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Abstract

Modeling of a Dielectric Elastomer

Mesfer Alkhathami

Dielectric elastomer actuator (DEA) is a key element for the soft robots, which has received

increasing attention. However, the main difficulties in modeling soft actuators such as dielectric

elastomer actuators are time-dependent viscoelasticity and their material nonlinearity. It is important

to consider the viscoelasticity of the dielectric elastomer (DE) to fully understand its mechanical

behavior. However, so far only a few works have been presented considering the viscoelasticity of

the DE material together with the effect of temperature and deformation.

In this thesis, a dynamic electromechanical-coupled model for a rectangle dielectric elastomer a

commonly used material (the acrylic elastomer VHB 4910) has been proposed, with taking into con-

sideration of the influence of temperature, voltage, and frequency on the DE. The proposed model is

based on the free energy physical-based principle, where the general Kelvin-Voigt model is applied

to describe the viscoelasticity of the DE, and the Maxwell force together with the Electrostrictive

force are considered. The influence of temperature and deformation on the DE is included in this

model. The model in this study is a dynamic electromechanical model of a DE actuator, and can

effectively describe the dynamic characteristics of the DE.

By using the Differential Evolution, the model parameters were identified. The model was im-

plemented and simulated in MATLAB, and the simulation and the actual experiment agrees to a

great extent. The experimental test conducted in this study matches with the simulations results,

which means that the proposed model can be practical to predict and describe DEAs electrome-

chanical and viscoelastic behavior. Predicting the electromechanical and viscoelastic behavior of

the DE is extremely useful for controlling a viscoelastic DEA and paving the way to improve the

control performance, and also develops applications in soft robotics.
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Chapter 1

Introduction

1.1 Objective of the Thesis

In robotics society, DEAs have attracted the research attention and have shown promise for the

applications of the soft robotics field due to their interesting combination of properties, including

large deformation, high energy density, low cost, lightweight, good efficiency, and fast response.

However, the DEs materials exhibit high nonlinear viscoelasticity, hysteresis, creep, and vibrational

dynamics, which makes modeling it a challenging task to do. The dielectric elastomers are highly

nonlinear materials, which makes its dynamic behavior complex when stretching, and experience

creep under constant loads, and hysteresis upon cyclic loading. Thus, the mechanical responses of

DEAs are strong nonlinear, time-dependent and frequency dependent.

Numerous investigations have focused on static or quasi-static applications. A few works re-

ported the effect of inertia and viscoelasticity in DEs together with the influence of temperature and

deformation. Recently, researchers have investigated the dynamic behavior of the DE membrane to

have better understanding on how the DE behaves. Nevertheless, the dynamic behavior of DEAs

needs to be studied in details and its inherent nonlinear effects demand new control concepts. In

addition, many studies have claimed that temperature has an impact on the performance of the DE.

In this study, a dynamic model of the most widely used material VHB 4910 is proposed with ac-

counting for the viscoelasticity of DEAs (specifically the creep), temperature dependent, voltages,

and frequencies. The simulations of the model are provided with different voltages, frequencies,
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and temperatures. Moreover, experimental tests are applied, and the simulations results and experi-

mental results show the validity of the presented model.

1.2 Orgnization of the Thesis

This thesis consists of 5 chapters including the introduction in Chapter 1. The topics of the rest

chapters are organized as follows:

• Chapter 2:

A literature review of dielectric elastomer is presented including electromechanical modeling

approaches and reviews of the soft robots using dielectric elastomer actuators.

• Chapter 3:

A detailed modeling of a DE with rectangle shape is proposed.

• Chapter 4:

The proposed DE model will be simulated, and the effectiveness of the model will be vali-

dated by the experiment test. Also, the experimental setup is introduced with materials used

followed by a discussion on the phenomena observed in experiments. The theoretical and

experimental comparisons are discussed as well in this chapter.

• Chapter 5:

Conclusions and future works will be included.
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Chapter 2

Literature Review

2.1 Dielectric Elastomer

In artificial muscle technology, the use of soft elastomers such as silicones, acrylics and poly-

urethanes have been studied extensively (Rosset & Shea, 2013). Electro-Active Polymers (EAPs)

represent an innovative class of smart materials, which exhibit a change in size or shape when

subjected to an external electrical stimuli (Maffli, Rosset, & Shea, 2013). Dielectric EAPs (DEAPs),

most commonly referred to as Dielectric Elastomers (DEs), represent a class of electronic EAPs

consisting of a film of elastic polymeric material covered on both sides by compliant electrodes.

This kind of EAPs, known as electronic EAPs, requires high driving voltages, possess high electrical

energy and can be operated in the air. When a voltage is applied to the electrodes, the resulting

electric field generates a compressive stress that produces a controllable deformation (Rosset &

Shea, 2013).

As a comparison to other smart materials (e.g., piezoelectric ceramics, shape memory alloys),

the deformation of DEs can be in some cases one or two orders of magnitude larger. Large de-

formation (¿100% in many cases), high actuation speeds, high work densities and a high degree

of electromechanical coupling make dielectric elastomers are the most favorable in actuation, and

an attractive alternative for the development of a new generation of mechatronic devices (Rosset &

Shea, 2013). In fact, several prototypes of DEs applications have been presented, such as pumps

(Rosset & Shea, 2013), valves (Giousouf & Kovacs, 2013), loudspeakers (Sugimoto et al., 2013),
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robots (R. Pelrine et al., 2002) (Pei, Rosenthal, Stanford, Prahlad, & Pelrine, 2004) (Godaba, Li,

Wang, & Zhu, 2016), flap- ping wing insects (Heydt, Kornbluh, Eckerle, & Pelrine, 2006), opti-

cal positioning systems (Son et al., 2012), micro-positioning stages (Jordan et al., 2011), pressure

or deformation sensors (Iskandarani & Karimi, 2012), and energy harvesters (Vertechy, Fontana,

Papini, & Bergamasco, 2013).

Researchers have made a significant development in the use of DEAs in the past decades, es-

pecially in the field of materials and physics, and a great number of robots have been designed and

developed using DEAs materials. However, there are many technological issues that still need to

be properly addressed in order to make this material competitive in industrial applications. For in-

stance, the amount of voltage needed to obtain a significant deformation, the strong nonlinearities

in the input-output characteristics, and the dependence of the response on environmental conditions

and fatigue.

2.1.1 Soft Robotics

Over the last decade, soft robotics have been a promising field of research and a variety of soft

robots have been enhanced using different actuation technologies and mechanisms (DuRant & You,

2014) (Marvel, Falco, & Marstio, 2015). Recently, soft robotics are technologically developed into

two general areas, which are bio-inspired and bio-mimetic. The exponential grown of soft robotics

technologies have led to more advanced developments in soft and smart materials, robotics mech-

anisms, and non-linear modelling due to countless benifits such as the ability of large deformation

and the wide range of degree-of-freedoms. Taking into consideration the distinctness of actuation

technologies, soft robots can be classified into two main groups (DuRant & You, 2014).

The first group is commonly known as continuum robots. This kind of soft robots is related

to the tendon-driven actuation, and unlike traditional robots, they can be smoothly bent and con-

tinuously curving anywhere along their structure instead of bending at discrete points (joints, or

elbows) (Robinson & Davies, 1999). Based on the type of the tendon-driven mechanisms (TDMs)

with either intrinsicextrinsic hybrid actuators, extrinsic actuators, or intrinsic actuators the design

of continuum robots could be rubber-like with unlimited degrees of freedom (DOFs). There are
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many practical applications of this kind of robots, from medical and search to rescue applications.

Nevertheless, few challenges have been identified of using continuum robots in the field of soft

robotics. Generally, continuum robots deal with solid bodies not soft bodies. For example, one of

their function is exploiting automatic transmission of the traditional motors and mechanisms such

as ball screws and gears, which they are hard bodies.

The second group is in reference to the soft smart materials actuation. The characteristics of

smart materials, named also as intelligent or responsive materials, make them changed as a result

of the changes in their environment. They have the ability to significantly change from physical

stimuli; for example, force, chemical, thermal, electric or magnetic sign to a physical displacement,

unlike the tendon-driven actuation with the regular motors and transmission techniques. There are

many areas which soft materials can be used in the field of soft robots such as Piezoelectrics, shape

memory polymers (SMPs), the shape memory alloys (SMAs), Bi-Component Fibers, hydrogels and

electro-active polymers (EAPs) (Rus & Tolley, 2015). SMPs and SMAs are type of materials that

have the feature of undergoing large strain when they undergoing heating process (Majidi, 2014).

In (Mazzolai, Margheri, Cianchetti, Dario, & Laschi, 2012), soft octopus arms were presented;

however, it is difficult to precisely control SMAs due to its temperature dependent nature.

EAPs are a growing interest among researchers for years because of their unique factors and

interesting advantages in many applications. EAPs, commonly referred to as artificial muscles, are

attractive materials for the use in soft actuation technology, and that could be attributed to their

flexibility and ability to change sizes and/or forms when an external condition is applied, such as

an electric field or a voltage, and imitate the features of biological muscles (Laschi & Cianchetti,

2014). Examples of EAPs are dielectric EAPs, liquid crystal polymers, electrostrictive graft poly-

mers, ferroelectric polymers, electrorheological fluids, stimuli-responsive gels, ionic polymermetal

composites, and ionic EAPs. The use of EAPs are not limited in soft robotics, but they can also be

used as pumps (Heim, Polyakov, Zarrabi, & Hui, 2009), valves (Jhong, Huang, Hsieh, & Fu, 2007),

speakers (Heydt et al., 2006), and lens element actuators (H. Kim et al., 2007).

EAPs have different stimuli methods; by taking into account these differences, soft EAPs can

be generally divided into two principal categories: electronic EAPs and ionic EAPs. Dielectric

elastomers (DEs), which are the king of the electronic EAPs have some advantageous such as high
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energy and power density, high efficiency, fast response speed, and inherent soft nature (Shepherd et

al., 2011), which make them extremely beneficial in soft robotics. In contrast, ionic EAPs’ coupling

efficiency is poor and their actuation speeds are relatively slow (Mazzolai et al., 2012), which may

limit their usefulness in the field of soft robotics. As an alternative option, it is worth mentioning

that semi-active actuation suchlike electro-rheological foam/elastomers have been used for enhanc-

ing soft robots (Majidi, 2014). In this paper, rheological modeling is being used in this study to

describe the viscoelasticity of the DE.

2.1.2 DEs Applications

The field of soft robotics shows good promising and opens a wide range of opportunities for

the use of DEAs due to its unique performance. The DEAs show very promising performance as

artificial muscles due to their high flexibility, lightweight and other factors compared with traditional

rigid actuators DEA. The DEAs have been used in many kind of soft robots such as humanoid

robots, swimming robots, serpentine robots, and flying robots.

