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ABSTRACT

Detection and Mitigation of Cyber Attacks on Time Synchronization

Protocols for the Smart Grid

Bassam Moussa, Ph.D.

Concordia University, 2018

The current electric grid is considered as one of the greatest engineering achie-

vements of the twentieth century. It has been successful in delivering power to con-

sumers for decades. Nevertheless, the electric grid has recently experienced several

blackouts that raised several concerns related to its availability and reliability. The

aspiration to provide reliable and efficient energy, and contribute to environment pro-

tection through the increasing utilization of renewable energies are driving the need

to deploy the grid of the future, the smart grid. It is expected that this grid will

be self-healing from power disturbance events, operating resiliently against physical

and cyber attack, operating efficiently, and enabling new products and services. All

these call for a grid with more Information and Communication Technologies (ICT).

As such, power grids are increasingly absorbing ICT technologies to provide efficient,

secure and reliable two-way communication to better manage, operate, maintain and

control electric grid components.

On the other hand, the successful deployment of the smart grid is predicated on

the ability to secure its operations. Such a requirement is of paramount importance

especially in the presence of recent cyber security incidents. Furthermore, those inci-

dents are subject to an augment with the increasing integration of ICT technologies

and the vulnerabilities they introduce to the grid. The exploitation of these vulne-

rabilities might lead to attacks that can, for instance, mask the system observability

and initiate cascading failures resulting in undesirable and severe consequences.

In this thesis, we explore the security aspects of a key enabling technology in the

smart grid, accurate time synchronization. Time synchronization is an immense requi-

rement across the domains of the grid, from generation to transmission, distribution,

and consumer premises. We focus on the substation, a basic block of the smart grid
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system, along with its recommended time synchronization mechanism - the Precision

Time Protocol (PTP) - in order to address threats associated with PTP, and propose

practical and efficient detection, prevention, mitigation techniques and methodologies

that will harden and enhance the security and usability of PTP in a substation. In

this respect, we start this thesis with a security assessment of PTP that identifies

PTP security concerns, and then address those concerns in the subsequent chapters.

We tackle the following main threats associated with PTP: 1) PTP vulnerability to

fake timestamp injection through a compromised component 2) PTP vulnerability to

the delay attack and 3) The lack of a mechanism that secures the PTP network. Next,

and as a direct consequence of the importance of time synchronization in the smart

grid, we consider the wide area system to demonstrate the vulnerability of relative

data alignment in Phasor Data Concentrators to time synchronization attacks. These

problems will be extensively studied throughout this thesis, followed by discussions

that highlight open research directions worth further investigations.
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Chapter 1

Introduction

1.1 Overview and Motivation

The current power grid, a system engineered in the early twentieth century, is con-

sidered outdated when contrasted to other systems tangled to our daily life and

the technological advancements they witnessed. Its success in delivering power to

consumers has been acceptable so far. However, its adequacy for future systems is

questionable when considering the several blackouts experienced over the past years.

This gave rise to the need for a self healing grid, a grid providing quality power for

21st century, clean and renewable energy, and active participation from customers.

Those characteristics inspired the motive to integrate the advances in the information

and communication technologies to define the grid of the future - the smart grid.

Today, the robust operation and the availability of the power grid is a critical

requirement. The grid is exposed for threats both on its cyber and physical sides.

Cyber-attacks are a consistent threat that is intensified with advances in the deploy-

ment of the smart grid. The increased dependency on the communication network

and the integration of both systems present a potential attack surface for cyber-

attacks. Further, the physical components of the grid are subject to attacks targeting
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their functionality, such as the reported attack on the high voltage transmission line

in the United States in 2013 [113] and Canada in 2014 [24]. More recently, in the

last week of 2015, a cyber attack targeted the Ukrainian power utilities and resulted

in a blackout leaving hundreds of thousands of people without electricity for several

hours[71]. Those blackouts demonstrate that our critical infrastructure is susceptible

to faults and attacks that threaten its availability and functionality. The presence of

such threats call for an innovative analysis of the functionality of the grid that results

in a robust design of a smarter grid: a grid capable of restraining the effects of attacks

and survive the loss of any of its components.

Moreover, control operations, effective monitoring and management of the grid

require the presence of accurate synchronization of the grid events. Modern compo-

nents are introduced to timestamp the observations they make about the grid status

and the data they collect about its conditions. Indeed, having precise time available

across the entire grid enables utilities to better monitor and control power systems

with faster response times to effectively manage disturbances and ultimately prevent

system-wide blackouts [10]. The need for accurate timing in power systems and alig-

nment of data to a unified time source was stressed by the North American blackout

in August 2003 [36]. Furthermore, with the adoption of the North American Elec-

tric Reliability Cooperation (NERC) Standard PRC018-1 in 2006, it is now a legal

obligation that all recorded data must have an accuracy of 2 ms or better in relation

to universal coordinated time scale (UTC) [23]. Thus, timing is a major issue in the

design of such systems which typically use a time-slotted control protocol to perform

sensing, computation, networking, and actuation on a periodic schedule [28].

On the other hand, the advance in deployment of smart grids depends on the

ability to secure their operations. Such a requirement is of paramount importance

for critical infrastructure including the power sector. Those concerns are escalated
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with the increase in dependence on information and communication technologies,

global positioning satellite systems, and communication networks among others. The

integration of those technologies into the power grid improves its availability and

reliability. However along with their advantages, they carry a lot of security threats

that need to be addressed, and they expand the attack surface used to target the

grid’s cyber side. As such, those additional security concerns should be addressed

with proper prevention, detection, and mitigation mechanisms to ensure cyber and

physical security of the future smart grid.

Hence, the deployment and wide spread of the smart grid is dependent on se-

curing its components. Indeed, the transition phase from traditional power systems

to the grid of the future carries a lot of challenges. The secure functionality of the

grid, and an analysis of threats targeting its operations are on top of the list of chal-

lenges. To incite this transitional phase, we aim at assessing the security of one of

the essential building blocks of the grid functionality, namely the time synchroniza-

tion mechanism used to distribute accurate timing signals to the grid’s components

(substations, phasor measurements units, etc.). Availability of accurate timing is

an enabler of the grid’s monitoring, protection, and control applications on a wide

scale which is currently referred to as WAMPAC systems (wide-area monitoring, pro-

tection, and control). Security concerns associated to the synchronization mechanism

in use are brought forward by this mechanism to smart grid components relying on

its services, and thus imposing a major threat on the availability and functionality of

those components. IEEE 1588, more commonly known as the Precision Time Proto-

col (PTP) [4], is one of the recommended time synchronization mechanisms for use

in the smart grid. PTP, in its current version, is vulnerable to a multitude of threats

that affect its usability. Thus, our security assessment of time synchronization me-

chanisms is centered around PTP and its associated cyber attacks. We believe that
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securing PTP is one fundamental step towards a secure and cyber-attack resilient

smart grid.

On the other hand, time synchronization is a candidate for use as an attack sur-

face to target the functionality of other grid components. Indeed, due to the critical

nature of the smart grid, there is a need to align and correlate events dispersed

across its domain. Such a correlation is made possible through accurately timestam-

ped and synchronized measurements sampling the grid dynamics in real time, thus

intensifying the dependency of monitoring, protection and control systems on time

synchronization. In this aspect, a thorough analysis of the specifications governing

the functionality of different intelligent electronic devices, and their use of accurate

time synchronization is needed to identify gaps and vulnerabilities that may be ex-

ploited by attackers to target the smart grid. The impact of such vulnerabilities

escalate in the smart grid due to its dynamic nature, the interdependency between

its power and communication components, and its cyber-physical nature. We tackle

the presence of such vulnerabilities in phasor data concentrators, a key component

of the wide area monitoring system (WAMS), to expose the impact of exploiting the

system dependency on time synchronization, and leveraging existing vulnerabilities in

mechanisms providing those services to target essential monitoring, protection, and

control applications. This highlights the vulnerability of our critical infrastructure

to cyber attacks, and emphasizes the need to consider security as the main require-

ment in each of their enabling technologies. We take a first step in that direction by

addressing the security of time synchronization, and proposing solutions to prevent,

detect and mitigate cyber attacks targeting those mechanisms and all systems built

on top of the services they provide.
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1.2 Thesis Contributions

This thesis aims to supplement the existing and ongoing research efforts towards a

more secure and attack resilient smart grid. A first step in that direction is addres-

sing threats that target time synchronization in the smart grid mainly by improving

the security posture of PTP being the main candidate for time distribution at the

substation level. The first contribution of this thesis manifests itself in a brief, yet

comprehensive overview of the state-of-the-art security assessment of the Precision

Time Protocol. Precisely, Chapter 2 of this thesis presents an in-depth review of PTP

along with an introduction and classification of other available time synchronization

mechanisms, and the time-dependent power system applications with an emphasis on

the accuracy requirements of each of those applications.

Next, Chapters 3 through 6 will mainly address three problems pertaining to PTP

and smart grid security. These problems are briefly presented next, and detailed in

their dedicated chapters.

1.2.1 PTP Security Vulnerabilities

PTP is well-known for its capability to synchronize clocks of different qualities to a

common time source while providing accuracy of the order of microseconds. Howe-

ver, PTP was not standardized with security in mind and is found vulnerable to a

multitude of attacks targeting its services. For this purpose, in Chapter 3, we identify

and address a security vulnerability in the authentication scheme followed by PTP

security extension. In Chapter 4, we leverage the IEC 61850 substation synchroni-

zation requirements to devise a detection and mitigation schemes for the well-known

PTP delay attack. The proposed mechanisms are formally modeled, validated, and

evaluated on a real implementation of PTP. In addition to that, we introduce an

extension to PTP that allows the collection of synchronization status from connected
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clocks for security purposes. The introduced extension is defined, formulated, and ve-

rified in Chapter 5. Through the proposed extension, we believe that a PTP network

becomes more security aware and more resilient to cyber attacks which eases up the

use of PTP for time synchronization in the smart grid.

1.2.2 Vulnerability of WAMS to Time Synchronization At-

tacks

Time synchronization is of immense importance for situational awareness in the smart

grid, and for wide area monitoring and control. Through accurately timestamped

sampling and collection of power parameters, the control center can devise necessary

actions to maintain the grid stability and availability. This sampling and collection

is enabled through the deployment of phasor measurement units (PMUs) and phasor

data concentrators (PDCs) at selected locations in the grid. However, this dependency

on accurate timing can be leveraged to exploit vulnerabilities in the specifications and

functionality of those devices, and eventually impact reliant power system applica-

tions. We examine this problem in Chapter 6, where we identify and capitalize on

a vulnerability in one of the methods used for phasor alignment at the PDC. We

approach this problem using a linear program, and we consider system observability

as the targeted power application. Through the presented model, we can identify an

attack that is enough to prevent full observability of the power system, and thus open

a window for an attack that leverages this weakness to initiate a cascading failure in

the smart grid.
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1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents a brief overview

of applications of precise timing in the smart grid along with the candidate time

synchronization mechanisms for providing this precise timing, followed by a survey of

the existing literature that addresses security concerns associated with PTP. Chapter

2 also presents a gap analysis for PTP that highlights open research problems that

need to be addressed to secure PTP. Chapter 3 of this thesis introduces a shortcoming

of the authentication scheme associated with PTP through its security extension, and

identifies a potential amendment for this issue based on existing network and system

management solutions. Chapter 4 addresses one of the well-known attacks against

packet exchange based time synchronization protocols, the delay attack. We consider

the use of PTP in a substation as recommended by IEC 61850 [57], the substation

automation standard, to propose a detection and mitigation mechanism for the delay

attack. We use formal model checking to evaluate relevant security properties of the

proposed solution, and we demonstrate its usefulness on an actual implementation of

the protocol. In Chapter 5, we build on top of the theory established in Chapter 4 to

propose an extension for PTP that allows to collect messages from the network and

analyze the collected information to assess the security posture of a PTP network. We

once again use formal model checking and verification to validate the soundness of the

proposed extension, and we demonstrate its usefulness using numerical simulation.

Chapter 6 considers the wide area monitoring system as a scope of interest, and

exploits the vulnerability of a data aggregation scheme followed by PDC to a time

synchronization based attack. Through a linear program, we identify a PMU as an

attack target along with an attack vector to be injected in its timing. As an outcome

of this attack, the PDC receiving measurements from this PMU will drop phasors

received from other benign PMUs. The outcome of this attack is formulated in terms
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of system observability, and the approach is demonstrated using hardware-in-the-loop

simulation. Finally, Chapter 7 concludes the thesis and highlights potential research

problems for future consideration.
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Chapter 2

Preliminaries and Literature

Review

In this chapter, we will overview time synchronization in the smart grid. Power system

applications dependent on precise time will be presented. A review of mechanisms

used for time synchronization will follow along with a security assessment of PTP.

Standardization efforts related to our scope of interest will be shortly presented along

with security related cuts. We conclude this chapter by carrying out a security gap

analysis for PTP that highlights open research problems to be addressed.

2.1 Applications of Precise Time in Smart Grid

Critical applications in the smart grid require the presence of synchronized time

across the infrastructure. These applications demand a common notion of time.

Their measurements and monitored events need to be correctly aligned to enable

proper actions and decisions. These actions define the self-healing characteristics of

the smart grid. Indeed, providing real-time situational awareness to grid operators

will decrease the impact of the outages by isolating the problem areas and avoiding
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system to supply real-time voltage and current synchrophasors. These readings are

synchronized to absolute time, and used to analyze the state of the power system

and maintain its stability. Synchrophasors increasingly contribute to the reliable and

economical operation of power systems as real-time control and protection schemes

become broadly used [49].

With a fixed temporal reference frame, synchrophasor measurements may be used

to determine useful information about operation of the grid [15]. Compared to tra-

ditional SCADA measurements, synchrophasor measurements have higher sampling

frequency, are able to provide direct measurement of power system states, and al-

low for more accurate monitoring of power systems and faster remedial actions [126].

Voltage stability monitoring, and stabilization of large disturbances rely on phasor

measurements of voltage and current supplied by synchrophasors as pointed out in

[79], [107] and [98]. PMU measurements play a fundamental role in power system

state estimation as demonstrated by [51], [30], and [66]. Interested readers can refer

to [34] and [13] for a survey on the usage of synchrophasor measurements in power

system stabilizers among other applications.

A key requirement by synchrophasors is the precise time synchronization of PMUs

that are sampling the readings across the power system. IEEE C37.118 standard

[3] specifies that accuracy limits for the measurements shall not exceed a 1% total

vector error (TVE). This translates into a maximal time error of ±31.8 or ±26.5

microseconds for 50 or 60 Hertz systems, respectively.

2.1.2 Disturbance/Fault Recording

Due to the complexity of the power grid, a disturbance taking place in one part of

the grid affects operation elsewhere. When these interactions result in major events

such as cascading failures and large blackouts, recording devices installed at various
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points in the grid generate large numbers of reports and data files [15].

To make sense of the collected files, there is a need to align the data recorded by

several intelligent electronic devices (IEDs) at various locations to a common frame

of reference. This data is used in post-event analysis. It allows to identify what

happened where, and what happened when. It serves in finding the root cause of the

disturbance, assessing the severity and duration of the fault, and taking any neces-

sary remedial actions. The interpretation and alignment of fault records are eased by

accurately time stamping the events during recording.

Recorded data from recording devices can be synchronized to assess the impact of a

disturbance such as loss of generation, line trips, and loss of load. They have been

installed in several power systems in North America [29]. A disturbance identifica-

tion scheme to analyze the disturbance events recorded by those devices [29] and

[127], accurately identifying the location of a fault upon its occurrence based on the

integration of information available from disturbance recording devices [131], and ra-

pid stability assessment of wide-are post-disturbance records [63] are available in the

literature.

Nowadays, the trend is to equip all recorders with proper time synchronization.

A one millisecond error is often regarded as sufficient for such applications [108].

2.1.3 Differential Protection

Numerical differential protection [132] works by evaluating Kirchhoff circuit law with

current values obtained in numerical form from the different terminals involved. De-

pending on the principle, the current values can be delivered as phasors or as instan-

taneous values [132].

In a fault free system, the total of the currents is zero. The so-called differential

current occurs in a faulty system when the currents are not balanced and their sum
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is distinct from zero. This is considered as a criteria for tripping [108]. However,

differential relays support safety margins to account for time error among other pos-

sible errors. In protection systems, relays at the terminals of a differential protection

line are synchronized. Current differential protection which utilizes wide-area current

data will be effective for wide-area backup protection although such protection needs

system-wide timing synchronism for the simultaneous current sampling at all remote

terminals and data exchanges among them [102]. A fair time synchronization error

is within the limits of 100µs.

2.1.4 Sampled Values

The IEC 61850 process bus involves the exchange of high-speed, real-time instanta-

neous voltage and current measurements using an Ethernet network [10]. Voltage

and current sampled values are delivered to protection and control IEDs along with

control commands sent to switchgear. These values are produced at high rates (ty-

pically 4 to 16 kHz). Merging Units continuously send sampled values of currents

and voltages acquired from primary equipment. These digitized sampled values have

to be received in synchronism by the relays so that the protection algorithm functi-

ons properly. Data shifted at the receiving IEDs by just 30 microseconds will result

in half of degree phase angle error [77]. A technique to assess the overall network

performance of sampled value process buses in IEC 61850 is presented by [59].

As Sampled Values (SV) are distributed to independent devices throughout the

substation, time synchronization becomes critical for all applications that require data

from multiple locations (e.g., bus differential protection) [101]. The demanded time

synchronization precision is less than 1 microsecond.
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Locating faults using the traveling wave principle received much interest from the

power community. Early approaches on fault localization using digital relay data in

the literature is available in [91] and [67]. With the introduction and wide use of

PMUs in the power transmission system, the literature presented approaches relying

on the measurements supplied by PMUs for fault localization as indicated by [61],

[42], and more recently in [76]. A recent manuscript on using joint PMU and SCADA

data for fault localization on a multiterminal transmission line is presented in [86].

After highlighting the critical time dependent applications in the smart grid, we

will present the mechanisms used to provide the timing signal for use in power systems.

Some of these mechanisms have been deployed in power systems for decades. However,

as our overview shows, they are no longer suitable to meet the accuracy requirements

in the modern power systems or their deployment and maintenance requires a separate

infrastructure which is not favored by power utilities.

2.2 Time Distribution Mechanisms

The time distribution mechanisms we will discuss are the ones currently in use, and

candidate for use in the future smart grid. We will outline the basic characteristics

of these mechanisms, and the accuracy level they provide. This will filter the ones

that do not satisfy the smart grid applications’ accuracy requirements.

2.2.1 Pulse Per Second

A pulse per second (PPS) is an electrical signal of less than one second width, and a

sharply rising or falling edge that accurately repeats once per second. PPS is consi-

dered a simple and accurate time distribution mechanism. A time server distributes
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pulses synchronized to the second rollover over a dedicated network to connected

devices. This signal is limited by the care taken in the quality of the connection

of the source to the device being synchronized [15]. PPS does not have the notion

of absolute time, or clock changes (e.g. time of day). PPS is suitable for devices

requiring synchronization within the second [108]. The supported accuracy is of the

order of micro-seconds. However, its use in power applications is taken over by IRIG

time codes. PPS is still commonly used in standards laboratories, to compare time

and frequency sources at the highest level of accuracy [15].

2.2.2 IRIG-B

The IRIG time codes were originally developed by the Inter-Range Instrumentation

Group (IRIG), part of the Range Commanders Council (RCC) of the US Army.

The standard was first published in 1960 and has been revised several times by the

Telecommunications and Timing Group (TTG) of the RCC [16].

The IRIG standard defines a family of serial time codes with different pulse rates.

These codes use a continuous stream of binary data to transmit information on date

and time. Each of these time code formats are distinguished by the signal charac-

teristics (modulated, unmodulated), signal transmission techniques, data rate, and

by the information carried in the transmitted data. Among the family of IRIG time

codes, IRIG-B is the most known and used time format.

IRIG-B has a pulse rate of 100 pulses per second, through which it produces 100

bits of data. Out of these bits, 74 bits contain time, date, time changes, and time

quality information of the time signal. IRIG-B code may be used in either logic-level

(unmodulated) format, or as an amplitude-modulated signal with a 1 kHz carrier.

IRIG-B presents time as a set of logical ones, zeroes, and position identifier bits.

Connected IEDs to the IRIG-B service synchronize their clocks based on the data
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collected from this signal. IRIG-B has three functional groups of bits: Binary Coded

Decimal (BCD), Control Functions (CF), and Straight Binary Seconds (SBS). IRIG-

B supports time-of-year and year information in a BCD format, and an optional

seconds-of-day in its SBS.

IRIG-B was extended in 2004 to use reserved bits of the CF part of the time code.

Additional feautures such as calender year, leap seconds, daylight saving time, local

time offset, time quality, parity and position identifiers are assigned to previously

reserved bits in IRIG-B time code CF portion.

IRIG-B can be transmitted using various techniques either when its time code

signal is moduled or unmodulated. Typical techniques for transmission of unmodu-

lated IRIG-B include RS-485 differential signal over shielded twisted-pair cable, and

RS-232 over shielded cable for short distances among others. For the transmission

of modulated IRIG-B, coaxial cable terminated in 50 ohms or shielded twisted-pair

cable can be used.

Most substation IEDs that accept the unmodulated IRIG time code use an optically-

isolated input. This breaks ground loops, making possible direct connection throug-

hout a control room without excessive concern for grounding and potential differences.

Such optocouplers only require a few milliamperes of input current, making it possible

to connect many loads to a single IRIG-B driver [14].

IRIG-B supports accuracy of the order of microseconds and is currently used by

electric utilities to provide time synchronization to critical power system devices such

as protection relays, PMUs, and digital fault recorders (DFRs) [94]. However, IRIG-B

code signaling is unidirectional, with minimal error checking capability (single parity

bit) [112]. Undetected by receiving devices, the processing of bad IRIG-B time frames

result in faulty time synchronization.
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2.2.3 Network Time Protocol

The Network Time Protocol (NTP), defined in the RFC 5905 - Network Time Pro-

tocol Version 4: Protocol and Algorithms Specification [78], is a widely used time

transfer protocol over data networks. Through a message exchange, a NTP daemon

synchronizes the local device clock with that of one or more external reference time

sources. Information included in the NTP message allows the daemon to determine

the server time with respect to local time and adjust the local clock accordingly.

In addition, the message includes information to calculate the expected timekeeping

accuracy and reliability, as well as select the best server. This daemon plays the role

of a client in collecting time references from servers. As a server, it can make its own

time available as reference for other clients. Moreover, the daemon can be a peer in a

comparison of different system times with other daemons before agreeing on a “true”

system time to synchronize to.

These features can be used to set up a hierarchical time synchronization structure.

Each of these hierarchical levels is labeled as a stratum. A smaller stratum number

means a higher level in the hierarchy structure. The daemon with the most accurate

time has the smallest stratum number and is located on top of the hierarchy.

Each NTP daemon can be configured to use several independent reference time sour-

ces. The daemon polls these sources periodically to classify them as good or bad

sources. This aids the daemon in choosing a new system peer once its current peer

becomes unavailable.

To achieve synchronization, NTP includes methods to estimate the round trip

delay between the server and the client. NTP also ignores estimates that vary sig-

nificantly from the typical delay values. NTP uses time clock drift estimation to

compensate time deviation and provide time stability in the absence of the time
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source [94]. Accuracy level achieved by NTP depends on the performance of the de-

vices’ operating systems, and the nature of the connection between the client and the

server. Best accuracy levels are achieved when the logical connection between client

and server is kept as short as possible.

The achievable accuracy through NTP time synchronization is of the order of

milliseconds. Thus, NTP does not guarantee the accuracy level required by merging

units (MU) in a substation. However, most IEDs satisfied by NTP services use its

simplified version, Simple NTP (SNTP). SNTP uses the same messages as NTP, and

achieves the same accuracy level. However, it does not consider some algorithms that

maintain clock stability over long periods of time.

