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ABSTRACT The success of correlation filters in visual tracking has attracted much attention in computer
vision due to their high efficiency and performance. However, they are not equipped with a mechanism
to cope with challenging situations like scale variations, out-of-view, and camera motion. With the aim of
dealing with such situations, a collaborative scheme of tracking based on the discriminative and generative
models is proposed. Instead of finding all the affine motion parameters of the target by the combined
likelihood of these models, the correlation filters, based on discriminative model, are used to find the position
of the target, whereas 2D robust coding in a bilateral 2DPCA subspace, based on generative model, is used
to find the other affine motion parameters of the target. Further, a 2D robust coding distance is proposed
to differentiate the candidate samples from the subspace and used to compute the observation likelihood
in the generative model. In addition, it is proposed to generate a robust occlusion map from the weights
obtained during the residual minimization and a novel update mechanism of the appearance model for both
the correlation filters and bilateral 2DPCA subspace is proposed. The proposed method is evaluated on the
challenging image sequences available in the OTB-50, VOT2016, and UAV20L benchmark datasets, and its
performance is compared with that of the state-of-the-art tracking algorithms. In contrast to OTB-50 and
VOT2016, the dataset UAV20L contains long duration sequences with additional challenges introduced by
both the camera motion and the view points in three dimensions. Quantitative and qualitative performance
evaluations on three benchmark datasets demonstrate that the proposed tracking algorithm outperforms the
state-of-the-art methods.

INDEX TERMS Visual tracking, weighted least squares, principle component analysis (PCA), bilateral
2DPCA (B2DPCA), occlusion map, correlation filters.

I. INTRODUCTION
In the last two decades, visual object tracking has seen a
flurry of research due to its wide range real-life applica-
tions including vehicle navigation, robotics, human behavior
analysis, action recognition, human computer interaction,
video indexing and retrieval, medical imaging, security and
surveillance [1], [2]. In spite of much progress in the last
two decades, it still remains a challenging problem due
to the complexity in target searching as well as intrin-
sic (e.g., pose changes, shape deformation) and extrinsic
(e.g., varying viewpoints, rotation and scaling due to cam-
era motion, illumination changes, occlusions, cluttered and
moving backgrounds) object appearance variations [3], [4].
These appearance variations should be handled carefully for

a reliable tracking performance for which the appearance
model should adapt to the intrinsic appearance variations and
be robust enough for extrinsic appearance variations.

In the literature, based on the representation scheme used
to model the appearance of the object, the tracking algo-
rithms are categorized into either generative or discrim-
inative methods. Generative methods extract information
only from the target region to model the object appear-
ance and search for a region that is most similar to the
target model. These methods are based on templates [5]–[7],
local patches/fragments [8]–[12], subspace models [13]–[17]
or local subspace models [18], [19]. Since the genera-
tive methods consider information from the target region
alone for object appearance, they are not efficient in
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cluttered environments, but they achieve higher general-
ization with limited data. On the other hand, discrim-
inative methods extract information not only from the
target region, but also from the background to differenti-
ate the target from the background (e.g., using boosting
algorithms [20], semi-supervised learning [21] and support
vector machines [22]). In contrast, the discriminative meth-
ods perform better if the training set is large due to its
capability of differentiating the target from the background.
The advantages of these individual methods are exploited
by collaborating both generative and discriminative methods
for object appearance model in [23]–[26]. Similar to these
tracking algorithms, the proposed method also collaborates
both these methods to improve the tracking performance, but
in a different manner.

Recently, Ma et al. [27] proposed a visual tracking
algorithm using hierarchical convolutional features for target
representation, where both the semantics and fine-grained
details are simultaneously exploited to handle large appear-
ance variations. Similar to [27], Qi et al. [28] proposed a
hedged deep tracking, where the features from different con-
volutional layers are convolved with the corresponding cor-
relation filters to generate response maps that are combined
by adaptive hedging to obtain the tracking result. In [29],
Danelljan et al. proposed efficient continuous convolution
operators for visual tracking, where the multiple continuous
convolution filters are learned jointly using multi-resolution
deep feature maps, and the object is tracked by finding
the maximum of the final continuous confidence output
function. Nam and Han [30] proposed a multi-domain net-
work for visual tracking by learning generic target repre-
sentations from multiple annotated sequences, considering
each sequence as a separate domain, and then the object is
tracked by a binary classifier constructed using shared layers
of pre-trained CNN with a classification layer. The deep
learning-based trackers are required to train using large-scale
data specialized for visual tracking covering a wide range of
variations in the target and background in order to exploit
the power of deep representation. Due to lack of a-priori
information of the object, most of the deep learning-based
trackers [27]–[29] have adapted pre-trained deep networks,
which are learned for classification task, to obtain the deep
features for visual tracking. But the deep feature represen-
tation thus obtained are not effective due to the fundamen-
tal difference between classification and tracking. Moreover,
the feature representations obtained by the pre-trained deep
networks may be less discriminative for tracking specific
objects. The combination of features from different layers
for better representation of the object from that of the back-
ground increases the computational complexity and memory
required to learn and update the object appearance model
for tracking. This is in addition to the existing complexity
and memory required in training to obtain large set of hyper
parameters of the deep networks. The deep learning-based
trackers perform well; however, this superior performance is
achieved at the cost of excessive complexity and memory

requirements. In contrast to deep learning-based methods,
non deep learning-based methods do not rely on any external
source of information or pre-trained model to obtain the
features, but instead use the features obtained from the object
itself to learn and update the object appearance model for
tracking.

The correlation filter-based visual tracking has achieved
great success due to its high efficiency and performance, and
hence, has attracted much attention among research com-
munity. Despite its good performance, there are still some
issues, such as scale variations and out-of-view problems,
that need to be addressed. On the other hand, visual tracking
based on particle filters perform well in occlusions, noisy and
cluttered backgroundwith robust appearancemodel andmore
particle samples. However, it suffers from high computational
cost as the number of particles increases, and tracking failure
when the objects move rapidly with high speed and large
accelerations. Also, the predicted state may not be correct if
the sampled particles do not cover the object states well.

