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ABSTRACT The features produced by the layers of a neural network become increasingly more sparse as
the network gets deeper and consequently, the learning capability of the network is not further enhanced as
the number of layers is increased. In this paper, a novel residual deep network, called CompNet, is proposed
for the single image super resolution problem without an excessive increase in the network complexity. The
idea behind the proposed network is to compose the residual signal that is more representative of the features
produced by the different layers of the network and it is not as sparse. The proposed network is experimented
on different benchmark datasets and is shown to outperform the state-of-the-art schemes designed to solve

the super resolution problem.

INDEX TERMS Image super resolution, residual learning, deep learning.

I. INTRODUCTION

Single image super resolution, which tries to recover the
information lost because of some degradation process, is one
of the challenging problems due to its ill-posed nature.
Generally, the degradation process in images caused by blur-
ring (due to the camera lens) and downsampling (due to
the finite number of CCD sensors) could be modeled as a
decimation process. Thus, a lossless reconstruction of the
ground truth image from its degraded version is not possible.
A wide range of techniques have been used to solve a single
image super resolution problem. Some of the methods utilize
a priori knowledge of the specific characteristics in images
and constrain the solution of the ill-posed problem leading to
a unique solution. For instance, the assumption that the high
frequency content of generic images is limited [1] could be
used to achieve a unique solution to the problem. Another
assumption to achieve a unique solution to this problem is
the availability either of the low resolution dictionary or of
the high resolution dictionary [2] to optimize the other one.
However, these methods try to solve this ill-posed problem,
which is essentially nonlinear, by using linear techniques.
There are methods such as in [3], that have used nonlinear
filters to reconstruct a high resolution image from its low

resolution version. Although this mapping from low to high
resolution spaces is nonlinear, the methods do not provide
the best results, since the mapping is not end-to-end. On the
other hand, the neural network schemes have the capability
of providing an end-to-end mapping.

A neural network by stacking more layers, each followed
by a nonlinear activation function, creates a deep network,
which increases the learning capability of the network and
consequently improves its performance. In view of this and
the availability of adequate computational resources, deep
learning techniques have become very attractive in com-
puter vision and various other fields. Convolutional neural
nets [4], [5], which are very simple to implement, form a
specific category in deep neural networks that have been
demonstrated to provide very promising results [6]-[13].
In fact, deep convolutional neural nets try to extract the
most important features to minimize the loss between the
estimated signal and the ground truth, and therefore, provide
exceptional performance.

The super resolution convolutional neural network
(SRCNN) proposed in [14] is one of the pioneering works
in deep neural networks. SRCNN extracts feature vectors of
the bicubic interpolated low resolution image and maps them
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onto a high resolution space. Then, it reconstructs a high res-
olution image from the feature vectors in the high resolution
space. SRCNN outperforms the sparse representation-based
super resolution [2]; however, it has some deficiencies.
It requires considerable number of back-propagations for
training a shallow network. Since the network is shallow
(generally a three or four layer network), it is difficult to learn
the complex structures such as delicate edges. Furthermore,
the resulting high resolution image suffers from ringing effect
around the edges. In addition, if the nonlinear mapping is
carried out by having more layers, the final feature vectors
suffer from increased sparsity that hinders in providing an
appropriate reconstruction.

The fast super resolution convolutional neural net (FSR-
CNN) of [15] is a modified version of SRCNN, in which
after extracting features from the low resolution image, the
dimension of the low resolution feature vectors is reduced and
the new feature vectors are transformed onto a high resolution
space. Consequently, the dimension of the high resolution
feature vectors is increased to that of the low resolution
feature vectors. Finally, reconstruction and upsampling are
carried out through a deconvolutional layer. Since FSRCNN
employs several trainable interpolation kernels instead of just
one fixed bicubic kernel, the performance is improved over
that of SRCNN. Although FSRCNN is faster than SRCNN,
it is still shallow and cannot learn complicated structures.

The sparse coding network (SCN) of [16] has been intro-
duced to implement the sparse representation-based super
resolution scheme of [2] via neural nets. It first extracts the
features of a bicubic interpolated low resolution image with a
convolutional layer. Then, the low resolution feature vectors
are fed into a learned iterative shrinkage and thresholding
algorithm (LISTA) [17] to yield sparse vectors. Next, the
sparse vectors thus obtained are multiplied by the patches in
a high resolution dictionary through a linear layer to form
high resolution feature vectors. Finally, the estimated high
resolution image is reconstructed from the high resolution
feature vectors. It should be noted that SCN has the same
steps as that of SRCNN, that is, feature extraction, nonlinear
mapping and reconstruction, but with a different implementa-
tion. SCN contains only five layers and is still too shallow for
learning the nonlinear features of the high resolution images.
A modified version of SCN has been proposed in [18] and
is referred to as mixture SCN (MSCN) that employs some
SCNss parallel to one another for estimating the various high
resolution images and provides an enhanced performance.
The complexity of MSCN is comparable to that of SCN, and
yet the depth of the network is not changed.

