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Abstract

Network design under uncertainty and demand elas-

ticity

Carlos Zetina, Ph.D.

Concordia University, 2018

Network design covers a large class of fundamental problems ubiquitous in the

fields of transportation and communication. These problems are modelled mathe-

matically using directed graphs and capture the trade-off between initial investment

in infrastructure and operational costs. This thesis presents the use of mixed inte-

ger programming theory and algorithms to solve network design problems and their

extensions. We focus on two types of network design problems, the first is a hub

location problem in which the initial investments are in the form of fixed costs for

installing infrastructure at nodes for them to be equipped for the transhipment of

commodities. The second is a fixed-charge multicommodity network design problem

in which investments are in the form of installing infrastructure on arcs so that they

may be used to transport commodities.

We first present an extension of the hub location problem where both demand and

transportation cost uncertainty are considered. We propose mixed integer linear pro-

gramming formulations and a branch-and-cut algorithm to solve robust counterparts

for this problem. Comparing the proposed models’ solutions to those obtained from

a commensurate stochastic counterpart, we note that their performance is similar in

the risk-neutral setting while solutions from the robust counterparts are significantly

superior in the risk-averse setting.

We next present exact algorithms based on Benders decomposition capable of

solving large-scale instances of the classic uncapacitated fixed-charge multicommod-
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ity network design problem. The method combines the use of matheuristics, general

mixed integer valid inequalities, and a cut-and-solve enumeration scheme. Computa-

tional experiments show the proposed approaches to be up to three orders of mag-

nitude faster than the state-of-the-art general purpose mixed integer programming

solver.

Finally, we extend the classic fixed-charge multicommodity network design prob-

lem to a profit-oriented variant that accounts for demand elasticity, commodity se-

lection, and service commitment. An arc-based and a path-based formulation are

proposed. The former is a mixed integer non-convex problem solved with a general

purpose global optimization solver while the latter is an integer linear formulation

with exponentially many variables solved with a hybrid matheuristic. Further anal-

ysis shows the impact of considering demand elasticity to be significant in strategic

network design.
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Chapter 1

Introduction

Networks have played an important role in both the advancement of theory and

application. Their use is ubiquitous in several fields ranging from engineering, chem-

istry, physics, production and manufacturing, telecommunications, and transporta-

tion. Their mathematical abstraction, known as graphs, permeated the fields of

applied mathematics, computer science and operations research leading to significant

theoretical progress. They played an important role in the development of compu-

tational complexity theory, representing many of the first twenty-one NP-complete

problems presented by Richard Karp and leading to the development of elegant results

such as the blossom algorithm by Jack Edmonds and the maximum flow/minimum

cut theorem by Lester Ford, Ray Fulkerson and George Dantzig. The study of classic

network problems has greatly accelerated our progress in modelling and understand-

ing the world. Addressing more complex and realistic extensions is thus a promising

avenue of research with the potential of leading to theoretical and application break-

throughs.

Network design problems incorporate the decisions of investing in infrastructure

and exploiting it to render a service. They lie at the heart of strategic and tactical

planning in areas such as personnel scheduling, logistics and service network design,
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healthcare, and transportation. Network design problems are defined on a directed

graph G = (N,A) where N is a set of nodes, A is a set of arcs and K is a set of

commodities each defined by the tuple (ok, dk,Wk) representing the origin, destina-

tion, and demand quantity of a commodity k ∈ K, respectively. This notation will be

used throughout the entire thesis independent of the particular variant or extension

being studied. We focus on two types of network design problems, the first is hub

location in which the initial investments are in the form of fixed costs for installing

infrastructure at nodes for them to be equipped for the transhipment of commodities.

The second is fixed-charge multicommodity network design in which investments are

in the form of installing infrastructure on arcs so that they may be used to transport

commodities.

This thesis addresses three main aspects of network design: parameter uncer-

tainty, demand elasticity, and computational efficiency. The first two are addressed

by extending the assumption of known fixed parameter values (e.g. demand quan-

tity and transportation costs) with uncertainty sets and gravity models. These are

modelled using mixed integer programs and solved using algorithms tailored to the

corresponding formulation. On the other hand, computational efficiency is addressed

by solving large-scale instances of a fundamental network design problem using ex-

act algorithms that combine decomposition methods, matheuristics, general mixed

integer cuts and cut-and-solve/local branching enumeration schemes.

The contributions of this thesis can be categorized as follows:

� Problem modelling.