In this paper, a schemewith collaboration of discriminative
and generative models for visual tracking is proposed. The
position of the target is found using correlation filters, which
are based on discriminative model, and other affine motion
parameters of the target using 2D robust coding (2DRC)
in a bilateral 2DPCA (B2DPCA) subspace, which is based
on generative model. This is motivated by the idea that the
discriminative capability of the tracker plays an important
role while finding the location of the target rather than while
finding the other affine motion parameters of the target.
On the other hand, the generative capability of the tracker
plays a prominent role while finding the other affine motion
parameters of the target. In order to find the position of the
target, it is proposed to use two correlation filters each with
its own target appearance and learned coefficients’ model.
Then, in the generative model, 2DRC is introduced into the
B2DPCA reconstruction to develop an iterative reweighted
coding algorithm. The introduction of the robust coding takes
care of non-Gaussian or non-Laplacian noise and avoids the
effect of outliers (e.g. occluded or corrupted pixels) while
computing the projection coefficients of the B2DPCA projec-
tion matrices. Also, a 2DRC distance measure is introduced
to find the similarity between the candidate and the subspace,
and is used to find the observation likelihood. Further, it is
proposed to use the weights computed during the process of
residual minimization to capture the occlusion information,
thereby generating an occlusion map. In addition, a novel
appearance model update mechanism is proposed for both the
correlation filters and the B2DPCA subspace. Experiments
conducted on three popular benchmark datasets and compar-
ison with the state-of-the-art tracking methods bear out the
competency and effectiveness of the proposed method for
visual tracking.

The paper is organized as follows. Section II gives the
background information and reviews the related work avail-
able in the literature. The object representation based on
the B2DPCA projection matrices and 2D robust coding is

VOLUME 6, 2018 73053



B. K. Shreyamsha Kumar et al.: Visual Tracking Based on Correlation Filter and Robust Coding

explained in Section III followed by the proposed tracking
algorithm in Section IV. Experimental results for the three
popular benchmark datasets are discussed in Section V fol-
lowed by concluding remarks in Section VI.

II. BACKGROUND AND RELATED WORK
A. CORRELATION FILTERS
Recently, correlation filters have attained significance in
visual tracking due to its computational efficiency and track-
ing accuracy. In [31], adaptive correlation filters are learned
to model the target appearance by minimizing the output sum
of the squared error. Henriques et al. [32] have exploited
the circulant structure of adjacent image patches in a kernel
space based on intensity features, and HOG features [33] for
visual tracking. Also, Danelljan et al. [34] have exploited
adaptive color attributes in, and in [35] adaptive multi-scale
correlation filters have been used to handle scale variations
of the object. In [36], Zhang et al. have incorporated the
circulant property of target template to improve sparse based
trackers.

The Kernelized Correlation Filters (KCF) [33] employ
numerous negative samples to enhance the discriminative
capability of the tracking-by-detection scheme by exploit-
ing the structure of the circulant matrix for computational
efficiency. In KCF, the object appearance is modeled using
correlation filter w trained on an image patch x of M ×
N pixels, where all the circular shifts of xm,n, (m, n) ∈
{0, 1, ...,M − 1} × {0, 1, ...,N − 1} are generated as train-
ing samples with Gaussian function label ym,n. The optimal
weights w are then obtained as

w = argmin
w

∑
m,n

|〈φ(xm,n),w〉 − ym,n|2 + ξ‖w‖2 (1)

where φ denotes the mapping to a kernel space and ξ is
a regularization parameter. By using the Fourier transform,
the objective function in Eq. (1) is minimized as w =∑

m,n αm,nφ(xm,n), and the coefficient α is given by

α = F−1
(

F(y)
F (〈φ(x), φ(x)〉)+ ξ

)
(2)

where F and F−1 denote, respectively, the Fourier transform
and its inverse. The learned coefficients α̂ and the target
appearance model x̂ along with an image patch z cropped out
in the new frame are used to find the response map as

y = F−1
(
F(α̂)� F

(
〈φ(z), φ(x̂)〉

))
(3)

where� is the Hadamard product. The maximal value of the
response map y gives the position of the target.

B. PCA SUBSPACE
In incremental visual tracking (IVT) [13], the object is repre-
sented by a low dimensional PCA subspace, which is learned
and updated efficiently to adapt the appearance variations
of the object. Further, incremental B2DPCA has been used
for object appearance model in visual tracking based on
maximum likelihood estimation (MLE) [37]. Wang et al. [3]

andWang and Lu [16] have exploited the strength of both the
subspace and sparse representations by introducing l1 regu-
larization into the PCA and B2DPCA reconstruction, respec-
tively. Even though the subspace-based trackers [13], [37]
are robust to in-plane rotation, illumination variation, scale
change and pose change, they are sensitive to partial occlu-
sion due to their underlying assumption that the residual is
Gaussian distributed with small variances. This is not valid as
the residual cannot be modeled with small variances during
partial occlusion. On the other hand, if the residual is assumed
to be Laplacian distributed, then it aims to handle outliers.
To account for non-Gaussian or non-Laplacian residual, 2D
robust coding along with the B2DPCA subspace for object
representation for visual tracking is presented in the next
section.

III. OBJECT REPRESENTATION BASED ON B2DPCA
PROJECTION MATRICES AND 2D ROBUST CODING
In this paper, the strengths of both the B2DPCA subspace
learning and the 2D robust coding are exploited for object
appearance modeling. Weighted least squares are introduced
into B2DPCA reconstruction, thus avoiding the very complex
l1-norm constraint on the projection coefficients. The object
appearance is modeled by two separate B2DPCA projection
matrices as [38]

Y = UZVT (4)

where Y ∈ Rdl×dr = Y − µ represents the centered image
observation matrix, µ ∈ Rdl×dr represents mean matrix,
U ∈ Rdl×kl and V ∈ Rdr×kr represent orthogonal left- and
right-projection matrices, respectively, Z ∈ Rkl×kr denotes
the projection coefficients, dl × dr the size of the obser-
vation matrix, and kl and kr are the number of B2DPCA
left- and right-projection basis vectors, respectively. Given a
set of image observations Y = {Y1, ...,YK }, the projection
matrices U,V are computed using [37], and then, the pro-
jection coefficient is computed as Zi = UTYiV. As the
target templates are coherent in [6] and [7], the coding coef-
ficients should be sparse and hence, there is a requirement
of l1-norm constraint on the coding coefficients. But in the
proposed method, the projection coefficients are not sparse
due to the orthogonality of the B2DPCA projection matrices
and hence, it is not required to impose complex l1-norm
constraint on the projection coefficients. This is in contrast
to [39], where the unnecessary complex l1-norm constraint is
imposed on the projection coefficients in spite of using the
B2DPCA projection matrices.