The very deep super resolution (VDSR) of [19] is one of
the first studies that employs the idea of residual learning in
deep networks for the image super resolution problem. VDSR
uses the network to learn a residue between the ground truth
and bicubic interpolated image and since these two images are
correlated, the residual image has less amount of details. This
property facilitates the learning process of VDSR. VDSR
imitates the visual geometry group network (VGG19) of [20]
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in terms of the network depth. As the depth of VDSR is
increased, the transformation that is carried out on the fea-
tures becomes more nonlinear, and hence, the performance of
the network is improved. However, similar to other deep net-
works, if the depth in VDSR is increased to a very large value,
the residual image suffers from an increased sparsity and the
performance is not further enhanced. Nevertheless, VDSR
outperforms all the aforementioned networks for image super
resolution in terms of both the objective and subjective met-
rics in view of its superior learning capability due to the use
of residual image and its relatively larger depth.

Deep networks do not progressively improve the perfor-
mance as the network is made more deep, since after a certain
number of layers the processed results become so sparse as
not to include much useful information about the image. It has
been reported in [30] that: “As CNNs become increasingly
deep, a new research problem emerges: as information about
the input or gradient passes through many layers, it can vanish
and wash out by the time it reaches the end (or beginning)
of the network”. ResNet [6], or its extended version [7], is a
scheme that could facilitate the training process of very deep
networks by controlling the aforementioned sparsity. It does
so by modifying the network as a cascade of residual blocks.
These residual blocks reduce the sparsity of the deeper layers
that are most adversely affected by the sparsity. A network
referred to as light-weight residual network for the super
resolution problem has been proposed in [21] by making the
network deeper and by taking care of the sparsity of the
residual image using the residual blocks of ResNet in an effort
to improve the performance that of VDSR. It has been shown
in [6] that residual blocks prove to be quite effective for
very deep networks. Thus, in order to reduce the complexity
of the deep network, in [21] the widths of the layers are
increased only progressively from a small value of 16 for
the initial layers to finally a value of 256 for the latter ones.
Although this latter effort in [21] has been made to reduce the
complexity of the network, its complexity still is considerably
too high to outperform VDSR.

Thus, it is clear from the above review that deep networks
facilitate the learning processes in view of their ability to
introduce more nonlinearity. However, as networks are made
more deep, the output of the deeper layers become progres-
sively more sparse. This is counterproductive in that it leads
to increased sparsity in the deeper layers and thus hinders
the learning ability of the network. On the other hand, use of
residual blocks in very deep networks such as the one in [21],
effectively controls the sparsity problem of very deep net-
works, but this control of sparsity is achieved at the expense of
a substantially higher complexity of these networks. In view
of this problem, it is imperative to develop techniques that
enhance the learning process of the networks without making
them very deep. In this paper, a new single image super reso-
lution scheme is developed through a mechanism of residual
learning of a deep convolutional neural network. The main
idea of the proposed scheme is to diminish the effect of the
progressively increasing sparsity in the outputs of the deeper
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layers, while still benefitting from the enhanced nonlinearity
of the deep network in obtaining the residual image. The main
contributions of this paper can be summarized as follows:

o A new scheme for the single image super resolution
problem is proposed by introducing a deep neural net-
work architecture, CompNet, to effectively facilitate the
learning process of the residual signal.

o A new scheme is devised to compose a rich residual
signal by concatenating the feature maps selected from
a suitably selected layers of the network.

o The design of CompNet has aimed at keeping the com-
plexity of the deep network modest.

« Extensive experiments are carried out to demonstrate the
effectiveness and superiority of the proposed CompNet
over the state-of-the-arts of comparable complexity on
three benchmark datasets.

The paper is organized as follows: Section II is dedicated
to an overview of the works related to this study. In this
section, three approaches of super resolution, namely, image
sparse representation-based approach, shallow network
approach and deep network approach, are briefly reviewed.
In Section II1, the scheme of the proposed CompNet for super
resolution is introduced. The motivation and theoretical jus-
tifications for the network topology is described. The scheme
used for the backpropagation and training process is also
discussed. Section IV provides the experimental results of
CompNet. The results on the effect of the different hyper-
parameters, such as width, depth, spatial support and acti-
vation function, on the performance of the network is also
investigated in this section. Finally, some conclusions of this
study is provided in Section V.