Humanoid robots:

Prosthetic applications exhibit increasing attention, especially in the use of DEAs; readers may

refer to (Biddiss & Chau, 2008) (Carpi, Frediani, & De Rossi, 2011) for overview of the obstacles

and opportunities using DEAs for prosthetics. Virginia Tech presented a robotic arm, and in around

four minutes it lifted a weight of 0.9 N and a height of 22 cm. According to the baseline human

measurements, its speed capacity and force are lower than 1% (Biddiss & Chau, 2008). Carpi et al

(Carpi, Frediani, & De Rossi, 2011) use DEAs to design a wearable device with tactile display, and

in cyberspace a user can get a feedback during electronic navigation. Based on dielectric elastomer

actuator Sensors, Lee et al presented an arrayed tactile display (Lee et al., 2014). It is designed

to guarantee the safety of operation for the users while contacting with the human skin as well as

adding the comfort of touch. In addition, the scientists have attempted to benefit from the aston-

ishing properties of DEAs to simulate the eyeball muscle system of humans. Carpi and De Rossi

(Carpi & De Rossi, 2005) presented bioinspired pseudo muscular eyeballs using DEAs for a hu-

manoid robotic face.
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Swimming robots:

In the growing interest in development of biomimetic and bioinspired swimming robots, the

DEAs are one of the best options to choose due to their unique density that is approximately the

same as that of water. In (Godaba et al., 2016), a DEA-based jellyfish robot was developed. Godabas

experimental results show that the weight of the jellyfish robot is 256g, and it has the ability to carry

a payload of 236g compared to its actual-weight. Also, its maximum velocity was approximately

0.3 body length per second.

Walking/ serpentine robots:

A walking robot with DEA was the first kind of driven by biomimetic presented by Eckerle et

al (Eckerle et al., 2001) in 2001; it was designed with six legs, and it was named as FLEX. Eckerle

et al improved FLEX in 2002 by having more powerful rolled DEAs. MERbot is a DEA-driven

walking robot with one 2-DOF-spring roll as each of its six legs, and it was demonstrated by Pei et

al (Pei et al., 2004). Its speed is two-thirds of its length per second or as high as 13.6 cm s1.

Flying robots:

DEAs produce a combination of large strain with high speed and energy density, and that make

them a good choice for a potential actuation technology. In Singapore, a group of researchers

at Nanyang Technological University (NTU) developed a bioinspired flapping wing robot with a

lightweight carbon fiber reinforced polymer (CFRP) shell and rolled DEAs (Lau, Lim, Teo, & Chin,

2014). Furthermore, Shea s group from EPFL, Switzerland (Shintake, Rosset, Schubert, Floreano,

& Shea, 2015), presented a foldable antagonistic actuator based on dielectric elastomers. The actu-

ator can manage flight surfaces of a fixed wing drone with the angular displacement range and the

torque condition of a 400mm wingspan micro-air vehicle of mass 130g.

2.1.3 DEs Materials

The materials characteristics in the dielectric elastomer research should have some features

such as high level of dielectric constant and breakdown strength, extremely low level of viscos-

ity and electrical conductivity combined with a wide-ranging elastic moduli (Bauer et al., 2014).

Researchers have investigated many kinds of elastomeric materials in the last decades. However,
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polyurethanes (PUs), silicones and acrylics are the most frequently used elastomers, which they will

be addressed in the following.

PUs:

In general, PUs have higher dielectric constant and relatively large output force, which make

DEAs made of PU material require low electric fields to be actuated. Polyurethane elastomers

are a part of segmented block copolymers that can be effectively used in biomedical applications

(Lamba, 2017). However, the disadvantage of DEAs using PUs is the limitation of small strain,

which makzes researchers pay no more attention to it.

Silicones:

Dielectric silicones elastomers are semi-inorganic polymers that are composed of a siloxane

(Si-O) backbone. Dielectric elastomer actuators made of silicone elastomers show modest actuation

strain, which is smaller than acrylics dielectric elastomers actuators, but larger than PUs dielectric

elastomer actuators. As stated by (Brochu & Pei, 2010), DEAs with silicone elastomers operate at

lower losses and higher frequencies. In addition, the silicone elastomers’ electromechanical respond

is fast (3s) with good reproducibility. Since silicones have a relatively low dielectric constant, they

require higher electric fields for large strains (DuRant & You, 2014). However, silicones elastomers

exhibit lower viscoelasticity, which is be considered as an advantage.

Acrylic:

Recently, soft elastomers have gained much attention in many industrial fields and research

areas. Acrylic DEAs is the mostly and commonly used, particularly in the field of soft actuator

technology. According to the study by Pelrine and colleagues (R. E. Pelrine, Kornbluh, & Joseph,

1998) (R. Pelrine, Kornbluh, Pei, & Joseph, 2000), acrylics are reported to be successfully choice

for the large-strain DEAs. VHB acrylic elastomers from 3M have shown good performance by

generating a large strain, a temperature dependency and a strong frequency (Godaba et al., 2016).

The cost of VHB acrylic elastomer is commercially low and available (such as the most used VHB

4905 and VHB 4910), which is one of the reasons of its popularity.

The acrylic material produced by 3M Company is commonly used in soft robotics due to its

magnificent strain property. For example, in the recent past, there are a large number of studies
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reporting that the maximal area stretch of the 4910 type acrylic DE can be up to 380% after pre-

stretching. Moreover, DEAs using the prestretched 3M VHB acrylic elastomer can produce area

strains more than 1000% (Godaba, Foo, Zhang, Khoo, & Zhu, 2014) as well as giant voltage-

induced linear strains over 380% (Zhao, 2014). However, the strong viscoelastic nonlinearities that

acrylics experience (Hong, 2011) (Chiang Foo, Cai, Jin Adrian Koh, Bauer, & Suo, 2012) could

adversely affect the performance of a dielectric elastomer actuator and limits its applications.

2.2 Advantages and Dis Advantages of DE

2.2.1 Advantages of DEs

Dielectric elastomers are smart materials as they change their shape under the influence of

electric field. DEAs have shown their usefulness in soft robotics field for their unique materi-

als properties. When electric field is applied, DEs can produce high energy density approximate

(> 3.4MJm−3) and large deformation up to (> 100%). What is more, it possesses the advantages

of high elastic energy density, fast responses (in millisecond), high electromechanical conversion

rate, excellent flexibility, lightweight (approximately as that of water), and low cost. The main at-

tractive advantages that make dielectric elastomers extremely beneficial, especially in soft robotics

applications, is the ability to generate resemble natural muscle of humans, and mimic the muscles

in our human bodies with regard to producing large actuation strain (displacement per length unit)

and actuating density and force compared to other competitors (Shepherd et al., 2011).

Koh et al. (Koh et al., 2011) achieved actuation strains of up to 1692%, and also a theoretical

maximum energy density of 1.4J/g has been reached (Keplinger, Kaltenbrunner, Arnold, & Bauer,

2010). DEAs, popularly referred to as artificial muscles, represent a promising alternative to existing

conventional engineering mechanisms. DEAs can enable new kinds of robotics, and greatly expand

the engineering design space. There is a wide range of applications and devices that can be created

by the use of DEAs such as a fish-like blimp and a linear actuator.

9



2.2.2 Disdvantages of DEs

Non-linear viscoelasticity:

A common disadvantage for DEs, especially the most widely used VHB 4910, is that the di-

electric elastomer exhibits a high nonlinear viscoelasticity. The dissipative behaviour such as the

Mullins effect, frequency dependent response, hysteresis, and creep affect the performance and limit

the application of DE-based mechanisms (Gu, Zhu, Zhu, & Zhu, 2017).

Temperature Dependency:

The DE materials, especially Acrylic type, are temperature dependent, and the temperature

affects the performance of the DEs. For example, the electromechanical deformation of dielectric

elastomers is influended by the temperature, which makes the temperature an important factor when

it come to modeling the DEAs. However, it is a challenging task to consider the temperature factor

in modeling the DEs since the temperature dependency is high for DEs materials (Michel, Zhang,

Wissler, Löwe, & Kovacs, 2010) (Sahu, Patra, & Szpunar, 2015) (Patra & Sahu, 2015) (L. Liu et

al., 2015).

Safety:

DEAs are Electrically capacitors that can be actuated by storing electrical energy on their elec-

trodes, and electrical safety could be one of the main issues about the DEAs. Generally, DEAs use

high direct current (DC) and alternating current (AC) voltages (mostly higher than 1 kV) to be ac-

tivated, and storing charges poses a serious danger to the user if discharged to the body. Therefore,

ensuring electrical safety is extremely important, and requires a proper design of DEAs. However,

DEAs need a small current in general (on the order of 10−6A), and by limiting the current and

energy level these concerns can be eliminated (Gu et al., 2017).
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2.3 Modeling Approach

2.3.1 Electromechanical Modeling Approaches

Pelrine and colleagues presented the first physical-based model to represent the electromechan-

ical characteristics of dielectric elastomer actuators (R. Pelrine et al., 2000). The electrostatic pres-

sure from one electrode’s side of DEAs to the other can be described by the resulting electrostatic

stress when a prestreched DEA is subjected to a voltage V , and it is defined by the sum of the

material’s permittivity multiplied by the square root of the electric field applied E as expressed

below:

P = ε0εr ∗ E
2 (1)

where P refers to Maxwell stress, which is the compressive effective stress, ε0 is absolute permit-

tivity (its value is approximately 8.85 ∗ 10−12Fm−1) and εr is the relative permittivity of dielectric

elastomers. In equation (1), the effective compressive stress is double the stress usually used for

two charged capacitor plates because the planar stretching in DEAs is attached to the thickness

compression. In equation (1), the dielectric elastomer is taken to be ideal, so the Maxwell stress is a

result from tensile stresses acting in the planar direction as well as the compressive stress acting in

the thickness direction. Based on equation (1), in a light layer to a single compressive stress acting

in the thickness direction, the tensile and compressive stresses are mechanically equivalent.

It is been widely known that the dielectric behavior of the elastomer is considered to be liquid-

like and uninfluenced by deformation, and this model is used effectively to express the DEAs’ elec-

tromechanical behavior (Carpi, De Rossi, Kornbluh, Pelrine, & Sommer-Larsen, 2011) (Keplinger

et al., 2010) (Rizzello, Naso, York, & Seelecke, 2015). For low strains (e.g., < 20%), thickness

strain sz is approximated as:

sz = −p/Y = −ε0ε1 ∗ E
2/Y (2)

Y is being the elastic modulus relating to the strain. Since Y is dependent on the strain itself on most

cases, this function failed for strains greater than 20%. The electromechanical energy density can be

applied to measure the performance of nonlinear materials under high strain where the compressive
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stress is known, and the expression of the electromechanical energy density is as follows:

e = −pln(1 + Sz) (3)

where p is the constant compressive stress. In terms of high strain, the density of electromechanical

energy can estimate the the thickness strain sz , given by

sz = e−we/p − 1 (4)

we is the density of electromechanical energy, denoted as the change amount of electrical charges to

mechanical energy per unit volume of the DEAs for one cycle. Since we assume that the dielectric

elastomer is ideal, eq.(2) or (4) can obtain the strains on the plane based on thickness strain. As

shown in (1), the stress is proportional to the permittivity of the dielectric elastomers while it is

inversely proportional to the thickness of the elastomer membrane. For this reason, the thickness of

the membrane decreases as the electric field across the thickness increases when a DEA is subjected

to a voltage.

