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Abstract

The classical global hedging approach presented in the literature (see Schweizer

[1995]) involves using only the underlying asset to hedge a given contingent

claim. The current thesis extends this approach by allowing for the use of a port-

folio comprised of the underlying as well as other options written on that same

underlying to be used as hedging instruments. Classical quadratic global hedging

results such as the dynamic programming solution approach are adapted to this

framework and are used to solve the global hedging problem presented here. The

performance of this methodology is then investigated and benchmarked against

the classical global hedging, as well as the traditional delta and delta-gamma hedg-

ing approaches. Various numerical analyses of the hedging errors, turnover and

the shapes of quantities involved in dynamic programming solution approach are

performed. It is found that option-based global hedging, where options are used

as hedging instruments, outperforms other methodologies by yielding the lowest

quadratic hedging error as expected. Situations where option-based global hedg-

ing has the most significant advantage over the other hedging methodologies are

identified and discussed.
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Chapter 1

Introduction

Hedging plays a central role within the financial industry. It is used to offset

potential losses of an investment. The most well-known hedging strategy for fi-

nancial derivatives is delta hedging based on the modelling approach of Black

and Scholes [1973]. In that paper, it is shown that under certain assumptions,

one can take away the investment risk by continuously trading the underlying and

the risk-free asset. Due to the unrealistic assumptions of the Black and Scholes

model for the underlying price process and the impossibility of continuous trad-

ing, which leads to market incompleteness this method cannot fully eliminate risk

in practice. Therefore, researchers have proposed hedging frameworks that are

applicable under market incompleteness and more realistic features of the under-

lying asset model.

Among the recently proposed hedging approaches from the literature, one

framework that allows minimizing the final hedging loss rather than locally neu-
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tralizing the delta or gamma of the option is global hedging. The idea of global

hedging was first introduced by Duffie et al. [1991] and Schweizer [1995]. The

objective of global hedging is to build a self-financing hedging portfolio which

minimizes the hedging error at the end of a fixed time horizon. The hedging er-

rors are defined as hedging losses penalized by a loss function. This loss function

determines the risk aversion.

Schweizer [1995] suggests a one-dimensional global hedging framework us-

ing a quadratic loss function. Many papers including Černỳ et al. [2007], Rémillard

and Rubenthaler [2013], Augustyniak et al. [2017] and Godin [2018] have worked

within this framework. Bertsimas et al. [2001] solve the optimal replication prob-

lem of a European derivative security while considering an approximation error,

denoted by ε . The approximation error is the square root of the mean-squared

replication error of the optimal strategy, which is given recursively when work-

ing on quadratic loss functions. The authors interpret it as the degree of market

incompleteness. Černỳ et al. [2007] generalize global quadratic hedging into a

multi-dimensional semi-martingale setting and Rémillard and Rubenthaler [2013]

use this result to find an iterative method to calculate the weights of the assets held

in the self-financing hedging portfolio for each hedging period. Augustyniak et al.

[2017] compare discrete-time global quadratic hedging and discrete-time local

risk-minimization under the general class of GARCH models. They present sim-

ulation results showing that global hedging outperforms local risk-minimization

when hedging options with a very long maturity. In this thesis, it is shown that

this framework can be expressed in the similar way as the framework used in
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Augustyniak et al. [2017]. Godin [2018] obtains a closed-form solution for the

discrete-time global quadratic hedging presented in Schweizer [1995] applied to

vanilla European options when the underlying asset follows a geometric Gaussian

random walk.

Another approach, called local risk-minimization, aims at minimizing the in-

cremental costs of hedging at the next time step. This approach is proposed by

Schweizer [1988] and then continued in Schweizer [1991]. Later on, Coleman

et al. [2007] show that under a Merton jump diffusion model, hedging with stan-

dard options is superior to hedging solely with the underlying in terms of risk

reduction. They also provide numerical results suggesting that risk minimization

using standard options is potentially more effective in terms of both volatility and

jump risk reduction when the volatility model suitably reflects the dynamics of

the data. Coleman et al. [2006] investigate the effectiveness of jointly modelling

the interest rate and the underlying asset in the local risk-minimization setting

when hedging options with long maturity. They use both the underlying and liq-

uid standard options as hedging instruments to compare their performance. Their

numerical experiments show that hedging with standard options leads to a consid-

erably better performance than annual or monthly hedging with the underlying in

terms of hedging error minimization and risk reduction.

In contrast to dynamic hedging, some researchers have proposed using a large

span of derivatives with flexible payoffs as hedging instruments which allows

keeping the initial weights of the hedging instruments fixed until the expiration

of the option being hedged. In particular, Carr and Wu [2013] suggest using a
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continuum of vanilla options to statically hedge another vanilla option. They first

show that when there is only one source of risk and a Markovian underlying, the

target vanilla option payoff with a given time to maturity can be spanned using

shorter maturity options with strikes varying in R+. They also talk about semi-

static hedging which involves the idea of using static hedging with infrequent

adjustments to the hedging portfolio. In this method, they proceed by applying

sequential static hedging using shorter maturity vanilla options to hedge a long

term path dependent option where the path is discretely monitored.

In practice, financial institutions use options in the framework of delta-gamma

hedging as mentioned in Hull [2003] to locally neutralize the convexity of an

option using other options. However, most of the literature on global hedging

focuses on using only the underlying as the hedging instrument to hedge a given

option. In the current thesis, the impact of using standard options combined with

the underlying as hedging instruments on risk reduction using discrete-time global

hedging is investigated. The global hedging method including options and the un-

derlying as hedging instrument is subsequently referred to as option-based global

hedging, whereas the global hedge using only the underlying is referred to as

underlying-based global hedging. The prime contribution of the current thesis is

to study the extent of the outperformance of global hedging using options as hedg-

ing instruments versus delta-gamma hedging, which has never been investigated

in the literature to the best of the author’s knowledge.

In a simulation study, the current work shows that the option-based global

hedging always performs best compared to the benchmark methods in terms of
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mean squared error. Moreover, it is found to yield considerably better results for

higher levels of volatility and drift, as well as when the frequency of hedging

portfolio rebalancing is lower. The investigation of the turnover of the option-

based global hedging shows that having more accuracy does not necessarily lead

to higher transaction costs. It is worth noting that option-based global hedging is

more accurate for common scenarios, but is more prone to far left tail risk (ex-

treme losses) compared to delta-gamma hedging. In the end of the thesis, the

positions obtained from option-based global hedging and delta-gamma hedging

are compared and are shown to have a very similar behaviour up to some correc-

tion term adjusting for the departure of hedging portfolio value from the option

value.

The thesis is structured as follows. Chapter 2 introduces terminology and

presents market dynamics used within the current work. Chapter 3 formulates

the quadratic global hedging problem and presents both the theoretical solution

to the problem and the computational algorithm allowing for its implementation.

Chapter 4 presents simulation experiments that are analyzed to assess the perfor-

mance of the proposed global hedging framework. Chapter 5 summarizes results

obtained.
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Chapter 2

Market Model

In this section the main tools and assumptions needed for the global hedging

framework are introduced. An arbitrage-free financial market with no transac-

tion costs is considered. This market is comprised of one risky asset S, which acts

as the underlying asset, and one risk-free asset B. The underlying is assumed to

pay no dividends to keep this exposition simple. Moreover, it is assumed that at

each time step, there is a set of m options written on the underlying that can be

traded in the market. We assume that the trading occurs in equally spaced discrete

time with a fixed financial horizon T ∈ N, i.e. t = 0, . . . ,T .