Il. RELATED WORKS

In this section, a classical and some of the deep
learning-based image super resolution studies are briefly
reviewed. These schemes yield some promising results when
applied to various benchmark datasets on super resolution
with different upscaling factors.

A. SPARSE REPRESENTATION BASED SUPER RESOLUTION
Sparse representation theory [22] has been widely utilized in
computer vision, from classification [23], [24] to regression
problems [2], [25]. In [2] the application of sparse represen-
tation in single image super resolution is proposed. Accord-
ing to sparse representation based super resolution, the raw
bicubic interpolated low resolution patch, y € IR™, could
be represented as a linear combination of some samples in
an overcomplete low resolution dictionary, and therefore, the
high resolution patch, x € IR™, is reconstructed from the
high resolution version of these samples. The transformation
from low to high resolution space is carried out with the help
of a sparse vector & € IR" as follows:

x = Dya such that @ = argmin(||y — Dys||2+y||s||1) €))]
s

where Dy and D, are, respectively the low and high resolution
dictionaries, and y is a regularization parameter.
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B. SUPER RESOLUTION USING SHALLOW
CONVOLUTIONAL NEURAL NETWORKS

In [14], a scheme for single image super resolution has been
developed using convolutional layers. A low resolution fea-
ture vector y € IR™ is extracted from a bicubic interpolated
low resolution image by the first convolutional layer of the
network. Next, this feature vector is transformed into a high
resolution feature vector x € IR™ through another one or
two convolutional layers. Since each of these convolutional
layers is followed by a ReLU [12], [13], the mapping from
low to high resolution space is considered as a nonlinear
mapping. Generally, it is assumed that the dimension of
the high resolution feature vectors is lower than that of the
corresponding low resolution feature vectors, i.e. m; > my.
Finally, the high resolution image is constructed from the
high resolution feature vectors by the last convolutional layer.
Thus, the architecture of the network is fully convolutional,
the scheme can be applied on an image of arbitrary size.

In [16], the relation given by (1) has been implemented via
linear and convolutional layers and the new scheme is referred
to as sparse coding network(SCN). However, SCN utilizes the
feature vectors of low resolution patches instead of their pixel
intensities and yields the feature vectors of high resolution
patches. Finally, the high resolution image is obtained from
the high resolution feature vectors.

C. DEEP NEURAL NETWORKS FOR

IMAGE SUPER RESOLUTION

In this subsection, three recent super resolution schemes
based on deep neural networks with a large number of layers
are reviewed. These schemes employ various strategies in
designing their structures. The very deep super resolution
(VDSR [19]) utilizes a deep network to predict a residual
image. The deep edge guided recurrent residual learning
(DEGREE) [26] employs the edges of the input image to
appropriately reconstruct the high frequency content in a high
resolution image. The end-to-end deep and shallow network
(EEDS) [28] utilizes a combination of deep and shallow net-
works in order to reduce the shortcomings of deep networks.

In [19], a very deep neural network referred as to VDSR,
which significantly outperforms SRCNN [14] and SCN [16],
has been introduced for the super resolution problem. The
output of this deep network is the residual of the ground
truth and a bicubic interpolated version of the low resolution
image. The residual signal, r = X — Y, X and Y being
the high resolution and the bicubic upscaled version of the
low resolution image, respectively. The main advantage of
this residual deep network is that despite the residual image
being sparse, it effectively enhances the learning process of
the network.

Another work that uses deep networks for image super
resolution is the deep edge guided recurrent residual learn-
ing (DEGREE) [26] that is based on residual learning.
In DEGREE, first a low resolution image (Y) and its
edges (Ey) are fed to a recurrent network. Next, the output
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FIGURE 1. CompNet architecture. The symbols Conv., BN and Act. represent the convolution, batch normalization and activation operations,
respectively. The interpolated image at node A is fed to the network. Between the nodes B and C, d; convolutional layers are placed. This is
followed by another set of d, convolutional layers between the nodes C and D and a single convolutional layer between the nodes C and E. The
feature maps produced at the nodes B, E and D are then concatenated through a block represented by Con. Feature maps at node F are fed to the
last convolutional layer placed between the nodes F and G. Finally, the interpolated image from node A and the result from the node G are added

to produce the estimated high resolution image.

of the recurrent net (P) is passed on to a convolutional layer
to yield the edges of the high resolution image (E,). Finally,
the concatenation of P and E, is inputted to another convo-
lutional layer to obtain a residual (r) of high and low reso-
lution images. Although this network provides good results,
it does not outperform VDSR for some datasets like for
BSD100 [27].