The changing of thickness in DEs results in electromechanical instability or electrical break-

down as well as limiting strain performance of DEAs, which can affect its functioning. The actua-

tion of DEAs can also be negatively affected by the inherent nonlinearity that dielectric elastomers

exhibit, which is defined as viscoelasticity. Even though Pelrines approach described in (1)-(4)

simplify the understanding of electrical behaviour of DEAs, it cannot successfully take into consid-

eration nonlinear elasticity and the large-deformed nonlinearity of DEAs.

2.3.1.1 Energy-based Electromechanical Modeling

For predicting the nonlinear elastic behaviors and the large-deformation nonlinearity of rubber-

like materials, especially in DEAs, Energy-based analytical approaches are effectively useful (Ko-

fod, 2001) (Zhao & Suo, 2010) (Mooney, 1940) (Ogden, 1972) (Gent, 1996) (Yeoh, 1990). How-

ever, it is difficult to have a general frame to combine all different models. There have been many

studies and efforts to combine the hyperelastic material models and the theories of Maxwell stress
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in the field of DEAs. Kofod (Kofod, 2001) used three different kinds of hyperelastic material mod-

els, (Ogden, neo-Hookean, and Hooke models) to describe a DEA relates to the one-dimensional

voltage-strain.

Goulbourne et al (N. C. Goulbourne, Frecker, & Mockensturm, 2004) (N. Goulbourne, Mocken-

sturm, & Frecker, 2005) developed a prosthetic blood pump using the Ogden strain energy function

and an electro-elastic modeling of a DE-based diaphragm was employed. In (H. K. Kim et al.,

2001), Kim et al studied the effects of parameters such as dielectric, pre-strain, temperature, and

frequency, and with a MooneyRivlin model the relations of strain and stress was obtained by using

elastic strain energy. Wissler and Mazza in (Wissler & Mazza, 2005) investigated a pre-strained di-

electric elastomer with a circular membrane by employing three different hyperelastic strain energy

models (Mooney-Rivlin, Yeoh, and Ogden).

In (Plante & Dubowsky, 2006), Plante and Dubowsky developed a model that accounts for

DEAs failures like material strength, dielectric strength, and pull-in. In order to anticipate the

DEAs’ area stretch, the analytical model was incorporated four fundamentals parts including vari-

able dielectrics strength, nonlinear elastic behavior, deformations, and viscoelasticity. The model

was presented as a function of speed of actuation, working load, applied voltage, and mechanical

prestretch. Suo and colleagues (Suo, 2010) (Hong, Zhao, & Suo, 2010) (Y. Liu, Liu, Zhang, & Leng,

2009) from Harvard University, America, presented a general theory to model the DEAs’ electrome-

chanical behaviors considering the framework of thermodynamics and continuum mechanics.

2.3.1.2 A General Electromechanical Modeling Frame

Figure 3.1 illustrates a DE membrane in its standard state with starting measurements of length

L1, width L2, and thickness L3. In the actuated state under mechanical forces P1, P2 and voltage

Φ, the geometric dimensions become as l1, l2, and l3, where the stretches on all directions are as

λ1 = l1/L1, λ2 = l2/L2, and λ3 = l3/L3. The membrane is assumed to be incompressible, and

with density of ρ. For electrical attachment, the compliant electrodes are covered of grease on both

surfaces of the membrane. Q refers to the electric charges on the electrodes, and the thermodynamic

functioning of the transducer is assumed to be overly entropic, characterized by the Helmholtz free

energy, which is denoted as F .
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Frame Work of Equilibrium Thermodynamics:

The membrane of DE deforms due to the charges from the opposing signs on both electrodes,

and the dimensions of the dielectric change by δl1, δl2, δl3. As a result, the forces do work of P1δl1,

P2δl2, and P3δl3. The work resulting from the mechanical forces P1δl1 + P2δl2 + P3δl3 and the

work resulting from the battery φδQ is equivalent to the increase of the free energy of the elastomer

membrane δF according to the energy balance, yields to:

δF = P1δl1 + P2δl2 + P3δl3 +ΦδQ (5)

It is worth to mention that the equilibrium state mentioned in (5) is used for random small changes of

the four independent variables Q, l1, l2, and l3 (Suo, 2010). The nominal density of the Helmholtz

free energy is defined as:

W = F/(L1L2L3) (6)

Define the true stresses by:

σ1 = P1/(l2l3) (7)

σ2 = P2/(l1l3) (8)

σ3 = P3/(l1l2) (9)

The electric field by:

E = V/l3 (10)

The electric displacement by:

D = Q/(l1l2) (11)

The three quantities D, l1, and l2 are varied when the forces and voltage are applied, giving;

(δQ = Dl2δl1 +Dl1δl2 + l1l2δD)

Consequently, by dividing (5) by the volume L1L2L3 of the elastomer on the two sides, the overall
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amount of increase in the density of the free energy can be accomplished.

δW = (σ1 +DE)λ2λ3δλ1 + (σ2 +DE)λ1λ3δλ2 + σ3λ1λ2σλ3 + λ1λ2λ3EδD (12)

The nominal density of the Helmholtz free energy W is based on four independent variables,

which are the strains l1, l2, l3 and polarization displacement D, and it can be expressed as follows:

W = W (λ1, λ2, λ3, D) (13)

Submitting (13) into (12), we obtain:

(14)

W = (
∂W
∂λ1

− (σ1 +DE)λ2λ3)∂λ1

+ (
∂W
∂λ2

− (σ2 +DE)λ1λ3)∂λ2

+ (
∂W
∂λ3

− σ3λ1λ2)∂λ3

+ (
∂W
∂D

− λ1λ2λ3 ∗ E)∂D

= 0

The coefficients in front of each variations in eq. (14) can be derived when the dielectric is equili-

brated under applying voltage and forces due to the fact that the balanced state in (5) is for random

little differences of the four independent variables δl1, δl2, δl3, and δD; satisfying:

σ1 =
∂W (λ1, λ2, λ3, D)

λ2λ3∂λ1
−DE (15)

σ2 =
∂W (λ1, λ2, λ3, D)

λ1λ3∂λ2
−DE (16)

σ3 =
∂W (λ1, λ2, λ3, D)

λ1λ2∂λ3
(17)

E =
∂W (λ1, λ2, λ3, D)

λ1λ2λ3∂D
(18)
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Ideal Dielectric Elastomers:

The change in volume is very small as comparison to the change in the shape when the dielectric

elastomer is subjected to large deformation. As a result, the dielectric elastomers is assumed to be

incompressible, which implies that the membrane volume is constant independently of the state of

deformation (Suo, 2010), yields:

λ1λ2λ3 = 1 (19)

The density of the free energy of an incompressible elastic dielectric is based on the three indepen-

dent variables:

W (λ1, λ2, D) (20)

The actual electric displacement relates to the actual electric field is:

D = ε× E (21)

By assuming that the DEA has the ideal dielectric elastomer membrane, the nominal density of the

Helmholtz free energy can be expressed as:

W (λ1, λ2, D) = Ws(λ1, λ2) +D2/2ε (22)

where Ws(λ1, λ2) is the Helmholtz free energy related to the stretch amount of the membrane;

D2/2ε represents the Helmholtz free energy related to the polarization of the elastomer, and the

permittivity of the elastomer ε = ε0 εr is a constant independent of deformation. Submitting eq.

(22) into (15)-(18), the constitutive equations of DEAs will be as follows:

σ1 − σ3 =
λ1∂Ws(λ1, λ2)

∂λ1
− εE2 (23)

σ2 − σ3 =
λ2∂Ws(λ1, λ2)

∂λ2
− εE2 (24)

where the first terms of equations (23) and (24) indicate the mechanical stress part regarding the

alteration of entropy related to the stretch of the elastomers’ polymer network. The second term
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implies the applied voltage. It should be mentioned that the model of ideal dielectric elastomers can

be adjusted to include dissipative processes, such as electrical conduction, dielectric relaxation, and

viscoelasticity (Zhao & Wang, 2014) (Zhou, Jiang, & Khayat, 2015).

2.3.1.3 Elastic Material Models

A hyperelastic constitutive material has a remarkable stress-strain relationship, which allows for

accurately modeling it even when the strain is very large. The usefulness of Hyperelastic materials

for modeling rubber-like or rubber materials has been approved in which the elastic deformation can

be very large. By using a strain energy density function, hyberelastic materials can derive the stress-

strain relationship. Different hyperelastic models have been developed and well-tested in theory

of rubber-like materials modeling, such as neo-Hookean, Mooney-Rivlin, Yeoh, Gent, and Ogden

models (Zhao & Suo, 2010) (Mooney, 1940) (Ogden, 1972) (Gent, 1996) (Yeoh, 1990). A specific

model can be chosen based on some categories. For example, the amount of data that has to define

the relationship between the stress and strain, the computational expense of the formulation, and the

expected range of strains that will be experienced. In the field of DEAs, Ogden, neo-Hookean, and

Gent models are the commonly used due to their simplicity, which they are introduced In this paper.

Ogden Model:

For rubber elasticity, Ogden model is also one of the popular hyperelastic material models, and

it was proposed by Raymond Ogden in 1972 (Ogden, 1972). Ogden model is usable for describing

the non-linear stress-strain behavior of specific materials such as polymer or rubber-like materials.

The strain energy density function of Ogden model can be derived, like other hyperelastic material

models, to describe the behavior of the material. In Ogden material model, the strain energy density

under the assumption of incompressibility one can be written as:

Ws =

N
∑

i=1

µi

αi
(λαi

1 + λαi

2 + λαi

3 − 3) (25)

where N is the number of model order, and µi and αi are the parameters of the material, which can

be verified by experiments. Unlike the other models (Neo-Hookean model, Gent model), Ogden
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model has the advantages of directly using the test data without the exact physical meaning of

the material. In contrast, the parameters of Gent model and Neo-Hookean model have physical

description for the materials, which make them physical-based models. In addition, Ogden model

can be effectively used to examine the performance of DEAs due to the high ability to predict the

response of DEAs (Y. Liu et al., 2009) (Joglekar, 2014) (Ahmadi, Gooyers, Soleimani, & Menon,

2013) (Zhou et al., 2015).