In the underlying-based global hedging framework, the hedging instruments

making up the hedging portfolio are the underlying asset and the risk-free asset.

These are traded, in the hedging portfolio, from the beginning until the maturity of

the option. However, in this thesis, shorter maturity options are also used to hedge

an option with a longer maturity. Therefore, if the options held in the hedging
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portfolio are maturing at the end of the hedging period, then they will either be

exercised or left to expire. On the other hand, if they are not maturing at the end of

the period, they are liquidated and replaced with shares of newly available options.

In order to be able to precisely define the framework used, the letters b and e

standing for beginning and end will be used to differentiate between the value of

the options held in the hedging portfolio at the beginning and at the end of each

hedging period. S̄b
t := [Sb

t ,D
1,b
t , . . . ,Dm,b

t ] consists of the value of the underlying

asset, whose time-t value is denoted by St , and the options, whose time t value

is denoted by D1
t , . . . ,D

m
t at the beginning of the hedging period [t, t + 1), and

S̄e
t = [Se

t ,D
1,e
t , . . . ,Dm,e

t ] consists of the price of the underlying and the options

at the end of the hedging period [t, t + 1) right before the next hedging period

starts. As for the underlying Sb
t+1 = Se

t for all t = 0, . . . ,(T −1), but this does not

necessarily hold for the options as the options currently being held in the portfolio

might be replaced with other options.

The risky asset and the options written on the risky asset follow a square inte-

grable process, meaning that each {S̄
i,b
t }T

t=0
1 and {S̄

i,e
t }T

t=0 are square integrable

processes for i = 1, . . . ,(m+1). These processes are defined on the probabil-

ity space (Ω,FT ,P) where Ft := σ(Sb
0,S

b
1, . . . ,S

b
t ) is the sigma-algebra gener-

ated by the underlying up to time t. The ordered set of all the sigma-algebras,

{F0, . . . ,FT}, defines a filtration F on the probability space. The measure P is

the real-world measure.

The risk-free asset follows a deterministic process {Bt}T
t=0 that is assumed

1S̄
i,b
t is the ith member of S̄b

t . A Similar convention holds for S̄e
t .
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to be the following: Bt := ertδ , where r is a constant number representing the

annualized risk-free rate and δ is the time span between time steps. The discount

factor process {βt}T
t=0 is defined as: βt = B−1

t = e−rtδ . In the following section,

the terminology and the assumptions needed for the global hedging framework

are explained.

2.1 Terminology

A few standard definitions in the theory of hedging, as appearing in Schweizer

[1988] and Augustyniak et al. [2017] will now be reviewed. These formalize

the types of strategies which are considered both mathematically tractable and

financially reasonable.

Definition 1. (Trading Strategy) A trading strategy θ is a pair of stochastic pro-

cesses θ = (θ B,θ S̄) such that θt = (θ B
t ,θ

S̄
t ) for t = 0, . . . ,T where θ0 is predefined

as being equal to θ1. Here θ S̄ and θ B are both predictable i.e. θ S̄
t ∈ Ft−1 and

θ B
t ∈Ft−1 for t = 1, . . . ,T . θ S̄

t and θ B
t respectively represent a vector and a scalar

containing the number of shares of the risky assets and the risk-free asset held in

the hedging portfolio over the time period (t −1, t] for t = 1, . . . ,T .

Definition 2. (Admissible Trading Strategy) Let S̄b
t , S̄e

t and βt be defined for

t = 0, . . . ,T as discussed before. Then define Δt = βt S̄
e
t−1 − βt−1S̄b

t−1 for t =

1, . . . ,T . An admissible hedging strategy is a strategy such that
(

θ S̄
t

)T

Δt is

square-integrable for all t = 1, . . . ,T .

8



Definition 3. (Value of Hedging Portfolio) Let V θ
t be the value of the hedging

strategy θ at time t (after re-balancing). We can define V θ
t as below:

V θ
t =

(
θ S̄

t

)�
S̄e

t−1 +θ B
t Bt .

Definition 4. (Self-Financing Hedging Strategy) A hedging strategy is self-financing

if:

V θ
t =

(
θ S̄

t+1

)�
S̄b

t +θ B
t+1Bt =

(
θ S̄

t

)�
S̄e

t−1 +θ B
t Bt for t = 1, . . . ,T,

meaning that the purchase of a new asset should be financed by selling an old one.

Hedging using a self-financing strategy, V θ
t can be written as follows:

V θ
t =V θ

0 +
t

∑
n=1

(
θ S̄

n

)�(
S̄e

n−1 − S̄b
n−1

)
+

t

∑
n=1

(
θ B

n

)�
(Bn −Bn−1) .

Discounting the values of the portfolio at each time, the risk-free asset would

always have a value of 1 and:

βtV
θ

t =
(
θ S̄

t+1

)�
βt S̄

b
t +θ B

t =
(
θ S̄

t

)�
βt S̄

e
t−1 +θ B

t−1 for t = 1, . . . ,T.

Therefore, V θ
t can be written as the following sum:

βtV
θ

t =V θ
0 +

t+1

∑
n=1

(
θ S̄

n

)�(
βnS̄e

n−1 −βn−1S̄b
n−1

)
=V θ

0 +
t+1

∑
n=1

(
θ S̄

n

)�
Δn.

See Lamberton and Lapeyre [2011], Chapter 1 for more details.
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It is well known that any {θ S̄
t }T

t=1 defines a unique self-financing strategy .

This result allows us to reduce the complexity of the numerical study since we

only need to keep track of the shares of the risky assets.

Next, the model specified for the underlying and the pricing scheme for the

options used as hedging instrument are discussed.

2.2 Black-Scholes Model

The model considered for the dynamics of the underlying asset is the Black-

Scholes model where the underlying follows a discrete Geometric Brownian Mo-

tion, meaning:

St = S0e∑
t
i=1 εi (2.1)

with {εt}T
t=1 denoting the log-returns given by:

εt =

(
μ − σ2

2

)
δ +σ

√
δ zt , t ∈ {1, . . . ,T}.

Here, μ is the annualized drift of the underlying, σ is the standard deviation of the

underlying returns and {zt}T
t=1 is a strong Gaussian white noise under the measure

P.

In order to price an option in a discrete-time setting using risk-neutral mea-

sures, one has to choose which risk-neutral measure to work with as the market is

incomplete hence an infinite number of martingale measures exist. In this thesis,

the classic risk-neutral measure obtained by the discrete-time Girsanov theorem is

10



used. This measure will assist us in recovering the traditional Black-Scholes pric-

ing scheme. This risk-neutral measure is defined through the following process:

dQ

dP
=

T

∏
t=1

ξt ,

ξt = exp

(
zPt λ − 1

2
λ 2

)
,

λ =−μ − r

σ
. (2.2)

Defining z
Q
t := zPt −λ , {εt}T

t=1 has the following dynamics:

εt =

(
r− σ2

2

)
δ +σ

√
δ z

Q
t , t ∈ {1, . . . ,T},

where {z
Q
t }T

t=1 is a standard Gaussian white noise under the measure Q. The

proofs for this section can be found in Godin et al. [2018].

Under the risk-neutral measure Q, a European call option with strike price

K and maturity T years is priced according to the following risk-neutral pricing

formula:

C(St , t,T,K) = EQ
[
e−r(T−t)δ (ST −K)+

∣∣∣Ft

]
.