In [28], a combination of deep and shallow networks
have been used to design an end-to-end deep and shal-
low (EEDS) network for image super resolution. In this study,
it has been shown that the shallow network can recover
the illumination lost by the deep part of network, while
deep network retrieves its high frequency components. As in
DEGREE [26], although EEDS outperforms SRCNN and
SCN considerably, it does not supersede the performance
of VDSR.

IIl. COMPNET FOR SINGLE IMAGE SUPER RESOLUTION
In this section, our proposed CompNet for image super res-
olution is developed. Here, the design of a deep network
to diminish the sparsity of the deeper layers for enhanc-
ing the learning the residue between the ground truth and
bicubic interpolated version of the low resolution images is
carried out.

A. COMPNET: ARCHITECTURE

Learning the residual signal is the goal of the networks that
are based on residual learning. The residual signal is the
difference between the original high resolution image and the
interpolated version of the low resolution image. The pro-
posed deep network, referred to as CompNet, consists of sev-
eral convolutional layers each followed by a ReLU activation
function. The architecture of the network is shown in Fig. 1.
The interpolated low resolution input signal at node A is fed to
the first convolutional layer of this network, which produces
at node B the first set of feature maps of the interpolated
low resolution image. Between the nodes B and C, a total
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of d; convolutional layers are placed. This is followed by
placing another d> convolutional layers between the nodes C
and D and a single convolutional layer between the nodes C
and E. The feature maps produced at the nodes B, E and D
are then concatenated through a block represented by Con.
Thus, node F represents a set of concatenated feature maps,
which is fed to the last convolutional layer placed between
the nodes F and G. Finally, the interpolated image from node
A and the result from the node G are added to produce the
final estimated high resolution image. The signal at node G,
therefore, represents the estimated residual image. All of the
layers of the network produce different feature maps of the
interpolated image.

Let u, v and w be the feature vectors at nodes B, C and D,
respectively, each produced by the convolutional layers and
activation functions, say ReLU. As one progresses deeper
into the network, the features produced become more sparse
and they are the results of the network undergoing increas-
ingly more nonlinearity. Thus, in the feature vectors, u are
the least sparse and they have been produced by the network
at anode where it has undergone the least nonlinearity. On the
other hand, the converse is true for the feature vectors w.

However, depending on the value of d, the feature vectors
represented by v have these two characteristics in between
that of # and w. Thus, a feature vector that is composed by
using these three feature vectors can be expected to be a better
representative of the spectrum of an estimated residual image.
In view of this expectation, in this investigation, the three
types of vectors are concatenated as

c=|v @

Let my, m’2 and mj3 be the numbers of slices to produce the
tensors at nodes B, C and D, respectively, i.e. u € IR™,
v € IR" and w € IR™. Then, ¢ € IR™*™M3 Since
the sparsity of v is in between that of u and w, and amount
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of the nonlinearity used to produce the feature vectors v is
also in between that applied to produce u and w, we propose
a dimensionality reduction of v from m), to my by placing
another convolutional layer between nodes C and E before
carrying out the concatenation operation. The function of
the last convolutional layer is selection of the features from
u, v and w in constructing the estimated residual image.

The final feature vector, ¢ in CompNet is expected to be
less sparse in comparison to that provided by VDSR [19].
However, the feature vectors ¢ experiences about the same
amount of nonlinearity as that experienced by VDSR.

In the proposed network, a batch normalization (BN) is
performed between the convolution operations and activa-
tions in each layer in order to normalize the distribution of the
features produced by the activation operation of the previous
layer. The batch normalization is performed by using the
technique of [31] as

=R N
o
yi = vixi + Bi 3)

where x; is an element of a tensor corresponding to the ith
sample in the batch, 1 and o are the mean and standard
deviation corresponding to this element for all the samples of
the batch of size Np, y; and B; are trainable parameters of BN
corresponding to the ith sub image in the batch. Since, a batch
normalization is supposed to reduce the internal covariance
shift, that is produced by its previous activation function,
the first layer is not required to have a batch normalization
operation.

B. COMPNET: HYPERPARAMETERS

Each of the layers of the segment of the network shown in
blue color between the nodes B and D uses 64 filters, each of
support size 3 x 3. Since the purpose of the layer in the red
segment of the network is dimensionality reduction, this layer
employs only 32 filters each of spatial support size of 1 x 1.
Also, since our objective is to include in the concatenation
process the feature vectors whose characteristics of sparsity
and nonlinearity are in between of those at nodes B and D,
we chose di = d» = d and we set d = 9 so that network
is sufficiently deep. The final convolutional layer employs a
single filter of size 3 x 3 x 160, for the reconstruction of the
residual image. Each of the convolutional layers except the
last one are followed by a ReLU activation function.

