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Abstract

On Understanding Permission Usage Contextuality of Android Apps

MD ZAKIR HOSSEN

In the runtime permission model, the context in which a permission is requested/used

the first time may change later without the user’s knowledge. Prior research iden-

tifies user dissatisfaction on varying contexts of permission use in the install-time

permission model. However, the contextual use of permissions by the apps that are

developed/adapted for the runtime permission model has not been studied. Our goal

is to understand how permissions are requested and used in different contexts in

the runtime permission model, and compare them to identify potential abuse. We

present ContextDroid, a static analysis tool to identify the contexts of permission

request and use. Using this tool, we analyze 38,838 apps (from a set of 62,340 apps)

from the Google Play Store. We devise a mechanism following the best practices

and permission policy enforcement by Google to flag apps for using permissions in

potentially unexpected contexts. We flag 30.20% of the 38,838 apps for using per-

missions in multiple and dissimilar contexts. Comparison with VirusTotal shows that

non-contextual use of permissions can be linked to unwanted/malicious behaviour:

34.72% of the 11,728 flagged apps are also detected by VirusTotal (i.e., 64.70% of the

6,295 VirusTotal detected apps in our dataset). We find that most apps don’t show

any rationale if the user previously denied a permission. Furthermore, 13% (from

the 22,567 apps with identified request contexts) apps show behaviour similar to the

install-time permission model by requesting all dangerous permissions when the app

is first launched. We hope this thesis will bring attention to non-contextual permis-

sion usage in the runtime model, and may spur research into finer-grained permission

control.
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Chapter 1

Introduction

1.1 Motivation & Overview

The runtime permission model enables finer-grained control of resources. The new

model was introduced in Android 6.0 to facilitate user decision by providing situ-

ational context (e.g., current state of the app representing the purpose of resource

access) when the permissions are requested for the first time. An app can trick a user

to grant a permission in a valid context, and then use it in malicious/unexpected con-

texts without the user’s consent/knowledge. For example, accessing GPS when the

user attempts to find the current location in a map is a valid context, but accessing

GPS when the app is in the background may be unwanted. Indeed, such contextual

differences may defy user expectations [21, 30, 31].

In contrast to the contextual analysis of resource access in the old install-time

permission model [11, 16, 32], such studies in the runtime model are limited. Wije-

sekera et al. [30] modify an older version of Android to analyze contextual integrity

of Android apps and conclude that users mostly rely on the surrounding context in

which a permission is requested to grant/deny a permission [31]. In this work, we

focus on regular apps that are developed/adapted for the runtime permission model

and perform the first large-scale study to understand the contextual use of resources

in the runtime permission model.

We develop ContextDroid, a static analysis tool that extracts the context when a

permission is requested and used in an app using an app-wide call graph. We define a
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context based on the active User Interface (UI) component that is requesting the per-

mission (and using it, if granted). To differentiate between user activities, we identify

five Android components (Activity, Fragment, Service, AsyncTask and Broadcast

Receiver) that represent different types of UI and functionality. We devise a mech-

anism for identifying potential abuse of permissions in unexpected contexts based on

the developer policy and permission request best practices suggested by Google [2, 3].

There are several challenges in statically extracting contextual information from

Android apps. For example, Android apps can be obfuscated using various obfusca-

tion tools (e.g., ProGuard [12]) during the build process. While Android framework

classes and methods are excluded from obfuscation, classes derived from support

libraries that are shipped with the APK can be obfuscated by ProGuard (unless oth-

erwise configured by the developer). We must identify Fragments and permission

related APIs that are derived from the support libraries. We propose a combination

of an extended call graph and sub-signature matching to identify the contexts that

are otherwise obfuscated by ProGuard or similar tools.

Our evaluation reveals that apps often use permissions in multiple and dissimilar

contexts. Overall, we flag 30.20% of the 38,838 apps for potential abuse: requesting

permission in one context while using it in another context and using permissions

in multiple contexts that include third-party libraries. 34.72% of the flagged apps

(64.70% of the VirusTotal detected apps in our dataset) are also detected by at least

one VirusTotal engine.

We find that very few apps show permission rationale, even if the user denied the

permission when previously requested. Only 5% apps in our dataset show some kind

of rationale if a permission was previously denied. 13% apps still show the typical

behaviour of the install-time permission model by requesting all permissions at once

during first launch in the new runtime permission model.

1.2 Thesis Statement

The primary goal of this dissertation is to evaluate changes in app behaviour in

terms of permission usage in the runtime permission model. We want to compare

permission usage contexts of apps with their request contexts and identify potential

inconsistencies.
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As part of this objective, we consider the following research questions:

Question 1 How often do apps use the same permission in multiple contexts?

Question 2 How often do apps use permission in dissimilar contexts?

Question 3 Can non-contextual use of permissions be attributed to hidden in-

tent? In particular, is it possible to connect multiple and dissimilar usage contexts

to malicious behaviour?

1.3 Contributions

1. We present ContextDroid, a static analysis tool that extracts the contexts in

which the permissions are requested and the contexts in which they are used.

ContextDroid extracts the call paths that lead to sensitive API calls associated

with permissions and extracts contextual information. Our methodology for

context identification may be useful for other studies.

2. We analyze 62,340 regular Android apps to understand contextual resource

usage under the runtime permission model. To the best of our knowledge, this

is the first study on contextual resource usage in the runtime permission model,

involving apps that target only the new model.

3. We devise a methodology to identify potentially unexpected behaviour of apps

following the recommended practices and policies for permission usage suggested

by Google. Based on this mechanism we flag 11,728 (30.20% of the 38,838 apps)

apps. Comparison with VirusTotal shows that non-contextual use of permis-

sions can indeed overlap with malicious behaviour. Overall, 4,073 (34.72% of

the flagged 11,728 apps) of the flagged apps are also detected by VirusTotal

(i.e., 64.70% of the 6,295 VirusTotal detected apps).

4. Our analysis tool can be used by app market maintainers early in the vetting

process to identify apps that may be violating user expectation and subject

them to further analysis.
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1.4 Related Publication

Conference Paper. The work discussed in this thesis has been peer-reviewed and

published in the following conference:

On Understanding Permission Usage Contextuality in Android Apps. Md Zakir

Hossen and Mohammad Mannan. Data and Applications Security and Privacy

(DBSec’18), July 16 - 18, 2018, Bergamo, Italy. Lecture Notes in Computer

Science, vol 10980. Springer, Cham.

In addition, I analysed companion Android apps of 11 smart toys for children.

Our paper has been peer-reviewed and published in the following workshop:

Towards a Comprehensive Analytical Framework for Smart Toy Privacy Prac-

tices. Moustafa Mahmoud, Md Zakir Hossen, Hesham Barakat, Mohammad

Mannan, and Amr Youssef. International Workshop on Socio-Technical As-

pects in Security and Trust (STAST’17), December 5, 2017, Orlando, Florida,

USA.

