: start time window ← Start time window of the current stop

15: slack ← start time window − now

16: if slack > 0 then

17: process sleep(slack time) � Wait until start of time window

18: end if

19: process service(simTruck, failure rate) � Process the services at this stop.

20: end if

21: Send simTruck to the next stop.

Perform Services: There are two type of services in SimVRP: Delivery and Pickup.

On receiving a task, process customer determine if the task is received with in the service

time window of the current simStop by looking at the stop specific information like time

window from simStop. The process extracts ’end time window’ from the simStop and

compares it with the actual arrival time in the simulation. If the task has arrived before

the ’end time window’ of the simStop, it is allowed to process the services (defined in

Chapter 5 Simulation Model 56

simService) at the host otherwise, the no service is processed and all the services for the

simStops are marked fail. This is however very strict constraint as in practice the drivers

still make an attempt to perform the services when they are little late. We summarize

the step to process the services at a stop in Algorithm 6.

Algorithm 5 UpdateDistance

Input- simTruck: Parser generated data structure containing a route representa-

tion; Distance Matrix[][]: A two dimensional Distance matrix.

1: simRoute ← Route from simTruck � Get route representation from simTruck.

2: current stop ← Get current simStop from simRoute � Get the current stop in

the route

3: sender stop ← Get stop associated to sending host from simRoute

4: distance ← Distance Matrix[sender stop][current stop] � Get distance between

sender and receiver stop from Distance Matrix.

5: traveled distance ← traveled distance+ distance � Update distance.

The current version of SimVRP simulates 2% service failures randomly for bad address,

item quality and customer not at home before actually processing any service at a host.

Failure rate is passed to SimVRP at execution time which could also be made as an

argument in the deployment file.

process service determines service kind from the type attribute of simService data struc-

ture. If the service is a delivery service, the process looks for the associated item in

the simTruck by checking in truck variable. It delivers the item to the customer if it is

available. In case of a pickup service, the process examines current capacity parameter

of simTruck to determine if there is enough space available to load the item. The item

is successfully loaded into simTruck if difference between maximum capacity and cur-

rent capacity is more than the capacity of the item. If item capacity exceeds available

simTruck capacity, the item is not picked up at the host.

Chapter 5 Simulation Model 57

Algorithm 6 process service

Input: simTruck- Data structure containing a route representation; failure rate:

Service failure rate.

1: simStop ← Current stop in simTruck � Get the current processing customer stop.

2: simServices ← Service to be performed at the simStop

3: if rand() < RAND MAX ∗ failure rate then

4: Introduce failure. � Integrate service failure prediction models here.

5: else

6: for simService in simServices do

7: simItem ← item associated with the simService

8: if simService is Delivery type then

9: if simItem is in simTruck then � Item is in the truck, perform service.

10: service status ← completed

11: simItem ← Not in truck

12: else � Item in not in the truck.

13: service status ← failed

14: service status reason ← item not in truck

15: end if

16: else � Service is a Pickup type.

17: truck current capacity ← truck current capacity + simItem volume

18: if truck max capacity ≤ truck current capacity then � Check if space

available in truck.

19: truck current capacity ← truck current capacity+simItem volume

20: service status ← completed

21: simItem ← In truck

22: else � No space in the truck.

23: service status ← failed

24: service status reason ← truck capacity issue

25: end if

26: end if

27: end for

28: process sleep(simStop′s servicetime)

29: end if

Chapter 5 Simulation Model 58

In the next step, the service status is updated in simService. The service is marked

’successful’ or ’failed’ with appropriate failure reason depending on the previous step. If

the service is successful, current capacity in simTruck is increased/decreased accordingly

by the weight of the item picked/delivered. However current capacity remains same if

the status is marked as Failed.

Send simTruck to next Host: Once all the services on a stop is completed, the

process creates a new SimGrid task, assigns name and initializes data with the updated

simTruck. This task is then sent to the host representing next stop in simRoute.

5.2.3 Deployment and Execution

The deployment file maps processes to hosts defined in the platform. in SimVRP, pro-

cess customer and process depot are mapped to the host representing customers/stores

and depots respectively. We can pass the input arguments like driver start time and

service failure rate through the deployment file.

sim vrp: This function is the entry point in SimVRP. It initializes the MSG internal

data and creates a virtual platform as described in SimVRP platform. sim vrp register

the processes to the hosts as defined in the deployment file. It accepts simTruck data

structure from parser as shown in the Figure 5.1. The registered processes are launched

from the deployment file and simulation is started.