C. COMPNET: TRAINING

As in other super resolution schemes that are based on deep
learning, in our scheme also sub-images are used for the
training of CompNet. Sub-images of size 48 x 48 with no
overlap are used for the training. However, since CompNet
is a fully convolutional network, it can be trained and tested
on images of any size. The input image is normalized to
assume values in the range [0, 1]. Also the images are trans-
formed onto the YCbCr color space. Since human eyes are
more sensitive to the illumination information, the luminance
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channel (Y) is separated and only this channel is inputted
to the network through the first layer of CompNet. The
chrominance channels, Cb and Cr, are bicubic interpolated
and then merged with the estimated output to construct a high
resolution estimation in the YCbCr color space. Since data
augmentation [33] is one of the very important processes in
machine learning for boosting the performance of a network,
flipped and rotated versions of the training examples are
utilized to enrich the training dataset. In addition, multi-scale
training is utilized for CompNet, and therefore, the training
dataset consists of samples upscaled by various factors. This
process not only removes the need of individual networks for
each upscaling factor, but as has been shown in [19], it also
improves the robustness of the network that leading to a better
performance.

The effective receptive field in CompNet, when the number
of layers has a default value of 20 and the filter spatial support
of 3 x 3, is 41, that it is a little less than the size of the
input sub-image. We have noticed that increasing the depth of
CompNet over its default value of 20 does not improve its per-
formance even though the corresponding effective receptive
field remains within the size of the sub-images. Therefore,
for the proposed CompNet, we keep the depth at 20 layers.
For initializing the weights of our network, the method due to
He et al. [34], which is based on the layer hyper parameters
and the use of the ReLLU activation function, is used. In this
method, the kernel with a spatial support of s x s is randomly
initialized with a Gaussian distribution having a zero mean
and a variance of %, where 7 is the layer width.

Since the main objective metric for evaluating the single
image super resolution is peak signal-to-noise ratio (PSNR =
10 loglo(i[s—ssé), where MSE represents the mean squared
error), the loss function used by CompNet is the mean squared
error given by

Np

1
L(®) = ]7b2||60mp(yj, ®) — x> +¢lel* )
j=1

where x; and y; are, respectively, the jth ground truth and
low resolution sub-images in the batch of size N, ¢ is a
weight decay parameter, O is the set of parameters in Comp-
Net and Comp(y;, ®) is the estimate of the high resolution
sub-image. For updating the parameters ®, the stochastic
gradient descent (SGD) algorithm using the Nestrov accel-
eration scheme [35] is adopted. The parameters of a layer are
updated as

0() =6 —1)— nm(t)

m(t) = tm(t — 1) + g(¢)

g(t) = VoL (O — 1) — num(r — 1) &)
where t and n are the momentum parameter and learning
rate, respectively. In our study, the momentum parameter and
initial learning rate are set as 0.9 and 0.1, respectively and

the learning rate is deceased by factor of 0.1 after every
20 epochs. The skip connections that are used for feature
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TABLE 1. PSNR (SSIM) Values Resulting from Applying CompNet and Various State-of-the-art Methods to Images of Three Datasets.

Dataset | Scaling Bicubic A+ [43] REL [44] SRCNN CSCN VDSR DEGREE CompNet
<2 33.66 (0.9299) | 36.54 (0.9544) | 36.54(0.9537) | 36.66 (0.0542) | 37.00 (0.9557) | 37.53 (0.9587) | 37.54(0.0584) | 37.58 (0.9596)

Sets <3 30.39(0.8682) | 32.58(0.9088) | 32.43(0.9057) | 32.75(0.9090) | 33.18 (0.9153) | 33.66(0.9213) | 33.72 (0.9204) | 33.67(0.9219)
x4 28.42(0.8104) | 30.28(0.8603) | 30.14(0.8548) | 30.45(0.8628) | 30.94(0.8755) | 31.35(0.8838) | 31.43 (0.8818) | 31.35 (0.8833)

X2 30.24(0.8688) | 32.28(0.9056) | 32.26(0.0040) | 32.42(0.0063) | 32.65(0.0081) | 33.03(0.9124) | 33.01 (0.0118) | 33.29 (0.9149)

Setl4 <3 27.21(0.7385) | 29.13(0.8188) | 29.05(0.8164) | 29.28(0.8209) | 29.41(0.8234) | 29.77(0.8314) | 29.87(0.8317) | 30.06 (0.8368)
;! 26.00(0.7027) | 27.32(0.7491) | 27.24(0.7451) | 27.49(0.7503) | 27.71(0.7592) | 28.01(0.7674) | 28.02 (0.7646) | 28.26 (0.7732)

X2 29.56(0.8431) | 31.21(0.8863) | 31.16(0.8840) | 31.36(0.8879) | 31.46(0.8891) | 31.00(0.8960) | 31.76 (0.8939) | 31.91(0.8972)