Expressing the left- and right-projection matrices as
U = [u1;u2; ...;udl ] and V = [v1; v2; ...; vdr ] respec-
tively, where the vectors ui and vj are the i-th and j-th
rows of U and V, respectively, and denoting the coding
residual matrix as E = Y − UZVT , each element of
the residual matrix E is written as eij = yij − uiZvTj .
Assume that the residuals e11, ...., edldr are independently
and identically distributed (i.i.d) according to some proba-
bility density function fθ (eij), where θ denotes the parameter
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set that characterizes the probability distribution. Then,
maximizing the likelihood function Lθ (e11, ...., edldr ) =∏dr

j=1
∏dl

i=1 fθ (eij) is equivalent to minimizing the objec-

tive function: − lnLθ (e11, ...., edldr ) =
∑dr

j=1
∑dl

i=1 ρθ (eij),
where ρθ (eij) = − ln fθ (eij). From this discussion, MLE of Z,
referred to as 2D robust coding (2DRC), can be formulated
as the following minimization problem

min
Z

dr∑
j=1

dl∑
i=1

ρθ (eij) = min
Z

dr∑
j=1

dl∑
i=1

ρθ (yij − uiZvTj ) (5)

Now, MLE of Z can be obtained by solving Eq. (5), but
the problem is as to how to find the distribution ρθ (or fθ ).
Explicitly taking fθ as Gaussian or Laplacian distribution
is simple, but not effective during occlusion. Based on the
assumptions on ρθ specified in [40], the above minimization
problem is transformed into a weighted least squares (WLS)
problem, given by

min
Z
‖A

1
2 � (Y− UZVT )‖2F (6)

where A ∈ Rdl×dr is a weight matrix to model different
types of noise, and its element aij is the weight assigned to
each pixel of the observed image Y depending on the value
of the residual eij, and � is the Hadamard product. Since
the weight matrix A is unknown and needs to be estimated,
WLS in Eq. (6) is a local approximation of RC in Eq. (5).
Therefore, the RC minimization procedure can be converted
to an iterative coding problemwithA being updated using the
residuals in the previous iteration. Since the distribution ρθ is
unknown, it is difficult to find the weight matrix A. Thus,
a logistic function given by

aij =
exp

(
δ[β − e2ij]

)
1+ exp

(
δ[β − e2ij]

) , (7)

where δ controls the decreasing rate from 1 to 0, and β
controls the location of the demarcation point, is chosen as
the weight function, as it satisfies the following properties:
(1) weight assigned to each pixel of the observed image Y
depends on the corresponding value of the residual E and (2)
the weight function has higher capability to classify inliers
and outliers [40]. This weight function is bounded in [0,1]
and adaptively assigns low weights to the outliers (usually
the pixels with large residuals) to reduce their effect on
the estimation of the projection coefficients Z so that the
sensitivity to outliers can be greatly reduced. Even though
the methods in [39], [41], and [42] use robust sparse coding,
they differ from the proposed method in a number of ways.
The methods in [41] and [42] use a target template-based
appearance model, and hence, use l1-norm constraint on the
coding coefficients, and are computationally complex. Also,
they differ in the way the observation model is updated. Even
though the appearance model of [39] is based on B2DPCA,
it imposes l1-norm constraint on the projection coefficients
thereby increasing the computational complexity. Further, its

weight function and the observation model update mecha-
nism are different from that of the proposed method.

The minimization problem in (6) can be solved by estimat-
ing the projection coefficients Zopt and the weight matrix A
iteratively using Eqs. (8) and (7), respectively, and is referred
to as iteratively reweighted coding (IRC) algorithm, which is
summarized in Algorithm 1.

Zopt = UT (A� Y)V (8)

The IRC algorithm is terminated when the following criterion
is satisfied:

‖Ak
− Ak−1

‖F

‖Ak−1‖F
< ψ , (9)

where ψ is a small positive scalar constant.

Algorithm 1 IRC Algorithm for Computing Zopt and A

Input: Centered image observation matrix Y, left- and
right-projection matrices U and V, previous weight
matrix At−1 corresponding to the tracking result at time
t − 1, constants δ and β

1: Initialize k = 0 and Ak
= At−1

2: Compute basis coefficients Zk = UT (Ak
� Y)V

3: Iterate
4: k ← k + 1
5: Compute residual Ek = Y− UZk−1VT

6: Compute the weights using

akij =
exp

(
δ[β − (ekij)

2]
)

1+ exp
(
δ[β − (ekij)

2]
) ; i = 1, 2, .., dl

j = 1, 2, .., dr

7:

8: Recompute Zk = UT (Ak
� Y)V

9: Until convergence or termination
Output: Basis coefficients Zopt , weight matrix A

IV. PROPOSED TRACKING ALGORITHM
Most of the collaborative methods [23]–[26] find all the
affine motion parameters of the target by combining the
individual scores of both the generative and discriminative
models, whereas the proposedmethod uses the discriminative
model to find the target location (xt , yt ) and the particle
filter-based generative model for the remaining affine param-
eters of the target such as scale and aspect ratio. This is
based on the intuition that the discriminative capability of the
tracker plays a prominent role while finding the location of
the target rather than while finding the other affine motion
parameters of the target. On the other hand, the generative
capability of the tracker plays a prominent role while finding
the other affinemotion parameters of the target. The proposed
method of tracking is summarized in Algorithm 2 and its
block diagram is shown FIGURE 1.
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FIGURE 1. Block diagram of the proposed method.

A. TARGET LOCATION ESTIMATION USING CORRELATION
FILTERS
In this paper, it is proposed to use two correlation filters,
KCF-1 and KCF-2, each with its own target appearance x̂k
and learned coefficients model α̂k , where k = 1, 2 indicates
which correlation filter the model belongs to. An image patch
zt of new window size, which is estimated in the previous
frame t − 1, is cropped out from the previous target position
(xt−1, yt−1) in the current frame t and then resized to the
initial window size in order to preserve the consistency of
the object representation in the scale space. This patch along
with their respective models x̂t−1k and α̂t−1k is used to find the
response maps ytk of the two correlation filters using Eq. (3).
The resulting response maps ytk are energy normalized to
scale the peak value according to the total energy in the
respective response map. This helps to normalize low/high
peak values when the entire response map is low/high due to
the image characteristics such as illumination [43]. Finally,
the location of themaximumvalue of the responsemap ỹt that
is computed employing Eq. (10) is used to find the position
of the target (xt , yt ).

