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ABSTRACT 

Buildings are responsible for a significant amount of energy consumption resulting in a considerable 

negative environmental impact. Therefore, it is essential to decrease their energy consumption by 

improving the design of new buildings or renovating existing buildings. Heat losses or gains through 

building envelopes affect the energy use and the indoor condition.  Heating, Ventilation, and Air 

Conditioning (HVAC) and lighting systems are responsible for 33% and 25% of the total energy 

consumption in office buildings, respectively. However, renovating building envelopes and energy 

consuming systems to lessen energy losses is usually expensive and has a long payback period. Despite 

the significant contribution of research on optimizing energy consumption, there is limited research 

focusing on the renovation of existing buildings to minimize their Life Cycle Cost (LCC) and 

environmental impact using Life Cycle Assessment (LCA). This paper aims to find the optimal scenario 

for the renovation of institutional buildings considering energy consumption and LCA while providing 

an efficient method to deal with the limited renovation budget. Different scenarios can be compared in a 

building renovation strategy to improve energy efficiency. Each scenario considers several methods 

including the improvement of the building envelopes, HVAC and lighting systems. However, some of 

these scenarios could be inconsistent and should be eliminated. Another consideration in this research is 

the appropriate coupling of renovation scenarios. For example, the HVAC system must be redesigned 

when renovating the building envelope to account for the reduced energy demand and to avoid 

undesirable side effects. A genetic algorithm (GA), coupled with an energy simulation tool, is used for 

simultaneously minimizing the energy consumption, LCC, and environmental impact of a building. A 

case study is developed to demonstrate the feasibility of the proposed method. 

KEYWORDS: Energy Analysis and Simulation, Simulation-Based Multi-Objective Optimization, Life-
Cycle Assessment, Life Cycle Cost, Energy Consumption, Renovation. 
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1. INTRODUCTION 

Recent environmental and financial concerns have revealed an immediate need for the recovery of the 

sustainability level of buildings. This need is more critical for existing buildings (U.S. Environmental 

Protection Agency, 2011). The construction sector is being pushed by different governmental and non-

governmental organizations to implement sustainable innovation for its products and processes (Straube 

and Burnett, 2005). 

Buildings are responsible for about 40% of the total secondary energy use (Statistics Canada, 2008). 

The potential for decreases in energy consumption and Greenhouse Gas Emissions (GHG) associated 

with buildings is remarkable (Tuominen et al., 2012). Owners have faced increasing needs for minor 

repairs, as well as partial or major renovations of their buildings. However, they usually suffer from 

limited budgets or other constraints. 

The objective of this research is to propose a method for optimizing the selection of renovation 

strategies for existing institutional buildings by minimizing energy consumption, Life Cycle Cost 

(LCC) and negative environmental impacts, while respecting limited renovation budgets. This method 

considers three main areas of building renovation, which are the building envelope, HVAC system, and 

lighting system; each of which has a noteworthy influence on building energy performance.  

Different renovation scenarios can be compared to find the optimum scenario based on the renovation 

strategy. The proposed Simulation-Based Multi-Objective Optimization (SBMO) framework takes 

advantage of Building Information Modeling (BIM) coupled with simulation. There are different 

strategies for building renovation that focus on energy efficiency. Each scenario is created from 

combination of several methods within the applicable strategy. Methods are including related factors to 

the building envelope, HVAC, and lighting system. However, the inconsistent scenarios should be 

removed. For example, when double-glazed windows are implemented, the building becomes more 

airtight, so the infiltration rate is decreased considerably. Therefore, the HVAC system should be 

rescheduled or renovated to reflect the new energy demand and to avoid unwanted side effects.  

2. LITERATURE REVIEW 

Buildings have a long life-cycle. During this extended period, operational energy systems, such as 

HVAC system, equipment, and lightings, are responsible for tremendous amount of total building 

energy consumption (Juan et al., 2010). Throughout the life-cycle of a building, the processes of 

construction and allocation of resources should be selected with consideration of environmental 
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responsibility. This extended period starts from design and continues to construction, operation, 

maintenance, renovation and concludes with demolition (U.E.P.A., 2011).  The renovation of the 

building's envelope significantly affects the future heating and cooling strategies (ASHRAE Design 

Guide, 2014). The patterns of energy demands will change after the renovation of the building 

envelope.  

The construction sector is relevant to sustainability because of the tremendous amount of energy 

consumption of construction products and also the benefits to society of the active role of this industry 

in achieving the aims of the sustainable development plans. In this context, existing buildings have a 

very substantial role, which must be highlighted because of the potential for energy saving and the 

availability of regulatory incentives and regulations (Itard and Meijer, 2008). Therefore, it is vital to 

properly renew existing buildings in a manner that they will consume minimum energy and produce 

less adverse environmental impacts, all with reasonable renovation budgets and improving the aesthetic 

quality of the building façades.  

2.1. Building Envelope Renovation Scenarios 

In existing buildings, heat losses or gains through building envelopes affect the energy use and the 

indoor condition, and produce a significant amount of energy depletion. Therefore, renovating the 

external walls and fenestrations has a considerable impact on reducing energy consumption (Straube et 

al., 2005). This kind of renovation should improve the thermal performance of the building and increase 

the property’s value within reasonable renovation budget. Depending on the renovation objectives of 

each project, various results could be achieved. There are several factors which must be considered to 

develop renovation scenarios, including renovation methods, and building envelope materials and 

components (Konstantinou, 2014). 

2.1.1 Renovation Methods 

Renovation methods can be classified based on the way building components are replaces, improved or 

added and their consequence on the building envelope performance. Furthermore, the combination of the 

renovation methods is also possible. The reviewed literature identified certain renovation methods, i.e. 

Replace, Add-in, Wrap-it, Add-on, and Cover-it. These methods represent a systematic approach to the 

development of the renovation scenarios (Galiotto et al. 2015; Konstantinou 2014).The list of renovation 

scenarios cannot be comprehensive because the opportunities for combining different renovation 

methods are unlimited. Therefore, their classification by identifying the basic principle to help decide on 
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the type of renovation method and emphasizing the advantages and disadvantages in each case is the 

first important step for the development of a renovation scenario. 