1.5 Outline

This thesis is organised as follows. Chapter 2 discusses the necessary background of

Android and its permission models. Chapter 3 describes the related work on contex-

tual resource usage in Android. Chapter 4 describes our methodology of defining and

identifying request and usage contexts. Chapter 5 discusses our dataset, the perfor-

mance of ContextDroid and the results of our analysis. Finally, Chapter 6 concludes

our work.
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Chapter 2

Background

In this chapter, we describe the necessary background of Android and its permission

model.

2.1 Android Platform Architecture

Android is a Linux based open source platform designed for a wide range of devices

including smartphones, smartwatches and smart TVs. The software stack of Android

comprises of the System Apps, Java API Framework, Native libraries, Android Run-

time, Hardware Abstraction Layer and the Linux Kernel. We briefly discuss the major

components in this section. Figure 1 shows the platform architecture of Android.

2.1.1 System Apps

Android smartphones are pre-built with a set of apps that provide the most basic

features (e.g., SMS). These apps can be replaced with third-party apps to provide

similar or more functionalities. Moreover, they can be used by the third-party apps to

perform specific tasks for them (e.g., using the default Camera app to take a photo).

2.1.2 Java API Framework

The application framework written in Java acts as the gateway to the underlying set

of features provided by the Android OS. Apps can get access to the hardware sensors

and native libraries through a large set of Java APIs.
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Figure 1: Android platform software-stack (from left to right)

It contains all the building blocks that are essential to develop a third-party An-

droid app. This layer comprises of different modules for creating app views, managing

data, resources and app life-cycles.

2.1.3 Native C/C++ Libraries

Many of Android’s core system components are written in native C/C++. Android

provides Java APIs that allow third-party apps to use some of the native function-

alities. Moreover, if apps need to implement a part of their code in native C/C++,

they can use the Android NDK. The NDK is particularly helpful for developers who

want to reuse existing libraries of their own or from open source repositories. It can

also be used for performance optimisation for computationally expensive operations.

Android apps can also use some of the sensitive resources in the native code. For

example, apps can record audio in native C++ through the JNI.

2.1.4 Android Runtime

This module includes the Android Runtime (ART) and a set of core libraries of Java

programming language. ART was introduced in Android version 5.0. Older versions

of Android had the Dalvik runtime.

Optimised ahead-of-time compilation introduced in ART improved the overall

performance with stricter install-time verification in comparison to the older runtime

(i.e., Dalvik). In addition, it provided more efficient debugging support and better

6



garbage collection. In the ART, apps run in their own processes (each with a new

ART instance).

2.1.5 Hardware Abstraction Layer

Hardware Abstraction Layer (HAL) provides interfaces that allow higher level Java

APIs to access different hardware sensors. Vendors implement the interfaces based on

their requirement without the need to modify anything in the top level architecture.

HAL decouples the top level application framework from the low level driver im-

plementations. There are multiple library modules in HAL that belong to different

hardware sensors. For example, one module in the HAL is responsible for implement-

ing interfaces for the Camera sensor. When apps need to access a hardware sensor,

Android loads the corresponding module.

2.1.6 Linux Kernel

Android is built on top of the Linux kernel. It enables Android to inherit key security

features of this well-known kernel. Android’s Linux kernel helps manage critical low-

level functionalities for the ART. This layer typically handles threading, power and

memory management.

Linux kernel also contains the hardware driver implementations. Hardware ven-

dors develop driver implementations in this layer based on the interfaces provided by

HAL.

2.2 Android App Components

Activity, Service, Content Provider, Broadcast Receiver, Fragment, and

AsyncTask are some of the key components of Android apps. These components

act as the building blocks for Android apps. Apart from Content Provider that

helps manage and share data between different apps, other components represent

various elements associated with UI and events.

All these components have their own life-cycle methods that are invoked by An-

droid OS and act as entry points for the components. These entry points can also be

7



(a) Home Fragment (b) Inbox Fragment

Figure 2: Example of an Activity that contains multiple fragments

the entry point of an app functionality depending on how they are implemented by

developers.

2.2.1 Activity

Activity is the most prominent Android component. Third-party Android apps

are built around one or more Activities. Activity provides a full-screen UI that

enables users to interact with the app. Figure 2 shows example of an Activity.

Different screens of an app is implemented by different Activities. It has several

life-cycle methods that are invoked in different situations. For example, onResume()

is called when the Activity becomes visible in the screen and onStop() is called when

the app goes in the background and is no longer visible on screen.

2.2.2 Fragment

Fragment defines parts of the GUI. Fragments can be considered as UI modules

that represent part or full screen of an Activity. An Activity can hold multiple

Fragments, and a Fragment can be reused in multiple Activities. Fragment has its

own life-cycle methods similar to an Activity.

8



Multiple Fragments inside the same activity represents different UIs and function-

alities. Figure 2 shows two different Fragments with different functionalities. Figure

2a allows users to search for rides or foods. Figure 2b represents an inbox for mes-

sages coming through the app. In this case, both the Fragments reside inside the

same activity although their purposes are different.

2.2.3 Broadcast Receiver

Broadcast Receiver receives updates from the OS whenever there is a change of state

and can perform tasks without interacting with the UI. App developers can also imple-

ment their own Broadcast Receivers and broadcast an update to trigger a background

task.

2.2.4 Service

A Service runs in the background without a UI. A Service can be initiated from any

of the Android components including a Service. Although apps can check whether

a permission is granted or not in a Service, they can’t request for permissions. Apps

can only request permissions from a foreground component. However, they can use

the granted permissions in a Service.

2.2.5 AsyncTask

AsyncTask performs tasks in the background and communicates the results to the UI

thread. AsyncTask can be initiated from any other component. It performs shorter

operations in a background thread without freezing the UI and publishes the result

back to the UI thread once done.

A task is performed in an AsyncTask in four steps. The first step is invoked in the

UI thread to setup related tasks. In the second step, AsyncTask goes to a background

thread to perform the task. In the third step, it publishes the progress of the task to

the UI thread. Finally the forth step is invoked in the UI thread where the results of

the task are passed.

9



2.3 Android Permission Model

2.3.1 Permissions

Android defines several levels of protection for device resources. Third-party apps can

use normal, signature and dangerous level permissions. Each of these levels contain

a set of permissions that protect specific resources. Android apps need to specify the

permissions that they need in the AndroidManifest file that contains the meta data

of the apps. When a resource protected by one of these permissions is accessed by

an app through the Java APIs, Android first checks whether it has the corresponding

permission before allowing access.

Normal permissions protect resources that are less privacy and security sensi-

tive (e.g., BLUETOOTH). Signature permissions are mainly used by system apps.

Third party apps can also define their own permissions. Signature permissions allow

apps from the same developer to share their resources. The system decides to grant

these permissions without user intervention if the app is signed with the same key

of the app that defined the permissions. Signature level permissions include SYS-

TEM ALERT WINDOW, WRITE SETTINGS etc.

