
Comparison of different weight growth models in a

sample of children from 6 to 15 years

Neha Wadhawan

A Thesis

in

the Department

of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements

for the degree of Master of Arts (Mathematics) at

Concordia University

Montreal, Quebec, Canada

September, 2018

c© Neha Wadhawan, 2018



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Neha Wadhawan

Entitled: Comparison of different weight growth models in a

sample of children from 6 to 15 years

and submitted in partial fulfillment of the requirements for the degree of

Master of Arts (Mathematics)

complies with the rules and regulations of the University and meets the

accepted standards with respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. Cody Hyndman

Examiner

Dr. Arusharka Sen

Examiner

Dr. Debaraj Sen

Thesis Supervisor

Dr. Lisa Kakinami

Thesis Co-Supervisor

Dr. Yogendra Chaubey

Approved by

Dr. Arusharka Sen, Graduate Program Director

September 19, 2018
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ABSTRACT

Comparison of different weight growth models in a sample of children from 6 to 15 years

Neha Wadhawan

Human growth is a complex, natural developmental phenomenon comprised of prenatal (fetal)

and postnatal (infancy, childhood, adolescence, and adulthood) growth. Weight is an eco-sensitive

growth measurement that responds more rapidly to illness and loss of appetite than height. Mod-

elling postnatal growth in children’s weight is of particular interest in order to identify those at

greatest risk for serious health outcomes later in adult life such as obesity, hypertension, cardio-

vascular disease, and diabetes. Traditionally, the most commonly used parametric growth models

(Jenss-Bayley, Reed 1st order and Reed 2nd order) have been recommended for children from birth

to 6 years of age but the literature on their performance in an older age range of children is limited.

The Adapted Jenss-Bayley was developed to extend the models from birth to puberty. In contrast,

the recently developed SITAR (SuperImposition by Translation And Rotation) model has no age

range constraints, and has been shown to be superior to the previous models (Jenss-Bayley and

Reed 1st order) for modeling weight from birth to four years of age. No study has yet assessed the

comparison and performance of these models in an older age range of children. This present study

aims to extend the previous work by comparing these models (Jenss-Bayley, Reed 1st order, Reed

2nd order, Adapted Jenss-Bayley, and SITAR) within the mixed effect framework to model longi-

tudinal weight in an age range of children that starts from middle childhood and includes puberty

(6 to 15 years) in the Quebec Longitudinal Study of Child Development (QLSCD) cohort (n = 2,

120). Results demonstrate that the SITAR model outperformed the other four models but should

be reassessed in additional studies with longer follow-up.
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Chapter 1

Introduction

1.1 Background

Human physical growth is a complex, natural developmental phenomenon (Haralabakis & Spy-

ropoulou, 1990). In the literature, it is defined as a quantitative progressive increase in the physical

size or mass and shape of the body as a whole and of its parts over a period of time occurring be-

tween conception and full maturation (Tanner, 1990; Hauspie, Cameron, Molinari, & MyiLibrary,

2004; Malina, 2012). The overall human growth process is generally divided into two life phases:

Prenatal growth and Postnatal growth (Tanner, 1990).

Prenatal growth - Prenatal development refers to the process in which a baby develops from a

single cell after conception into an embryo and later as a fetus. This phase is characterized by a

rapid increase in cell numbers and fast growth rates. The prenatal development starts on the date

of conception, and takes about 38 weeks to complete.

Postnatal growth – The postnatal growth process starts after the birth of a child. It is defined as

a smooth continuous process through which the child grows and matures from birth to adulthood.

It is further generally divided into five stages: namely neonatal (birth to 1 month), infancy (early:

1 to 6 months, later: 6 months to 2 years), childhood (early: 2 to 5 years, middle: 5 to 8 years or

later: 9 to 11 years), adolescence (approximately 11 or 12 years to 18 years) and adulthood (18 years

and older) (Ellis, 1951; Balaban & Bobick, 2008). For the purposes of this thesis, postnatal weight
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development will be focused on exclusively, and prenatal growth will not be further considered.

The overall human growth process involves the growing of different body parts at different growth

rates and at different times (Malina, 2012). In order to determine how healthy the child is growing

postnatally, their height and weight are measured over time (Silverwood, 2008; Malina, 2012).

Historically, the height of a child has been the main center of focus in research. Indeed several

previous studies primarily focused on developing mathematical growth models for the appropriate

modelling of a child’s height from birth or infancy to adulthood (Bock & Thissen, 1976; Preece &

Baines, 1978; Karlberg, 1987; Jolicoeur, Pontier, Pernin, & Sempé, 1988). In contrast, much less is

known about the weight development of a child as only a few researchers have focused on modelling

children’s postnatal weight (Jenss & Bayley, 1937; Count, 1943; Berkey & Reed, 1987).

The most helpful tools that are often utilized in order to study the human growth process over time

are the distance curve, velocity curve, and acceleration curve (Hauspie et al., 2004). The distance

curve is defined as the amount of growth attained or measured at each age (Bogin, 2015). On the

other hand, the velocity curve is defined as the increase in growth measurement at each age (Bogin,

2015). The acceleration curve is difficult to interpret, and the distance curve has been criticized for

providing too little information. Thus the velocity curve is the most commonly utilized in research

(Hauspie et al., 2004). However, the velocity curve and acceleration curve can be easily obtained

from first and second differentiations of the distance curve respectively. The acceleration curve can

also be obtained by taking the first derivative of the velocity curve. The growth pattern of children

growing normally from birth to adulthood exhibits an “S” shaped pattern with an initial rapid

growth that gradually slows down to approach a limit (Hauspie et al., 2004). The distance (upper)

and velocity (lower) curves of a female from birth to 18 years are represented graphically in the

Figure 1.1 (Hauspie & Roelants, 2013).
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Figure 1.1: Distance and velocity curves of the normal growth of a female from birth to 18 years
from source: Hauspie and Roelants (2013)
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The growth in weight is somewhat a less regular process than height because the former sometimes

experiences greater fluctuations or changes (including decreases) (Silverwood, 2008). Upto 10% of

the birth weight is generally lost in the initial days after the child is born. In the first few weeks

after the child’s birth there is a rapid increase in weight until the age of 1 year with a maximum

weight velocity at about 1.5 months (6 weeks). Through a velocity curve, the pattern of growth

in weight can be easily described in the postnatal stages (Bogin, 2015). In general, through the

velocity curve, the infancy phase shows a gradual or continuous decrease in weight velocity until the

age of 3 years (Bogin, 2015). The childhood phase demonstrates a slow decrease in weight velocity

alongside more or less a constant rate of growth until the onset of puberty. The adolescence phase

is biologically distinctive from the childhood phase. It is associated with the onset of puberty often

described as the, “physical transformation of a child into an adult” (Stang & Story, 2005). Puberty

is considered a crucial period of the human growth process. During this period, adolescents reach

their sexual maturity where they generally experience changes in breasts, genitals, pubic hair, facial

hair, deepening of voice and onset of menstruation (Tanner, 1990). They also become capable

of sexual reproduction along with the rapid increase in their physical growth appearance (height

and weight) (Tanner, 1990). The adolescent or pubertal phase is primarily characterized by an

increased or marked acceleration of growth (referred to as an adolescent or pubertal growth spurt)

in the adolescents. This growth spurt is then followed by a rapid decrease in weight velocity until

the growth ceases and the adolescents reach their final adult body weight (Tanner, 1990; Silverwood,

2008).

The adolescence spurt is a natural phenomenon that occurs in all youth during their course of life

although it varies in timing, intensity and duration from one child to another (Tanner, 1981). Timing

describes how physically mature the children are in terms of their secondary sexual characteristics

when they are compared to the other children of the same sex and age (Marceau, Ram, Houts,

Grimm, & Susman, 2011). Depending upon the status of their physical maturity, adolescents are

often considered “early”, “on time” and “late” maturers (Ge, Brody, Conger, Simons, & Murry,

2002; Hauspie & Roelants, 2013). On the other hand, tempo or intensity are called maturation

rate (Tanner, 1962) that describes how quickly children progress along the path to their full sexual

maturity (Marceau et al., 2011). It also describes the rate at which the children pass through the
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late childhood and puberty phase. Depending upon how long it would take them to progress from

the prepubertal stage to full maturation, adolescents are considered “slow”, “average” or “fast”

maturers (Marceau et al., 2011). The duration of the puberty phase refers to the difference between

the ages when it started and ended. Unlike infancy and childhood phases, the interest for the

adolescence phase lies in the timing and characteristics of the growth spurt (Beath, 2012). There

is a wide variation between populations, between individuals and between the two sexes as to the

attained weight at each age, the timing of the adolescent’s growth spurt and the age at which the

final weight is reached (Hauspie & Roelants, 2013).

From the research by Tanner and his colleagues (1990), it is known that females’ growth and body

structure are quite different from males’. There is a significant difference in their entire growth

and development over time. It is indeed specifically during the adolescence years where females

start growing earlier and physically faster than males. In general, females’ weigh a little less than

males’ at birth (though the difference is quite small) but they catch up and become equal to males

approximately at the age 8 (Tanner, 1990). Females’ then become heavier by the age of 9 or 10

years and remains so until the males’ puberty starts. Males’ then again become heavier once the

females’ reach the end of their puberty at about 14 or 15 years of age (Tanner, 1990). The normal

age for puberty is 8-13 years in girls and 9-14 years in boys (Tanner, 1962). The age at which the

weight velocity is maximum is called “age at peak weight velocity”. During the adolescent phase,

the difference between the ages of maximum weight velocity in females and males is approximately 2

years. Thus, females’ experience their weight growth spurt earlier than males’ (Tanner, 1962; Bogin,

2015). During puberty, the children gain half of their adult ideal body weight. During puberty, the

overall weight gain for females’ is between 7 to 25 kg with a mean gain of 17.5 kg and an average

of 8.3 kg per year during peak rates of weight gain (around 12.5 years of age on an average). The

gain in weight slows down around the time of menarche in females. For males’, the overall weight

gain during adolescence ranges between 7 to 30 kg with a mean gain of 23.7 kg and an average of

9 kg per year (Barnes, 1975; Wong & Wilson, 1995).

Previous studies (Cameron, 2007; Cameron & Bogin, 2012) have defined weight as an eco-sensitive

anthropometric measurement that responds more rapidly to any illness and loss of appetite than
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any other anthropometric measurement. Crucial environmental factors that have major impacts

on children’s growth include lack of proper nutrition, chronic diseases, poor socioeconomic status,

inadequate school and community environments (such as poor access to health care, sanitation

services, and recreation activities), psychological stress, depression and lack of physical activity

(de Waal, 1993). Cameron (2007) had widely investigated that during childhood and adolescence,

those experiencing these environmental factors have important consequences on their weight growth

patterns.

Overweight and obesity are defined as unexpected abnormal or rapid gain in weight in infancy and

childhood that lead to the long-term deposition of excess abdominal and body fat. Based on the

statistics disclosed by the World Health Organisation for the year 2016, the prevalence of overweight

and obesity among children and adolescents aged 5-19 years has risen drastically from 4% in 1975

to 18% in 2016 (18% of girls and 19% of boys) (WHO, 2018). Over 340 million children and

adolescents aged 5-19 years were overweight and obese in 2016 (WHO, 2018). Being overweight or

obese in childhood and adolescence may impair the health condition of an individual that becomes

evident in adulthood. Excess body fat in childhood and adolescence is also associated as major

risk factors for various chronic diseases in adult life such as cardiovascular disease (coronary artery

disease, coronary heart disease), type 2 diabetes (non-insulin dependent), musculoskeletal disorders

(osteoarthritis) and cancers (endometrial, breast and colon) (WHO, 2004). Over the past two

decades, many studies have largely focused on the rapid weight development in the infancy phase

which is associated as a critical factor for adult health (Barker, Osmond, Winter, Margetts, &

Simmonds, 1989; Barker, 2004, 2012). Given that adolescence is also the period of the most rapid

weight development after infancy, previous studies have demonstrated that it is also a critical and

sensitive period for later health and disease (Viner et al., 2015). Pubertal timing (early or later) and

the weight gain in puberty may determine the occurrence of a wide range of adverse health problems

such as asthma, epilepsy, chronic kidney disease, thyroid dysfunction, diabetes, musculoskeletal pain

and mental health problems such as depression, panic attacks, eating disorders and schizophrenia

(Patton & Viner, 2007). Excess childhood body fat that later tracks across into adolescence also

affects the timing of puberty, and initiates the risk of cardiovascular disease, cancer, obesity and

cardiometabolic disease later in adult life (Patton & Viner, 2007).
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In order to study various growth patterns, two types of study design are generally used: cross

sectional and longitudinal study (Fitzmaurice, Laird, & Ware, 2012). In cross sectional studies,

different subjects are measured at different ages. Thus, this study design provides a marginal

amount of information about the average growth change or short-term growth trends (Hauspie et

al., 2004). On the other hand, for longitudinal studies, the same individuals are measured over

many years (Tanner, 1990). These studies can be balanced (individuals have the same number and

timing of growth measurements) or unbalanced (number and timing of the measurements can vary

between individuals) (Fitzmaurice et al., 2012). Longitudinal studies provide a good description of

the growth process as a whole as well as between different growth phases of human life (Hauspie et

al., 2004). By employing longitudinal data for the modelling of human growth curves, researchers

can easily describe, summarize, visualize, predict and interpret the features of growth patterns

(Hauspie et al., 2004).

To thoroughly understand growth trajectories, it is necessary to apply suitable mathematical models

to longitudinal growth data. The findings from the fitted growth models will aid to determine the

individuals those at risk for future disease and its associated complications in adult life with the

aim of taking precautions and preventions beforehand.

1.2 Literature review

1.2.1 Child growth models

The child growth curve models refer to a broad spectrum of statistical models for modelling chil-

dren’s longitudinal data. They are often defined as the mathematical representations of the human

growth process. These mathematical representations summarize the huge amount of sample growth

data into meaningful growth patterns and estimation of limited number of growth parameters.

These estimated parameter values are further used to make valid inferences about the population

from which the sample has been drawn (Hauspie et al., 2004). According to the paper by Berkey

(1982), a growth model is considered to be ideal when it: has a simple fitting procedure, provides
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a satisfactory fit to the data, has biological interpretations of the parameters, and provides decent

prediction.

A number of mathematical growth models have been introduced in the literature. Generally, the

growth models are classified into two types: parametric (structural) and non-parametric (non-

structural) models (Hauspie et al., 2004). Polynomials and splines (Largo, Gasser, Prader, Stuetzle,

& Huber, 1978; Pan & Goldstein, 1998) are the most common examples of non-parametric models.

These non-parametric models are very general and can be used to fit growth data in any anthro-

pometric variable over any age range (Silverwood, 2008). Hauspie and his colleagues (Hauspie et

al., 2004) summarized various differences between parametric and non-parametric models. Non-

parametric models are easy to fit. But these models come with a limitation that they contain a

large number of coefficients that need to be estimated and the parameters do not have any biolog-

ical interpretations. These models provide good or almost accurate approximations to the values

within the observed data but generally have a poor fit at the tails of the sample data. Also, these

models do not provide reliable predictions of the outcome outside the observed range of data. The

estimated growth curves from the non-parametric models do not take any specific shape. Rather,

these curves usually take the shape of the data. They are inefficient to fit a larger age range, and

do not reach an upper asymptotic value at the end of the adolescent growth phase. Compared

to non-structural models, the structural models have less parameters to estimate (Hauspie et al.,

2004). These structural models exhibit basic functional form of the growth model and tend to reach

an upper asymptote (Hauspie et al., 2004).

In previous studies, researchers have recommended and developed many parametric models for chil-

dren’s growth. In comparison to the non-parametric models, the parametric models were proposed

mainly because of their ability to provide a good fit to the growth data with a minimum number of

parameters (Beath, 2012). In the literature, parametric models that were most often applied were

developed by Jenss-Bayley (1937), Count (1943) and Berkey and Reed (1987).

The Jenss-Bayley model (Jenss & Bayley, 1937) is a combination of linear and non-linear (expo-

nential) components. This model satisfactorily describes infant and childhood growth data during

the first 6 years of life (Jenss & Bayley, 1937). Historically, the Jenss-Bayley curve was successfully
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used to model length and weight during the first 8 years of life in healthy American boys and girls

(Deming & Washburn, 1963). Later, the model was applied to model growth pattern of height,

weight and skull circumference in the first year of life in a sample of Indian children (Manwani

& Agarwal, 1973). The Jenss-Bayley model was also used in various other studies (Berkey, 1982;

Dwyer, Andrew, Berkey, Valadian, & Reed, 1983; Karlberg, 1990).