ỹt =

{
yt1, if max(yt1) > max(yt2)
yt2, otherwise

(10)

B. TARGET STATE ESTIMATION USING B2DPCA AND 2DRC
In the generative model of the proposed method, the affine
parameters are estimated using a Markov model with hidden
state variables [44]. Let st denote a state variable describing
the affine motion parameters of a target at time t . Given a set

of image observations Yt = {Y1, ...,Yt } at time t , the poste-
rior probability is inferred recursively by the Bayesian theo-
rem:

p(st |Yt ) ∝ p(Yt |st )
∫
p(st |st−1) p(st−1|Yt−1) dst−1 (11)

where p(st |st−1) represents the dynamic model, and p(Yt |st )
represents the observation model. In this work, an affine
transformation with four parameters is adopted to model the
target state st = (θt , st , αt , φt ), where θt , st , αt , φt denote the
rotation angle, scale, aspect ratio and skew direction at time t ,
respectively. The dynamic model describes the target motion
between two consecutive frames and is modeled by Gaussian
distribution assuming the affine parameters to be indepen-
dent, i.e., p(st |st−1) = N (st ; st−1,6), where 6 denotes a
diagonal covariance matrix whose elements are the variances
of the affine parameters. These four affine parameters of the
target state st along with location parameters (xt , yt ) obtained
from KCF for the current frame are used to crop a sub-image
from the current frame and then normalized to the size w×h.
The dynamic model randomly selectsM samples of the state
variable st given the state at t − 1, which are used to generate
the target candidatesYm

t , wherem = 1, 2, ...,M . The optimal
state of the tracked target st is determined by the following
MAP estimation:

ŝt = argmax
smt

p(Ym
t |s

m
t )p(s

m
t |st−1), m = 1, 2, ...,M (12)

where smt denotes the m-th sample of the state st , and Ym
t

represents the image sample observed by smt .
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For some of the vision applications, like visual tracking,
in addition to an accurate estimation of the coefficients,
it also requires a distance metric to find the similarity
between a noisy observation and the dictionary or the sub-
space [13], [45], [46]. In general, the distance metric is
inversely proportional to the maximum joint likelihood with
respect to the coefficient Z [13], [46],

d(Y;U,V,µ) ∝ − lnmax
Z

p(Y,Z) ∝ − lnmax
Z

p(Y|Z) p(Z)

Assuming a uniform prior, the distance metric is written as

d(Y;U,V,µ) ∝ − lnmax
Z

exp
(
−
1
2
‖Y− UZVT

‖
2
F

)
This distance metric is sensitive to occlusion/outliers as it
considers the occluded/outlier pixels for the similarity mea-
surement. In order to make the distance metric robust to
occlusion/outliers, it should give less importance to the recon-
struction error due to the occluded pixels or outliers, and
hence, in this paper, a new 2DRC distance, defined as

d2DRC (Y;U,V,µ) = ‖A
1
2 E‖2F + λ‖1− A

1
2 ‖

2
F (13)

where E = Y − UZVT and λ is a penalty constant, is
proposed.

In visual tracking based on Bayesian inference framework,
the confidence of each particle is given by its observation
likelihood, and in the proposed method, it is defined as

p(Ym
t |s

m
t ) = exp

(
−
1
γ
d2DRC (Ym

t ;U,V,µ)
)

(14)

where γ is a constant. As the observation likelihood
in the proposed method considers the distance metric
d2DRC (Y;U,V,µ), the effect of occlusion/outliers on the
likelihood is reduced thereby making the likelihood robust
to occlusion/outliers.

Finally, the observation models are adapted to handle the
appearance change of the target by incrementally updating
both the KCF models (x̂1, α̂1, x̂2, α̂2), and the B2DPCA sub-
space model (U,V,µ), as discussed in the next subsection.

C. OBSERVATION MODEL UPDATE
The update of the observation model is very much essential to
handle the appearance variations of the object, but the update
with imprecise samples will cause tracking drift due to the
model degradation. Therefore, the imprecise samples should
be avoided during the model update.

1) B2DPCA
The appearance variations of the object are handled by incre-
mentally updating the B2DPCA projection matricesU andV,
and the mean µ. In order to avoid update with imprecise
samples having occlusion/outliers, it is very important to
extract the occlusion/outliers information from the tracking
results. As the occluded/outlier pixels have low weights in
the proposed method, the occlusion/outliers information is
extracted from the weights. This is unlike in SPT [3], where

it is extracted from the coefficients of the trivial templates.
In the proposed method, a pixel is considered either noisy or
occluded, if the corresponding weight aij < 0.5 while gener-
ating a binary occlusion map O. Using the weight matrix A,
the occlusion mapO, with an entry of unity indicating outlier
and an entry of zero indicating inlier pixel, is generated
according to the following rule:

Oij =

{
1, if aij < 0.5
0, otherwise

i = 1, 2, .., dl
j = 1, 2, .., dr

(15)

Usually the occluded region is a large connected area com-
pared to that of random noises or object appearance varia-
tions, which are comparatively very small. Hence, to retain
the large connected area, and to fill the small hole between
the regions and to remove the small regions, morphological
operations and connected component analysis are performed
on the occlusion map. This updated occlusion map Ô is used
to find the occlusion ratio τ , which is the ratio of the number
of ones in Ô to the total number of elements in Ô. Now,
with the help of two thresholds, τ1 and τ2, the occlusion ratio
τ is used to decide whether the tracked sample is utilized
fully, or partially, or not utilized at all, in the observation
model update. In the absence of occlusion (when τ < τ1),
the tracked sample is used directly for the model update (full
update). During a partial occlusion (when τ1 < τ < τ2),
the occluded pixels in the tracked sample are replaced with
the corresponding pixels from the previously updated mean
µ to get an updated sample, which is free from occlusion, and
is used in a model update. Otherwise, the tracked sample is
not used for the model update due to severe occlusion (when
τ > τ2). These updated new observations are accumulated
and used to update the observation model (U,V,µ) by incre-
mental subspace learning [37].