BSD100 <3 27.21(0.7385) | 28.29(0.7835) | 28.22(0.7806) | 28.41(0.7863) | 28.52(0.7883) | 28.82(0.7976) | 28.60 (0.7937) | 28.84 (0.7995)
<4 25.96(0.6675) | 26.82(0.7087) | 26.75(0.7054) | 26.90(0.7101) | 27.06 (0.7167) | 2729 (0.7251) | 27.14 (0.7200) | 27.28 (0.7272)

extraction in CompNet, can also prevent the gradient van-
ishing problem [32] for the first and the (N/2)th layers,
where N is the depth of the network. The backpropaga-
tion relations corresponding to the first and (N /2)th lay-
ers, which are used in the reconstruction process, can be
formulated as

go L 0L ﬁ Wi, L Wy
YT awy LD Gwis T awy awy
i=5+1 2
N
_ JL ( l_[ BW,' 3WN)
T Wy vo0Wir o 0Ww
l=7+ 2
N N
v — L I ow, oL aWNli[ W
&= oWn iy oW,y oWy 0Wn iy oW,
AL AWy
AWy oW,
oL N W AWy & oW oW
_ (1—[ i + N 1—[ i + N)
oWn i oW1 HW% i oW1 oWy

(6)

where L is the loss between the ground truth samples and
the corresponding estimated high resolution samples and W;
represents the weight parameters of the ith layer. It should
be noted that the value of the expression for each prod-
uct in (6) is prone to becoming very small. However, the
presence of the additive terms in (6) arising from the skip
connection in CompNet should help to resolve the prob-
lem of vanishing gradient that is generally faced by other
networks.

IV. EXPERIMENTAL RESULTS

In this section, the results of various experiments that are con-
ducted using CompNet are presented and analyzed. To start
with, the training and evaluation datasets are introduced. The
performance of CompNet in terms of PSNR and SSIM [36] is
presented, analyzed and compared with that of other schemes.
In addition, the effects of the hyper parameters, width and
depth, in CompNet are investigated. Moreover, the impact
of dilated kernels [37] to increase the receptive field of the
CompNet is explored. Finally, the effect of negative features
on the network performance through the use of the exponen-
tial linear unit (ELU) [38] is examined.
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A. DATASET

In our experiments, we use BSD200 [27] and 91 images [2]
that have, respectively, 200 and 91 images, as a training
dataset. After data augmentation, a total number of 151815
sub-images are generated from this dataset and utilized as the
the training samples. For the purpose of evaluation, Set5 [39],
Set14 [40] and BSD100 [27] are employed with the upscaling
factors of 2, 3 and 4. The training dataset is divided into
batches each of size 64 (with the exception of the last batch),
Thus each epoch has 2373 iterations (backpropagations). The
number of epochs is set as 80 for the sake of consistency,
when comparing the proposed with other schemes. Also, the
weight decay parameter is set as 1074,

All of the deep learning tasks are implemented using
Keras [41] that is backended by TensorFlow package [42].
The training procedure for CompNet is conducted on a
machine with Intel Core i7 CPU @4.2 GHz, 16 GB installed
memory and GPU Nvidia Titan X (Pascal).

B. PERFORMANCE OF COMPNET AND COMPARISON
WITH THE STATE-OF-THE-ARTS

In this part, the objective evaluation in terms of PSNR and
the subjective evaluation in terms of SSIM are carried out
between the ground truth image and the estimated high reso-
lution image. The results of CompNet and five state-of-the-
art schemes namely, A+ [43], RFL [44], SRCNN, cascaded
SCN (CSCN) and VDSR, are given in Table 1. It is seen
from the results of this table that in almost all the cases,
CompNet outperforms all of the state-of-the-art schemes.
In some cases, improvement in the performance provided by
CompNet is quiet significant. For instance, in the case of
Set14 test set (upscaled by 3), CompNet yields a PSNR value
that is 0.29 dB higher than that given by VDSR along with
the similarity measure that %0.54 higher.

In order to compare the visual quality of the images esti-
mated by using the different methods, we provide in Fig. 2
the high resolution Lena image upscaled by a factor of 3.

It is seen from this figure that the high resolution images
obtained by other methods, with the exception of VDSR
and CompNet, suffer from ringing effects around some of
the edges. It should be noted that although it is difficult to
notice the difference between the visual quality of the images
restored by using VDSR and CompNet, nevertheless Comp-
Net provides a performance superior to that provided by
VDSR in terms of both the objective and subjective measures.
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FIGURE 2. Visual comparison between CompNet and the other state-of-the-art methods when applied to the Lena image with upscaling factor 3.
(a) Ground truth. (b) A+ (PSNR = 33.55, SSIM = 0.8862). (c) SRCNN (PSNR = 33.70, SSIM = 0.8878). (d) CSCN (PSNR = 33.70, SSIM = 0.8879).
(e) VDSR (PSNR = 33.99, SSIM = 0.8915). (f) CompNet (PSNR = 34.02, SSIM = 0.8920).