NTP’s standard level of performance is adequate to resolve the one-second am-

biguity of a 1-PPS signal, so NTP and 1-PPS together make an acceptable method of

accurate time synchronization in a substation [15]. However, this means that IEDs in

a substation will receive time information over two connections. This is not feasible

when compared to other available mechanisms and protocols especially PTP.

2.2.4 Precision Time Protocol

Precision Time Protocol (PTP) [4] is introduced in the IEEE 1588 standard as a

candidate to fulfill the timing requirements of forthcoming systems. PTP allows he-

terogeneous systems that include clocks of various resolution, precision and stability

to synchronize to a single time reference with a sub-microsecond accuracy [4]. Moreo-

ver, PTP power profile allows the usage of PTP for power system protection, control,

and automation applications. PTP is recommended for time synchronization at the

substation level by IEC 61850[57]. A more detailed overview of PTP will follow later.
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2.2.5 Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS) provide timing and location informa-

tion for receivers over the globe. GNSS mainly consists of GPS[75], GLONASS[37],

Galileo[68], and Beidou[1]. GNSS satellites are constantly transmitting signals which

are collected and processed by receivers. Although GPS is the most widely used

system, the services provided by these systems are similar. The timing accuracy

achieved is below 1 microsecond and is most suitable for use by power systems pro-

tection and control applications. Thus, time distribution mechanisms use this timing

signal to synchronize devices in a substation since it is infeasible to equip all devices

with a GNSS receiver.

The accuracy levels supported by the presented mechanisms vary and thus their

suitability for use in various substation applications. In Table 2.1, we present a

comparison of the different capabilities and drawbacks of these mechanisms. The table

also highlights the ability of these mechanisms to fulfill the timing requirements of

various substation applications. As can be concluded from the table, PTP and GNSS

are the most suitable mechanisms for time supply. They are both capable of meeting

the accuracy requirements while not needing any dedicated network. Thus, power

utilities rely on GPS-synchronized clocks to synchronize devices in substations, control

centers, and distribution feeder circuits [10]. However, since the use of GNSS signals

requires dedicated receivers, GNSS supplies the accurate timing to a designated IED

in the network. This IED will play the role of a PTP master and distribute timing

information to other IEDs connected to the already available Ethernet network.
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Table 2.1: Summary of time distribution mechanisms and their fulfillment of smart
grid applications requirements

Mechanism Typical

Accu-

racy

Level

Synchrophasor

Measure-

ments

Fault

Recor-

ding

Differential

Pro-

tection

Sampled

Values

SER

Re-

ports

Fault

Locali-

zation

1-PPS 1 µs X X X X X X

IRIG-B 100 µs × X X × X ×

NTP/SNTP 1-10
ms

× X × × X ×

PTP 1 µs X X X X X X

GNSS 1 µs X X X X X X

2.3 Precision Time Protocol

2.3.1 Overview

Precision Time Protocol (PTP) [4] is a time-transfer protocol defined in the IEEE

Standard 1588, a standard for a precision clock synchronization protocol for networ-

ked measurement and control systems [4]. It was developed to improve precision

over current Ethernet protocols achieving a microsecond synchronization accuracy

[4]. Moreover, PTP is capable of using the communication infrastructure available

without the need to setup a PTP dedicated one.

PTP follows a packet-based message exchange approach to maintain time syn-

chronization in the network. A designated time master sends periodic time-stamped

messages to communicate accurate timing to the connected devices. Through the

best master clock (BMC) algorithm, PTP establishes a master-slave hierarchy in the

network. The established setup includes a single grand master clock (GMC), and a

set of slave clocks synchronizing their time to that of the master. In addition to that,

one can distinguish other types of clocks in the system with PTP defined functiona-

lity. Such clocks include boundary clocks and transparent clocks. Boundary clocks
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are used to maintain the timescales used in a domain. On the other hand, transpa-

rent clocks (TC) measure the residence time of a PTP event message at a TC, and

supplies this information to recipients of the message in transit.

To achieve clock synchronization at slave devices, PTP provides two mechanisms:

end-to-end synchronization, and peer-to-peer synchronization. Both mechanisms rely

on synchronization messages sent by the GMC, yet they follow different approaches to

measure the master to slave path delay. The end-to-end synchronization mechanism is

depicted in Figure 2.3. As Figure 2.3 shows, four timestamps are collected by a slave.

t1 is the master time when the Sync message is sent, t2 is the time the slave receives

the Sync message, t3 is the slave time when the slave sends a Delay Req message,

and t4 is the time the master receives the Delay Req message. Those timestamps

define the trip time from the master to slave, tms, and slave to master, tsm. The

slave calculates the round trip path delay using the collected time stamps as equation

(2.1) specifies. The calculated path delay is used in clock offset computation using

equation (2.2). The slave uses this offset to update its clock as per equation (2.3),

where T imeslave and T imenewslave are the time at slave before and after synchronization

respectively. At the end of this process, the slave clock is synchronized with that of

the master.

Path Delay =
(tms + tsm)

2
=

(t4 − t3) + (t2 − t1)

2
(2.1)

Clock Offset = (t2 − t1)− Path Delay (2.2)

T imenewslave = T imeslave − Clock Offset (2.3)

The computation of offset and propagation time assumes that the master-to-slave
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If that is not possible, clocks follow the two step synchronization where follow up

messages are used to convey the accurate timestamp of the previously sent messages.

Using either of the two approaches, the needed timestamps are collected at slave

clocks, and used for accurate synchronization.

2.3.2 PTP Security Extension

A security extension, Annex K, was added to PTP to provide group source authentica-

tion, message integrity and replay attack protection for PTP messages. The extension

specifies two mechanisms to achieve the security goals specified. The integrity pro-

tection mechanism verifies the source, integrity, and freshness of the received messages

by using message authentication codes and counters. The challenge-response mecha-

nism allows for the affirmation of new authenticated sources and the management of

trusted relations.

It is worth noting that the implementation of this security extension is optional.

Clocks requesting secure PTP message exchange indicate that by setting a flag bit in

the message header to indicate the presence of the security authentication fields in

the transported message.

2.4 PTP Security Assessment

PTP is vulnerable to a wide range of attacks targeting the services provided by the

protocol. Systems relying on PTP time synchronization services suffer the impact

of these attacks. We will next study those attacks, along with the countermeasures

applied to detect and defend against those attacks as presented in the literature.

PTP secure functionality was the interest of much work in the literature before

and after the introduction of Annex K extension. In[116], the authors provided a
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description of the security extension to PTP along with various attack points to

target the PTP network and an attack targeting the master election algorithm. In

[81], the authors discussed the delay attack in time synchronization through a game

theoretic approach and suggests using multiple paths between master and slave clocks

for time synchronization to mitigate the risks of that attack and its applicability to

PTP. In [97], the authors studied the so-called selective packet delay attack on PTP

to identify the fields of the message that need to be compromised to carry the attack.

They study the presence of fake masters in the network and their effect on clock

synchronization at slaves as well. Figure 2.5 presents a look at the attacks targeting

time synchronization under PTP. Others study vulnerabilities present in the design of

PTP along with the attacks targeting its specifications. The literature is summarized

in Tables 2.4 and 2.5 and will be divided over three parts; approaches targeting

PTP use in power grid, others discussing issues in the design of PTP, or suggesting

usage of already available secure mechanisms in implementing PTP functionality and

enhancing its security through the use of Transport Layer Security (TLS) [41] and

Internet Protocol Security (IPsec)[17] along with approaches discussing the suitable

algorithms for PTP message authentication codes (MACs).

2.4.1 PTP in power grid

The use of PTP in power grid systems is analyzed in [115] where the authors provide

an approach to enable determining clock drift at electric devices when a connection

inside the substation is broken resulting in desynchronization between the master

clock and its slaves, a phenomenon known as islanding. They start their approach by

summarizing the various threats targeting time synchronization. They sum up their

discussion by dividing these threats into two categories, either the slaves are aware

of their desynchronized clocks after the attack or they are unaware. They discuss the
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the applicable attacks, and suggest countermeasures to guard against them.

The discovered attacks include denial of service (DoS), byzantine master, interruption

of control loop, removal of packets from control loop, packet manipulation, packet

insertion, replay attack, and selective packet delay attack[119, 50].

The security properties of PTP before the introduction of the optional Annex

K extension are investigated by Gaderer et al. in [50], while Tsang et al. in [119]

provide a compilation of attacks targeting PTP. The output presented is a set of

attacks applicable to a PTP network where the optional security extension, Annex

K, is not deployed. To carry on these attacks, the authors assume that the adversary

has access to the network, can monitor, collect and analyze exchanged messages.

The attacker targets the master, slave clocks, and the control loop. The effect of

his attacks range from introducing incorrect offset to the slave clocks, to complete

control of the time synchronization mechanism and the prevention of this mechanism

through DoS.

The countermeasures presented to defend against these attacks are addressed in the

annex K extension of PTP especially the ones related to authenticating the nodes,

protecting message integrity and preventing replay attacks. Other countermeasures

[50] include using cryptographic techniques along with QoS monitoring to protect

against these attacks. It is worth noting that, Annex K security extension mitigate

most of the causes of these attacks. However, other attacks such as selective packet

delay is still a threat targeting time synchronization under PTP.

In computing the master-to-slave path delay, PTP assumes that the communi-

cation network is symmetric. This assumption can be targeted through what is

known as delay attack, or selective packet delay attack. This attack is pointed out in

[119, 50, 120, 125], but is formulated and studied in [120, 125]. Indeed, Ullmann et

al. [120] indicate the vulnerability of PTP to delay introduced in the communication
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channel. This delay affects the accuracy of path delay calculation based on the arrival

time of synchronization and delay request messages. A similar approach is followed

by Yang et al. [125] where the attack model presented defines a man-in-the-middle

capable of introducing a random time resembling quantity in path delay calculation

by manipulating the master-to-slave and slave-to-master message exchange. The at-

tack analysis shows that delaying the synchronization message sent by the master

affects all the slaves in the network while delaying request messages affects only the

slave sending the message. The analysis quantifies the error in the offset calculation

in terms of the introduced delay. Such an attack succeeds in jeopardizing the time

synchronization mechanism and is hard to detect by the involved parties.

To defend against such attacks, the authors in [120] suggest implementing specific

network security mechanisms to protect the network, and monitoring the usual pro-

pagation delays across the network. They also point out that security mechanisms

ensuring the authentication of the communicating nodes and the integrity of this

communication do not counter the described attacks. On the other hand, Yang et al.

[125] propose a detection mechanism based on hypothesis testing. Their hypothesis

monitors the ratio of the master clock to the slave local clock. They assume that

the system is under attack when this ratio exceeds a threshold specified by 1 mi-

cro second. However, deploying such a mechanism means that the slave and master

know each other clock values which is unrealistic in a PTP network; or the existence

of a monitoring entity capable of observing the clock values at various nodes in the

network.

PTP specifications are targeted by Treytl et al. in [117] to reveal vulnerabilities

in the specifications. The identified weaknesses assume the presence of a man-in-the-

middle capable of capturing and modifying the exchanged synchronization messages.

The first flaw allows the attacker to modify the source and destination in the time
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synchronization messages. This is eased by the fact that those addresses are not

included in the calculation of the integrity check value (ICV) at the receiver side.

The attacker can create forged security associations and change the clock value at

the slave side. The authors suggest using a source port identity field in the PTP

header to retrieve a unique source address which is included in the calculation of the

ICV. The second flaw is related to the presence of transparent clocks in the IEEE

802.1 network, and the fact that those clocks modify the MAC address present in the

exchanged messages. Transparent clocks terminate the incoming link and create a new

frame with the PTP payload, the source MAC address of the outgoing bridge and a

modified correction field. Security associations relying on unmodified source protocol

address will discard such frames. The authors suggest creating double entries for the

core functions of the standard containing the master MAC address along with that of

the last transparent clock or use the source port identity field in security associations.

However, the authors indicate that to target PTP with the above indicated flaws is

implementation dependent, and would require a brute force breakdown of the random

value of the lifetime field available in the requests. Their practical applications is

related to the feasibility of that brute force attack.

Recently, Moreira et al. [85] performed a comparison of the proposed approaches

to secure PTP in its future version based on the discussion in the standardization

committee, and proposed a hop-by-hop group authentication and integrity solution

using MACsec and IEEE 802.1X standards. On the other hand, Narula et al. [89]

established a fundamental theory for secure clock synchronization. The authors found

that PTP is not secure based on the necessary and sufficient conditions of this theory,

and they presented a specialization of specific conditions for PTP secure clock syn-

chronization. Those conditions include the availability of an authenticated encryption

scheme between the communicating parties, negligible difference between forward and
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backward path delays, and a previous knowledge of this path delay. Although those

conditions provide a secure version of PTP, their applicability is subject to much con-

cerns especially when it comes to a previous knowledge of the estimated path delays

in a local area network. An analysis of PTP security is provided by Itkin et al. in

[60] where the authors exploit PTP vulnerability to a multitude of threat models and

subsequent attacks. The presented attacks can be carried by in-band and out of band

weak and skillful attackers targeting the communicated messages and various entities

of the PTP network. The described attacks are addressed with suitable security me-

chanisms, and a revised PTP security extension is proposed. However, even with a

revised extension, PTP will remain vulnerable to attacks due to its nature and design

considerations namely the delay attack performed by an in-band attacker.

The study of PTP showed some vulnerabilities in its design as the previously

discussed works show [120, 125, 117]. However, the most critical among these vul-

nerabilities is the delay attack. Such an attack is hard to differentiate from network

congestion and delays, difficult to detect, and succeeds in targeting PTP slaves. The

countermeasures presented neither detect nor prevent this attack [120], or base their

detection on non-realistic assumptions [125]. Moreover, although the issues raised by

Treytl in [117] threaten PTP functionality, the feasibility of using such issues to affect

time synchronization under PTP can be questioned. However, these efforts present a

good starting point for assessment of PTP security based on its design.

2.4.3 Implementation

To secure PTP services, the use of IPsec and MACsec is investigated in [118] and

[80]. While Mizrahi et al. [80] presented a threat analysis in the presence of IPsec

and MACsec, Treytl et al. analyzed the impact of the use of IPsec tunnels on PTP

clock synchronization and the accuracy levels it provides in [118]. Indeed, the author
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in [80] described the common IPsec and MACsec deployment scenarios and present a

subsequent threat analysis. In this analysis, internal and external attackers are con-

sidered. These attackers are capable of intercepting and manipulating the exchanged

messages, capturing and injecting messages into the network. The attacks presented

target the integrity and authentication functions. Packet injection and manipulation,

spoofing, replay attacks, rogue master, packet interception and removal, packet delay

manipulation, layer 2 and/or 3, DoS, and time source spoofing are the attacks dis-

cussed. The applicability of these attacks to networks protected by IPsec, MACsec,

or Annex K specifications is presented. These attacks result in slave nodes aligning

with a false time value or inability to synchronize their clocks. The author concluded

that a hybrid approach deploying a combination of these mechanisms can securely

support PTP operations.

On the other hand, IPsec effect on PTP time synchronization is compared by

Treytl et al. [118] to that of the native security measures in IEEE 1588[4]. IPsec

usage is illustrated in the protocol stack used to synchronize PTP clocks. A unit for

message protection using cryptographic operations is introduced at the network layer

in the transmit path along with another for the verification of incoming messages.

Additionally, two security state machines responsible for the security management

are directly integrated in the IP stack. The analysis shows that the delay presented

by IPsec results from the use of encryption algorithms, packet size, and security sche-

mes. The performed measurements show that the jitter introduced is noticeable over

the receive path compared to little jitter on the send path. The results contrast the

use of IPsec to that of unprotected IP. The authors analyzed the use of a hardware

timestamping unit to eliminate the pre-mentioned jitter. They concluded that the use

of a MAC based timestamper for IPsec with an adjusted clock frequency of the SHA

unit can be an effective solution. This modification is a limiting factor in embedded
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systems and might affect IEEE 1588 clock synchronization over IPsec.

2.4.4 PTP MACs

Algorithms used for generating PTP message authentication codes (MACs) are cove-

red in [93, 83, 84]. As a conclusion, these papers suggest an alternative MAC protocol

implementation that can satisfy the need of PTP authentication security and provide

better performance than the ones specified in PTP Annex K extension.

Indeed, in [93], the authors point out that the use of HMAC-SHA256 MAC spe-

cified in Annex K is suboptimal in terms of delay resulting from MAC calculations.

Based on testing of other MAC protocols implementation, they suggest the use of

Chained MAC (CMAC) and claim that it allows on-the-fly calculation of the MAC.

Another major modification they suggest to the Annex K is dropping the three-way

handshake and replace it by a one-way authentication. As a node joins the net-

work, it shall send periodic authenticated supervision frames to introduce itself to

other nodes. These nodes can validate the authenticity of these frames by checking

the ICV value. This approach makes use of the pre-shared keys in the network and

avoids the additional overhead caused by message exchange in the three-way hands-

hake. In addition, the authors find that the used sequence numbers are too short for

effective protection against replay attacks and suggest using absolute time instead.

Through their thorough analysis of Annex K, they suggest other modifications to its

specifications. These alterations require removal of some parts (challenge-response

exchange, security association update exchange, etc.), modification of the ICV test

to start from the destination protocol address rather than the PTP header, a col-

lective replay protection mechanism that uses a 48-bit register, and changes in the

security association structure, secure message transmitting, transparent clock rules,
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shared key distribution and authentication TLV. The suggested modification prove

that there is enough room for modifying the Annex K and enhancing its efficiency.

However, Moriera et al. in [83] and [84], demonstrated the feasibility of using SHA-3

(KECCAK) as the MAC function in PTP message security. Their study is based on

a comparison between AES-128 and SHA-3 where the hardware implementation of

SHA-3 provides the same security level and latency but with lower area consumption.

The literature review exposed the threats associated with the use of PTP for time

synchronization. Although there are much countermeasures proposed, some of these

threats (as the case with PTP delay attack) rise as a main concern for any system

relying on PTP to synchronize its devices. In an upcoming section, we highlight

the gaps threatening PTP secure functionality and we address some of them in the

upcoming chapters.

2.5 Standardization Efforts

This section covers the developed standards that guide the time synchronization in the

smart grid. First, we will cover the PTP power profile which aims at specifying PTP

options to be implemented in clocks for use in power industry. It also specifies the

default values for a set of PTP attributes to suit power industry requirements. Second,

IEC standardization efforts related to time synchronization in power substations will

be covered. This mainly includes IEC 61850-5[55] and IEC 61850-90-4[56].

2.5.1 IEEE C37.238

The second release of PTP in 2008 included the definition of new devices (e.g., trans-

parent clocks) along with a set of attribute options (e.g., transport over the IEEE

802.3 Ethernet or UDP) and optional features (e.g., unicast messaging). However,
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aiming at ease of setup with minimal administration, the concept of PTP profile was

introduced to identify a set of required features and assign default values for attribu-

tes based on the needs of industry. Thus, the profile specifies a subset of the protocol

features to be implemented based on specific industry requirements.

A PTP power profile customized for power system applications is introduced in

the IEEE C37.238 [5]. This profile defines PTP features and attributes for use in

power system protection, control, automation, and data communication applications

utilizing an Ethernet communications architecture. The profile specifies a well-defined

subset of PTP mechanisms and settings aimed at enabling device interoperability be-

tween different vendors, robust response to network failures, and deterministic control

of delivered time quality [5].

Among the profile specifications, the IEEE 802.3 Ethernet is specified as the pre-

ferred physical layer for PTP related communication and parameters configuration.

The profile also specifies the use of peer-to-peer delay mechanism in measuring the

propagation delay over the communication link. It recommends using one-step ope-

ration in communicating time information in the network. However, it also allows

using two-step operation for less expensive silicon solutions. An overview of main

PTP power profile specifications are available in Table 2.2.

Table 2.2: IEEE C37.238 main profile specifications

Profile Option Value

BMCA Default BMCA

Transport IEEE 802.3/Ethernet

Delay mechanism Peer delay only

Management SNMP MIB (mandatory for grandmaster-capable devices
only)

The profile defines strict requirements to ensure the time accuracy and quality

required by substation applications. It demands that inaccuracy introduced by a
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transparent clock must not exceed 50 nanoseconds. This allows achieving an accuracy

of one microsecond by a slave clock connected to the GMC over 16 network hops.

The profile also specifies that there should be at least two or three devices in the

network capable of being GMC in case the later fails. Finally, SNMP Management

Information Base (MIB) use is specified for configuration and status messages.

2.5.2 IEC 61850

The IEC 61850[57] standard is developed to make substation automation interopera-

ble and cost-efficient. It was designed to operate over modern networking technologies.

The standard ensures interoperability in power systems among many other features.

In Part 5 [55], IEC 61850 covers communication requirements for functions and device

models. And Part 90-4, technical report, network engineering guidelines for Ethernet

networks are presented. Among the contents of Part 5 and Part 90-4, issues related

to time synchronization in substation and power systems in general are presented.

Through these two parts, the IEC 61850 defines time models and time synchroni-

zation requirements at the substation level. It targets the synchronization of precise

clocks at various levels of substation automation, and aims at specifying required accu-

racy levels for various events(e.g., time-stamped measurements, sequence-of-events).

The standard specifies the need for only one time base in substation, and a unified

time tagging format for all devices in the power system. It specifies the use of absolute

time synchronization for synchrophasors while relative time synchronization is used

for protection functions.

The IEC 61850-5 defines different synchronization classes related to the application

using the time signal. These classes are indicated in table 2.3. According to table

2.3, accuracy requirements vary from ±1µ sec for protection functions to ±1 msec for

event logging.
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Table 2.3: Synchronization classes of IEC61850-5[57]

Class Accuracy Usage

T1 ±1 ms Event logging

T2 ±100 µs Zero crossing for the distributed synchrocheck. Time tags to
support point on wave switching

T3 ±25 µs Class P1 protection functions

T4 ±4 µs Class P2 protection functions (e.g. busbar protection
function). Time tagging of samples

T5 ±1 µs Class P3 protection functions and high precision time tagging
of samples

Time synchronization specifications presented by IEC 61850 can be summarized

as follows:

• A dedicated time server present in the substation receives time signal from an

external source outside the substation (GNSS, long-wave radio, etc).

• In case of absolute time usage, two time servers of different types must be avai-

lable.

• For PTP use in substation:

– Only layer 2 communication and peer-to-peer delay can achieve the required

accuracy.

– Alternate master option is recommended for implementation.

– Hold over time for slave is 5 seconds in case of master failure.

– Reference clock should be located on the station bus, and used for synchroniza-

tion of devices on the process bus as well.

• The time signal for time synchronization shall be easily derived from a global

time reference system like GPS.
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• The time tag of the transmitted binary or analogue events/values shall be as

accurate as possible for post-fault/failure event sequence analysis.

• The time tag of the transmitted binary or analogue events/values shall need no

correction at the receiver.

• The time synchronization procedure shall fulfill the performance classes shown

in Table 2.3 as far as applicable.

• Time synchronization telegrams should use the same communication infrastruc-

ture as the data exchange to facilitate the system design.

2.5.3 PTP Gap Analysis

Although the Annex K extension provided solutions for message integrity and replay

attack protection, the examination of PTP with Annex K reveals security gaps that

need to be analyzed and mitigated to enhance the secure behavior of PTP. Among

these gaps we highlight:

• Availability of PTP: when Annex K specifications are violated, the violating

message is silently discarded. This opens a window for a denial of service attack.

An attacker interested in interrupting PTP functionality may intercept and modify

the exchanged messages, which will be eventually discarded. This attack can target

messages used in clock offset calculation and management of security associations

resulting in denial of time synchronization in the targeted networks.

To mitigate this vulnerability, a strategy to allow clock updates based on past expe-

rience at the slave could be defined. This strategy is to be used upon interruption of

time synchronization.

• Design: We highlight the following gaps in PTP design.
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1. Secure and non-secure PTP coexistence: in the presence of slaves using non-

secure PTP and communicating with a master using secure PTP in the same network,

the slaves will be able to hear Announce and Sync messages sent by the master.