– The development and solution of robust counterparts for hub location

problems considering demand and transportation cost uncertainty both

separately and, for the first time, simultaneously.

– The creation of a new line of research dealing with the incorporation of
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demand elasticity to strategic, long-term fixed-charge network design.

� Algorithmic development.

– The adaptation of general mixed integer cuts to algorithms for large-scale

optimization such as Benders decomposition.

– The combination of a local branching enumeration scheme and Benders

decomposition.

– The presentation of a hybrid matheuristic that combines metaheuristics

and concepts from column generation.

� Managerial insights

– Evidence of the stable performance of solutions from robust counterparts

across both risk-averse and risk-neutral settings.

– Analysis of the impact of incorporating demand elasticity in strategic net-

work design.

This thesis consists of four more chapters, three of which correspond to manuscripts

submitted for publication in the peer-reviewed journals Computers & Operations Re-

search and Transportation Research Part B: Methodological. Chapter 2 presents an

extension of the hub location problem where both demand and transportation cost

uncertainty are considered. These are modelled with mixed integer linear program-

ming formulations and solved using a branch-and-cut algorithm. A comparison of

the proposed models’ solutions to those obtained from a commensurable stochastic

variant is done to obtain insights on the nuances of both approaches. Chapter 3 pro-

poses exact algorithms based on Benders decomposition capable of solving large-scale

instances of the classic uncapacitated fixed-charge multicommodity network design

problem. The methods combine the use of several mixed integer programming tools

including matheuristics, general mixed integer cuts for a Benders reformulation, and

3



a cut-and-solve/local branching enumeration scheme. Computational experiments

show the proposed algorithms to be up to three orders of magnitude faster than the

state-of-the-art general purpose mixed integer programming solver.

Chapter 4 extends the classic fixed-charge multicommodity network design prob-

lem to a profit-oriented variant that accounts for demand elasticity, commodity se-

lection, and service commitment. This line of research seeks to break the current

paradigm of considering parameter uncertainty as a characteristic independent of the

decisions taken within the optimization process. An arc-based and a path-based for-

mulation are proposed. The former is a mixed integer non-convex problem solved

with a general purpose global optimization solver while the latter is an integer lin-

ear formulation with exponentially many variables solved with a hybrid matheuristic.

An analysis on the impact of considering demand elasticity shows it to be an im-

portant factor often ignored in strategic network design. Finally, Chapter 5 presents

conclusions and potential impact of the research results presented in this thesis.
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Chapter 2

Robust Uncapacitated Hub

Location

Abstract

In this paper, we present robust counterparts for uncapacitated hub location prob-

lems in which the level of conservatism can be controlled by means of a budget of

uncertainty. We study three particular cases for which the parameters are subject

to interval uncertainty: demand, transportation cost, and both simultaneously. We

present mixed integer programming formulations for each of these cases and a branch-

and-cut algorithm to solve the latter. We present computational results to evaluate

the performance of the proposed formulations when solved with a general purpose

solver and study the structure of the solutions to each of the robust counterparts.

We also compare the performance between solutions obtained from a commensurable

stochastic model and those from our robust counterparts in both risk neutral and

worst-case settings.
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2.1 Introduction

In many transportation, telecommunications and computer networks, direct routing of

commodities between a large number of origin-destination (O/D) pairs is not possible

due to economic and technological constraints. Instead, hub-and-spoke networks are

commonly used to connect O/D pairs so as to efficiently route flows by using a small

number of links. The key feature of these networks is the use of centralized units,

known as hub facilities, for consolidation, sorting and transshipment purposes. Hub

location problems (HLPs) consider the design of hub-and-spoke networks by locating a

set of hub facilities, activating a set of inter-hub links, and routing a predetermined set

of commodities through the network while optimizing a cost-based (or service-based)

objective.