11



An explicit formula for pricing the European call option can be found in Black

and Scholes [1973]. The formula is as follows:

C (St , t,T,K) = N (d1)St −N (d2)Ke−r(T−t)δ (2.3)

d1 =
1

σ
√

T − t

[
ln

(
St

K

)
+

(
r+

σ2

2

)
(T − t)δ

]
d2 = d1 −σ

√
(T − t)δ

where N (·) is the standard normal cumulative distribution function. A European

put option can be priced using the put-call parity as follows:

P(St , t,T,K) = Ke−r(T−t)δ −St +C (St , t,T,K)

= N(−d2)Ke−r(T−t)δ −N (−d1)St .

Definition 5. (Delta of an option) The delta of an option, denoted by Δ, measures

the rate of change of the options value with respect to changes in the price of the

underlying. In the Black-Scholes setting

ΔCall (St , t,T,K) =
∂C

∂St
= N(d1),

and

ΔPut (St , t,T,K) =
∂P

∂St
= 1−N(d1).

(See Hull [2003] for more details.)
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Definition 6. (Gamma of an option) The Gamma of an option, denoted by Γ,

measures the rate of change of the Δ with respect to changes in the price of the

underlying. In the Black-Scholes setting

Γ(St , t,T,K) =
∂Δ

∂St
=

N′(d1)

Sσ
√

T − t
.

(See Hull [2003] for more details.)
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Chapter 3

Quadratic Global Hedging

In this chapter, the quadratic global hedging problem is reviewed.

3.1 Hedging Problem

In this thesis, a market participant who takes a short position on a European op-

tion is considered. We assume that the market participant attempts to reduce risk

associated with the hedging portfolio shortfall at the maturity of the option. A

quadratic penalty function is considered in this work, as this is standard in the

literature.

Quadratic global hedging aims at finding an admissible self-financing strategy

θ and an initial capital V0 that solves:

arg min
V0,θ

E

[
(Φ(ST )−V θ

T )2
]
. (3.1)

14



The function Φ represents the payoff of the option at the terminal time step T . In

this thesis, European vanilla call options are considered and therefore,

Φ(ST ) = max(ST −K,0)

where K is the strike of the European call option being hedged. Conditions for

the existence of the solution and the solution itself will be provided in the next

sections.

In this thesis, a quadratic loss function is chosen. It is important to note that

quadratic loss functions do not differentiate between losses and gains since they

penalize the gains as much as the losses. This is not optimal in the view of a mar-

ket participant. However, using quadratic loss functions provides us with semi

closed-form solutions for the problem which facilitates the computation. There-

fore, quadratic loss functions will be used in this thesis, as is in the standard

literature.

3.2 Solution to the Hedging Problem

The following results are based on those of Rémillard and Rubenthaler [2013].

The details of the modifications are provided in the Appendix A.

Theorem 1. The solution to the global quadratic hedging problem defined in

equation (3.1) is fully determined by V0 = C0 and the following backward recur-

sive scheme scheme, beginning at time t = T , where CT = Φ(S̄T ) and νT+1 = 1:

15



θ S̄
t = αt −βt−1V θ

t−1bt , (3.2)

where At ,μt ,bt ,νt ,αt ,βt , and Ct are defined by

At :=E

[
ΔtΔ

�
t νt+1 | Ft−1

]
,

μt :=E

[
Δtνt+1|Ft−1

]
bt :=A−1

t μt ,

νt :=E

[
(1−b�t Δt)νt+1|Ft−1

]
αt :=A−1

t E[βtCtΔtνt+1|Ft−1]

βt−1Ct−1 :=
1

νt
E[βtCt(1−b�t Δt)νt+1|Ft−1]

(3.3)

and Δt is defined in Definition 2.

Proof. See Appendix A.

The next lemma details the conditions for the existence of the solution pro-

posed in Theorem 1.

Lemma 2. Suppose that E
[
νt+1

∣∣Ft−1]A
�
t − μt μ

�
t is invertible P-a.s., for every

t = 1, . . . ,T . Then νt ∈ (0,1] and At is invertible for all t = 0, . . . ,T . In addition,

{νt+1}�t=0 is a positive submartingale.

Proof. See Rémillard and Rubenthaler [2013].

Rémillard and Rubenthaler [2013] mention that Ct can be interpreted as the

value of the option at time t and that there is no obvious method to validate if the

16



assumptions of Lemma 2 hold. Therefore, in most applications, one has to verify

these conditions, often using brute force calculation.

3.3 Optimal Replication Error

As mentioned in the introduction, Bertsimas et al. [2001] also solved the optimal

quadratic replication problem. Their results will now be presented. Let ε (V0) be

defined as follows:

ε(V0) = min
{θ∗

t }
E

[(
Φ(ST )−V θ

T

)2
]

where {θ ∗
t } is the optimal hedging strategy and E

[(
Φ(ST )−V θ

T

)2
]

is the term

mentioned in equation (3.1). ε (V0) is the smallest mean square error of hedging

if the hedger starts with a portfolio value V0. The latter error measure can be

minimized with respect to the initial wealth V0 to yield the least-cost-optimal-

replication strategy and a corresponding measure of the minimum replication error

ε∗:

ε∗ := min
{V0}

ε (V0) .

Theorem 3. Using the assumptions and the variables defined in Theorem 1, ε∗

can be calculated using a backward recursive scheme initiated at t = T defining

cT = 0 and

ct−1 = E [ct |Ft−1]+E

[
νt+1 (βtCt −αtΔt)

2 |Ft−1

]
−νt(βt−1Ct−1)

2.
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Moreover, ε∗ = e2rδT c0.

Proof. See the Appendix A.

The performance of the global hedging schemes and relevant benchmarks are

examined and compared in the next section.
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Chapter 4

Numerical Experiment

In this section, the effectiveness of the proposed quadratic global hedging with

options, which we call option-based quadratic global hedging, is assessed through

a simulation study. The results are analyzed and then compared to other hedg-

ing frameworks. These hedging frameworks include traditional quadratic global

hedging referred to as underlying-based quadratic global hedging, delta-gamma

hedging (see Raju [2012] for details), and delta hedging (see Hull [2003] for de-

tails).

4.1 Simulation Analysis

In this simulation study, the underlying price process is modelled using a Geomet-

ric Brownian motion, following Section 2.2. A single European call option will

be hedged using the proposed option-based global hedging framework. The hedg-
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ing simulations will explore the impact of the following parameters: moneyness

(m), drift (μ), volatility (σ), years to maturity (τ) and the number of hedging

periods. Throughout this study the initial underlying price is S0 = 100 and the

annual risk-free rate is set to r = 0.05. Firstly, 100,000 Monte-Carlo simulation

paths are generated using equation (2.1). Then, they have been used for a sin-

gle baseline case to study the distribution of the hedging errors in each hedging

framework. For the rest of the simulation study, for each Monte-Carlo simulation

performed, 10,000 paths have been generated to compare the performance of the

hedging frameworks mentioned before.

The solution to the global hedging algorithms is calculated through a dynamic

programming scheme as explained in details in Appendix B. In summary, there

are three phases to this calculation. Firstly, the quantities mentioned in equation

(3.3) are calculated on a grid for the values of the underlying. Secondly, cubic

splines are used to interpolate between the values of the grid, as the values of

the underlying on simulation paths may fall between the discrete values of the

underlying on the grid. Lastly, equation (3.2) is used to calculate θ S̄
t , for t =

1, . . . ,T . The details of the analysis will be examined in the next section.

4.2 Performance Assessment

In this section, descriptive statics of the hedging errors are considered to compare

the performance of all hedging frameworks With a baseline set of parameters. The

baseline case uses all the hedging frameworks to hedge a European call option,
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rebalancing monthly. In the baseline case, the initial underlying price is S0 = 100,

the strike is K = 100, the drift is equal to μ = 0.1, volatility is equal to σ = 0.2,

and the time to maturity of the option being hedged is T = 1 year.