Android maintains a set of Dangerous permissions that protect privacy sensitive

resources. While individual dangerous permissions regulate access to specific actions

or tasks (e.g., READ PHONE STATE), they are categorized/clustered into per-

mission groups that protect specific resources (e.g., READ SMS, WRITE SMS are

grouped into SMS).

2.3.2 Install-time Permission Model

Android used the install-time permission model up to version 5.0. In this model, all

the specified permissions are granted if the app is installed in the device. Therefore,

users had to agree to grant all the permissions at install-time without even running

the app.

2.3.3 Runtime Permission Model

In the runtime model, dangerous permissions are requested at runtime ideally when

the app really needs them. Android developer policy asks the developers to request

10



permissions in-context [3]. Asking for a permission when an app feature really needs

it makes more sense to the users, who may otherwise deny the permission.

2.3.3.1 Permission Request

Instead of showing prompt for each permission, Android requests permission for the

permission group. For example, if an app requests RECEIVE SMS permission, the

system does not show that the app needs RECEIVE SMS permission. Instead, it

shows request prompt for the permission group (i.e., SMS in this case). The other

permissions in the group (i.e., SEND SMS and READ SMS) are requested in the

similar way. Once a permission from a permission group is requested and granted by

the user, subsequent requests for other permissions from the same group are auto-

matically granted. However, apps need to possess the individual permission in order

to invoke the protected APIs.

2.3.3.2 Permission Rationale

The effectiveness of the runtime model depends on whether the permissions are re-

quested at the right time (i.e., when they are really required by an app feature).

While requesting permissions in the right context may reasonably communicate the

purpose of its use, it’s not always straightforward for the users who can be skeptical

even if the permission is really required by the app. In such cases, users may deny

the permission and get deprived of the related app feature.

To mitigate this issue, apps can show a Dialog or Toast message describing the

reason why they need the permission. Android provides APIs to check whether the

user has previously denied a permission: a rationale message might be useful in such

cases. Apps can utilise those APIs to determine whether they should show a rationale

to increase their chances to get the permission granted by the user. Even if the user

has not previously denied a permission, apps can still show a rationale to justify the

use.
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Chapter 3

Related Work

In this chapter, we discuss related work from prior research on permission usage by

Android apps in the two permission models.

3.1 Install-time Permission Model

3.1.1 Permission Usage

Prior studies identify excessive and unjustified use of permissions by Android apps.

Apps are found to be transmitting sensitive user data (e.g., current location) to third

parties without consent from the user [14]. Felt et al. [15] identify one-third of the

apps in their dataset to be over-privileged having unnecessary permission usage. The

outcome of these studies highlight the limitation of the install-time permission model

in protecting user privacy. In the install-time permission model, users have no choice

other than accepting all the permissions when installing an app, without even knowing

anything about the purpose behind the usage. Kelley et al. [19] show that users barely

understand the permission list shown to them during installation.

Gorla et al. [18] match Google Play Store description of the apps with requested

permissions to find inconsistencies. Using their approach, they could correctly identify

56% of the malicious apps. A similar study by Watanabe et al. [29] identifies four

major factors that contribute to the inconsistencies between app descriptions and

their permission request behaviour. They find existence of third-party libraries and

unspecified features as two of the major factors. These studies mainly focus on the

permissions that are being requested and whether they are consistent with the app

12



descriptions. In comparison, we consider the permissions and also their usage patterns

in the apps.

3.1.2 Contextual Use of Permissions

Several studies analyse contextual resource usage in the install-time permission model.

Yang et al. [32] define context based on environmental attributes (e.g., time of the

day), to differentiate between malware and benign apps. In contrast, we define context

differently, and target only regular apps. Wijesekera et al. [30] perform a user study to

identify contextual differences and user reactions during permission use. They identify

visibility to be an important context factor that validates resource access, and found

user dissatisfaction while the context of permission usage change subsequently. Both

these studies analyze apps developed for the install-time permission model. Therefore,

it is difficult to understand what context the user might see to make a decision on

the permission in the runtime model. We analyze apps that are developed for the

runtime model that enables us to identify the real contexts of a request prompt.

Another study by Wijesekera et al. [31] combines user privacy preference and sur-

rounding contextual cues to predict user decisions. The key idea is to differentiate

between the contexts of permission use and based on prior decisions made by the

user, automatically grant or request users for a permission. While identifying the

contextual differences in permission usage closely relates to this work, on both occa-

sions [30, 31], the analysis was performed on a modified version of Android protected

by the old permission model with apps not designed for the runtime model. Chen et

al. [11] propose a Permission Event Graph (PEG) model, which represents the rela-

tion between resource access and event handlers. They combine static and dynamic

approaches to analyze regular and malicious apps. However, their analysis is also

based on the old permission model, and cannot differentiate between the context of

permission request and usage. In comparison to these studies that perform dynamic

analysis to extract contextual information, we use static analysis to evaluate apps

that are specifically designed and adapted for the runtime permission model.

Another line of work use the permissions listed in the manifest to generate risk

signals and rank apps based on permission usage. Wang et al. [28] use permission

request patterns to identify potentially malicious apps. Taylor et al. [25] develop a

contextual ranking framework based on listed permissions. They propose relative

13



ranking of apps by identifying whether an app of a specific category requests for

permission(s) that are not required by other apps in the same category. However,

they do not consider how the listed permissions are used by the apps. Merlo et

al. [20] propose a risk scoring framework based on permission utilisation by apps. In

comparison, we identify different contexts where the permissions are potentially used

and compare them with contexts where users see a request prompt.

3.2 Runtime Permission Model

Andriotis et al. [6] examine the reaction of users about the runtime permission model.

They find that users generally like the concept of having finer-grained control of

their resources. Bonne et al. [10] analyse the decision of the users when they are

prompted for permission in the runtime permission model. Overall, 16% permissions

are denied by the users. They find that the key factor that influences user decision is

the expectation about the usage of the permissions. Users make a favourable decision

if they understand the need of a permission. However, even if the permission is

granted for a valid purpose, it can be misused by the apps.

Votipka et al. [27] perform a user study to identify user reaction on permission

usage in background contexts. In terms of why the permissions are accessed, users are

more comfortable when the collected data is shared with the developers themselves.

In terms of when a resource is accessed, users prefer resource access after direct

interaction with the apps. Peruma et al. [23] perform another user study on the

runtime permission model. They find that users generally don’t feel more secured in

the runtime permission model. However, compared to the old install-time permission

model, users are found to be more aware about the requested permissions in the

runtime permission model.

Micinski et al. [21] tie user interactions to resource access in the runtime permission

model. They develop a dynamic analysis tool named AppTracer to analyze the extent

to which user interactions and resource accesses are related. A corresponding user

study reveals that users generally expect resource access right after interaction with a

related app functionality. In contrast, we focus on the different Android components

in which the permissions are requested and used along with user interactions.