2.1.2 Building Envelope Materials 

The selection of building envelope materials is usually very problematic due to several issues, namely, 

cost, implementation, performance, and environmental issues. Several categories (i.e. insulation, 

glazing, fenestration, window frames, sealants, finishing, and cladding) should be considered to renovate 

a building envelope.  

2.1.3 Building Envelope Components 

The use of innovative technologies and materials has been greatly improved in recent years, and can lead 

to improvements in building energy efficiency. However, there are several barriers to their adoption, 

such as building integration problems. The main approaches are shifting from static to responsive and 

dynamic methods (e.g., Responsive Building Elements (RBE), and Multifunctional Façade Modules 

(MFM)) (Loonen et al., 2014). There are several innovative products, such as Phase Change Material 

(PCM), dynamic insulation, photovoltaics, electrochromic windows, which facilitate sustainable 

buildings (Kolokotsa et al., 2011).  

2.2. HVAC Systems and Control Strategies 

Previous research shows that the most substantial energy saving potential can be achieved by improving 

the building service systems and the energy source (Alev et al., 2014). Due to the gap between 

predictions and actual measurements of energy performance of buildings , there is a rise in the area of 

research focusing on the effect of building envelopes and HVAC optimization on buildings’ energy 

consumption. The HVAC system must be redesigned when renovating the envelope of the building to 

reflect the new energy demand and to avoid unwanted side effects.   

HVAC control systems have an important impact on energy management. The primary task of HVAC 

control is optimizing operation systems, sequencing of system components, avoiding excessive cycling 

of system components and the conflicts between them (ASHRAE Design Guide, 2014). Adjustments in 

control strategies are critical and are sometimes the only possible way to manage the energy 

consumption. Furthermore, buildings use mechanical and/or natural ventilation. In renovation projects, 

however, the full integration between these two methods must be considered.  
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2.3. Lighting Systems 

The lighting system affects the internal heat gain. Therefore the lighting control should be addressed in 

the renovation project (DiLouie, 2008). A considerable number of studies have focused on the selection 

of the most appropriate lighting systems for buildings renovation (e.g., energy efficient fluorescent, 

high-pressure sodium light, motion-activated lighting, Light-Emitting Diode (LED) lighting, and 

induction lighting). However, budget limitations, environmental issues, and applicability are the major 

factors that must be considered when selecting a new lighting system. Daylighting has impact on the 

electrical energy consumption; therefore, in the simulation of the case study daylighting factor was 

considered. 

2.4. Buildings Life Cycle Cost (LCC) 

Sustainable buildings usually have higher initial capital investment than conventional ones (Kibert, 

2008). However, during the life-cycle of the project, the extra spending incurred in the original capital 

cost of sustainable buildings can be recovered within a relatively short period because of several factors, 

such as the reduction in the energy consumption (Kibert, 2008). Furthermore, there is a strong 

correlation between optimizing energy performance and the LCC as choosing different materials and 

components for renovation has a significant impact on LCC. On the other hand, when it comes to 

improving environmental sustainability, finding a correlation between optimizing energy performance 

and sustainability is a challenge (Sharif and Hammad, 2017). As a result, finding a balance between 

these important concepts is crucial to improving a building’s energy performance.  

2.5. Life Cycle Assessment (LCA) 

GHG emissions from construction and energy consumption in buildings result in a tremendous negative 

environmental impact.  LCA is a comprehensive and systematic approach to evaluating environmental 

impacts of a product or process during its entire life cycle (Cabeza et al., 2014). LCA can incorporate the 

selection of environmentally preferable materials and the optimization and evaluation of the construction 

processes (Asdrubali et al., 2013).  In LCA, the environmental impacts of the building, such as 

equivalent CO2 emissions, are analyzed in all steps of the life cycle of the building. These steps are 

grouped into pre-use (product) phase, construction and installation phase, use phase, and End-of-Life 

(EoL) phase. Figure 1 shows the system boundaries of the assessments. Furthermore, current LCA 

studies comprise Embodied Energy (EE) and Operational Energy (OE) consumption during building life 

cycle. These studies usually consider maintenance during the O&M phase (Anand and Amor 2017; 

Cabeza et al. 2014). Three methods can be implemented for LCA: Process analysis and Input-Output (I-
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O) analysis, which are traditional Life Cycle Inventory (LCI) methods, and hybrid analysis (Crawford, 

2008). These methods have different assumptions regarding the system boundaries (Chang et al., 2016).  

The application of LCA in the building sector has become a focus of research in the last ten years (Buyle 

et al. 2013; Asdrubali et al. 2013).The number of published research papers about LCA related to 

buildings has more than doubled in the last five years (Anand and Amor, 2017). However, previous 

studies used LCA to compare only one aspect of the building separately, for instance, building envelope 

or explicit materials or building systems and control. There is limited research combining all aspects of 

the building simultaneously (e.g., Alshamrani et al. 2014; Vandenbroucke et al. 2015). Wang et al. 

(2005) and Asdrubali et al. (2013) focused on the design process, measuring or forecasting energy use 

for buildings and considering life-cycle environmental impacts. In this research the LCA is defined 

based on the Global Warming Potential (GWP), which is CO2 equivalent and the Total Energy 

Consumption (TEC).  

2.6. Optimization Approach in Buildings 

According to the reviewed studies, simulation and optimization methods have been applied in the 

building industry for various purposes, such as improving energy performance, simulating and 

optimizing the energy consumption, improving the design of new buildings, and predicting future energy 

performance (Evins, 2013; Nguyen et al., 2014). Optimization is the process of finding one or more 

solutions that consider all constraints and minimize (or maximize) one or more objective functions 

(Branke et al., 2008). The selection of the optimization technique depends on two main factors: the 

Figure 1. LCA system boundary of the assessments (Adapted from EN 15978:2012 and EN 15804:2014 

standards). 
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search method and the parameters to be optimized. There are three categorizations for optimization, 

which are based on the uncertainty in the decision variables, the number of parameters to be optimized 

(objective functions) and the value of the objective functions. If the value of the objective function can 

be estimated with certainty, the optimization is considered deterministic. Otherwise, the optimization is 

categorized as stochastic. If the optimization problem has only one single objective, it is called single-

objective optimization; otherwise, it is called multi-objective optimization (Cohon, 1978). Multi-

objective optimization problems often involve conflicting objectives (Nakayama et al., 2009). 