Several years after the original Jenss-Bayley model, Count (1943) proposed another major growth

function called the Count model. The latter model was originally used to model height. The model

was later applied to describe both height and weight growth patterns from birth to 6 years (Berkey,

1982). In order to model the data from birth, the Count model was slightly modified by shifting

the age scale. It is a linear model that includes a logarithmic term.

In the literature, comparisons were conducted between various parametric growth models. Berkey

(1982) compared Jenss-Bayley (1937) and Count (1943) models for both height and weight in a

longitudinal sample of healthy Boston children from 3 months to 6 years of age. The author

concluded that the Jenss-Bayley model not only generally provided the better fit to height and

weight at every age, but it outperformed the Count model based on reliability, precision, and

efficiency. The Count model overall did not perform well and also showed systematic deficiencies

at each age. The results were consistent with a previous investigation fitting three linear growth

models from birth to 2 years of age, each one of them having three parameters to be estimated

(Wingerd, 1970). Thus, from this study, the researchers concluded that a linear model with at least

four parameters were required to model early childhood growth data (Berkey, 1982).

In order to overcome the age-related deficiencies of the Count model, Berkey and Reed (1987)

increased the flexibility of the model by adding an extra term in order to improve the fit of the

model. Hence, Reed 1st order model (Berkey & Reed, 1987) is an extension of the Count model

(Count, 1943). Like the Jenss-Bayley model, this model also explains early childhood growth from

birth to 6 years. To further describe abnormal growth patterns among children, another term was

added to Reed 1st order to obtain Reed 2nd order model (Berkey & Reed, 1987). These models

(Jenss-Bayley, Count and Reed 1st order models) were compared by Berkey and Reed (1987) where

the newly developed Reed 1st order model was found to be a significantly better fit than the others.
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The Reed 1st and 2nd order models have been considered superior than other previously developed

growth models because they can accommodate a variety of normal and abnormal growth patterns

during early life growth (Berkey & Reed, 1987). Lastly, an Adapted Jenss-Bayley model has been

proposed in the literature in order to extend the age range from birth to puberty (Botton et al.,

2008).

However, the major drawback of these various parametric models (Jenss-Bayley, Reed 1st order,

Reed 2nd order, Adapted Jenss-Bayley) is that the estimated parameters of these models do not

have any biological interpretations (Jenss & Bayley, 1937; Berkey & Reed, 1987; Botton et al.,

2008). Traditionally, these models were applied to model each child separately in order to obtain

an individual’s growth curve (Tanner, 1990). To overcome the latter problem, researchers have

suggested an alternative approach for modelling longitudinal data called mixed models (also known

as random effect, multilevel or hierarchical models) (Pinheiro & Bates, 2000; Fitzmaurice et al.,

2012). This approach consists of fitting any selected model using fixed effects and random effects

of the model parameters. Thus, this technique models all the children simultaneously rather than

fitting them individually. In general, the purpose for using mixed models is that that they can

estimate inter-individual variability in intra-individual patterns of growth change over time (Curran,

Obeidat, & Losardo, 2010; Fitzmaurice et al., 2012). Traditionally, the fixed effects models do not

make any assumptions about the distribution of the parameters. In contrast, the mixed models

assume that the parameters of Jenss-Bayley, Reed 1st order, 2nd order and Adapted Jenss-Bayley

models are drawn from a multivariate normal distribution with mean 0 and variance covariance

matrix φ and are independent of the errors which are normally distributed with mean 0 and constant

variance σ2.

Within a mixed model framework, application of the previous models in the literature includes

utilizing the Jenss-Bayley model to describe the height trajectories of children to detect individuals

with Turner syndrome (van Dommelen, van Buuren, Zandwijken, & Verkerk, 2005). For the Reed

model, a mixed model approach was used to analyze growth in weight during the early years of life

in an Ethiopian (birth to 1 year) and a Finnish birth cohort (birth to 2 years) (Asefa, Drewett, &

Hewison, 1996; Tzoulaki et al., 2010).
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Several studies have been conducted to compare these anthropometric models using a mixed model

approach. Researchers compared several growth models (Reed 1st order, Reed 2nd order, Count

were amongsters) for modelling weight among 95 rural Congolese infants between birth and 13

months of age (Simondon, Simondon, Delpeuch, & Cornu, 1992). The authors found that the Reed

1st order model fitted the best in comparison to the other models. In a recent paper, Chirwa et al.

(2014) compared structural (Reed 1st order, Count, Jenss-Bayley and the Adapted Jenss-Bayley)

and non-structural models (2nd and 3rd order Polynomials) to model weight and height from birth

to ten years of age in a longitudinal urban South African study. It was found that the Reed 1st order

model was the best fitted growth model as compared to others for weight and height from birth to

pre-puberty. In contrast, a comparison of four growth models (Jenss-Bayley, Adapted Jenss-Bayley,

Reed 1st order and Reed 2nd order) for weight and height by N. Regnault et al. (2014) in US

children from birth to 9 years showed that Adapted Jenss-Bayley model fitted the best.

Thus, the mixed model approach is very flexible for modelling longitudinal data as it allows to model

all the subjects simultaneously. However, these growth models (Jenss-Bayley, Reed 1st order, Reed

2nd order and Adapted Jenss-Bayley) continue to share one key limitation: the derived parameters

have no biological interpretation. This limitation was addressed by a new model proposed by Cole

et al. (2010) called SITAR (SuperImposition by Translation And Rotation)– a semi parametric

non-linear random effect model (Cole, Donaldson, & Ben-Shlomo, 2010; Pizzi et al., 2014).

The SITAR model is an extension of shape invariant growth modeling, an improved technique

which was proposed by Beath (2007) to model weight in infants. The authors (Lawton, Sylvestre,

& Maggio, 1972) originally introduced the Shape invariant model concept but it was applied later

to model human growth (Stützle et al., 1980). In the SITAR model, a natural cubic spline function

is fitted that estimates the average growth curve which is common for all the individuals in the

sample. Apart from the cubic spline function, the model also includes three parameters that adjusts

the common average growth curve to fit to each individual growth trajectory. All parameters have

biological interpretations (Beath, 2007; Cole et al., 2010). Cole et al. (2010) further used the

SITAR model to model height from onset of puberty to adulthood (9 to 19 years of age) (Hui,

Leung, Cowling, Lam, & Schooling, 2010; Johnson, Llewellyn, Jaarsveld, Cole, & Wardle, 2011).
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Later Pizzi et al. (2014) compared Jenss-Bayley, Reed 1st order model within the mixed effect

framework, and the recently developed SITAR model in order to describe weight in children from

birth to 4 years of age in three different cohorts for females and males separately. Based on Akaike

information criterion (AIC) and Bayesian information criterion (BIC) fit statistics, the Reed 1st

order model performed better than the other two models in both sexes, but the SITAR model

was found to be a better fit than the Jenss-Bayley model. The SITAR model was shown to be

superior than Jenss-Bayley and Reed 1st order models because it identified the peak in the growth

curve where other models failed to identify. Moreover, the SITAR model estimated parameters

were biologically interpretable (Pizzi et al., 2014). A recent study showed that by pooling NSHD

(National Survey of Health and Development) and ALSPAC (Avon Longitudinal Study of Parents

and Children) data, the SITAR model was successful in demonstrating that the pubertal timing

in height and weight has an effect on the bone health (skeletal and osteoporosis risk) in early old

age (Cole et al., 2016). In a recent study, the authors used SITAR model to classify pregnancy or

gestational weight gain growth patterns in women (Riddell, Platt, Bodnar, & Hutcheon, 2017). The

SITAR model was also applied in the age group 1 to 20 years to identify secular trend patterns in

height and weight growth in Japan and South Korea over 50 years (Cole & Mori, 2018).

To date, the most commonly used parametric models (Jenss-Bayley, Reed 1st and 2nd order) have

been applied to a small age range of children (from birth until middle or late childhood) for height

and weight. The Adapted Jenss-Bayley model has been applied to model child’s growth from birth to

puberty. None of these parametric models possess any biological interpretation of their coefficients.

The recently developed SITAR model has been applied to various age ranges and has biological

interpretation of its parameters. However, a comparison of these models in fitting childhood and

adolescent data has never been conducted. Thus, this study focuses on modelling weight change

in children from their middle childhood age to adolescence phase. More specifically, this study

aims to extend and compare these models (Jenss-Bayley, Reed 1st order, Reed 2nd order, Adapted

Jenss-Bayley, and SITAR) within the mixed effect framework to model longitudinal weight in an

age range of children that starts from middle childhood and includes puberty (6 to 15 years).
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Chapter 2

Subjects and Methods

2.1 Data description

Data for this study are obtained from the Quebec Longitudinal Study of Child Development

(QLSCD), a birth cohort that was initiated by Direction Santé Québec (Health Quebec Division)

in collaboration with various Quebec universities (Jetté & Groseillers, 2000). The main purpose of

the original longitudinal study was to assess the determinants that could affect the development,

psycho-social adaptations, and academic success of a representative sample of Québec children (Jetté

& Groseillers, 2000). Data collection is going.

The targeted population was singleton births born in the province of Quebec, Canada. Children were

recruited from a Master Quebec live birth registry of the ministère de la Santé et des Services sociaux

(MSSS) of the 1997-1998 year. Exclusion criteria included children without gender specification

indicated in the hospital record, unspecified mother’s pregnancy duration in the birth record, born

before 24 weeks (premature) or after 42 weeks, born in Northern region of Quebec, Cree and

Inuit territories or on Indian reserves where aboriginal people live. Through a stratified multi-stage

sampling design, an initial sample (n = 2,940) of singleton live births were selected as representative

of the target population after these exclusions. Further, n = 265 were excluded from the initial

sample because the families of the children were living permanently outside the Quebec province,

were unreachable (incorrect addresses and telephone numbers), were not responding after several

attempts, or neither speak nor understand English or French. Families of n = 2,675 were reachable
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but n = 452 were additionally excluded if the child was born with serious health conditions (such

as physically or mentally handicapped), had died, or the family was currently participating in any

other longitudinal study. Thus, after these exclusions n = 2,223 were the respondents selected from

the initial sample. Children (n = 103) who were initially included to determine the effect of a

natural disaster (January 1998 ice storm) were subsequently removed. Thus, a total of (n = 2,120)

children were selected for the QLSCD birth cohort (Jetté & Groseillers, 2000; Jetté, 2002).

To date, three phases have been completed by this ongoing study:- phase 1 (1998-2002) aimed for

children from 5 months to 4 years, phase 2 (2003-2010) from 5 years to 12 years, phase 3 (2011-

2015) from 13 to 17 years and phase 4 (started in 2016 and to be completed by 2023) from 19 to

25 years (Detailed information of the phases are available at the website http://www.iamillbe

.stat.gouv.qc.ca/default an.htm). The children were followed approximately annually (from

birth to 8 years) and then bi-annually (from age 8 and on). The study was approved by the Ethics

Committee of the Santé Québec Division (le Comité d’éthique de la Direction Santé Québec) (Jetté

& Groseillers, 2000; Jetté, 2002).

Several data collection tools were applied to collect information about the children and their re-

spective families. These tools included computerized questionnaires and paper questionnaires ad-

ministered to the parent(s), teachers, and the child (once the children reached the age 6+). How-

ever, because weight was the main variable of interest to this study, other than demographic in-

formation, the child-reported, parent-reported, and teacher-reported data were not used for this

study (More details on the data collection tools used in the study are available from the website

http://www.iamillbe.stat.gouv.qc.ca/default an.htm). Parent(s) of the participants signed

the consent form annually, and were later signed by teachers and participants, when the children

started going to school (Jetté & Groseillers, 2000).

The data available for this research study are from birth to 15 years of age. In the QLSCD

study, the child’s weight was measured at birth and further weight measurements were collected

at approximately 5, 17, 29 and 41 months, and then at 5, 6, 7, 8, 10, 12, 13 and 15 years of

age. As the child’s weight measurements under 6 years of age were self-reported by the parents

(Jetté & Groseillers, 2000) and were subject to bias (Mathieu, Drapeau, & Tremblay, 2010), only
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the objective measures of weight were used for this study. Thus, the present research employs

weight measurements when the children were 6 to 15 years of age. For these data collection waves

of interest, the participant’s body weight was measured in duplicate using a spring balance by a

trained staff member, recorded in kilograms and set again to zero for each measurement (http://

www.iamillbe.stat.gouv.qc.ca/default an.htm). The children were dressed lightly and without

shoes. If the difference between the first two measurements was 0.2 kg or more, a third measurement

was collected. The average value of the closest two measurements was calculated and were used as

the participant’s body weight for this research analysis.

2.2 Methods

An overview of all growth models of interest for this study is below. Each growth model’s original

as well as mixed effects specifications is provided.

2.2.1 Jenss-Bayley model

2.2.1.1 Original specification

The Jenss-Bayley model (Jenss & Bayley, 1937) is a monotonic non-linear longitudinal model con-

sisting of four parameters with a negatively accelerated exponential curve in t that approaches a

linear asymptote (a straight line with a positive slope). Researchers have widely applied this model

to describe growth patterns of children’s height, weight and head circumference for the period from

birth to 8 years (Jenss & Bayley, 1937; Deming & Washburn, 1963; Manwani & Agarwal, 1973; van

Dommelen et al., 2005). This model captures initial rapid growth after birth, a continuous decrease

in growth rate in infancy phase followed by the linear pattern during early childhood to middle

childhood. The Jenss-Bayley model can be fitted using non-linear regression.

To model weight using the Jenss-Bayley model, the age of the subjects could be defined in days/weeks/months/years.

For the purpose of this study, age is defined in months. For the ease of interpretation, all the Figures

in this study represents the age in years. According to Jenss-Bayley (1937), the original model was

defined as yi(t) = ci + dit – e(ai+bit) + εit for i = 1, 2.. . . N and t = 1, 2. . . .Ti. In order to be

consistent with the other growth models and for the ease of interpretation, the notations ci, di, ai
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and di are defined as ai, bi, ci and di in this study and the redefined model is represented below in

equation (1).

The Jenss-Bayley model specification pertinent to this research in weight change for subjects from

6 to 15 years of age is as follows:

For subjects i = 1, 2. . . . . .N and time points t = 1, 2. . . . . .Ti

yi(t) = ai + bit - e(ci+dit) + εit (1)

where

yi(t) = weight measured for individual i at age t (kg)

t = age (time) variable (years)

ai = individual’s intercept of the asymptote of the distance curve (kg)

bi = individual’s basic rate of growth (kg per year)

eci = the vertical distance between the intercept of the distance curve and intercept of its asymptote

for each individual (kg)

edi = each individual’s acceleration growth constant

e(ci+dit) = at any point on the distance curve, the vertical distance between the curve and its

asymptote for each individual (decelerating rate of growth)

When the birth data is included the predicted/estimated weight (kg) at birth for ith individual

is defined as ai - eci . In general, this model consists of a linear part (ai + bit) and a non-linear

part e(ci+dit) where ai, bi, ci and di are the unknown parameters to be estimated for each child

separately. εit is the measurement error term at age t specific to child i, that is assumed to be

normally distributed with mean 0 and constant variance σ2i (van Dommelen et al., 2005; Pizzi

et al., 2014). According to Jenss-Bayley (1937), the model takes into account rapid decelerating

rate of growth generally observed after birth through an exponential component e(ci+dit) where

edi is defined as the ratio of growth acceleration at any time point, to the acceleration one time

point previously for each individual. This acceleration growth constant is a pure number, non-

dimensional, and independent of the unit of time measurement that is used. The exponential

component e(ci+dit) does not contribute much after the infancy phase as the growth becomes steady
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and linear (Berkey & Reed, 1987). The shape of the individual’s growth curve is usually determined

by this growth constant (Deming & Washburn, 1963). A small acceleration growth constant provides

more curvature at the early ages and an early approach to the asymptote. On the other hand, large

values provide a flat curve and a later approach to its asymptote (Deming & Washburn, 1963).