5.3 Conclusion

In this chapter, we discussed SimVRP implementation with SimGrid. We defined various

data structures used to represent different objects in routes and how the road network

is represented by the platform. The role of the driver at the depot and customer place

is defined by processes and the hosts at which the processes are mapped. The results of

SimVRP validation are presented in Chapter 6.

Chapter 6

SimVRP Validation

In this chapter, we present SimVRP validation results on sample routes.

6.1 Experimental Setup

We simulates six sample routes from the prototype route as shown in Figure 6.1, with

5 stops. Each stop (except depot) as a time window interval [a, b] expressed in minutes

after midnight and a service time expressed in minutes inside the circle. There is a tuple

(x, y) on each link which is the travelling distance (km) and time (minutes) between

stop x and y. Stop 2 and Stop 3 have two services and all other stops have one service.

All trucks are of the uniform maximum capacity of 500lbs and every driver starts at 7

AM. There is a total of 7 services in any route. The travelled distance for each route

is 215 km. The travel time is different based on the number of failed services. In each

route, we introduce the following constraints.

1. Route 1 is a straight forward representation of the prototype route shown in Figure

6.1.

2. Route 2 with late driver: We change the time window for Stop 4 to [630, 730] in

the route shown in Figure 6.1. The driver arrives at this stop at 778.

59

Chapter 6 SimVRP Validation 60

3. Route 3 with precedence constraints: Stop 2 has two pickup services and it is

predecessor of Stop 3. The item which are picked up at Stop 2 are to be delivered

at Stop 3.

4. Route 4 with truck capacity constraints: At Stop 3, we assign two pickup services

each with capacity higher than truck’s maximum capacity.

5. Route 5 with different travel time:

Figure 6.1: Sample Route

6.2 Simulation Results

Simulation results are shown in Table 6.2. We simulated six routes and the simulated

results are same as the real result.

Route 1 is a simple route where all the stops are successfully completed. In Route 2,

the driver arrives late at stop 4 at 778, after the end time window (730) for the stop. So

this stop is not processed and the service associated is marked failed with failure reason

’Driver late’ as shown in Table 6.2(b). This affect the total travel time for the route as

the processing time for Stop 4 now adjusted to perform service on time at Stop 5.

In Route 3, Stop 2 is predecessor of Stop 3 and the items picked up at this stops are

to be delivered at Stop 3. To simulate this, we first simulate a route where Stop 2 is

successfully processed which also make Stop 3 successfully processed as shown in Table

6.2(c). One ’Not At Home’ failure type in randomly introduced in this route. We then

make the driver arrive late by changing the time window of Stop 2 [570, 584]. So Stop

2 is not processed as the driver arrives at 585 at Stop 2. This results in failure of Stop

Chapter 6 SimVRP Validation 61

Real
Traveled Time(Minute) 547
Traveled Distance (Km) 215

Simulated
Traveled Time(Minute) 547
Traveled Distance (Km) 215

Service Status
Pending Service 0
Completed Services 7
Failed Services 0
Driver Late 0

Failed Service Status

Item Not in truck 0
Truck Capacity Issue 0
Customer Not At Home 0
Bad Address 0
Item Quality Issue 0

(a) Route 1 (Simple route)

Real
Traveled Time(Minute) 508
Traveled Distance (Km) 215

Simulated
Traveled Time(Minute) 508
Traveled Distance (Km) 215

Service Status
Pending Service 0
Completed Services 6
Failed Services 1
Driver Late 1

Failed Service Status

Item Not in truck 0
Truck Capacity Issue 0
Customer Not At Home 0
Bad Address 0
Item Quality Issue 0

(b) Route 2 (With late driver)

Real
Traveled Time(Minute) 547
Traveled Distance (Km) 215

Simulated
Traveled Time(Minute) 547
Traveled Distance (Km) 215

Service Status
Pending Service 0
Completed Services 5
Failed Services 2
Driver Late 0

Failed Service Status

Item Not in truck 0
Truck Capacity Issue 0
Customer Not At Home 2
Bad Address 0
Item Quality Issue 0

(c) Route 3.a (With precedence constraints and no fail-
ures)

Real
Traveled Time(Minute) 526
Traveled Distance (Km) 215

Simulated
Traveled Time(Minute) 526
Traveled Distance (Km) 215

Service Status
Pending Service 0
Completed Services 3
Failed Services 4
Driver Late 2

Failed Service Status

Item Not in truck 2
Truck Capacity Issue 0
Customer Not At Home 0
Bad Address 0
Item Quality Issue 0