Fig. 3 shows the results of the super resolution carried out
by CompNet on the Butterfly image interpolated by factors
of 2, 3 and 4. It is seen from this figure that all the restored
images have a very good visual quality. The super resolved
image upscaled by a factor 2 is exceptionally closer to the
ground truth. The reason for this is that the downsampling of
an image with a lower scaling factor represents smaller loss

VOLUME 6, 2018

of information and thus, the restored image should be more
similar to the original one. However, in the case of higher
upscaling factors, CompNet still provides visually very good
results.

It is worth noting that more recently, some deep learning
schemes that have attempted to improve the performance of
single image super resolution by employing rather very large
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FIGURE 3. Butterfly images resulting from CompNet. (a) Ground truth. (b) Bicubic downsampling by a factor of 3. (c) Bicubic upsampling by a factor of 3.
(d) Super resolved by a factor of 2. (e) Super resolved by a factor of 3. (f) Super resolved by a factor of 4.

number of parameters in their networks have been proposed.
For instance, the average performance of the newly proposed
EDSR [45] and SRResNet [46] in terms of PSNR (SSIM) are,
respectively, 32.46 dB (0.8968) and 32.05 dB (0.8910) for
the Set5 images [39] with the upscaling factor 4. However,
this superior performance of these networks is achieved at
the expense of the numbers of parameters that are 16 and 2
times higher than that used by the proposed CompNet, whose
complexity is discussed in the next subsection.

C. COMPLEXITY ANALYSIS OF COMPNET

With the default settings, CompNet is composed of 19 layers
each of width 64 followed by a layer of width one. Now,
we consider two separate variations in the default settings of
the hyper parameters of CompNet. In the first one, we reduce
the depth of CompNet from 20 to 16. The resulting net-
work is referred to as reduced-depth CompNet (RD Comp-
Net), whereas, in the second one, the width of CompNet is
reduced from 64 to 32 and refer the resulting network as
reduced-width CompNet (RW CompNet). Table 2 gives the
total number of parameters for the three settings of Comp-
Net as well as that for SRCNN and VDSR. It is seen from
this table that the number of parameters for SRCNN is the
lowest. However, it is not a deep network. On the other hand,
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TABLE 2. Complexity of Various Super Resolution Schemes.

Method Number of Parameters
SRCNN (Reproduced) 57281
VDSR (Reproduced) 665921
ComNet 673605
RD CompNet 524869
RW CompNet 170405

CompNet with the two new settings has a complexity lower
than that of VDSR with RW CompNet having a considerably
lower complexity. Fig. 4 gives the PSNR value as a function
of the number of epochs. It is seen from this figure that
CompNet provides a performance that is superior to that of
RD CompNet or RW CompNet. However, the performance
of the two latter networks are not substantially different,
thus indicating the robustness of CompNet with respect to
its width and depth. It is worth noting that the number of
parameters of RW CompNet is substantially lower than that
of CompNet with only a modest decrease in the performance.

We now run another experiment using the proposed
network in which the number of parameters is reduced
from 673605 to 636421 by removing one of the nonlinear
mapping layers (i.e., layer 19). We have applied the network
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FIGURE 4. CompNet convergence for different settings of
hyperparameters on Set 5 with upscaling factor 3.

with reduced number of parameters on the three benchmark
datasets. The results obtained from our network and that
obtained by applying VDSR, which uses 665921 parameters,
are shown in Table 3. It is seen from this table that the
proposed network still yields a performance superior to that
given by VDSR. It is clear from the results of this exper-
iment that the performance gain of the proposed network
over VDSR cannot be simply attributed to the use of a larger
number of parameters, but rather to the use of an appropriate
composition of the features in reconstructing the residue.

TABLE 3. PSNR (SSIM) results of CompNet with 19 layers and VDSR. The
bolded values are the best in the comparison.