The parameters of the Jenss-Bayley model are graphically described by Deming and Washburn

(1963) and can be seen below in Figure 2.1. The graph depicts that the growth curve is fitted

using the Jenss-Bayley model to describe longitudinal length measurements for one girl from birth

to 8 years of age. The estimated Jenss-Bayley curve for the girl is y = a + bx - e(c+dx) where x =

time in months, a = 82.5 cm (intercept of the asymptote), b = 0.575 cm per month (slope of the

asymptote), ec = 29.579 (intercept of the curve), ed = 0.934 (acceleration growth constant) where

d = -0.0682 and a - ec = 52.925 cm (height at birth) (Deming & Washburn, 1963).
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Figure 2.1: Graphical description of the Jenss-Bayley model parameters adapted from source: Dem-
ing and Washburn (1963)

The absolute rate of velocity curve at any point on the curve is obtained by differentiating the Jenss-

Bayley function with respect to t and is expressed as dy/dt = b− de(c+dt) whereas the acceleration

curve is obtained by differentiating the velocity curve with respect to t or second differentiation of

the distance curve and is expressed as d2y/dt2 = −d2e(c+dt). As time t increases, the acceleration

growth constant edt increases, thus the deceleration term e(c+dt) decreases leading to an increase

in the magnitude of y though not uniformly but approaching to the asymptote (a + bt). At the

same time, the velocity approaches to the basic growth rate b alongside a progressive decrease in

the magnitude of the negative acceleration approaching to zero (Deming & Washburn, 1963).
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2.2.1.2 Mixed effects specification

The original specification of the Jenss-Bayley models each individual separately and does not possess

any distributional assumptions of its parameters. Thus, Pizzi et al. (2014) recommended to extend

this model by integrating random effects. To define a growth function that models all children

simultaneously, some distributional assumptions for the child-specific parameters and their relation

with the residual errors εit are needed. To estimate the parameters of the Jenss-Bayley model, a

mixed effects model approach is used. In mixed effect model specification, the model assumes that

each growth parameter in the model is the sum of a fixed effect component and a random effect

component. The fixed effect is the same for all the individuals representing an average value and

the random effect is allowed to vary over each individual (van Dommelen et al., 2005) represent-

ing standard deviation around the average value. The mixed effect specification representing the

growth at time t indicates the average population growth that is shared by all the individuals and

child-specific or random effects that describes how each subject’s growth deviates from the average

population growth. Using the same notation as in equation (1), the parameters ai, bi, ci and di are

defined as:

ai = a0 + a1i

bi = b0 + b1i

ci = c0 + c1i

di = d0 + d1i

where a0, b0, c0 and d0 represents the fixed effects and a1i, b1i, c1i and d1i represents the random

effects of the growth parameters ai, bi, ci and di respectively. These extensions assume that the

child-specific random effects a1i, b1i, c1i and d1i are drawn from a multivariate normal distribution

with mean 0 and variance-covariance matrix φ and are independent for different subjects (Pinheiro &

Bates, 2000). The errors εit are independent and identically normally distributed random variables

with mean 0 and constant variance σ2, which are independent of the child-specific random effects.

When the random effects in the growth model are equated to zero, the curve implied by the model

a0 + b0t - e(c0+d0t) is called a population level curve (Pinheiro & Bates, 2000).
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2.2.2 Reed 1st order model

2.2.2.1 Original specification

Berkey and Reed (1987) introduced another growth function called the Reed model, a linear model

appropriate for modelling early childhood growth in length, weight and head circumference for

normally growing children. Both Jenss-Bayley and Reed 1st order models have four parameters.

Unlike the Jenss-Bayley model, the Reed model is linear in its parameters and can be fitted by

linear regression. As compared to non-linear growth models, analysis of parameters and fitting of

the curve is simpler.

The specification of the Reed 1st order model pertinent to this research is as follows:

For subjects i = 1, 2.....N and time points t = 1, 2.....Ti

y
′
i(t) = a

′
i + b

′
it + c

′
iln(t) + d

′
i(1/t) + ε

′
it (2)

where

y
′
i(t) = weight measured for child i at age t (kg)

t = age (time) variable (years)

a
′
i = child’s intercept of the asymptote of the distance curve (kg)

b
′
i = child’s slope of the asymptote (kg per year)

c
′
i, d

′
i = decreasing growth velocity for each subject (deceleration parameters)

The Reed model (Berkey & Reed, 1987) is an extension of the Count model (Count, 1943) which

is expressed as y
′
i(t) = a

′
i + b

′
it + c

′
iln(t) + ε

′
it. The parameters a

′
i, b

′
i and c

′
i for the Count model

have the same interpretation as above. In contrast to the Count model, the Reed 1st order model

incorporated another deceleration term d
′
i(1/t) to improve the fit of the model (Beath, 2012). The

additional deceleration term d
′
i(1/t) in the Reed model behaves very similarly to the exponential

component of the Jenss-Bayley model (Jenss & Bayley, 1937) by capturing the decreasing growth

velocity during infancy. The velocity curves of the Reed model (b
′

+ c
′
/t - d

′
/t2) and Count model

(b
′

+ c
′
/t) are polynomial functions of (1/t) (reciprocal of age), thus they are also called reciprocal

models (Berkey & Reed, 1987). Both Jenss-Bayley and Reed models are equally prepared to handle
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the data that doesn’t necessarily start at birth. But if birth data is included, then the chronological

age since birth cannot be considered in the Reed model because the natural logarithm of age

(logarithm of 0 (ln(0))) and inverse of age (1/0) are not defined and hence an alternative age scale

is required. To account for this, the Reed model suggested an age transformation as t∗ = (t+ 9)/9

where t = age in months since birth assigning t∗ = 0 at conception and t∗ = 1 at birth. In theory,

an alternative transformation was also proposed by adding a value of 1 to the time variable only

where the logarithmic and inverse functions are of time. Using this transformation (Count, 1943),

the age transformed Reed 1st order model (equation (2)) can be expressed as:

y
′
i(t) = a

′
i + b

′
it + c

′
iln(t + 1) + d

′
i(1/t + 1) + ε

′
it for subjects i = 1, 2. . . . . . N and time points

t = 1, 2. . . . . . Ti

This transformation describes (a
′

+ b
′

+ d
′
) weight at birth and (b

′
+ c

′
- d

′
) velocity at birth that

approaches to b, preschool period velocity. The a
′
i, b

′
i, c

′
i and d

′
i are unknown growth parameters to

be estimated for each child separately and ε
′
it is the error term specific to child i at age t, that is

assumed to be normally distributed with mean 0 and variance σ
′2
i .

2.2.2.2 Mixed effects specification

Using mixed effect modelling approach, the parameters of the Reed 1st order model (equation (2))

are defined as:

a
′
i = a

′
0 + a

′
1i

b
′
i = b

′
0 + b

′
1i

c
′
i = c

′
0 + c

′
1i

d
′
i = d

′
0 + d

′
1i

where the fixed effects are represented by a
′
0, b

′
0, c

′
0 and d

′
0 and a

′
1i, b

′
1i, c

′
1i and d

′
1i are represented by

child-specific random effects of the growth parameters a
′
i, b

′
i, c

′
i and d

′
i respectively. The parameters

a
′
1i, b

′
1i, c

′
1i and d

′
1i are child-specific random effects assumed to be drawn from a multivariate normal

distribution with mean 0 and covariance matrix φ
′
. The errors ε

′
it are independent and identically
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normally distributed random variables (mean 0 and constant variance σ
′2) and are independent of

the child-specific random effects. Unlike the Jenss-Bayley model, this model can accommodate one

inflection point in the curve and hence Age at Peak Weight Velocity (APWV) can be obtained by

differentiating the weight velocity curve dy/dt and then equating it to zero (i.e. d2y/dt2 = 0).

2.2.3 Reed 2nd order model

2.2.3.1 Original specification

Reed 2nd order is an extension of the Reed 1st order model developed by Berkey and Reed (1987).

This model is a linear model with five parameters and can be easily fitted with linear least square

regression. Reed 2nd order is obtained by adding another deceleration term to the Reed 1st order

model to provide a significant improvement over the four-parameter Reed model. This model is

useful to describe unusual or abnormal growth patterns among children that cannot be modelled

well by the Reed 1st order model. It is sometimes referred to as the five parameter Reed model.

The Reed 2nd order model specification for this research study for subjects i = 1, 2. . . .N and time

points t = 1, 2. . . .Ti is as follows:

y
′′
i (t) = a

′′
i + b

′′
i t + c

′′
i ln(t) + d

′′
i (1/t) + e

′′
i (1/t2) + ε

′′
it (3)

where

y
′′
i (t) = weight measured for child i at age t (kg)

t = age (time) (years)

a
′′
i = child’s intercept of the asymptote (kg)

b
′′
i = child’s slope of the asymptote (kg per year)

c
′′
i , d

′′
i , e

′′
i = decreasing growth velocity for each subject (deceleration parameters)

Estimation of the unknown growth parameters in the model is done separately for each child. The

error term ε
′′
it is specific to each child at age t and assumed to be normally distributed with mean

0 and variance σ
′′2
i .

Using the age transformation suggested by Berkey and Reed (1987) mentioned above, the Reed 2nd
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order model (equation (3)) for subjects i = 1, 2. . . . . . .N and time points t = 1, 2. . . . . .Ti is defined

as:

y
′′
i = a

′′
i + b

′′
i + c

′′
i ln(t+ 1) + d

′′
i (1/(t+ 1)) + e

′′
i (1/t2) + ε

′′
it

In general, Reed models with order greater than one can handle more than one period of growth

acceleration indicated by the presence of more than one inflection point.

2.2.3.2 Mixed effects specification

Specifying Reed 2nd order model (equation (3)) within the mixed effect framework, the growth

parameters are defined as

a
′′
i = a

′′
0 + a

′′
1 i

b
′′
i = b

′′
0 + b

′′
1 i

c
′′
i = c

′′
0 + c

′′
1 i

d
′′
i = d

′′
0 + d

′′
1 i

e
′′
i = e

′′
0 + e

′′
1 i

where a
′′
0 , b

′′
0 , c

′′
0 , d

′′
0 , e

′′
0 represents the fixed effects and a

′′
1 i, b

′′
1 i, c

′′
1 i, d

′′
1 i, e

′′
1 i represents random

effects. The parameters a
′′
i , b

′′
i , c

′′
i , d

′′
i and e

′′
i are assumed to be drawn from a multivariate normal

distribution with mean 0 and variance-covariance matrix φ
′′

and that the errors ε
′′
it are independent,

normally distributed random variable with mean 0 and constant variance σ
′′2, which are independent

of the child-specific random effects. This model can accommodate at most two inflection points in

the growth curve.

2.2.4 Adapted Jenss-Bayley model

2.2.4.1 Original specification

An extension of the original Jenss-Bayley model (Jenss & Bayley, 1937) was proposed by Botton et

al. (2008) known as the Adapted Jenss-Bayley model. This model has the same four parameters as

in the initial Jenss-Bayley model plus an additional quadratic term in age. This five-parameter non-

linear Adapted Jenss-Bayley model enables modelling child’s growth (weight and height) from birth
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to puberty instead of from birth to eight years of age as defined in the original Jenss-Bayley model.

This model consists of two components: a linear component a
′′′
i + b

′′′
i t + e

′′′
i t

2 that models growth

(primarily after 3 years of age), plus an exponential component e(c
′′′
i +d

′′′
i t) that models decreasing

growth velocity shortly after birth during the child’s first three years (van Dommelen et al., 2005;

Botton et al., 2008).

The Adapted Jenss-Bayley model specification for this research study for subjects i = 1, 2...N and

time points t = 1, 2...Ti is expressed as:

y
′′′
i (t) = a

′′′
i + b

′′′
i t - e(c

′′′
i +d

′′′
i t) + e

′′′
i t

2 + ε
′′′
it (4)

where

y
′′′
i (t) = weight measured for child i at age t (kg)

t = age (time) variable (years)

a
′′′
i = intercept of each child’s asymptote at time of the distance curve (kg)

b
′′′
i = slope of each child’s asymptote (constant rate of growth) (kg per year)

ec
′′′
i = the vertical distance between the intercept of the growth curve and intercept of the asymptote

for each child (kg)

ed
′′′
i = each child’s acceleration growth constant

e(c
′′′
i +d

′′′
i t) = at any point on the distance curve, the vertical distance between the distance curve

and its asymptote for each individual (decelerating rate of growth).

e
′′′
i = captures child’s growth velocity at the onset of puberty (kg per year)

The unknown growth parameters a
′′′
i , b

′′′
i , c

′′′
i and d

′′′
i are to be estimated separately for each child.

The ε
′′′
it is the error term specific for each child i at age t and assumed to follow normal distribution

with mean 0 and variance σ
′′′2. a

′′′
i - ec

′′′
i is the predicted weight (kg) at birth for child i when the

birth data is included.

2.2.4.2 Mixed effects specification

The parameters of the Adapted Jenss-Bayley model (equation (4)) in a mixed effect model are

expressed as:
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a
′′′
i = a

′′′
0 + a

′′′
1i

b
′′′
i = b

′′′
0 + b

′′′
1i

c
′′′
i = c

′′′
0 + c

′′′
1i

d
′′′
i = d

′′′
0 + d

′′′
1i

e
′′′
i = e

′′′
0 + e

′′′
1i

where a
′′′
0 , b

′′′
0 , c

′′′
0 , d

′′′
0 and e

′′′
0 are the fixed effects and a

′′′
1i, b

′′′
1i, c

′′′
1i, d

′′′
1i and e

′′′
1i are the random effects

respectively. The parameters a
′′′
1i, b

′′′
1i, c

′′′
1i, d

′′′
1i and e

′′′
1i are assumed to be drawn from a multivariate

normal distribution with mean 0 and covariance matrix φ
′′′

. The errors are independent, normally

distributed random variable with mean 0 and constant variance σ
′′′2 which are independent of the

child-specific random effects.

2.2.5 SITAR model

A growth model was introduced by Beath (2007) known as the Shape invariant model (SIM) to

describe weight data in infants from birth to two years. The important feature of this model as

compared to other previously mentioned parametric growth models is that its parameters have

direct biological interpretations of the human growth process. Later Cole et al. (2010) extended

the shape invariant model and named it as SuperImposition by Translation And Rotation (SITAR).

This model estimates the sample average growth curve using natural cubic spline function. The

spline function in the model captures non-linearity in the data and also identifies inflection points.

Moreover, this average curve can be used to fit each individual’s growth curve by shifting the x and

y axes and scaling the x-axis. The model was fitted by using a non-linear mixed effects approach.

The common spline function’s parameters are considered as fixed effects whereas the SITAR model’s

parameters (3) are considered as mixed (fixed effects + random effects).

The SITAR model for subjects i = 1, 2. . . . N and time points t = 1, 2. . . .Ti can be specified as:

yi(t) = αi + h
(
(t− βi)/e−γi

)
+ ηit (5)

where

yi(t) = weight measured for ith child at age t
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t = age (time) variable (in years)

h(t) = a function that describes non-linear relationship between weight and age represented using

natural cubic spline curve of the weight regressed on age

The αi, βi and γi are subject-specific parameters expressed as αi = α0 + α1i, βi = β0 + β1i, γi

= γ0 + γ1i where α0, β0, γ0 represents fixed effects and α1i, β1i, γ1i represents random effects.