Allen et al. [4] use a lightweight context-aware technique to improve malware
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detection. They utilise the app entry-points and sensitive APIs in their modelling and

find them to be effective contextual information. They only consider the permission

usage in their detection model. In comparison, we also identify request contexts and

compare them with the usage contexts.

Gasparis et al. [17] examine the behaviour of Android apps in the runtime per-

mission model. They analyse a set of 4,743 Android apps from different categories

downloaded from Google Play Store. We analyse a much larger set of Android apps

and propose ways to identify contexts that are otherwise excluded due to obfusca-

tion. Their main focus is on developing a solution that would facilitate in-context

permission request by the apps. In contrast, we compare the request/usage contexts

and examine whether inconsistencies can be an indicator of maliciousness.

Gasparis et al. [17] also examine permission request behaviour that resembles

the install-time permission model. By analysing the dataset of 2,671 apps, they

find 14.07% apps request permissions when launched. Our experiment shows similar

results with 13% apps in our dataset requesting permissions when first launched.

However, our results are based on a much larger dataset in comparison to the 2,671

apps.
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Chapter 4

Methodology

This chapter covers the definition of context, the methodology behind ContextDroid

and the criteria of identifying potentially malicious behaviour based on permission

request and usage contexts.

4.1 ContextDroid

We develop ContextDroid, a static analysis tool that leverages app-wide call graph

and Android permission mappings to extract the contexts. The app-wide call graph

is generated by using FlowDroid [7], a state of the art information flow tracking tool.

We use permission mappings from Au et al. [8] and Backes et al. [9] to map API

calls to associated permissions. Figure 3 shows an overview of ContextDroid.

4.1.1 FlowDroid

FlowDroid [7] is a static taint analysis tool based on Soot [26] and developed for An-

droid. It uses Android components life-cycle to derive call-graphs of apps. Although

FlowDroid is mainly developed for information flow tracking from sources to sinks, we

only use its call-graph feature in ContextDroid. FlowDroid is precise, context-aware

and regularly updated by the authors.
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4.1.2 Permission Mapping

To identify the actual use of dangerous permissions in apps, we combine permission

mappings from Au et al. [8] and Backes et al. [9]. Backes et al. [9] don’t identify

mappings for permissions that are checked by the Android OS in native code (e.g.,

CAMERA). Au et al. [8] have mappings only available for up to Android Lollipop

(Android 5.1.1). Moreover, Au et al. [8] contains mappings for Content Providers

(e.g., associated with permissions like READ SMS).

Therefore, we combine the mappings from both studies to prepare a more inclusive

list. In addition, we manually include some of the newer APIs from the documenta-

tion of Android that are not included in any of the mappings (e.g., Camera2 APIs

associated with CAMERA permission).

4.2 Context

Our main goal is to identify usage of permissions in different situations and how they

compare with scenarios where they are requested by the apps. Therefore, we rely on

the Android components to define a context as they allow us to identify the differences

in what the users see on screen (cf. Figure 2).

We determine the Android component being used by the users when they are

prompted to grant/deny a permission and when a protected resource is accessed by

the app. In particular, we identify the five Android components (i.e., Activity,

Service, Fragment, Broadcast Receiver and AsyncTask) that trigger a resource

access or permission request prompt.

4.2.1 Definition and Attributes

We consider several attributes to define a context. App Package Name (APN), rep-

resents the unique package name of the app. Permission (P) denotes a dangerous

permission (e.g., CAMERA). Permission Protected API (PPA) represents a sensi-

tive API that is protected by a permission (e.g., getDeviceId() API is protected by

READ PHONE STATE permission).
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A fully qualified Component Class Name (CCN) iden-

tifies the class in which a PPA is invoked (e.g., oim-

mei.com.astegiudiziarie.activity.GPSQuestionActivity is a class that invokes the

requestLocationUpdates(java.lang.String,long,float,android.location.LocationListener)

API protected by the ACCESS FINE LOCATION permission). Considering the

fully qualified Component Class Name allows us to differentiate between classes

that have the same name due to obfuscation. For example, two different classes

may be renamed to the same letter by ProGuard. In that case, both classes may

be considered as the same context although they are different classes or Android

components. Component Type (CT) is the Android component type of the CCN

(e.g., oimmei.com.astegiudiziarie.activity.GPSQuestionActivity is an Activity

Component Type) .

For each App Package Name, Permission and Permission Protected API

(APN:P:PPA), we identify the instances of the fully qualified Component Class

Names and their Component Types (CCN:CP), each representing a different con-

text of permission usage. Multiple instances of the same component type that use a

PPA are considered as different contexts. If a sensitive resource is accessed in different

Activities, they are considered as different contexts. If it is used in two or more

Fragments, they are also considered as different contexts even if they reside inside

the same Activity.

For example, ace.astrosoft tamil:android.permission.READ PHONE STATE:

getDeviceId() indicates the collection of users device ID which is protected by

READ PHONE STATE permission. In this particular case, we determine the us-

age contexts by identifying all CCN:CP combinations.

We define a request context in the similar way discussed above. However, unlike

usage contexts where each permission has its own set of protected APIs, apps only

need to use a small set of APIs for requesting any dangerous permissions. Therefore,

the only difference with identifying usage contexts is that for request contexts, we

do not need to consider associated APIs. To define contexts where a permission is

requested, we identify all combinations of CCN:CP for a given APN:P.

Activity and Fragment are considered as foreground contexts as the user can

directly interact with them through the UI. Service, Broadcast Receiver, and

AsyncTask do not have UI and we consider them to be background contexts.
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Figure 3: Overview of ContextDroid

Our definition does not cover the actual functionalities attached to these compo-

nents. However, using the same permission and API in different components indicates

that it is used across multiple functionalities within the app where some of them might

be unexpected, unexplained or malicious.

4.2.2 Context Detection

We use the following information to determine the contextual information: Activation

event (an entry point of the call graph), Request API (used to show permission

prompts at runtime) and Permission Protected API (PPA).

4.2.2.1 Usage Context

We search each method in the call graph and identify calls to PPAs. We match

the type signature of the APIs inside the method with PPAs from the permission

mappings. If we find a match, we first check whether it is a standalone method

representing an activation event. If not, we traverse back to all the callers of that

method until we find the activation events. We then extract contextual attributes

that include the App Package Name (APN), Permission (P), Permission Protected

API (PPA), Component Class Name (CCN) and Component Type (CT).

To identify the CT, we first check the name of the component and its parent

class. If they match with any of the components (e.g., Activity), we store the CCN

and CT. For example, if we find an activation event in LoginActivity (a subclass of

Activity), we identify it as an Activity component.
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Another way to identify the Android component type is to check the Android-

Manifest file that lists the Activities, Services and Broadcast Receivers of an

app. However, PPA calls from Fragment and AsyncTask would not be identified as

they are not included in the AndroidManifest file.

To handle class name obfuscation where component type cannot be identified from

the class name or its parent class, we recursively traverse back to the parent classes of

that method and identify whether it is a child class of any of the Android component

classes. For example, we can not identify the CT from an obfuscated CCN such as

a.b.c.d.ef. In this case, we iterate through its parent classes to identify the CT.