Applications of HLPs in the design of transportation and distribution systems

are abundant. These include air freight and passenger travel, postal delivery, ex-

press package delivery, trucking, and rapid transit systems. Since the seminal work

of O’Kelly [143], hub location has evolved into a rich research area. Early works

focused mostly on a first generation of HLPs which are analogue to fundamental dis-

crete facility location problems, while considering a set of assumptions (hubs fully

interconnected, no direct connections, constant discount factor, all commodities must

be routed, etc.) that allow to simplify network design decisions [see, 40, 46, for a dis-

cussion]. Recent works have studied more complex models that relax some of these

assumptions and incorporate additional features of real-life applications. For instance,

hub arc location problems (HALPs) [41] extend HLPs by relaxing full interconnection

of hub nodes and incorporating hub arc selection decisions. Hub network design

problems with profits [4] further extend HALPs by integrating within the decision-

making process additional network design decisions on the nodes and commodities

that have to be served. Other models consider: the design of multimodal networks

[5, 164], competition and collaboration [129, 145], capacitated networks [51, 57], flow
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dependent discounted costs [144, 169], and the design of particular network topolo-

gies [52, 134], among other things. We refer the reader to Campbell and O’Kelly [40],

Zanjirani Farahani et al. [178], and Contreras [46] for recent surveys on hub location.

In most HLPs considered in the literature, the input parameters are assumed to be

known and deterministic. In practice, however, this assumption is unrealistic. Long-

term strategic decisions such as the location of hub facilities have to be made under

high uncertainty on future conditions for relevant parameters (i.e., costs, demands

and distances) that have a direct impact on the performance of hub networks. In

some cases, some probabilistic information is known for these parameters and can be

used to minimize the total expected cost by using stochastic programming techniques.

However, in other cases, no information about their probability distributions is known

except for the specification of intervals containing the uncertain values and thus, one

must rely on robust optimization techniques to design hub networks which are robust

in the sense that they can perform well even in the worst-case scenarios that may

arise.

In this paper we show how discrete robust optimization techniques can be used

in hub location to incorporate both independently and jointly demand and trans-

portation costs uncertainties when the only available information is an interval of

uncertainty. In particular, we study several robust counterparts for one of the most

fundamental problems in hub location research, the uncapacitated hub location prob-

lem with multiple assignments (UHLP). In this problem, a predetermined set of com-

modities has to be routed via a set of hubs. It is assumed that open hubs are fully

interconnected with more effective pathways, which allow a flow-independent discount

factor to be applied to the transportation costs between hub nodes. The number of

hubs to locate is not known in advance, but a setup cost for each hub facility is

considered. It is also assumed that the incoming and outgoing flows at hubs as well

as the flow routed through each link of the network are unbounded. Commodities
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having the same origin but different destinations can be routed through different sets

of hubs, i.e., a multiple assignment strategy is allowed. Demand between O/D pairs

and transportation costs are assumed to be known and deterministic. The objective

is to minimize the sum of the hub setup costs and of demand transportation costs over

the solution network. To the best of our knowledge, the most efficient formulations

for the UHLP are those of Hamacher et al. [100], Maŕın et al. [133], and Contreras

and Fernández [47], whereas the best exact algorithm is the Benders decomposition

of Contreras et al. [50].

The main contributions of this paper are the following. We introduce three dif-

ferent robust counterparts of the UHLP. The first is the robust uncapacitated hub

location problem with uncertain demands (UHLP-D) in which demands between O/D

pairs are considered to be uncertain values lying in a known interval. The second

is the robust uncapacitated hub location problem with uncertain transportation costs

(UHLP-TC) in which the transportation costs for all links of the network are uncer-

tain values lying in a known interval and independent for each link. The third is the

robust uncapacitated hub location problem with uncertain demands and transportation

costs (UHLP-DTC) where uncertainty exists in both demands between O/D pairs

and transportation costs for all links. This problem considers that the uncertainties

of both classes of parameters are independent from each other. In these robust coun-

terparts of the UHLP, the objective is to minimize the sum of the hub setup costs

and of demand transportation costs in the worst-case scenario that may arise for the

uncertain parameters. In the spirit of Bertsimas and Sim [25], we use a budget of

uncertainty to allow decision-makers to control the desired level of conservatism in

an independent way for both demand and transportation costs.

For each of the proposed robust models, we present mathematical programming

formulations which are non-linear due to the min-max nature of the objective func-

tions. For the case of UHLP-D and UHLP-TC, we use a dual transformation to
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reformulate them as compact mixed integer linear programs (MIP) having a poly-

nomial number of variables and constraints. However, for the case of UHLP-DTC

this transformation cannot be used due to the interaction of demand and transporta-

tion costs parameters in the objective function. We show how the UHLP-DTC can

be modeled as an MIP with a polynomial number of variables but an exponential

number of constraints. As a result, we develop a simple branch-and-cut algorithm to

handle this formulation. We perform extensive computational experiments on several

sets of benchmark instances to assess the computational performance of the proposed

MIP formulations when solved with a general purpose solver and our branch-and-cut

algorithm. We study the effects of the intervals of uncertainty and of the budgets of

uncertainty in the structure of optimal solution networks. In addition, we compare

the performance between solution networks obtained from a deterministic model, a

commensurable stochastic model and those from our robust counterparts in both risk

neutral and worst-case settings.