Neo-Hookean Model:

Neo-Hookean is considered as hyperelastic model; and for the case of large deformations, Neo-

Hookean is an extension of Hookes law. In 1948, Ronald Rivlin proposed the neo-Hookean model,

and it is used for rubber-like substances and certain plastics (Mooney, 1940) (Suo, 2010) (Kofod,

2001) (Zhao & Suo, 2010) (Mooney, 1940) (Ogden, 1972) (Gent, 1996) (Yeoh, 1990). For an

incompressible neo-Hookean hyperelastic material, the free energy density is given by:

Ws =
µ

2
(λ2

1 + λ2
2 + λ2

3 − 3) (26)

where µ is a material constant (associated with Youngs modulus), which is the strain shear modulus.

The neo-Hookean model has the advantage of predicting the stress-strain behavior of hyperelastic

materials undergoing large deformation. In dielectric elastomers (DEs), the curve of stress-strain

in a neo-Hookean material is initially linear; however, at a certain point the relation between the

applied stress and strain may change to nonlinear.

The bases of a neo-Hookean model are the statistical thermodynamics of cross-linked polymer

chains, and it is one of the simple models with only one material parameter µ. In a Neo-Hookean

manner, Cross-linked polymers perform in the linear states. However, the length of each polymer

chain could be limited, and the polymer chains will be stretched to the maximum point at a certain

point, which the covalent crosslinks will allow. Consequently, the elastic modulus of the material

will dramatically increase, and may also cause the elastomer to stiffen sharply. Thus, at large strains,

the neo-Hooken model is not accurately practical.
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Gent Model:

Gent model is a hyperplastic model of rubber elasticity, and it was introduced by Gent in 1996

(Gent, 1996). The benefit of this model is predicting the strain-stiffening effect unlike the neo-

Hookean model. Gent model for isotropic incompressible elastomers is particularly simple, and it

can be expressed as follows:

Ws = −
µJlim
2

ln

(

1−
λ2
1 + λ2

2 + λ2
3 − 3

Jlim

)

(27)

In a similar way to the neo-Hookean model in (26), µ refers to the small-strain shear modulus, and

Jlim refers to the limiting stretch, and generally has a constant value and can express the effects

resulting from strain-stiffening of materials.

According to the Taylor expansion, Gent model can be reduced to Neo-Hookean solid model,

and this can be seen when λ2
1 + λ2

2 + λ2
3 − 3/Jlim → 1. As a result, the elastomer meets its maxi-

mum limiting stretch point, and the free energy Ws will be diverged. For predicting the behaviors of

DEAs, Gent model has become one of the most widely used models at the current time (Kollosche,

Zhu, Suo, & Kofod, 2012) (Zhu, Kollosche, Lu, Kofod, & Suo, 2012) (N. Goulbourne et al., 2005).

Since Gent model is remarkably uncomplicated with only two material parameter µ and Jlim, and

since it can predict the stiffing-strain, it is thus an excellent alternative to the comparatively compli-

cated models for incompressible rubber-like materials modeling.

2.3.2 Considering the Viscoelasticity

Dissipative processes, suchlike current leakage, dielectric relaxation, and viscoelasticity influ-

ence the dynamic performance and electromechanical energy conversion of dielectric elastomer

actuators. The dielectric elastomer is usually subjected to voltages, transients and time-dependent

forces in order to act as an actuator. Therefore, the mechanisms of dissipation in the system will

affect the performance of DEAs. For instance, the actuation of DEAs can be adversely affected

by viscoelasticity and current leakage according to experimental studies, which would limit its ap-

plicable applications (Hong, 2011) (Plante & Dubowsky, 2007) (Molberg et al., 2009) (Zhou et al.,

2015). Thus, in order to accurately model a DEA, viscoelasticity has to be accounted for. Four types
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of variables can describe the state of equilibrium dielectric elastomer actuators, which are charge,

force, voltage and displacement.

In a characteristic time, the dielectric elastomer is relaxed and changes to a new type of defor-

mation when it is subjected to a mechanical force, named as the viscoelastic relaxation time τV . In

a dielectric elastomer, the relaxation to a new state of polarization highly depends on temperature,

and it mainly happens when a dielectric elastomer undergoing voltages over a characteristic time;

this case commonly called as the dielectric relaxation time τd. Subject to a power source, some

current could flow over the dielectric, which is called current leakage. In a nonequilibrium thermo-

dynamics framework, the work resulting from the battery (ΦδQ) and the total work resulting from

the mechanical forces (P1δl1 +P2δl2 +P3δl3) should be greater or equal to the increase of the free

energy F ; denoted as:

δF ≤ P1δl1 + P2δl2 + P3δl3 +ΦδQ (28)

Considering the density of the free energy W as mentioned in (6), the thermodynamic inequality

becomes:

δW ≤ (σ1 + ED)λ2λ3δλ1 + (σ2 + ED)δλ1λ3δλ2 + σ3λ1λ2δλ3 + λ1λ2λ3EδD (29)

The dielectric elastomer is taken to be incompressible, so that l1l2l3 = L1L2L3 and λ1λ2λ3 = 1.

the free-energy density is prescribed as a function:

W (λ1, λ2), D, ξA, ξB (30)

The state of a dielectric elastomer can be characterized by λ1 and λ2, D, and ξA,ξB . These addi-

tional parameters ξA, ξB represent the degrees of freedom related to dissipative processes effects

in the dielectric elastomers, and are known as internal variables. For the model of ideal dielectric

elastomers, the density of the Helmholtz free energy W can be rewritten as:

W (λ1, λ2, D, ξA, ξB), ... = Wstretch(λ1, λ2, ξA, ξB, ...) +
D2

2ε
(31)
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where Wstretch is the Helmholtz free energy associated with the stretching of the elastomer. Com-

bining Eq. (29) and (31) resulting:

(

∂W

∂λ1
− (σ1 +DE)λ2λ3

)

δλ1 +

(

∂W

∂λ2
− (σ2 +DE)λ1λ3

)

δλ2+

(

∂W

∂λ3
− σ3λ1λ2

)

δλ3 +

(

∂W

∂D
− E

)

δD +
∑

γ

∂Wstretch

∂ξγ
δξγ ≤ 0

(32)

Assuming that the system is in electrostatic and mechanical equilibrium, so that in (32) the

variables in front of δl1, δl2,δl3 and δD disappear:

σ1 − σ3 = λ1
∂Wstretch(λ1, λ2, ξA, ξB, ...)

∂λ1
− εE2 (33)

σ2 − σ3 = λ2
∂Wstretch(λ1, λ2, ξA, ξB, ...)

∂λ2
− εE2 (34)

Once the elastomer is assumed to be in electrostatic and mechanical equilibrium, the inequality in

Eq. (32) becomes:
∑

γ

∂Wstretch(λ1, λ2, ξA, ξB, ...)

∂ξγ
δξγ ≤ 0 (35)

Recently, viscoelastic dielectrics have been theoretically investigated by a rheological model

consisting of springs and dashpots with several parallel units as illustrated in figure 3.3. Where the

first unit includes an elastic spring, and the rest of units include elastic springs together with several

viscoelastic units; the elastic springs are in series with viscous dashpots. In order to describe the

elastic springs, the elastic material models can be simply built by connecting the simplest rheolog-

ical elements, springs and dashpot elements, in series or parallel (Kollosche, Kofod, Suo, & Zhu,

2015) (Zhou et al., 2015) (Park & Nguyen, 2013) (Sheng, Chen, Li, & Wang, 2014) (Chiang Foo et

al., 2012).
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2.3.3 Considering the Dynamic Behavior

The development of dielectric elastomer actuators and their industrial applications are intense,

and they grow intensely as electromechanical transducers (R. Pelrine et al., 2000). In the past, the

use of DEAs in areas such as programmable haptic surfaces, energy harvesting, adaptive optics, and

soft robots got attention of many researchers, and a large number of studies have been strongly inter-

ested in the quasi- static behavior of large-deformation that DEAs are known for. Nevertheless, the

effects of inertia and damping has been ignored (Kofod, 2001). However, DEAs have the advantage

of deforming over different frequencies. The dynamic behavior of DEAs is of great significance

when it comes to modeling, and has attracted significant attention in the robotics society. In recent

years, the dynamic responses of DEAs have become an attractive subject, and not many studies have

been done to study it.

In 2008, Dubois et al. demonstrated that a voltage can tune the frequency of a flat membrane of

dielectric electroactive polymer (DEAP). Zhu et al. (2010) (Zhu, Cai, & Suo, 2010) study nonlinear

oscillation of a pre- stretched dielectric elastomer with a spherical membrane, and the results show

that the membrane experiences harmonic resonance, superharmonic resonance as well as subhar-

monic. In a similar way, Li et al (Li, Qu, & Yang, 2012) study a prestretched dielectric elastomer

when subjected to combined loads of voltage cycles and tensile forces. An in-plane one-dimensional

DEA with an analytical dynamic model was then developed and represented. They found that the

natural frequency of DEAs can be tuned by applied static voltages and pre- stretches, and the dy-

namic behavior of the DEA can also be modified. Feng et al (Feng, Yu, & Zhang, 2014) use the

squeeze-film theory to investigate the dynamic performance of a DE microbeam resonator.

According to the Euler-Bernoulli beam model, estimated analytical solutions can be obtained to

analyze the resonator efficiency, such as the frequency shift ratio and the Q-factor. Moreover, it is

also concluded that constructing resonators using DEs can achieve the active frequency tuning. For a

particular amount of ambient pressure, the proposed analytical model is proved to be reasonable and

applicable. Based on the Euler-Lagrange equations, there is another method to evaluate the dynamic

evaluation of a homogeneously deformed DEA, which is presented by Xu et al (Xu, Mueller, Theis,

Klassen, & Gross, 2012). In (Zhang et al., 2015) Chi Zhang et al. initiate the kinetic equation of an
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active hinge configuration actuated by a dielectric elastomer for theoretically investigating the static

and dynamic performance. They found that when subjecting the hinge to a constant voltage, it can

rotate to an equilibrium state.

The state of equilibrium is affected by prestretch ratios and the modes of deformation of the DE.

The importance of investigating the functioning of the hinge configuration is that it can be a guide

to design the configuration in dynamic field, which effectively increases the structure’s application

fields. The reported work in (Zhu et al., 2010) investigated theoretically the nonlinear dynamics

of a membrane of a dielectric elastomer with taking into account the resonant response, where the

membrane is constructed over a rigid ring, filled with a voltage and a pressure into an axisymmetric

form. The dynamic performance of the DEA with the nonlinear electromechanical equation was

studied by Kaal and Herold, and the simulation model developed is validated to effectively repre-

sent the actuator performance and to investigate the control loop, the mechanical structure, and its

interaction with the amplifier (Kaal & Herold, 2011).

Similarly, in (Rosset & Shea, 2013) Rosset et al investigated the dynamic response of the DEAs,

which was further verified in experiments. Their experimental results showed that there is a strong

relationship between the dynamic response of the DEAs and membrane material together with com-

pliant electrodes. To describe the relationship between the stress and strain in DEAs, Sarban et al

established an ordinary differential equation of a fourth-order (Sarban, Lassen, & Willatzen, 2012).