Firstly, the effect of the grid resolution of the underlying on the results ob-

tained by global hedging algorithms is investigated and the results are shown in

Table 4.1. The results in Table 4.1 are calculated using the baseline parameters and

100,000 Monte-Carlo paths. In Table 4.1, Model, Avg, MSE, ĉ∗ and C0 respec-

tively represent the framework used for hedging, the sample average, the sample

mean squared hedging errors, an approximation of the optimal error MSE pro-

vided by the dynamic programming scheme in Theorem 3, and the initial capital

needed for each hedging portfolio. VaR(α) is defined as below:

VaR(α) = inf
{

x ∈ R : FX(x)> α
}

where FX(X) is the empirical cumulative distribution of hedging errors. When

α > 0.5 (α < 0.5), CVaR(α) is the average of hedging errors larger (smaller)

than VaR(α). When referring to the models in tables, Glbl 2A, Glbl 1A, Δ−Γ

and Δ respectively stand for option-based global hedging, underlying-based global

hedging, delta-gamma hedging and delta hedging. Results in Table 4.1 show that

refining the grid for the price of the underlying past a certain point provides di-

minishing returns. It can be seen that for the baseline case, there is no significant

change in hedging accuracy obtained from the Monte-Carlo simulations or the

quantities obtained within the global hedging frameworks when considering mesh
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size1 below M = 1. Therefore, for the rest of the study a grid with mesh size

of 1 will be used as it is more time efficient and essentially just as accurate as

refinements of the grid beyond that point.

Params Model Avg MSE ĉ∗ C0

M = 1 Glbl 2A 0.048 0.476 0.498 10.462

Glbl 1A 0.281 2.993 3.135 10.413

M = 0.5 Glbl 2A 0.051 0.477 0.490 10.465

Glbl 1A 0.284 2.995 3.121 10.417

M = 0.1 Glbl 2A 0.051 0.477 0.489 10.465

Glbl 1A 0.284 2.996 3.120 10.471

Table 4.1: Statistics of hedging errors for the baseline case for varying mesh sizes.

Next, a close look is taken at the distribution of hedging errors in the simula-

tion with baseline parameters under the mesh size M = 1. Figure 4.1 gives the

box plot for the hedging errors corresponding to each of the hedging frameworks

in the baseline case. The statistics and tail measures of the hedging errors ob-

tained from the same simulation for all four hedging algorithms are summarized

in Table 4.2.

Results in Table 4.2 confirm that the MSE obtained by the option-based global

hedging is the smallest as expected. It is readily observed that the mean squared

hedging errors obtained through global hedging algorithms within Monte-Carlo

simulations is indeed close to the approximation to optimal replication error(MSE)

ĉ∗, obtained within the dynamic programming scheme. This confirms that suf-

1The mesh size is the distance between two consecutive points on the grid for the underlying.
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ficient accuracy is achieved by the numerical solution to the hedging problem.

RMSE/C0 is considered as a measure of risk per unit of exposure in the hedging

portfolio. This is particularly useful for situations where different frameworks

yield notably different starting value for the hedging portfolio. In Table 4.2, the

RMSE/C0 is the smallest for option-based global hedging. This shows the latter

hedging framework is less risky for common scenarios compared to the other

hedging frameworks. Based on the values of CVaR in Table 4.2 and the boxplot

in Figure 4.1, it can be concluded that the distribution of hedging errors obtained

through delta-hedging has fatter tails among all the frameworks. Comparing the

distribution of hedging errors obtained from delta-gamma hedging and option-

based global hedging, delta-gamma hedging has a fatter right tail associated with

the profits, while option-based global hedging has fatter left tail associated with

loss. Therefore, in this case, option-based global hedging is more accurate for

common scenarios but delta-gamma hedging is exposed to less risk in the far left

tail.
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Figure 4.1: Boxplot of Hedging Errors for the baseline case.

Stats Glbl 2A Glbl 1A Δ−Γ Δ

Avg 0.049 0.282 0.009 0.291

MSE 0.446 3.002 0.568 3.430

c∗ 0.550 3.465 - -

C0 10.462 10.414 10.451 10.451
RMSE/C0 0.064 0.166 0.072 0.177

VaR(0.99) 1.775 4.366 2.092 4.628

CVaR(0.99) 2.065 4.879 2.894 5.163

VaR(0.01) -1.945 -4.446 -1.896 -4.639

CVaR(0.01) -2.867 -5.73 -2.226 -5.987

VaR(0.999) 2.42 5.525 4.113 5.822

CVaR(0.099) 2.598 5.8 5.076 6.122

VaR(0.001) -4.212 -7.361 -2.639 -7.871

CVaR(0.001) -5.195 -8.656 -2.855 -9.123

Table 4.2: Statistics of hedging errors for the baseline case.
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We now turn to additional Monte-Carlo simulations where some of the pa-

rameter values are altered in comparison to the baseline case. First, the effect of

different levels of drift(μ) on each hedging framework is investigated. For this

investigation all the parameters are kept as constant and the same as the baseline

case, and the drift varies between 0.15, 0.27 and 0.47. The results are presented

in Table 4.3. In Table 4.3, it is seen that as the drift increases, the mean squared

of hedging errors for all the hedging methods decreases. However, the improve-

ment obtained through the global hedging algorithms compared to the traditional

methods is more significant. This happens since as mentioned in equation (3.2),

θ S̄
t = αt −βt−1Vt−1bt = αt −βt−1(Vt−1 −Ct−1)bt −βt−1Ct−1bt . (4.1)

Equation (4.1) shows that the term {βt−1(Vt−1 −Ct−1)bt} acts as a correction

term adjusting for the deviation of the value hedging portfolio from the value of

the option, Ct , obtained in global hedging frameworks. The correction term which

is proportional to bt , grows as the drift(μ) increases and therefore allows for more

extensive corrections of the hedging errors. In this way, global hedging algorithms

have more pronounced corrections that allow for more reduction of previously

incurred hedging errors. The improvement obtained when using options in the

global hedging framework, as compared to the underlying-based global hedging

algorithm, is less significant when the drift increases. This is also due to the

relation between the correction term and the drift, meaning that as the correction

term adjusts the hedging portfolio weight, the use of the second asset provides
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less incremental performance.

Params Model Avg MSE ĉ∗ C0

μ = 0.15 Glbl 2A 0.046 0.379 0.485 10.461

Glbl 1A 0.253 2.566 2.991 10.340

Δ−Γ 0.010 0.519 - 10.451

Δ 0.233 3.185 - 10.451

μ = 0.27 Glbl 2A 0.006 0.206 0.250 10.377

Glbl 1A 0.145 1.407 1.600 10.000

Δ−Γ 0.002 0.393 - 10.451

Δ 0.021 2.608 - 10.451

μ = 0.47 Glbl 2A 0.001 0.032 0.037 10.249

Glbl 1A 0.001 0.261 0.239 8.895

Δ−Γ -0.013 0.252 - 10.451

Δ -0.536 1.987 - 10.451

Table 4.3: Statistics of hedging errors for various μ .