The remainder of the paper is organized as follows. Section 2.2 provides a liter-

ature review on hub location problems dealing with uncertainty. In Section 2.3 we

introduce the three considered robust counterparts of the UHLP. Section 2.4 describes

the computational experiments we have run. The results produced by each model are

presented and analyzed. Conclusions follow in Section 2.5.

2.2 Literature review

Discrete facility location problems under uncertainty have been widely studied in the

literature. Louveaux [125], Snyder [167], and more recently Correia and Saldanha-

da-Gama [56] provide comprehensive reviews on modeling approaches for stochastic

and robust facility location. However, much less work has been done to study how

different uncertainty aspects can be taken into account when designing hub networks.
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One of the first is the paper by Marianov and Serra [130] for an application in the

airline industry. The authors model hubs as M/D/c queuing systems to derive an

analytic expression for the probability of a number of customers in the system. This

expression is then represented in the model as a constraint that limits the number

of airplanes in the system. Sim et al. [166] consider the p-hub center problem with

travel times following a normal distribution. The authors use chance constraints to

incorporate service level guarantees. Their model takes into account the uncertainty

in travel times when designing the network so that the maximum travel time through

the network is minimized.

Yang [176] proposes a two-stage stochastic model for air freight hub location under

a finite set of possible demands. The locational decisions are treated in the first stage

while the routing is the second stage. Data from the air freight market in Taiwan

and China is used to test the proposed model. Contreras et al. [50] show how the

UHLP can be stated as a two-stage integer stochastic program with recourse in the

presence of uncertainty in demands and transportation costs. Three different variants

are introduced. The first assumes demand between each O/D pair to be stochastic.

The second considers that uncertainty in transportation costs is given by a single

parameter equally influencing all links of the network. The third focuses on the more

general case in which the uncertainty of transportation costs is independent for each

link of the network. It is shown that the first two variants are equivalent to their

associated expected value problem in which uncertain demand and transportation

costs are replaced by their expectation. However, this situation does not hold for

the third case. The authors present a sample average approximation method based

on Monte Carlo simulation to obtain an estimate on the stochastic solution. Alumur

et al. [6] study the uncapacitated hub location problem both with single and multiple

assignments under uncertain setup costs for the hubs and demands. The first class

of models deals with uncertainty in the setup costs assuming there is no known

10



probability distribution for their random parameters. The authors propose the use of

a min-max regret model where the objective deals with the minimization of the worst-

case regret over a finite set of scenarios. The second class focuses on uncertainty in

demand and uses a two-stage stochastic program with recourse. However, as shown

in Contreras et al. [50], these problems are actually equivalent to their associated

expected value problem. The third class considers uncertainty in both setup costs

and demands and are modeled as two-stage min-max regret programs with recourse.

Ghaffari-Nasab et al. [92] present robust capacitated hub location problems with

both multiple and single assignments in which demand uncertainty is modeled with

an interval of uncertainty. The authors consider the uncertainty in the capacity con-

straints and use a budget of uncertainty for each of them. However, they do not

consider demand uncertainty in the objective function and use the nominal demand

value instead. Habibzadeh Boukani et al. [99] study the same capacitated hub loca-

tion problems with multiple and single assignments but now the uncertainties relate

to the setup costs and capacities. The authors present min-max regret models in-

volving five scenarios for each uncertain parameter. Shahabi and Unnikrishnan [165]

present robust counterparts for uncapacitated hub location problems with both mul-

tiple and single assignments with demand uncertainty. Demand is assumed to be

affinely dependent on a known mean and a number of independent random vari-

ables, i.e., ellipsoidal demand uncertainty. The authors propose mixed integer conic

quadratic programming formulations and a linear relaxation strategy. Given the in-

herent difficulty for solving this class of mathematical programs, instances with up

to 25 nodes are solved with a general purpose solver. Merakli and Yaman [136] study

robust uncapacitated p-hub median problems with multiple assignments under poly-

hedral demand uncertainty. The authors use a hose uncertainty model and a hybrid

model to characterize demand uncertainty. The former considers that the only avail-

able information is an upper limit on the total flow adjacent to each node, while the
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latter incorporates lower and upper bounds on each O/D flow. The authors present

MIP formulations and a Benders algorithm to solve these problems for instances with

up to 150 nodes. We would like to highlight that, compared to our proposed mod-

els, none of these papers dealing with robust optimization in hub location considers

uncertainty in transportation costs and its interaction with demand uncertainty.