However, the master will simply ignore Delay Req messages sent by slaves not using

secure PTP and thus will deny them to correctly synchronize their time. PTP lacks

a security policy to handle such situations. This is of much importance if PTP is to

be used over deployed devices with limited resources while avoiding to change these

devices. As a mitigation approach, a device capable of interfacing slaves using PTP

with Annex K disabled to a master clock using secure PTP can be used. Such a

device will play the role of a master clock on the slaves side, and obtain accurate

timing as a slave from the grandmaster clock.

2. Delay Attack: PTP relies on the measurement of path delays in the network

and assumes a symmetric path connecting the GMC to each of the slaves. This

assumption is a vulnerability that allows an attacker to target PTP services even in

the presence of security measures. Such an attack constitutes a major threat to PTP

since it does not violate authentication, integrity nor confidentiality constraints. We

will target this attack and provide suitable detection and mitigation approaches in a

PTP network.

3. Open loop protocol: PTP lacks knowledge about the synchronization status of

connected slaves. The only output provided by the slaves are the messages sent to

measure the path delay which are not enough to convey any information about the

status of the source clock nor are used for this purpose. Thus, in the presence of an

attack or malfunctioning of the network, the impact of such an incident will go unno-

ticed since it only affects slave clocks. Hence, there is a need to close the PTP loop

and enable the collection of timestamped messages from slave clocks to evaluate their

synchronization status. We will tackle this problem and use this feedback collection
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to detect attacks targeting PTP synchronization services.

• Resource handling: as pointed by one of the surveyed work in the literature[93],

the three way handshaking mechanism specified by PTP Annex K is resource con-

suming. An alternative for that would be the deployment of an authentication me-

chanism that allows master/slave clocks to authenticate in a single step when needed

thus avoiding network congestion and saving its resources.

• Key establishment: PTP Annex K does not specify a key establishment mecha-

nism and considers it out of its scope. Shared keys specify the MAC protocols to be

used and trigger the maintenance of established secure associations. Thus, a mecha-

nism to securely distribute and manage the shared keys between slave, master, and

transparent clocks is needed.

• Annex K Authentication: PTP Annex K deploys a group source authentication

scheme which makes it vulnerable to an in-band attacker. A successful compromise

of a PTP clock allows an attacker to generate fake Sync messages and manipulate the

network time synchronization. We will address this problem using available network

and system management solutions while introducing minimum modifications to the

existing PTP deployment.
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Table 2.4: Summary of PTP security analysis from the literature

Classification Description Advantage Disadvantage Reference

Design

Attacks targeting PTP in-
cluding message tampering,
DoS, delay and replay at-
tacks

Presentation of attacks on
PTP and suggestion of
countermeasures

No evaluation of the coun-
termeasures’ effect on PTP
functionality

[119]

Delay attack on time syn-
chronization targeting NTP
and PTP

Quantitative evaluation of
the delay attack consequen-
ces on PTP

Absence of experimental ve-
rification of the attack, its
effects, and the suggested
countermeasures

[120]

Time desynchronization at-
tack on PTP managed net-
works

Analysis of the delay attack
effects on PTP synchroniza-
tion

Assumptions made for
suggested countermeasures
pose a large overhead on
the master side

[125]

Study of PTP security
aspects before the in-
troduction of Annex K
extension

Classification of attacks on
PTP and attack surfaces in
a PTP network

Absence of technical evalu-
ation of the suggested coun-
termeasures

[50]

Vulnerabilities in PTP spe-
cifications

Study of PTP security in
presence of transparent
clocks

No experimental evaluation
for the described attacks
and countermeasures

[117]

Analysis of the delay attack
using a game theoretic ap-
proach

A different approach in ana-
lyzing the delay attack

Use of multiple path in
clock synchronization does
not guarantee the path sym-
metry needed by PTP

[81]

Lab simulation of the se-
lective packet delay attack

Simulating the delay attack
in a lab environment

Simulation of fake masters
in the network is irrelevant
to performing PTP delay
attack

[97]

Security analysis and revi-
sed security extension for
PTP

Experimenting the different
attacks and security strate-
gies

Fails to address all attacks
and propose protocol mes-
sages modifications

[60]
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Table 2.5: Summary of PTP security analysis from the literature (cont.)

Classification Description Advantage Disadvantage Reference

Implementation

Use of IPsec and MACsec to
secure PTP functionality

Setting up IPsec and MA-
Csec in a PTP network,
then analyzing PTP secu-
rity

No analysis of the effect
of the approach on PTP
functionality

[80]

Use of IPsec tunnels and
their impact on clock preci-
sion in PTP

Analysis of the effect of IP-
sec use on PTP time syn-
chronization

Suggested approach intro-
duces modifications to the
PTP stack

[118]

PTP MACs Analysis of mac generation
code algorithms to replace
the HAMC-SHA256 Annex
K specification

Discussion on the usage of
new MAC algorithms for se-
curing PTP traffic

No analysis on the compu-
tational capabilities needed
by PTP devices to imple-
ment these approaches

[93, 83, 84]

PTP in Power Grid Maintaining time synchro-
nization and managing
clock drifts in electric sub-
stations during islanding

Presentation of different sy-
nchronization strategies to
suit devices computational
capabilities

No indication of how long
those strategies will be ef-
fective in maintaining syn-
chronization

[115]
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Chapter 3

Securing The Precision Time

Protocol Against Fake Timestamps

Time distribution mechanisms favored for use in the smart grid, such as PTP, were not

designed with security in mind, and thus suffer several security vulnerabilities. PTP is

vulnerable to fake timestamp attack through master impersonation and Sync message

injection. Such an attack will synchronize clocks to a false time reference. In this

chapter, we consider an IEC 61850 substation, and propose an approach to detect fake

timestamps communicated through false PTP Sync messages. This approach builds

on top of existing network and system management (NSM) solutions. We introduce

new SNMP data objects to monitor PTP functionality, and detect the existence of

fake timestamps in a PTP synchronized network. We implement the approach on a

testbed, and comment on the collected results.

3.1 Introduction

The nature of the smart grid as a distributed, complex, and connected system gives

rise to the need for innovative solutions to monitor and react to the grid dynamics in
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real time. Sensors and advanced measurement systems such as Phasor Measurement

Units (PMUs) dispersed across the domains of the grid serve to meet this need, and

enable the collection of measurements that reflect the status of the grid. However, the

alignment of the collected measurements and coordination of the performed actions

is not possible without a unique pulse that governs this operation. Through time

synchronization to a unified time reference, a pulse is introduced to the smart grid,

and thus enables real time observability of the grid dynamics.

Indeed, in the next-generation “smart grid” infrastructure, accurate timing sig-

nals will be broadly required - from generation plants to distribution substations to

individual smart grid components [96]. The increased demand for better reliability

in the grid resulted in higher accuracy requirements, and was reflected through stan-

dards that defined the needs of various grid applications. IEC 61850 [57] detailed the

synchronization classes for different applications with accuracy requirements of the

order of microseconds. Those specifications resulted in favoring the Precision Time

Protocol (PTP) [4] as a time distribution mechanism at the substation level over

other available mechanisms.

PTP, as defined in IEEE 1588, is recommended for use at the substation level for its

ability to achieve synchronization accuracy of the order of microseconds [4]. Moreover,

PTP is advantageous due to its use of the existing communication infrastructure

without any need for dedicated cabling. However, the security of PTP remains a

big concern. PTP is subject to various cyber attacks that target its availability,

and impact the achieved synchronization accuracy at end devices [87]. Even in the

presence of the security extension, Annex-K, PTP is still subject to some attacks

such as the delay attack [120], [88] among others. Moreover, the introduction of

Annex K does not address all vulnerabilities in PTP specifications. In particular, the

authentication scheme proposed by Annex K is not sufficient to prevent a connected
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device from spoofing PTP messages.

In this chapter, we address PTP vulnerability to the presence of false messages

injected through a compromised network component. The availability of false sy-

nchronization messages, injected by a threat agent and circulating in the network,

impacts the time accuracy at synchronized devices. The usage of PTP at the sub-

station level leaves the smart grid vulnerable to such an attack, and thus there is

a need to address this issue. However, introducing changes to existing deployments

and implementations of PTP is not favored by utilities. Thus, we address this con-

cern using existing deployments and software solutions at the substation level. We

leverage network and management solutions (NSM) as presented by IEC 62351-7 [58]

to propose a detection mechanism for the existence of fake timestamps injected using

false messages on the behalf of the PTP master.

3.1.1 Novel contributions

The main contributions of this chapter can be highlighted as follows:

1. We formulate the fake timestamp injection attack against PTP, and highlight

the vulnerability of PTP networks to this attack through a compromised PTP

device in the presence of PTP - Annex K.

2. We devise a detection approach through exploiting NSM solutions as mandated

by IEC 62351-7. The presented detection approach leverages unicast security

associations established through SNMPv3 to communicate data relevant to the

received Sync messages and the timestamps they carry.

3. We define new SNMP data types and objects as part of PTP MIB. The intro-

duced definitions complement the detection approach, and enable the collection

of relevant attack information through SNMP requests and responses.
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4. We analyze the overhead associated with the approach in terms of latency and

network traffic using a NSM testbed resembling the IEC 61850 substation. The

performed analysis demonstrates the applicability and usefulness of the presen-

ted detection mechanism.

The remainder of this chapter is structured as follows. System model is discussed

in Section 3.2. Section 3.3 details our attacker model. The attack detection approach

is presented in Section 3.4, while Section 3.5 provides a theoretical evaluation of the

approach. Experimental results are covered in Section 3.6. Concluding remarks are

provided in Section 3.7.

3.2 System Model

The system under consideration is a power substation as mandated by the IEC 61850

standard [57]. Accurate timing for IEDs available in the substation is distributed

through the Precision Time Protocol (PTP) [4] as defined in IEEE 1588-2008. In its

current version, through the optional Annex K, PTP uses multicast authentication

to authenticate messages sent by the GMC using symmetric key encryption. Using

a secret key, the GMC computes a hash based integrity check value (ICV) over the

complete Sync message, and appends that value to the Sync message. Other types

of clocks in the network including slave, transparent and boundary clocks, share the

same secret key used by the GMC. Those devices verify the received ICV using the

shared key, and decide to drop or use the synchronization message based on the ICV

test.

On the other hand, network and system management (NSM) [58] in an IEC 61850

substation is made possible through the deployment of SNMPv3 [104]. SNMPv3 uses

a unicast security association to maintain secure communication between the SNMP
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encryption, puts the entire PTP functionality at risk when the secret key is disclosed.

Indeed, if an attacker manages to break into a single device and retrieve the authen-

tication key, the attacker can prepare Sync messages on behalf of the GMC, generate

an ICV using the disclosed key, and reshape the network synchronization.

Devices receiving the Sync messages sent by the attacker on behalf of the GMC

will verify the message integrity, extract the timestamp it carries, and later use the

timestamp value to synchronize their time to what they believe is the time of the

GMC. Hence, those devices are not capable of identifying false Sync messages carrying

fake timestamps that will manipulate their synchronization.

Therefore, the current authentication scheme does not meet the expectations of

securing PTP in challenging environments. An attacker exploiting this vulnerability

can manipulate time synchronization services, and impact other system functionality

relying on accurate timing. Moreover, introducing changes to the protocol is not

favored nor does it fix the security concerns with the existing PTP deployments.

Thus, we need to detect the presence of fake Sync messages to better protect PTP

against cyber attacks.

3.3 Threat Model

We consider a Dolev-Yao attacker [43] who gains access to the system after PTP

clocks elect the GMC. We assume that the PTP GMC and the SNMP manager are

trustworthy and can not be compromised. The attacker can break into one or more

slave clocks to initiate his attack. By breaking into a device, the attacker has full

control over this device, and gains access to the multicast key used in PTP communi-

cation along with the unicast key used by SNMP. Moreover, our attacker is capable of

dropping, injecting, and delaying messages everywhere in the network. In particular,

the attacker is interested in spoofing slave clocks through the injection of fake Sync
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messages. To carry on this attack, the attacker will intercept and drop the GMC Sync

messages, impersonate the GMC, inject new Sync messages with a fake timestamp,

and generate an ICV for those messages using the PTP authentication key available

at the compromised device and the slave clock ability to generate timestamped mes-

sages. The attacker is also capable of communicating with the SNMP manager on

behalf of the device he is in control of.

On the other hand, the attacker performs this attack rather than a more complicated

one as he aims at eventually damaging the system while being undetected.

3.4 Approach

Our approach is centered around the interests of the system operator who wants to

detect the insertion of Sync messages with fake timestamps, while avoiding any chan-

ges to the synchronization protocol. To this end, and in the context of an IEC 61850

substation, we will leverage the existing infrastructure and deployed NSM solutions to

improve PTP security, and prevent the manipulation of time synchronization through

fake Sync messages.

3.4.1 Feedback Introduction

PTP, in its current version, lacks a mechanism to monitor the protocol performance

at slave devices. PTP adopts a master-slave approach for synchronization, where the

master issues timestamps through Sync messages. Slave clocks collect those messages

and use the timestamps they carry for clock synchronization.

To monitor the protocol performance and received PTP messages at slave clocks,

we will introduce a feedback mechanism into the network. Through this mechanism,

slave clocks will report to a reference entity information pertaining to the received
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Sync messages. In a similar manner, the GMC will provide feedback to the same

reference entity. Thus, an analysis of the received feedback will enable this entity

with the capacity to detect mismatches between the information sent by the master

in Sync messages, and that received by the slave clocks through the same messages.

Moreover, to prevent a possible compromise of the feedback channel, we need to

associate proper security mechanisms with this channel. Thus, there is need for a

secure unicast association to deliver the feedback from different clocks to the refe-

rence entity. Such a mechanism is already established in the substation through the

deployed SNMP for NSM as mandated by IEC 62351-7 [58]. Hence, we will assign the

reference entity role to the SNMP manager which already communicates with SNMP

agents located on all substation devices (see Fig. 3.1). Through SNMP communica-

tion, agents answer requests and report to the manager on PTP activity including

contents of Sync messages issued by the GMC. In addition to that, the SNMP agent

located at the GMC will report to the SNMP manager information pertaining to the

Sync messages sent over the network. Through the collection of the communicated

information, the SNMP manager is capable of detecting anomalies between the GMC

Sync messages and the ones received at slave clocks.

3.4.2 Feedback Contents

The feedback collected from agents available at clocks in the network aim at detecting

the presence of malicious Sync messages. To enable this detection, we will periodically

send requests, and collect responses from the GMC and other PTP clocks. To identify

those messages, we will need the sequence numbers and timestamps of Sync messages

sent by the GMC, and those of Sync messages handled by other clocks in the network.

This information is collected through requests issued to agents at the GMC and slave

clocks.
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3.4.2.1 Agent at GMC clock

This agent will periodically respond to the manager’s request by sending a message

containing a table composed of rows, each row contains the sequence number and

timestamp of a single Sync message. Each response sent by the agent includes in-

formation about recent Sync messages that are not reported yet to the manager.

Through these responses, the manager will not miss any timestamp issued by the

GMC. The collected responses provide the manager with a complete view of the

GMC activity, and allow it to detect the presence of fake Sync messages. To fulfill

this exchange, we will use the objects as defined in Appendix A.

3.4.2.2 Agent at slave clock

Agents located at different slave clocks will receive requests and generate responses

pertaining to the recently received Sync messages. Each request demands a block

of n consecutive Sync messages. The sent response includes the sequence number

of the first Sync message in the reported block, a bitmask of size n representing the

consecutive sequence numbers of the Sync messages reported in this block, and a hash

of the timestamps carried in those messages using SHA3 [45] with 256 bit output. The

bitmask identifies the received and reported sequence numbers using a bit set to 1.

Moreover, the agent uses a zero timestamp for the missed Sync messages (identified

through a 0 bit in the bitmask). This allows the manager to identify the sequence

numbers of the reported Sync messages, and prepare the needed timestamps hash

value for comparison. To enable this exchange, we will use the objects as defined in

Appendix A.

It is worth noting that the manager is capable of associating those messages with

their sources. Moreover, this communication is protected through unicast security

associations already established using SNMPv3. Such associations prevent an attacker
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new types such as PTPClockTimestamp, ptpSyncSeqNumber, ptpSeqBitmask, ptpTi-

mestampHash as shown in Appendix A.

The newly introduced types are used to define structures and objects that will

hold the information of relevance for the detection. Those new objects include ptp-

TimestampTable, ptpSeqTSEntry, ptpTSHashTable, and ptpTSEntry. We list those

objects under the ieeeC37238Objects for each clock supporting the IEEE C37.238

profile [6], and assign them an identification number. This associates instances of

those objects to clock ports in slave or master state. Through the assigned identities,

those objects can be requested by the manager.

The introduced objects constitute of two tables to hold relevant information for

detection approach. The first table, ptpTimestampTable, is composed of entries where

each entry contains the sequence number and timestamp pertaining to a single Sync

message sent by the GMC. This table is requested from the agent at the GMC.

The second table, ptpTSHashTable, is used by agents at the slave clocks to store

information on blocks of received Sync messages. Each entry in this table contains

sequence number of the first Sync message in block, the bitmask identifying the Sync

messages in block, and a hash of the timestamps for these messages.

3.4.5 Detection Logic

Our proposed detection approach is performed by the manager. The manager has

access to the data available at the agent side through requests sent to agents, and

responses issued by agents to answer the manager’s requests.

The manager collects ptpTimestampTable from the GMC, and is able to associate

Sync messages sequence number with the timestamps they carried. Later, through

ptpTSHashTable collected from slave ports, the manager can identify the reported
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timestamps using the sequence number corresponding to the first Sync message iden-

tified through the firstSeqNum field, and the bit mask identified through the se-

qNumBitmask field. The next step will be to compute the hash of the identified

timestamps, and compare it to the hashOfTimestamps as reported by the slave. The

manager detects the presence of a fake timestamp if the compared hash values are

not equal.

3.5 Evaluation

In this section, we analyze the introduced network overhead through the added SNMP

requests and responses. We discuss the expected false alert rates as well.

3.5.1 Network Overhead

Through the introduction of new requests and responses into the NSM communica-

tion, we add more load on the substation network. Taking into consideration the

criticality level of network availability and performance in the substation, we present

a theoretical computation of the additional SNMP traffic injected into the network.

Each SNMP messages is composed of two parts a header and payload. The header

includes fields with fixed size (Message Version Number, Message Identifier, etc.) and

variable sizes (Context Engine Id, Context Name, etc.). The payload has a similar

structure however it carries identifications of MIB objects (as in case of requests),

and values stored in those objects (as in the case of responses). Thus, the additional

traffic has fixed-size components and others with variable size. We will consider the

worst case for the variable size parts.

The fixed size fields in SNMPv3 header has asize of 25 Bytes, while the variable

size fields can reach a maximum of 192 Bytes. Thus, the maximum header size is 217
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Bytes. On the other hand, the fixed size fields in the payload have a size of 16 Bytes.

As for the variable size fields we will distinguish between two cases:

1. SNMPv3 Request: The request payload includes the variable bindings which

identifies the requested MIB objects and a value of NULL associated with them. The

manager can request the ptpTimestampTable, and ptpTSHashTable MIB objects from

the agents located at GMC and other clocks in the system respectively. Thus, the

size of the variable fields can sum up to 12 or 10 Bytes. Therefore, the maximum size

of the introduced request is 217 + 16 + 12 = 245 Bytes.

2. SNMPv3 Response: The response has a similar structure to that of the request.

However, the response carries a combination of the requested objects and the values

they carry. We will have two different responses sent over the network, one sent by

agent at GMC clock and another sent by other agents.

• Response from GMC agent: This response carries a table of 10 rows identifying

the Sync messages sequence number and the timestamps they carried. Thus, this

response size exceeds that of the request by 10× row size

where row size = sizeof (PTPClockTimestamp)+sizeof(PTPSyncSeqNumber) = 6+

2 = 8 Bytes. Thus, the total response size is 10× 8 + 245 = 325 Bytes.

• Response from other agents: This response carries a table entry of 3 rows iden-

tifying a block of Sync messages containing firstSeqNum, seqNumBitmask, and has-

hOfTimestamps. Thus, this response size exceeds that of the request by the size

of the previously indicated objects. Hence, this reponse size is sizeof(request) +

sizeof(firstSeqNum) + sizeof(seqNumBitmask) + sizeof(hashOfTimestamps) = 245 +

2 + 2 + 32 = 281 Bytes.

Noting that this traffic is periodic as discussed in Section 3.4.3, the network will

witness the following augmentation in traffic:
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1. Traffic addressed to GMC agent: This includes a request and matching response

of total size 245 + 325 = 570 Bytes once every 8 seconds.

2. Traffic addressed to other agents: This includes all the requests sent to agents

along with their matching responses. If we consider the total number of agents in the

network to be N , then the total traffic size is N×(245+281) = 526×N Bytes. Thus,

in a network composed of 1000 devices, we may witness an overhead of approximately

500KB every 16 seconds.

In a substation environment, the IEC 61850-90-4 recommends the usage of 100

Mbit/s links to connect end nodes to bridges, and 1 Gbit/s links for bridge-to-bridge

connections [106]. Therefore, the introduced approach adds negligible traffic compa-

red to the network data rate.

3.5.2 Flase positives and negatives

False positives in the detection approach are due to reporting a mismatch between

the collected data from the GMC agent and other agents in the absence of fake

timestamps. However, this contradicts the deterministic property of a hash function

where the same input to a hash function always results in the same hash. Thus, using

the timestamps collected from GMC agent, and respecting the bitmasks received from

other agents, we will get the same hash value as communicated by agents on slave

clocks.

On the other hand, false negatives represent cases where the manager can not

detect the presence of fake timestamps as reported by the agents. In this case, the

manager will match fake timestamps reported by the agents to those sent by the

GMC agent, and will not find any difference in the resulting hash values. However,

this contradicts the collision resistance property of SHA3 hash function where different
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Figure 3.3: Detection time based on request period.

messages result in same hash. Thus, hash values computed from fake timestamps will

not match the hash values of legitimate timestamps.

3.6 Experimental Results

To validate the usefulness of our approach, we deployed PTP daemon (PTPd) [8]

on a testbed resembling the IEC 61850 substation. Two machines of the testbed

function as PTP master and PTP slave, and has a deployed SNMPv3 agent with the

updated MIB objects that communicates with an SNMPv3 manager deployed on a

third machine. We configured PTP to send 1 Sync message every second.

In our experiments, we run PTP on the network for 300 seconds and we execute

the fake timestamp injection attack at three random instances. We vary the period

at which the SNMP manager sends requests to PTP devices, and we evaluate the

latency in attack detection. The collected results are presented in Fig. 3.3. The

selected periods at which the manager sends requests to agents are 5, 10, 20 and

30 seconds. With the increase in the request period, the time to detect the attack

increases as indicated by the average latency plotted as a line in Fig. 3.3. Fig. 3.3

shows the results for all the tests as well, which indicates that the best and worse
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latency increase with the increase in the request period. This gives an advantage of

short request periods in detecting the attack at an early time.

In another set of experiments, using the same settings as before, we varied the

number of records reported by the agents at different PTP devices along with the

request period. With the variation in the number of records, we chose a request

period that matches the response size since sending requests at a higher rate than the

agents can respond will introduce an overhead in the network without collecting any

outcome from those requests. The variation in the response size did not have a positive

impact on the detection latency, since more information need to be communicated

to the manager before actually detecting the attack. Thus, the best performance is

ensured through a short request period as for the case of 10 seconds shown in Fig.

3.4.

Finally, we report on the network overhead imposed by the proposed approach.

In Fig. 3.5, we plot the additional traffic due to PTP-based SNMP requests and

responses for different request periods. The presented graph shows the average addi-

tional traffic over a period of 100 seconds in a network composed of one manager and

two agents. As can be seen in Fig. 3.5, the collected results match our theoretical

analysis and the introduced overhead is minimal compared to the collected outcome
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and network capabilities.

As an outcome of the collected results, and based on a combination of the time

to detect and network overhead, we recommend using a short request period of 5

seconds for the manager to agent communication.