The speed of response in DEAs as well as the response of DEAs during cyclic loading and unload-

ing voltages are important aspects, especially for applications that demand actuators have the ability

to change deformations rapidly and repeatedly.

The reported works in (Sarban et al., 2012) (Gu et al., 2017) (Kaal & Herold, 2011) have at-

tempted to investigate the dynamic response and nonlinear electromechanical phenomena in DEAs

to a better understanding of its dynamic behavior. It can be concluded that understanding dynamic

electromechanical model of a DE actuator is extremely significant for technological development in

soft robotics. In the robotics society, the analysis of the dynamic behaviors of the DEAs has become

the focus of interest. Nonetheless, understanding the physical aspect of the dynamic behaviors of

DEAs is still an open case, and has not been completely proposed.
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2.4 Influence of Temperature on DE

Temperature influences the performance of dielectric elastomers, and the thermal impact on the

DEs behavior is widely reported to be crucially essential. More importantly, the electromechanical

deformation of viscoelastic dielectric elastomers (DEs) is strongly affected by three material param-

eters, which are relaxation time, Young’s modulus, and permittivity, and all the three parameters are

associated with temperature. The high nonlinearity in the actuation is observed for material, such as

the one used in this study the dielectric acrylic elastomer VHB 4910. Silvain-Michel et al (Michel

et al., 2010) investigated the material properties of the 3M acrylic elastomer. They found that the

VHB-based DEs display strong temperature dependency.

According to Sahu and Patra (Sahu et al., 2015) (Patra & Sahu, 2015), there is a strong rela-

tionship between this material’s strain, creep, stress relaxation and loading conditions such as the

holding strain, the holding stress, and the loading rate, even at room temperature. In Jean-Mistral

et al. study (Jean-Mistral, Sylvestre, Basrour, & Chaillout, 2010), the stress due to electrostriction

highly depends on the temperature and deformation dependent dielectric constant, and contribute

to develop the state of equilibrium of the dielectric elastomer. Therefore, the understanding of the

temperature influence on a DE material becomes more intriguing, and a complete description of

such a nonlinear material DEs behavior must take the thermal impact into account.

Many researchers have conducted an investigation into the influence of external factors such as

frequency, type of electrodes, pre-stretch, electrical field on the dielectric constant of VHB 4910

(Sommer-Larsen, Kofod, Shridhar, Benslimane, & Gravesen, 2002) (H. K. Kim et al., 2001). In the

current literature, based on the findings, the ambient temperature highly impacts the mechanical be-

havior of VHB-based DEs and their dielectric properties, especially their strain-stress relationship.

Jean-Mistral et al. indicated that the dielectric constant decreases as the temperature increases at

a low frequency of 0.1Hz. They also found that when the temperature escalates from −50◦C to

75◦C, the elastic modulus of a DE changes by over two orders of magnitude (Jean-Mistral et al.,

2010) (Vu-Cong, Jean-Mistral, & Sylvestre, 2013).

Moreover, the shear modulus and the dielectric constant of DEs have shown a deformation and

temperature-dependence behavior (Jean-Mistral et al., 2010) (Sheng, Chen, Li, & Chang, 2013).
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Meanwhile, the temperature has also an influence on the dynamic performance of a DE and its

viscoelastic relaxation (Sheng et al., 2013). Furthermore, the impact of temperature on the elec-

tromechanical actuation is also observed for pre-stretched DEs with viscoelastic behaviour (L. Liu

et al., 2015). Having an understanding of these thermal effects on the DEs actuators, especially for

applications in environments in which temperature varies, is significantly important.

2.5 Influence of Pre-stretch on DE

Dielectric elastomers have shown their capability of large voltage-induced deformation and gi-

ant electromechanical actuation. However, it is a major challenging to successfully achieve such

large deformation in practice due to electromechanical instability, such as pull-in, snap through,

and electric breakdown. A stabilized large actuation can be obtained by applying a mechanical pre-

stretch. The mechanical pre-stretch is practical to stabilize the dielectric elastomer in several ways,

by enhancing the breakdown strength, by producing electrostriction, by removing the pull-in insta-

bility, and by decreasing the thickness of the membrane which consequently reduces the voltages

required for activation.

Dielectric elastomers (DEs) exhibits electromechanical instability (EMI), which is one of its

commonly known failures. Electromechanical instability (EMI) limits the effective investigation

of the very large deformation that dielectric elastomers are known for, and blocks the maximum

strain in the direction of the thickness (Zhao & Suo, 2008) (Zhao & Suo, 2009). The mechanical

stress occurs because of the squeezing force that comes from the attraction of the dielectric elas-

tomers’ electrodes. When the mechanical stress is more than the compressive stress of the elastomer

membrane, which is unstable due to the dielectric’s elasticity, then the electromechanical instability

(EMI) or pull-in instability happens (Zhao & Wang, 2014).

Snap-through instability can also affect the actuation of DEs. It occurs when the dielectric elas-

tomer get through the electromechanical instability without electrical breakdown, and at a constant

voltage simultaneously experience a coexistence of two states: thick and thinner stable membrane

with a much smaller thickness (Zhao, Hong, & Suo, 2007). As a boundary condition, the mechanical

pre-stretch of the dielectric elastomer was theoretically investigated by Zhao and Suo (Suo, 2010).
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They presented a free energy model by using Neo-Hookean strain energy function, which can pre-

dict the pull-in instability. The deformation and the dielectric constant for an acrylic elastomer VHB

tape, commercially available from 3M company, are closely related (Kofod, 2001). Meaning that in

the actuation of the DEs, electrostriction will be generated, and consequently affect the stabilization

of the DEs (Jiang, Betts, Kennedy, & Jerrams, 2016).

In (Zhao & Wang, 2014), Zhao investigated the pull-in instability using a polyacrylate DE tape

(VHB 4910, 3M) and the results show that if the soft DEs stiffen adequately under deformations,

pull-in instability can be effectively removed. Therefore, pre-stretch is a significantly practical way

to eliminate the electromechanical instability from DEs mostly due to the strain stiffening impact.

For stabilization on dielectric elastomrs, the mechanical pre-stretch not only eliminates the pull-in

instability but also sufficiently affects the voltage-induced strain of all DEs’ films. The experimental

results done by Pelrine et al. (R. Pelrine et al., 2000) show that by employing an equi-biaxial pre-

stretch ratio of 3 on the VHB 4910 film, it can reach a large voltage-induced strain of up to 158%.

At a pre-stretch ratio of 2 for VHB 4910 films, it was reported that a maximum voltage-induced

strain of 200% can be achieved by applying a large electric field (Jiang et al., 2016). Tuning the

stiffness of a DE material can be achieved by applying pre-stretch; therefore, the mechanical pre-

stretch affect the properties of a dielectric elastomer mechanically and dielectrically, resulting in

a total stabilization improvement. Hence, it is necessarily important to establish a suitable model

to characterizing the mechanical performance of DEs, and to study how the mechanical pre-stretch

influences the stabilization of dielectric elastomer actuation.
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Chapter 3

The Dynamic Model of a Dielectric

Elastomer

3.1 The Elastic Energy

The thermodynamic system consists of the dielectric elastomer, the elastic energy, thermal en-

ergy, and the electric energy. In this sense, the free energy W can be prescribed as a function of

the four independent variables λ1,λ2,T ,D (Zhao & Suo, 2007), which describe the state of the elas-

tomer. The membrane of dielectric elastomer (DE) is sandwiched between two compliant electrodes

as illustrated in Figure3.1. Applying a voltage causes the dielectric elastomer to shrink in thickness

and expand in area due to Maxwell stress (L. Liu et al., 2011) (Sheng, Chen, & Li, 2011). In the

undeformed state, dimensions of the membrane are L1, L2 and L3, while the corresponding dimen-

sions of the membrane after deformation are l1, l2 and l3, (See Figure 3.1, 3.2). In a deformed state,

the DE would be subjected to forces P1 and P2, and an electric voltage φ is applied through the

thickness and between the two electrodes with an environment of a fixed temperature T . We define

the stresses by the mechanical forces divided by the area of the elastomer in the undeformed state

σ1 =
P1

L2L3
and σ2 =

P2

L1L3
, the nominal electric field by the voltage in the deformed state divided by

the thickness of the elastomer in the undeformed state E = φ
L3

. Also, the stretches can be addressed

as λ1 = l1
L1

and λ2 = l2
L2

, and the nominal electric displacement as the charge on an electrode in

the deformed state divided by the area of the electrode in the undeformed state D = Q
L1L2

.
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Ws = −
µJlim
2

ln

(

1−
λ−2
1 + λ−2

2 + λ−2
1 λ−2

2 − 3

Jlim

)

(36)

where µ is the small-strain shear modulus, and Jlim is the limiting stretch constant, which can de-

scribe the strain-stiffening effect.

3.2 The Thermal Energy

The thermal part can be described as H(T ) = Q(T ) − TS where Q(T ) is the internal energy.

When the temperature increases, the internal energy is expressed as Q(T ) = ρ0c0[T − T0]. The

laws of thermodynamics imply the following relation between specific heat for constant volume

and entropy (Gu et al., 2017), ρ0 = T ∂S
∂T . It follows, S = ρ0 ln

T
T0
] where the parameters ρ0 and

c0 denote the mass density and the specific heat Capacity (Bilgili et al., 2001), T0 is the reference

temperature, and T refers to an environment of a fixed temperature. Therefore, the expression that

reflects the effect of temperature on the free energy of the thermodynamic system can be obtained

as follows:

H(T ) = ρ0c0

[

−T0 − T ln
T

T0

]

(37)

3.3 The Electric Energy

The expression of electric displacement relates to the electric field is given by D = εE, where

the permittivity of the elastomer is ε = ε0εr. For an ideal dielectric elastomer, the dielectric energy

per unit volume is D2

2ε .

According to Suo (Suo, 2010), by considering the electrostriction of dielectric elastomers, the elec-

trostatic energy takes the form of D2

2ε0εr
λ−2
1 λ−2

2 . Since we use voltage in our experiment, the electric

displacement can be replaced by voltage, and the dielectric energy can be rewritten as follows:

Wele =
ε(λ1, λ2, T )

2

(

Φ

L3

)2

λ2
1λ

2
2 (38)
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3.4 The Dynamic Model of a DE

By combining the three elements, the elastic energy, thermal energy, and the electric energy, we

obtain the free energy model of the thermodynamic system as:

W = Wela +Whe +Wele (39)

W = −Ws(λ1λ2) + ρ0c0

[

−T0 − T ln
T

T0

]

+
ε(λ1, λ2, T )

2

(

Φ

L3

)2

λ2
1λ

2
2 (40)

where the first term of equation (40) is the elastic energy (Suo, 2010) (Bilgili et al., 2001), and the

second term is the purely thermal contribution, where H(T ) indicates the thermal contribution, in

which the thermodynamic system is denoted by the influence of the temperature of the free energy.