The performance of the different hedging strategies is now investigated for

various values of volatility when the rest of the parameters are fixed to the value

of the baseline case. The findings are summarized by Table 4.4 where the statis-

tics for the hedging errors are calculated using the baseline parameters when the

volatility(σ ) varies between 0.05, 0.1, and 0.3.
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Params Model Avg MSE ĉ∗ C0
RMSE⁄C0

σ = 0.05 Glbl 2A -0.001 0.005 0.005 5.271 0.013

Glbl 1A 0.014 0.034 0.033 5.231 0.035

Δ−Γ 0.000 0.008 - 5.283 0.017

Δ 0.002 0.055 - 5.283 0.044

σ = 0.1 Glbl 2A 0.003 0.100 0.112 7.135 0.044

Glbl 1A 0.125 0.673 0.713 7.105 0.115

Δ−Γ 0.006 0.134 - 7.148 0.051

Δ 0.121 0.816 - 7.148 0.126

σ = 0.3 Glbl 2A 0.003 1.060 1.152 14.196 0.073

Glbl 1A 0.441 7.097 7.511 14.192 0.188

Δ−Γ 0.019 1.344 - 14.231 0.081

Δ 0.459 8.039 - 14.231 0.199

Table 4.4: Statistics of hedging errors for various values of σ .

Table 4.4 shows that when the underlying is more volatile, the option-based

global hedging outperforms delta-gamma hedging more significantly in terms of

mean squared error. Moreover, an increase in the volatility leads to an increase in

RMSE/C0 for all the hedging frameworks. In Table 4.4, it is seen RMSE/C0 for delta-

gamma hedging progressively departs from its corresponding optimal framework

as volatility increases.

Next, a simulation study is performed to investigate the effect of varying time

to maturity of the option being hedged between 1,2 and 5 years. All other quan-

tities are fixed to be the values in the baseline case, including the use of monthly

rebalancing. The results are summarized by the Table 4.5.
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Params Model Avg MSE c∗ C0
RMSE⁄C0

τ = 1 Glbl 2A 0.040 0.430 0.550 10.462 0.063

Glbl 1A 0.282 2.933 3.465 10.414 0.164

Δ−Γ 0.012 0.555 - 10.451 0.071

Δ 0.290 3.361 - 10.451 0.175

τ = 2 Glbl 2A 0.033 0.390 0.455 16.140 0.060

Glbl 1A 0.173 2.666 2.990 16.082 0.101

Δ−Γ 0.008 0.554 - 16.127 0.046

Δ 0.185 3.461 - 16.127 0.115

τ = 5 Glbl 2A 0.037 0.211 0.241 29.17 0.016

Glbl 1A 0.087 1.494 1.665 29.065 0.042

Δ−Γ 0.005 0.443 - 29.139 0.023

Δ 0.085 2.956 - 29.139 0.059

Table 4.5: Statistics of hedging errors for various maturities of the option being hedged.

Firstly, one can observe that the option price and the sample mean squared er-

ror increase substantially as T increases while the rebalancing frequency remains

fixed. Since the price of options with different maturities varies substantially, the

RMSE/C0 obtained by the algorithms will be compared. As seen in Table 4.5,

RMSE/C0 is the smallest for all the algorithms performed on options with longest

maturity. In all the cases, RMSE/C0 is the smallest for option-based global hedg-

ing. However, the biggest improvement obtained in terms of RMSE/C0 is obtained

by underlying-based global hedging. This happens since in the case of global

hedging algorithms, more hedging periods implies having more steps to correct

the departure of the hedging portfolio from the value of the option calculated in
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global hedging frameworks. However, the improvement obtained by option-based

global hedging is not as significant compared to underlying based and delta hedg-

ing. This happens since the use of options has already reduced the mean squared

error by a notable amount even for shorter maturities.

As a next step, Table 4.6, examines the results of the hedging algorithms,

while keeping the number of rebalancing periods constant and allowing the years

to maturity of the option being hedged to vary. The rest of parameters are kept

fixed and equal to the quantities in the baseline case.

Params Model Avg MSE ĉ∗ C0
RMSE⁄C0

τ = 1 Glbl 2A 0.040 0.430 0.498 10.462 0.063

Glbl 1A 0.282 2.933 3.136 10.414 0.164

Δ-Γ 0.012 0.555 - 10.451 0.071

Δ 0.290 3.361 - 10.451 0.175

τ = 2 Glbl 2A 0.095 0.733 0.856 16.176 0.053

Glbl 1A 0.361 4.924 5.224 16.033 0.138

Δ-Γ 0.013 1.055 - 16.127 0.064

Δ 0.381 6.427 - 16.127 0.157

τ = 5 Glbl 2A 0.004 1.064 1.185 29.069 0.035

Glbl 1A 0.394 7.126 7.569 28.832 0.093

Δ-Γ 0.026 2.200 - 29.139 0.051

Δ 0.447 13.854 - 29.139 0.128

Table 4.6: Statistics of hedging errors for fixed number of hedging periods and varying time to

maturity.

Comparing the results in Table 4.5 to those of Table 4.6, it is seen that the
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estimated RMSE/C0 significantly increases as the rebalancing frequency decreases

for delta hedging as well as underlying-based hedging. For example, RMSE/C0 in-

creases by 0.69 i.e from 0.059 to 0.128, for the 5 year option in the case of delta

hedging. This measure also comparatively increases for delta-gamma hedging,

and option-based global hedging. However, between the two, the increase is more

notable for delta-gamma hedging. For example, the increase in RMSE/C0 for the 5

year option for the case of delta-gamma hedging and option-based global hedging

is respectively 0.28 and 0.019 i.e from 0.023 to 0.051 and from 0.016 to 0.035.

This shows that by using a smaller number of hedging periods when perform-

ing the option-based global hedging algorithm, one can achieve the same level of

mean squared of errors obtained by delta-gamma hedging using more hedging pe-

riods. Therefore, two-dimensional global hedging leads to lower transaction costs

than delta-gamma hedging, while still having a comparable accuracy.

Next, the effect of the moneyness of the option being hedged on the perfor-

mance of the hedging algorithms is investigated. Moneyness is i.e. m = S0/K.

Therefore, higher (lower) values of the moneyness for a European call option rep-

resent an in-the-money (out-of-the-money) option. All the parameters are kept

fixed and the performance of the hedging frameworks is summarized for different

levels of moneyness in Table 4.7. For this study, the moneyness varies between

1.1, 1 and 0.9. The rest of the parameters are kept fixed and equal to those in the

baseline case.
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Params Model Avg MSE ĉ∗ C0
RMSE⁄C0

m = 1.1 Glbl 2A 0.025 0.257 0.328 16.066 0.032

Glbl 1A 0.201 1.691 2.040 16.030 0.081

Δ−Γ 0.015 0.333 - 16.057 0.036

Δ 0.207 1.948 - 16.057 0.087

m = 1 Glbl 2A 0.040 0.430 0.550 10.462 0.063

Glbl 1A 0.282 2.933 3.465 10.414 0.164

Δ-Γ 0.012 0.555 - 10.451 0.071

Δ 0.290 3.361 - 10.451 0.175

m = 0.9 Glbl 2A 0.055 0.571 0.723 5.670 0.133

Glbl 1A 0.309 3.717 4.387 5.619 0.343

Δ−Γ 0.002 0.717 - 5.657 0.150

Δ 0.320 4.347 - 5.657 0.362

Table 4.7: Statistics of hedging errors for various levels of moneyness.

It is seen in Table 4.7, that all the models comparatively exhibit the worst

RMSE/C0 when m = 0.9. Delta-gamma hedging departs the most from option-

based global hedging in terms of RMSE/C0 when the moneyness decreases. This

explains increasing values of RMSE/C0 as moneyness decreases, which confirms the

common known fact that hedging out-of-the-money options is harder than hedging

in-the-money options.