2) CORRELATION FILTERS
In the proposed method, the model of each correlation filter
consists of its own target appearance x̂k and the learned
coefficients model α̂k , where k = 1, 2 indicates which
correlation filter the model belongs to. In order to preserve
the consistency of the object representation in the scale space,
the optimal state ŝt of the tracked target, obtained from
Eq. (12), is used to find the new target and window sizes,
and then an image is cropped out from the current frame
corresponding to the new window size and position (x̂t , ŷt ),
and it is resized to the initial window size to obtain the target
appearance xt . The model of the first correlation filter KCF-1
is updated by the linear interpolation, given by

F(α̂t1) =

{
(1− η)F(α̂t−11 )+ ηF(αt1), if τ ≤ τKCF
F(α̂t−11 ), otherwise

F(x̂t1) =

{
(1− η)F(x̂t−11 )+ ηF(xt ), if τ ≤ τKCF
F(x̂t−11 ), otherwise

(16)

where αt1 is the learned coefficient obtained from Eq. (2)
using the target appearance xt at time t , η is the learning rate

VOLUME 6, 2018 73057



B. K. Shreyamsha Kumar et al.: Visual Tracking Based on Correlation Filter and Robust Coding

FIGURE 2. Some representative cases of Faceocc1 (#92) and Faceocc2
(#260) sequences showing the resized occlusion map O generated from
2DRC in B2DPCA subspace and the modified target appearance xm.

parameter and τKCF is a threshold. Note that both the target
appearance model x̂t1 and the learned coefficients model α̂t1
of KCF-1 are not updated when the occlusion ratio τ > τKCF .
This prevents the model from getting degraded during severe
occlusion, and hence, the tracking drift. Further, with the help
of occlusion map Ô and the previous target appearance model
x̂t−12 of KCF-2, the modified target appearance xtm is obtained
from the target appearance xt as

xtm = O� x̂t−12 + (1−O)� xt (17)

where O is the resized occlusion map obtained from Ô to
match the matrix dimensions of x̂t−12 . Note that the modified
target appearance xtm is free from the occlusion only inside
the target region but not outside, since the occlusion maps O
and Ô are obtained only for the target region in a generative
appearance model of B2DPCA as observed in FIGURE 2.
Now, the models of KCF-2 are updated as

F(α̂t2) = (1− η)F(α̂t−12 )+ ηF(αt2)

F(x̂t2) = (1− η)F(x̂t−12 )+ ηF(xtm) (18)

where αt2 is the learned coefficients obtained from the mod-
ified target appearance xtm using Eq. (2). By employing the
modified target appearance xtm instead of xt in both the
learned coefficients αt2 computation and the target appear-
ance model x̂t2 update, the models of KCF-2 are prevented
from degradation due to occlusion.

V. EXPERIMENTAL RESULTS
The proposed algorithm is implemented in MATLAB and its
performance is evaluated using 50, 60 and 20 challenging
sequences available in the OTB-50 [4], VOT2016 [47] and
UAV20L [48] datasets,1 respectively, by following their eval-
uation protocols. These sequences cover most of the real-life
challenging situations in object tracking, such as pose varia-
tion, complex background, motion blur due to fast movement,
varying lighting conditions, scale change, low contrast and

1There are 18 and 14 sequences with more than 500 frames, and 7 and
2 sequences with more than 1000 frames in OTB-50 and VOT2016 datasets,
respectively. In UAV20L dataset, there are 11 sequences with more than
2500 frames and 4 sequences with more than 4000 frames totaling
58670 frames for 20 sequences.

Algorithm 2 Proposed Tracking Algorithm
Input: Target object is labeled in the first frame, and its

initial state and location are s1 and (x1, y1), respectively.
1: An image patch x1 is cropped out from the target object

location (x1, y1) in the first frame and use it to initialize
both x̂11 and x̂

1
2.

2: Compute the coefficients α11 using Eq. (2), and initialize
α̂
1
1 and α̂

1
2 with α

1
1.

3: for t > 1 do
4: An image patch zt of new window size is cropped

out from the position (xt−1, yt−1) in frame t , and then
resized to match the initial window size.

5: Compute ytk from Eq. (3) using x̂t−1k , α̂t−1k and zt ,
where k = 1, 2.

6: Compute ỹt using Eq. (10) after energy normalization
of the response maps ytk , and the location of its max-
imum value is used to find the position of the target
(xt , yt ).

7: SampleM candidate states {s1t , s
2
t , ..., s

M
t } from st−1.

8: Extract the candidate sample Ym
t from the candidate

state smt and position (xt , yt ), ∀ m = 1, 2, ...,M .
9: For all the candidate samples Ym

t , compute Zmt and
Am
t according to Algorithm 1.

10: Find the optimal state of the tracked target ŝt using
Eqs. (13), (14) and (12).

11: The observation models of KCF (x̂1, α̂1, x̂2, α̂2) and
B2DPCA (U,V,µ) are updated incrementally for
every one and five frames, respectively, as described
in section IV-C.

12: end for
Output: Target state ŝt and position (xt , yt ) at time t

heavy occlusion. In addition to these challenges, UAV20L
dataset captured by the camera mounted on UAV contains
long duration sequences with large variations both in camera
motion and the view points in three dimensions, resulting
in out-of-view or full occlusion, in-plane and out-of-plane
rotations of the object with respect to camera axes.

The parameters of both of the correlation filters are
set the same as in KCF [33]. In the proposed method for
B2DPCA representation, each image observation is resized
to 32×32 pixels, and kl = 4 left- and kr = 4 right-projection
basis vectors are used in all the experiments. Considering
the trade-off between the effectiveness in tracking and the
computational efficiency, 400 particles are sampled using a
particle filter and the parameter 6 of the particle filter is
set to 6 = (0.01, 0.0, 0.005, 0)2. The positive scalar ψ
used to terminate the IRC algorithm in Eq. (9) is set to 0.1.
The penalty constant λ used in the computation of d2DRC in
Eq. (13) is set to 0.1. The B2DPCA observation model is
incrementally updated for every 5 frames, and the occlusion
ratio thresholds τ1 and τ2 used in B2DPCAobservationmodel
update are set to 0.1 and 0.6, respectively. The occlusion ratio
threshold τKCF used in model update of KCF-1 (Eq. (16))
is set to 0.6. In both the correlation filters and B2DPCA,
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the cell size of 4 × 4 pixels with 9 orientations are adopted
for extracting the HOG feature.

The computation of the two parameters β and δ used in the
weight function (Eq. (7)) of the IRC algorithm is explained
below. In order to compute the value of β, which controls the
location of the demarcation point, the coding residuals eij at
all locations are assumed to be in the ‘‘normal range’’ and
follow the Gaussian distribution in the absence of occlusions
in the tracked sample. But during occlusions, they will prob-
ably exceed the ‘‘normal range’’ at the occluded locations.
Hence, by knowing the ‘‘normal range’’ of the residuals eij
in the initial frames (from 2 to F) of the respective sequence,
the value of β is computed as

β =
1

F − 1

F∑
f=2

[
mean(Ef )+ c1 std(Ef )

]2 (19)

where c1 is a constant and F is the frame number at which the
number of the left- and right-projection basis vectors kl and kr
become 4 for the first time. Note that the residual matrix E is
vectorized while computing the mean and standard deviation
in Eq. (19). The first frame is manually labeled, due to which
all the elements of the residual will be zero, and hence,
the first frame is not considered in the computation of β. Now,
the square of the residual eij that is larger than the computed β
will be considered as occluded/outlier and the value of weight
aij will be less than 0.5. Further, the parameter δ, which
controls the rate of the weight between 1 and 0 is computed
using δ = c2/β, where c2 is a constant. The constants c1 and
c2 are set as 2 and 7, respectively, for all the sequences. In the
proposed method, the IRC algorithm starts functioning after
the number of the left- and right-projection basis vectors kl
and kr become 4 for the first time. At the end of frame F ,
the number of the left- and right-projection basis vectors kl
and kr are 4, and then, the parameters β and δ are computed,
which are then used by the IRC algorithm from frame F + 1
onwards for the calculation of weights in Eq. (7).