3.7 Conclusion

In this chapter, we addressed one of the shortcomings of the authentication protocol

used by Annex K to secure PTP operations in a network. We leveraged the availa-

bility of secure SNMPv3 as recommended by IEC 62351-7 for a substation to harden

PTP security against attacks that exploit the authentication scheme, and inject fake

timestamps to target synchronization at slave clocks. We defined new SNMP objects,

and demonstrated their use for effective detection of fake timestamps in a PTP net-

work. Results collected demonstrated the effectiveness of the approach, and the light

overhead imposed on the network in the form on additional traffic.
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Chapter 4

Detection and Mitigation of PTP

Delay Attack in IEC 61850

Substation

In the previous chapter, we devised a solution for the injection of fake timestamps

through a compromised device into the PTP network. In this chapter, we again consi-

der an IEC 61850 based substation to devise a detection and mitigation approach for

the well-know delay attack. We formally model, and validate the proposed approach,

and we provide experimental results from tests run on a physical system.

4.1 Introduction

Time synchronization is a core requirement in modern systems. The functionality of

such systems demands a common notion of time and rely on the ability to align their

various activities to an accurate time scale. Indeed, precise time has become a critical

component of systems/applications integrated in our daily life such as electrical power

systems, telecommunications systems, and networking systems [101].
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The smart grid, a forthcoming cyber-physical system, is characterized by its cri-

tical operations and their effect on our daily life. The services provided by the smart

grid demand the presence of an accurate time signal suitable for the alignment of its

various events. Indeed, modern components are or will be introduced to monitor and

manage the grid. These components timestamp the observations they make about the

grid status and the data they collect about its conditions. Phasor measurement units

(PMUs), sensors, merging units, intelligent electronic devices are dominant across the

domains of the grid, mainly at the substation level as can be illustrated in Fig. 4.1.

These devices reflect the real-time state of the grid among other functions such as pro-

tective line measurements, and analog measurements. The accurately timestamped

measurements they provide affect the observability of the grid, the state estimation,

and voltage stability [92]. Moreover, accurate timing in the smart grid is a requi-

rement for disturbance recording, sequential events recorder (SER) reports, power

system fault location, and sampled measured values.

Several protocols (Network Time Protocol (NTP), Inter Range Instrumentation

Group-B (IRIG-B)) have emerged to align these systems to a specific time reference.

These protocols do not guarantee that the time-synchronized nodes in the distributed

system advance synchronously. Instead, they guarantee that the difference in time

values of the clocks of different nodes is bounded [39]. Clock values at different nodes

do not necessarily step/advance at the same pace. However, when synchronized,

their values adjust within a certain acceptable offset. NTP [78] and IRIG-B [105]

are examples of such mechanisms used to provide timing solutions for a range of

systems. However, these mechanisms fail to support the requirements of the smart

grid applications that demand an accuracy in the order of 1 microsecond or less [101].

Precision Time Protocol [4] is introduced in the IEEE 1588 standard as a candidate

to fulfill the timing requirements of forthcoming systems. PTP allows systems that
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4.1.1 Novel Contributions

This chapter presents a model that leverages the system capabilities to enable the

detection of the delay attack against PTP. The proposed model introduces modifica-

tions into PTP slave functionality to mitigate the attack impact upon detection. The

main contributions are detailed as follows:

1. We develop a formal model of PTP time synchronization mechanism under the

PRISM model checker. The model considers two step PTP message exchange and

clock synchronization. Using this model, we can use PCTL quantitative and qua-

litative properties to verify PTP behavior and functionality in the presence of the

proposed mechanism.

2. We formally prove the existence of the delay attack and its effect on PTP time

synchronization. We establish theory for the detection of the delay attack, and falsify

the claims that rely on PTP offset calculations to detect the attack. On top of the

established theory, we present the detection logic while considering PTP usage in a

substation.

3. We modify the slave functionality and its usage of the calculated offsets, and

present a mitigation methodology centered around retaining and analyzing histori-

cal synchronization records at slave clocks to recover the impact of the attack and

maintain the slave synchronization status.

4. We formally validate the presented techniques through probabilistic properties

using PRISM model checker. And we experimentally evaluate their effectiveness using

a PTP deployment on a physical system.

The remainder of this chapter is structured as follows. Section 4.2 surveys a

selection of the existing literature and highlights the differences that distinguish the
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work presented in this chapter from its existing counterparts. Section 4.3 presents the

system under study. Section 4.4 details our threat model and provides an analysis

of the targeted attack. The developed model for PTP is presented in Section 4.5.

Sections 4.6 and 4.7 detail the proposed detection and mitigation models respectively.

Experimental results are provided in Section 4.8, and Section 4.9 presents concluding

remarks.

4.2 Related Work

The literature is rich with papers covering PTP security. PTP security aspects and

attacks targeting PTP are covered in [119] and [50]. The delay attack is formulated

and discussed in [120], while [125] present the time desynchronization attack in power

systems centered around delay asymmetry in PTP communication paths. Those

approaches do not provide any quantification of the security of PTP. Their analysis

is based on PTP specifications and implementation. Moreover, to detect the delay

attack, these papers ([119], [120], [125]) suggest monitoring changes in computed delay

and offset at the slave side as an indication of an ongoing attack without suggesting

any mitigation techniques. However, in our upcoming analysis, we show that relying

on changes in the computed values at the slave side is not enough to detect the delay

attack. Moreover, we present a mitigation approach to counteract the effects of the

delay attack.

On the other hand, PTP models were built by researchers to verify its functionality

or validate properties related to the best master clock algorithm (BMC) used in PTP

master election. Indeed, the BMC algorithm was modeled by [40] and the built model

is used to perform systematic testing. BMC behavior is also analyzed in [27] based

on discrete event simulation and model checking. Through their model analysis, the

authors deny future suggested modification to BMC functionality. Moreover, a PTP
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model was built by [22]. The built model is studied to verify the suitability of PTP

for clock synchronization in large heterogeneous systems. Their study targeted the

effect of clock drift and scheduling policies in the network on time synchronization as

well. Basu et. al [22] succeed in deriving jitter-related precise bounds that guarantee

proper synchronization in a large heterogeneous system.

The main difference between our approach and the ones in the literature is that we

quantify security properties of PTP using model checking rather than just exposing

PTP vulnerabilities. We also propose modification to the PTP standard by defining a

new clock type capable of detecting the delay attack, and adjusting the functionality

of the slave clocks to introduce a mitigation strategy that maintains synchronization

in the presence of the delay attack. We also verify PTP security-related properties.

The verified properties demonstrate the effectiveness of the proposed detection and

mitigation mechanisms to protect and support PTP time synchronization.

4.3 System Model

The system under consideration is an IEC 61850 [57] substation and can be best

depicted as shown in Fig. 4.1. The communication medium (staion bus, process

bus) is an Ethernet bus as standardized by IEC 61850. The grandmaster clock is

located on the station bus as the standard specifies. It receives the accurate time

signal through a GPS connection or any timing mechanism satisfying the timing

requirements. Using PTP multicast, the master supplies time synchronization signal

to all devices connected to the station bus. A PTP request-response mechanism is

deployed for path delay measurement and clock synchronization over the station bus.

IEC 61850-90-4 [56] recommends that bridges used in the substation communi-

cation network are PTP transparent clocks to limit the effects of queuing time on

synchronization. The maximum number of transparent clocks over a path is specified
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by 8 to avoid accumulation of synchronization errors introduced by these clocks. IEC

61850-90-4 also specifies that, in a substation, the asymmetry over a link between

two transparent clocks must be limited to 50 ns. In addition to that, IEC 61850-90-

4 demands the use of the peer delay request response mechanism (see Fig. 2.4 for

details).

The IEC 61850-90-4 standard requires the availability of a backup master clock

which can replace the grandmaster upon any failure. The standard does not specify

the backup master time source, but it indicates that the backup timing signal must

satisfy the timing requirements of the substation. Hence, the IEC 61850 substation

architecture limits the asymmetry in the network to few nanoseconds, and ensures

the availability of an alternative accurate time source.

On the abstraction level using PRISM, the master and slave clocks are represented

as peers. They are connected directly without the use of an intermediate switch.

This does not violate the specifications of IEC 61850, and it simplifies our task of

validating the model and verifying the usability of the proposed delay attack detection

mechanism.

4.4 Threat Model

Our goal is to detect an ongoing delay attack targeting PTP time synchronization in

a substation, and enable PTP slaves with an effective mitigation approach to recover

the attack effects and maintain time synchronization at the slave devices.

We assume that the attacker is either an external entity or an insider with mali-

cious intents. He has the expertise to perform long-term reconnaissance operations

required to learn the environment and execute a highly synchronized, multistage, mul-

tisite attack [71]. The attacker is aware that the target substation uses PTP-based

time synchronization, and is aware of the topology of the substation. Moreover, the
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attacker can identify the master clock on the network, and is capable of introducing

the required delay into the PTP message exchange paths either through software or

hardware.

Our attacker is interested in targeting the functionality of all the devices in the

network rather than a particular IED. He will manipulate the clock of the connected

devices by introducing a variable delay into the PTP master communication path. If

the attacker wishes to introduce the delay through introduction of additional hardware

to the network, he has the expertise necessary to choose suitable attack locations to

introduce undetectable attack and avoid the surveillance available at the substation.

Moreover, our attacker aims at conducting a stealthy attack while remaining un-

detected. Thus, he has interest in conducting the delay attack, and controlling sy-

nchronization at slave devices rather than performing other more impactful attacks

which might flag detection alerts at the substation.

4.4.1 Delay Attack Tree

Our attack model is formulated in the attack tree presented in Fig. 4.2. To perform

the attack, the attacker must obtain access to the master communication on the

station bus. The attacker may be an insider such as a disgruntled employee, or

physically break into the substation. This gives the attacker an advantage to introduce

the Undetectable Delay Box [19] to perform the delay attack. The Delay Box is a

device capable of producing a delay of a few microseconds or more either in the

forward or in the backwards direction relative to the master clock. It operates at

the physical layer and is therefore undetected by any encryption or authentication

mechanism at layer 2 or above [19].

On the other hand, access to the station bus can be also attained by the help of

an insider who either grants physical access to the attacker or infects the system with
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paths. It is worth noting that, by carrying this attack on time synchronization and

with an incremental increase in δ, an attacker can control and alter the affected slave

clocks while avoiding detection mechanisms.

4.4.2 Delay Attack Analysis

Through applying the delay to selected messages, mainly the Sync messages, the

attacker performs the selective packet delay attack. The introduced delay, δ, aims at

violating the path symmetry assumed by PTP.

To model this attack, we need to introduce additional delay on the communication

path connecting the master to slaves. Thus, instead of reaching its destination at

time t2 in case of Sync message, the delayed message reaches at t2 + δ affected by

the additional delay introduced by the adversary, δ (see Fig. 2.3). The delay, δ,

introduced will result in an incorrect offset and hence an inaccurate synchronization

at the slave side. Using Eq. (2.1), the effect of introducing a delay δ on the master

to slave path is shown in equation (4.1).

Offsetattack =
(t′2 − t1)− (t4 − t3)

2
=

((t2 + δ)− t1)− (t4 − t3)

2

=
(t2 − t1)− (t4 − t3) + δ

2
=

(t2 − t1)− (t4 − t3)

2
+

δ

2

= Offsetnoattack +
δ

2

(4.1)

where t′2 is the timestamp of the delayed Sync message, Offsetattack andOffsetnoattack

are the calculated offsets in the presence and absence of an attack respectively.

Thus, at the end of a synchronization event under attack a slave will update its

clock value using the offset from equation (4.1), and the relation presented in equation

(2.3) which results in a δ
2
clock synchronization error.

Remark 4.1. The selective packet delay attack is difficult to detect by observing
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changes in offset at the slave clock.

Proof Using the offset in equation (4.1) and the formula specified in equation (2.3),

the slave clock value after the first synchronization event can be represented as:

tnewslave = tmaster −
δ

2
(4.2)

where tnewslave is the slave time after synchronization, and tmaster is the time at master

at time of offset calculation and δ is the delay introduced by the attacker.

Consider the start of a second synchronization event, the master sends a Sync

message timestamped by t1 which is delayed by δ before reaching the slave. The slave

collects t2, t3, and t4 as PTP specifies.

Let t1 = tmaster1 then t2 = tslave + δ + ε1

where tmaster1 is the time at master when the Sync message is timestamped, tslave is

the time at slave when Sync message is sent, and ε1 is master-slave path delay. Using

equation (4.2), we get:

t2 = tmaster1 −
δ

2
+Offsetnoattack + δ + ε1

= tmaster1 +
δ

2
+Offsetnoattack + ε1

(4.3)

Moreover, assuming the slave sends a delay request immediately after receiving the

Sync message, we calculate t3

t3 = t2 = tmaster1 +
δ

2
+Offsetnoattack + ε1 (4.4)

The master receives the delay request after an equivalent of a round-trip time since

sending the sync message, thus:

t4 = tmaster1 + δ + ε1 + ε2 ≈ tmaster1 + δ + 2ε1 (4.5)

70



where ε2 is the slave-master path delay. Therefore, calculating the offset using equa-

tion (2.2) we get:

Offset =
(t2 − t1)− (t4 − t3)

2

≈
(tmaster1 +

δ
2
+Offsetnoattack + ε1 − tmaster1)

2

−
(tmaster1 + δ + 2ε1 − (tmaster1 +

δ
2
+Offsetnoattack + ε1))

2

= Offsetnoattack

Thus, to introduce clock inaccuracy at the slave node, a single execution of the

delay attack is enough by the attacker. However, that inaccuracy is resolved in the

upcoming synchronization event. Therefore, to maintain the attack effect on the

slave clock, the attacker must keep on delaying the master messages. Meanwhile,

slave nodes behave as if time synchronization is successfully achieved. Thus, a single

change in the offset is not enough to detect the delay attack.

4.5 PTP Model

PTP networks consist of a master node with an accurate timing and slave nodes with

clocks that suffer a drift from the time reference due to various factors (e.g. quality

of the oscillator, humidity, temperature, etc.). Other types of nodes such as trans-

parent clocks might be available depending on the network architecture. However,

we consider the simple case of a network formed of a master and slave nodes at the

substation level as in Fig. 4.1.

We model the delay request-response mechanism in an IEC 61850 substation.

The approach we are presenting can be easily extended to cover other types of net-

works and their respective PTP mechanisms. The mechanism is modeled as a Markov
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chain using the PRISM model checker. The network system we are studying exhi-

bits non-deterministic and probabilistic behavior. This distributed system formed of

components running in parallel with an undetermined interleaving of their actions

is non-deterministic by nature. Moreover, the slave clock is modeled as a Bernoulli

random variable to effectively introduce a clock drift.

4.5.1 PTP Master Model

The master behavior in the network is modeled according to Fig. B.3. This model

presents the different states that the master transits through. Each state is associated

with an action that resembles a PTP activity, send/receive a message. Transition

from one state to another is controlled by a specified guard, for example a master

will not send a Delay Resp message until it receives a Delay Req message. While

transiting between states, the master keeps track of its clock represented by a timer.

The master shares this value with the slave as defined by the states. As Fig. B.3

shows, the presented master model clearly complies with that of a PTP master clock.
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Figure 4.3: Model of the master clock in PTP

4.5.2 PTP Slave Model

The main characteristic of the slave clock is the drift it enjoys from the time reference.

On the abstract model level, it is not possible to assign a distribution function for

the clock drift. And as PRISM allows increments in integer values only, an approach

to adjust the slave clock with a drift is needed. Thus, we made use of PRISM syntax
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that allows taking actions based on specified probabilities. Hence, we model the slave

clock as a Bernoulli random variable. The slave clock advances by a value of 1 with

probability P, and by 0 with probability 1-P. This allows us to exhibit the difference

between master and slave clocks, and introduce the required drift at the slave side.

The slave model in Fig. 4.4 represents the different states of the slave clock as

indicated in PTP. Transitions between states are controlled by guards similar to those

in the master model.
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Figure 4.4: Model of the PTP slave clock

It is worth noting that the same approach can still be applied in the case of one-

step clocks where the master does not issue any FollowUp messages to communicate

timestamps to slave clock. In fact, this scenario would be easier to formally model

since it includes less states, message exchanges, and eventually state synchronization

activities.

4.6 Detection Approach

Our proposed approach consists of two main components: an introduction and defi-

nition of a new type of PTP clock in the network, the guard clock, and a modification

of the PTP slave functionality to respond to alerts raised by the guard clock aiming
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at mitigating the effects of the delay attack.

The proposed model can be deployed over the station bus in an IEC 61850 sub-

station. It introduces modifications to the functionality of a selected device. This

device is chosen so that it enjoys the same time accuracy of that of the master. This

can be achieved either by using two clocks of the same properties, or supplying the

two devices with the same timing signal. The introduced modifications are described

in the upcoming section.

4.6.1 Detection Model

PTP delay attack is characterized by being difficult to detect as it avoids tampering

with the exchanged PTP messages, and by the inability of the slave devices to detect

an ongoing attack. Indeed, PTP delay attack can not be detected at the slave side by

relying on sudden changes in the computed offset values. PTP slaves depending on

such a strategy will fail to defend against and mitigate the attack. To support this

claim, we presented an analysis of the offset calculations performed under attack at

slave clocks to show that notable changes are present only after the first instance of

the attack. Offset calculations thereafter do not reflect any changes on the network

during the attack as indicated in Remark 4.1.

The proposed detection approach through the guard model is based on the follo-

wing remark.

Remark 4.2. PTP offset calculation between two clocks supplied by the same timing

signal over a symmetric communication channel results in zero.

Proof Assume we have two clocks, C1 and C2, synchronized to the same timing

signal (for example, through GPS), communicating over a symmetric channel. Let

C1 be the PTP master and C2 the slave. Let D be the time taken by a message sent

by C1 to reach C2. Since the communication channel is symmetric, D is also the time
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taken by a message sent by C2 to reach C1. Suppose that C1 sends a Sync message

at time t1 = t. This message reaches C2 at time t2, where t2 = t1 +D since the two

clocks are supplied by the same time signal. C2 sends the Delay Req message at time

t3 = t′. C1 receives the Delay Req message at time t4 = t′ + D. C1 communicates

t1 and t4 using FollowUp and Delay Resp respectively. C2 now calculates the offset

using equation (2.2).

The calculated offset is: ClockOffset = (t2−t1)−(t4−t3)
2

Substituting t1, t2, t3, and t4 by their respective values, we get:

ClockOffset = ((t+D)−t)−((t′+D)−t′)
2

= D−D
2

= 0
2
= 0

Thus the remark holds.
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Figure 4.5: Model of the guard clock

The guard model shown in Fig. 4.5 is based on Remark 4.2. This model is

designed as a detection mechanism for the delay attack in a smart grid substation

environment. To improve the resiliency in a substation, multiple IEDs can be GPS

enabled so that the failure of the master can be easily mitigated by a run of the BMC

algorithm, see Fig. 4.1. However, during normal operations of PTP, these IEDs will
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play the role of a slave as BMC restricts the number of masters in a network to one.

To make a better use of the capabilities of these IEDs, we propose modifying the

role of a GPS enabled IED per the guard model in Fig. 4.5. The guard transits

between the states as indicated. However, being supplied with accurate timing, this

IED does not need to synchronize its clock with that of the master. Instead, it transits

to a verification state that validates the calculated offset as Remark 4.2 states. This

transition allows to detect tampering with PTP services.

Thus, in the presence of an attacker delaying selected PTP messages, the offset is

affected by the introduced delay δ and the calculated value differs from zero (offset =

δ
2
, see equation (4.1)). The guard detects this violation as the state diagram shows.

Later, it flags an attack when the violation repeatedly occurs for a specified number

of times. This alert results in the activation of the mitigation mechanism at the slaves

side until the attack flag is reset by the guard. Thus, the combination of the guard

model and the modified PTP slave provide a detection and mitigation mechanism to

improve the resiliency of PTP against delay attacks.

4.7 Mitigation Approach

To mitigate the effects of the delay attack, our approach consists of two parts. The

first one is calculating an adjustment for the slave clock to annihilate the effects of

the delay attack, and the other is to maintain synchronization at the slave side while

under attack.

4.7.1 Slave clock adjustment

To determine the adjustment required to the slave clock, we need to analyze the delay

effect at the slave side once the slave is notified by the guard of the undergoing attack.
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We assume that k consecutive occurrences of the offset violation is specified in the

guard model for the attack detection.

Referring to equation (4.1), we notice that after a single execution of the delay attack,

the slave clock is behind that of the master by δ1
2
. Thus, the time at the slave side

can be represented as tslave = tmaster −
δ1
2
.

When the second synchronization cycle starts, time stamps collected are as follows(see

Fig. 2.3):

t1 = tmaster1

t2 = tslave + δ2 + ε1 = tmaster1 −
δ1
2
+ θ + δ2 + ε1

where δ2 is the delay introduced by the attacker, θ is the offset between the master

and slave time in the absence of attack, and ε1 is the master-slave path delay.

Similar to proof of Remark 4.1, t3 = t2 and t4 = tmaster1 + δ2 + 2ε1

Computing the offset using equations (2.1 & 2.2), we get:

Offset =
t2 − t1

2
−

t4 − t3
2

=
tmaster1 −

δ1
2
+ θ + δ2 + ε1 − tmaster1

2

−
tmaster1 + δ2 + 2ε1 − (tmaster1 −

δ1
2
+ θ + δ2 + ε1)

2

=
δ2 −

δ1
2
+ θ + ε1

2
−

ε1 +
δ1
2
− θ

2
=

2θ + δ2 − δ1
2

= θ +
δ2 − δ1

2

Using this offset in equation (2.3) to update the slave clock, we get:

tslave = tmaster − θ −
δ2
2

Thus, the slave clock is behind that of the master by half of the current delay δ2.

In a similar way, we can show that the slave clock will be behind that of the master

by δk
2

when the guard detects the delay attack where δk is the delay introduced by
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the attacker during the kth synchronization cycle.

Therefore, the slave should adjust its clock by the value δk
2
once it is notified of

the ongoing delay attack to retain synchronization with the master clock.

To determine an approximate value of δk
2
, we propose modifying the slave clock

to enable it of computing a moving average of the computed offsets and store it for

later use in the case of attack. The average calculation is presented in equation (4.6)

where Offset(t) and Avg(t) are the calculated average and offset at time t respectively,

Avg(t-1) is the cumulative average at time (t-1) and α is a parameter tuned to control

the weight associated to Avg(t-1) and Offset(t). In the absence of an attack, α is set

to 1
2
.

Avg(t) = α×Offset(t)+ (1− α)× Avg(t-1) (4.6)

As part of the proposed mitigation, the slave should store the last (k+1) computed

offsets and averages where k is the guard specified parameter.

Assume that the slave computes Avg(n), and the attack starts at (n+1). The guard

will not alert the slaves about the ongoing attack before k synchronization cycles

takes place. Meanwhile, slave clocks compute and store the following average values:

Avg(n+1) =
Offset(n+1)+ Avg(n)

2

=
θ(n+ 1) + δ1

2

2
+

Avg(n)

2
...

Avg(n+k) =
Offset(n+k)+ Avg(n+k-1)

2

=
θ(n+ k) + δk−δk−1

2

2
+

Avg(n+k-1)

2

Hence when the slave clock is informed of the existence of an attack, the slave had

computed and stored Offset(n) · · · Offset(n+k), and Avg(n) · · · Avg(n+k) where the
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last k offsets and averages are affected by the delay attack.

The slave will use the stored offsets to compute the required δk using the following

relations:

θn+1 +
δ1
2

= Offset(n+1)

⇒ δ1 = 2(Offset(n+1)− θn+1)

θn+2 +
δ2 − δ1

2
= Offset(n+2)

⇒ δ2 = δ1 + 2(Offset(n+2)− θn+1)

...