These parameters are assumed to be drawn from a multivariate normal distribution with mean 0

and variance-covariance matrix λ. The error term ηit follows a normal distribution with mean 0

and variance σ2 and are independent of the child-specific random effects. α1i, β1i for each subject

i refers to the shift parameter for y (weight) axis and the x (age) axis respectively whereas γ1i

refers to the scale parameter for the x (age) axis. The SITAR model’s parameters αi, βi and γi are

referred to as size, tempo/timing and velocity/intensity respectively where the first two parameters

lead to a translation in the spline curve, and third parameter refers to a rotation for the growth

curve. Based on their biological interpretability, αi refers to a random weight intercept that adjusts

for the difference in individual’s mean weight. The parameter size (αi) adjusts the average growth

curve by vertically shifting it up or down. The positive or negative values of the size indicates

whether the child is heavier/larger or lighter/smaller than the average weight of the sample. The

parameter βi refers to the random age intercept that adjusts for the differences in the individual’s

timing of the pubertal growth spurt based on the APWV. The parameter tempo (βi) adjusts the

average curve by horizontally shifting the curve left or right. The positive or negative values of the

tempo indicates whether the timing of the peak weight velocity is earlier or later than the timing

of peak weight velocity of the average curve. The parameter γi refers to the random age scale that

adjusts for the differences in the individual’s duration of the growth spurt (i.e. reaching the peak

weight velocity). The parameter velocity (γi) corresponds to the shrinking and stretching of the age

scale. The positive value of the velocity indicates the shrinking of the age scale which makes the

curve steeper and increases the velocity leading to fast growth. The negative value of the velocity

indicates the stretching of the age scale which makes the curve shallower and decreases the velocity

leading to slow growth. When the random effects α1i, β1i and γ1i are removed (equated to zero)

in the model, all individuals’ growth curves would be back transformed and will lie on the mean

growth curve.
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Figure 2.2 is from paper Cole et al.’s (2010) and provides the geometric description of the three

SITAR parameters. The black solid line represents the average growth curve of the sample. The red

dashed lines indicate the vertical shift in the curve (upward and downward) which is represented by

size (α). The blue dashed lines indicate the horizontal shift in the curve (left or right) represented

by tempo (β). The green dot-dashed lines indicate the shrinking and stretching of the curve corre-

sponding to velocity (γ). These parameters describe how each individual’s growth curve can differ

from the mean curve.
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Figure 2.2: Graphical description of the SITAR model parameters from Cole et al. (2010)
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2.3 Statistical analysis

All the data analyses comparing several anthropometric growth models (Jenss-Bayley and Reed

models and their extensions) alongside the recently developed SITAR model to model longitudinal

weight data from 6 to 15 years of age (childhood to adolescence) were separated by sex. While

the Jenss-Bayley and Reed models and their extensions were conducted within the mixed effect

framework, the SITAR model was a shape invariant random effects model. The variables used in

this analysis included sex, age and weight of the subjects. From the initial cohort (n = 2,120),

subjects with at least one non-missing weight and age observation were included in accordance with

the literature (Pizzi et al., 2014). Thus, the participants (n = 323: females = 126, males = 197)

with missing growth data at all seven measurement occasions were excluded from the analysis. In

addition, subjects that only had either their weight or age and were missing all other data were also

excluded (n = 60, females = 26, males = 34), leaving a final sample size of: 1737 subjects. The units

of measurements used for the age and weight variables in this study were kilograms (kg) and years,

respectively. All the statistical analyses were performed using R (Team, 2013) (version-1.1.383).

All the statistical tests were conducted at 5% significance level.

Firstly, descriptive statistics such as means, standard deviations and range were calculated for weight

at each time point of interest for females and males. T-tests were then conducted to compare mean

weight among females and males at birth and at each measurement occasion (at ages 6, 7, 8, 10,

12, 13 and 15). T-tests were also performed to compare weight change velocity (kg/year) among

females and males at 3 different time intervals (6-10, 10-12 and 12-15 years). Each child’s weight was

converted to weight-for-age z-scores according to WHO growth curves for Canada (Rodd, Metzger,

& Sharma, 2014). Also, mean weight z-scores for females and males were calculated at each time

point. T-tests were also used to compare any significant differences in mean weight-for-age z-scores

between females and males at each time point of interest. Observed weight growth curves of a

random selection of females and males separately were also plotted. The wide form data set was

then converted to long form to fit mixed effect growth models (Fitzmaurice et al., 2012).

Secondly, the five anthropometric growth models (Jenss-Bayley, Reed 1st order, Reed 2nd order,

Adapted Jenss-Bayley, and SITAR) were fitted using mixed effect modelling framework. The func-

29



tions of the predictor age such as natural logarithm of age ln(age), square of the age (age)2, inverse

of age (1/age) and inverse of age square (1/(age)2) were also calculated to fit these growth weight

models. The weight data were unbalanced as the weight measurements were not collected at fixed

time points for every individual and also due to lost to follow-up. The implications of this on the

results are described in the discussion section.

The Jenss-Bayley, Reed 1st order, Reed 2nd order, and Adapted Jenss-Bayley models were fitted

with untransformed weight data. Natural logarithmic transformations of the weight observations

were also considered. The results obtained from the untransformed weight modelling were then

compared with transformed weight results (Pizzi et al., 2014). The SITAR model was fitted using a

natural cubic regression B-spline curve f(t). The specification of the degrees of freedom implies the

placement of the knots of the spline curve f(t) at the quantiles of the age distribution. The selection

of the degrees of freedom depends upon the number of available weight measurements over the age

timescale. Different degrees of freedom were also tried. Firstly, the SITAR models were fitted with

all fixed and random effects of the parameters α, β and γ. The different alternatives of the models

were also carried out on the fixed effects values by fixing either β0 = 0 and γ0 = 0 together or

β0 = 0 only or γ0 = 0 only. These alternative constraints were performed with the untransformed

and natural logarithm transformation of both weight and age scales (Pizzi et al., 2014).

The estimation of the growth models (Jenss-Bayley, Reed 1st order, Reed 2nd order, and Adapted

Jenss-Bayley) were conducted by simple non-linear regression using the nls (non-linear least square)

function in R without random effects to obtain starting values for the parameters of the growth

models. These growth models were then later fitted by the nlme function (non-linear mixed effects)

in R (Pizzi et al., 2014) using the estimates obtained from the nls function as the starting values

for the growth parameters along with the random effects of the parameters (Pinheiro et al., 2017).

The SITAR model was fitted by using the SITAR function (based on nlme function) in the SITAR

package (version-1.0.9) provided by R environment (Cole & Cole, 2017). Maximum likelihood

of estimation was used as the method of estimation while fitting the models in the nlme and

sitar functions. Based on the literature (Pizzi et al., 2014), the covariance structure of the within

subject residuals and the random effects of the growth parameters were assumed as independent
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and unstructured respectively. Diagnostic testing was performed to assess the assumptions of the

fitted models by plotting residual plots and normal quantile plots.

In comparing models to one another, the log likelihood ratio test (for nested models) and the

Akaike information criteria (AIC) (Sakamoto, Ishiguro, & Kitagawa, 1986) and Bayesian information

criteria (BIC) (Schwarz, 1978) (for non-nested models) were used. Among the growth models,

the model with the lowest AIC, BIC and Residual Standard Deviation (RSD) was preferred over

the other models. In order to find the best model within each theory (Jenss-Bayley, Reed 1st

order, Reed 2nd order, and Adapted Jenss-Bayley) the untransformed weight model was compared

with the log transformed weight model. Within each theory, the untransformed weight and log

transformed weight models were non-nested models therefore they were compared in terms of AIC,

BIC and minimum RSD. Within the SITAR theory, the models with different weight and age scales

(untransformed and log transformed) were fitted with all the fixed and random effects first and

then with the alternative restrictions imposed on the fixed effects. In order to determine the best

model within the SITAR theory, these models were then compared in terms of AIC, BIC and RSD.

The best model selected from Jenss-Bayley was compared with the best model from Adapted Jenss-

Bayley. Similarly, the best model selected from Reed 1st order was compared with the best model

selected from Reed 2nd order. The best models selected from each one of the theories were then

compared with one another. When the weight was transformed, the corrected or adjusted AICs and

BICs were calculated. Also, the Peak Weight Velocity (PWV) and Age at Peak Weight Velocity

(APWV) were estimated from the SITAR models when possible.

Plots of population level predicted weight growth curves and growth velocity curves obtained from

the fitted fixed effects growth models were also examined. The average predicted weight at selected

ages were also calculated from the five fitted models.

2.4 General mixed effect model building procedure

The following steps were conducted to build a final model for Jenss-Bayley, Reed 1st order, Reed

2nd order and Adapted Jenss-Bayley models:
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Step 1: The growth models were first fitted for untransformed observed weight data. The modelling

procedure started by first fitting these anthropometric models as a simple non-linear regression

model (fitting the data with fixed effects only). The models required appropriate or good initial

values for the estimation of their parameters in order to allow the models to converge to a solution

quickly. Thus, the starting values were chosen based on the data and also through trial and error.

Some of the starting values that were chosen for the modelling lead to the non-convergence of the

models. Those starting values that lead to the convergence of the models had negative intercepts

for Jenss-Bayley, Reed 1st and Reed 2nd order models. Therefore, it was required to center the

age in order to have interpretable intercepts. The age was left centered at age 5. Age could also

be centered around mean age for females (female’s age - 10.14) and males (male’s age - 10.12)

for original Jenss-Bayley and Adapted Jenss-Bayley models but not for Reed 1st and 2nd order

models. This happened due to the fact that the latter models have a logarithm term ln(age) and

the logarithm of negative values are not defined. Thus, in order to be consistent in the analyses,

age was left centered at age 5 for Jenss-Bayley, Adapted Jenss-Bayley, Reed 1st and 2nd order

models. The growth models were also fitted for natural logarithmic transformation of weight scale

and untransformed age in order to be consistent with the SITAR model

Step 2: On trying different starting values for the model parameters, many models failed to con-

verge. However, specifying starting values of 1-15 (for the intercept), and 1-4 (for the slope) resulted

in coverging with similar estimates for parameters and producing similar standard errors.

Step 3: The models were then fitted as non-linear mixed effect models which further allowed the

incorporation of the random effects of the average growth parameters estimates. The estimated

values obtained from fitting the model as a non-linear regression model (step 2) were used as the

initial estimates for these mixed effect models.

Step 4: The random effects of the parameters were added systematically to the fixed effect models

in accordance to the literature (Pinheiro & Bates, 2000). The models were checked for convergence

after adding each random effect. Significance testing of each random effect in a mixed model

(compared to the model without the random effect) was also conducted using a likelihood ratio
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test. The fitted values obtained after the addition of each random effect to the model were used as

the starting values for the model when the next random effect of the parameter was added.
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Chapter 3

Results

3.1 Descriptive analysis

All the data analyses comparing weight growth characteristics at birth and specifically from 6 to 15

years of age (middle childhood to adolescence) were stratified by sex for this research study. In the

QLSCD cohort (n = 2,120), approximately 49% (1040/2120) were females and 51% (1080/2120)

were males. The analytic sample that was used in this research study consisted of n = 1,737

participants (females = 888, males = 849) (after data exclusions as specified previously). In this

study, the age of females ranged between approximately 68.5 (at baseline) to 188 (at last follow-up)

months and males ranged between approximately 68.4 to 188 months. The average number of weight

measures in females and males were approximately 5 with a standard deviation of 1.96 and 2.03

respectively. From Table 3.1, the number of subjects with complete data (all seven measurements

for an individual at ages 6, 7, 8, 10, 12, 13 and 15) for females were n = 378 (42.57% of 888) and

males were n = 309 (36.40% of 849).
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Table 3.1: Number of weight measurements per child

Measures N N % %
Females Males Females Males

1 72 78 8.11% 9.19%
2 50 51 5.63% 6.01%
3 45 80 5.07% 9.42%
4 64 74 7.21% 8.72%
5 87 93 9.80% 10.95%
6 192 164 21.62% 19.32%
7 378 309 42.57% 36.40%

Table 3.2 below provides the descriptors of weight for females and males at birth and each data

collection wave from 6 to 15 years of age. The average birth weight of females was 3.37 kg with

a standard deviation of 0.48 kg and ranging between 1.09 to 4.97 kg. The average birth weight

of males was 3.44 kg with a standard deviation of 0.52 kg and ranging between 0.99 to 5.26 kg.

Average body weight ranged between 21.68 - 56.85 kg in females and 22 - 62.86 kg in males. Com-

parisons of mean weight by sex were conducted at birth and at each measurement occasion (from 6

to 15 years). It was noticed that at birth, females were a little heavier than males and the difference

was significant (p-value = 0.0006). The difference in weight between females and males was not

significant (p-value >0.05) from age 6 to 10 years except at the age of 7 (p-value = 0.04) with a dif-

ference of approximately 0.5 kg more in males. Around age 12, there was a significant difference in

mean weight between females and males (p-value <0.05) indicating that there was a rapid increase

in females’ average weight and they tended to be heavier than males. Females continued to have a

little more body weight than males at age 13 but the difference was not significant (p-value = 0.86).

There was an increase in males’ average body weight compared to females’ at approximately 15

years of age with a difference of approximately 6 kg. This difference was significant (p-value <0.05).

The weight change velocity did not show any significant difference (p-value = 0.1052) between fe-

males and males from 6 to 10 years. The difference was found to be significant (p-value <.0001)

between 10 to 12 years when the females weight change velocity (5.65 kg/year) was higher than

males (4.81 kg/year) and from 12 to 15 years when the males weight change velocity (5.58 kg/year)

was higher than females (3.12 kg/year). Each child’s weight at each time point was calculated and

converted to age and sex specific z-scores. The mean weight z-scores for females and males were

above 0 indicating that the children in this study were heavier than the reference population mean
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at all time points. There were no significant differences between the mean weight z-scores of females

and males from 6 to 10 years of age (p-value >0.05), but significantly differed between the sexes at

ages 12, 13 and 15 years (p-value <0.05).

Table 3.2: Characteristics of QLSCD females (F) and males (M) at birth and from 6 to 15 years of
age (Weight and Age over time)

F M F M
Weight(kg) Range Range Mean(SD) Mean(SD) p-value

birth 1.09-4.97 0.99-5.26 3.37(0.48) 3.44(0.52) 0.0006
6 14.55-43.18 13.18-48 21.68(3.72) 22.00(3.82) 0.15
7 15-52 15-58 24.25(4.63) 24.75(4.78) 0.04
8 13.64-57 17.55-63.64 27.44(5.65) 27.77(5.74) 0.28
10 21.6-82.2 21.6-88 36.46(8.28) 36.23(8.43) 0.63
12 26.8-111.4 25-113 47.54(11.37) 45.96(11.78) 0.01
13 31.6-122.2 27.4-124.5 52.67(11.60) 52.54(13.71) 0.86
15 32.85-135 30-121.5 56.85(11.96) 62.86(13.84) <.0001

WCV(kg/year)

6-10 years (-1.05,10.44) (-0.1,10) 3.71(1.38) 3.56(1.46) 0.1052
10-12 years (-1.4,16) (-10.93,16.3) 5.65(2.32) 4.81(2.55) <.0001
12-15 years (-9.15,26.17) (-7.2,23.53) 3.14(2.84) 5.72(2.54) <.0001

Weight z-scores

6 (-2.66,5.09) (-3.9,6.08) 0.26(1.01) 0.27(1.16) 0.85
7 (-3.19,4.46) (-3.7,6.35) 0.26(1.05) 0.28(1.20) 0.74
8 (-4.16,4.10) (-3.16,5.57) 0.28(1.10) 0.31(1.25) 0.67
10 (-2.46,3.53) (-2.77,4.50) 0.43(1.03) 0.55(1.14) 0.05
12 (-2.44,4.13) (-2.92,4.38) 0.37(1.03) 0.50(1.14) 0.03
13 (-2.45,4.48) (-3.08,4.48) 0.35(1.01) 0.49(1.16) 0.03
15 (-3.49,4.79) (-3.93,4.04) 0.18(1.04) 0.32(1.16) 0.02

WCV: Weight Change Velocity
SD: Standard Deviation
N’s for the variable weight ranged from 599, 774, 703, 672, 689, 661, 698 in females at ages
6, 7, 8, 10, 12, 13 and 15, respectively
N’s for the variable weight ranged from 536, 701, 648, 595, 645, 569, 634 in males at ages
6, 7, 8, 10, 12, 13 and 15, respectively

Plots of observed weight growth trajectories of a random sample (65 subjects in total) stratified by

sex with an average weight line [in red] at 6, 7, 8, 10, 12, 13 and 15 years are shown in Figure 3.1.

The females’ plot shows that the mean weight was increasing approximately linearly from 6 to 8

years of age followed by a rapid increase in weight until age 13 (approximately). Females’ weight
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was growing continually after age 13 but at a slower rate. The males’ plot shows a similar pattern

as females where the mean weight was approximately constant from 6 to 8 years of age with an

increase in weight that further continued until age 12 (approximately). There was a rapid increase

in males’ weight after age 12 and was growing continually until age 15 at an increasing rate as

compared to females’.
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Figure 3.1: Observed weight growth curves of random selection of females and males
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3.2 Model fitting results

3.2.1 Jenss-Bayley model

The Jenss-Bayley mixed effects model for females converged. The results are shown in Table 3.3.

The model converged when the random effect a1i of the intercept a0 was added. The model further

converged when the random effect b1i of the slope b0 was also added. However, the addition of

random effects c1i and d1i of the parameters c0 and d0 lead to the non-convergence of the model.