The performance of the proposed method is evalu-
ated against several recent state-of-the-art algorithms for
comparison. The algorithms considered are visual track-
ing via least soft-threshold squares (LSST) [46], weighted
residual minimization in PCA subspace for visual track-
ing (WRMPCA) [14], visual tracking via bilateral 2DPCA
and robust coding (B2DPCA) [17], visual tracking via dis-
criminative low-rank learning (DLR) [49], visual track-
ing via weighted local cosine similarity (WLCS) [50],
locally weighted inverse sparse tracker (LWIST) [51], robust
object tracking via probability continuous outlier model
(PCOM) [52], visual tracking by learning a deep compact
image representation (DLT) [53], tracking via structured
discriminative dictionary learning (DDL) [54], ACT [34],
KCF [33], visual tracking via locally structured Gaus-
sian process regression (LSGPR) [55] and discriminative
low-rank tracking (DSL) [56]. Note that the codes of all the
trackers are downloaded from the respective authors’ web-
site and evaluated on the OTB-50, VOT2016 and UAV20L

benchmark sequences for a fair comparison with the pro-
posed method except DDL [54], DLR [49], LSGPR [55] and
DSL [56] as the codes of these trackers are not available.
As the OTB-50 results of these trackers are available on the
respective authors’ website, they have been used to compare
with that of the proposed method.

A. PERFORMANCE EVALUATION ON OTB-50
Generally, the performance of a tracker in a given frame is
evaluated using two frame-based metrics, namely, overlap
rate (OR) and center location error (CLE). Based on these
two basic metrics, Wu et al. [4] and Kristan et al. [47] have
derived other performance measures to analyze the perfor-
mance of some existing trackers on their benchmark datasets,
OTB-50 and VOT2016, respectively.

The performance of a tracker for a given sequence is
evaluated using the success rate and the precision score on
OTB-50 dataset [4]. The former is the ratio of successful
frames whose OR is larger than a given threshold value to
the total number of frames in a sequence, whereas the later
is the percentage of frames whose CLE is less than a given
threshold distance of the ground truth. By using these two
metrics with multiple thresholds, two curves are obtained
showing how the threshold value affects the success rate
and the precision score, and are, respectively, called suc-
cess plot and precision plot, for a given sequence. Further,
these success and precision plots are averaged over all the
sequences to obtain the overall success and precision plots,
respectively. In order to quantify the overall performance of a
tracker, the area under curve (AUC) of the success plot or the
precision plot for the threshold of 20 pixels, is employed [4].

The proposed method is evaluated on the OTB-50
benchmark [4] consisting of 50 sequences with fully anno-
tated attributes and compared with the state-of-the-art track-
ing algorithms using one-pass evaluation (OPE). In OPE,
the tracker is initialized with the ground truth object location
in the first frame and then allowed to run through the rest
of the sequence, and the average precision score or success
rate is reported at the end. Table 1 shows the performance
comparison of the proposed method in terms of the precision
scores for the threshold of 20 pixels with that of the other
state-of-the-art trackers for different attributes such as illu-
mination variation (IV), out-of-plane rotation (OPR), scale
variation (SV), occlusion (Occ), deformation (Def), motion
blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-
view (OV), background clutter (BC) and low resolution (LR).
It can be observed from Table 1 that KCF-B2DPCA_HOG
outperforms the other trackers in all the challenging attributes
except LR, where the variant of the proposed method with
gray features (KCF-B2DPCA_Gray) performs the best. The
LR images suffer from lack of details due to which the
efficient representation of target is not possible with HOG
features resulting in inferior performance to that of gray
features. The same reason holds good even for KCF with
HOG and gray features, where KCF_Gray performs bet-
ter than KCF_HOG does for the LR sequences. Further,
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TABLE 1. Precision scores of the proposed method with that of the compared trackers for different attributes of OTB-50. (red, bold), (violet, underline)
and (blue, italic) indicate first, second and third rankings, respectively.

FIGURE 3. Overall performance evaluation of the proposed method on OTB-50 (50 videos with 51 target objects) using
precision and success plots of OPE. The precision score for the threshold of 20 pixels and AUC of the success plot are
used to rank the trackers in the respective plots and their values have been shown along with the tracker name.

KCF-B2DPCA_HOG outperforms KCF_HOG in all the
attributes especially in SV, FM, OV and LR attributes by
10.3%, 10.8%, 12.3% and 30.1%, respectively.

The precision and success plots of OPE for the various
trackers averaging over the OTB-50 benchmark sequences
are shown in FIGURE 3. To rank the tracker, the pre-
cision score for the threshold of 20 pixels is used in
the precision plot, whereas AUC is used in the success
plot, and their values are shown along with the tracker
name. From FIGURE 3, it is observed that the proposed
method (KCF-B2DPCA_HOG) outperforms the state-of-the-
trackers KCF_HOG, DLR, DDL, DSL, ACT, LSGPR, DLT,
KCF_Gray and WRMPCA by 5%, 8.6%, 9.1% 13.7%,
23.5%, 26.3%, 32.3%, 38.7% and 51.4%, respectively,
in terms of the precision score. Similarly in terms of
the success scores, KCF-B2DPCA_HOG outperforms DDL,
DLR, KCF_HOG, DSL, LSGPR, ACT, DLT, KCF_Gray
and WRMPCA, by 4.2%, 5%, 9.3%, 10.2%,21.1%, 26.8%,
28.9%, 38.4% and 47.5%, respectively.

TABLE 2. Performance comparison of the variants of the proposed
method in terms of precision score and AUC on OTB-50.