θn+k +
δk − δk−1

2
= Offset(n+k)

⇒ δk = δk−1 + 2(Offset(n+k)− θn+k)

(4.7)

As the clock drift can be assumed to enjoy a linear change over small time ranges

[123], (humidity, temperature and other factors affecting the clock oscillator vary

gradually over a long period of time and rarely show steep variations), the slave will

replace each of the θi values in the system of equations (4.7) by Avg(n) to compute

δi where i ∈ (1,k). This computation will result in:

δk = 2 ∗
k

∑

i=1

Offset(n+i)− 2kAvg(n) (4.8)

with an error of the order 2ke where e = |Avg(n)− θi|, i ∈ (1, k).

4.7.2 Maintaining slave clock synchronization

To maintain clock synchronization at the slave side, the slave clock needs to perio-

dically adjust its value with a carefully computed offset as in PTP. However since

the computed offsets are invalid and affected by the delay attack as we showed in
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our previous analysis, we propose to use the stored Avg(n) value to update the slave

clock value using equation (2.3).

Thus after being notified by the guard of the ongoing attack, slave clocks compute the

δk value and use it for a single time to adjust their clocks. Then, the stored Avg(n)

value is used for periodic updates of the clock until the guard signals the end of the

delay attack.
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Figure 4.6: Mitigation Model at the PTP slave clock.

The presented mitigation model is proposed for integration at the PTP slave side

as those slaves are the target of the delay attack. The resulting slave model after the

integration of the mitigation model is presented in Fig. B.2.

4.8 Experimental Results

The aim of this section is to evaluate the performance of the developed PTP model,

the effect of the delay attack, and the effectiveness of the proposed detection and

mitigation mechanisms. This evaluation is twofold, probabilistic model checking of
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the presented model and numerical simulation.

Probabilistic model checking is a formal verification technique for the modeling

and analysis of stochastic systems [69]. It is based on the construction and analysis of

a probabilistic model, typically a Markov chain or process. The model is constructed

in an exhaustive fashion, based on systematic exploration of all possible states that

can occur. Once the model is constructed, it can be used to analyze a wide range

of quantitative and qualitative properties of the original system. Probabilistic model

checking has proved to be useful for studying a wide range of quantitative properties

of models taken from different application domains [69].

To perform formal model checking, a tool is needed. Our tool of choice is PRISM

[53]. PRISM is an open-source probabilistic model checker developed at the University

of Birmingham and now at the University of Oxford. PRISM allows the description

of models using a high level system description language. It provides support to build

several types of models: Markov decision processes, probabilistic automata, proba-

bilistic timed automata, and discrete and continuous Markov chains plus extensions

of these models with costs and rewards. PRISM was chosen for the simple, textual

modeling language it provides along with the ability to choose preferred engine for

the processing and analysis of the model.

PRISM is used in the literature for the quantitative and qualitative verification of

security properties for a variety of systems. We point out a formal analysis technique

for probabilistic security properties of peer-to-peer communication systems based on

random message routing among members as presented in [103], quantitative validation

of a security protocol and probabilistic analysis of the success of attacks in [11], quan-

titative and qualitative evaluation of embedded systems with a proposed resilience

strategy in [46], the analysis and formal demonstration of a free-space Quantum Key

Distribution (QKD) system in [47], the quantitative analysis of the Certified E-mail
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Figure 4.7: PTP model execution
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Figure 4.8: Delay attack effect
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Figure 4.9: Delay attack detection
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Figure 4.10: Guard model execution

Message Delivery (CEMD) protocol in [21], systematically quantifying DoS security

threats using probabilistic model checking in [20], and the analysis of the probabilis-

tic non-repudiation protocol quantitatively through probabilistic model checking and

PCTL properties in [100].

Formal probabilistic model checking is made possible through property specifi-

cation. PRISM property specification language is based on temporal logic. PRISM

verifies properties specified using probabilistic computation tree logic (PCTL). This

allows to specify probabilistic properties with respect to the likelihood of the occur-

rence of a desired state.
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4.8.1 PCTL Properties

Since the model has no sense of real time, we set it up to reflect the elapse of time

during execution. Thus, the steps are abstracted as time units rather than seconds.

The values chosen reflect the execution of the synchronization mechanism, and the

propagation of the messages in the network.

To setup the experiments, and as an input to the model on PRISM, we specify

the probability controlling the clock tick at the slave side by P=0.9. This allows for

a relative accuracy at the slave clock compared to that of the master. Other input

includes the synchronization interval which is chosen as 10 time units, the delay

between Sync and Followup messages specified as 1 time unit, and the time it takes

a message to traverse the communication channel set to 2 time units. Moreover,

the offset violating threshold set as 2 time units, and the acceptable number of such

consecutive violations set as 3 are input for the guard model. The tests were run on

a variable time interval, starting with 30 time units and 10 units increment. We will

use tm to represent the master clock and ts to represent that of the slave.

To reflect the time skew between the clocks in the network, and the maximum

probability of this skew bypassing a specified threshold after a synchronization event;

the following PCTL property is specified and the output results are collected:

Pmax =? [F ((tm − ts > 2)|(ts − tm > 2)) & synched=true] (4.9)

In this property, the temporal operator ‘F’ implies that the checked property

eventually becomes true at some point along the path, and ‘|’ resembles the logical

OR as per PCTL syntax. The threshold is set to 2 time units, and the results

collected are depicted in Fig. 4.7. As seen in the figure, the model preserves the

required threshold with a confidence probability of the order 10−3. This validates the
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developed PTP model success in synchronizing the slave’s time to that of the master.

In addition to that, this property validates that the PTP functionality is not affected

by the introduced modifications. However, to assess any possible impacts of the

proposed modifications on slave functionality in a substation environment, we need to

modify PTP implementations on such devices before running our experiments. Such

a modification is not possible since PTP implementations are setup by manufacturing

utilities and usually they do not provide the capacity to alter the software component

of those devices apart from configuration settings.

To demonstrate the effect of the attack, we introduced a delay of 5 time units

to the master-to-slave path. The used PCTL property evaluates the effect of this

delay on the slave time by determining the minimum probability that a 2 units time

difference exists between the master and slave clocks after a synchronization event.

The property used is:

Pmin =? [F ((tm − ts > 2)|(ts − tm > 2)) & synched=true] (4.10)

The collected results as plotted in Fig. 4.8 indicate that the attack succeeds in

introducing a drift at the slave clock. The success rate increases with time elapse.

After 200 time units, the success probability reaches 1.0. This proves that the delay

attack succeeds in targeting time at the substation devices thus affecting the critical

operations of the smart grid.

The effectiveness of the guard model presented is evaluated through another PCTL

property. The property evaluates the minimum probability that an attack takes place

and this attack is flagged by the model. The property used is:

Pmin =? [F ((tm − ts > 2)|(ts − tm > 2)) &synched=true & attack=true] (4.11)
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The results collected are plotted in Fig. 4.9 and show the minimum probability

that the attack flag is set when an attack effect is noticeable in the network. The

collected results show that the guard captures the on-going attack with a minimum

success rate that increases as time passes. The scenario considered is that the attack

takes place after the elapse of 85 time units on the master to slave path.

To quantify the mitigation approach, we hit the system with an attack after the

elapse of 70 time units. This allows cumulative average calculation at the slave side

under normal circumstances. We collected results to quantify the time difference

between the master clock and synchronized slave clock when system is under attack.

The property used is:

Pmin =? [F ((tm − ts ≤ 2)&(ts − tm ≤ 2)) &tm > 70 & synched=true] (4.12)

This property computes the minimum probability that the time difference stays

within 2 time units. As the collected results in Fig. 4.10 show, using the cumulative

average after detecting the attack results in an acceptable time difference between

the master and slave clocks. The minimum probability that this difference does not

exceed 2 time units exceeds 0.95 for time intervals longer than 120 time units. Thus,

we can say that time synchronization is maintained in the network and the mitigation

strategy proved its effectiveness in preserving the system functionality.

4.8.2 Experimental Results

To evaluate and verify the validity of our proposed modifications to PTP, we setup a

network to synchronize machines using PTP. For that purpose, we use the open source

Precision Time Protocol daemon (PTPd) project [8] as a base for our implementation

on four Ubuntu 14 machines. PTPd is a full IEEE 1588-2008 (PTPv2) protocol
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4.9 Conclusion

In this chapter, we proved the vulnerability of PTP to the delay attack. We provided

an analysis and quantification of the attack impact on slave clocks in a PTP network.

We have shown that using variations of offset at slave clocks does not enable the

detection of an existing attack, and thus proposed a detection mechanism based on

the availability of a backup master clock. Our detection mechanism introduces a new

functionality to the PTP network that uses timestamps collected from the master

through synchronization messages to detect the presence of an ongoing delay attack.

We formally modeled the detection mechanism and proved its usefulness through

formal verification using PRISM model checker, and experimental evaluation using

PTP implementation on a physical system.

On the other hand, to survive the impact of the attack and restore the synchro-

nization status of connected slaves, we presented a suitable mitigation mechanism.

Our mitigation mechanism is deployed at slave clocks, and makes use of historical

synchronization records to adjust the slave clock upon attack detection, and allow

them to maintain their synchronization using the same history. The presented mi-

tigation scheme was verified through PCTL properties, and proved efficient through

experimental evaluation.
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Chapter 5

An Extension to the Precision

Time Protocol to Enable the

Detection of Cyber Attacks

In the previous chapters, we addressed security threats related to fake timestamps

and delay attack targeting PTP time synchronization. In this chapter, we capitalize

on the theory and outcome of Chapter 4 to contribute a more complete solution

that addresses PTP cyber security. We propose to close the PTP loop through an

extension that introduces new functionality and messages. This extension covers the

PTP attack surface and enables the detection of attacks on PTP time synchronization.

We formally model and verify the proposed extension using UPPAAL model checker.

In addition, we validate the proposed extension using Omnet++ simulation.

5.1 Introduction

In the next-generation smart grid infrastructure, accurate timing signals will be bro-

adly required from generation plants to distribution substations to individual smart
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grid components [96]. Time synchronization is a key enabling service that coordi-

nates the actions of devices dispersed across these domains. A consistent notion of

time shared across the smart grid will make it easier to monitor, control, ensure the

availability of collaborative services provided by those devices, and fulfill the smart

grid vision.

The value of time synchronization is best understood by recognizing that the

power grid is a complex, interconnected and interdependent network. Thus, events in

one part of the grid affect operations elsewhere, and extend beyond the grid to other

systems that are reliant on stable power, much like what was observed in the 2003

Northeast Blackout [74]. Thus, utilities are seeking precise timing solutions to improve

the resiliency and the monitoring of their transmission and distribution networks [52,

99, 64]. Such solutions should avoid additional costs in terms of infrastructure, and

enable the convergence of the utilities timing and data communication networks [72].

Power utilities have recognized that PTP, standardized as IEEE 1588 [4], network-

based precise and accurate time distribution protocol can deliver sub-microsecond

synchronization accuracy and meet the needs of power applications, and directed

their efforts to propose optimal PTP system design for wide area network environment

using appropriate clock and network parameter settings [64].

IEEE 1588 outpaced previous timing solutions in terms of accuracy, scalability,

and cost. It meets the emerging timing accuracy needs of the Station Bus and Process

Bus in IEC 61850-based substations [106]. With PTP, precise and sub-microsecond

time is distributed over the same Ethernet network used for data communications, and

the PTP profile used in power system applications is now standardized [6]. PTP with

its different clock synchronization mechanisms can adapt to the needs and specifica-

tions of various systems. Moreover, it promotes the use of transparent clocks (TCs)

to cancel the effect of randomness in the network on the synchronization accuracy.
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On the other hand, security concerns were associated with PTP functionality

[119, 50, 120, 125] and more recently PTP security gained additional interest from the

research community [90, 87, 60, 88]. Those concerns have escalated with the candidacy

of PTP to be used in the smart grid especially with the demonstrated impact of

time synchronization attack [128]. Requirements for secure clock synchronization

are presented by [90] in the form of necessary and sufficient conditions applicable to

one-way and two-way time transfer. Under those conditions, PTP is found to be non-

secure, and specialized conditions for secure PTP are presented. On the other hand,

Itkin et al. [60] proposed a revised security extension for PTP to address pitfalls in the

current Annex-K, PTP security extension [4]. In our previous work [88], we leveraged

the synchronization requirements in a substation as imposed by IEC 61850 to propose

a detection and mitigation model for PTP delay attacks. We established theory on

the capability of a redundant accurate clock to detect such attacks in PTP network.

The proposed approach was successful in detecting and mitigating delay attacks in a

substation with a flat network architecture. However, the detection approach in [88]

may fall short under different network architecture. Moreover, the previous approach

does not cover the entire PTP attack surface. Thus, there is a need for a more generic

mechanism that covers the entire PTP attack surface, and unveil all security concerns

associated with PTP components.

This chapter addresses cyber-attacks targeting PTP. We present an approach to

harden PTP security through an effective cyber attacks detection mechanism. Our

analysis is performed on PTP as used in an IEC 61850 substation. However, it is

generic and can be adopted by other systems using PTP for time synchronization. In

our approach, we propose an extension to PTP to enable the collection of time stam-

ped messages from slave clocks to assess the clock synchronization status. Through

the collected messages, PTP is therefore capable of detecting cyber attacks targeting
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the network and the connected devices. As far as we know, we are the first to propose

closing the PTP loop from a security point of view. Since the impact of attacks is only

noticeable at end devices regardless of preventive measures, feedback collection from

PTP slaves is a major step towards a security-aware PTP implementation. Thus,

compared to other approaches in the literature, we have the advantage of monitoring

the status of time synchronization at end devices, and thus detecting all cyber attacks

that target slave clocks regardless of their nature. We formally verify the proposed

extension using UPPAAL model checker [70], and establish its correctness through

Computational Tree Logic (CTL) properties. Moreover, its validity and overhead are

evaluated through Omnet++ simulation.

5.1.1 Novel Contributions

This chapter presents a proposed extension to PTP that allows the collection of

timestamped messages from slave clocks to assess the security posture of the PTP

network. The proposed extension leverages the ability of slave clocks to send and

receive timestamped messages, and the presence of alternate time sources to secure

the PTP network. The main contributions of this paper can be summarized as:

1. We propose to extend the Precision Time Protocol to collect feedback from slave

clocks on their synchronization status, and analyze this feedback to detect cyber

attacks targeting different components of the PTP network. The extension

allows to close the PTP loop, and increase the reliance on PTP slaves. We

change the slave role from solely receiving timestamped messages to actively

sending such messages to a reference entity that monitors the health of time

synchronization in the network.

2. We formally model and verify the proposed extension using timed automata
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through UPPAAL model checker. Through CTL we validate liveness and sa-

fety properties of the proposed extension and demonstrate its correctness and

ability to detect attacks against PTP. Moreover, we evaluate the proposed de-

tection logic using Omnet++ simulation which manifests the proposed extension

capabilities.

The remainder of this chapter is structured as follows. Section 5.2 presents the

system under study with an emphasis on the PTP attack surface. Section 5.3 intro-

duces our attacker through a threat model. The proposed attack detection model is

detailed in Section 5.4. A demonstration of attacks detection using the presented ap-

proach is provided in Section 5.5. Section 5.6 presents an evaluation of the presented

approach through formal verification and numerical simulation. Concluding remarks

are provided in Section 5.7.

5.2 System Model

The system under study is once again an IEC 61850 substation. As recommended by

IEC 61850-90-4 [106], PTP is used for time synchronization at the substation level.

PTP grandmaster and backup clocks are located at the station bus, and communi-

cate PTP event messages to the connected devices such as IEDs, protective relays,

sensors, etc. A specified by by IEC 61850-90-4 [106], we consider the substation as

a single domain, and operate at layer-2 using multicast only. Moreover, since PTP

shares the station bus with other substation traffic (GOOSE, SV, SNMP, etc.) [44],

IEC 61850-90-4 demands the usage of transparent clocks to reduce the impact of

random queuing delays on synchronization. Indeed, transparent clocks (TC) measure

the residence time of a PTP event message at a TC, and supplies this information to

recipients of the message in transit. TC enables the reduction of randomness in the
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5.2.1.1 Grand Master Clock (GMC)

Since PTP arranges the network in a hierarchy with the GMC as its only root,

targeting the GMC will present a bad time reference for synchronization and impact

all the connected devices. The attacker can carry this attack either by targeting

the time source used by the master (as in GPS spoofing), through impersonating

the master (as in Byzantine master), or through a manipulation of the timestamp

generation mechanism at the master.

5.2.1.2 Communication Network

Time synchronization under PTP relies on an accurate measurement of the path

delay between the master clock and the synchronized clocks. This dependency can

be exploited, and is formulated in the literature in the form of the delay attack [120].

This attack introduces an error at slave clocks, which either lag behind or go ahead

that of the master by a value specified by the attacker. Moreover, this attack affects

all the slaves that receive the master messages over the compromised link.

5.2.1.3 Transparent Clocks (TCs)

Through targeting a TC, an attacker leverages the functionality of the TC to perform

the attack, and avoid integrity-based detection mechanisms. The TC is allowed by

PTP to reconstruct PTP event messages after updating the correctionField, among

other modifications, to reflect the PTP event message residence time. This capacity

of the TC will be targeted by the attacker to report faulty values for the residence

time. The compromised TC reports a malformed value ρ′i = ρi ± µ instead of the

benign residence time value ρi as in Eq. (2.2). Assume a compromised TCi′ augments

the measured residence time with a positive quantity µ, so that ρ′i > ρi. The faulty
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values introduced in the correctionField are used by the slave clock as per Eq. (2.2):

δ′ = t00 − t0 − (
∑

i,i 6=i′

(ρi + λi) + ρ′i′ + λi′); (ρ
′
i′ = ρi′ + µ)

= t00 − t0 −
∑

i

(ρi + λi)− µ = δ − µ

(5.1)

This offset is used to adjust the slave clock per Eq. (2.3):

eTimenew
slave

= Timeslave − δ′ = Timeslave − δ + µ

= Timenew
slave

+ µ

(5.2)

where eTimenew
slave

is the erroneous new slave time.

Thus, the slave clock will be ahead of that of the master by a time error equal to the

introduced value µ. This effect is induced at all slave clocks whose communication

with the master is manipulated by the compromised TC.

5.2.1.4 Slave Clocks

Attacks on a slave clock affect only the targeted slave in contrast to the other attacks

that affect a subset of the connected slaves and all of them when the GMC is attacked.

However, such an attack may impact the applications that use timestamped data from

the targeted slave.

It is worth noting that, intelligent electronic devices (IEDs) targeted by cyber

attacks in a PTP network are incapable of detecting an ongoing attack neither realize

its impact as they lack the knowledge of accurate timing, and trust PTP messages

delivered over the network. Thus, there is a need for an additional entity or channel

capable of monitoring PTP operations and detecting cyber attacks targeting the entire

PTP attack surface.
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5.3 Threat Model

To carry out attacks on time synchronization, we assume that the attacker is either an

external entity or an insider with malicious intents. He has the expertise to perform

long-term reconnaissance operations required to learn the environment and execute

a highly synchronized, multistage, multisite attack [71]. The attacker is aware that

the target substation uses PTP-based time synchronization, and is familiar with the

topology of the substation and the nature of the synchronized devices.

Moreover, we adapt the in-band adversary from [60] where the attacker has full con-

trol over the communication channel to delay and change fields of passing messages.

Furthermore, the attacker is interested in targeting the functionality of all the de-

vices in the network rather than a particular one. He will manipulate the clock of

the connected devices by targeting the master, the network or the available transpa-

rent clock(s). If the attacker wishes to execute his attack through the introduction

of additional hardware or software to the system, he has the expertise necessary to

choose suitable attack locations to perform his attack, and avoid the available sur-

veillance. Finally, our attacker aims at conducting a stealthy attack while remaining

undetected. Thus, he has interest in conducting the delay attack, and controlling

synchronization at slave devices rather than performing other more impactful attacks

which might flag detection alerts at the substation.

5.4 Detection Model

Our proposed detection model is based on PTP functionality and the available system

setup. It targets time synchronization in an IEC 61850 substation, however it is

effective for similar systems. Taking into consideration that the PTP model is that

of a master-slave, PTP network lacks information about the synchronization status
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of slave clocks. Hence, in the presence of cyber attacks, the impact on slave clocks

cannot be perceived by other clocks in the network. Thus, it is essential to collect

timing information from slave clocks to monitor their synchronization status. In this

section, we present the details of our proposed cyber attack detection model.

5.4.1 Basic Blocks

The main components of our model make use of the outcome of PTP clock synchroni-

zation, the available system resources, and the collection of timing information from

synchronized slave clocks.

5.4.1.1 Every slave is a master

The main goal of PTP is to accurately synchronize slave clocks to that of the GMC.

Indeed, PTP successfully synchronizes clocks and achieves accuracy in the order of

sub-microsecond at slave clocks [4]. Hence, if we look at the state diagram of a slave

clock shown in Fig. 5.2, we see that the slave clock alternates between two states

(Accurate as Master, and less accurate than Master). A slave clock is as accurate as

that of the GMC when it is adjusted according to Eq. (2.3), and moves to be less

accurate than the GMC when ticking. When the slave processes the Sync message

and for a short time instance, the clock timing resembles that of the master with a

tolerable error of the order of microseconds. A timestamp collected from the slave

clock at this time, and handled properly across the network, is enough to judge the

slave synchronization status. Thus, a PTP slave will issue a timestamped message

to report the synchronization status of its clock. The path delay associated with this

message will be calculated in a similar fashion to that of a Sync message issued by the

GMC as shown in Fig. 2.4. Through the collection of this message, and a calculation

of a respective offset using Eq. (2.5), an accurately synchronized clock can govern
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the synchronization status of the slave that issued the timestamped message.

Less

Accurate

Accurate

as Master

Tick

Sync with GMC

Tick

Figure 5.2: The state diagram of a slave clock

5.4.1.2 Redundant time sources

PTP specifications restrict the active GMC role to a single clock in the network.

However, for better resiliency against master failures and according to IEC 61850

specifications, a substation must be equipped with multiple master-capable clocks

as can be seen in Fig. 5.1. Our detection model leverages the existence of backup

accurate time source, as a network time reference (NTR), to check the synchronization

at slave clocks. The NTR time is always as accurate as that of the GMC even when

ticking in contrast to the slave state machine in Fig. 5.2. Thus, such a clock is

independent of the master and does not have to synchronize through the exchanged

PTP event messages. In [88], we show that the clock offset between two accurate time

sources is negligible. Thus, the offset value between the NTR and the synchronized

slave should be negligible. The outcome of this calculation reflects best the health of

the synchronization system and is thus at the core of the detection model.

We assume that the NTR time source is different from that of the GMC, secure and

resilient to cyber attacks such as atomic clocks. Note that, in systems where backup

time sources are not available, NTR functionality can be assigned to the GMC.

100



Table 5.1: Report message fields

Bits
Octets Offset7 6 5 4 3 2 1 0

PTP Header 34 0
originTimestamp 10 34

5.4.1.3 Introduction of new PTP event messages

Through the current PTP specifications, slave clocks generate timestamped messages

just to enable the measurement of path delay. We leverage this capability at the slave

side to push timestamped reports to the NTR. On the other hand, the NTR will need

to poll timestamped messages from the connected devices to improve the detection

mechanism. Thus, we will introduce the following event messages to the current PTP

message exchange:

• Report : This is a periodic timestamped message sent by slaves to report on their

clock synchronization status. This message is addressed to the NTR (or to the master

in case there was no redundant time sources in the network). The Report message

has a similar structure to that of the Sync message and its fields are indicated in

Table 5.1. This message carries a timestamp used in the calculation of an offset, and

its header is updated at transparent clocks in a similar fashion to that of a GMC’s

Sync message. The output of this calculation reflects the synchronization status of

the reporting slave. It is worth noting that sending a Report message is a task that

can be served periodically by selected slaves (see Section 5.4.2.1).

• Report Req : This message is issued by the NTR and addressed to a specific slave

in the network. Through this message, the NTR requests a report on the synchro-

nization status of the addressed slave. This message does not carry a timestamp.