4.2.2.2 Request Context

Apps can request permissions by using one of the Request APIs. To infer the re-

questing context, we identify calls to different instances of requestPermissions() APIs

and follow a similar approach described for permission usage to identify the relevant

contextual information.

However, unlike the system API calls that cannot be obfuscated by ProGuard

(with the Google Play Services library being an exception), support library APIs

that are shipped with the APK can be obfuscated in the release build (unless the

developer excludes certain classes from obfuscation). Support library contains APIs

that can be used to request permissions. For example, apps can request a permission

by calling the requestPermissions() API from the ActivityCompat or ContextCompat

classes (both available in the support libraries).

To handle such instances, we use partial type signature matching to identify the

context of permission request. We first identify whether the method contains permis-

sion strings, e.g., android.permission.AUDIO. If found, we examine subsequent API

calls that take the permission strings as a parameter. Specifically, we identify whether

the package name of the method partially matches with a support library package

(e.g., android.support.v4.a.a partially matches with the package name of support li-

brary version 4). If a match is found, we further compare the parameter signature of

the API with request APIs from the support library. If the partial type signatures

match, we consider this as an instance where permission is requested.
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4.2.3 Extended Call Graph

Identifying obfuscated Fragments (e.g., by ProGuard [12] or other similar tools) that

are derived from support libraries is not straight forward. To identify Fragment

contexts which are otherwise excluded from the call graph (e.g., due to obfuscation),

we propose an extended call graph in ContextDroid.

We first iterate through all the methods in the call graph and identify the class

in which they are declared. If the component type of the class cannot be identified,

we iterate through the parent classes to determine whether they can be identified as

a subclass of an Android component. If the component type cannot be determined,

we attempt to find whether the class is derived from support library Fragment.

We start with the package name of the method and perform partial matching

with support library package and iterate through the parent classes and their package

names until we find a match. If a match is found, we extract the method list of that

class.

Android Fragments used in apps must override the OnCreateView() method. To

determine whether the class is a Fragment component, we further match the return

and parameter types (defined as the sub-signature) of the listed methods with On-

CreateView(). If the sub-signature matches, we tag it as a Fragment and include the

methods of that class in the call graph.

4.3 Contextual Differences

We analyze the differences in terms how apps request and use permissions in multiple

contexts. Following the best practices [2] and developer policy for permissions [3]

from Google, we flag apps for potentially using permissions in unexpected contexts.

Our mechanism, for the most part, is based on two situations:

• Apps using dangerous permissions in dissimilar and disconnected contexts (Dis-

similar Usage Contexts).

• Apps using dangerous permissions excessively in multiple contexts including

third-party libraries (Multiple Usage Contexts).

In this section, we describe our mechanism for flagging apps.
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4.3.1 Dissimilar Usage Contexts

We first check if both request and usage contexts of an app are identified by Con-

textDroid. If only the usage contexts are identified, we follow the flagging mechanism

for multiple usage contexts; cf. Section 4.3.2.

We iterate through all the permissions with identified usage contexts in the app.

For each permission, we search for the request contexts. If found, we check whether

the number of request contexts is equal to the number of usage contexts.

If the number of contexts are equal, we determine whether all the request and

usage contexts match. We compare whether for each APN:P:CCN:CP combination

of usage contexts there exists a request context with the exact same combination.

For instance, we find one usage context of ACCESS COARSE LOCATION per-

mission (P) in the catholic.bible.download (APN) app inside an Activity component

(CT) named catholic.bible.download.MainActivity (CCN). In this case, we examine

whether there exists a request context with exact same combination of the contextual

attributes. This comparison makes sure that the permissions are used in a context

where the user is likely to see a permission request prompt to make an informed

decision.

Even if all the contexts match, it is possible that the user would grant access to the

app but not the third-party library. However, once the app is granted a permission,

the attached third-party library can also use it. In other words, if a permission is

granted based on an app context, it can be used in a context from an attached third-

party library. Therefore, if all the contexts match for a particular permission, we

examine whether there exists a request context within the app and a usage context

in a third-party library. If found, we flag the app as potentially using a permission

for unwanted purpose.

If the contexts don’t match, we check whether there exists a connection between

them. We check if there’s any background Service usage context for a permission.

For each Service context, we check the components that can start the Service. If

any of the services are invoked from a component where there is no request prompt,

we flag the app. We note that this criterion doesn’t apply in case of READ SMS

permission. We do not allow the usage of READ SMS permission in a Service

because reading all inbox messages in the background has rare use cases and can

be violated (see e.g., Section 5.4). In fact, Google recently prohibited the use of
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READ SMS in any app except the ones with capabilities to become the default SMS

app [3].

Furthermore, we flag an app if there is a difference between the number of usage

contexts and request contexts. This difference simply means the permission is used in

more contexts than where it is requested. In other words, if a permission is granted

in one context, it is used in other contexts where the user may not be aware.

4.3.2 Multiple Usage Contexts

For a particular permission, if ContextDroid could identify only the usage contexts,

we flag the app based on the number of usage contexts and existence of third-party

libraries. We flag the app if a permission is used in multiple (i.e., 2 or more) contexts

and at least one of them includes a third-party library. We follow a similar approach

when flagging apps for which we could identify only the usage contexts.

However, determining the number of contexts that should be considered as valid is

non-trivial as it simply depends on the functionalities provided by the app. Depending

on the app functionality, using permissions in multiple contexts can be valid. In our

analysis, we allow only 1 valid usage context. In reality, this number should vary

based on the app functionality. For example, a messaging app using SMS permission

in multiple different contexts should ideally be valid. Therefore, while analysing such

apps, number of valid context(s) should be increased before flagging apps for violation.

4.4 Foreground-Background Component Rela-

tionship

When a permission is granted by the user in a foreground component, the protected

resource might be accessed in a background Service. Although Services are listed

in the AndroidManifest, they need to be instantiated by another component (e.g.,

Fragment). If the two components are connected (e.g., Service initiated by an

Activity) and the resource is accessed only in that Service, it’s more likely to

be a legitimate resource access (except READ SMS), provided the user granted the

permission based on what feature is being used. Therefore, while analysing contextual

differences in resource access, we need to consider if there is any relation between the
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foreground and background components.

To identify such relationships, we first list the Services of an app from its An-

droidManifest file. While traversing the call-graph methods, we identify whether any

of the listed Services were instantiated in them. If identified, we check whether

there exists a call to the startService(android.content.Intent) API that indicates the

Service can be started from that method. We then list the class name (CCN) and

component type (CT) of that method in our database.

4.5 Permission Rationale

Android provides the shouldShowRequestPermissionRationale() API that returns

whether an app should show the rationale behind the usage of permissions. The

API returns true if the permission was previously requested but denied indicating

that the purpose of the permission was not effectively communicated to the user.