Demand uncertainty has also been studied when designing hub networks from

a congestion perspective. Elhedhli and Hu [72] study a hub location model that

considers hub congestion costs, caused by delays at hub facilities, as an exponential

function of the hub flow. Elhedhli and Wu [73] propose a different approach in which

hubs behave as a queue with exponential service rate determined by its capacity. The

congestion cost is modeled using a Kleinrock average delay function. de Camargo and

Miranda [67] extend the previous models by considering two different perspectives:

a network owner perspective in which the the goal is to design a network with the

least congestion cost, and a user perspective where the goal is the minimization of

the maximum congestion effect. Other works have considered reliability issues. An

et al. [7] and Azizi et al. [11] present models in which disruptions at hub facilities are

taken into account when designing hub networks. The proposed models mitigate the

resulting hub unavailability by using backup hubs and alternative routes for demands.

Finally, Sun and Zheng [168] study a probability model devised to identify promising

hub locations for liner shipping networks.

We conclude this section with a brief overview of the most relevant methodological

developments in the field of robust discrete optimization pertinent to our work. This

field currently consists of two modelling approaches: static and adaptive robust opti-

mization [see 26]. In the former, all decisions must be taken before the uncertainty is

revealed while in the latter, first presented in Ben-Tal et al. [21], some decisions are

taken after. Bertsimas and Goyal [24] and Goemans and Vondrák [95] show that the

value of this adaptability is bounded under some assumptions. However, adaptive

12



approaches are expected to significantly outperform the static models in multiperiod

problems.

Bertsimas and Sim [25] develop static robust models in which the level of con-

servatism is controlled by a budget of uncertainty. These models can be solved by

either using duality theory to obtain a compact robust counterpart with polynomi-

ally many constraints and variables or a cutting plane method as in Bienstock and

Özbay [30], where only a finite set of the infinitely many scenarios are considered at

a time and more are considered as the algorithm progresses by solving the so-called

adversarial problem. Fischetti and Monaci [77] compare the performance of cutting

plane methods and robust counterpart reformulations. They note that cutting plane

methods are preferable for linear programs while robust counterparts perform better

for mixed integer problems due to additional preprocessing and cut generation tools

available in commercial solvers. A more extensive and systematic comparison of these

approaches can be found in Bertsimas et al. [28].

Adaptive robust approaches provide a less conservative framework by allowing

some decisions to be made after uncertain parameters have been revealed. Bertsimas

et al. [27] and Lorca et al. [123] apply this approach in unit commitment problems us-

ing two-stage and multistage models, respectively, whereas Gabrel et al. [88] apply it

to location-transportation problems. Recourse functions of two-stage adaptive robust

models are bilinear programs with linear constraints and are thus in general NP-hard.

Cutting plane methods are usually employed to solve the complete robust models ex-

actly. The recourse function is solved by either outer approximation or reformulated

as an MIP. Zeng and Zhao [180] propose a framework in which columns and rows

are generated simultaneously. Their computational experiments show significant im-

provements with respect to solution time and iterations required to converge. We

refer to Gabrel et al. [88], Bertsimas et al. [26] and Gorissen et al. [96] for overviews

on the state of the art in robust optimization.
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2.3 Robust uncapacitated hub location

Before presenting the considered robust models, we formally define their deterministic

counterpart, the UHLP. Let G = (N,A) be a complete directed graph where N is

the set of nodes and A the set of arcs. Without loss of generality, let N represent

the set of potential hub locations, and K the set of commodities each with an origin,

destination in N and demand, denoted by the triplet (o(k), d(k),Wk). For each node

i ∈ N , fi is the fixed setup cost for locating a hub. For each (i, j) ∈ A the distances,

or transportation costs dij ≥ 0 are assumed to be symmetric and satisfy the triangle

inequality. The UHLP consists of locating a set of hub facilities and of determining the

routing of commodities demand through the hubs, with the objective of minimizing

the total setup and transportation cost.