Variants of the Proposed Method: The performance com-
parison of the variants of the proposed method in terms of the
precision score and AUC on OTB-50 are given in Table 2.
The methods, Proposed_KCF-1 and Proposed_KCF-2, use
only one correlation filter, KCF-1 and KCF-2, respectively,
to find the location of the target. It is observed from this
table that the Proposed_KCF-1 performs better than KCF and
Proposed_KCF-2 do in terms of the precision score andAUC.
Further, the Proposed_KCF-2 performs better than KCF does
in terms of AUC but not in terms of the precision score, where

73060 VOLUME 6, 2018



B. K. Shreyamsha Kumar et al.: Visual Tracking Based on Correlation Filter and Robust Coding

TABLE 3. Accuracy rank and average overlap comparison of the proposed method with that of the compared trackers for different attributes of VOT2016.
(red, bold), (violet, underline) and (blue, italic) indicate first, second and third rankings, respectively.

TABLE 4. Robustness rank and average failures comparison of the proposed method with that of the compared trackers for different attributes of
VOT2016. (red, bold), (violet, underline) and (blue, italic) indicate first, second and third rankings, respectively.

KCF performs better. The combination of the two correlations
filters, KCF-1 and KCF-2, further enhances the performance
of the proposed method both in terms of the precision score
and AUC.

B. PERFORMANCE EVALUATION ON VOT2016
In VOT2016, the performance of a tracker is analyzed using
accuracy (A) and robustness (R). The accuracy is the average
overlap between the predicted and ground truth bounding
boxes during successful tracking periods, whereas the robust-
nessmeasures the number of times the tracker fails to track. In
VOT2016, whenever a tracker predicts a bounding box with
zero overlapwith the ground truth, a failure is detected and the
tracker is re-initialized. The per-frame accuracy is obtained
as an average over these runs. Averaging per-frame accura-
cies gives per-sequence accuracy, whereas the per-sequence
robustness is computed by averaging the failure rates over
different runs [47].

The average accuracy and robustness are used to eval-
uate the performance of the proposed method using the
VOT2016 benchmark [47] consisting of 60 sequences, which
are per-frame annotated with several visual attributes. Fur-
ther, the tracking results are ranked according to the accu-
racy and robustness performance metrics, and are named
as accuracy rank (A-Rank) and robustness rank (R-Rank),
respectively. Table 3 shows the A-Rank and overlap compar-
ison of KCF-B2DPCA with that of the recent state-of-the-art
tracking algorithms averaging over the VOT2016 sequences

having challenging situations such as camera motion,
illumination change, motion change, occlusion and size
change. Likewise, Table 4 shows the R-Rank and failures
comparison of the proposed method (KCF-B2DPCA) aver-
aging over the same challenging sequences. Also, the respec-
tive measures with different averaging methodologies are
shown in the last six columns of these two tables. The
averages of the attributes in an equal or weighted manner
are denoted as mean and weighted mean, and the per-frame
averaging of the super-sequence obtained by concatenat-
ing all of the sequences as pooled. Note that as the track-
ers with statistically equivalent results are merged while
ranking, the different trackers may have the same A-Rank
and R-Rank [47]. The best three results are shown in (red,
bold), (violet, underline) and (blue, italic) fonts for better
comparison of KCF-B2DPCA with the other state-of-the-
art trackers. From Table 3, it is observed that in terms
of the overlap KCF-B2DPCA_HOG ranks first for the
attribute empty, size change and averages of attributes (Mean,
Weighted mean and Pooled), and stands second and third
for the attributes camera motion and motion change, and
for the attributes illumination change and occlusion, respec-
tively. Also, KCF-B2DPCA_Gray ranks third for the attribute
empty. Further, in terms of the overlap, KCF_HOG ranks first
and second for the attributes camera motion and occlusion,
and for the attributes Weighted mean, Pooled, respectively.
On the other hand, DLT ranks second and third for the
attributes empty, size change and Mean, and for the attributes
Weighted mean and Pooled, respectively. Also, ACT ranks
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FIGURE 4. Overall performance evaluation of the proposed method on
UAV20L (20 sequences) using success plots of OPE. AUC of the success
plot are used to rank the trackers and their values have been shown
along with the tracker name.

first, second and third in terms of overlap, for the attributes
motion change and occlusion and for the attribute camera
motion, respectively. In addition, LWIST ranks first and third
for the attributes illumination change and size change and for
the attributeMean, respectively. Also,WLCS andKCF_HOG
ranks second and third for the attributes illumination change
and motion change, respectively. Further, it is observed from
Table 4 that ACT ranks first in all the attributes in terms of
failures except empty in which KCF_Gray ranks first. On the
other hand, KCF_HOG ranks second in the attributes motion
change, size change, Mean, Weighted mean and Pooled.
Further, KCF-B2DPCA_HOG ranks second and third in the
attributes camera motion and empty, and in the attributes
size change, Mean, Weighted mean and Pooled, respectively.
Also, KCF-B2DPCA_Gray and LWIST rank third in the
attributes motion change and occlusion, and in the attribute
illumination change, respectively. It is also noted that even
though the overall performance of ACT is good in terms of
Robustness, it is not so in terms of Accuracy. Similarly, even
though the overall performance of the proposed method is
inferior in terms of Robustness, it outperforms in terms of
Accuracy.

C. PERFORMANCE EVALUATION USING UAV20L
As in OTB-50 evaluation, the success plot is used to
evaluate the performance of the proposed method on
UAV20L. The success plot of OPE for various trackers
averaged over UAV20L benchmark sequences is shown in
FIGURE 4. From FIGURE 4, it is observed that the proposed
KCF-B2DPCA_HOG exhibits the best performance in terms
of AUC followed by DLT, WRMPCA, KCF_Gray, KCF-
B2DPCA_Gray, LSST, KCF_HOG, ACT, PCOM, LWIST
and WLCS in the that order. Even though the success rate of
DLT is more than that of KCF-B2DPCA_HOG for overlap
threshold < 0.2, the latter method performs better than DLT
does, when the overlap threshold approaches unity (this can
be observed in the zoomed window of FIGURE 4). Even
though KCF-B2DPCA_HOG performs better for challenges
that are considerably difficult, it loses the target, as the

other trackers do, for challenges that are extremely diffi-
cult or for sequences where the target undergoes several
changes simultaneously, especially in long duration tracking.
Further from the success plots of OPE in FIGURE 3 and
FIGURE 4, it is observed that the performance of all the
trackers deteriorates for UAV20L dataset compared to that
with OTB-50 dataset due to the additional complexity and
challenges in the sequences of UAV20L that are introduced
by the camera motion and view point variations in three
dimensions alongwith long duration of the sequences. Hence,
tracking on the sequences of UAV20L is a difficult challenge
and there is much room for improvement desired in long
duration tracking.