Also, Goldberg (1989), categorized optimization methods into three main groups including enumerative, 

systematic (gradient-based or calculus-based) and stochastic (random or gradient-free). Enumerative 

methods, which have simple principle, utilize algorithms that evaluate the objective function at every 

point in the search space sequentially and perform exactly that an exhaustive search. Enumerative 

methods have two limitations: the lack of real-world applicability and the magnitude of the search space, 

which can only be finite or discretized infinite. Therefore, the enumerative method is not commonly 

used in building optimization studies because the search space in the subject of the building optimization 

is usually too large for this method (Chantrelle et al., 2011). 

Systematic methods, are more common in building optimization; for instance, to optimize the thickness 

of the insulation considering derivative methods (Diwekar, 2013; Bolattürk, 2008). Optimization of the 

passive thermal performance of buildings considering building envelopes was done by Bouchlaghem 

and Letherman (1990). The researchers coupled the simplex method and the non-random complex 

method to develop a thermal prediction program (Bouchlaghem and Letherman 1990).  

Gradient-based methods are vulnerable by being dependent on the initial prediction, regularity of the 

objective function, and exposure to be trapped at local minimums when traversing parameter(s) . 

Furthermore, building optimization is very complex and could be considered as a nonlinear topic, which 

can be evaluated utilizing a building simulation program in some situations (Wetter and Wright, 2004). 

Therefore, systematic methods are not preferred for complex building renovation studies. While 

stochastic (gradient-free) methods, i.e. ant colony algorithm, simulated annealing, particle swarm 

optimization, and Genetic Algorithm (GA), which are based on random approaches, are more applicable 

(Delgarm et al., 2016; Nguyen et al., 2014). Furthermore, stochastic (gradient-free) methods can be 

easily integrated with building assessment tools because they do not require a hypothesis about the 

regularity of the objective functions. GA is one of efficient and widely recognized stochastic methods 

and was developed by Holland (Holland, 1975; Deb et al., 2002).   
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An overview of recent simulation and/or optimization papers on building renovation is given in Table 1 

and compared with the current study in terms of methods, renovation parameters, objective functions, 

and selected tools. These papers have some overlaps with the current study. However, none of them has 

brought together all decision variables, i.e. envelope, HVAC, and lighting, and objective functions, i.e. 

TEC, LCC, and LCA for optimizing the renovation of the existing buildings. For instance, Chantrelle et 

al. (2011), used Non-dominated Sorting Genetic Algorithm (NSGA-II) optimization method (MultiOpt 

tool) and TRNSYS and COMIS as simulation tools to optimize energy use, comfort, and investment. Jin 

and Overend (2012), identified optimal façade solutions for a renovation project using EnergyPlus 

simulation and assessing the trade-off between cost, energy use and user productivity. Several recent 

studies considered a reference building for comparing and reviewing appropriate optimization strategies 

for existing buildings, but in this way, the characteristics of the reference building and the case study 

should be similar, which is not possible in all circumstances (Ascione et al. 2017; de Vasconcelos et al. 

2015).  

2.7. Integrating BIM with energy simulation, LCC, and LCA 

Evaluating the energy consumption and environmental impacts of a project using simulation has 

attracted tremendous interest in recent years (Abaza, 2008). Different energy simulation and analysis 

tools have been established during the past 50 years (Jalaei and Jrade, 2014). BIM tools, such as Revit, 

have the potential to connect with energy analysis applications (Eastman et al., 2008). Furthermore, 

energy and daylighting simulation were added to new versions of BIM tools. Research on energy use 

and environmental issues using these tools offers a striking opportunity to make cost-effective choices, 

which have a positive effect on the building LCC and facilitate achieving the energy performance goals. 

BIM models can provide input data for energy simulation and present the results (Kumar, 2008). On the 

other hand, LCA tools have the capacity to process and analyze the environmental issues of the building. 

BIM tools (e.g. Revit) have been recently developed with environmental analysis add-ins. 

The integration of BIM and LCA was proposed in several studies, such as Häkkinen and Kiviniemi, 

(2008). They developed a three-step method for integration. Their method initially linked separate tools 

through file exchange. Consequently, the required functionality was added to the existing BIM tool. 

Jalaei and Jrade (2014) proposed a methodology to integrate BIM, LCA, and Management Information 

Systems (MIS), which can be used to implement sustainable design for buildings at the conceptual phase 

and to consider their environmental influences.  
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ATHENA Impact Estimator (referred to as ATHENA in this paper) is frequently used by the North 

American construction industry due to its ability to assess the whole building and its components 

(Athena Impact Estimator, 2017). ATHENA modeling capacity includes building's envelope, structure, 

and interior partitions and doors. Based on the availability of data, LCA modeling can also calculate the 

operating energy consumption of the whole building. It is worthwhile to mention that LCA is not a 

method to estimate a building's annual operational energy (Athena Impact Estimator, 2017). ATHENA 

allows side-by-side comparisons for different renovation strategies.  
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3. METHODOLOGY    

The model is developed in four main phases as shown in Figure 2: (1) model input data collection; (2) 

databases development; (3) definition of the renovation strategies; and (4) simulation-based multi-

objective optimization. The first phase aims to define the model input data collection methods. 

Consequently, the common methods that shape each scenario should be investigated and added to the 

available databases. Having these databases related to the BIM tool helps the designer to select 

sustainable renovation strategies for buildings in the BIM environment easily and efficiently. The 

databases are used to store different data for three main categories, which are building envelope, 

building HVAC and lighting systems, and economic and environmental data. These steps are presented 

in the first and second phases of Figure 2. Subsequently, the renovation team defines an energy 

performance goal, which is used for developing the building renovation strategies (Phase 3). It is 

worthwhile to mention that each strategy consists of different scenarios for renovation, taking into 

account different building methods. The major task of Phase 4 is to produce near-optimum solutions 

considering energy performance, LCC and, LCA concurrently. The Simulation-Based Multi-Objective 

Optimization (SBMO) model is implemented to calculate the Pareto front. Then, the environmental 

analysis tool is implemented to cross-check the results of the LCA optimization. Finally, the results of 

the Pareto front form the content for the recommendation and results report. The Pareto front of a multi-

objective optimization represents the non-dominated optimum solutions, which show the trade-off 

between the objective functions based on different renovation scenarios. The development procedure is 

explained in detail through the following four phases. 