The third term is the dielectric energy; where ε0 = 8.85 ∗ 10−12Fm−1 is the dielectric constant of

Vacuum permittivity, εr is the temperature and deformation dependence of dielectric constant of the

polymer, and represents the electric displacement.

By combining Eq. (36), Eq. (37), and Eq. (38), Eq. (40) can be rewritten as:

(41)

W = −
µJlim
2

ln

(

1−
λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3

Jlim

)

+ ρ0c0

[

−T0 − T ln
T

T0

]

+
ε(λ1, λ2, T )

2

(

Φ

L3

)2

λ2
1λ

2
2

Remark1.

Relative permittivity of the VHB elastomer is influenced by the temperature and stretch simultane-

ously. According to the research of Jean-Mistral (Jean-Mistral et al., 2010), the expression of the

temperature and deformation dependence of the permittivity of the DE is ε = ε(T, λ) = aλ2+ b
T +c.

Based on the experimental results of Jean-Mistral, the fitting parameters a = 0.0533Fm−1,

b = 645.4224FKm−1, and c = 3.1834Fm−1 (Jean-Mistral et al., 2010).

The dielectric elastomer is taken to be incompressible, implying that the volume of the material

remains unchanged during deformation; thus:

λ1λ2λ3 = 1 (42)
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In order to describe the viscoelasticity of the DE, the general Kelvin-Voigt model is applied in

this model. It includes five units, which are (α0, α1, α2, α3, α4). The first unit (α0) is a nonlinear

spring describes the equilibrium state. The other units (αi, i = 1, 2, 3, 4) are nonlinear springs with

linear dashpots to detect the nonlinear time-dependent variation of the equilibrium state. Including

several of parallel springs and dashpots adds more accuracy to the model, which can effectively

predict the dynamic behavior of the DE such as the creep. Also, the constitutive model is based on

the basis of nonequilibrium thermodynamics, and it is used to take into account the time-dependent

response of the DEA.

Let ξ(i = 1, 2) be the stretch due to the dashpot, the stretch of spring is determined by the multipli-

cation rule as
λe

i

ξi
.

Figure 3.3: Schematic representation of five units Kelvin-Voigt model describing viscoelasticity.

Together with the rheological model, the elastic energies, thermal energy, and the electric en-

ergy, the detailed expression of the free energy function in this study can be expressed as follows:

W = Wα0

ela +Wα1

ela +Wα2

ela +Wα3

ela +Wα4

ela +Whe +Wele (43)
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where Wα0

ela is the elastic energy for the spring α0, Wα1

ela is the elastic energy for the spring α1, Wα2

ela

is the elastic energy for the spring α2, Wα3

ela is the elastic energy for the spring α3, Wα4

ela is the elastic

energy for the spring α4, Whe is the purely thermal contribution, and Wele is the electric energy.

(44)

W = −
µα0Jα0

lim

2
ln

(

1−
λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3

Jα0

lim

)

−
4

∑

i=1

µαiJαi

lim

2
ln

(

1−
λ2
1ξ

−2
i1 + λ2

2ξ
−2
i2 + λ−2

1 ξ2i1λ
−2
2 ξ2i2 − 3

Jαi

lim

)

+ ρ0c0

[

−T0 − T ln
T

T0

]

+
ε(λ1, λ2, T )

2

(

φ

L3

)2

λ2
1λ

2
2

where Wαi

ela (i = 1, 2, 3, 4) are elastic energy densities of the spring αi; respectively, Wα0

ela is the

elastic energy for the spring α0, µα0 and µαi being the shear modulus of the spring α0 and the

spring αi, respectively; ρ0c0 is the specific heat capacity of the DE; Jα0

lim and Jαi

lim are deformation

limits of the spring α0 and the spring αi, respectively.

Considering the fact that the condition of equilibrium thermodynamics dictates that the free energy

system should be minimized (Jean-Mistral et al., 2010) (Sheng et al., 2013). As a result, the nominal

stress, nominal electric field and specific entropy can be expressed via the partial derivative of free

energy function W as:

(45)

∂W

∂λ1
= −

µα0(λ1 − λ−3
1 λ−2

2 )

1−
λ2

1
+λ2

2
+λ−2

1
λ−2

2
−3

J
α0

lim

−

4
∑

i=1

µαi(λ1ξ
−2
i1 − λ−3

1 λ−2
2 ξ2i1ξ

2
i2)

1−
λ2

1
ξ−2

i1
+λ2

2
ξ−2

i2
+λ−2

1
λ−2

2
ξ2
i1
ξ2
i2
−3

J
αi

lim

+ ε(λ1, λ2, T )

(

Φ

L3

)2

λ1λ
2
2

(46)

∂W

∂λ2
= −

µα0(λ2 − λ−2
1 λ−3

2 )

1−
λ2

1
+λ2

2
+λ−2

1
λ−2

2
−3

J
α0

lim

−

4
∑

i=1

µαi(λ2ξ
−2
i2 − λ−2

1 λ−3
2 ξ2i1ξ

2
i2)

1−
λ2

1
ξ−2

i1
+λ2

2
ξ−2

i2
+λ−2

1
λ−2

2
ξ2
i1
ξ2
i2
−3

J
αi

lim

+ ε(λ1, λ2, T )

(

Φ

L3

)2

λ2
1λ2

The relationship between the charge Q and the voltage Φ is (Li et al., 2012),

Q = ΦC = Φ
ε(λ1, λ2, T )l1l2

l3
= Φ

ε(λ1, λ2, T )λ
2
1λ

2
2

L3/L1L2
(47)

32



where ε(λ1, λ2, T ) is the permittivity of the DE, which is a nonlinear function of λ1, λ2 as well as

the current environment temperature T , and C is the capacitance of the DE.

The dimensions of the DE change by δλ1, δλ2, δλ3 (Gaskell & Laughlin, 2017); as a result, the

tensile forces do work of P1L1δλ1 and P2L2δλ2. In addition, the change of the charge on the

electrode δQ leads the voltage applied to do the work of ΦδQ. Thus, the variation of the charge Q

is:

(48)

δQ =
ε(λ1, λ2, T )λ

2
1λ

2
2

L3/L1L2
δΦ+ 2Φ

ε(λ1, λ2, T )λ1λ
2
2

Ł3/L1L2
δλ1

+ 2Φ
ε(λ1, λ2, T )λ

2
1λ2

L3/L1L2
δλ2 +Φ

λ2
1λ

2
2

L3/L1L2

∂ε(λ1, λ2, T )

∂λ1
δλ1

+Φ
λ2
1λ

2
2

L3/L1L2

∂ε(λ1, λ2, T )

∂λ2
δλ2 +Φ

λ2
1λ

2
2

L3/L1L2

∂ε(λ1, λ2, T )

∂T
δT

The inertia forces in each material element along the x-direction, y-direction and z-direction respec-

tively are ρL2L3x
2(d2λ1/dt

2), ρL1L3y
2(d2λ2/dt

2), ρL1L2z
2(d2λ3/dt

2), where ρ is the density

of the DE. Consequently, the total work done by the inertia forces can be integrated along each

direction as follows (Gaskell & Laughlin, 2017):

ρL2L3x
2d

2λ1

dt2
δλ1

L1
∫

0

x2dx =
L3
1ρL2L3

3

d2λ1

dt2
δλ1 (49)

ρL1L3y
2d

2λ1

dt2
δλ1

L2
∫

0

y2dx =
L3
2ρL1L3

3

d2λ2

dt2
δλ1 (50)

ρL1L2z
2d

2λ1

dt2
δλ1

L3
∫

0

z2dx =
L3
3ρL1L2

3

d2λ3

dt2
δλ1 (51)

Based on the energy balance, the increase of the free energy of the DE membrane equals to the sum

of the works done by the battery ΦδQ, the tensile forces, the inertia forces and the environment

temperature. Doing so gives,

(52)
L1L2L3δW = ΦδQ+ P1L1δλ1 + P2L2δλ2 −

L3
1ρL2L3

3

d2λ1

dt2
δλ1

−
L3
2ρL1L3

3

d2λ2

dt2
δλ1 −

L3
3ρL1L2

3

d2λ3

dt2
δλ1 − ρL1L2L3kδT
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where W is the free energy density of the DE, k is the specific entropy of the DE,

(53)

d2λ3

dt2
= −λ−2

1 λ−1
2

d2λ1

dt2
− λ−1

1 λ−2
2

d2λ2

dt2
+ 2λ−3

1 λ−1
2

(

dλ1

dt

)2

+ 2λ−1
1 λ−3

2

(

dλ2

dt

)2

+ 2λ−2
1 λ−2

2

dλ1

dt

dλ2

dt

δλ3 = −λ−2
1 λ−1

2 δλ1 − λ−1
1 λ−2

2 δλ2 (54)

Submitting Eq. (48) and Eq. (54) to Eq. (52) yields:

(55)

L1L2L3δW = Φ
ε(λ1, λ2, T )λ

2
1λ

2
2

L3/L1L2
δΦ+ 2Φ2 ε(λ1, λ2, T )λ1λ

2
2

Ł3/L1L2
δλ1

+ 2Φ2 ε(λ1, λ2, T )λ
2
1λ2

L3/L1L2
δλ2 +Φ2 λ2

1λ
2
2

L3/L1L2

∂ε(λ1, λ2, T )

∂λ1
δλ1

+Φ2 λ2
1λ

2
2

L3/L1L2

∂ε(λ1, λ2, T )

∂λ2
δλ2 +Φ2 λ2

1λ
2
2

L3/L1L2

∂ε(λ1, λ2, T )

∂T
δT

+ P1L1δλ1 + P2L2δλ2 −
L3
1ρL2L3

3

d2λ1

dt2
δλ1

−
L3
2ρL1L3

3

d2λ2

dt2
δλ1 +

L3
3ρL1L2

3

d2λ3

dt2
(λ−2

1 λ−1
2 δλ1 + λ−1

1 λ−2
2 δλ2)

By solving Eq. (55), we have the following two equations as:

(56)

∂W

∂λ1
= 2ε(λ1, λ2, T )

(

Φ

L3

)2

λ1λ
2
2

+ λ2
1λ

2
2

(

Φ

L3

)2 ∂ε(λ1, λ2, T )

∂λ1

+
P1

L2L3
−

L2
1ρ

3

d2λ1

dt2
+

L2
3ρ

3

d2λ3

dt2
λ−2
1 λ−1

2

(57)

∂W

∂λ2
= 2ε(λ1, λ2, T )

(

Φ

L3

)2

λ2
1λ2

+ λ2
1λ

2
2

(

Φ

L3

)2 ∂ε(λ1, λ2, T )