In the case of UHLP, given that open hubs are fully interconnected at no cost,

distances satisfy the triangle inequality, and direct connections between non-hub

nodes are not allowed, every O/D path will contain at least one and at most two

hubs, i.e., Pak = (o(k), a1, a2, d(k)), where a = (a1, a2) ∈ A is a hub arc and

a1, a2 is the ordered pair of hubs to which o(k) and d(k) are assigned, respectively.

The unit transportation cost for routing commodity k along path Pak is given by

Cak = χdo(k)a1 + αda1a2 + δda2d(k), where χ, α and δ represent the flow-independent

collection, transfer and distribution costs along the path. To reflect economies of

scale between hub nodes, we assume that α < χ and α < δ.

For each i ∈ N , we define binary location variables zi equal to 1 if and only if a

hub is located at i. For each k ∈ K and a ∈ A, we also introduce continuous routing

variables xak equal to the fraction of commodity demand Wk routed via first hub a1

and second hub a2. The UHLP can be stated as follows [100]:
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minimize
∑
i∈N

fizi +
∑
k∈K

∑
a∈A

WkCakxak (2.1)

subject to
∑
a∈A

xak = 1 ∀k ∈ K (2.2)

∑
a∈A:i∈a

xak ≤ zi ∀k ∈ K, i ∈ N (2.3)

zi ∈ {0, 1} ∀i ∈ N (2.4)

xak ≥ 0 ∀a ∈ A, k ∈ K. (2.5)

The first term of the objective is the total setup cost of the hubs and the second

term is the total transportation cost. Constraints (2.2) ensure that each commodity

demand is fully routed. Constraints (2.3) prohibit commodities from being routed via

a non-hub node, whereas (2.4)-(2.5) are the standard integrality and non-negativity

constraints. This formulation contains |N |+ |K||A| variables and |K|+ |N ||K| con-
straints. Given that there are no capacity constraints on the hubs or links of the

network, there always exists an optimal solution of (2.1)-(2.5) in which all xak are

integer. That is, each k is fully routed on a single path. As we will later see in

Section 2.4, this property does not necessarily hold for some of the studied robust

counterparts.

We next present three robust variants of UHLP that incorporate uncertainty on

demands Wk and transportation costs Cak. We note that an interesting characteristic

of formulation (2.1)-(2.5) is that the uncertain parameters only appear in the objective

function and not in the constraints defining the feasible region. As a consequence,

when using (2.1)-(2.5) as a basis to model the robust counterparts the uncertain

parameters will not affect the feasibility of the problem. This is not necessarily

true when using other existing MIP formulations for the UHLP as the demand and

transportation costs do appear in the constraint matrix [46].
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In a similar fashion to the approach used in Bertsimas and Sim [25], we use a

budget of uncertainty to allow decision-makers to control the desired level of conser-

vatism. However, instead of defining a budget for the maximum number of variables

for which the objective coefficient is allowed to differ from its nominal value, as in

Bertsimas and Sim [25], we use two budgets of uncertainty to control the maximum

number of commodity demands and transportation costs, respectively, whose value

is allowed to differ from its nominal value. This is an important modeling feature

due to the fact that objective coefficients of xak variables are defined as functions of

several uncertain parameters, i.e., WkCak = Wk(χdd(k)a1 + αda1a2 + δda2d(k)). As we

will show, this makes the proper modeling of the robust counterparts more involved,

as compared to the approach of Bertsimas and Sim [25], given that each uncertain

parameter appears in several objective coefficients associated with different routing

variables Xak.

2.3.1 Case A: Uncertain demands

We consider the UHLP-D in which demand is subject to interval uncertainty. For

each commodity k ∈ K, let Wk ∈ [WL
k ,W

L
k +WΔ

k ] be the interval of uncertainty of

Wk where WL
k is its nominal value and WΔ

k ≥ 0 its deviation. Let hW denote the

uncertainty budget on the maximum number of demand parameters Wk whose value

is allowed to differ from its nominal value. The UHLP-D can be stated as:

minimize
∑
i∈N

fizi +
∑
k∈K

∑
a∈A

WL
k Cakxak + max

SW⊆K:|SW |≤hW

{
∑
k∈SW

∑
a∈A

WΔ
k Cakxak}

subject to (x, z) ∈ Θ,

where Θ = {(x, z) : (2.2)−(2.5) are satisfied}. Given a solution (x, z) ∈ Θ, the goal of

the inner maximization of the objective function is to select a subset of commodities

SW ⊆ K such that their demand perturbations WΔ
k maximize the total cost. Refor-
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mulating this inner problem as a mathematical program by introducing the binary

variable uk ∈ {0, 1} for each k ∈ K, we obtain

minimize
∑
i∈N

fizi +
∑
k∈K

∑
a∈A

WL
k Cakxak +max{

∑
k∈K

∑
a∈A

WΔ
k Cakxakuk}

subject to
∑
k∈K

uk ≤ hW (2.6)

0 ≤ uk ≤ 1 ∀k ∈ K (2.7)

(x, z) ∈ Θ.