3.1. Model Input Data Collection (Phase 1) 

Phase 1 has two steps: (1) provide the model input data, and (2) develop BIM model. This model will be 

used to save input data related to building components from the project Material Take-Off (MTO) table 

and other sources of data. To calculate environmental impacts of the components of the building, energy 

consumption needs to be measured or calculated. The TEC of building equipment is calculated based on 

the characteristics of the equipment and its operational schedule. Furthermore, other related data about 

the building characteristics should be gathered to create a comprehensive understanding of the Existing 

Situation (ES). These data are used to assess the current status of the building and to create a baseline 

model for calibration and comparison of results. A sample of the input data that summarizes the building 

features is shown in Table 5, which will be explained in the case study. The simulation software, which 

is linked to the BIM model, simulates the TEC of the building in detail. Data from energy bills and other 

reliable databases are used to validate the results. Building characteristics are imported into the energy 
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model using the BIM Tool. This model contains thermos-physical properties of the building envelope, 

data from HVAC system and lighting, and other necessary information about the building. Figure 3 

shows the building components considered in this study (green boxes). 
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 3.2. Database Development and Integration (Phase 2) 

Phase 2 has only step (3), which is developing the extensible databases, including building components 

for the renovation project. The model’s relational databases are developed to combine and relate 

different building components, renovation techniques, and other useful data. Each combination of the 

methods creates a renovation scenario.  

3.3. Definition of the Renovation Strategies (Phase 3) 

A detailed explanation of how to define renovation strategies is not the main goal of this study. 

However, reviewing its theoretical concepts provides us with a general understanding of how strategies 

are categorized. This is important because this study delves further into how to combine methods and 

create renovation scenarios using SBMO. Needless to say, this phase plays a major role in SBMO's 

success. In this phase, the most important tasks are to define or modify the scope of the renovation 

project and allocate the appropriate methods for each strategy.  

To define the renovation strategies, this phase concentrates on developing a model to combine all data 

gathered from previous steps and integrate them to find, in general, which kind of renovation is 

applicable for the project considering the renovation budget limitations, owner’s preferences, and 

certificate specifications (Constraints 1). This phase has five steps: (4) define energy performance goals. 

(5) Develop building renovation strategies. In the first step all collected data are evaluated quantitatively 

or qualitatively, and then the strategy of the renovation is finalized through group work between the 

decision-maker, facility management, and the owners who have agreed on the goal. It is essential to 

Figure 3. Building components considered in the research (Green boxes) 
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consider the owner’s preferences early in the renovation design and plan interdisciplinary collaboration 

between all participants in the project (Galiotto et al. 2015). In this study, the decision making process is 

considered as a collaboration between the decision-makers and the facility management, who is the 

representative of the owner. The outcomes clarify the general scope of the renovation, whether it is a 

major renovation or a minor repair. Table 2 provides an example of the classification of renovation 

strategies. (6) Search the databases to find feasible methods to create renovation tasks and methods 

tables for building envelope and systems (e.g. Tables 3 and 4). Each scenario consists of different 

methods of the building envelope and building energy systems. The goal is to allocate appropriate 

methods to pre-defined renovation strategies. The classification of renovation methods varies case-by-

case and are depends on different factors. (7) Assessing that there are enough renovation methods 

available for each strategy, this step is iteratively repeated until all feasible methods are allocated. (8) If 

the goals have not been achieved the goals should be modified. To achieve the goal of the renovation 

project, three renovation strategies are developed. These strategies start from minor and conclude with a 

major renovation. The concept of each strategy is accumulative.  

Minor renovation strategy (S01) 

This strategy is proposed to address only minor repair maintenance in case of limited renovation budget 

or if the building is a heritage building. Add-in and wrap-it methods are proposed for this strategy. The 

goal is to repair or upgrade defective parts from the inside. Renovation in this stage usually does not add 

new elements. Adjustments in control strategies for HVAC and lighting are also considered in this 

strategy. Furthermore, full integration between mechanical and natural ventilation must be considered. 

Medium renovation strategy (S02) 

This strategy has more intervention than S01. In this strategy, minor replacements for defective elements 

and old parts are applicable. Add-in/ Wrap-it/ Replace methods can be applied in this strategy. This 

strategy is more expensive, and the results are more promising in terms of energy efficiency. Moreover, 

replacing the HVAC and lighting equipment with minor effect on building characteristics could be 

suggested, considering the cost of renovation. Monitoring systems for HVAC and lighting are proposed 

in this strategy. Additionally, building automation and control could be proposed in this strategy.  

Major renovation strategy (S03) 

This strategy is the most comprehensive. With this strategy old façade elements or outdated elements are 

upgraded. The renovation can be extended to the load-bearing structure. New structures can be added on 

to the existing building, cover parts or entire internal and external courtyards and atria; the function of 

some parts may be changed. A major renovation of HVAC and lighting is applicable in this strategy.  
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3.4. Define Renovation Tasks and Methods 

Different methods related to the following variables have been considered (i.e. Roof types (R), External 

Wall types (EW), Façade Types (FT), Glazing template (G), Window frame types (W), and Window to 

Wall Ratio (WWR, 30-70%), HVAC systems (HVAC), the Cooling and Heating Operation schedules 

(COS, HOS), and Lighting systems (Li)). Furthermore, three continuous variables are defined for 

determining ventilation methods: the External Window Open percentage (EWO) in the range of 0-70%, 

Mechanical Ventilation Rate (MVR) with 10 options, and Airtightness (A) with 4 options for each zone.  

ASHRAE Design Guide recommends several systems, each of which can save up to 50% of energy 

consumption for office buildings (ASHRAE Design Guide, 2014). Several methods and systems are 

identified as the most commonly used in the energy renovation of buildings: Electric radiators, air to 

water heat pumps, split with no fresh air, hot water boilers, and exhaust heat recovery systems are 

commonly selected by the decision-makers. Building systems considered are in two ways: first, 

renovation of HVAC systems and secondly, operational setting-related methods, such as heating and 

cooling operation schedules. Percentage EWO also included, measuring ventilation rate. Additionally, 

Mechanical Ventilation Rate (MVR) and airtightness (A) parameters are proposed for minor renovation 

strategies.  