In summary, the option-based global hedging algorithms always yield the best

results in terms of mean squared error and RMSE/C0. However, this is more sig-

nificant at higher levels of σ and μ , as well as when the number of rebalancing

periods is lower. It is also important to note that the option-based global hedging
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is more accurate for common scenarios but more prone to risk in the tails.

Next, the turnover for the underlying (Utn) and the options used as hedging

instruments (opttn) is examined. The turnovers are defined as:

Utn =
n

∑
i=2

|θU
i −θU

i−1|,

opttn =
n

∑
i=2

|θ opt
i −0|=

n

∑
i=2

|θ opt
i |.

where θU
i and θ

opt
i respectively represent the number of shares of the underlying

and options used as hedging instruments in the hedging portfolio between time

steps i− 1 and i. In Table 4.8, the turnover of the hedging positions using the

baseline parameters while varying the volatility(σ ) between 0.1, 0.2 and 0.3 have

been calculated. The turnover defined for the options is specific to the case where

the options used as hedging instrument are liquidated at then end of every period,

and then replaced with a new option. As an example, Table 4.8 shows the average

turnover of each hedging algorithm for the underlying and the option if traded by

the hedging framework.

Table 4.8 shows that the turnover for the underlying is smaller for option-

based global hedging and underlying-based global hedging respectively compared

to delta-gamma hedging, and delta hedging. Regarding the option turnover, one

can see that the option-based global hedging leads to slightly smaller transaction

sizes than delta-gamma hedging. Therefore, it would be slightly less exposed to

transaction costs.

In order to guarantee that the conclusion made from comparing the average
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Params Model Underlying

Turnover

Option

Turnover

σ = 0.1 Glbl 2A 1.026 2.45

Glbl 1A 0.759 -

Δ-Γ 1.048 2.754

Δ 0.790 -

σ = 0.2 Glbl 2A 1.105 2.904

Glbl 1A 0.941 -

Δ-Γ 1.125 3.309

Δ 0.954 -

σ = 0.3 Glbl 2A 1.111 3.055

Glbl 1A 0.979 -

Δ-Γ 1.122 3.425

Δ 0.987 -

Table 4.8: The turnover of the hedging frameworks.

turnover of the underlying is accurate, the percentage of the paths for which

each algorithm has higher turnover in underlying is examined in Table 4.9. The

comparison of percentage of the paths that have higher turnover in Table 4.9

is computed using the same parameters as in Table 4.8. For example, when

σ = 0.1, the turnover of the underlying in option-based global hedging is higher

than underlying-based global hedging for 89.16% of the paths. One can observe

that for all values of σ , the underlying turnover for option-based global hedging

and underlying-based global hedging is respectively lower than the underlying

turnover in delta-gamma hedging and delta hedging in all cases. This confirms
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that using the global hedging strategies to obtain more accuracy does not neces-

sarily come at the cost of higher transaction costs.

Params Model Glbl 1A Δ-Γ Δ

σ = 0.1 Glbl 2A 0.8916 0.1816 0.8832

Δ-Γ 0.8937 0.8867

σ = 0.2 Glbl 2A 0.7276 0.2374 0.7249

Δ-Γ 0.7315 0.7296

σ = 0.3 Glbl 2A .6553 0.3266 0.6539

Δ-Γ 0.6560 0.6546

Table 4.9: The comparison of percentage of the paths that have higher underlying asset turnover

for all the framework.

4.3 Analysis of the Strategy

In this section, an analysis of the hedging strategies for delta-gamma hedging and

option-based global hedging is presented for the baseline parameters. The goal

is to provide a deeper insight into why option-based global hedging outperforms

delta-gamma hedging. Also, some of the quantities mentioned in equation (1) are

graphed for the option-based global hedging strategy in order to compare them

with their analogous shape in the case of underlying-based global hedging.

Godin [2018] argues that the quantity Ct found in equation (1) looks like the

Black-Scholes price of the option at time t in the case of underlying-based global

hedging. He also notes that the quantity αt+1 −βt+1bt+1Ct looks like the delta of

the option being hedged at time t.
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Remark 4. The number of shares of the underlying at time t in delta hedging is

equal to the delta of the option being hedged at time t.

Rémillard and Rubenthaler [2013] also obtains the closed-form formulas for

underlying-based global quadratic hedging for quantities bt and νt under the as-

sumption that the underlying model follows a geometric Gaussian random walk

which is compatible with the assumption made in this thesis. Denoting the length

of time of each hedging period by d, the quantities bt and νt are found to be

bt =
1

βt−1St−1

ξ1

ξ2
, (4.2)

νt = γ̄T−t+1, (4.3)

where η1,η2,ξ1,ξ2, and γ̄ are defined by

η1 = E[βedδ eεt ] = βedδ e(μ+0.5σ2),

η2 = E[(βedδ eεt )2] = β 2e2dδ e(2μ+2σ2),

ξ1 = (η1 −1), ξ2 = (η2 −2η1 +1) , γ̄ = 1− ξ 2
1

ξ2
.

However, explicit formulas for the case of option-based quadratic global hedging

are currently unknown. In order to gain a better conceptual understanding of

the behaviour of bt and νt , their quantities are plotted for various values of the

underlying and time steps t, in Figure 4.2.

In the case of underlying-based global hedging, as illustrated by equation (4.3),

νt is seen to only be a function of the time step. Although, the closed form formula
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Figure 4.2: 3D surface of the quantities ν and C of the option-based global hedging.

for option-based global hedging has not been derived, the graph of νt in Figure 4.2

indicates that ν follows the same pattern as it does in the underlying-based case.

This happens since at-the-money options are used as hedging instruments and

therefore gains obtained from these options are homogeneous with respect to the

value of the underlying at each time step. Therefore, νt does not depend on the

value of the underlying in this special case of option-based global hedging. The

quantity Ct , which is interpreted as the price of the option at time t, exhibits the

same shape as that of the call option’s payoff, with a time-dependent vertex2 as in

the case of the underlying-based global hedging.

In the case of underlying-based global hedging, bt is seen to be inversely pro-

portional to St−1 as in equation (4.2). Therefore as St−1 increases, bt decreases.

For option-based global hedging, bt is a two-dimensional process, where its first

component is associated with the number of underlying shares in the hedging

portfolio, whereas the second component is associated to the number of option

positions within the portfolio. In Figure 4.3, We can observe that bt for the under-

2The point at which the slope suddenly changes.
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Figure 4.3: 3D surface of the quantities α and b of the option-based global hedging.

lying component in the case of option-based global hedging behaves the same as

bt for underlying-based global hedging. In Figure 4.4, it can be seen that the over-

all shape of bt for options is totally in the opposite direction of the underlying. The

quantity bt for the options used as hedging instrument is always negative since the

variation possible in the at-the-money call option value is limited from below. As

for the quantity αt , it can be seen in Figure 4.3 and Figure 4.4 that its shape for

the underlying component and the option component also goes in totally different

direction as if option-based hedging hedges itself against its shares of underlying

in its hedging portfolio.

Next, the behaviour of the difference of the shares of hedging instruments ob-

tained by option-based global hedging and delta-gamma hedging is investigated.

Figure 4.5 presents a path-by-path simulation of the evolution of such a differ-

ence. Figure 4.5 shows that as the time steps get closer to maturity, delta-gamma

hedging departs more and more from the optimal solution and that the variance of

the difference in the number of shares held through both strategies increases. This

shows that with more hedging periods, option-based global hedging has more op-
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Figure 4.4: 3D surface of the quantities α and b of the option-based global hedging for options.

portunities to correct the departure of the hedging portfolio value from the option

value Ct , provided in equation (1).