However, the reference entity expects a response from the addressed slave, otherwise

a warning of the existence of a network anomaly can be raised.
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• Report Resp: This message is used by the slaves to answer requests made by the

NTR. The Report Resp message is similar in structure to the Report message, and

is handled in the same manner by the network. The timestamp, and header fields

of this message, are used to calculate the clock offset separating the reporting slave

clock from that of the NTR, and thus reporting on the synchronization status of the

slave clock.

5.4.2 Approach Realization

The detection of cyber attacks on PTP synchronization services is made possible by

using the above basic blocks, and reshaping the functions of clocks in the system.

This redefinition of tasks and responsibilities, and their impact on the detection of

cyber attacks is detailed next.

5.4.2.1 Network Clustering

If we consider cyber attacks on the PTP attack surface, we can see that the attack

impact is noticeable at a subset of the network. This subset can be a single slave, or

the entire network depending on the attack nature. Thus, for attacks not directed at

specific slaves, it is sufficient to monitor representative slave clocks from the system

to detect the impact of an attack once it takes place. To setup the monitoring phase,

the PTP network is logically clustered and slave clock are selected to issue periodic

Report messages upon synchronization. Clusters are formed of slaves served by the

same TC, or same network segment. This process is carried during network setup,

and does not introduce any additional burden on a PTP network.
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detect errors in time synchronization resulting from cyber attacks. The NTR identifies

problems with master time from Sync messages based on the computed offset which

should be negligible as established in [88]. On the other hand, the NTR periodically

receives Report messages from selected slaves in the network. Upon receiving a Re-

port message, and based on our discussion in Section 5.4.1.1, the NTR will compute

an offset from the reported originTimeStamp, correctionField, and the Report ingress

timestamp. The result of this calculation is expected to adhere to a pre-specified

threshold. A result bypassing this threshold is an indication of a malfunction in time

synchronization, and this calls for further inspection which takes place in two steps:

1. Verification of synchronization in same cluster : The NTR issues a Report Req

to a slave in the same cluster as the faulty one, and waits for a Report Resp. Upon the

delivery of the Report Resp from the addressed slave, the NTR computes an offset

based on the collected information from the response. If the offset is less than a

pre-defined threshold as expected, then there is a problem with the reporting slave.

Thus, the NTR indicates that the problem is at the slave level. If the offset computed

from the Report Resp violates the threshold, the NTR moves to the second step of

inspection.

2. Verification of synchronization in different cluster : In this step, the NTR issues

a Report Req to a slave in a cluster different from that of the faulty one, and waits

for a Report Resp. Once a Report Resp is received, an associated offset is calculated

and compared to the acceptable threshold. If the outcome is within threshold limits,

the NTR indicates that a single cluster time is compromised. Otherwise, multiple

clusters are experiencing timing problems.

It is worth noting that we prepared a model for the communication network con-

necting the GMC, NTR, and slaves (See Appendix B). The prepared model allows
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PTP clocks [60]. Thus, it can not prevent the impersonation of the GMC or any

other device in the network. However, it ensures the integrity and freshness of the

communicated messages when implemented. Nevertheless, PTP can not be considered

a secure protocol even in the presence of Annex K [85]. Indeed, Annex K is not

sufficient to cover the attack surface presented in Section 5.2.1. The attacks on

the GMC, the network, and TCs do not violate the authentication nor integrity

constraints enforced through Annex K, and do not take the form of replay attacks

that are prevented through message freshness. Thus, the PTP attack surface remains

vulnerable to cyber attacks.

5.4.3 Approach Overhead

The presented extension introduces more load into the network in the form of new

message exchanges. The overhead per second under normal conditions can be esti-

mated as follows:

Overhead = Report Size×
Reports

Sec
× Number of Slaves (5.3)

where Report Size is the size of the Report message in bytes, and Number of Slaves

corresponds to the number of slaves selected to issue Report messages to the NTR.

This overhead can be best compared to the traffic introduced by the GMC in the form

of Sync messages since the Report and Sync messages share the same structure and

size. However, the frequency of sending reports is a factor of that of Sync messages.

Thus, if n slaves are selected to issue reports every n synchronization events, the

average introduced overhead in a second will be equivalent to that of n Sync messages.

In the presence of an attack, this overhead is subject to an increase due to the report

request and response mechanism used by the NTR to verify the synchronization state
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of slaves. This increase can be represented as:

Increase = 2× c× (Report Req Size+ Report Resp Size) (5.4)

where c represents the number of clusters under attack.

It is worth noting that the extension does not demand new capabilities at slave devi-

ces. It is solely based on the ability of slave clocks to send and receive timestamped

messages.

5.5 Attack Detection

Consider the network presented in Fig. 5.4. We will analyze different cyber attacks

against the PTP attack surface, and demonstrate the ability of our proposed approach

to detect those attacks. Through the detection setup, the network is logically divided

into three clusters where slaves S1, S3, and S5 are selected to periodically send reports

to the NTR.

5.5.1 Attack on GMC

Suppose that the GMC time source is compromised, while other network components

are trusted. Due to the attack, an error is introduced to the GMC leading to the

generation of faulty timestamps. The GMC issues a Sync message carrying a times-

tamp t′0 rather than t0 where t′0 = t0 ± µ. The Sync reaches the NTR at t1 with a

path delay of d seconds. Thus, t1 = t0+d. Using Eq. (2.2), NTR computes the offset

associated with the Sync message as follows:

δ = t1 − t′0 − d = t0 + d− (t0 ± µ)− d = ∓µ 6= 0
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The calculated offset does not comply with the expected outcome (see [88] for details).

Thus, the NTR detects and signals the attack targeting the GMC.

5.5.2 Delay Attack on Communication Network

Suppose that the delay attack is targeting the (TC0-TC1) communication link by

introducing an additional delay of µ seconds to this link, while other network com-

ponents are trusted. Thus, using Eq. (2.4), the (TC0-TC1) link delay measurement

at TC0 and TC1 results in a value λ′
1 = λ1 + µ/2 where λ1 is the true link delay.

Now, the GMC issues a Sync message at t0, this message reaches S1 and S2 at t1

where t1 = tGMC + δS1(δS2) where tGMC is the GMC time and can be expressed as

tGMC = t0 + ρ0 + λ0 + ρ1 + (λ1 + µ) + λ2, where ρi is the queuing delay at TCi, λ0,

λ1, and λ2 are the propagation delays on links GMC-TC0, TC0-TC1, and TC1-S1(S2)

respectively, and δSi
is the expected clock offset at Si. However, the Sync message

correctionField carries the value (ρ0 + λ0 + ρ1 + λ1 + µ/2). Using Eq. (2.2), S1 and

S2 compute the following offsets:

δS1(2)
= t1 − t0 − (ρ0 + λ0 + ρ1 + λ1 + µ/2 + λ2)

= (t0 + ρ0 + λ0 + ρ1 + λ1 + µ+ λ2 + δS1(δS2))

− t0 − (ρ0 + λ0 + ρ1 + λ1 + µ/2 + λ2)

= δS1(2)
+ µ/2

Using Eq. (2.3), S1 and S2 clocks are synchronized using the computed offset. Thus,

a µ/2 synchronization error is introduced to these clocks. Assume that S1 issues a

Report message at time ts, ts = tGMC − µ/2, the message will reach the NTR at

time tNTR = tGMC + d, where d is the path delay from S1 to NTR. Using Eq. (2.2)

for a similar offset calculation to the one done above, the NTR computation results

in an offset ±µ/2. Thus, the NTR will issue a Report Req to S2. The Report Resp
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from S2 will take the same path as the report sent by S1, and will result in a similar

error (±µ/2). Based on this outcome, the NTR will issue a Report Req to S3. Upon

clock synchronization, S3 will send a Report Resp to the NTR with a timestamp

ts = tGMC ± ε where ε is the synchronization error at S3. This Report Resp reaches

the NTR at time tNTR where tNTR = ts + d where d is the path delay from S3 to

NTR. The Report Resp correctionField is (ρ2+λS3−TC2 +ρ0+λTC2−TC0 +λTC0−NTR).

Using Eq. (2.2), NTR computes the offset corresponding to the received Report Resp

as follows:

δ = tNTR − ts − correctionField

= ts + d− ts − correctionField

= d− correctionField = 0

Since correctionField corresponds to the propagation delay and queuing delay on

the path from S3 to NTR. Based on this outcome, the NTR issues an alert indicating

that C1 is under attack. Thus, the NTR detects the ongoing delay attack.

It is worth noting that a similar analysis can be performed for delay attack on other

links. This analysis will result in a similar outcome to that of the delay attack on

TC0 - TC1.

5.5.3 Attack on Transparent Clock

Suppose that TC2 is compromised, while other network components are trusted. The

attacker manipulates the queuing delay measurement mechanism at TC2 ports to

report a false residence time. We will distinguish between two cases:

1. Single Port Manipulation: Suppose that the attacker targets traffic originating

from the GMC, and manipulates TC2 port receiving the GMC traffic through TC0.

Due to this attack, TC2 updates the correctionField in the Sync header with a value

greater than the actual residence time (ρ′2 = ρ2 + µ), where ρ2 is the queuing delay
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at TC2. Using Eq. (2.5) and (2.3), S3 uses ρ′2 for offset calculation and clock syn-

chronization respectively. Thus, S3 clock is ahead of that of the GMC by µ. Once

S3 addresses the NTR with a Report message, NTR offset calculation will result in

a value of ±µ using a similar calculation to that in Section 5.5.2. Thus, the NTR

requests a report from C1 or C3. Since neither C1 nor C3 are served by TC2, the

offset value calculated from the received Report Resp will be negligible. Thus, the

NTR marks C2 as being attacked, and detects the ongoing TC attack.

2. Multiple Port Manipulation: In this attack variant, our attacker can handle

queuing time measurement at all the TC ports, and is aware of the deployed attack

detection mechanism. Through this manipulation, the attacker aims at hiding the

error introduced at the slave clock, and avoid being detected by the NTR. To carry on

with this attack, the attacker will report false queuing time (ρ′2 = ρ2+µ) on the port

receiving the GMC traffic as in the case of the single port manipulation. This will

introduce an error of order µ in S3 clock. However, the attacker will also report false

queuing time on TC2 port receiving traffic from S3. Thus, the attacker will report a

new residence time value ρ′′2 to be used in the correctionField of S3 Report message.

The attacker chooses the value ρ′′2 = ρ2−µ to adjust the previously introduced error.

To demonstrate how this will go unnoticed by the NTR, assume that S3 issues the

Report message at time t1 = (tGMC ± ε) + µ and the NTR receives the Report at t2

where t2 = tGMC+d where d is the path delay from S3 to NTR and can be expressed as

d = λS3−TC2+ρ2+λTC2−TC0+ρ0+λTC0−NTR. The value carried in the correctionField
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is λS3−TC2 + ρ′′2 + λTC2−TC0 + ρ0. Using Eq. 2.2, NTR computes the following offset:

δ = t2 − t1 − (λS3−TC2 + ρ′′2 + λTC2−TC0 + ρ0 + λTC0−NTR)

= tGMC + (λS3−TC2 + ρ2 + λTC2−TC0 + ρ0 + λTC0−NTR)

− t1 − (λS3−TC2 + ρ′′2 + λTC2−TC0 + ρ0 + λTC0−NTR)

= tGMC + ρ2 − t1 − ρ′′2

= tGMC + ρ2 − (tGMC ± ε+ µ)− (ρ2 − µ)

= tGMC + ρ2 − tGMC ∓ ε− µ− ρ2 + µ = ±ε

Thus, this stealthy attack will avoid detection by the NTR.

To protect against this type of attacks we need to use an alternative communi-

cation path for the delivery of slave reports to the NTR. This path should be in a

different security domain, and separated from that used for regular PTP message

exchange. We can use the existing infrastructure to communicate Report messages

from the slaves to the NTR for monitoring purposes only. This is possible due to

redundancy constraints enforced through IEC 61850-90-4 [56]. Thus, through the se-

paration of GMC-slave path from slave-NTR path, we can protect the slave to NTR

communication and enable the detection of cyber attacks against time synchroniza-

tion.

5.5.4 Attack on slave clock

A compromise of a slave clock that is responsible of issuing Report messages allows the

NTR to detect the attack based on the communicated timestamp in a similar fashion

to the other attacks. However, an attack against a slave clock that does not issue

periodic reports will go undetected unless this slave issues a Report or Report Resp

to the NTR.
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Thus, to avoid such a situation, the NTR can be configured to periodically select

random slaves to address with Report Req messages and check their synchronization

status.

Remark 5.1. Monitoring PTP slaves time in a PTP network enables the detection

of cyber attacks on PTP services.

Proof Cyber attacks on PTP impacts slave clocks, and results in lack of synchroni-

zation at those clocks. As a result, slave clocks are either ahead or behind that of

the GMC by an error µ. Without loss of generality, assume that the impacted slave

clocks are behind the GMC by µ. Monitoring the slaves time, in the form of collection

of timestamped messages, reduces this case to that of the delay attack (see Section

5.5.2), and thus can be detected.

5.6 Approach Evaluation

The evaluation of the proposed approach is two-fold. In the first part, we prepare a

model of the extended PTP using timed automata. Through this model, we formally

verify relevant properties that ensure the soundness of the protocol after extension.

Secondly, using Omnet++ network simulator, we perform an experimental study of

the proposed approach. We report on those experiments in the following sections.

5.6.1 Approach Modeling and Verification

We used automatic formal verification, namely model checking to formally investi-

gate the correctness of the relevant properties of the proposed solution. We verified

safety properties such as freedom from deadlock (Eq. (5.5)), as well as liveness pro-

perties (Eq. (5.6) - (5.9)). Model-checking is a well-established enumerative formal

verification technique based on the exploration of the state space of the system under

112



study to verify properties of interest. For this, the state space need to be represented

as a transition system, while the properties of interest are generally specified in an

adequate temporal logic then verified using Model-checkers.

To verify our approach, we used UPPAAL [70], a well established framework for

the modeling and formal verification of real-time systems. UPAAL uses timed auto-

mata augmented with bounded variables for a better expressiveness. The framework

offers a graphical user interface to graphically model real-time systems, a simulator

and a model-checker for a subset of the CTL temporal logic which is sufficient in

general to specify most properties of interest. We modeled the behavior of each parti-

cipating component of our system, such as the Master, the NTR and slaves separately.

The model of the whole system is obtained by properly synchronizing these individual

models using the concept of communication channels offered in UPPAAL.

Using the built model, we verified several properties pertaining to PTP functiona-

lity along with that of the proposed extension. Note that the validity of the properties

we checked is independent of the number of slaves. In fact, in our model, each slave

and its communication channels with both the master and the NTR are totally in-

dependent of those of other slaves. This assumption is legitimate considering that

the network is capable of assuring such an independence. Therefore, whatever is con-

cluded for one slave can be generalized to all other slaves. We checked the following

properties:

Correctness Property This means that extending PTP does not violate its pri-

mary functionality. This is validated through equations (5.5) and (5.6). Eq. (5.5)

ensures that the extended protocol is deadlock-free using the A[] operator which va-

lidates that a property holds for all paths in the system, while Eq. (5.6) verifies that

each slave receives and processes each GMC Sync message, and synchronizes its clock
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accordingly.

A[] not deadlock (5.5)

Master.syncSent → slave.synchronized (5.6)

Combining these two properties together, we claim that the proposed extension main-

tains the performance and functionality of PTP. On the other hand, there is still a

need to evaluate this extension in an environment resembling a substation while using

real hardware deployed at the substation. However, the realization of such an experi-

ment is of extreme difficulty as access to PTP implementations of intelligent electronic

devices (IEDs) and transparent clocks is restricted to the manufacturing utility. Thus,

we consider such an exercise, although essential, beyond our capabilities.

Attack detection Through these properties, we can verify that whenever an attack

takes place, it is detected by the NTR. This is verified through Eq. (5.7) where the

NTR goes to state indicating attack on slave through delay in network.

network MasterToSlave.pathDelayComputed ∧

network MasterToSlave.attackDelay > 0 → NTR.slaveProblem

(5.7)

Moreover, we verify the NTR capability to successfully detect attacks on single or

multiple clusters through the conjunction of Eq. (5.7) and Eq. (5.8)

NTR slave.slaveProblem → NTR witnessSlave.multiClusterProblem

∧ NTR witnessSlave.slaveTimeProblem

∨ NTR witnessSlave.singleClusterProblem

(5.8)

In a similar manner, we verify the NTR capability of detecting attacks targeting the
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master through Eq. (5.9).

Master.syncSent ∧ Master.attackDelay > 0

→ NTR Master.MasterNotSync

(5.9)

False Positives It is worth noting that the same properties used above can be

evaluated to verify the availability of false positives. We verify those properties in

the absence of attacks, and the model successfully indicated that absence.

We also verify as anticipated that the NTR fails to detect a well-orchestrated

attack where the attacker injects a delay on the path taken by the Sync message to

the slave and cancels it when this slave reports back to the NTR. However, this attack

is extremely difficult to implement.

To conclude, the proposed extension was formally verified to preserve the protocol

functionality, and to effectively detect attacks on PTP time synchronization.

5.6.2 Simulation Results

To validate the usefulness of our approach through Omnet++ simulation [121], we

modify the PTP implementation provided by [122] to introduce our detection mecha-

nism, and carry-on different cyber attacks. We arranged 30 slaves in 6 bays using the

hierarchical star network topology presented in IEC 61850-90-4 [106] and shown in

Fig. 5.5. We consider each bay to be a cluster and select one slave per bay to send

Report messages to the NTR. We performed a set of experiments to check the capa-

bility of the NTR to detect ongoing attacks, evaluate the time needed for detection,

the synchronization error at the slave clocks at the time of detection, and network

overhead while varying the frequency at which slaves push reports to the NTR. For

each attack, different TCs and network links are separately compromised, and we

report on the average of the recorded results for those attack instants.
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The time needed to detect an ongoing attack is affected by the nature of the attack,

and is measured as the time elapsed since the start of the attack until it is flagged by

the NTR. This is shown in Fig. 5.6, which shows that the NTR successfully detects

all the attacks after a relatively short time. As Fig. 5.6 shows, the time needed

to detect the attack on GMC is constant and not affected by the frequency of slave

reports. This is a result of the ability of the NTR to detect this attack based on the

periodic Sync messages issued by the GMC. However, the time needed to detect delay

attack and attack on TCs is inversely proportional to the frequency of slave reports.

Starting with a frequency of 1 report every 5 synchronization events, and decreasing

that gradually to 1 report every 25 synchronization events, results in an increase in

the time needed to detect the ongoing attack from 1 seconds up to almost 7 seconds.

This is due to the fact that the NTR is neither served by the compromised TCs nor

the network links, and thus has to wait for slave reports to compute the associated

offset and detect the attack.
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Figure 5.7: Synchronization error at attack detection.

On the other hand, we monitor the synchronization error at the slave side at the

time of attack detection. The collected results are presented in Fig. 5.7, which shows

different impact on the slave clock depending on the nature of the attack. The attack
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Figure 5.8: Synchronization error due to cyber attacks

on GMC introduces a constant error of 2 milliseconds at the slave side. However, the

attack on TC and the delay attack introduce a varying error that reaches a maximum

of 3 milliseconds as time progresses. The variation in the introduced error in the case

of an attack on TC is a result of the varying packet residence time at the compromised

TC, and it reaches a maximum of 2.5 milliseconds when the slaves report frequency

is minimum.

To better understand the advantage of early detection of cyber attacks, we have

simulated the attacks on the GMC, TC and delay attack and monitored the syn-

chronization error at affected slaves in the absence of our detection mechanism. The

attacks were simulated for 10 minutes using a similar setup to that used for Fig. 5.6

and Fig. 5.7, and the collected results are presented in Fig. 5.8. The collected results

show that significant errors of the order of 5 milliseconds are introduced at the slave

clock on the long run. The attack on the TC is the most effective, while that on the

GMC introduces a constant error at the slave side due to the nature of this attack.

This error is likely to persist at slave clocks unless the ongoing attacks are detected,
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claim that our extension is light weighted.

To conclude, experimental results validate the capability of our proposed detection

mechanism in successfully detecting cyber attacks against PTP, and relates the de-

tection speed to the amount of introduced reports as additional network traffic.

5.7 Conclusion

Time synchronization through PTP is of significant importance for the safe and stable

operations of the smart grid. Nonetheless, PTP is subject to a variety of cyber attacks

that threaten its deployment and impact its services. Addressing such threats, and

securing PTP services is as critical as the synchronization accuracy PTP provides.

PTP main weakness is its lack of awareness of the connected slaves synchronization

status. The connected slaves trust all PTP traffic collected from the network and use

it to adjust their clocks. Thus, in the presence of an attack, PTP slave clocks will

be manipulated and the attack will go unnoticed. In this chapter, we addressed PTP

security and proposed a protocol extension to enable the detection of attacks against

PTP. Our presented solutions leverages slave clocks capabilities and the network

design requirements to introduce a new functionality to the PTP network, and collect

feedback from slave clocks that enables the detection of attacks targeting PTP time

synchronization. The proposed extension is modeled using UPPAAL model checker,

and formally verified using significant CTL properties. Moreover, the efficiency of the

proposed extension is demonstrated through numerical simulation.
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Chapter 6

Exploiting The Vulnerability of

Relative Data Alignment in Phasor

Data Concentrators to Time

Synchronization Attacks

In the previous chapters, we addressed vulnerabilities targeting PTP as main time

synchronization mechanism in the smart grid. In this chapter, we demonstrate how

an attack on time synchronization can be used to affect essential smart grid com-

ponents and subsystems. Using time synchronization, we formulate an attack on

the relative data alignment scheme used by phasor data concentrators (PDCs) to

aggregate and stream phasor measurements. This attack leverages the specification

governing the PDC functionality in a wide area measurement system. Using a pha-

sor measurement unit (PMU) as attack surface, a malicious player injects an attack

vector in the PMU timing to manipulate the PDC functionality and force it to drop

phasors received from benign PMUs. We expose the PDC relative data alignment

121



scheme to this attack, formulate the attack surface and vector selection as a linear

program (LP), and demonstrate the impact of this attack on system observability.

We conduct experimental results on standard IEEE test systems to demonstrate the

attack semantics and impact. In addition, we manifest the described attack in a case

study using hardware-in-the-loop (HIL) co-simulation environment. The outcome of

those tests validate the vulnerability of PDC aggregation scheme to this attack and

its significance in targeting system observability.

6.1 Introduction

The power grid as we know it is witnessing a major evolution to adapt digital commu-

nication, and transform into a smart grid. This smart grid is mainly characterized by

power transmission efficiency, increase in reliability, short service restoration times,

usage of renewable energy, and better customer interaction among others. Such cha-

racteristics are enabled through the integration of advanced sampling technologies to

monitor, protect, and control the state of the grid in real time. Thus, the traditional

power system is emanating as a cyber-physical entity on top of a wide set of moni-

toring devices, mainly phasor measurement units (PMUs), communication networks,

and system protection solutions namely WAMPAC.

Wide area monitoring, protection and control (WAMPAC) describe one category

of the advanced techniques that involves the use of system wide information and the

communication to a remote location to counteract the propagation of the large dis-

turbances [31, 114]. Advanced WAMPAC technologies enable the implementation of

electrical grids that realize the needs for sustainable energy delivery and enhanced

power system performance [18]. However, the reliability of WAMPAC applications

depends largely on the accuracy of the phasors computed by the Phasor Measurement

Units (PMUs) [38], for which timing plays a critical role. Indeed, synchronized PMUs

122



have become a reality in the control room of utilities worldwide [2]. PMU measure-

ments are sampled synchronously across the entire power grid based on a coordinated

Universal Time (UTC). This allows the presentation of a high accuracy system wide

snapshot through the collection and alignment of synchronized phasor measurements.

Precise timing is essential in power systems for grid monitoring and situational

awareness. The availability of time synchronized measurements from PMUs allows

system operators to monitor and coordinate the operations of various grid assets,

along with the protection of grid components. As outlined by the North American

Synchrophasor Initiative (NASPI) [2], PMUs need access to reliable Coordinated Uni-

versal Time (UTC) to allow synchrophasor applications to time-align the voltage and

current time series data for analysis and coordinated activity over a wide geographi-

cal area. Moreover, NASPI illustrates that all elements of a synchrophasor system

(both PMUs and the associated phasor data concentrators) must continually access

a common and accurate timing source linked to Coordinated Universal Time (UTC)

[2].