Finally, different lighting methods are considered in the model. Furthermore, different lighting operation 

schedules address the control strategies (Table 4). Renovation methods are categorized in Table 2 and 

the particular renovation tasks alongside the renovation methods for buildings envelope and 

HVAC/lighting systems, from minor to major renovation strategy, are explained in Tables 3 and 4, 

respectively. Due to the cumulative concept of renovation strategies, for a major renovation, the 

proposed model takes into account all methods that are considered to be minor to major. For example, a 

medium renovation strategy for fenestration in Table 3 contains all tasks from S01 and S02 strategies 

and comprises 13 methods: G01, G02, G05, G06, G07, FT01, FT02, FT05, FT06, Li01, W05, WWR, and 

EWO. The role of natural daylight is not the main focus of this study; however, as shown in Table 3, 

several variables of the renovation methods of the building envelop (i.e. W, FT, and WWR) have indirect 

correlation with natural daylight within the optimization. In addition, three operation schedules (Li01) 

are considered for lighting as renovation methods (Table 2). Furthermore, different renovation methods 

are considered for glazing, which have effects on the daylighting (i.e. G05, G06, and G07). 
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3.5. SBMO for Energy performance, LCC, and LCA (Phase 4)  

The BIM tool is used to export data to the SBMO. The SBMO uses the Non-dominated Sorting Genetic 

Algorithm (NSGA-II) optimization method. NSGA-II is implemented by developing the initial 

population of size N in the first generation. Phase 4 has 14 steps: (9) the decision-maker sets the 

population size (P) and the number of generation (G). (10) Then, the initial population is generated 

randomly. (11) SBMO uses an energy simulation tool to calculate the TEC, LCC, and LCA for each 

solution representing a combination of renovation scenarios. The input parameters to the optimization 

engine are divided into two main categories: building envelope and building systems. The optimization 

engine computes the objective functions, which are (12) TEC, (13) LCC, and (14) LCA for each 

scenario based on the selected values of the methods in each simulation run. (15) The system repeats the 

calculations using different input scenarios. (16) The integration of the simulation model and an 

optimization algorithm is performed through a systematic approach, which allows exploitation of the 

best features of these tools simultaneously. (17) The next step is to evaluate the fitness values of the 

scenarios in the generation. Some constraints are also applied to specify the boundaries of TEC and LCC 

(Constraints 2). (18) Convergence condition is evaluated in this step. (19) Consequently, the selection, 

crossover, and mutation operations are applied on the entire population. (20) This procedure is 

iteratively repeated for all members in all generations until the convergence happens or a predefined 

number of generations is reached. (21) The results of the optimizations are shaped into the Pareto front, 

which will be used to inform decision-makers of different renovation scenarios, as well as the trade-off 

relationships among the various scenarios.  

4. IMPLEMENTATION AND CASE STUDY 

The effect of building envelope and systems renovation is investigated in the last floor of a multipurpose 

university building at Concordia University (Montreal, Canada) with a net floor area of 1,708 m2. It is 

modeled in Revit 2017 to create the BIM model with Level of Detail 300, as shown in Figure 4(a). The 

developed model is imported to DesignBuilder software (DesignBuilder, 2016) as shown in Figure 4(b). 

The zoning is used to define the function for each part to be able to apply the specific renovation 

scenarios for each zone (i.e. laboratory, office and consulting area). It is worthwhile to mention that the 

function of a zone has a significant impact on the selection of the renovation scenario. The allocation of 

building activities is explained in Table 5. 

4.1. BIM Model Implementation 

To have an accurate energy analysis of the case study, its BIM model must be transformed into an 

energy analytical model. First, all the spaces must be converted into rooms. Rooms designate thermal 
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zones in DesignBuilder. By definition, a thermal zone is a space bounded by its roof, walls, and floor, 

and is the initial unit for calculating heat loads. Bounding elements describe the extent of a room. After 

defining rooms for analyzing the building’s energy, bounding elements are transformed to 2D surfaces 

demonstrating their actual geometry. It is vital to define the position of the adjacent rooms in the 

analytical model. 

ID Renovation methods (# of Options) ID Renovation methods (# of Options) 

R Roof  (20) HVAC HVAC (29) 

R01 Insulation (5) HVAC01 Air to Water Heat Pump (ASHP) (2) 
R02 Flat roof - 19 mm asphalt (3) HVAC02 Fan Coil Unit (4-Pipe) (4) 
R03 Combined semi-exposed Uninsulated (3) HVAC03 Packaged Thermal Air Conditioner, PTAC (2) 
R04 Combined flat roof (3) HVAC04 Packaged Thermal Heat Pump, PTHP(1) 
R05 Combined semi-exposed (3) HVAC05 Radiator heating (4)   
R06 Photovoltaic (1) HVAC06 Split (2) 
R07 Innovative roofs (2) HVAC07 Radiators Electric, Nat. Vent. (1) 
EW External wall (38)   
EW01 Brick air, concrete block (6) HVAC08 VAV, Air-cooled Chiller (6) 
EW02 Brick cavity with insulation (4) HVAC09 VAV, Dual Duct (2) 
EW03 Cavity wall (E&W) Part L (2) HVAC10 VAV, Water-cooled Chiller (2) 
EW04 Lightweight curtain wall (4)   
EW05 Semi-exposed wall (7) HVAC20 Ventilation system with heat recovery (HR) (1) 
EW06 Wall- Energy code standard (5) RMV Repair Mechanical Ventilation (2)  
EW07 Wall- State-of-the-art (5)   
EW08 Advanced Insulation (2)   

EW09 Innovative walls (3) HOS, COS Heating/ Cooling Operation Schedule (7) 

FT Facade type (22)  H/C OS1 ON 24/7 (1) 
FT01 100% fitted glazing (1) H/C OS2 Max mode (3) 
FT02 40% Vertical Glazing (1) H/C OS3 Two season schedule (1) 
FT03 Fixed windows  (3) H/C OS4 7:00 - 23:00 Mon – Fri (1) 
FT04 Curtain wall, 85% glazed (1) H/C OS5 6:00 - 18:00 Mon – Fri (1) 
FT05 Horizontal strip, % glazed (6)   
FT06 Preferred height 1.5m (10) Li Lighting (12) 