We determine whether apps show any rationale for the requested permissions by

identifying calls to the shouldShowRequestPermissionRationale(), show() and make-

Toast() APIs. If we identify a request context in a method, we check whether it con-

tains calls to the shouldShowRequestPermissionRationale() API. If found, we check

the method to find invocation of the show() and makeToast() APIs. These two APIs

are used to invoke a pop-up Dialog or a Toast message.

If none of these APIs are found, we retrieve the callees of that method and search

them to identify the API calls. If not found, we conclude that the app doesn’t show

any rationale to the user for the permissions.

4.6 Third-Party Library Detection

Android apps often use third-party libraries for different reasons (e.g., for showing

ads). It is possible that a permission requested by an app for legitimate use can be

utilised for unknown/malicious purposes by attached third-party libraries. Therefore,

we need to identify whether a permission is requested or used in a context from a

third-party library.

We determine this by identifying whether a part of the APN of an app is

24



a sub-string of the CCN of a context. Android follows Java package nam-

ing convention and the first two parts of the package name usually includes

the company name [22]. Therefore, we first tokenize the APN by using the

(.) delimiter and store the first two parts of it. For example, from APN

academy.itmons.elderigok we take academy.itmons. For each request and usage con-

texts found for academy.itmons.elderigok app, we identify whether the CCN of the

contexts contain academy.itmons. If not found, we conclude that the context is from

a third-party library.

4.7 Comparison with the Install-time Permission

Model

The major difference between the install-time model and the runtime model is that

not all the permissions are granted by default if the app is installed in the user

device. However, if apps request all their required dangerous permissions when they

are first launched, it becomes similar to the install-time model and the whole point

of in-context permission request model (i.e., runtime model) fails.

We want to identify whether apps are still following the install-time model by sim-

ply requesting all permissions at once during launch. To identify such phenomenon,

we first extract the LAUNCHER Activity from the AndroidManifest. For each app, we

then see whether all the dangerous permissions are requested in that Activity. If

all of them are requested in the same LAUNCHER Activity, we consider that app as

showing behaviours similar to the install-time permission model.

4.8 Comparison with VirusTotal Detection

Detecting malware is not our primary goal. However, we want to see whether our app

flagging mechanism based on contextual use of permissions can be linked to malicious

behaviour.

VirusTotal combines the results of various Anti-Virus (AV) tools for software

and applications. The result consists of the number of tools that identify the APK

as malicious. We compare the apps flagged by our mechanism with VirusTotal by

identifying whether the flagged apps were detected as malicious by any of the AVs.
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Chapter 5

Results

In this chapter, we discuss our dataset, experimental setup and the results.

5.1 Dataset and Setup

In this section, we describe our dataset selection criteria and the performance of our

analysis.

5.1.1 Dataset Collection

5.1.1.1 Selection Criteria

We want to analyse how the dangerous permissions are requested and used. The

runtime permission request was introduced in Android API version 23. We primarily

select apps that target the runtime permission model (e.g., targetSdkVersion = 23).

However, not all the apps that are developed for the runtime-permission model need

dangerous permissions. Therefore, we select apps that declare dangerous permissions

in their AndroidManifest.

5.1.1.2 Dataset

We collect our apps from the AndroZoo project [5]. Our dataset comprises 62,340

different versions (APKs) of 42,940 apps from 48 categories. New versions of apps

are often released with new functionalities that may require accessing a permission

protected resource [24]. Therefore, unless otherwise specified, we consider these
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Figure 4: Category of apps in our dataset collected from the AndroZoo [5] project

APKs as different apps in our analysis. Figure 4 shows the percentage of apps from

different categories.

5.1.2 Performance

We perform our analysis on an Intel Core i7 3.60GHz processor with 24GB of memory

running Ubuntu 16.04. For each app, our analysis takes on average 43.42 seconds to

identify the contexts, including time taken by FlowDroid. Note that we first use

FlowDroid to generate an app-wide call graph that takes on average 42.40 seconds

for a regular app (of size around 6MB).

5.2 Permission Request and Usage In Multiple

Contexts

We find that ACCESS FINE LOCATION (29%), ACCESS COARSE LOCATION

(21%) and READ PHONE STATE (17%) permissions are used by apps in multiple
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texts
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(b) Average number of usage con-
texts
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(c) Permission requests in multiple
contexts

Figure 5: Permission requests and usage in multiple contexts by apps and the average
number of usage contexts for different permissions
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contexts more frequently compared to others. These permissions allow apps to collect

sensitive information such as users current location and device information. Figure

5a shows the permissions that are used by the apps in multiple contexts.

Although not used by many apps, SEND SMS and READ CALENDAR permis-

sions have higher average number of usage contexts compared to others. Apps that

use these permissions in multiple contexts have on average three or more contexts.

Figure 5b illustrates the average number of contexts for the permissions that are used

in multiple contexts.
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Figure 6: Permissions that are used in dissimilar usage contexts by apps

We find that WRITE EXTERNEL STORAGE, ACCESS FINE LOCATION,

CAMERA, READ EXTERNEL STORAGE and ACCESS COARSE LOCATION

permissions are requested in multiple contexts more frequently by apps, suggesting

they are more context aware while requesting for these permissions. Figure 5c gives

an overview of the number of apps that request permissions in multiple contexts.

We find request and usage contexts of permissions in 22,567 apps. 7,753 apps

(34.36%) use at least one permission in contexts that don’t match with the contexts

of where they are requested.

Figure 6 demonstrates the number of apps that use permissions in dissimilar

contexts. Compared to others, CAMERA, RECORD AUDIO and RECEIVE SMS
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are used less often in dissimilar contexts as these permissions on average have

one context where there is no permission prompt. As shown in Figure 5c,

WRITE EXTERNEL STORAGE is requested in multiple contexts the most suggest-

ing apps are more careful when requesting this permission. This is understandable

because this permission allows them to write and access the most privacy sensitive

files (e.g., personal photos) in the user device. There are quite a few apps that still

use this permission in dissimilar contexts (cf. Figure 6), though the number can be

considered negligible compared to others.

Other permissions on average have more than 1.3 dissimilar contexts. AC-

CESS FINE LOCATION, ACCESS COARSE LOCATION, READ PHONE STATE

and GET ACCOUNTS are the most abused in that regard. We find apps to be less

context aware while requesting these permissions.

5.3 Contextual Differences

In this section, we discuss the results based on our app flagging mechanism (see

Section 4.3) and compare them with VirusTotal detection.

5.3.1 Flagged Apps

We first discuss the apps flagged for Dissimilar Usage Contexts and Multiple Usage

Contexts separately and then discuss the overall results. As discussed in the previ-

ous section, we identify request and usage contexts in 22,567 apps. Therefore, the

percentages of Dissimilar Usage Contexts are based on those 22,567 apps. We find

usage contexts in 38,838 apps. Our discussion on the Multiple Usage Contexts and

the overall results are based on 38,838 apps.