Note that the integrality conditions of uk variables have been relaxed given that

the constraint matrix of (2.6) is totally unimodular. Let (μ, λ) denote the vector of

dual multipliers of constraints (2.6)-(2.7) of appropriate dimension. Dualizing the

inner maximization problem we obtain the following MIP formulation for the UHLP-

D:

minimize
∑
i∈N

fizi +
∑
k∈K

∑
a∈A

WL
k Cakxak +

∑
k∈K

λk + hWμ

subject to λk + μ ≥
∑
a∈A

CakW
Δ
k xak ∀k ∈ K (2.8)

λk, μ ≥ 0 ∀k ∈ K

(x, z) ∈ Θ.

The above formulation contains |K|+1 additional continuous variables and 2|K|+1

additional constraints compared to the deterministic UHLP.
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2.3.2 Case B: Uncertain transportation costs

We now consider the UHLP-TC in which transportation costs are subject to inter-

val uncertainty. For each arc (i, j) ∈ A, let dij ∈ [dLij, d
L
ij + dΔij ] be the interval of

uncertainty of dij, where dLij is its nominal value and dΔij ≥ 0 its deviation. Observe

that now each coefficient of the routing variables xak involves up to three uncertain

parameters, i.e., Cak = χdd(k)a1 + αda1a2 + δda2d(k). To simplify the exposition of the

model, the transportation cost associated to each path Pak is stated as

Cak =
∑

(i,j)∈Pak

κij
akdij =

∑
(i,j)∈A

κij
akdij,

where

κij
ak =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

χ if (i, j) = (o(k), a1) ∈ Pak,

α if (i, j) = (a1, a2) ∈ Pak,

δ if (i, j) = (a2, d(k)) ∈ Pak,

0 otherwise,

for each a ∈ A, k ∈ K and (i, j) ∈ A. In addition, for each a ∈ A and k ∈ K, we

define the nominal transportation cost as CL
ak =

∑
(i,j)∈Pak

κij
akd

L
ij. Let hd denote the

uncertainty budget of the maximum number of transportation cost coefficients whose

values are allowed to differ from their nominal value. The UHLP-TC can be stated

as:

minimize
∑
i∈N

fizi +
∑
k∈K

∑
a∈A

WkC
L
akxak + max

Sd⊆A:|Sd|≤hd

{
∑
k∈K

∑
a∈A

∑
(i,j)∈Pak∩Sd

dΔijκ
ij
akWkxak}

subject to (x, z) ∈ Θ.

Given a solution (x, z) ∈ Θ, the goal of the inner maximization is to select the

subset of arcs Sd ⊆ A whose transportation costs perturbations dΔij maximize the total

cost. Reformulating this inner problem as a mathematical program by introducing
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the binary variable wij ∈ {0, 1} for each (i, j) ∈ A, we obtain

minimize
∑
i∈N

fizi +
∑
k∈K

∑
a∈A

WkC
L
akxak +max{

∑
k∈K

∑
a∈A

∑
(i,j)∈Pak∩Sd

dΔijκ
ij
akWkxakwij}

subject to
∑

(i,j)∈A
wij ≤ hd (2.9)

0 ≤ wij ≤ 1 ∀(i, j) ∈ A (2.10)

(x, z) ∈ Θ.

Similarly to UHLP-D, the integrality conditions of wij variables can be relaxed

given that the constraint matrix of (2.9) is totally unimodular. Let (μ, λ) denote

the vector of dual multipliers of constraints (2.9)-(2.10) of appropriate dimension.

Dualizing the inner maximization problem we obtain the following MIP formulation

for the UHLP-TC:

minimize
∑
i∈N

fizi +
∑
k∈K

∑
a∈A

WkC
L
akxak +

∑
(i,j)∈A

λij + hdμ

subject to λij + μ ≥
∑
k∈K

∑
a∈A:(i,j)∈Pak

dΔijκ
ij
akWkxak ∀(i, j) ∈ A (2.11)

λij, μ ≥ 0 ∀(i, j) ∈ A

(x, z) ∈ Θ.