G Glazing template (103) Li01 Operation Schedule (3) 
G01 Single glazing (25) Li02 Canadian energy code (2) 
G02 Double glazing (30) Li03 LED (2) 
G03 Triple glazing (25) Li04 Fluorescent (3) 
G04 BIPV (1) Li05 High-pressure Mercury (1) 
G05 Smart glazing systems (PCM) (4) Li06 High-pressure sodium (1) 
G06 Fixed Shading (15)   

G07 Shading adjustable (3)  Ventilation/ Area control 

W Window frame types (5) EWO% External window opens (0-70%) 

(a) BIM model    (b) DesignBuilder model (a) BIM model

Figure 4. Case Study Model 
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W01 Aluminum window frame (2) MVR Mechanical Ventilation Rate (0-10, Increment: 0.2) 
W02 Wooden window frame (2) A Airtightness (0-4, Increment: 1) 
W03 UPVC window frame (1) WWR% Window to Wall ratio (30-70%)  

 Table 2. Renovation methods 
ASHP: Air to Water Heat Pump HR: Heat Recovery  PTAC: Packaged Terminal Air Conditioner 
BIPV: Building Integrated Photo Voltaic LED: Light-Emitting Diode PTHP: Packaged Thermal Heat Pump 
DOAS: Dedicated Outdoor Air System Max: Maximum UPVC: Unplasticized polyvinyl chloride 
FPID: Fan-Powered Induction Unit  Nat. Vent.: Natural Ventilation VAV: Variable air volume 
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4.2. Energy Analysis of the Existing Situation (ES) 

To find the near optimal strategy for the renovation of the building, the mandatory data were 

added to the model. Table 5 shows a part of the input data, such as the building envelope 

materials, windows, operational schedule, allocation of building activities, building systems, 

temperature set points, and Domestic Hot Water (DHW), which are added to the energy 

simulation tool. 

The energy tool calculates half-hourly temperatures, and heat flows from each zone. 

Additionally, the results demonstrate a comprehensive overview of the heat flows, systems loads, 

relative humidity, and total fresh air comfort conditions in each zone. The total site energy 

consumption estimate of the building components using the simulation tool is about 651,485 

kWh, which is equal to 381 kWh/m2; while the actual energy consumption based on the energy 

bills was measured to be 611,479 kWh, for the year 2014-2015, which reflects a 6.1% difference 

in the values. Comparing the results of the calculation with the energy bills shows that the results 

of the energy model are accurate with the acceptable level of discrepancy. 

Table 5. Sample input data of the building characteristics. 

Description Characteristics 

Roof surfaces Flat roof U-value = 0.25 W/m2K. 
Exterior walls Brick/ block exterior finishing (insulation to 1995 regulations) 
Windows  Window to wall: 30% clear 6 mm glass, Double glazing in some parts, Preferred 

height: 1.5m, Spacing: 5m, Sill height: 0.8m, Frame and dividers: Steel and Aluminum 
Airtightness 0.3 ACH constant rate, ON 24/7  
Building operation 
Schedule 

7:00- 23:00 Mon-Fri 
 

Allocation of building 
Activities 

Study spaces (classroom and atelier), office, mechanical and electrical room, 
restrooms, storage, and corridors. 

Activity  Educational Facilities (multi use), Occupancy density (people/m2): 1.0764, Winter 
clothing: 1.2 (clo), Summer clothing: 0.5 (clo) 

HVAC system Fan coil unit (4-Pipe), Air cooled chiller, Boilers and chillers are on 24/7, only the air 
systems shut off between 11:00 pm and 7:00 am  

Temperature set  22°C cooling, 28°C cooling setback, 20°C heating, and 15°C heating set back 
Heating Natural Gas, Heating system seasonal CoP: 0.85, maximum supply air temperature: 

45°C 
Cooling Electricity from grid, Cooling system seasonal CoP: 2.8- 3.2, minimum supply air 

temperature: 12°C 
DHW Electricity from grid, Dedicated hot water boiler, Delivery temperature: 65°C, main 

supply temperature: 10°C, CoP: 0.85, Consumption rate: 10-20 l/m2-day 

The results of the simulation shows that the heating system is sufficiently sized to make the load 

at design conditions as the air temperature never drops below the set point during the occupancy 

period and also never drops below the setback temperature of 15 ˚C. The model also shows that 
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the air temperature increased to around 26 ˚C in the afternoon over several weeks, so the 

building is probably overheated, therefore some changes to the existing design or controls are 

required. Also, the results shows that the heating system has fluctuations especially in winter, 

which is confirmed by controlling the Zone Heating graph. Therefore, the system needs 

modification or repair to have more efficient outcomes. The fluctuation in the total fresh air 

graph explains that the variance in the infiltration rate seems significant and should be 

considered. Although the infiltration rate is set to a constant value and it is based on the reference 

temperature, changes in the variations in the indoor temperature should be studied.  

4.3. Development of the Renovation Strategies  

The formation of renovation strategies depends on different factors, such as the size of the 

project, results from the energy simulation of the case, and the severity of the building's 

problems, and renovation budget. In addition, the constraints of renovation scenarios provide the 

boundaries of the acceptable range of each method. The methods are also influenced by several 

factors, such as the availability of components in the market, the applicability of the method, and 

other requirements (i.e. the energy certification requirements, mandatory building renovation 

codes, and technical standards and regulations). Another factor vital for defining a renovation 

strategy, is the owner’s preferences. For example, in the renovation, if the shape and size of 

certain windows are specified by the owner, these items should be considered ‘as is’ in the model 

(constraints 1). In this study, the requirements of facility management, which are mainly about 

the HVAC system and windows, are considered as owner’s preferences. Selected renovation 

methods are from a wide range of predefined methods, and are assigned to different zones that 

are located next to the exterior of the building. An example of the definition of renovation 

strategies is shown in Table 6. Various options can be assigned to each strategy; however, a 

major renovation strategy usually involves medium and minor renovation methods along with its 

own methods. Based on the condition of the building and previously mentioned assessments, a 

major renovation strategy has been selected for this case study. 