Therefore, the final Jenss-Bayley model for females consisted of fixed effects a0, b0, c0, d0 for all the

parameters ai, bi, ci and di including only the random effects a1i and b1i of the intercept a0 and

slope b0 respectively.

For females, all four estimated fixed effect parameters were found to be significant in the model

(p-value <0.05). These fixed effects represent the average growth curve for the females within the

sample. The age was left centered at age 5, therefore the females mean weight at 5 years was a0

- ec0 (14.5 kg when the other parameters were held constant). The average rate of growth during

childhood and adolescence for females was 4.57 kg per year. The random intercept and random

slope in the females fitted Jenss-Bayley model indicated that each subject had their own individual

estimates of the intercept and rate of growth of their weight growth curves from middle childhood

to adolescence. Therefore, the standard deviations around the starting point and growth rate of

the average weight curve for females were 3.3 kg and 1.09 kg per year respectively. The term ec0

i.e., e(−14.87) corresponds to 3.48 ∗ 10−7 implying that the vertical distance between the intercept of

the distance curve and the intercept of its asymptote was nearly 0. This indicated that the females

average growth curve was following its asymptote very closely. The Jenss-Bayley mixed effect model

was incapable of finding the unique estimates for the deceleration term for each individual in the

age range (6 to 15 years). This further indicated that the magnitude of deceleration term was the

same for all the females in the same time interval.

In contrast to females, the Jenss-Bayley model failed to converge when fitted on the males’ data from

age 6 to 15 years (Table 3.4). The reason behind this non-convergence could be the fact that the

model may be over parametrized for the males data in the age range (6 to 15 years) as compared to

Jenss-Bayley’s original conceptualization to model growth between birth and 6 years. In support of
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this reason, it was also observed that when the exponential component of the Jenss-Bayley equation

was not included in model fitting, the model converged with valid estimates of the intercept and

slope parameters (fixed+random). This may imply that the males’ follow constant growth until

they start their pubertal spurt which might start later in males. However, it is possible that some

are starting puberty by the age of 13 or 14 where it affects their weight, and others are not which

could have strongly affected fitting the model and estimating the solution. Also, the model fails to

capture the end part of the growth spurt when the weight velocity starts decreasing.

3.2.2 Reed 1st order model

The Reed 1st order mixed effect models converged for both females and males having random

intercept âi
′

and random slope b
′
i. The results are shown in Tables (3.3 and 3.4) respectively. The

models did not converge when the random effects c
′
1i and d

′
1i of the deceleration parameters c

′
0 and

d
′
0 were added. These models adjusted for the differences in the individual’s intercept and slope of

the linear asymptote with the same magnitude of decelerating rate of growth for both females and

males.

The estimates of the Reed 1st order growth parameters for males provided better and more logical

numerical estimates than the females. The fixed effect estimates of the intercept a
′
0 and slope b

′
0 of

the asymptote for males were higher than females whereas c
′
0 and d

′
0 estimates of males were lower

than the females. The fixed effect parameters for males were all found to be significant (p-value

<0.05). Since the Reed 1st order models contain a logarithmic term, it was not possible to interpret

the average weight at 5 years of age. Thus, for males, the average or predicted weight at 6 years of

age was 21.66 kg. For each unit increase in age the weight would increase by 7.29 kg per year. The

overall model for females predicted 21.13 kg at 6 years of age with an increment of approximately

3 kg per year. The decelerating parameters were found to be significant and having no random

effects of these parameters implies the same deceleration growth rate for females and males during

childhood and puberty phase. The corresponding SD’s of the random effects a
′
1i was higher and b

′
1i

was lower in females than males.
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3.2.3 Reed 2nd order model

The results for both females and males are shown in Tables 3.3 and 3.4 respectively. Similar to

other models, the Reed 2nd order models also converged under the mixed effect framework for both

sexes. In particular, the models’ convergence was also achieved for both females and males when

the random effects of the intercept a
′′
0 and b

′′
0 were added. The models also converged after the

addition of the random effects e
′′
1i of the fifth parameters e

′′
0 for both females and males. However,

the models failed to converge when the random effects c
′′
1i and d

′′
1i of the decelerating rate of growth

parameters c
′′
0 and d

′′
0 were added.

Like Reed 1st order, Reed 2nd order model for males also provided more reasonable parameter

estimates than females. The estimated fixed effects a
′′
0 , b

′′
0 and e

′′
0 were higher in males than females

whereas estimated c
′′
0 and d

′′
0 were higher in females than males. The mean weight at 6 years for

males was 21.61 kg with a linear slope of 7.82 kg per year. Even after centering the data, the model

for females estimated a negative value of the intercept a
′′
0 . The average weight for females at 6 years

of age was 22.44 kg with mean slope of -0.62 kg per year. The SD’s of the random effect a
′′
1i was

higher in females than males followed by b
′′
1i and c

′′
1i were higher in males than females.

3.2.4 Adapted Jenss-Bayley model

For both females and males, the Adapted Jenss-Bayley mixed effect models converged. Tables 3.3

and 3.4 shows the results of females and males respectively. The models also converged after the

systematic addition of the random effects a
′′′
1i and b

′′′
1i of the intercept â0

′′′
and the slope b

′′′
0 . The

randomly varying intercepts and slopes indicated that every child has its own intercept of their

growth curve and linear rate of growth. However, the models failed to converge when the random

effects c
′′′
1i and d

′′′
1i of the deceleration parameters e(c

′′′
0 +d

′′′
0 t) were added. Addition of random effects

e
′′′
1i of the parameters e

′′′
0 (p-value <0.05) were found to be significant in females and males. This

indicates that the addition of the fifth parameter in Adapted Jenss-Bayley provided a significant

improvement over the four parameter Jenss-Bayley model. Thus, the final Adapted Jenss-Bayley

models consisted of fixed effects a
′′′
0 , b

′′′
0 , c

′′′
0 , d

′′′
0 and e

′′′
0 including the random effects a

′′′
1i, b

′′′
1i and e

′′′
1i

of the intercept a
′′′
0 , slope b

′′′
0 and velocity e

′′′
0 (at the start of puberty) for both females and males.
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The fixed effect estimates of the intercept of the asymptote a
′′′
0 , deceleration parameter c

′′′
0 and onset

puberty velocity e
′′′
0 for the females were higher than males whereas the slope b

′′′
0 and deceleration

parameter d
′′′
0 estimates were higher in males than females. At 5 years of age, the predicted weight

(a
′′′
0 −ec

′′′
0 ) for females was 20.54 kg and for males was 19.63 kg when the other parameters were held

constant. The variances of the mean weight and slope for females were 11.56 kg and 10.56 kg per year

and for males were 10.69 kg and 7.89 kg per year respectively. These variances indicate between-

individual differences in growth trajectories (in varying intercepts and varying growth rates) from

middle childhood to adolescence. The model also indicates that it was capable of finding specific

estimates of the increase in velocity for every individual that occurs at the onset of puberty. The

models for females and males did not estimate random effects of the parameters in the exponential

function indicating that the children experience the same deceleration rate in growth at the same

time. This model accounted for adjusting the individual growth curve differences with respect to

random intercept a
′′′
i , random slope b

′′′
i and random pubertal velocity e

′′′
i when the adolescent spurt

starts. The corresponding random effects SD’s for the parameters a
′′′
0 and e

′′′
0 were quite similar

across genders but for the slope it was higher in females than males.
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Table 3.3: Estimated parameters for fixed effects and random effects SD’s of Jenss-Bayley, Reed 1st

order, Reed 2nd order, and Adapted Jenss-Bayley models for females fitted on the original weight
scale

Model Parameters FE SE p-value 95% CI of FE RE(SD) 95% CI of RE

JB a0 14.5 0.17 <0.0001 (14.16,14.83) 3.3 (3,3.63)
b0 4.57 0.05 <0.0001 (4.48,4.66) 1.09 (1.02,1.16)
c0 -14.87 2.52 <0.0001 (-19.81,-9.94)
d0 1.59 0.24 <0.0001 (1.11,2.07)

R1 a
′
0 0.04 1.26 0.9693 (-2.41,2.51) 3.16 (2.86,3.49)

b
′
0 2.97 0.15 <0.0001 (2.67,3.28) 1.09 (1.03,1.16)

c
′
0 11.55 1.09 <0.0001 (9.41,13.68)

d
′
0 18.12 1.44 <0.0001 (15.30,20.94)

R2 a
′′
0 -67.53363 0.11 0.5939 (-77.11,-57.96) 4.3 (3.91,4.74)

b
′′
0 -0.62629 0.01 <0.0001 (-1.20,-0.05) 1.12 (1.06,1.19)

c
′′
0 51.51071 0.07 <0.0001 (45.65, 57.37)

d
′′
0 133.66299 0.18 <0.0001 (117.59,149.74)

e
′′
0 -43.0652 0.07 <0.0001 (-48.95,-37.18) 1.82 (1.37,2.43)

AJB a
′′′
0 20.95 0.56 <0.0001 (19.85,22.05) 3.4 (3.03,3.82)

b
′′′
0 0.61 0.18 0.001 (0.25,0.97) 3.25 (3.04,3.46)

c
′′′
0 -0.9 0.76 0.234 (-2.42,0.59)

d
′′′
0 0.44 0.06 <0.0001 (0.33,0.55)

e
′′′
0 0.62 0.07 <0.0001 (0.48, 0.75) 0.27 (0.25, 0.27)

JB: Jenss-Bayley, R1: Reed 1st order, R2: Reed 2nd order, AJB: Adapted Jenss-Bayley
FE: Fixed Effects, SE: Standard Error, RE: Random Effects, SD: Standard Deviation,
95% CI of FE: 95% Confidence Interval of Fixed Effects,
95% CI of RE: 95% Confidence Interval of Random Effects,
The best way to read the results is as follows (using JB model as an example):
In the final model, there were four fixed effects estimates a0, b0, c0 and d0 but only two random
effects estimates of a0 and b0 due to convergence isssues.
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Table 3.4: Estimated parameters for fixed effects and random effects SD’s of Reed 1st order, Reed
2nd order, and Adapted Jenss-Bayley models for males fitted on the original weight scale

Model Parameters FE SE p-value 95% CI of FE RE(SD) 95% CI of RE

JB Failed to converge

R1 a
′
0 26.59 1.11 <0.0001 (24.41,28.76) 2.86 (2.58,3.18)

b
′
0 7.29 0.14 <0.0001 (7.11,7.66) 1.39 (1.31,1.47)

c
′
0 -15.87 0.96 <0.0001 (-17.75,-13.98)

d
′
0 -12.22 1.27 <0.0001 (-14.69,-9.73)

R2 a
′
0 34.89 4.42 <0.0001 (26.2,43.55) 4 (3.61,4.41)

b
′
0 7.82 0.27 <0.0001 (7.29,8.35) 1.45 (1.37,1.54)

c
′
0 -20.72 2.71 <0.0001 (-26.02,-15.41)

d
′
0 -26.53 7.41 <0.0001 (-41.06,-12)

e
′
0 5.43 2.71 0.45 (0.13,10.74) 2.15 (1.73,2.67)

AJB a
′′′
0 19.63 0.22 <0.0001 (19.19,20.07) 3.27 (2.84,3.76)

b
′′′
0 1.75 0.14 <0.0001 (1.47,2.03) 2.81 (2.61,3.02)

c
′′′
0 -18.01 4.43 <0.0001 (-26.71,-9.31)

d
′′′
0 1.87 0.43 <0.0001 (1.03,2.70)

e
′′′
0 0.28 0.01 <0.0001 (0.25,0.31) 0.22 (0.20,0.24)

JB: Jenss-Bayley, R1: Reed 1st order, R2: Reed 2nd order, AJB: Adapted Jenss-Bayley
FE: Fixed Effects, SE: Standard Error, RE: Random Effects, SD: Standard Deviation
95% CI of FE: 95% Confidence Interval of Fixed Effects
95% CI of RE: 95% Confidence Interval of Random Effects
The best way to read the results is as follows (using R1 model as an example):
In the final model, there were four fixed effects estimates a

′
0, b

′
0, c

′
0 and d

′
0 but only two random

effects estimates of a
′
0 and b

′
0 due to convergence isssues.

3.2.5 SITAR model

The SITAR models were fitted by allowing different scales (untransformed and natural logarithm

transformation) for both weight and age variables (Cole et al., 2010; Pizzi et al., 2014; Riddell et

al., 2017). In order to calculate the adjusted AICs and BICs for the log transformed weight models

(Box & Cox, 1964; Akaike, 1978; Cole & Cole, 2017), the formulas that were used are as follows:

Adjusted AIC = original AIC + (2 ∗ Σlog(weight))

Adjusted BIC= original BIC + (2 ∗ Σlog(weight))

The parameters of the common spline curve were fitted as fixed effects. The number of internal
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knots (degrees of freedom) for the spline curve were chosen based on the number of available weight

measurements for the present study. Pizzi and his colleagues (2014) selected 3 degrees of freedom

for 6 weight measurements. Therefore, for this study 3 degrees of freedom were chosen for 7 weight

measurements to fit and compare different SITAR models for females and males. The SITAR models

were first fitted with all three parameters (size, tempo and velocity) as both fixed and random effects

(Model 1). When the SITAR parameters were fitted as fixed and random effects in the models, non-

convergence issues were observed. Therefore, to achieve convergence, the alternative restrictions on

the fixed effects values were also examined by fixing either β0 = 0 and γ0 = 0 (Model 2) together

or just β0 = 0 (Model 3) or just γ0 = 0 (Model 4) (Cole et al., 2010; Pizzi et al., 2014; Riddell et

al., 2017).

For females, the four models (1, 2, 3 and 4) were fitted with 3 degrees of freedom. The results are

shown in Table 3.5. It was observed that models with log transformed weight scale performed better

than the untransformed weight scale in terms of AICs and BICs. In particular, models with log

transformed weight and untransformed age performed better than the models with log transformed

weight and log transformed age. Thus, among different log transformed weight and untransformed

age models, Model 4 (γ0 = 0) performed the best with the lowest values of AIC, BIC and RSD.

The random effect of the parameter size produced an RSD = 2.98. When the random effect of

the parameter velocity was added, the RSD was reduced to 2.51. Further by adding the random

effect of the tempo, the RSD was reduced to 1.95. The model explained 91.64% of variations in the

weight. Using this model, it was possible to estimate valid APWV and PWV.
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Table 3.5: Estimated parameters of random effects from different specification of the SITAR models
for females

Random effects(SD)
Model α β γ AIC BIC APWV PWV RSD

Model1:α0 6=0,β0 6=0,γ0 6=0

Weight and Age 8.68 1.11 0.42 27524.26 27608.44 10.82 6.01 2.52
Weight and Log(Age) Failed to converge
Log(Weight) and Age 0.19 0.50 0.15 25473.44 25557.62 11.73 5.8 2.08*
Log(Weight) and Log(Age) 0.16 0.10 0.21 25555.31 25639.5 10.96 5.35 2.05*

Model2:β0=0 and γ0=0

Weight and Age 6.24 1.05 0.39 28024.65 28095.88 10.35 5.76 2.94
Weight and Log(Age) 3.21 0.12 0.33 27984.67 28055.9 9.78 5.54 2.94
Log(Weight) and Age 0.16 1.01 0.19 25556.21 25627.44 10.91 6.13 2.06*
Log(Weight) and Log(Age) 0.14 0.10 0.20 25898.26 25969.47 10.34 5.44 2.22*

Model3:β0=0

Weight and Age 6.47 1.14 0.41 27887.11 27964.82 10.43 5.46 2.85
Weight and Log(Age) 3.30 0.12 0.33 27986.3 28064 9.68 5.36 2.96
Log(Weight) and Age 0.17 0.82 0.20 25419.27 25496.97 11.28 5.39 2.01*
Log(Weight) and Log(Age) 0.13 0.09 0.20 25856.49 25934.19 10.46 5.11 2.24*

Model4:γ0=0

Weight and Age 8.67 1.13 0.41 27373.1 27450.8 10.88 5.89 2.44
Weight and Log(Age) 3.8 0.11 0.36 27880.25 27957.96 10.00 5.81 2.87
Log(Weight) and Age 0.17 0.94 0.18 25307.99 25385.69 11.43 6.00 1.96*
Log(Weight) and Log(Age) 0.17 0.08 0.2 25338.92 25416.62 10.84 5.73 2.00*

The best model is highlighted in bold
SD: Standard Deviation, AIC: Akaike Information Criteria, BIC: Bayesian Information Criteria
APWV: Age at Peak Weight Velocity, PV: Peak Velocity, RSD: Residual Standard Deviation
*RSD obtained by multiplying geometric mean of females’ weight

On the other hand, for males with 3 degrees of freedom, none of the models converged when the

models were fitted with all fixed and random effects of the parameters size, tempo and velocity

(Model 1) shown in Table 3.6. Modelling using alternative constraints on fixed effects, only the

models with untransformed weight and log transformed age (models 2 and 3) converged plus only a

single model with log transformed weight and untransformed age of Model 4. Out of these models,

the models with untransformed weight and untransformed age of models (2 and 4) did not provide

valid estimates of APWV and PWV.
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In comparing all the models (which converged with 3 degrees of freedom) to one another, similarly

to the females data the model with log transformed weight and untransformed age of γ0 = 0 (Model

2) also fitted the best based on minimum AIC, BIC and RSD values. The random effect of the

parameter size produced an RSD = 3.21. When the random effect of the parameter tempo was

added, the RSD was reduced to 3.08. Further, the addition of the random effect of the velocity,

reduced RSD to 2.14. The model explained 91.41% of variations in the weight.