∂λ2

+
P2

L1L3
−

L2
2ρ

3

d2λ2

dt2
+

L2
3ρ

3

d2λ3

dt2
λ−1
1 λ−2

2
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By substituting Eq. (44), Eq. (45) and (46) into Eq. (56), and (57) we can get:

(58)

L2
1ρ

3

d2λ1

dt2
=

L2
3ρ

3

d2λ3

dt2
λ−2
1 λ−1

2 −
µα0(λ1 − λ−3

1 λ−2
2 )

1−
λ2

1
+λ2

2
+λ−2

1
λ−2

2
−3

J
α0

lim

−
4

∑

i=1

µαi(λ1ξ
−2
i1 − λ−3

1 λ−2
2 ξ2i1ξ

2
i2)

1−
λ2

1
ξ−2

i1
+λ2

2
ξ−2

i2
+λ−2

1
λ−2

2
ξ2
i1
ξ2
i2
−3

J
αi

lim

+
P1

L2L3

+ ε(λ1, λ2, T )

(

Φ

L3

)2

λ1λ
2
2 + λ2

1λ
2
2

(

Φ

L3

)2 ∂ε(λ1, λ2, T )

∂λ1

(59)

L2
2ρ

3

d2λ2

dt2
=

L2
3ρ

3

d2λ3

dt2
λ−1
1 λ−2

2 −
µα0(λ2 − λ−2

1 λ−3
2 )

1−
λ2

1
+λ2

2
+λ−2

1
λ−2

2
−3

J
α0

lim

−
4

∑

i=1

µαi(λ2ξ
−2
i2 − λ−2

1 λ−3
2 ξ2i1ξ

2
i2)

1−
λ2

1
ξ−2

i1
+λ2

2
ξ−2

i2
+λ−2

1
λ−2

2
ξ2
i1
ξ2
i2
−3

J
αi

lim

+
P2

L1L3

+ ε(λ1, λ2, T )

(

Φ

L3

)2

λ2
1λ2 + λ2

1λ
2
2

(

Φ

L3

)2 ∂ε(λ1, λ2, T )

∂λ2

The stress of the spring αi (i = 1, 2, 3, 4) is equal to the stress of the dashpot, which leads to

∂Wαi

ela/∂ξij = ηidξij/dt, where (j = 1, 2).

So the relationship between the stretches λ1, λ2 and the inelastic stretches ξi1, ξi2 is defined as

follows:

dξi1
dt

=
µαi

6ηi

2λ2
1ξ

−1
i1 − λ2

2ξi1ξ
−2
i2 − λ−2

1 λ−2
2 ξ3i1ξ

2
i2

1−
λ2

1
ξ−2

i1
+λ2

2
ξ−2

i2
+λ−2

1
λ−2

2
ξ2
i1
ξ2
i2
−3

J
αi

lim

(60)

dξi2
dt

=
µαi

6ηi

2λ2
2ξ

−1
i2 − λ2

1ξ
−2
i1 ξi2 − λ−2

1 λ−2
2 ξ2i1ξ

3
i2

1−
λ2

1
ξ−2

i1
+λ2

2
ξ−2

i2
+λ−2

1
λ−2

2
ξ2
i1
ξ2
i2
−3

J
αi

lim

(61)

The relaxation time of the DE τ(t) can be expressed as τi(t) = ηi/µ
αi .
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Submitting Eq. (53) into Eq. (58) and Eq. (59) yields:

(62)

L2
1ρ

3

d2λ1

dt2
= −

L2
3ρ

3

d2λ3

dt2
λ−4
1 λ−2
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3ρ

3
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+
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(
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(63)

L2
2ρ

3

d2λ2

dt2
= −

L2
3ρ
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The dynamic model of the DE with the rectangle shape can be obtained by combing eq. (60), (61)

and Eq. (62), (63). In this study, we assume that the membrane of the DE is subjected to a homoge-

neous, equal-biaxial force P1 = P2 = P and equal dimensions L1 = L2 = L. Furthermore, since

we assume that DE is isotropic, the elastomer would be subject to equal biaxial stresses s1 = s2 = s,

so that the two in-plane stretches are equal, which we denote as λ1 = λ2 = λ, ξi1 = ξi2 = ξ, and

consequently we can receive the dynamic model of the DE as:
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According to (Chen, Deng, He, Li, & Li, 2016), ε = (λ, T ) can be expressed as follows:

ε(λ, T ) = ε0 +∆ε (66)

where ε0 =
bε
T0

+ cε is a constant value, which represents the initial permittivity of the DE, and

∆ε = aελ2+bε(T0−T )
(T0T ) represents the change of the permittivity of the DE caused by the deforma-

tion of the DE and the change of the environment temperature; aε, bε, andcε have constant values.

Therefore,
∂ε(λ,T )

∂λ can be written as:

∂ε(λ, T )

∂λ
= 2aελ (67)

By substituting Eq. (66), and Eq. (67) into Eq. (64), we can finally get:
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In Eq. (68) ε0λ3

L2

3

Φ2 can be regarded as the contribution of the Maxwell force, and ∆λ3+2aελ5

L2

3

Φ2 can

be regarded as the contribution of the electrostrictive force. Thus, both the Maxwell force and the

electrostrictive force are considered in the modeling of the DE.
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Chapter 4

Experimental Implementation and

Model Verifications

4.1 Experimental Implementation

4.1.1 Experimental Setup

The experiment was done on a square dielectric elastomer actuator made of VHB 4910 attached

to a rigid frame, and electrodes made with carbon grease.

• First:

The DE membrane is prestretched onto a square rigid frame made of acrylic with dimensions

of 14cm outer length and 11.5cm Inner length. The membrane is stretched two times equally

in all directions. Thus, the dimension ratio of the acrylic frame and the VHB film is (2 : 1).

So in this case, the VHB is cut with a square shape of a length 5.75cm. Then, the whole VHB

membrane is attached to the rigid frame equally.

• Second:

In the middle of the DE membrane, an area of a square shape with 3cm length was painted

with carbon grease on the both sides of the membrane, and the both sides are matched per-

fectly to ensure the electrical conductivity.

38



• Third:

Short pieces of copper tape with around 4” in length and 1/2” width are attached on opposing

sides of the active area, and a line of carbon grease was drawn from one active area to a piece

of copper tape, and another line from the opposing side.

• Finally:

The high voltage amplifier is connected to the pieces of copper tape on the two sides of DE

film.

Figure 4.1: Step 1.

39



Figure 4.2: Step 2.

Figure 4.3: Step 3.
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Figure 4.4: Step 4.

Figure 4.5: The Whole Setup.
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4.1.2 Materials Used

• 3M VHB 4910 FOAM TAPE:

The DE film used in this experiment is 3M VHB 4910 Foam Tape from an American com-

pany called McMaster-Carr. The Material is Adhesive on Both Sides, with 12” Width x 1

Yard Length, .040” Thick. VHB 4910 is a well-known material in the field of soft robotics

and its application due to the features it has such as high energy density, low mass density,

high tensile strength, and good ability to operate at a good range of temperature from −10◦C

to 90◦C.

Figure 4.6: 3M VHB 4910 Foam Tape.
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• HIGH-VOLTAGE POWER AMPLIFIER:

The model used in this experiment is 10/40A − HS from TREK Inc, which is a company

from USA. The device is a DC-stable, high-voltage power amplifier. It can provide a preci-

sion range of voltages from 0 to 10 kV DC, a range of output current from 0 to 40 mA DC

with peak AC, and 120 mA peak AC for 1 ms (not more than 40 mA rms).

Figure 4.7: High-Voltage Power Amplifier.
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• CARBON GREASE: It is made of silicon oil loaded with branched carbon to produce and

improve electrical connections. It is designed to operate in a wide range of temperatures from

−68◦C to 200◦C, and with a volume resistivity of 117cm.

Figure 4.8: Carbon Grease.

Figure 4.9: Carbon Grease.
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• COPPER TAPE:

It is a highly conductive copper electrical tape with 1” width and 18ft. length. It is an adhe-

sive acrylic tape, and the temperature range that can be produced on is from −40◦C to 325◦F.

[H]

Figure 4.10: Copper Tape.

Figure 4.11: Two Pieces of Copper Tape.
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• LASER DISPLACEMENT SENSOR:

It’s model is LK-H152, and it is provided by a Japanese company called Keyence company.

Laser displacement sensors are designed with high speed and accuracy. They can provide

excellent performance in detecting the displacement measurements undergoing high voltage

power.

Figure 4.12: Laser Displacement Sensor.

4.2 Model Identifications

By using MATLAB, simulation studies for the proposed DE model are done with different pat-

terns of voltages, frequencies, and temperatures. The model is then verified by doing an experiment,

and the experimental results are matched with the simulations as will be presented in the next sec-

tion. In order to find the required parameters (µ, Jlim, η) in equations (65) and (68), the Differential

Evolution algorithm is used, and the software used in this study to implement the algorithms is

MATLAB/Simulink.

In recent years, Differential Evolution has become important and necessary metaheuristics in

fields such as engineering, statistics and finance. It was first introduced by Storn and Price in 1995
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The initialization used for the simulations are listed in the table below:

Table 4.1: Model Initialization

.

Model Initialization

Time Ts 20s

Initial State of units (A, B, C, D, E) X0 [2, 2, 2, 2, 2]

Initial Velocity V0 0

DE dimension (L) 0.03m

DE thickness (L3) 0.001m

Density (ρ) 960J/m3

The permittivity of DE (ε0) 8.85418 ∗ 10−12Fm−1

Population Size 50

NO. of initialized Max. and Min. bounds 14

Maximum number of Iterations (G) 100

Mutation Factor (F) 0.6

Crossover Rate (cr) 0.9

As a part of the initialization step, the range of the values (maximum and minimum) of the

required parameters (µ, Jlim, η) should be defined.

The maximum and minimum values of the shear modulus (µ) and the limiting stretch (Jlim) are

classified in the table below:
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Table 4.2: Upper and lower bounds for (µ, Jlim)

.

Parameters (µ, Jlim)

Unit µ Jlim

0 Min = 0.01;Max = 500 Min = 100;Max = 400

1 Min = 0.01;Max = 500 Min = 200;Max = 500

2 Min = 0.01;Max = 500 Min = 300;Max = 600

3 Min = 0.01;Max = 500 Min = 400;Max = 700

4 Min = 0.01;Max = 500 Min = 500;Max = 800

The maximum and minimum values of the parameter (η) is classified in the table below:

Table 4.3: Upper and lower bounds for (η)
.

Parameter (η)

Unit η

1 Min = 1 ∗ 10−5;Max = 20

2 Min = 1 ∗ 10−5;Max = 20

3 Min = 1 ∗ 10−5;Max = 20

4 Min = 1 ∗ 10−5;Max = 20
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The evolution function of the Differential Evolution algorithm used for this model is as follows:

e =
∑end

i=1 | Xi −Xid |

The program flow of the DE algorithm is as follows:

• Step 1:

Randomly initialize the assumed target values of (µ, Jlim, η).