VirusTotal Detection. Our dataset contains 6,295 versions (APKs) of 5,499

apps that are detected as Potentially Unwanted Programs (PUP) or Malware by at

least one Antvirus engine in VirusTotal. It is possible that different versions of the

same app with similar features are detected by VirusTotal and that would make our

results somewhat biased. However, we find that not all versions of the same app are

detected by VirusTotal engines.
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Figure 7: Apps flagged for multiple and dissimilar usage contexts

5.3.1.1 Dissimilar Usage Contexts

We flag 5,694 (25% of the 22,567 apps) apps for dissimilar usage contexts. 4,351 apps

have only one dissimilar context while 1,135 apps are flagged for having two dissimilar

contexts. 208 apps are flagged three or more times by our mechanism. Figure 7 shows

the number of apps and how many times they are flagged.

Comparison with VirusTotal. 2,378 apps (i.e., 37% of the 6,295 VirusTotal

detected apps and 41% of the 5,694 flagged apps) flagged for dissimilar usage contexts

are also detected as malicious by at least one VirusTotal engine.

5.3.1.2 Multiple Usage Contexts

We flag 9,498 (24% of the 38,838 apps) apps for (multiple) usage contexts in the

app and third-party library. 3,273 apps are flagged only once while 6,225 apps are

flagged multiple times. These apps use more than one permission in multiple and

third-party contexts. Figure 7 shows the summary of apps that use permissions in

multiple contexts and the number of times they are flagged.

Comparison with VirusTotal. 3,934 apps (i.e., 62% of the 6,295 VirusTotal

detected apps and 41% of the 9,498 flagged apps) flagged for multiple usage contexts
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are also detected as malicious by at least one VirusTotal engine.
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Figure 8: Category of the apps flagged for multiple and dissimilar usage contexts

5.3.1.3 Overall Comparison

Overall, by combining the two criteria discussed above, we flag 11,728 (30.20%) apps.

4,335 apps are flagged only once. The rest of the apps are flagged multiple times.

Figure 7 illustrates the number of times these apps have used a permission in multiple

or dissimilar contexts. Figure 8 shows the category of the flagged apps.

Comparison with VirusTotal. 4,073 apps (i.e., 64.70% of the 6,295 VirusTotal

detected apps and 34.72% of the 11,728 flagged apps) flagged for multiple usage

contexts are also detected as malicious by at least one VirusTotal engine.

Our dataset contained 3,281 apps that are detected by at least two VirusTotal

engines and our mechanism flagged 2694 (82.10% of the 3281 apps) of them. if we

consider detection by more than five VirusTotal engines, our dataset contained 840

apps and our mechanism flagged 692 (82.38% of the 840 apps) of them. Furthermore,

341 apps in our dataset are detected as malicious by more than 10 VirusTotal engines.

Our flagged apps included 290 (85.04% of the 341 apps) of them.

32



(a) Rationale for
Location access

(b) Location Re-
quest Dialog

(c) SMS Request
Dialog

(d) Contacts Re-
quest Dialog

Figure 9: Ride-sharing app Pathao showing permission rationale for accessing device
location. In addition to requesting location access (9b), it also requests for SMS (9c)
and contacts permission (9d)

5.3.2 App Versions

Our dataset contains 18,318 versions of 6,215 apps. We compare different versions of

each of these apps in terms of the number of times they are flagged. We find that

contextual use of permissions vary across different versions. 856 apps (14% of the

6,215 apps) have contrasting flag count across different versions (some versions of the

apps are flagged while others aren’t).

5.4 Case Study 1

We discuss a ride-sharing app named Pathao as a case study. Pathao is the most

popular ride-sharing platform in Bangladesh. Recently, Pathao has been subjected to

widespread criticism for collecting SMS messages and contacts from Android devices.

Analysis of the network traffic reveals that the collected data was uploaded to their

own server [13].

The most recent version of Pathao removed the code used for collecting the data.

However, the fact that they were able to collect this information (without mentioning

anything in their privacy policy) while still being available in the Google Play Store

is surprising enough.

Therefore, we want to follow our mechanism while discussing Pathao to show that
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it can be useful to identify potentially malicious behaviour in regular apps early in

the vetting process and subject them to thorough analysis before they are available

in the Google Play Store.

As discussed in Section 2.3.1, Android does not show the individual permissions

that are requested by apps. Instead, it shows request for the permission group.

Therefore, we discuss permission requests in Pathao in terms of permission groups.

Pathao shows a rationale in a Fragment context for accessing device location as

soon as the users log in (see Figure 9a). Although we couldn’t find usage of location

(due to the Play Services Library), Figure 9a suggests it’s necessary for the purpose

of the app (e.g., location based features). However, in addition to requesting location

access (Figure 9b), it also requests for SMS (Figure 9c) and contacts (Figure 9d)

access. There are two other contexts in different Activities, where we find requests

for SMS.

We find one context for RECEIVE SMS usage in a third-party library (i.e., Face-

book account kit). READ SMS and READ CONTACT are used in AsyncTask

contexts inside a Service. The contexts of READ SMS, RECEIVE SMS and

READ CONTACT usage do not match the contexts in which they are requested.

Overall, Pathao is flagged 3 times in our analysis as it requests and uses READ SMS,

RECEIVE SMS and READ CONTACT permissions in dissimilar contexts.

Once flagged by our mechanism, we go for a manual inspection of the permis-

sion usage. We first go through the source code to see what the permissions are

being used for. In case of RECEIVE SMS, we conclude the usage as legitimate as

account kit is used for One Time Password (OTP) verification. Next, we move on to

READ SMS and READ CONTACT. We find that Pathao retrieves the complete list

of the SMSs and contacts from the device. Analysing its network traffic reveals that

the information is uploaded right away after the permissions are granted.

Interestingly, Pathao justified their actions by attributing the need of SMS per-

mission to OTP verification. Even if it is true, the app still used the permission for a

different purpose (different context in our methodology) in a malicious way. However,

as our analysis reveals, the OTP is performed by Facebook account kit that doesn’t

need the SMS permission to validate the user unless the Google Play Services is not

installed in the device [1].

We believe that Pathao is a strong case of permission abuse in dissimilar contexts.
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Figure 10: Cosmo White app requesting SMS permission for OTP verification

It uses the granted permissions in unexpected/malicious contexts, while still being

active as a regular app in the Google Play Store. Even VirusTotal considers this app

as benign whereas our mechanism flagged it for potential violation. This procedure

can be followed for other apps early in their vetting process before they are made

available in the Google Play Store.

5.5 Case Study 2

We discuss another case study of how our flagging mechanism can be useful in identi-

fying seemingly benign apps that use permissions maliciously. We discuss a personal

finance app named Cosmo White.

Cosmo White got flagged for two dissimilar usage contexts. Static analysis reveals

that SMS permission is requested in an Activity context and used in a background

Service context. We then manually inspect the app to determine the purpose the

SMS permission. Figure 10 shows the permission request prompt for the SMS per-

mission when the app is launched. It seems the SMS permission is really required

from the given context of the app (i.e., OTP verification).