4.4. SBMO for Energy Performance, LCC, and LCA 

In this section, the results of the SBMO are presented. The calculations were carried out on a 

computer with Intel® Core™ i7-3770 CPU@ 3.40 GHz processor and 8.00 GB RAM. Each 

optimization, on average, took 170 hours. Using SBMO provides the capability of testing 
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renovation scenarios within their specified ranges to find out which combination of methods 

results in the near optimal solutions; therefore, the optimization usually requires running a 

significant number of simulations. The setting considered for the optimization algorithm in this 

research is 100 generations with a population size of 25 according to the DesignBuilder 

recommended setting . Due to the limitations of the software, multi-objective optimizations of 

TEC, LCC, and LCA are generated in pairs. In the first case, the TEC and LCC are considered as 

the two objective functions. In the second case, minimizing the TEC and the equivalent CO2 

emissions in the building’s life cycle is studied. The model identified the near-optimal renovation 

scenarios for the case study building for all the specified renovation scenarios, as shown in 

Figures 5(a) and (b). The results include many combinations of the building’s envelope, HVAC, 

and lighting renovation methods, considering different TEC that range from 229 MWh to 513 

MWh, various LCC that range from CAD$3.6M to CAD$5.3M and LCA CO2 equivalent from 

3.9×106 Kg CO2 eq to 20×106 Kg CO2 eq for a period of 50 years. 

 
Design Variable 

Minor (S01) Medium (S02) Major (S03) 
 Opt. Min  Max Opt. Min  Max  Opt. Min  Max 

B
ui

ld
in

g 
E

nv
el

op
 Roof (R) - - - 10 - - 17 - - 

External Wall (EW) 5 - - 15 - - 33 - - 
Window frame (W) 4 - - 4 - - 6 - - 
Façade Type (FT) 15 - - 22 - - 22 - - 
Glazing template (G) 75 - - 15 - - 75 - - 
Window to Wall (WWR) - 30% 70% - 30% 70% - 30% 70% 

B
ui

ld
in

g 
S

ys
te

m
s 

HVAC template- (HVAC) - - - 15 - - 25 - - 
Mechanical Ventilation rate 
(MVR) 

- 0 10 - - - - - - 

Cooling Operation Schedule 
(COS) 

10 - - 7 - - 7 - - 

Heating Operation Schedule 
(HOS)  

10 - - 7 - - 7 - - 

Airtightness (A) - 0 4 - - - - - - 
Lighting template (Li) 5 - - 7 - - 11 - - 
External Window Open 
(WO) 

- 0% 70% - 0% 70% - 0% 70% 

Table 6. Example of the definition of renovation strategies. 
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Opt.: the number of selected methods for each design variable. 

Figure 5(a) shows the generated near-optimal solution of TEC and LCC for a major renovation 

strategy as explained in Section 4.4. In this figure, the Pareto front includes 22 near-optimal 

solutions. As can be observed, a decrease in the TEC can only be achieved by increasing the 

LCC. For instance, scenario A in Figure 5(a) has lower LCC of CAD$3.58 M, and it provides a 

reduction in the TEC (390,370 kWh/year) while in scenario C reduction in the TEC is higher 

(421,143 kWh/year) with higher LCC that is CAD$4.16M for the period of the study. 

Furthermore, scenario B, which is a moderate scenario offers more reduction in the TEC 

(414,695 kWh/year) with only CAD$115,000 increase in the LCC in comparison with scenario 

A. Therefore scenario B is selected and analyzed.   

Figure 5(b) depicts the Pareto front result of TEC and LCA for the major renovation strategy. It 

shows that a reduction in LCA can only be attained by decreasing the TEC. In this figure, two 

optimal scenarios that favor each objective functions are revealed. However, the differences 

between these two scenarios are insignificant.  Scenarios D and E have optimal environmental 

impacts (about 3.9×106Kg CO2eq,) and low TEC (about 229,700 kWh). These two scenarios 

have very similar methods, the only differences are in EWO rates (34% vs. 8%) and the 

percentages of the glazed area in Façade types (10% vs. 20%).  

The proposed results clarify the ability of the developed SBMO to create a wide range of near 

optimal solutions that offer optimal trade-offs among the three optimization objectives. 

Therefore, Decision-makers can explore results to find an optimal solution with an optimal 

balance among the objective functions while fulfilling predefined constraints. For instance, 

Figure 5(a) can be utilized to identify optimal solutions considering different TEC and LCC 
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constraints. If the decision maker in this case study has a LCC constraint for CAD$3.7M to 

renovate the building for 50 years, it can be represented by a perpendicular line to the LCC axis, 

as shown in Figure 5(a). According to this specified constraint, Scenario B can be selected as the 

optimal solution that minimizes the LCC and TEC, simultaneously. Furthermore, the owner of 

the building can also be advised that an increase in the renovation budget from CAD$3.7M to 

CAD$5M does not have a significant effect on the reduction of TEC. The same investigation can 

be used to find out the least renovation scenario to achieve a specified environmental impact or 

required TEC. Figure 5(b) shows that the optimal solution for LCA is achieved only by reducing 

TEC to about 230,000 kWh/year. The action report that contains detailed information of all 

proposed building renovation methods for identified optimal scenarios A, B, C, D and E is 

shown in Table 8. A closer observation of the generated optimal results for Scenarios A and B in 

Table 8 and comparing these results with the original situation of the building (Table 5) reveal 

that in this renovation project; (1) W, FT, WWR, HVAC and Li should be modified, while only 

the insulation of the exterior walls should be improved and there is no need to change the roof. 

(2) TEC improvement of 24,325 kWh/year can be achieved (from scenarios A to B) by selecting 

different EW insulation, FT, Li (T5 to LED with linear control) and choosing different individual 

methods for COS and HOS. Comparison of scenarios A, B and D also shows that there are many 

similarities in proposed renovation methods such as W, HVAC, Li, and WO. 

Scenarios D and E achieve the least LCA and TEC by recommending all possible methods that 

simultaneously cause the greatest reduction of negative environmental impacts and energy 

consumption simultaneously. The generated action report produced for scenario D recommends 

all applicable renovation methods for Scenario B, with some exceptions (i.e. R, HVAC, and HOS 

methods). Although they do not necessarily provide a similar TEC, differences are not 

significant. 