However, along with the advantages accurate time synchronization brings to the

smart grid, time synchronization mechanisms introduce several security concerns into

the smart grid. This is due to the fact that inaccuracy in a PMU’s timing adversely

affects the PMU measurements, especially the estimation of phase angles of the mea-

sured quantity [2] and hence WAMPAC applications processing those measurements.

Moreover, the feasibility of cyber attacks targeting timing mechanisms have been do-

cumented in the literature [62, 87]. Those attacks demonstrate the vulnerability of

PMU technologies to cyber-security threats, and the candidacy for use as an attack

surface to target WAMPAC applications [12].

On the other hand, a typical phasor measurements collection network comprises

PMUs and phasor data concentrators (PDCs). PDCs are responsible of aggregating
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and relaying synchrophasor data collected from several PMUs, and arranged in a

hierarchical structure through a communication infrastructure. Thus, altering the

functionality of a PDC could affect a large set of data, and eventually leave a larger

impact on the system functionality. This gives rise to the question, could we exploit

the specifications of PMU to PDC data supply and alignment to target WAMPAC

applications?

In this chapter, we demonstrate the feasibility of leveraging the specifications of

phasor data alignment at the PDC level to impact WAMPAC applications namely

system observability. This demonstration uses time synchronization as a stepping

stone to perform an attack on data aggregation at the PDC level. The introduced

attack consists of identifying a PMU as an attack surface, along with an attack vec-

tor injected at the identified PMU that results in discarding genuine measurements

received from trusted PMUs at the PDC. To formulate this attack, we follow a li-

near programming approach. We model the PDC data alignment specifications, and

identify all the attack components. Moreover, we evaluate the presented attack on

standard IEEE benchmark systems.

6.1.1 Novel Contributions

The main contributions of this paper can be outlined as follows:

1. We identify the vulnerability of PDC phasor alignment to attacks through the

analysis of the C37.244-2013 [7] standard, and exploiting relative data alignment

dependency on the early arrivals of phasor measurements. Through an attack on

time synchronization, we demonstrate the feasibility of leveraging the specifications

of phasor data alignment at the PDC level to impact WAMPAC applications namely

system observability.
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2. We formulate the identified attack as a linear program with a special empha-

sis on its impact on power system observability. The formulated attack consists of

identifying a PMU as an attack surface, along with an attack vector injected at the

identified PMU that results in poisoning a target PDC, and eventually discarding

genuine measurements received from trusted PMUs at the poisoned PDC.

3. We evaluate the defined attack on IEEE benchmark systems, and show its impact

on system observability. Moreover, we demonstrate the attack semantics and impact

through hardware-in-the-loop simulation.

The remainder of this chapter is structured as follows. Our system model is in-

troduced in Section 6.2 followed by the research problem definition in Section 6.3.

Section 6.4 defines our threat model. Problem formulation and mathematical model

are covered in Section 6.5. A discussion of countermeasures for the described vulne-

rability are provided in Section 6.6. Section 6.7 portrays the experimental results.

Concluding remarks are provided in Section 6.8.

6.2 System Model

The system under study is the wide area measurement, protection, and control

(WAMPAC) system in its two main components: monitoring and measurement de-

vices including phasor measurement units (PMUs) and phasor data concentrators

(PDCs), and applications using those measurements for protection and control pur-

poses mainly system observability.

The WAMPAC measurement component is arranged in a tree structure with the

central PDC as the root, and PMUs as the leaves. PMUs are located at buses in

the power system to collect and send readings of different system parameters (e.g.

125





with a large scale view of the system status. To ensure system observability, mea-

surements provided by PMUs from different system buses are needed. We consider

power system observability as defined in [73] as:

Oi =
∑

j∈Nu

aijxj; i ∈ B (6.1)

where Oi represents the observability at bus i, B is defined as the set of all system

buses, Nu as the set of PMUs located in the system, xj is a binary variable that

identifies if a PMU is installed at bus j, aij is a connectivity parameter defined as:

aij =











1 if i = j or (i, j) ∈ L

0 otherwise

where L is the set of all transmission lines in the system.

Oi ≥ 1 implies that bus i is observable either through a PMU located on bus i,

or through measurements provided by PMUs located on buses j connected to bus i

with some transmission lines (i.e. aij = 1 for some j ∈ B). The power system is said

to be observable if the observability function Oi for each bus is greater than or equal

to 1:

Oi ≥ 1, ∀i ∈ B (6.2)

6.3 Problem Definition

Time synchronization is a key enabling technology for WAMPAC operations. It

is used by PMUs to supply timestamped measurements, and later used by PDCs

to aggregate those measurements. Based on the timestamps carried by the phasor

measurements, the PDC drops measurements due to the following reasons:
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• Time synchronization error: Phasor measurements carrying an invalid time tag

as judged by the PDC are not aligned with other phasor measurements into data

streams, nor later forwarded to other PDCs in the hierarchy.

• Latency: Phasor measurements carrying a valid timestamp but do not arrive

within latency expectations at the PDC. As defined by C37.244-2013 [7], latency

starts when the first complete data message with a given timestamp arrives at the

PDC. This latency is specified in the form of waiting time associated with the first

arrival as illustrated in Fig. 6.1.

On the other hand, and as defined by C37.244-2013 [7], valid measurements recei-

ved at a PDC from a PMU are handled in one of the possible ways:

1. Add to an existing data stream: This resembles the case when a PDC receives

a timestamped frame that fits into the data stream being aggregated. The PDC

aligns the new frame with the existing ones based on the frame’s timestamp before

forwarding the data stream to other PDCs.

2. Setup a new data stream: This resembles the case of first data arrival of a frame

with a given timestamp at the PDC. This arrival triggers a relative wait time for the

preparation of a new data stream. Thus, the PDC expects frames that align with the

first arriving one to be delivered within the defined time window. The wait time is

controlled by a timer that triggers the forwarding operation upon expiry.

Thus, measurements supplied by a PMU do not autonomously setup a new data

stream nor are included in an existing one. Those measurements may be dropped,

and as such a drop of the measurements supplied by a PMU, or group of PMUs, can

result in a loss of the system observability.

The vulnerability of the system to the loss of phasor measurements opens a win-

dow for an attacker to target WAMPAC and system observability. Leveraging the
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importance of accurate synchronization for phasor data collection and aggregation, a

time synchronization-based attack targeting PMUs can consequently result in drop-

ping the measurements supplied by those PMUs.

Thus, we can define two attack instances:

6.3.0.1 Drop Target PMU Measurements

By introducing a synchronization error at the target PMU, the measurements supplied

by this PMU are eventually dropped by the collecting PDC. The PMU timestamps

the measurements at time t′0 as opposed to the real time t0. For (t′0 < t0), the PDC

considers those measurements as late arrivals for data streams timestamped with (t′0),

and eventually drops them. If the measurements arrive at time t where t < t′0, the

PDC observes the timing error, and will eventually drop those measurements.

6.3.0.2 Drop Other PMU(s) Measurements

This is a more stealthy version of an attack on time synchronization. Through this

attack, the attacker leverages the system functionality, in particular relative data

alignment and aggregation at the PDC, to impact data collection from other PMUs

rather than the one he is directly targeting. As shown in Fig. 6.2, by targeting PMU

X timing, the PDC handles PMU X data frame as a first arrival, and initiates a

relative wait time interval. Upon the expiration of this interval, the PDC drops data

frames received from PMU 3 and PMU 4. To perform this attack, an attacker has

to design and introduce an attack vector α to the time of the targeted PMU. The

vector α should be formed in a way so that data frames from the targeted PMU

are not dropped by the receiving PDC. Those frames will be processed and result in

dropping measurements received from other PMUs, connected to the same PDC, due

to latency constraints enforced by the waiting period.
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considers those frames as redundant one representing the system state at (t− α), or

late arrivals for the same system state, and consequently drops those measurements.

• α > 0 : In this case, frames sent by U1 and arriving at C might be dropped if the

timestamp (t+α) they carry is more than the system time which may be represented

as (t + d1). However, for a proper selection of α, the attacker can spoof C as a

first data arrival, and enforce the creation of a new frame to aggregate measurements

collected at (t+α). Thus, with an optimal choice of the attack vector α, the attacker

can trigger an early aggregation of data frames and initiate PDC C latency timer.

Hence, upcoming measurements from other PMUs timestamped at (t+α) will be late

arrivals and hence dropped by PDC C. Since it results in dropping measurements

from several PMUs, such an attack vector represents a stealthy threat to system

observability. Thus, determining this attack vector is a challenge for the attacker

considering the system requirements and specifications.

We aim at addressing the selection of an appropriate attack vector that would

threaten system observability starting with an attack on a single PMU, or multiple

PMUs if needed, while taking into consideration the system requirements for phasor

measurements aggregation and power system observability.

6.4 Threat Model

To carry out attacks on WAMPAC through time synchronization, we consider an

active and capable attacker. We assume that the attacker is either an external en-

tity or an insider with malicious intents. He has the expertise to perform long-term

reconnaissance operations required to learn the environment, and execute a highly

synchronized, multistage, multisite attack [71]. The attacker is aware of the time
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synchronization mechanism used by the PMUs, and is capable of targeting this me-

chanism to introduce the required attack vector at the target PMU. In addition to

that, our attacker is aware of the WAMPAC topology. He is knowledgeable about

the PMU to PDC network, and can perform the necessary estimations related to the

network traffic and conditions.

Moreover, the attacker is interested in targeting WAMPAC through exploiting the

PDC phasor alignment algorithms. He chooses this approach to impact the system

while being undetected. If the attacker wishes to execute his attack through the

introduction of additional hardware or software to the system, he has the expertise

necessary to choose suitable attack locations to perform his attack, and avoid the

available physical security measures.

6.5 Problem Formulation

Our problem formulation aims at leveraging the system specifications, and dependa-

bility on phasor measurements to obscure the system observability. Thus, from an

attacker perspective, we aim at minimizing system observability through the defini-

tion of an attack vector, and selection of the attack surface. To achieve this target,

we consider a snapshot of the WAMPAC system where phasor measurements are ti-

mestamped by PMUs at a time instance t, and define this problem through a linear

program (LP) that identifies the PMU to be targeted along with the needed attack

vector.

6.5.1 Nomenclature

In the problem formulation, we use the following notation:
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Nu : set of available PMUs

Nc : set of available PDCs

N c
u : set of PMUs connected to PDC c

B : set of power system buses

A : power system connectivity matrix

∆ = (δcu) : matrix of estimated path delay

δcu : path delay between u ∈ Nu and c ∈ Nc

X = (xi) : PMU placement vector

xi =











1 if a PMU is placed on bus i ∈ B

0 otherwise

τ c : Timer threshold for PDC c ∈ Nc

ε : small positive number

M : large positive number

We define the following decision variables:

αu ∈ R : attack vector injected to timestamp of PMU u ∈ Nu

αc ∈ R : αu as seen at PDC c ∈ Nc

δcu∗ : estimated path delay between attack target u∗ and PDC c

yu =











1 if a PMU u ∈ Nu is attack target

0 otherwise

vcu =











1 if measurements from PMU u are aligned by PDC c

0 otherwise

vu =











1 if measurements from PMU u ∈ Nu are valid

0 otherwise
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bi =











1 if bus i ∈ B is observable

0 otherwise

zc =











1 if PDC c ∈ Nc is attack target

0 otherwise

dcu : time window to deliver measurements from PMU u ∈ N c
u to PDC c ∈ Nc

6.5.2 LP Formulation

The objective of the attacker is to affect the system observability through the intro-

duced attack vector. This objective is presented in Eq. (6.3) where the attacker aims

at minimizing the number of observed buses in the system.

Minimize
∑

i∈B

bi (6.3)

The observability of a bus is determined through Eq. (6.1). However, the cal-

culation of the observability variable Oi for each bus i is affected by the availability

of valid measurements from PMUs positioned at bus i or neighboring buses. This

is reflected through the usage of a decision variable that determines whether those

measurements are valid or not as can be seen in Eq. (6.4).

Oi =
∑

u∈Nu

aiuxuvu ∀i ∈ B (6.4)

The observability of each bus in the system, as defined in Eq. (6.4), is represented

in Eq. (6.5) as a binary value that reflects whether a bus is observable or not. If the

observability value of bus i is positive, then bus i is observable. While a zero value
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for observability indicates that this bus is not observable.

bi ≥
Oi

M

bi ≤ Oi ∀i ∈ B

(6.5)

The attack surface is restricted to one PMU in Eq. (6.6). This limits the attacker

capabilities to targeting a single PMU.

∑

u∈Nu

yu = 1 (6.6)

To successfully perform the attack, the timestamped measurements from the tar-

get PMU should be considered valid by the receiving PDC. Thus, those measurements

should not carry a timestamp that represents future time. This is enforced through

Eq. (6.7), where the introduced attack vector does not exceed the time needed by

the measurements sent from PMU u to reach PDC c.

αu ≤ max(δcu) ∀u ∈ Nu, c ∈ Nc (6.7)

The attack vector introduced into the timestamps of the target PMU should not

be null, in contrast to other PMUs which have a null attack vector. This is ensured

through Eq. (6.2) where the targeted PMU gets a positive attack vector, and the

attack vector introduced at other PMUs is set to zero.

αu ≤ Myu

αu ≥
yu
M

∀u ∈ Nu

(6.8)

To calculate the time window available for non-targeted PMUs to deliver their

measurements, we need to identify the network delay between the target PMU and
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We define a time window for each PMU sending measurements to a targeted

PDC as per Eq. (6.12). This window represents the difference between the time

available for a measurement sent by PMU u to arrive at PDC c, and that needed by

the measurement to traverse the network from PMU u to PDC c. This equation is

illustrated in Fig. 6.3 where the early arrival of a timestamped measurement from the

PMU under attack causes a reduction in the time available for measurements from

other PMUs to make it to the destination PDC.

dcu = δcu∗ + τ c − αc − δcu ∀u ∈ N c
u (6.12)

The validity of measurements sent from a PMU to a PDC is decided by three

factors.

1. PMU is under attack: Measurements received from the targeted PMU are the

first arrivals corresponding to the rogue timestamp, and thus should be accepted and

aligned by the receiving PDC. This is reflected through the use of yu variable in Eq.

6.13, which validates of the measurements sent from PMU u to PDC c.

2. PDC is under attack: The validity of measurements at a PDC not receiving

phasors from the targeted PMU is not affected by the attack. Thus, measurements

arriving at such a PDC should be considered valid. This is reflected through the use

of zc variable in Eq. 6.13, which validates of the measurements sent from PMU u

to PDC c. However, measurements sent to a PDC that receives phasors from the

targeted PMU may be considered valid or not depending on their time of arrival as

we see next.

3. Late arrivals: Measurements arriving at a PDC are considered late arrivals and

invalid if their time window defined in Eq. 6.12 is negative. This indicates that

measurements sent from such PMUs arrive after the expiration of the PDC timer.
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Those three factors are combined in Eq. (6.13) which determines if measurements

sent by PMU u to PDC c are valid.

vcu ≥
dcu(1− yu)z

c

M
+ ε

vcu ≤ 1 +
dcu(1− yu)z

c

M
∀u ∈ N c

u, ∀c ∈ Nc

(6.13)

Phasors collected by a PMU are multicast to a set of PDCs. Those measurements

might be invalid at a PDC due to the attack, and valid at another which does not

receive measurements from the PMU under attack. Thus, the measurements of such

a PMU should be considered valid and account for in system observability. This is

ensured through Eq. 6.14 which determines whether measurements from PMU u are

considered valid based on the validity of these measurements at each PDC.

vu ≥ vcu

vu ≤
∑

c∈Nc

vcu ∀u ∈ Nu, c ∈ Nc

(6.14)

As an outcome of this formulation, we can identify the needed attack parameters.

Injecting the identified attack vector at the target PMU will result in a drop in system

observability, and thus a stealthy attack on WAMPAC system.

6.6 Countermeasures

To protect WAMPAC systems against the formulated vulnerability, several strategies

can be implemented. A solid protection scheme for time synchronization signals

supplied to the PMUs will prevent the manipulation of this signal and eventually

poisoning the PDC. Such a scheme can take the form of equipping the PMUs with

multiple time sources, and thus enabling them to detect the discrepancy in time
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Table 6.1: PMU to PDC Connectivity

Test System
PDC

1 2 3 4 5 6 7

IEEE 14-Bus 2, 6 7, 9 - - - - -

IEEE 24-Bus 2, 8, 10 3, 16 21, 23 - - - -

IEEE 30-Bus 1, 2, 6,
9

10, 12,
15, 19

25, 27 - - - -

IEEE 57-Bus 1, 50 4, 6, 15 20, 38,
47

32, 36,
41, 57

9, 24,
25, 28,
53

- -

IEEE 118-Bus 3, 5, 9,
12

15, 17,
21, 23,
28, 30,
114

34, 37,
40, 45,
49

52, 56,
62, 64

68, 71,
75, 77,
80

85, 86,
91, 94

101,
105,
110

synchronization signals during attack. On the other hand, the C37.244-2013 standard

provides an alternate scheme for data alignment namely alignment to absolute time

reference. In this scheme, the PDC is accurately synchronized and controls the waiting

time for measurements arrival rather than being triggered by early arrivals. The

deployment of such a scheme avoids poisoning the PDC with early arrivals yet leaves

the system vulnerable to delay attacks against PMU measurements and variations

in the PMU to PDC path delay. Finally, a more advanced solution can be deployed

at the PDC level where an analysis of the history of PMU measurement early and

later arrivals along with a correlation to the delay experienced in the communication

network, can determine a dynamic relative waiting time that enables the collection

of much needed measurements and hardens the system against such attacks.

6.7 Experimental Results

Our assessment of the vulnerability of PDC data alignment to the formulated attack in

wide area measurement systems is two-fold. The first set of experiments are performed
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using the mathematical model on standard IEEE test systems to identify the attack

surface (PMU), target (PDC) and attack vector. In the second set of experiments, we

consider a case study of the IEEE 24-Bus system where we perform the formulated

attack using HIL co-simulation. We report on the results collected from both tests in

the following sections.

6.7.1 Numerical Evaluation

To expose the vulnerability of relative data alignment for phasor measurements at

PDCs, we implemented the developed model and related simulation programs using

Java and IBM CPLEX concert technology. The simulations were executed on a

windows machine with Intel Core i7 CPU running at 2.67GHz and equipped with 12

GB of RAM. We conducted experiments for the 14-bus, 24-bus, 30-bus, 57-Bus, and

118-Bus IEEE test systems (for details about those systems, interested readers are

referred to [109, 35, 95]).

In our system setup, we consider the electric grid to be observable when all of its

system states are uniquely identified [9]. System states are observed through phasor

measurements received from PMUs located on selected power buses. To identify the

needed number of PMUs and their respective locations for full system observability,

we use the results presented by Chakrabarti et al. in [30, 32]. Based on those

results, the optimal PMU number and corresponding bus locations for the IEEE test

systems are indicated in Table 6.2. Moreover, to determine the number of PDCs for

each system along with the set of PMUs associated with those PDCs, we adopt

the results presented by Fesharaki et al. in [48, 82]. The number of PDCs for

each test system along with its connected PMUs are presented in Table 6.1. We

note that a hyphen in a row means that the PDC in the respective column is not

available for this test system. To complete the input for the mathematical model, we
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need to specify the network topology and the estimated delays over the PMU-PDC

communication network connections based on WAMS needs and specifications. In this

respect, we make use of several results in the literature especially [130, 124, 33, 65, 129]

to assign the suitable delay for the communication paths in use. The assigned PMU

to PDC path delays are in the range of 40ms - 60ms for the different systems. On

the other hand, taking into consideration that research outcomes available in the

literature [130, 124, 33, 65, 129] define network end-to-end delay, we do not use any

network topology specifications as we consider the delay to be the more decisive factor

regardless of the topology.

Table 6.2: Optimal PMU number and placement for IEEE test systems

Test System Number of PMUs Bus Locations

IEEE 14-Bus 4 2, 6, 7, 9

IEEE 24-Bus 7 2, 3, 8, 10, 16, 21, 23

IEEE 30-Bus 10 1, 2, 6, 9, 10, 12, 15, 19, 25, 27

IEEE 57-Bus 17 1, 4, 6, 9, 15, 20, 24, 25, 28, 32, 36, 38, 41, 47,
50, 53, 57

IEEE 118-Bus 32 3, 5, 9, 12, 15, 17, 21, 23, 28, 30, 34, 37, 40,
45, 49, 52, 56, 62, 64, 68, 71, 75, 77, 80, 85,
86, 91, 94, 101, 105, 110, 114

Using the previously described setup, we run the model for the IEEE 14, 24, 30,

57 and 118 Bus test systems. In those experiments, we have fixed PMU locations,

estimated communication delays, and connectivity to PDC. We have varied the PDC

timer for each test, and computed the respective attack surface and vector. The

variations of the PDC timer are inspired by the values used in [129], and the collected

results are presented in Tables 6.3, 6.4, 6.5, 6.6, and 6.7.

As can be seen from Table 6.3, the model identifies PMU located on bus 2 as

potential attack surface to target PDC-1 for different timer values. The injected

attack vector varies with the timer and forces PDC-1 to drop measurements from
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Table 6.3: Attack Vector and impact for 14 bus system

PDC Timer Target(PMU,PDC) Attack Vector Unobserved Buses

20 ms (2, 1) 20 ms 6, 11, 12, 13

30 ms (2, 1) 30 ms 6, 11, 12, 13

40 ms (2, 1) 45 ms 6, 11, 12, 13

50 ms - - -

60 ms - - -

other PMUs, namely PMU located on bus 6. Dropping those measurements results

in the inability to observe buses 6, 11, 12 and 13 as identified by the model. The

model did not identify a suitable attack vector for 50 and 60 ms timer values. This is

due to the small values assigned to the network delays. Any additional delay in the

network will enable the identification of a suitable attack vector.

Table 6.4: Attack Vector and impact for 24 bus system

PDC Timer Target(PMU,PDC) Attack Vector Unobserved Buses

20 ms (2, 1) 30 ms 5, 7, 8, 10, 11

30 ms (8, 1) 30 ms 2, 4, 5, 6, 11

40 ms (8, 1) 40 ms 2, 4, 5, 6, 11

50 ms (10, 1) 40 ms 2, 4

60 ms - - -

Table 6.5: Attack Vector and impact for 30 bus system

PDC Timer Target (PMU,PDC) Attack Vector Unobserved Buses

20 ms (19,2) 20 ms
12, 13, 14, 15

16, 17, 21, 22, 23

30 ms (19,2) 30 ms
12, 13, 14, 15

16, 17, 21, 22, 23

40 ms (19,2) 40 ms
12, 13, 14, 15

16, 17, 21, 22, 23

50 ms (19,2) 40 ms 17, 21, 22, 23

60 ms - - -

Similar results are collected for the IEEE 24 and 30-Bus systems and presented
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in Tables 6.4 and Table 6.5 respectively. We can identify the selected PMU as attack

surface along with the attack vector to be injected in its timestamps. The impact

of this attack is presented in both tables as a set of unobservable system buses. As

can be seen from the presented results, with the increase in the timer value, more

measurements can arrive on time at the PDC and this enlarges the set of observable

system buses. For a timer value of 60 ms, the model could not identify an attack

vector with the estimated network delays that are close to the lower bound.