Figure 4.5: 3D surface of the difference in hedging shares for the underlying.

Next, the number of underlying shares and option positions obtained by the

two frameworks are compared for selected individual paths. The path selected

is the one where the largest difference of hedging was observed; this provides

insight on where the variation between these two frameworks comes from. The

number of shares obtained, value of hedging portfolios and the underlying process

are plotted in Figure 4.6. It can be seen that the pattern for the number of shares
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and the evolution of the portfolio is very similar. Indeed at time step 11, there is

a sudden drop in number of options obtained by both algorithms. Moreover, the

distance between the number of share for the option used as hedging instrument

has significantly increased. This happens since there is a huge jump in the value

of the portfolios between time step 10 and 11 due to the departure of the value of

the option-based global hedging portfolio from the value of the option estimated

by the dynamic programming at that time step. This is the correction term which

impacts the global hedging portfolio due to the previously incurred hedging error,

which explains the departure between both methods.
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Figure 4.6: A comparison between the shares of underlying and options used as hedging

instruments obtained by delta-gamma hedging and option-based global hedging while looking at

the value of the portfolio they make.

As mentioned earlier, in the case of underlying-based global hedging, the num-

ber of shares assuming no previous error i.e. θ S
t = αS

t −βt−1Ct−1bS
t , looks like the

delta of the option being hedged at time step t. It is good to note that the number

of shares of the underlying at time t obtained by delta hedging is equal to the delta

of the option being hedged at time t. The number of shares for the underlying

and the options used as hedging instrument obtained from option-based global

hedging are respectively plotted against and compared to the analogous quantities

for delta-gamma hedging in Figure 4.7 and in Figure 4.8 assuming that Vt = Ct
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for all t. It can be seen in Figure 4.7 that the shape of both the number of shares

for the underlying and the options used as hedging instruments behave the same

for both algorithms. We can also see that the number of options positions for

option-based global hedging still exhibits a material departure from the numbers

obtained for delta-gamma hedging. Hence, it is reasonable to assume that option-

based quadratic global hedging is roughly similar to delta-gamma hedging plus a

correction term when the underlying follows the Black-Scholes model.

Figure 4.7: Number of shares of underlying obtained by option-based global hedging and

delta-gamma hedging for various values of underlying, S, and time steps, t.
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Figure 4.8: Number of shares of options used as hedging instruments obtained by option-based

global hedging and delta-gamma hedging for various values of underlying, S, and time steps, t.
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Chapter 5

Conclusion and Future Work

This thesis began by reviewing the classical approach to global quadratic hedging

which involves hedging a European option only with the underlying. The current

work then proposed to use options in combination with the underlying as hedging

instruments, as a mean of decreasing the quadratic hedging errors. Specifically,

at-the-money options with one-period of maturity were considered. This first re-

quired adaptation of the theoretical results in Schweizer [1995] and Rémillard

and Rubenthaler [2013]. The optimal replication error (MSE) calculation is then

adapted using the results in Bertsimas et al. [2001]. Such a quantity was used

to ensure sufficient accuracy was reached within the simulation studies that were

conducted.

An extensive numerical study was performed in Chapter 4. Throughout the

whole study, it was assumed that the underlying follows the Black-Scholes model.

This study showed that the average of quadratic hedging errors obtained by the
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option-based global hedging framework is always lower than for the underlying-

based global hedging, delta hedging, and delta-gamma hedging approaches. How-

ever, option-based global hedging is comparatively riskier in tails compared to

delta-gamma hedging. It was also demonstrated that for higher drift (μ) and

volatility (σ ) levels, option-based global hedging outperforms the other classi-

cal hedging approaches by even large margins. Moreover, it was seen that the

performance advantage of option-based global hedging over alternative methods

becomes even greater as the number of hedging periods decreases. Option-based

global hedging is then analyzed in order to investigate its turnover. The latter is

then compared to turnover of the other frameworks.It is found that obtaining more

accuracy in terms of the quadratic hedging errors does not come at the expense of

a higher turnover.

The shapes of the quantities used to calculate the global hedging portfolio

composition were analyzed. This analysis allowed comparing the quantities ob-

tained from option-based global hedging to the closed form of the quantities ob-

tained for underlying-based global hedging obtained from Godin [2018]. The

figures reflected that the shape of the quantities examined both in the underlying-

based global hedging and the option-based approaches is similar, and that these

quantities behave in an analogous manner.

Lastly, the evolution of the number of shares of the hedging instruments through

time was investigated. It was seen that option-based global hedging seems to be-

have analogously to delta-gamma hedging with an added correction term. It was

argued that at each time step, this correction term adjusts the portfolio weights
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such that the hedging portfolio value will tend to become closer the option value

implied by the option-based global hedging framework in subsequent time steps.

Future research directions of interest which build on the results of this thesis

include considering other models for the underlying, such as jump-diffusion or

GARCH models. Another possible research direction is to use other types of op-

tions with different moneyness levels and times to maturity. This could lead to

further improvements of the performance of option-based global hedging. On the

theoretical side, one can aim at providing closed-form formulas for the quantities

used in the dynamic programming framework for option-based global hedging.

Moreover, the incorporation of transaction costs and stochastic interest models

into the framework could be investigated, leading to even more effective exten-

sions. These are all interesting future research topics to be explored in future

work.
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Appendix A

Proof of Theorem 1

Proof. Rémillard and Rubenthaler [2013] have suggested a recursive framework

for solving the problem stated in equation (3.1). The aforementioned framework

is transformed into the statement in Theorem 1. Here is the solution stated in

Rémillard and Rubenthaler [2013]: Set PT+1 = 1 and νT+1 = 1 and for t = T, ...,1

define:

At = E[ΔtΔ
�
t Pt+1|Ft−1],

μt = E[ΔtPt+1|Ft−1],

bt = A−1
t E[ΔtPt+1|Ft−1],

Pt =
�
∏
j=t

(1−b�j Δ j),

νt = E[Pt |Ft−1]

provided that these expressions exist. If the expressions exist, the solution set

(V0,θ) of the minimization problem (3.1) is as follows for t = T, . . . ,1:
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V0 =
E[βTCP1]

ν1

θ S̄
t = αt −βt−1Vt−1bt

where,

αt := A−1
t E[βTCΔtPt+1|Ft−1].

The transformation of the formulas is as follows:

At = E[ΔtΔ
�
t Pt+1|Ft−1] = E[E[ΔtΔ

�
t Pt+1|Ft ]|Ft−1]

= E[ΔtΔ
�
t E[Pt+1|Ft ]|Ft−1] = E[ΔtΔ

�
t νt+1|Ft−1],

μt = E[Δtνt+1|Ft−1],

bt = A−1
t E[Δtνt+1|Ft−1],

νt = E[Pt |Ft−1] = E[(1−b�t Δt)Pt+1|Ft−1]

= E[E[(1−b�t Δt)Pt+1|Ft ]|Ft−1]

= E[(1−b�t Δt)E[Pt+1|Ft ]|Ft−1] = E[(1−b�t Δt)νt+1|Ft−1].

Rémillard and Rubenthaler [2013] show that:

βt−1Ct−1 =
1

νt
E[βtCt(1−b�t Δt)νt+1|Ft−1].
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and after they prove that αt = A−1
t E[βtCtΔtνt+1|Ft−1] and V0 =C0.
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Appendix B

Sketch of the dynamic programming

algorithm

This section explains the procedure to estimate the variables in equation (3.3)

needed for solving the quadratic global hedging problem under the following as-

sumptions:

(1) The underlying follows the Black-Scholes model meaning St = ft (St−1,zt)

where f (x,y) = xe(r−σ2/2)δ+σ
√

δy as explained in equation (2.3).