4.5. Evaluation of Environmental Impacts Using ATHENA 

Separate LCA was conducted to analyze the Pareto front results of the SBMO. In this section, the 

Operational Energy (OE) consumption and Embodied Energy (EE) of building components, 

construction, and demolition of Scenario B and ES are computed in ATHENA and compared 

with the results of DesignBuilder (Figure 6). There is a difference between these tools, due to 

differences in methods, databases, and reporting formats. SBMO uses DesignBuilder to calculate 
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LCA based on bulk carbon data obtained from the Bath ICE and other data sources. The 

embodied carbon related to several building services, such as HVAC and lighting, is not 

considered in the final results. Furthermore, DesignBuilder reports embodied carbon and 

equivalent carbon separately; the latter considers the effects of other greenhouse gases as 

equivalent carbon. Furthermore, DesignBuilder calculates only operational energy . On the other 

hand, ATHENA calculates embodied and operational energy . It should be noted that both 

DesignBuilder and ATHENA do not capture all aspects of renovation projects. For example, 

although the comparison of the ES and the renovation scenario with respect to OE, EE, and LCA 

is possible, it still has some limitations. For instance, the impact of the components that have 

been removed in the renovation process is not included in the calculation. 

The result of the LCA comparison between ATHENA and DesignBuilder is shown in Table 7, 

Figure 6 and Figure 7. Table 7 compares the TEC and GWP for Scenario B and ES. Figure 7(a) 

compares the total primary energy and fossil fuel for Scenario B. As illustrated in Figure 7(b and 

c), it is obvious that in Scenario B the EE consumption with a total of 719,418 kWh is higher 

than OE consumption (257,995 kWh) and the embodied GWP (E-GWP) with a total of 162,233 

kg CO2 eq is higher than operating GWP (O-GWP) with a total of 40,151 kg CO2 eq for one 

year. Figure 6 shows a comparison between ATHENA and DesignBuilder for ES. 

A careful comparison of ATHENA and DesignBuilder results shows that the OE consumptions 

is valid with a 2.7% difference in the values for ES, while in Scenario B, OE difference is higher 

(8.9%) for ATHENA because this scenario selects more efficient HVAC method, simplification 

of the HVAC in ATHENA, and differences in calculation methods. EE comparison is not 

possible because DesignBuilder only calculates OE. As shown in ATHENA part of Table 7, the 

669,160 kWh of the OE consumed in the ES that has fallen to 257,994 kWh for Scenario B 

(Figure 7 (b)), mainly due to the new HVAC, EW, W, COS, HOS and lighting methods. The EE 

for ES is 722,083 kWh and itdecreased to 719,419 kWh for Scenario B (Table 7). Table 7 

compares the ATHENA and DesignBuilder results for O-GWP and E-GWP for ES and Scenario 

B. Differences between equivalent CO2 amount from DesignBuilder and E-GWP amount from 

ATHENA, which are comparable concepts, are negligible in both ES (2.3% higher for 

ATHENA) and Scenario B (4.2% higher for DesignBuilder). However, operational GWP 

comparison is not possible due to the limitations of DesignBuilder. Comparison between E-GWP 
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for ES and Scenario B for ATHENA shows a slight decrease in Scenario B. A significant 

reduction in O-GWP from ES (114,456 kg CO2 eq per year) to Scenario B (40,150 kg CO2 eq per 

year) can be observed. There are two reasons for this: First, utilizing different renovation 

methods. Second, the majority of the components and materials used in Scenario B are in direct 

contact with the outdoor environment. It is worthy to mention that ATHENA library supports 

only a limited number of green materials and components that can be considered as a constraint 

of the software.  

Table 7. Environmental impact sample report of the existing situation (ES) and Scenario B 

 DesignBuilder ATHENA Differences 

TEC 

 
kWh 

Existing 
situation 

OE 651,485 OE 669,160 2.7% 
EE NA EE 722,083 NA 

Scenario B 
OE 236,790 OE 257,994 8.9%  (HVAC) 
EE NA EE 719,419 NA 

GWP 

 
kg CO2 eq 

Existing 
situation 

O-GWP NA O-GWP 114,456 NA 
Equivalent CO2 164,428 E-GWP 168,302 2.3% 
Embodied Carbon 101,281 NA NA NA 

Scenario B 

O-GWP NA O-GWP 40,150 NA 
Equivalent CO2 169,110 E-GWP 162,233 4.2% 
Embodied Carbon 102,504 NA NA NA 
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Figure 6. ES comparison of (a) Global Warming Potential LCA Measure (exported from 
ATHENA), (b) Embodied Carbon and Inventory (exported from energy simulation tool). 

Figure 7. (a) Total Primary Energy and Fossil Fuel Consumption, (b) Operational vs. Embodied 
Energy consumption and (c) Operational vs. Embodied GWP, ATHENA results for Scenario B 
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5. CONCLUSIONS AND FUTURE WORK 

 Quantifying the environmental impacts and simulating the energy consumption of building’s 

envelope and systems at the renovation phase are very critical for decision-makers for the 

selection of the best renovation scenarios that would lead to a more energy efficient building. 

This research presented a SBMO that is capable of optimizing the building renovation scenarios 

to minimize the TEC, LCC and the environmental impacts of existing buildings. The 

methodology is used by developing a model that simulates the process of renovating buildings by 

using the renovation data in energy analysis software to analyze TEC, LCC, and LCA, and 

identify the potential renovation scenarios that can be implemented based on the selected 

renovation method. Furthermore, an LCA tool is used to cross-check the results the 

environmental sustainability of the final decision.  

 A case study of one floor of an existing building was studied to assess the implementation of the 

developed model. LCA and TEC have strong linear correlation in comparison with the LCC and 

TEC. It is worthy to mention that the optimization in the first case has a larger number of Pareto 

solutions because energy consumption and LCC are conflicting objectives. Comparing the LCC 

per TEC for the Pareto solutions clarifies the efficiency of them. This comparison demonstrates 

that there is a better potential in reducing TEC in Scenario B than in Scenario A since with a 

slight increase in LCC, significant decrease in TEC is attained. Furthermore, the energy saving 

improvement from scenario A to B is 24,325 kWh/year, which is significant. It would be 

interesting as a future work to evaluate the sustainability of the proposed buildings renovation 

scenario based on Leadership in Energy and Environmental Design (LEED) rating system.  
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Highlights: 
 

· Developing a comprehensive simulation-based optimization 
method for building renovation.  

 
 
· The method considers energy consumption, lifecycle cost and 

environmental impacts.  
 
 
· The selection of the near-optimum renovation scenarios depends 

on the combination of methods and on case-specific constraints.  
 