(d) Route 3.b (With precedence constraints and fail-
ures)

Real
Traveled Time(Minute) 547
Traveled Distance (Km) 215

Simulated
Traveled Time(Minute) 547
Traveled Distance (Km) 215

Service Status
Pending Service 0
Completed Services 5
Failed Services 2
Driver Late 0

Failed Service Status

Item Not in truck 0
Truck Capacity Issue 2
Customer Not At Home 0
Bad Address 0
Item Quality Issue 0

(e) Route 4 (Truck capacity constraint)

Simulated
Traveled Time(Minute) 5476
Traveled Distance (Km) 5904.94

Service Status
Pending Service 0
Completed Services 25
Failed Services 266
Driver Late 257

Failed Service Status

Item Not in truck 8
Truck Capacity Issue 0
Customer Not At Home 0
Bad Address 0
Item Quality Issue 1

(f) Large sample route with 89 stops

Figure 6.2: SimVRP simulation results

Chapter 6 SimVRP Validation 62

3 as well as the associated item are not found in the truck. The results are shown in

Table 6.2(d).

In Route 4, we introduce capacity constraints at Stop 3. At this stop we assigns two

pickup services, each with capacity higher than truck’s maximum capacity. So both

services fail and items are not picked up as shown in 6.2(e).

6.3 Conclusion

SimVRP simulation results for all the routes are identical to the expected in real life. To

ensure the scalability of the model for larger route instances, we successfully simulated

a route with 89 stops provided by ClearD as shown in Table 6.2(f). It should be noted

that the scope of SimVRP, at present, is limited. It finds the total travelled time and

distance and randomly simulates failures. With this piece of work, our goal was to

develop a prototype of the data driven simulation model which could be extended to

incorporate failure models and randomness in Pickup and Delivery. In future work, more

realistic failure models, as developed in Chapter 3 and 4 could be integrated in SimVRP.

Every time, a service is to be performed inside SimVRP, the service could be predicted

over multiple failure prediction data models designed to address specific failure type. If

any of the failure prediction data model flags the service as a failed service, SimVRP

should not process this service. Also weather and the driver’s profile could be used in

the platform to make SimVRP capture real time route execution setup.

Chapter 7

Conclusions

We studied five different failure types and obtained good classification results for fail-

ure detection in Pickup and Delivery Problem. We compared different data sampling

strategies and showed that for our dataset random under-sampling performs best. To

complement the classifier results and better understand the failure reasons, we extracted

Association Rules for each failure type. With Important Features obtained from Ran-

dom Forest and Association Rules, we concluded that phone calls, high start slack and

service time, retailer and some geographic regions have high impact on service failures.

Different actors in the supply chain can act on these parameters to control failure rate

and improve route quality. The simulation model implemented in the thesis was success-

fully able to simulate route. This simulation model evaluates a route based on travelling

time, distance and total number of failed services.

In the future, to extend the work in failure type prediction, the dataset aggregation

method could be revised to prevent information loss resulted from simple averaging of

service features. The performance of the models could be improved by (1) improving

the quality of the dataset and better defining failure types, (2) improving the strategy

to deal with imbalanced dataset. The random under-sampling strategy might remove

important instances from majority class which can compromise model’s performance.

For extending the work in SimVRP, (1) the driver’s profile could be considered to include

the effect of a new driver, (2) random service failure types could be replaced by the

63

Chapter 7 Conclusions 64

data models developed in this thesis, (3) bad weather and traffic conditions need be

implemented to evaluate routes in more real life environment, (4) finally, SimVRP is to

be integrated into the optimization model.

Bibliography

[1] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc.

20th Int. Conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

[2] F. Arnold, I. Cardenas, K. Sörensen, and W. Dewulf. Simulation of b2c e-commerce

distribution in antwerp using cargo bikes and delivery points. European Transport

Research Review, 10(1):2, 2018.

[3] Statista authors. Statista. https://www.statista.com/statistics/289741/

canada-retail-e-commerce-sales/, 2018 (accessed on October, 3).

[4] GE Batista, RC Prati, and MC Monard. A study of the behavior of several methods

for balancing machine learning training data. ACM SIGKDD explorations newslet-

ter, 6(1):20–29, 2004.

[5] Leo Breiman. Random forests. Machine learning, pages 5–32, 2001.

[6] Leo Breiman. Classification and regression trees. Routledge, 2017.

[7] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan. Rich vehicle

routing problem: Survey. ACM Computing Surveys (CSUR), 47(2):32, 2015.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic

minority over-sampling technique. Journal of artificial intelligence research, 16:321–

357, 2002.