D. QUALITATIVE EVALUATION
For qualitative evaluation of the trackers, some tracking
results on a subset of the OTB-50 benchmark sequences
are obtained, and shown in FIGURE 5 and FIGURE 6;
FIGURE 5 shows the results for the five sequences, Car4,
CarScale, Fleetface, Freeman3 and Freeman4, whereas
FIGURE 6 the results for the sequences Jogging-1, Lemming,
Singer1, Suv and Trellis. The tracking results of the various
trackers on the six exemplar image frames are shown for
each selected sequence. The six frames are selected at regular
intervals without any bias. For each of the sequences in
FIGURE 5 and FIGURE 6, the first row shows the tracking
results of the proposed methods, KCF-B2DPCA_HOG and
KCF-B2DPCA_Gray, with that of KCF_HOG, KCF_Gray
and ACT, and the second row shows the results of the remain-
ing trackers, LSGPR, DSL, DLT, DDL, WRMPCA and
DLR. The proposed KCF-B2DPCA_HOG tracker success-
fully tracks the target in all the frames of the Car4, CarScale,
Fleetface, Freeman3, Freeman4, Jogging-1, Singer1, Suv and
Trellis sequences, which contain most of the real-time chal-
lenges such as pose change, partial occlusion, illumination
change, scale change and out-of-plane rotation. This indi-
cates the strong capabilities of the proposed method in han-
dling these challenges. Even though KCF-B2DPCA_HOG
performs better for the challenges that are considerably dif-
ficult, it loses the target for challenges that are extremely
difficult or for the sequences where the target undergoes
several changes simultaneously. This can be observed in the
last image of the Lemming sequence, one of the longest
and most challenging sequences, where the target under-
goes severe occlusion, scale change, out-of-plane rotation,
motion blur, fast motion either individually or simultane-
ously. In addition to KCF-B2DPCA_HOG, other methods
have also failed in the Lemming sequence but at differ-
ent frames of the sequence. For example, in frame #0666,
all the trackers, DDL, DLR, ACT, KCF_HOG, KCF_Gray,
LSGPR, DSL, WRMPCA and KCF-B2DPCA_Gray, have
failed except KCF-B2DPCA_HOG and DLT, whereas in
#0888, all the trackers have started to track the target again
except DDL, LSGPR, DLT and WRMPCA. So, none of
the trackers has tracked the target through the entire Lem-
ming sequence successfully. Even though some trackers fail
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FIGURE 5. Examples of tracking results of the compared methods on five OTB-50 sequences, (a) Car4, (b) CarScale,
(c) Fleetface, (d) Freeman3 and (e) Freeman4.

in some frames, they are able to track the object once
again by chance as the object reappears at the same loca-
tion due to camera pan or due to repetitive motion of the

object. All the trackers perform well in the Car4 sequence
except KCF_Gray, KCF-B2DPCA_Gray and ACT, where the
tracker drifts away slightly but with imprecise estimation of
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FIGURE 6. Examples of tracking results of the compared methods on five OTB-50 sequences, (a) Jogging-1, (b) Lemming,
(c) Singer1, (d) Suv and (e) Trellis.

scale. In the CarScale sequence, all the methods track the
target, but fail to estimate the scale information effectively,
except WRMPCA that drifts away towards the end of the

sequence. Similar observations can be made even in the
Fleetface sequence, where WRMPCA and ACT fail towards
the end of the sequence. KCF-B2DPCA_HOG and DLT
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estimate both the scale and location of the target effectively
in Freeman3, whereas DSL, WRMPCA and DLR fail to
estimate the scale of the target. The only method that tracks
the target effectively until the end in the Freeman4 sequence
is KCF-B2DPCA_HOG. Further, in the Jogging-1 sequence,
LSGPR, DDL and KCF-B2DPCA_HOG track the object
successfully, whereas the other trackers fail to track the object
after a few initial frames. In Singer1, even though all the
methods track the target to some extent, they fail to estimate
the scale accurately except DDL, DSL, WRMPCA, DLT,
DLR, LSGPR and KCF-B2DPCA_HOG, which estimate
the scale more precisely than the others. Also, KCF_HOG,
KCF-B2DPCA_HOG and LSGPR track the object success-
fully in Suv except DDL, DLT, DLR, WRMPCA, DSL,
ACT and KCF_Gray, which fail to track the object towards
the end of the sequence. Further, KCF_HOG, DLR, DDL,
KCF-B2DPCA_HOG, KCF-B2DPCA_Gray and ACT suc-
cessfully track the target in Trellis, but fail to estimate
the scale precisely except KCF-B2DPCA_HOG. Thus, from
these qualitative analyses, it is observed that the proposed
KCF-B2DPCA_HOG tracker performs favorably in most of
the challenging sequences.

VI. CONCLUSION
In this paper, a collaborative tracking algorithm based on
the discriminative and generative models has been proposed.
The correlation filters, based on the discriminative model,
have been used to find the target position, and a robust
coding in the B2DPCA subspace appearance model, based on
generative framework, has been used to find the remaining
affine motion parameters of the target. This is motivated
by the idea that the discriminative capability of the tracker
plays a important role while finding the location of the target
rather than while finding the other affine motion parameters
of the target. On the other hand, the generative capability of
the tracker plays a prominent role while finding the other
affine motion parameters of the target. Also, the robust cod-
ing (RC) has been extended to 2D residuals, to account for
non-Laplacian or non-Gaussian noise, and introduced into
B2DPCA reconstruction. In addition, a 2D robust coding
(2DRC) distance metric has been introduced to find the can-
didates having appearance similar to that of the subspace and
used to compute the observation likelihood in the generative
model. Further, a robust occlusion map has been generated
from the weights obtained during the residual minimization
and used to obtain occlusion-free observation samples, which
are then accumulated for the B2DPCA appearance model
update. The occlusion map thus obtained has also been used
in the appearance model update of both the correlation filters
in different ways to avoid the degradation of their appear-
ance models. Extensive experiments have been conducted on
three popular tracking benchmark datasets, namely, OTB-50,
VOT2016 and UAV20L, to analyze the performance of the
proposed method. Quantitative and qualitative performance
of the proposed method has been compared with that of sev-
eral recent state-of-the-art algorithms using these benchmark

datasets, and it has been shown that the proposed method
outperforms the state-of-the-art methods. Finally, it needs to
be pointed out that despite the fact that the UAV20L dataset
is extremely challenging in that it contains long duration
sequences with large variations both in the camera motion
and view points in three dimensions, the proposed method
performs well and better than other state-of-the-art methods
do, when it is applied to the sequences of this dataset.
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