Table 6.6: Attack Vector and impact for 57 bus system

PDC Timer Target(PMU,PDC) Attack Vector Unobserved Buses

20 ms (53, 5) 20 ms 9, 10, 12, 23, 24, 25, 26, 27,
28, 29, 30, 55

30 ms (25, 5) 45 ms 9, 10, 12, 23, 26, 27, 28, 29,
52, 53, 54, 55

40 ms (57, 4) 45 ms 31, 32, 33, 34, 35, 36, 40, 41,
42, 43

50 ms (9, 5) 35 ms 23, 24, 25, 26, 27, 28, 29, 30

60 ms (15, 2) 45 ms 7

Attack surface and vector for the IEEE 57, and 118-Bus systems are presented

in Tables 6.6 and 6.7 respectively. With the increase in system size, the chance to

identify an attack surface and formulate an attack vector increases. This formulation

results in the identification of an attack target for different PDC timer values and a

subsequent set of unobservable power buses. As can be concluded from the results, a

short timer value representing little tolerance for delays at the PDC results in more

impactful attacks and larger sets of unobservable buses.

To reflect the impact of the identified attack vector on the system observability, we

plot the system observability versus the change in PDC timer for the different systems

in Fig. 6.4. As illustrated in Fig. 6.4, through the exposed vulnerability in the PDC

phasor alignment, it is possible to devise an attack that leaves a deep impact on system
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Table 6.7: Attack Vector and impact for 118 bus system

PDC Timer Target(PMU,PDC) Attack Vector Unobserved Buses

20 ms (28, 2) 20 ms 13, 15, 17, 18, 20, 21, 22, 23,
24, 25, 26, 30, 31, 32, 113, 114,
115

30 ms (28, 2) 30 ms 13, 15, 17, 18, 20, 21, 22, 23,
24, 25, 26, 30, 31, 32, 113, 114,
115

40 ms (28, 2) 40 ms 13, 15, 17, 18, 20, 21, 22, 23,
24, 25, 26, 30, 31, 32, 113, 114,
115

50 ms (56, 4) 50 ms 2, 3, 4, 5, 6, 7

60 ms (64, 4) 55 ms 60, 62, 67

observability. For different PDC specifications, it is possible to craft an attack vector

and force a decrease in system observability. The impact of this attack decreases with

an increase in the PDC tolerance to delayed measurements. Nevertheless, with the

increase in system size and complexity of communication network, it is possible to

leverage the PDC dependency on early arrivals to initiate an attack against phasor

data alignment at PDC level.

6.7.2 HIL Simulation Case Study

Using our smart grid testbed, simulating both power and communication networks, we

prepared a setup composed of 7 PMUs (2 physical, 5 software) and 3 physical PDCs

to demonstrate the outcome produced by the mathematical model for the IEEE 24-

Bus system. The PMU to PDC connectivity, and PMU locations are configured as

described in Tables 6.1 and 6.2 respectively. We experiment the case where the PDC

timer is set to 50 ms, and inject the attack vector identified by the model as shown

in Table 6.4. As indicated by the model, we target the PDC (PDC-1) collecting

measurements from PMUs located at buses 2, 8, 10 by injecting the attack vector to
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in a drop in the system observability thus threatening the availability and reliability

of the smart grid. The proposed attack was mathematically formulated as linear

program, evaluated on standard IEEE test systems, and demonstrated using HIL co-

simulation. Results from the performed tests manifest the exposed vulnerability and

the formulated attack.
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Chapter 7

Discussion and Future Directions

7.1 Discussion

This thesis addressed several challenges and concerns associated with the inauguration

of the smart grid. Mainly, it focused on threats pertaining to time synchronization

being a key enabler for smart grid systems. We have considered a substation con-

forming to the design requirements mandated by IEC 61850, and addressed several

security concerns associated with the Precision Time Protocol (PTP), the recommen-

ded mechanism for time synchronization at the substation level. At first, through

Chapter 2 we presented an overview of available time synchronization mechanisms

along with applications dependent on precise timing in the smart grid. Chapter 2

provided a survey of the existing literature work addressing security concerns asso-

ciated with PTP. We concluded Chapter 2 with a gap analysis identifying potential

research problems to be addressed in order to harden PTP security. Those gaps were

later addressed in other chapters aiming at providing a security aware precision time

synchronization protocol.

Motivated by the lessons learned from the literature survey, Chapter 3 addres-

sed a gap in the authentication scheme associated with PTP through its security
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extension - Annex K. We highlighted the vulnerability of PTP to fake timestamp

injection through a compromised component of the PTP network. Using the availa-

ble network and system management solutions imposed by IEC 62351, we proposed

a detection mechanism through defined SNMP data types and objects. The defined

objects extend the PTP MIB and enable the collection of relevant information related

to timestamps communicated by the master clock through synchronization messages.

The proposed detection scheme was tested on an NSM testbed for a substation, and

the collected results demonstrated the usefulness of the proposed solution.

Next, Chapter 4 of this thesis addressed one of the well-known threats to message

exchange-based time synchronization protocols, the delay attack. By exploiting the

design requirements for an IEC 61850 substation, we devised an approach to detect the

occurrence of such attack at the substation level. Using PRISM formal model checker,

we developed a model resembling time synchronization under PTP and the proposed

detection approach. The prepared model enabled us to evaluate quantitative and

qualitative properties related to PTP security. Moreover, we introduced a mechanism

to mitigate the impact of the delay attack at slave clocks. The mitigation mechanism

relies on maintaining a history of recent synchronization records at connected devices,

then use this history to alleviate the attack impact and maintain clock synchronization

in the presence of the attack. The proposed mechanisms were validated using formal

model checking, and demonstrated using an implementation of PTP on a physical

setup.

Next, to address threats associated with the PTP attack surface as a whole and

motivated by the outcome of Chapter 4, we proposed an extension to PTP that

allows the collection of feedback from slave devices, and thus monitor their synchro-

nization status. The proposed extension was presented in Chapter 5 in the form of
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new functionality in the PTP network and additional message exchanges. This ex-

tension leveraged slave capabilities to send and receive timestamped messages, and

the presence of accurate back-up time sources, to periodically collect and analyze

timestamped messages from slave clocks and assess their synchronization status. We

theoretically demonstrated the ability to detect attacks on PTP using the proposed

extension. Moreover, we modeled the proposed extension using timed automata, and

evaluated liveness and correctness properties on the developed model. The evaluated

properties assured that the extension does not affect PTP functionality, and allows

to detect attack on PTP. A final evaluation for the presented extension was done

using Omnet++ simulation, where the timeliness of attack detection and introduced

network overhead were estimated. The collected results supported the usefulness of

the approach, and its efficiency in detecting cyber attacks against PTP.

On the other hand, the solutions presented in Chapters 3, 4, and 5 provide a

valuable opportunity to develop and assemble a time synchronization security solution

for the smart grid especially at the substation level. Indeed, the PTP extension

presented in 5 can be merged with the mitigation scheme presented in 4 to enable the

detection and mitigation of different attacks detected through the NTR functionality.

Moreover, an additional layer of security is enabled through the introduced SNMP

MIBs, thus protecting PTP against insider threats through a compromised network

component. However, the realization of this approach is challenged by the ability to

test it and evaluate its outcome in a substation environment, while using a real setup

that mimics the substation and its components. Although we have a Hardware-In-

the-Loop (HIL) testbed for smart grid security at the Security Research Center, this

challenge persists due to the inability to modify existing PTP implementations on

the available hardware due to restrictions imposed by the manufacturers. Moreover,

applying the proposed solutions to existing deployment of PTP remains a major
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challenge due to the difficulty of incorporating such changes to devices installed in

the field. Yet, those modifications can be taken into consideration for upcoming

versions of PTP. Nevertheless, the solutions proposed can be adapted as guidelines

to develop a security metric that reflects the security posture of time synchronization

through PTP at the substation level. Indeed, we consider such a metric as part of

our future research goals.

Finally, driven by the use of time synchronization in wide area monitoring net-

works, we addressed the vulnerability of such systems to time synchronization based

attacks. We identified an attack that exploits relative data alignment scheme used by

phasor data concentrators. The defined attack uses time synchronization as an attack

surface to manipulate the timing of a selected phasor measurement unit, and later

poison the PDC collecting measurements from this PMU. The identified vulnerability

is formulated using a linear program that identifies the PMU and PDC to be targeted,

along with the suitable attack vector while considering the overall system observabi-

lity. As a direct impact of this attack, the poisoned PDC will invalidate and drop

measurements collected from other PMUs. The dropped measurements will conse-

quently result in a drop in system observability, and hence put the system under risk.

The formulated problem was evaluated on different IEEE benchmark systems, and

validated using HIL simulation of the smart grid. The collected results demonstrate

the PDC relative data alignment scheme to the identified vulnerability.

7.2 Future Work

Over the past two decades, the research community has been actively setting the path

for the grid of the future, a smart, green, failure and attack resilient, and self-healing

grid. We have witnessed the birth of advanced technologies and applications that

enable the migration towards the smart grid. Those applications and technologies
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are driven by one pulse, accurate time synchronization.

In this thesis, we have addressed several challenges associated with a prominent

time synchronization mechanism for the smart grid. The final section of this thesis

highlights potential challenges and directions for future research.

7.2.1 PTP Usage in Wide Area

Although PTP is recommended for use at the substation level, and GNSS is more

favorable for synchronization in wide area networks, securing the use of PTP in wide

area networks improves the grid resiliency and avoids having GNSS as a single point

of failure. PTP use in wide area networks is faced by many challenges, mainly the

inability to ensure a symmetric path and thus accurate time synchronization. In

addition to that, PTP will be faced by the need to authenticate devices available in

its network especially with the illustrated vulnerability of PTP to fake timestamp

injection through a compromised clock. This calls for a revised PTP authentication

scheme, and innovative solutions that protect the PTP network from compromise

through delay attacks.

On the other hand, the presence of PTP in wide area networks along with GNSS

provides an excellent opportunity to incorporate data collected from both systems

into cyber attacks prevention, detection, and mitigation mechanisms. This is mainly

driven by the ubiquitous nature of GNSS, and the ability of PTP to use existing

communication deployments rather than dedicated cabling.

7.2.2 Characterization of Attacks Impact on Power Systems

The impact of attacks on time synchronization varies based on the application proces-

sing measurements that are affected by the attacks. There is a need to characterize

152



this impact to devise suitable detection and mitigation strategies. This characte-

rization can be achieved by experimenting with different attack models and power

applications through HIL simulation, and later an analysis of the observed system

behavior and response to the different attacks.

7.2.3 Time Synchronization Data Analysis

Analyzing the data generated from time synchronization whether through GNSS or

PTP is one of the threads worth exploring. Time synchronization is a very frequent

activity that generates a lot of data depending on the receiving clock quality, and

the communication medium status. This data is affected by attacks, and through

developing an environment aware approach that can relate the collected data with

the network and system status at real time, we might be able to detect the occurrence

of attacks. Moreover, by learning the synchronization data variations as imposed by

network and system conditions, we can create models for the expected synchronization

behavior and detect any anomalies that violate those expectations. Such a model,

when linked with models developed for other system behavior, will aid in developing

a defense mechanism for cyber attacks on time synchronization, and make way for a

secure time synchronization mechanism.
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Appendix A

New SNMP Objects

PTPClockTimestamp : := TEXTUAL CONVENTION

STATUS cur rent

DESCRIPTION ”Timestamp in Sync message :

seconds ( 6 byte i n t e g e r )

f o l l owed by nanoseconds

( 4 byte i n t e g e r ) . ”

SYNTAX OCTET STRING(SIZE (10 ) )

PTPSyncSeqNumber : := TEXTUAL CONVENTION

STATUS cur rent

DESCRIPTION ”The sequence number o f

r e c e i v ed Sync message . ”

SYNTAX Unsigned32 ( 0 . . 6 5 5 3 5 )

PTPTimestampHash : := TEXTUAL CONVENTION

STATUS cur rent
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DESCRIPTION ”Hash o f the timestamp

va lues . ”

SYNTAX OCTET STRING(SIZE (32 ) )

PTPSeqBitmask : := TEXTUAL CONVENTION

STATUS cur rent

DESCRIPTION ”The bitmask o f r e c e i v ed

sequence numbers used in

the hash (up to 16 ) . ”

SYNTAX BITS {

b i t 0 ( 0 ) ,

b i t 1 ( 1 ) ,

b i t 2 ( 2 ) ,

b i t 3 ( 3 ) ,

b i t 4 ( 4 ) ,

b i t 5 ( 5 ) ,

b i t 6 ( 6 ) ,

b i t 7 ( 7 ) ,

b i t 8 ( 8 ) ,

b i t 9 ( 9 ) ,

b i t10 (10 ) ,

b i t11 (11 ) ,

b i t12 (12 ) ,

b i t13 (13 ) ,

b i t14 (14 ) ,

b i t15 (15)}
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ptpTimestampTable OBJECT TYPE

SYNTAX SEQUENCE OF ptpTimestampEntry

MAX ACCESS not a c c e s s i b l e

STATUS cur rent

DESCRIPTION ”Table conta in ing GMC’ s

timestamp in fo rmat ion . ”

: :={ i eeeC37238Objects 8}

ptpTimestampEntry OBJECT TYPE

SYNTAX PTPTimestampEntry

MAX ACCESS not a c c e s s i b l e

STATUS cur rent

DESCRIPTION ” Informat ion about sequence

number and timestamp o f a

s i n g l e Sync message . ”

INDEX {ptpTimestampSeqNum}

: := {ptpTimestampTable 1}

PTPTimestampEntry : := SEQUENCE{

ptpTimestampSeqNum PTPSyncSeqNumber ,

ptpTimestampValue PTPClockTimestamp}

ptpTimestampSeqNum OBJECT TYPE

SYNTAX PTPSyncSeqNumber

MAX ACCESS read only
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STATUS cur rent

DESCRIPTION ”Sync message

sequence number . ”

: := {ptpTimestampEntry 1}

ptpTimestampValue OBJECT TYPE

SYNTAX PTPClockTimestamp

MAX ACCESS read only

STATUS cur rent

DESCRIPTION ”Sync message timestamp . ”

: := {ptpTimestampEntry 2}

ptpTSHashTable OBJECT TYPE

SYNTAX SEQUENCE OF ptpTSHashEntry

MAX ACCESS not a c c e s s i b l e

STATUS cur rent

DESCRIPTION ”Table conta in ing PTP s lave ’ s

hashes f o r r e c e i v ed timestamps . ”

: := { i eeeC37238Objects 9}

ptpTSHashEntry OBJECT TYPE

SYNTAX PTPTSHashEntry

MAX ACCESS not a c c e s s i b l e

STATUS cur rent

DESCRIPTION ” Informat ion about the

r e c e i v ed timestamps . ”
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INDEX {ptpTSHashFirstSeqNum}

: := {ptpTSHashTable 1}

PTPTSHashEntry : := SEQUENCE{

ptpTSHashFirstSeqNum PTPSyncSeqNumber ,

ptpTSHashBitmask PTPSeqBitmask ,

ptpTSHashValue PTPTimestampHash}

ptpTSHashFirstSeqNum OBJECT TYPE

SYNTAX PTPSyncSeqNumber

MAX ACCESS read only

STATUS cur rent

DESCRIPTION ”Sequence Number o f

f i r s t message in block . ”

: := {ptpTSHashEntry 1}

ptpTSHashBitmask OBJECT TYPE

SYNTAX PTPSeqBitmask

MAX ACCESS read only

STATUS cur rent

DESCRIPTION ”Bit mask o f the sequence

numbers in block . ”

: := {ptpTSHashEntry 2}

ptpTSHashValue OBJECT TYPE

SYNTAX PTPTimestampHash
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MAX ACCESS read only

STATUS cur rent

DESCRIPTION ”Hash o f r epor ted

timestamps . ”

: := {ptpTSHashEntry 3}
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Appendix B

PTP Extension Validation

B.0.1 Verification Environment

To verify the soundness of our approach, we followed a formal modeling and verifica-

tion approach. We built a model of the extended PTP protocol using timed automata,

then simulated the model, and formally verified most relevant properties using model

checking. Timed Automata are finite state machines augmented with clocks and time

constraints. A system modeled using Timed Automata consists of a network of pro-

cesses. A process is a timed automaton where states are called locations. Transitions

between locations define how the system behaves. The simulation step consists of

running the system interactively to check that it works as intended [25]. However,

this step is not conclusive as it does not allow to cover all possible behaviors of the

system. Then we can a model checker to check some reachability, liveness and safety

properties. Model-checking is basically an exhaustive search that covers all possible

dynamic behaviors of the system [25].

The modeling and verification platform we used is the publicly available tool,

UPPAAL [70]. UPPAAL is a tool box for modeling and verification (via automatic

model-checking) of real-time systems [25]. A system in UPPAAL is a collection of
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processes, each represented by an automaton. Transitions, controlled by conditions

(guards), are used to change state. Control on transitions is performed by guards

and synchronization. The synchronization mechanism in UPPAAL is a hand-shaking

synchronization: two processes take a transition at the same time, one will have an a!

and the other an a?, with a being the synchronization channel [25]. With transitions,

updates on variables or reset of clocks are possible.

B.0.2 PTP Model

The proposed solution model has been implemented in UPPAAL as a network of timed

automata that synchronize over communication channels. The model is composed of

the following parts:

1. Declarations.

2. The System Clock model.

3. The Slave model.

4. The Master model.

5. The Network/Attacker model.

6. The NTR model.

7. Systems declarations.

We will detail each of the mentioned model parts.

Declarations The declaration part is where all global variables, constants, clocks

and channels are listed. Constants are used to configure parameters of the model

such as the number of slaves, the path delay interval, etc. Channels are the means
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ticking

x<=1
x==1
tick!

incTime(),
x=0

Figure B.1: The system clock component.

synchronized

ticking

syncReceived

reportRequest?
sendResp=true

tick?
slaveTime[slaveID]+=1

synchronize()

selectedToSendReport&&reportPeriodCounter==reportPeriod
|| sendResp

reportSlaveToNet[slaveID]!

reportPeriodCounter=0,
sendResp=false

drift : int[minTimeDrift,maxTimeDrift]
syncChan?

slaveTime[slaveID]+=drift

reportPeriodCounter<reportPeriod
&& !sendResp

Figure B.2: The slave component.

of synchronization between the different components of the system. Variables store

quantities visible to the different processes.

The System Clock model The system clock model presented in Fig. B.1 is at

the heart of our model. The system clock ticks to measure absolute time, and other

system components that are time aware tick with it. Thus, the ticks are broadcast

via the channel ‘tick’, and the other components (including slaves) synchronize via

this channel. However, each of these slaves may drift at a specific pace as we will

see later. In Fig. B.1, the initial state is depicted with a double circle. The cyan

expression is the synchronization channel name. The green expressions are guards

that have to be true in order for the corresponding transition to be enabled. The blue

expressions are assignments to variables and execution of pre-defined functions, that

are executed when the corresponding transition is taken.
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The Slave model The slave model presented in Fig. B.2 represents the slave

behavior in our system. This model is used as a template to instantiate multiple

slaves in the system. At the instantiation of a slave, parameters representing the slave

identitiy (slaveID), assignment to send reports to the NTR (selectedToSendReport),

frequency of sending reports(reportPeriod), etc are specified.

The slave model updates its local timing over the ‘tick’ channel, receives the master

Sync messages over the ‘syncChan’ and transits between states to synchronize its

clock. When in a committed state, state containing the letter ‘C’, the only possible

transition is always the one going out of the committed state. The committed state

has to be left immediately as opposed to other normal states. Using such states

allows the representation of actions that are accomplished before the elapse of any

time as in the case of synchronizing the slave clock using Sync messages. Upon

synchronization, and based on local guards, the model decides the next transition to

take place. Such transitions include issuing a Report to the NTR upon fulfillment of

predefined frequency, or respond to NTR report request processed in earlier state.

The Master model The master model is presented in Fig. B.3. The master ticks

with the clock, and broadcasts a Sync message over the network at a constant pace

specified by the syncPeriod constant. The timestamp associated with this message is

saved in a global variable that may be accessed by all devices receiving this message.

Moreover, this timestamp can be attacked when we need to model an attack on the

master clock.

The Network model To model the asynchronous communication that happens

over the network, and the impact of attackers on it, we introduce different components

for different network connections. The network connection between the master and

each slave, as well as the connection between the NTR and each slave are modeled in
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syncSent

sendingSync

ticking

syncPeriodCounter==syncPeriod-1
tick?

syncPeriodCounter<syncPeriod-1
tick?

syncPeriodCounter+=1

a : int[minMasterAttackDelay,
minMasterAttackDelay]

syncMasterToNet!

attackDelay=a,
syncPeriodCounter=0,
syncTime=time+attackDelay

Figure B.3: The master component.

pathDelayComputed

sending

idle pathDelay==0

pathDelay>0

pathDelayCounter==pathDelay-1
tick?

pathDelayCounter<pathDelay-1
tick?

pathDelayCounter+=1

a : int[minFwdAttackPathDelay,maxFwdAttackPathDelay]

slaveSyncChan!

attackPathDelay=a,
reportedPathDelayNetToSlave[slaveID]=pathDelay+attackPathDelay

p : int[minPathDelay,maxPathDelay]
syncMasterToNet?
pathDelay=p,
pathDelayCounter=0

Figure B.4: The master to slave network component.

a similar manner, yet using distinct components.

The master to slave network model is presented in Fig. B.4. It resembles the way the

network handles Sync messages broadcast by the master. This component takes the

ID of the slave it is connecting to (slaveID), and the channel to synchronize with the

Master and receive the Sync message as input. The model selects a non deterministic

path delay from a pre-defined interval, and accordingly delivers the Sync message after

the elapse of this time over the network while in the state ‘sending’. Once the system

is built, an instance of this component is created for each slave in the network. This

allows to have different path delays in the delivery of Sync messages to different slaves.

Morover, using this network model, the attack delay can be performed through the

attackPathDelay variable which is non deterministically selected from a predefined

interval.

The network connecting the slaves to the NTR is identical to that in Fig. B.4,
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checkMasterTime

MasterNotSync

idle
masterTimeChecked

checkSync()

offset == 0

offset != 0

syncChan?

Figure B.5: NTR model - master component.

singleClusterProblem

multiClusterProblem

slaveProblem

reportCheckEnd

reportCheckBegin

idle

slaveID==witnessSlaveID 
&& !slaveTimeProblem

slaveID==witnessSlaveID 
&& slaveTimeProblem

reportRequest[witnessSlaveID]!
slaveTimeProblem
&& slaveID!=witnessSlaveID

checkReport()

reportNetToNTR[slaveID]?

!slaveTimeProblem

Figure B.6: NTR model - slave component.

however the synchronization channel is used to synchronize the delivery of messages

from the slaves to the NTR.

The NTR model The NTR is modeled in two parts. The part that monitors

the master timing through Sync messages is shown in Fig. B.5, while the second

component receives and processes reports from slaves and is shown in Fig. B.6.

The NTR component assigned to the master functionality receives Sync messages

sent by the master over the ‘syncChan’. Using the timestamp and the path delay

associated with this message, it computes an offset in the ‘checkSync()’ method. Ba-

sed on the computed offset, the model takes the suitable transition. This component

goes into the state ‘MasterNotSync’ when the offset computation indicates an error

in the master time.

On the other hand, the NTR-slave component periodically receives reports from
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selected slaves in the network over the associated network synchronization channel.

Each Time the NTR receives a report, it checks it for anomalies in the ‘checkReport()

procedure. If an anomaly is detected, the NTR requests a report from a witness slave

to check if the attack is affecting more than one cluster or not. This request is

sent over the reportRequest[ ]! channel, associated response is received later through

the network channel, and processed in a similar way to that of the report. The

NTR identifies this as a response if it is sent by the ‘witnessSlave’. Based on the

outcome of this communication, the NTR-slave component transits into different

states each indicating the presence of a timing problem at different levels. Those

states, as can be seen in Fig. B.6, are ‘slaveProblem’, ‘singleClusterProblem’, and

‘multiClusterProblem’.

System Declarations In this part of the model, the configuration of the system

is set by creating instances of all participating components and connecting them

accordingly.

B.0.3 Verified Properties

We verified two types of properties on the built model.

1. A[] p: this property validates that the proposition ‘p’ always holds for all paths

in the system.

2. p → q: this property validates that whenever propositions ‘p’ holds, proposition

‘q’ will eventually hold.

183