Table 3.6: Estimated parameters of random effects from different specification of the SITAR models
for males

Random Effects
Model α β γ AIC BIC APWV PWV RSD

Model1:α0 6=0,β0 6=0,γ0 6=0

Weight and Age Failed to converge
Weight and Log(Age) Failed to converge
Log(Weight) and Age Failed to converge
Log(Weight) and Log(Age) Failed to converge

Model2:β0=0 & γ0=0

Weight and Age 4.47 2.1 0.27 24969.17 25039.28 15.6 5.86 2.72
Weight and Log(Age) 3.69 0.21 0.28 24818.94 24889.04 13.9 6.48 2.57
Log(Weight) and Age Failed to converge
Log(Weight) and Log(Age) Failed to converge

Model3:β0=0

Weight and Age 5.32 2.44 0.24 24892.04 24968.51 14.97 5.61 2.79
Weight and Log(Age) 4.22 0.22 0.29 24750.68 24827.16 12.69 6.54 2.47
Log(Weight) and Age Failed to converge
Log(Weight) and Log(Age) Failed to converge

Model4:γ0=0

Weight and Age 0 1.46 0.29 26173.34 26249.82 7.45 4.57 3.37
Weight and Log(Age) 3.87 0.22 0.29 24784.91 24861.38 12.89 6.47 2.50
Log(Weight) and Age 0.17 1.45 0.19 23382.68 23459.16 13.66 6.29 2.14*
Log(Weight) and Log(Age) Failed to converge

The best model is highlighted in bold
SD: Standard Deviation, AIC: Akaike Information Criteria, BIC: Bayesian Information Criteria
APWV: Age at Peak Weight Velocity, PV: Peak Velocity, RSD: Residual Standard Deviation
*RSD obtained by multiplying geometric mean of males’ weight

From the best fitted SITAR models for females and males, it was observed that the estimated SD’s
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of the random effects size and velocity did not vary substantially across genders but SD of the

random effect tempo was found to be higher in males than females.

3.2.5.1 Interpretations of the best fitted SITAR model parameters

For females, the size was measured in kg, tempo in years, and velocity in fractional units. Thus,

when the velocity was multiplied by 100, it can be interpreted as a percentage difference from the

mean curve. The best fitted model for females was log weight transformed and untransformed age,

therefore exponentiating SD of size (0.17) gave an SD of 1.19 kg. The SD’s of 1.19 kg for size,

0.94 years for tempo, and 18% for velocity implies that the females who deviate from the average

growth curve had sizes within 2.38 kg of mean size, tempos within 1.88 years of mean tempo, and

velocity within 36% of mean velocity (as random effects have means 0). The negative correlation

between size and tempo (r = -0.10) indicate that the females with heavier weight tend to enter

puberty earlier and have earlier APWV. The positive correlation between size and velocity (r =

0.55) suggest that females with heavier weight will experience fast growth velocities indicating that

the slope during puberty will be steep. The negative correlation between tempo and velocity (r =

-0.51) indicate that females with early puberty have fast growth velocity.

Similarly, like females, the best fitted model for males was also log weight transformed and un-

transformed age. Therefore, exponentiating SD of size (0.16) gave an SD of 1.17 kg. The SD’s of

1.17 kg for size, 1.45 years for tempo, and 19% for velocity implies that the males whose growth

curves differs from the average growth curve had sizes within 2.34 kg of mean size, tempos within

2.90 years of mean tempo, and velocity within 38% of mean velocity (as random effects have means

0). The positive correlation between tempo and size (r=0.55)indicate that the males who will enter

the puberty later in life are heavier. However, males entering puberty earlier have the largest peak

weight velocity as indicated by the negative correlation between tempo and velocity (r=-0.51).

3.3 Diagnostic testing

To examine the assumptions of the fitted models, the diagnostic testing of the residuals was per-

formed. The plot of the standardized residuals against fitted values and standardized residuals

against age were used to assess the assumption of the constant variance of the residuals and also
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examined which growth model was appropriate for the observed data. The normal probability plots

were used to assess the normality of the residual errors obtained from each fitted model.

The males residual plots for the Jenss-Bayley model were not produced due to non-convergence of

the model. For both the genders, the scatter plots of standardized residuals against fitted values

(Figures 3.2 and 3.4) and standardized residuals against age (Figures 3.3 and 3.5) shows that the

SITAR model fitted the observed data the best as compared to the other models. The standardized

residuals of the SITAR models have constant variance as they were randomly centered around zero

and were very close to the reference line passing through zero in comparison to the other models. In

the case of females, the standardized residuals of Jenss-Bayley, Reed 1st order and Reed 2nd order

models did not provide a good fit to the study data as error variances were increasing with the

increasing age. The Adapted Jenss-Bayley plot provided a better fit than Jenss-Bayley, Reed 1st

order and Reed 2nd order plots but not as good as the SITAR model plot. These scatter plots also

did not suggest any systematic pattern of the standardized residuals which in return satisfied the

assumption of the independence of errors.
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Figure 3.2: Females’ scatter plots of standardized residuals against fitted values from the fitted
models

Figure 3.3: Females’ scatter plots of standardized residuals against age from the fitted models
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Figure 3.4: Males’ scatter plots of standardized residuals against fitted values from the fitted models

Figure 3.5: Males’ scatter plots of standardized residuals against age from the fitted models
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The normal probability plots of the standardized residuals for females (Figure 3.6) and males (Figure

3.7) showed that the assumption of normality of the errors was best satisfied by the SITAR model

in both the sexes as compared to the other growth models. The normal probability plots from the

SITAR models shows that the standardized residuals had a moderate departure from the reference

fitted line at both the lower and upper ends of the line. This indicated that the SITAR models

standardized residuals were approximately normally distributed with heavy tails at the ends and

have few outlying observations. The normality assumption was violated by other growth models as

the normal probability plots showed serious departures from the fitted line at both the ends except

for females Adapted Jenss-Bayley model that showed a slight departure from the line particularly

at the left end.

52



Figure 3.6: Females’ normal probability plots from the fitted models

Figure 3.7: Males’ normal probability plots from the fitted models
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3.4 Summary and comparison of models

The results from the different specification of the SITAR model that fitted best for both females

and males is the untransformed age and the natural logarithm of weight model when size and tempo

were fitted as fixed effects and size, tempo and velocity as random effects. The log transformation of

weight for four models (Jenss-Bayley, Reed 1st order, Reed 2nd order and Adapted Jenss-Bayley) was

also considered in order to be consistent with the best fitted SITAR models. Thus, to determine

the best model within each theory, the untransformed weight model was compared with the log

transformed weight model for the four theories. The results are shown in Table 3.7 for both females

and males. The untransformed and log transformed weight models within each theory are non-

nested models, with AIC, BIC and RSD values. The four models (Jenss-Bayley, Reed 1st order,

Reed 2nd order, and Adapted Jenss-Bayley) were compared separately for females and males. From

the Table 3.7, it was observed that for both females and males, the log transformed weight model

within each theory performed better than the untransformed weight model.

Table 3.7: Comparison of non-nested models within each theory for females and males

Females Males
Model RSD AIC BIC RSD AIC BIC

Jenss-Bayley
Weight 3.73 29427.35 29479.15 Failed to converge
Log(weight) 2.54 26405.14 26456.94 2.49 24040.68 24091.66

Adapted Jenss-Bayley
Weight 2.56 27723.8 27801.5 2.53 25134.27 25210.7
Log(weight) 2.02 25544.44 25622.14 2.04 23478.28 23554.76

Reed 1st order
Weight 3.8 29525.78 29577.59 3.17 25781.72 25832.7
Log(weight) 2.81 27043.94 27095.74 2.52 24092.58 24143.56

Reed 2nd order
Weight 3.62 29279.16 29356.87 3.09 25700.75 25777.2
Log(weight) 2.57 26573.84 26651.54 2.48 24008.71 24085.18

RSD: Residual Standard Deviation, AIC: Akaike Information Criteria
BIC: Bayesian Information Criteria

Upon the identification of the best fitted model within each theory (from Table 3.7), Tables 3.8

and 3.9 explores the comparison of the best fitted models across all theories with one another. The

best fitted models in Tables 3.8 and 3.9 will be highlighted in bold. The log weight transformed

Adapted Jenss-Bayley model is an extension of the log weight transformed original Jenss-Bayley
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model that includes an extra quadratic term. Therefore, these are nested models and were compared

using the Log likelihood ratio test. The p-value <.0001 indicated that the log weight transformed

Adapted Jenss-Bayley model was considered to be a better fit than the log weight transformed

Jenss-Bayley model. The log weight transformed Reed 2nd order model is also an extension of

log weight transformed Reed 1st order including an inverse of age square term indicating that log

weight transformed Reed 1st order model is nested within Reed 2nd order model. The p-value

<.0001 obtained using the Log likelihood ratio test indicated that log weight transformed Reed 2nd

order performed better than log weight transformed Reed 1st order. The log weight transformed

Adapted Jenss-Bayley, Reed 2nd order and SITAR models are non-nested models and thus were

compared in terms of AIC and BIC criteria. The fit statistics indicated that the SITAR models

outperformed all models for both females and males.

Table 3.8: Comparison of the goodness of fit of the five fitted models for females on the log trans-
formed weight scale

Model RSD AIC BIC Log-Likelihood Likelihood-Ratio p-value

Jenss-Bayley 2.54 26405.14 26456.94 -13194.57
Adapted Jenss-Bayley 2.02 25544.44 25622.14 -12760.22 868.7 <.0001
Reed 1st order 2.81 27043.94 27095.74 -13513.97
Reed 2nd order 2.57 26573.84 26651.54 -13274.92 478.12 <.0001
SITAR 1.96 25307.99 25385.69 -12641.99

RSD: Residual Standard Deviation, AIC: Akaike Information Criteria
BIC: Bayesian Information Criteria

Table 3.9: Comparison of the goodness of fit of the five fitted models for males on the log transformed
weight scale

Model RSD AIC BIC Log-Likelihood Likelihood-Ratio p-value

Jenss-Bayley 2.49 24040.68 24091.66 -12012.36
Adapted Jenss-Bayley 2.04 23478.28 23554.76 -11727.16 570.396 <.0001
Reed 1st order 2.52 24092.58 24143.56 -12038.29
Reed 2nd order 2.48 24008.71 24085.18 -11992.36 91.86 <.0001
SITAR 2.14 23382.68 23459.16 -11679.34

RSD: Residual Standard Deviation, AIC: Akaike Information Criteria
BIC: Bayesian Information Criteria

Tables 3.10 and 3.11 explores the comparison of the untransformed weight models (Jenss-Bayley,

Adapted Jenss-Bayley, Reed 1st order, and Reed 2nd order) with the best model (SITAR) selected

from Tables 3.8 and 3.9 for females and males respectively. The best models in Tables 3.10 and
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3.11 will be highlighted in bold. The results (from Tables 3.10 and 3.11) were not affected when

the untransformed weight Jenss-Bayley, Adapted Jenss-Bayley, Reed 1st and Reed 2nd order models

were compared with the best fitted SITAR model for both females and males. It was observed that

SITAR continued to be the best fitted weight growth model from middle childhood to adolescence

based on lowest AIC, BIC and RSD values. Thus, for the ease of interpretation, the parameter

estimates and plots were interpreted from the untransformed Jenss-Bayley, Adapted Jenss-Bayley,

Reed 1st and Reed 2nd order models alongside the SITAR model.

Table 3.10: Comparison of the untransformed weight models (Jenss-Bayley, Adapted Jenss-Bayley,
Reed 1st and Reed 2nd order) with the SITAR model for females

Model RSD AIC BIC Log-Likelihood Likelihood-Ratio p-value

Jenss-Bayley 3.73 29427.35 29479.15 -14705.67
Adapted Jenss-Bayley 2.56 27723.8 27801.5 -13849.9 1711.55 <.0001
Reed 1st order 3.8 29525.78 29577.59 -14754.89
Reed 2nd order 3.62 29279.16 29356.87 -14627.58 254.62 <.0001
SITAR 2.02 25307.99 25385.69 -12641.99

RSD: Residual Standard Deviation, AIC: Akaike Information Criteria
BIC: Bayesian Information Criteria

Table 3.11: Comparison of the untransformed weight models (Jenss-Bayley, Adapted Jenss-Bayley,
Reed 1st and Reed 2nd order) with the SITAR model for males

Model RSD AIC BIC Log-Likelihood Likelihood-Ratio p-value

Jenss-Bayley - - - -
Adapted Jenss-Bayley 2.53 25134.27 25210.7 -12555.13
Reed 1st order 3.17 25781.72 25832.7 -12881.65
Reed 2nd order 3.09 25700.75 25777.2 -12838.38 86.54 <.0001
SITAR 2.14 23382.68 23459.2 -11679.34

RSD: Residual Standard Deviation, AIC: Akaike Information Criteria
BIC: Bayesian Information Criteria

3.5 Population level predicted growth curves

The population level predicted weight growth curves of females [in red] and males [in blue] from

the best fitted Adapted Jenss-Bayley, Reed 1st order, Reed 2nd order and SITAR models were

superimposed on the average trajectory over time as shown in Figure 3.8. The best specification of

the SITAR models was fitted on the log weight and age scale, thus the curves predicted by these
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models have been back transformed so that the predicted weights were on the same scale for all the

models. The population level predicted curves for females and males of Jenss-Bayley model are not

shown because the model failed on the males’ data.

As previously stated, the Reed 1st and 2nd order models performed worse than Adapted Jenss-

Bayley and SITAR models for both females and males. Consistent with this finding, Figure 3.8

demonstrated that the population level predicted growth curves of Reed (1st and 2nd) order models

did not fit well for females’ data at the start of the curve. These predicted curves for Reed 1st

and 2nd order models curves provided more or less a linear fit but a closer fit or exact fit (at some

time points) to the observed average weight trajectory over time for both females and males. In

contrast, Adapted Jenss-Bayley and SITAR models predicted curves demonstrates an “S” shaped

pattern of children’s growth from middle childhood to adolescence. The Figure 3.8 depicted that

the end part of the males’ curve of Adapted Jenss-Bayley suggests that males are reaching their

final body weight. This is inaccurate as the observed weight growth curves suggests that the males

are not done growing. In contrast, SITAR model captures the end part of the curve, and accurately

depicts males weight as still increasing. Also, based on AIC, BIC and RSD values, the SITAR model

performed better than Adapted Jenss-Bayley. The SITAR model also has an advantage over other

models that it provides biological interpretation of its parameters.