Dataset scaling VDSR CompNet
X2 37.53(0.9587) | 37.54 (0.9594)
Set5 X3 33.66(0.9213) | 33.64(0.9215)
x4 31.35(0.8838) | 31.29 (0.8829)
X2 33.03(0.9124) | 33.25(0.9149)
Setl4 x3 29.77(0.8314) | 30.05 (0.8367)
x4 28.01(0.7674) | 28.23 (0.7730)
X2 31.90(0.8960) | 31.90 (0.8971)
BSD100 X3 28.82(0.7976) | 28.83 (0.7994)
x4 27.29 (0.7251) | 27.27 (0.7271)

D. EFFECT OF A DILATED KERNEL ON COMPNET

By increasing the effective receptive field of the network,
a large range of information is included for restoring the high
resolution image, and therefore, one could expect to improve
the performance. One way of increasing the effective recep-
tive field of a network is to increase the kernel size. However,
this approach would increase the complexity of the network.
Dilated convolution is a technique that would increase the
receptive field of the network without increasing the network
complexity. In a dilated convolution, the kernel is zeropadded
to extract the long range information that can be utilized
for the problem of image super resolution. The convolution
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using a dilated kernel, #[m, n] with the dilation rate d, can be
expressed as
“+00 “+00
Yimonl= 3" > xlm—dk.n—dlhk. 1] (7)
k=—00l=—00
where x[m,n] is a two-dimensional signal to be con-
volved and y[m, n] is the signal resulting from the dilated
convolution.

TABLE 4. PSNR (SSIM) Values of CompNet Using Dilated Convolution
with d = 2, when Applied to Set5 Images.

Upscaling factor Undilated Dilated
2 37.58 (0.9596) | 37.41 (0.9588)
3 33.67 (0.9219) | 33.71(0.9219)
4 31.35(0.8833) | 31.31 (0.8835)

In our experiment on the impact of dilated convolution,
we chose the dilation rate d to be 2 and the test datasets
Set5. Table 4 gives the PSNR and SSIM results from the
undilated and dilated convolutions with upscaling factors 2,
3 and 4. It is seen from this table that in the case of the
upscaling factor of 2, inclusion of long-range information
through the dilated convolution is detrimental to the network
performance. However, for larger upscaling factors, dilation
does not affect its performance.

34 T

0

32 i

/F"‘W“Vvv

CompNet
CompNet with dilated convolutions

@
.

PSNR in dB
3
‘

28 b

27 . . . . . . .
0 10 20 30 40 50 60 70 80

Epochs

FIGURE 5. CompNet with d = 2 and without a dilated kernel on Set 5
with upscaling 3.

Figure 5 shows the convergence performance of CompNet
when applied on Sez5 images upscaled by a factor of 3 with
and without dilated kernel. It is seen from this figure that the
use of a dilated convolution does not provide any meaningful
advantage over the undilated one in terms of either the con-
vergence rate or the final PSNR value.

E. EFFECT OF USING NEGATIVE FEATURES
In our experiments on the proposed CompNet, we have so far
used ReLLU as the activation function. ReLU obviously does
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FIGURE 6. Bird images resulting from CompNet using different activation functions. (a) Ground truth. (b) Using ELU activation function. (c) Using ReLU

activation function.

not allow the negative features to be propagated through the
network. We now examine the performance of the network
in the presence of negative features as well as by replacing
ReLU with the ELU function defied by

z>0
z<0

z
fl@) = {ez—l 8)
where z is the input to the activation unit. As can be seen from
the above equation, ELU scales negative input values instead
suppressing them to zero.

Comparative results in terms of PSNR and SSIM of Comp-
Net with the ELU and ReLU activation functions on the Set5
images and the illustration of the restored Bird image with
the upscaling factor of 3 are depicted in Table 5 and Fig. 6,
respectively.

TABLE 5. PSNR (SSIM) Values of CompNet Using ReLU and ELU Activation
Functions, when Applied to Set5 Images.

Upscaling factor ReLU ELU
2 37.58 (0.9596) | 37.42 (0.9584)
3 33.67 (0.9219) | 33.55 (0.9200)
4 31.35(0.8833) | 31.22 (0.8803)

It is seen from the PSNR and SSIM values given in the
table that the negative features are not vital in improving the
performance of CompNet. This conclusion is also supported
by the visual quality of the Bird images restored using ReLU
and ELU activation functions.
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V. CONCLUSION

In this work, a residual deep neural network architecture,
called CompNet, has been proposed for the problem of single
image super resolution. In traditional neural network, the
features produced by the layers become increasingly more
sparse, as they become more deep. The objective of this work
has been to compose a residual signal that is less sparse and a
better representative of the different types features produced
by the network layers. In the proposed CompNet, the resid-
ual signal is composed by taking into account the features
produced by the initial, middle and last layer of the network.
This particular composition of the residual signal contains a
richer information about the estimated high resolution image
without unduly increasing the network complexity. Extensive
experiments have been carried out on CompNet using three
benchmark datasets and the results in terms of PSNR, SSIM
and the visual quality of the restored high resolution images
have been obtained. It has been demonstrated that the pro-
posed residual deep network outperforms the state-of-the-art
schemes.
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