[9] N. V. Chawla, N. Japkowicz, and A. Kotcz. Special issue on learning from imbal-

anced data sets. ACM Sigkdd Explorations Newsletter, 6(1):1–6, 2004.

65

Bibliography 66

[10] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang. Disease prediction by machine

learning over big data from healthcare communities. IEEE Access, 5:8869–8879,

2017.

[11] ClearD authors. Clear Destination. https://www.cleardestination.com/, 2018

(accessed on September, 30).

[12] J. Edwards, A. McKinnon, and S.L. Cullinane. Carbon auditing the last mile:

modelling the environmental impacts of conventional and online non-food shopping.

Green Logistics Report, Heriot-Watt University, 2009.

[13] G. Figueira and B. Almada-Lobo. Hybrid simulation–optimization methods: A

taxonomy and discussion. Simulation Modelling Practice and Theory, 46:118–134,

August 2014.

[14] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning,

volume 1. Springer series in statistics New York, 2001.

[15] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable selection using random

forests. Pattern Recognition Letters, 31(14):2225–2236, 2010.

[16] R. Gevaers, E. Van de Voorde, and T. Vanelslander. Cost modelling and simulation

of last-mile characteristics in an innovative b2c supply chain environment with

implications on urban areas and cities. Procedia-Social and Behavioral Sciences,

125:398–411, 2014.

[17] B. Goethals. Survey on frequent pattern mining. Univ. of Helsinki, 19:840–852,

2003.

[18] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.

In ACM sigmod record, volume 29, pages 1–12. ACM, 2000.

[19] A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applications: the

simgrid simulation framework. In Cluster Computing and the Grid, 2003. Proceed-

ings. CCGrid 2003. 3rd IEEE/ACM International Symposium on, pages 138–145.

IEEE, 2003.

Bibliography 67

[20] G. Lemâıtre, F. Nogueira, and C. K. Aridas. Imbalanced-learn: A python toolbox

to tackle the curse of imbalanced datasets in machine learning. Journal of Machine

Learning Research, 18(17):1–5, 2017.

[21] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets. Cam-

bridge university press, 2014.

[22] D. Liang, C.-F. Tsai, A.-J. Dai, and W. Eberle. A novel classifier ensemble approach

for financial distress prediction. Knowledge and Information Systems, 54(2):437–

462, 2018.

[23] R. Longadge and S. Dongre. Class imbalance problem in data mining review. arXiv

preprint arXiv:1305.1707, 2013.

[24] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable impor-

tances in forests of randomized trees. In Advances in neural information processing

systems, pages 431–439, 2013.

[25] I. Mani and I. Zhang. knn-approach to unbalanced data distributions: a case

study involving information extraction. In Proceedings of workshop on learning

from imbalanced datasets, volume 126, 2003.

[26] S. Pan, V. Giannikas, Y. Han, E. Grover-Silva, and B. Qiao. Using customer-related

data to enhance e-grocery home delivery. Industrial Management & Data Systems,

117(9):1917–1933, 2017.

[27] K. F. Doerner Parragh, S. N. and R. F. Hartl. A survey on pickup and delivery

problems. Journal für Betriebswirtschaft, 58(1):21–51, 2008.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[29] M. Punakivi, H. Yrjölä, and J. Holmström. Solving the last mile issue: reception

box or delivery box? International Journal of Physical Distribution & Logistics

Management, 31(6):427–439, 2001.

Bibliography 68

[30] U. Ritzinger, J. Puchinger, and R. F. Hartl. A survey on dynamic and stochastic

vehicle routing problems. International Journal of Production Research, 54(1):215–

231, 2016.

[31] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science, 40(4):455–

472, November 2006.

[32] L. Song, T. Cherrett, F. McLeod, and W. Guan. Addressing the last mile problem:

transport impacts of collection and delivery points. Transportation Research Record,

2097(1):9–18, 2009.

[33] J.H.R. Van Duin, W. De Goffau, B. Wiegmans, L.A. Tavasszy, and M. Saes. Im-

proving home delivery efficiency by using principles of address intelligence for b2c

deliveries. Transportation Research Procedia, 12:14–25, 2016.

[34] W. N. Venables and B. D. Ripley. Tree-based methods. InModern Applied Statistics

with S, pages 251–269. Springer, 2002.

[35] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,

J. Rosen, S. Venkataraman, M. J. Franklin, et al. Apache spark: a unified engine

for big data processing. Communications of the ACM, 59(11):56–65, 2016.