The predicted curves from the SITAR model (Figure 3.8) shows that the growth of females and

males is constant and parallel to each other until the age of 8.5 years approximately. During this

period of time the males’ predicted curve lies above the females’ curve indicating that males’ were

slightly heavier than females’. There was no difference in the predicted curves for females and males

as they overlap to each other for about 1 year i.e. until 9.5 years of age approximately. The females’

growth then started diverging from the males’ at around 9.5 years of age and they began gaining

weight more rapidly than males. Females’ continue to gain weight and tend to be heavier than

males’ until 14 years approximately. On the other hand, around age 14 when females’ were growing

more slowly than before, the males’ started gaining more weight than females and they tend to be

heavier than females’ until 16 years of age.
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Figure 3.8: Population predicted level weight growth curves of females and males from the fitted
growth models superimposed on the observed average weight values represented by (o)

The population velocity curve for females (Figure 3.9) obtained from the SITAR model demonstrates

that they have a linear rate of growth until 8 years of age. This was then followed by a rapid increase

in velocity indicating that the females will enter in their pubertal growth spurt phase earlier than

males. Females’ pubertal spurt continues until it reaches APWV of 11.43 years with PV of 5.99

kg per year and then the velocity starts decelerating rapidly after reaching APWV. On the other

hand, males’ experience linear velocity until 10 years of age followed by a sudden increase in velocity

having PWV of 6.29 kg per year at the age of 13.66 years where males reach APWV approximately

2 years after females reaches their APWV.
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Figure 3.9: Weight velocity curves from the best fitted SITAR models for females and males

Tables 3.12 and 3.13 compares the weight predicted by the five models (Jenss-Bayley, Reed 1st

order, Reed 2nd order, Adapted Jenss-Bayley, and SITAR) with observed weight at selected ages

for females and males respectively. For females’, the overall results from Table 3.14 showed that the

Jenss-Bayley, Reed 1st and Reed 2nd order models predicted the weight very closely to the observed

weight at ages 6, 10 and 15 except at age 6 for Jenss-Bayley and at age 15 for Reed 2nd order. The

Adapted Jenss-Bayley model also predicted weight closely to the observed weight whereas SITAR

model predicted weight approximate to the observed weight at each age. On the other hand, for

males (Table 3.15), the Adapted Jenss-Bayley, Reed 1st and Reed 2nd order models also predicted

weight very closely to the observed weight than the SITAR model.
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Table 3.12: Average predicted weight from five fitted models for females at selected ages

Predicted Weight(kg)
Ages Oberved weight(kg) JB AJB R1 R2 SITAR

6 21.68 19.07 21.55 21.13 22.44 20.71
10 36.46 37.35 35.83 37.1 37.23 34.66
15 56.85 57.39 55.93 58.15 57.75 56.37

JB: Jenss-Bayley, AJB: Adapted Jenss-Bayley, R1: Reed 1st order, R2: Reed 2nd order

Table 3.13: Average predicted weight from five fitted models for males at selected ages

Predicted Weight(kg)
Ages Observed weight(kg) JB AJB R1 R2 SITAR

6 22 - 21.66 21.66 21.61 21.44
10 36.23 - 35.37 35.05 35.55 33.83
15 62.86 - 63.14 62.83 62.78 62.37

JB: Jenss-Bayley, AJB: Adapted Jenss-Bayley, R1: Reed 1st order, R2: Reed 2nd order
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Chapter 4

Discussion and conclusion

This research study included an analytic sample of 1737 children from Quebec, Canada whose body

weight was measured from 6 to 15 years of age. This study focused on comparing the performance of

different anthropometric growth models on the weight measurements of the subjects. Five anthro-

pometric models (Jenss-Bayley and Reed models and their extensions alongside a newly developed

SITAR model) were examined. This paper used a mixed effects approach to compare these models

and showed the strengths and limitations of each model. The difficulties encountered in fitting each

of these models under this framework were also discussed. The Jenss-Bayley, Reed 1st order and

Reed 2nd order models have been originally conceptualized to be applied to model growth between

birth to 6 years (Jenss & Bayley, 1937; Berkey & Reed, 1987) and some previous studies have ap-

plied these models between birth to 10 years of age (Chirwa, Griffiths, Maleta, Norris, & Cameron,

2014; Regnault, Gillman, Kleinman, Rifas-Shiman, & Botton, 2014). To date, no previous study

has compared these models across an age range that does not necessarily start at birth and includes

puberty under a mixed effect framework.

The mixed effect approach accounts for average growth patterns of the general population as well

as an individual’s variation around that average growth. Using this approach, each child’s growth

curve can be modelled simultaneously by defining an overall model for the children. Before the

mixed effect approach came into the literature of longitudinal analysis, the anthropometric models

were used to fit just an average growth curve of the sample. In addition, these previous models were

used to fit each child separately to predict an individual’s growth curve. Unlike historical approaches
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of longitudinal data analysis which required balanced designs, the mixed effect approach is more

flexible and can handle unbalanced study designs.

The models were fitted using the nlme function in R and required good starting values for their

growth parameters to avoid convergence problems. In general, non-linear models in comparison to

the linear models are not easy to fit as the former requires good initial values for the estimation of

their growth parameters. Reed models are linear models and could be fitted using the lme (linear

mixed effect) function in R but in order to be consistent with the other models, they were fitted

using the nlme function in R. No differences were observed in the parameters estimates and their

standard errors when Reed models were fitted with lme and nlme functions in R.

The findings from this research showed that the four parameter Jenss-Bayley and Reed 1st order

models failed to converge when all the random effects of the growth parameters were added. They

only converged when the random effects of the intercept and the slope were added to the models

but the Jenss-Bayley model continued to fail when fitted on the males data. This may imply that

the model may be over parameterized for the males’ data in the age range (6-15 years) and does

not require the exponent term in the model. However, this suggests that the males’ follow constant

growth for a longer period of time than females and also their pubertal spurt starts later than them

perhaps at the age of 13 or 14 years (at the end of the curve). Some males may start their puberty at

the same time as other males which affects their weight and some starts it later that could have led

to strong computational problems for the model convergence. In addition, the Jenss-Bayley model

fails to capture the end part of the growth spurt when the weight velocity starts decreasing for the

males’ data. The Adapted Jenss-Bayley and Reed 2nd order converged when the random effects of

the intercept, as well as when slope were added. The random effects of their fifth parameter were

also added.

All the parametric models (Jenss-Bayley and Reed models and their extensions) conclude that

there are variations in individuals’ intercepts and growth curve slopes. The Adapted Jenss-Bayley’s

random effect of the velocity that is captured at the onset of the puberty is indicative of the fact

that the velocities of the children differ from one another when the adolescent spurt starts and

experiences either faster or slower velocities than the average. The Reed 1st order and Reed 2nd
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order for females did not provide valid and logical estimates of the growth parameters whereas the

estimates for the males from the same models provided far better estimates than females. All four

models (Jenss-Bayley, Reed 1st order, Reed 2nd order, and Adapted Jenss-Bayley) did not converge

when the random effects of the deceleration parameters were added. This non-convergence could

have been due to the fact that the children follow constant growth during childhood and thus not

much deceleration in growth takes place during this phase. In addition, it can be concluded that

no variations are observed across individuals when the decrease in velocity takes place after the

pubertal growth spurt.

The newly developed SITAR model was first fitted with all fixed and random effects of the param-

eters where spline function was fitted as a fixed effect. Some non-convergence issues were observed

when the SITAR parameters were fitted both as fixed and random. Thus, alternative restrictions

on the fixed effects were imposed in order to achieve convergence. Due to the limited number of

measurement occasions available, only 3 degrees of freedom were selected to fit the spline curve.

It was concluded that the SITAR model outperformed the other four models (Jenss-Bayley, Reed

1st order, Reed 2nd order, and Adapted Jenss-Bayley) and was the best fitted growth model which

modeled weight well during middle childhood and adolescence (from 6 to 15 years). The SITAR

models were also fitted with different degrees of freedom (2, 4 and 5) and were compared with

other growth models. It was observed that the SITAR model performed better than the other

four models. The SD’s of the random effects of the models (Jenss-Bayley, Reed 1st and 2nd order,

Adapted Jenss-Bayley) were significantly higher than the SITAR model. In addition, the population

level predicted growth curves of the former models provided a more closer fit to the observed weight

trajectory than the SITAR model. However, it was observed that the Reed 1st and 2nd order models

provided the worst fit based on the fit statistics and Adapted Jenss-Bayley performed the second

best than the SITAR model. This is in contrast to the finding of a previous study by Pizzi et al.

(2014) which showed that the Reed 1st order model performed the best compared to the SITAR

model based on the fit statistics.

The Adapted Jenss-Bayley provided a better fit than Reed 1st and 2nd order models in terms of

minimum AIC and BIC values. Previous work done by Regnault et al. (2014) compared Jenss-
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Bayley, Adapted Jenss-Bayley, Reed 1st and Reed 2nd order models in US children to model weight

from birth to late childhood (up to 9 years) and showed that Adapted Jenss-Bayley fitted the best.

This study extended the findings of Regnault et al. (2014) to confirm that the model continued to

fit well into adolescence phase (up to 15 years) even when the weight growth was modelled from 6

years rather than from birth.

The present study concluded that Reed 1st order provided the worst fit to both females and males

data during the middle childhood to adolescence phase. Results are inconsistent with previous

studies by Pizzi et al. (2014), Berkey (1987), and Chirwa et al. (2014) which showed that Reed 1st

order model performed the best from birth until late childhood (10 years) even compared to SITAR.

This is possibly due to the age range that had been analyzed in this present study as it was starting

from 6 years, rather than starting at birth. In particular, as the Reed 1st order model was originally

suggested to describe growth from early life months to middle childhood, the appropriateness of

this model for later childhood is questionable. Indeed from the population level predicted curves

of the models, it was concluded that the Reed models did not provide a good fit as they showed

systematic deficiencies between the ages of 6 and 7 for females. In general, the growth pattern

of children follows an “S” shaped pattern and this shape was much closer captured by Adapted

Jenss-Bayley and SITAR models whereas Reed models provided more of a linear fit to the data.

In general, the Reed 1st order and Reed 2nd order models can identify one and two inflection points

respectively but, in this study, they failed to identify the peaks. APWV also cannot be achieved

by the Jenss-Bayley model because the growth function’s second derivative with respect to t is an

exponential function in t and hence does not allow for any inflection point in the curve (Pizzi et al.,

2014). The APWV could be achieved with the Adapted Jenss-Bayley model as its second derivative

is not an exponential function in t. But this model failed to identify the peak even when it is

actually present. Among the five models, only SITAR model was able to identify the peak in its

velocity curve and thus allowed the identification of an age when the weight velocity was maximum.

Therefore, from the SITAR model it was concluded that females have APWV of 11.43 years with

PWV of approximately 6 kg per year whereas males have APWV of 13.66 years with PWV of 6.29

kg per year.
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This study has some limitations. Firstly, a limited number of weight measurements occasions (7)

were available over a larger period of 10 years. These measurements were quite far apart from

each other as they were collected annually from 6 to 8 years and then bi-annually from 8 to 15

years. This led to the loss of information on the change in weight between these years. Having

more measurements available for the children would have helped in improving the fit of all the

models. Secondly, the weight data were unbalanced as the weight measurements were not collected

at fixed time points for all the individuals and also due to lost to follow-up. Although children with

at least one measurement were included in the analysis, the average number of measures was 5,

and approximately 40% of the sample had all seven measurements. Thirdly, as data collection is

ongoing and the participants are just now reaching adulthood, data at the end of the adolescence

phase is not yet available. Fourthly, an independent covariance structure was assumed for within

subject errors in accordance with the previous studies. Different covariance structures should be

explored in the future studies. The study should be reassessed when the children reach 18 years of

age (i.e. when the growth has stopped). Future research should incorporate other parameter(s) in

Adapted Jenss-Bayley so that it could model the growth starting from birth to post puberty. The

future studies should also consider other transformations for the weight variable other than the log

transformation. All the models explored in this study should be compared in smaller data range

(after puberty or before puberty). Lastly, the cross-validation was not conducted as it was beyond

the scope of this study and should be considered for the future work.

Body weight is a very sensitive growth measurement which is more directly affected by illness or

loss of appetite than any other growth measurement. In addition, various negative environmental

factors play a major role that affects children’s weight. In recent decades, an abnormal increase in

the weight of children has become a major health concern worldwide. Thus, the models present

in this study should also be applied and compared while describing BMI trajectories of children

from middle childhood to adolescence age which has not been explored in this study. This research

study has discussed and addressed the difficulties of fitting traditional parametric models and the

newly developed SITAR model to an age range starting from middle childhood to adolescence. The

advantages and disadvantages of each model have been discussed in detail. Out of all the models

that were presented in this paper, the SITAR model overall performed the best for this study. The
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SITAR model is very flexible because of its ability to fit the data of any age range and can be applied

to any anthropometric growth measurement. Another significance of using the SITAR model over

others is that it allows identification of APWV and PWV and has direct biological interpretation

of its parameters. The derived parameters from this model can be used in further research as the

predictors for various health outcomes in adult life. While the SITAR model is the best performing

model in this study, the comparison of the models should be reassessed in additional studies with

longer follow up.
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study of child development (qlscd 1998–2002), volume 1, number 1. Québec: Institut de la
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Appendices

R-Codes

# Required libraries

library(nlme)

library(sitar)

library(splines2)

library(MASS)

######### Final models used for fitting the females’ data (Table 3.10) ############

# Jenss-Bayley model

WghtJB.females.nls <-nls(Weight~a0+(b0*Centered_5)-exp(c0+(d0*Centered_5)),

data=females_centered_5,

start=c(a0=1,b0=1,c0=1,d0=1), na.action=na.exclude)

WghtJB.females.nlme1 <-nlme(Weight~a0+(b0*Centered_5)-exp(c0+(d0*Centered_5)),

data=females_centered_5,

fixed=a0+b0+c0+d0~1,

random=a0~1|IDME,

start=c(a0=14.659,b0=4.540,c0=-12.728,d0=1.374),

na.action=na.exclude)

WghtJB.females.nlme2 <-nlme(Weight~a0+(b0*Centered_5)-exp(c0+(d0*Centered_5)),

data=females_centered_5,
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fixed=a0+b0+c0+d0~1,

random=a0+b0~1|IDME,

start=c(a0=14.4,b0=4.5,c0=-12,d0=1.3),

na.action=na.exclude)

anova(WghtJB.females.nlme1,WghtJB.females.nlme2)

# Reed 1st order model

WghtReed1.females.nls <-nls(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse),

data=reed_females_centered_5,

start=c(a0=1,b0=1,c0=1,d0=1), na.action=na.exclude)

WghtReed1.females.nlme1 <-nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse),

data=reed_females_centered_5,

fixed=a0+b0+c0+d0~1,

random=a0~1|IDME,

start=c(a0=-.7,b0=2.8,c0=12.3,d0=19.1),

na.action=na.exclude)

WghtReed1.females.nlme2 <-nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse),

data=reed_females_centered_5,

fixed=a0+b0+c0+d0~1,

random=a0+b0~1|IDME,

start=c(a0=.08,b0=2.8,c0=11.8,d0=17.8),

na.action=na.exclude)

anova(WghtReed2.females.nlme1,WghtReed2.females.nlme2)
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# Reed 2nd order model

WghtReed2.females.nls <-nls(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse)+(e0*Centered_5_Square_Inverse),

data=reed_females_centered_5_exclude,

start=c(a0=1,b0=1,c0=1,d0=1,e0=1), na.action=na.exclude)

WghtReed2.females.nlme1 <-nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse)+(e0*Centered_5_Square_Inverse),

data=reed_females_centered_5_exclude,

fixed=a0+b0+c0+d0+e0~1,

random=a0~1|IDME,

start=c(a0=-68.5,b0=-0.77,c0=52.4,d0= 134.9,e0=-43.1),

na.action=na.exclude)

WghtReed2.females.nlme2 <-nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse)+(e0*Centered_5_Square_Inverse),

data=reed_females_centered_5_exclude,

fixed=a0+b0+c0+d0+e0~1,

random=a0+b0~1|IDME,

start=c(a0=-72.9,b0=-0.9,c0=54.9,d0=143.02,e0=-46.8),

na.action=na.exclude)

anova(WghtReed2.females.nlme1,WghtReed2.females.nlme2)

WghtReed2.females.nlme3 <-nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse)+(e0*Centered_5_Square_Inverse),

data=reed_females_centered_5_exclude,

fixed=a0+b0+c0+d0+e0~1,

random=a0+b0+e0~1|IDME,
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start=c(a0=-72.04,b0=-0.84,c0=54.09,d0=141.6,e0=-46.27),

na.action=na.exclude)

anova(WghtReed2.females.nlme2,WghtReed2.females.nlme3)

# Adapted Jenss-Bayley model

WghtAdptdJB.females.nls <-nls(Weight~a0+(b0*Centered_5)-exp(c0+(d0*Centered_5))+

(e0*(Centered_5_Square)),

data=adptd_females_centered_5,

start=c(a0=1,b0=1,c0=1,d0=1,e0=1),

na.action=na.exclude)