• Step 2:

Calculate the evolution function
(

e =
∑end

i=1 | Xi −Xid |
)

, where Xi refers to the simulation

results on a specific time, and Xid is the experiment results on the corresponding time. By

substituting the simulation values Xi from the experiment values Xid for each assumed value

and doing that repeatedly until the target is accomplished, which means we find the correct

values for the required parameters (µ, Jlim, η).

• Step 3:

If the evolution function (e) is less than (0.01), we obtain the fitting values of (µ, Jlim, η).

Otherwise, the program continues to the next step.

• Step 4:

Update the assumed values of the required parameters (µ, Jlim, η) by mutation, crossover, and

selection operations with the mutation rate (pm) and crossover rate (pc). Then, the program

jumps to Step 2.
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The values of required model parameters (µ, Jlim, η) are listed in the table below:

Table 4.4: Results Verifications
.

Model Parameters

Unit µ Jlim η

0 6.54472 ∗ 104 3.51629 ∗ 102 No dashpot

1 1.23636 ∗ 105 4.00619 ∗ 102 1.10671 ∗ 104

2 3.08529 ∗ 104 4.32838 ∗ 102 1.54164 ∗ 105

3 4.99622 ∗ 105 4.05422 ∗ 102 4.99622

4 3.98081 ∗ 105 7.95496 ∗ 102 2.68992 ∗ 104

4.3 Model Verifications

Based on the real experimental results, the dynamic behavior of the DE was simulated with

MATLAB under a wide range of conditions to see how it behaves. The real parameters found from

the experiment were used in the Differential Evolution algorithm to find the appropriate values of

the required parameters (µ, Jlim, η), as mentioned in section (4.2), and then the the simulations

were done under three different sets of voltages, frequencies, and temperatures.

• First Set:

For the first test, the simulation was applied for four different voltage levels, which are

(5000V, 6000V, 7000V, 8000V ). In this set, the frequency and the temperature remains un-

changed. The results of the first set of simulations can bee seen from figures (4.17 and 4.18)

• Second Set:

For the second set, the simulation was applied for four different frequencies levels, which

are (1/3Hz, 1/6Hz, 1/9Hz, 1/12Hz). In this set, the voltage and the temperature remains

unchanged. The results of the second set of simulations can bee seen from figures (4.19 and

4.20)
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• Third Set:

For the second set, the simulation was applied for four different temperatures levels, which

are (266k, 296k, 306k, 316k). In this set, the voltage and the frequency remains unchanged.

The results of the third set of simulations can bee seen from figures (4.21 and 4.22)

The experiment was conducted under set of voltage, frequency, and temperature. The comparison

between the simulation results and experimental results are closely related and show a good agree-

ment, which can determine the validity of the model. The comparison between the simulation and

experiment are shown in the figures below:

Figure 4.15: Displacement as a function of voltage for the first four cycles.
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Figure 4.16: Displacement as a function of time for the first four cycles.

The experiment and model responses are conducted for the model shown in figure (3.3). It can be

seen from the figures above (4.15) and (4.16) show the effectiveness of the proposed model, where

the blue curves represent the model prediction, while the red circles represent the experimental

results. Figure (4.15) shows the displacement as a function of voltage for the first four cycles while

figure (4.16) represents the displacement as a function of time for the first four cycles.

As it is shown, there is a good agreement between the model prediction and experimental data.

We can see from figure (4.15) that the creep can be predicted by the model, which figure (4.16) can

verify that. The values of the different material parameters are given as shown in table (4.2). The

time to complete the four cycles is 20 seconds.
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The relaxation time is as follows:

• For (α1) the relaxation time is (T1 = 0.08951s).

• For (α2) the relaxation time is (T2 = 4.99616s).

• For (α3) the relaxation time is (T3 = 1 ∗ 10−5s).

• For (α4) the relaxation time is (T4 = 0.06757s).

The experimental test was conducted at room temperature (T = 296K), under frequency
(

1
9Hz

)

,

and the voltage used is (V = 7000V ). From the figures (4.15) and (4.16), we can see that the

frequency does not change during the cycles. Also, It can be seen that there is an error at the

first cycle; however, the predicted root-mean-squared error between the model prediction and the

experimental response is very small.

4.4 Results and Discussion

In this section, the model verifications are explained in details. There are four different voltage

levels tested in this simulation, which are (5000V, 6000V, 7000V, 8000V ). (4.17) illustrates the

displacement versus voltage for different voltages. The blue line indicates the displacement under

the voltage (5000V ); it is clear that the displacement is very small. The orange line indicates how the

displacement changes under the voltage (6000V ) while the yellow line indicates the displacement

change under the voltage (7000V ). The purple line indicates the change of displacement under

the voltage (8000V ). From the figure (4.17), it can be concluded that when the voltage increases

the displacement increases too. Figure (4.18) shows the displacement versus time for different

voltages (5000V, 6000V, 7000V, 8000V ). The time in the simulation was set for 20 seconds. This

figure verifies the previous analysis, which is when the voltage becomes bigger, the amount of

displacement becomes bigger. Also, it can be clearly seen that the frequency remains the same

during the time.

In the model verification, four different frequencies were used, which are (1/3Hz, 1/6Hz, 1/9Hz,

1/12Hz). Figure (4.19) shows the displacement versus voltage for different frequencies. The blue
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line represents the displacement under the frequency (1/3Hz). The orange line represents the dis-

placement change under the frequency (1/6Hz) while the yellow line indicates the displacement

under the frequency (1/9Hz). The purple line represents the amount of change in the displacement

under the frequency (1/12Hz). Figure (4.20) shows the displacement versus time for the same set

of frequencies. During the 20 seconds, the frequency (1/3Hz) remains the same. For the frequency

(1/6Hz), the frequency increases as well as the displacement. The displacement also increases un-

der the frequency (1/9Hz). The last frequency (1/12Hz) show the bigger displacement of all the

rest of frequencies. According to the analysis of the figures (4.19) and (4.20), the displacement gets

biggest when the frequency gets smaller. Moreover, the change of the frequency is very slow when

the frequency is low.

Four different temperatures were applied in the model verification, which are (266k, 296k, 306k,

316k). Figure (4.21) shows the displacement versus voltage for different temperatures. The blue

line refers to the displacement under the temperature (266k). The orange line indicates how the

displacement varies under the temperature (296k). The yellow line represents the displacement

change under the temperature (306k). The purple line indicates the change of displacement under

the temperature (316k). Figure (4.22) shows the displacement versus time for the same values of

temperatures. It can be seen that the frequency of the four cycles does not change during the time for

each temperature. Furthermore, it can be seen that when the temperature goes up, the displacement

goes down; so the displacement is inversely proportional to the temperature.
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Figure 4.17: Displacement versus voltage for different voltages.
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Figure 4.18: Displacement versus time for different voltages.
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Figure 4.19: Displacement versus voltage for different frequencies.
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Figure 4.20: Displacement versus time for different frequencies.

60



Figure 4.21: Displacement versus voltage for different temperatures.
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Figure 4.22: Displacement versus time for different temperatures.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis focuses on building an electromechanical model of the Dielectric Elastomer Actuator

subjected to different voltages, frequencies, and temperatures. Also, the model proposed considers

the influence of the temperature and deformation on the permittivity of the DE. The DE material,

such as the most popular material used for DEs VHB 4910, is commonly known for its strong

nonlinear viscoelasticity, such as hysteresis, creep, and other viscoelastic behaviors. DEAs materials

exhibit this kind of viscoelastic phenomenon. The viscoelastic behaviors of DEAs limit and worsen

the efficiency of the controller performances, which will lead to oscillations or even instabilities.

This thesis proposes an electromechanical coupled model of a rectangle dielectric elastomer actuator

using the material VHB 4910. The electromechanical behaviour and nonlinear viscoelasticity of

DEs such as the creep is considered in the presented model.

The model verification shows the electromechanical response of the DEA subjected to different

patterns of voltages, frequencies, and temperatures. An experimental test with one set of voltage,

frequency, and temperature was conducted to verify the proposed model, and the results agree with

the simulation results to a great extent. In modeling the DEA, it is extremely important to understand

the electromechanical response of DEAs, and take into account its viscoelastic behavior. Thus,

this model can help in understanding the phenomena of DEAs. Furthermore, according to the

experimental test; this model can be effective to predict the electromechanical response of DEAs,
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which will improve the controller performance of such soft materials.

The main contributions are summarized as follows,

In Chapter (3):

• Virtual work principle is used to build the dynamic model of the DE.

• The proposed model is based on the free energy physical-based principle.

• The general Kelvin-Voigt model is applied to describe the viscolasticity of the DE.

• The Maxwell force together with the Electrostrictive force are considered in the presented

model.

• In the proposed model, the permittivity of the DE is considered with the influence of temper-

ature and deformation.

In Chapter (4):

• The Differential Evolution algorithm is used in this thesis to identify the model parameters of

the DE.

• By comparing the experimental results and simulations results, we can show the effective-

ness of the proposed model. Meanwhile, the model of the DE in this study can describe the

dynamic characteristics of the DE very accurately.

• The simulations of the presented DE model subjected to different voltages, frequencies, and

temperatures are provided. An experimental test with one set of voltage, frequency, and

temperature was conducted, and agrees with the simulation results, which means the model

is valid.

5.2 Future Work

The following are suggested future studies for the presented thesis:

• In this thesis, a dielectric elastomer actuator model has been proposed; however, the model

only considers the creep characteristics of the DEA. As a future work, the model will be

64



developed to consider the hysteresis characteristics of the DEA since it experiences high

hysteresis.

• The model presented is subjected to different patterns of voltages, frequencies, and temper-

atures. The simulations provided have been done to validate the model under these different

patterns. However, the experimental test conducted was subjected to only one temperature

296K or 23◦C, which is the room temperature. In future work, an adequate device will be

implemented to measure the temperature accurately and to give the chance for conducting

more experiments under a variety of temperatures.

• In Chapter (3), according to the experimental results of Jean-Mistral, the fitting parameters

a = 0.0533Fm−1, b = 645.4224FKm−1, and c = 3.1834Fm−1 were used in the model.

Based on the experimental results done by Jean-Mistral, a very effective equation was built

to describe the influence of temperature and deformation on the permittivity of the DE. As

a future work, an applicable device to measure the permittivity of the DE will be used to

directly test the value of the DE’s permittivity, which will lead to building a more effective

equation to include more parameters, adding more accuracy, and reaching a better conclusion.

• Even though the model of the DE built in this thesis can effectively describe the dynamic

characteristics of the DE, the presented model is complicated. This means that the model

may not be very applicable in the control of the DE directly. In future work, based on the

proposed model in this study; we plan to build a Phenomenological model of the DE with a

Rectangle Shape to meet the demands of the engineering field.
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