(2) The options used as hedging instrument are written on the underlying.

The procedure for approximating variable A is detailed and the approximation

for the rest of the variables can be obtained through a similar procedure. ν̂t+1(·)
stands for the approximated value for νt+1(·) obtained from the same procedure.
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For all t = 1, . . . ,T :

At = E

[
ΔtΔ

�
t νt+1|Ft−1

]
≈ E

[
ΔtΔ

�
t ν̂t+1(S̄t)|Ft−1

]
(2)
= E

[
ΔtΔ

�
t ν̂t+1(St)|St−1

]
(1)
= E

[
ΔtΔ

�
t ν̂t+1(St−1,zt)|St−1

]
= E

[
Ψt(St−1,zt)|St−1

]

where,

Ψt(St−1,zt) =

(
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

βtS
b
t −βt−1Sb

t−1

βtD
1,e
t−1 −βt−1D

1,b
t−1

...

βtD
m,e
t−1 −βt−1D

m,b
t−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[

βtS
b
t −βt−1Sb

t−1, . . . . . . ,βtD
m,e
t−1 −βt−1D

m,b
t−1

])
×

ν̂t+1 (St−1,zt) .

As it is not feasible to approximate At for all the possible values of the un-

derlying S,
(
S1, . . . ,Sn

)
are chosen as the grid values of the underlying values for

which the variables in equation (3.3) are calculated. At each time step t and for
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each Si ∈ (
S1, . . . ,Sn

)
, At(S

i, t) can be estimated as follows:

Ât(S
i, t)≈ E

[
ΔtΔ

�
t ν̂t+1|Ft−1

]
= E

[
Ψt(S

i,zt)|St−1

]
=

∫
Ψt(S

i,z) fzt
(z)dz

Then using the Gaussian-Hermite Quadrature approximation as shown in Steen

et al. [1969], the integral can be approximated as:

≈ 1√
π

m

∑
k=1

w
gh
k Ψ(exp(

√
2σ i

t x
gh
k +μ i

t ))

where x
gh
k and w

gh
k are respectively the Gaussian Hermite nodes and weights asso-

ciated to them, σ i
t = σ

√
δ and μ i

t = ln(St−1)+(μ − σ2

2
)δ . μ and σ are the same

variables as in Section 2.2.
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Appendix C

Proof of Theorem 3

Bertsimas et al. [2001] show that the solution to the optimal quadratic replication

problem is obtained through the following backward recursive scheme:

θ S̄
t = pt −qtVt

paired with

V0 = b0,
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intiated at t = T where bT = Φ(ST ), aT+1 = 1, cT+1 = 0 and

pt =
E [at+1bt+1Δt |Ft−1]

E
[
at+1ΔtΔ

�
t |Ft−1

] ,
qt =

E [at+1Δt |Ft−1]

E
[
at+1ΔtΔ

�
t |Ft−1

] ,
at =E

[
at+1 (1−qtΔt)

2 |Ft−1

]
,

bt−1 =
1

at
E [at+1 (bt − ptΔt)(1−qtΔt) |Ft−1]

ct =E [ct+1|Ft−1]+E

[
at+1

(
bt − ptΔ

�
t Δt

)
|Ft−1

]
−atb

2
t−1

and

ε∗ = c0.

Looking at the variable at we can see that:

at = E

[
�
∏
j=t

(
1−q jΔ j

)2 |Ft−1

]
.

Using the following result from Schweizer et al. [1996]:

E

[
�
∏
j=t

(
1−q jΔ j

)2 |Ft−1

]
= E

[
�
∏
j=t

(
1−q jΔ j

) |Ft−1

]
,

at can be written as follows:

at = E

[
�
∏
j=t

(
1−q jΔ j

) |Ft−1

]
= E [at+1 (1−qtΔt) |Ft−1] .
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and using the following again from Schweizer et al. [1996]:

[
Δt

�
∏
j=1

(
1−q jΔ j

) |Ft−1

]
= 0

for t = 1, . . . ,T ,

bt−1 =
1

at
E [at+1 (bt − ptΔt)(1−qtΔt) |Ft−1]

=
1

at
E [at+1bt (1−qtΔt) |Ft−1]− 1

at
E [at+1 ptΔt (1−qtΔt) |Ft−1]

=
1

at
E [at+1bt (1−qtΔt) |Ft−1]− 1

at
ptE [at+1Δt (1−qtΔt) |Ft−1]

=
1

at
E [at+1bt (1−qtΔt) |Ft−1]− pt

at
E

[
Δt

�
∏
j=t

(
1−q jΔ j

) |Ft−1

]

=
1

at
E [at+1bt (1−qtΔt) |Ft−1]− pt

at

E

[
Δt ∏

�
j=1

(
1−q jΔ j

) |Ft−1

]
∏

t−1
j=1(1−q jΔ j)

=
1

at
E [at+1bt (1−qtΔt) |Ft−1]− pt

at

0

∏
t−1
j=1(1−q jΔ j)

=
1

at
E [at+1bt (1−qtΔt) |Ft−1]

In our framework, we approximate the discounted value of the option at the hedg-

ing period t = T and therefore we have the following setting, initialized by:

bT = βTCT = βT Φ(ST )

aT+1 = νT+1 = 1

cT+1 = 0
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and for t = T, . . . ,1 :

pt = αt

qt = bt

at = νt

bt−1 = βt−1Ct−1

and hence:

ct = E [ct+1|Ft−1]+E

[
at+1 (bt − ptΔt)

2 |Ft−1

]
−atb

2
t−1

= E [ct+1|Ft−1]+E

[
νt+1 (βtCt −αtΔt)

2 |Ft−1

]
−νt(βt−1Ct−1)

2.
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Appendix D

Tables

In Table D.1, the turnover of the hedging positions calculated using 10,000 paths

when hedging a European call option using monthly rebalancing where S0 = 100,

K = 100, σ = 0.2, T = 1 and the μ varies between 0.15, 0.27 and 0.47.

Also, in Table D.2, the turnover of the hedging positions calculated using

10,000 paths when hedging a European call option using monthly rebalancing

where S0 = 100, K = 100, μ = 0.1, σ = 0.2 , and the years to maturity varies

between 1,2 and 5.
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Params Model Underlying

Turnover

Option

Turnover

μ = 0.15 Glbl 2A 1.094 2.760

Glbl 1A 0.883 -

Δ-Γ 1.112 3.151

Δ 0.911 -

μ = 0.27 Glbl 2A 1.016 2.382

Glbl 1A 0.716 -

Δ-Γ 1.024 2.662

Δ 0.788 -

μ = 0.47 Glbl 2A 0.815 1.679

Glbl 1A 0.438 -

Δ-Γ 0.818 1.841

Δ 0.592 -

Table D.1: The turnover of the hedging positions for varying μ .
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Params Model Underlying

Turnover

Option

Turnover

T = 1 Glbl 2A 1.105 2.904

Glbl 1A 0.941 -

Δ-Γ 1.125 3.309

Δ 0.954 -

T = 2 Glbl 2A 1.506 3.812

Glbl 1A 1.303 -

Δ-Γ 1.534 4.351

Δ 1.319 -

T = 5 Glbl 2A 1.896 4.684

Glbl 1A 1.648 -

Δ-Γ 1.934 5.366

Δ 1.669 -

Table D.2: The turnover of the hedging positions for varying time to maturity.
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