However, manual inspection of the code reveals that the OTP verification is not

performed by SMS at all. We find that when the SMS permission is granted, the
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app starts a background Service that collects all the messages from the device and

then sends them to their server. The OTP verification process succeeds as soon as

the SMSs are uploaded to the server. Cosmo White contains an input field where the

users can manually input their OTP verification code (if they don’t want to grant the

SMS permission). However, the decompiled source code reveals that the value of this

input field is never used for OTP. The user given input will never work unless it is

‘1234’ (hard-coded in the app).

5.6 Install-time Behaviour

We find a number of apps that request all the permissions during app launch with

13% apps having permission prompts in their LAUNCHER Activity. These apps show

the typical permission request behaviour of the install-time model.
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Figure 11: Rationale displayed by apps for permission requests
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If we consider requesting all the permissions in one context - not necessarily in the

LAUNCHER Activity alone, 15% apps request the required permissions in the same

context. Although, not exactly behaving like an app targeted for the install-time

model, these app simply ask for all permissions at once.

5.7 Permission Rationale

Only 5% apps in our dataset show rationale before requesting a permission

(if the user previously denied it). Figure 11 shows the permissions for which

apps show rationales. Apps show rationales for READ EXTERNEL STORAGE,

WRITE EXTERNEL STORAGE ACCESS FINE LOCATION and CAMERA per-

missions the most.

As previously noted (see Section 5.2) in the discussion of multiple request con-

texts and dissimilar contexts, apps show rationales for storage permissions the most.

Although, the overall percentage of rationales is not noteworthy, evidently, apps are

more conscious about accessing the storage and camera than any other resources.
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Chapter 6

Discussion and Future Work

6.1 Discussion

This thesis presents the first large-scale study of the contextual differences in Android

apps in the runtime permission model. We present ContextDroid, a static analysis

tool that extracts the contexts in which apps request and use dangerous permissions.

Our findings suggest that the apps are far from being context aware while requesting

for the dangerous permissions at the right time.

Permissions are used in various contexts where there are no permission prompts

shown. We identify dissimilarity in the usage contexts in 34.36% of the apps. While

such dissimilarity can be a attributed to various non-malicious reasons such as devel-

oper negligence or app functionality, we find that they can also be linked to malicious

behaviour.

Our analysis shows that apps are more context aware about specific resources

than others. Overall, we find that Storage and Camera resources are handled with

caution in terms of contextual use by the apps. The ratio of dissimilar contexts for

these permissions are lower than that of others. This is also complemented by the

fact that apps show more rationales for these permissions.

In our flagging mechanism, we do not classify the apps as malware, as they were

- at some point in time, uploaded to the Google Play Store and survived there (at

least for a period of time). Our primary focus is to identify apps that are potentially

using permissions in unexpected contexts in the runtime-model. It is possible and

in fact, quite prevalent that a permission can be legitimately used across different
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functionalities within an app.

However, we find that using permissions in many and dissimilar contexts can be

connected to maliciousness to an extent. Our app flagging mechanism that is simply

based on the best practices of permission request and usage in the runtime model

shows promise. Comparing our results with the detection rate of VirusTotal shows

that using permissions in multiple and dissimilar context can indeed be malicious.

Apps flagged by our methodology overlap with 64.70% of the VirusTotal detected

apps.

We identify apps that behave in a similar fashion compared to the old install-

time model. 13% apps request all the dangerous permissions that they need

when they are first launched. The percentage of apps showing rationale explain-

ing the purpose of the permission usage is also negligible. Apart from a few (e.g.,

WRITE EXTERNEL STORAGE), the reason behind the usage of permissions is not

communicated to the user even if the user denied the request previously.

6.2 Limitations and Future Work

When defining context, we do not consider the environmental attributes (e.g., device

is locked or not). Previous research identify apps that use such attributes to trigger a

behaviour to be outright malware [32]. As our focus is on regular apps and to identify

whether runtime-model has changed the way permissions are used, we mainly consider

the type of component and their relationship (e.g., Foreground - Background) to define

unexpected contexts.

In this thesis, we identified foreground-background component relationship. Con-

textDroid can be further extended to establish relationship between similar type of

components (e.g., Activity-Activity) to get finer-grained insight and we leave it as a

future work.

Our definition of context does not take into account the apps’ feature. Our ap-

proach is based on quantity and similarity rather than necessity. To infer what the

users might consider as unexpected behaviour is non-trivial and varies greatly depend-

ing on the how they view the importance of their privacy [30]. While a finer-grained

approach can be taken to further differentiate the context, we believe that our def-

inition provides an overall view of how permissions are used in various components
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(contexts in our definition) by the apps.

We only identify permission rationale in methods or callees of the methods where

a permission is requested and the shouldShowRequestPermissionRationale() API is

called. While this ensures that we identify whether apps show any rationale in case

of a previous rejection by the users, it does not cover all the scenarios. For example,

it is possible that the app shows a rationale outside of this workflow, even before

requesting the permissions. In such cases, our methodology does not identify whether

a rationale is shown. Besides, we do not consider what kind of rationale is shown for

a particular permission. Identifying the meaning of the rationale message would need

natural language processing that is out of the scope of this thesis.

We could not identify request and usage contexts of all the apps in our dataset.

Furthermore, we could not identify the contexts for all the permissions in an app.

It is non-trivial to identify at scale whether the permission usage contexts are not

identified or the permissions are not used at all. Apps often specify permissions in

the AndroidManifest without actually using them [20].

We randomly select 25 apps for which we could not identify the request or usage

contexts. We identify several reasons after manually inspecting the apps. We find

factors such as unused permissions listed in the manifest, use of reflection based

libraries to request/use permissions, use of permissions in the native code, analysis

timeout or exception occurred during analysing broken or incompatible (e.g., with

FlowDroid) APKs. Moreover, we find instances of third-party libraries integrated

with the apps that only check whether a permission is granted or not without explicitly

requesting that permission. These libraries use a permission only if the host app has

been granted the permission.

In addition, ContextDroid cannot identify the APIs that are protected by dan-

gerous permissions and the APIs for permission requests inside methods that are not

included in the call graph. To address this limitation, we propose an extended call

graph that identifies obfuscated Fragment and API. However, we do not consider

advanced forms of obfuscation and leave it as future work. We identify sensitive

API calls based on permission mappings from prior work. If an API is missing in the

mapping list, ContextDroid will fail to identify the usage of the associated permission.

ContextDroid can be extended to work in collaboration with a dynamic analysis

tool to overcome the limitations of not identifying all request and usage contexts.
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ContextDroid’s output can be used to trigger the specific components where there is

a permission prompt shown or a resource is accessed. By using this targeted dynamic

execution, ContextDroid’s output can be validated and if there are any requests or

usage that could not be previously identified, can be found. The combined list from

the static and dynamic analysis would provide a comprehensive list of contexts.
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