WghtAdptdJB.females.nlme1_centered <-nlme(Weight~a0+(b0*Centered_5)-

exp(c0+(d0*Centered_5)

+(e0*(Centered_5_Square)),

data=adptd_females_centered_5,

fixed=a0+b0+c0+d0+e0~1,

random=a0~1|IDME,

start=c(a0=27.1,b0=1.4,c0=1.8,d0=.2,e0=.9),

na.action=na.exclude)

WghtAdptdJB.females.nlme2_centered <-nlme(Weight~a0+(b0*Centered_5)-

exp(c0+(d0*Centered_5))

+(e0*(Centered_5_Square)),

data=adptd_females_centered_5,

fixed=a0+b0+c0+d0+e0~1,

random=a0+b0~1|IDME,

start=c(a0=21.4,b0=.9,c0=.16,d0=.3,e0=.6),

na.action=na.exclude)
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anova(WghtAdptdJB.females.nlme1_centered,WghtAdptdJB.females.nlme2_centered)

WghtAdptdJB.females.nlme3_centered <-nlme(Weight~a0+(b0*Centered_5)-

exp(c0+(d0*Centered_5))

+(e0*(Centered_5_Square)),

data=adptd_females_centered_5,

fixed=a0+b0+c0+d0+e0~1,

random=a0+b0+e0~1|IDME,

start=c(a0=21.4,b0=.6,c0=-.13,d0=.3,e0=.6),

na.action=na.exclude)

anova(WghtAdptdJB.females.nlme2_centered,WghtAdptdJB.females.nlme3_centered)

# SITAR model

strmodel.female9_3<-sitar(x=Age, y=Log_Weight, id=IDME,data=sitar_females_excludeobs,

df=3,control=nlmeControl(pnlsTol=.4),

fixed=’a+b’, random=’a+c+b’)

######### Final models used for fitting the males’ data (table 3.11)#######

# Reed 1st order model

WghtReed1.males.nls <-nls(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse),

data=reed_males_centered_5_exclude,

start=c(a0=1,b0=1,c0=1,d0=1), na.action=na.exclude)

WghtReed1.males.nlme1 <-nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse),

data=reed_males_centered_5_exclude,
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fixed=a0+b0+c0+d0~1,

random=a0~1|IDME,

start=c(a0=25,b0=7,c0=-15,d0=-11),

na.action=na.exclude)

WghtReed1.males.nlme2 <- nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse),

data=reed_males_centered_5_exclude,

fixed=a0+b0+c0+d0~1,

random=a0+b0~1|IDME,

start=c(a0=24.5,b0=7.1,c0=-14,d0=-9),

na.action=na.exclude)

anova(WghtReed1.males.nlme1,WghtReed1.males.nlme2)

# Reed 2nd order model

WghtReed2.males.nls <- nls(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse)+(e0*Centered_5_Square_Inverse),

data=reed_males_centered_5_exclude,

start=c(a0=1,b0=1,c0=1,d0=1,e0=1), na.action=na.exclude)

WghtReed2.males.nlme1 <- nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse)+(e0*Centered_5_Square_Inverse),

data=reed_males_centered_5_exclude,

fixed=a0+b0+c0+d0+e0~1,

random=a0~1|IDME,

start=c(a0=27.9,b0=7.3,c0=-16.2,d0=-14.8,e0=1.2),

na.action=na.exclude)

WghtReed2.males.nlme2 <- nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+
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(d0*Centered_5_Inverse)+(e0*Centered_5_Square_Inverse),

data=reed_males_centered_5_exclude,

fixed=a0+b0+c0+d0+e0~1,

random=a0+b0~1|IDME,

start=c(a0=39.8,b0=7.9,c0=-23,d0=-35,e0=9),

na.action=na.exclude)

anova(WghtReed2.males.nlme1,WghtReed2.males.nlme2)

WghtReed2.males.nlme3 <- nlme(Weight~a0+(b0*Centered_5)+(c0*Log_Centered_5)+

(d0*Centered_5_Inverse)+(e0*Centered_5_Square_Inverse),

data=reed_males_centered_5_exclude,

fixed=a0+b0+c0+d0+e0~1,

random=a0+b0+e0~1|IDME,

start=c(a0=33.6,b0=7.7,c0=-20,d0=-24,e0=4.5),

na.action=na.exclude)

anova(WghtReed2.males.nlme1,WghtReed2.males.nlme2)

# Adapted Jenss-Bayley model

WghtAdptdJB.males.nls<- nls(Weight~a0+(b0*Centered_5)-exp(c0+(d0*Centered_5))+

(e0*(Centered_5_Square)),

data=adptd_males_centered_5_exclude,

start=c(a0=1,b0=1,c0=1 d0=1,e0=1), na.action=na.exclude)

WghtAdptdJB.males.nlme1 <- nlme(Weight~a0+(b0*Centered_5)-exp(c0+(d0*Centered_5))+

(e0*(Centered_5_Square)),

data=adptd_males_centered_5_exclude,

fixed=a0+b0+c0+d0+e0~1,

random=a0~1|IDME,
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start=c(a0=19.6,b0=1.7,c0=-7.3, d0=.8,e0=.2),

na.action=na.exclude)

WghtAdptdJB.males.nlme2 <- nlme(Weight~a0+(b0*Centered_5)-exp(c0+(d0*Centered_5))+

(e0*(Centered_5_Square)),

data=adptd_males_centered_5,

fixed=a0+b0+c0+d0+e0~1,

random=a0+b0~1|IDME,

start=c(a0=19.7,b0=1.6,c0=-9.3,d0=1,e0=.2),

na.action=na.exclude)

anova(WghtAdptdJB.males.nlme1,WghtAdptdJB.males.nlme2)

WghtAdptdJB.males.nlme3 <- nlme(Weight~a0+(b0*Centered_5)-exp(c0+(d0*Centered_5))+

(e0*(Centered_5_Square)),

data=adptd_males_centered_5,

fixed=a0+b0+c0+d0+e0~1,

random=a0+b0+e0~1|IDME,

start=c(a0=19.6, b0=1.7,c0=-14.7,d0=1.5,e0=.2),

na.action=na.exclude)

# SITAR model

strmodel.male9_3 <- sitar(x=Age,y=Log_Weight,id=IDME,data=sitar_males_excludeobs,

df=3, control=nlmeControl(pnlsTol=.4),

fixed=’a+b’, random=’a+b+c’)

################# Diagnostic Testing for females ################

# Fitted values vs standardized residuals
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par(mfrow=c(3,2))

plot(WghtJB.fem$fitted,WghtJB.fem$StdRes, main = "Jenss-Bayley model",

xlab = "Fitted values", ylab = "Standardized residuals")

abline(0,0)

plot(WghtAdptdJB.fem$fitted,WghtAdptdJB.fem$StdRes,

main ="Adapted Jenss-Bayley model",

xlab = "Fitted values", ylab = "Standardized residuals")

abline(0,0)

plot(WghtReed1.fem$fitted, WghtReed1.fem$StdRes,

ylab="Standardized residuals",

xlab="Fitted values", main="Reed 1st order model")

abline(0,0)

plot(WghtReed2.fem$fitted, WghtReed2.fem$StdRes,

ylab="Standardized residuals",

xlab="Fitted values", main="Reed 2nd order model")

abline(0,0)

plot(strmodel.fem$fitted, strmodel.fem$StdRes,

ylab="Standardized residuals",

xlab="Fitted values", main="SITAR model",ylim=c(-30,30))

abline(0,0)

# Age vs standardized residuals

par(mfrow=c(3,2))

plot(WghtJB.fem$Age,WghtJB.fem$StdRes, main = "Jenss-Bayley model",

xlab = "Age", ylab = "Standardized residuals")
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abline(0,0)

plot(WghtAdptdJB.fem$Age, WghtAdptdJB.fem$StdRes,

ylab="Standardized residuals",

xlab="Age", main="Adapted Jenss-Bayley model")

abline(0,0)

plot(WghtReed1.fem$Age, WghtReed1.fem$StdRes,

ylab="Standardized residuals",

xlab="Age", main="Reed 1st order model")

abline(0,0)

plot(WghtReed2.fem$Age, WghtReed2.fem$StdRes,

ylab="Standardized Residuals",

xlab="Age", main="Reed 2nd order model")

abline(0,0)

plot(strmodel.fem$Age, strmodel.fem$StdRes,main="SITAR model",

ylab="Standardized residuals",ylim=c(-30,30),

xlab="Age") # Standardized residuals vs fitted values

abline(0,0)

# Q-Q plots

par(mfrow=c(3,2))

qqnorm(WghtJB.fem$StdRes, main = "Jenss-Bayley model",

xlab = "Normal Quantiles", ylab = "Standardized residuals")

qqline(WghtJB.fem$StdRes) #adding a line to the qqplot

qqnorm(WghtAdptdJB.fem$StdRes, main = "Adapted Jenss-Bayley model",
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xlab = "Normal Quantiles", ylab = "Standardized residuals")

qqline(WghtAdptdJB.fem$StdRes) #adding a line to the qqplot

qqnorm(WghtReed1.fem$StdRes, main = "Reed 1st order model",

xlab = "Normal Quantiles", ylab = "Standardized residuals")

qqline(WghtReed1.fem$StdRes) #adding a line to the qqplot

qqnorm(WghtReed2.fem$StdRes, main = "Reed 2nd order model",

xlab = "Normal Quantiles", ylab = "Standardized residuals")

qqline(WghtReed2.fem$StdRes) #adding a line to the qqplot

qqnorm(strmodel.fem$StdRes, main = "SITAR model",

xlab = "Normal Quantiles", ylab = "Standardized residuals",

ylim=c(-30,30))

qqline(strmodel.fem$StdRes) #adding a line to the qqplot

################# Diagnostic Testing for males ################

# Fitted values vs standardised residuals

par(mfrow=c(2,2))

plot(WghtAdptdJB.male$fitted, WghtAdptdJB.male$StdRes,

ylab="Standardized residuals",

xlab="Fitted values", main="Adapted Jenss-Bayley Model")

abline(0,0) #adding a line to the qqplot

plot(WghtReed1.male$fitted, WghtReed1.male$StdRes,

ylab="Standardized Residuals",

xlab="Fitted values", main="Reed 1st order model")

abline(0,0)
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plot(WghtReed2.male$fitted, WghtReed2.male$StdRes,

ylab="Standardized residuals",

xlab="Fitted values", main="Reed 2nd order model")

abline(0,0)

plot(strmodel.male$fitted, strmodel.male$StdRes,

main="SITAR model", ylab="Standardized residuals",

xlab="Fitted values")

abline(0,0)

# Age vs standardised residuals

par(mfrow=c(2,2))

plot(WghtAdptdJB.male$Age, WghtAdptdJB.male$StdRes,

ylab="Standardized residuals",

xlab="Age", main="Adapted Jenss-Bayley model")

abline(0,0)

plot(WghtReed1.male$Age, WghtReed1.male$StdRes,

ylab="Standardized residuals",

xlab="Age", main="Reed 1st order model")

abline(0,0)

plot(WghtReed2.male$Age, WghtReed2.male$StdRes,

ylab="Standardized residuals",

xlab="Age", main="Reed 2nd order model")

abline(0,0)

plot(strmodel.male$Age, strmodel.male$StdRes,
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main="SITAR model", ylab="Standardized residuals",

xlab="Age")

abline(0,0)

# Q-Q plots

par(mfrow=c(2,2))

qqnorm(WghtAdptdJB.male$StdRes, main="Adapted Jenss-Bayley model",

xlab = "Normal Quantiles", ylab="Standardized residuals")

residuals

qqline(WghtAdptdJB.male$StdRes)

qqnorm(WghtReed1.male$StdRes, main="Reed 1st order model",

xlab = "Normal Quantiles", ylab = "Standardized residuals")

qqline(WghtReed1.male$StdRes)

qqnorm(WghtReed2.male$StdRes, main="Reed 2nd order model",

xlab = "Normal Quantiles", ylab="Standardized residuals")

qqline(WghtReed2.male$StdRes)

qqnorm(strmodel.male$StdRes, main="SITAR model",

xlab = "Normal Quantiles", ylab="Standardized residuals")

qqline(strmodel.male$StdRes)

######### Population predicted level weight growth curves of females #########

and males superimposed on the observed average weight trajectory

fem_meanwt <- c(21.68,24.25,27.44,36.46,47.54,52.67,56.85)

male_meanwt <- c(22.01,24.75,27.77,36.23,45.96,52.54,62.86)
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x <- c(6,7,8,10,12,13,15)

fem_observedwt <- data.frame(x,fem_meanwt)

male_observedwt <- data.frame(x,male_meanwt)

par(mfrow=c(2,2))

# Adapted Jenss-bayley model

plot(fem_observedwt$x,fem_observedwt$fem_meanwt,col="red",xlim=c(5,16),

ylim=c(10,70),main="Adapted Jenss-Bayley model", xlab="Age (years)",

ylab ="Weight (kg)",type="p",lwd=2)

points(male_observedwt$x,male_observedwt$male_meanwt,col="blue",lwd=2)

lines(spline(females_centered_5_exclude$Age,

predict(WghtAdptdJB.females.nlme3_centered,

level=0)),col="red")

lines(spline(adptd_males_centered_5_exclude$Age,

predict(WghtAdptdJB.males.nlme3, level=0)),col="blue")

legend("bottomright",legend=c("F","M"), col=c("red","blue"),

bty="o",lty=c(1,1), cex=0.5,text.col="black")

# Reed 1st order model

plot(fem_observedwt$x,fem_observedwt$fem_meanwt,col="red",

xlim=c(5,16), ylim=c(10,70),main="Reed 1st order model",

xlab="Age (years)", ylab ="Weight (kg)", type="p", lwd=2)

points(male_observedwt$x,male_observedwt$male_meanwt,col="blue",lwd=2)

lines(spline(reed_females_centered_5_exclude$Age,

predict(WghtReed1.females.nlme2, level=0)),col="red")

lines(spline(reed_males_centered_5_exclude$Age,

predict(WghtReed1.males.nlme2,level=0)),col="blue")

legend("bottomright",legend=c("F","M"),col=c("red","blue"),

bty="o",lty=c(1,1), cex=0.5,text.col="black")
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# Reed 2nd order model

plot(fem_observedwt$x,fem_observedwt$fem_meanwt,

col="red",xlim=c(5,16),

ylim=c(10,70),main="Reed 2nd order model",

xlab="Age (years)", ylab ="Weight (kg)",type="p",lwd=2)

points(male_observedwt$x,male_observedwt$male_meanwt,

col="blue",lwd=2)

lines(spline(reed_females_centered_5_exclude$Age,

predict(WghtReed2.females.nlme3, level=0)),col="red")

lines(spline(reed_males_centered_5_exclude$Age,

predict(WghtReed2.males.nlme3, level=0)),col="blue")

legend("bottomright",legend=c("F","M"), col=c("red","blue"),

bty="o", lty=c(1,1), cex=0.5,text.col="black")

# SITAR model

plot(fem_observedwt$x,fem_observedwt$fem_meanwt,

col="red",xlim=c(5,16), ylim=c(10,70),main="SITAR model",

xlab="Age (years)", ylab ="Weight (kg)",type="p",lwd=2)

points(male_observedwt$x,male_observedwt$male_meanwt,

col="blue", lwd=2)

lines(strmodel.female9_3,opt="d",yfun=exp, xlim=c(5,16),

ylim=c(10,70), col="red",xlab="Age (years)",

ylab="Weight (kg)",main="SITAR model")

lines(strmodel.male9_3,opt="d",yfun=exp, col="blue",xlim=c(5,16),

ylim=c(10,70),add=TRUE)

legend("bottomright",legend=c("F","M"), col=c("red","blue"),bty="o",

lty=c(1,1),cex=0.5,text.col="black")

####### Weight velocity curves from the SITAR model for females and males ######
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plot(strmodel.female9_3,opt="v",yfun=exp, xlim=c(5,16),ylim=c(1,7),

col="red",apv=TRUE, main="SITAR model", xlab="Age", ylab="")

plot(strmodel.male9_3, opt="v", yfun=exp, col="blue",xlim=c(5,16),

ylim=c(1,7), apv=TRUE,add=TRUE)

legend("bottomright",legend=c("F","M"), col=c("red","blue"),bty="o",

lty=c(1,1), cex=0.5,text.col="black")
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