The above formulation contains |A|+1 additional continuous variables and 2|A|+1

additional constraints compared to the deterministic UHLP.

2.3.3 Case C: Uncertain demand and transportation costs

We now focus on the more general variant UHLP-DTC in which both demand and

transportation costs are subject to interval uncertainty. Similar to previous models,

let Wk ∈ [WL
k ,W

L
k +WΔ

k ] and dij ∈ [dLij, d
L
ij + dΔij ] denote the interval of uncertainty

19



for commodity demands and transportation costs, respectively, and hd and hW their

respective uncertainty budgets. To simplify the exposition of the proposed model, we

define

F (z, x) =
∑
i∈N

fizi +
∑
k∈K

∑
a∈A

WL
k C

L
akxak,

as the nominal cost function, i.e., set-up cost and nominal routing cost, and

R(z, x, SW , Sd) =
∑
k∈SW

∑
a∈A

WΔ
k CL

akxak +
∑
k∈K

∑
a∈A

∑
(i,j)∈Pak∩Sd

κij
akW

L
k d

Δ
ijxak

+
∑
k∈SW

∑
a∈A

∑
(i,j)∈Pak∩Sd

κij
akW

Δ
k dΔijxak,

the uncertain routing cost function. Given that the coefficients of the routing vari-

ables xak contain the multiplication of the demand Wk and some transportation

costs dij, three different scenarios may arise and those correspond to each term of

R(z, x, SW , Sd). The first term represents an additional cost caused by an increase

only in demands Wk, whereas the second term relates to an additional cost due to an

increase only in transportation costs dij. The third term corresponds to the situation

in which there is an additional cost caused by a simultaneous increase of both demand

and transportation costs. The UHLP-DTC can be stated as:

minimize F (z, x) + max
Sd⊆A,|Sd|≤hd,SW⊆K,|SW |≤hW

R(z, x, SW , Sd)

subject to (x, z) ∈ Θ.

For a given solution (x̄, z̄) ∈ Θ, the goal of the inner maximization of the objective

function is to select a subset of commodities SW ⊆ K and a subset of arcs Sd ⊆ A,

such that their perturbations maximize the total cost. This inner program, denoted
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as SP , can be reformulated as the following mathematical program:

(SP ) maximize
∑
k∈K

∑
a∈A

WΔ
k CL

akx̄akuk +
∑
k∈K

∑
a∈A

∑
(i,j)∈Aak

κij
akW

L
k d

Δ
ij x̄akwij

+
∑
k∈K

∑
a∈A

∑
(i,j)∈Aak

κij
akW

Δ
k dΔij x̄akukwij

subject to
∑
k∈K

uk ≤ hk

∑
(i,j)∈A

wij ≤ hd

uk ∈ {0, 1} ∀k ∈ K,

wij ∈ {0, 1} ∀(i, j) ∈ A.

SP is a nonlinear integer program which can be linearized using standard tech-

niques. However, it can also be stated as the following combinatorial optimization

problem. Given a bipartite graph B = (K ∪A,E) where each node in K and A has a

profit ak and bij, respectively, and each edge in E has a profit cijk, select node subsets

S1 ⊆ K and S2 ⊆ A whose cardinality do not exceed |S1| ≤ hW and |S2| ≤ hd, so

as to maximize the total profit, given by the sum of the profits of the nodes in S1

and S2 and of the edges e ∈ S1 × S2 ⊆ E. SP is thus a generalization of the heaviest

k-subgraph problem [39].

Proposition 1. The SP problem is NP-hard.

Proof The result follows by reduction from the heaviest k-subgraph problem, which

is known to be NP-complete even for the case of bipartite graphs [see 55]. �

The above result implies that we cannot use a dual transformation as in UHLP-D

and UHLP-TC to obtain a MIP formulation for UHLP-DTC. However, we can still
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reformulate it as an MIP by introducing an additional continuous variable y that

keeps track of the maximum transportation cost associated with different sets SW

and Sd. The UHLP-DTC can thus be formulated as the following MIP:

minimize F (z, x) + y

subject to y ≥ R(z, x, SW , Sd) ∀Sd ⊆ A, ∀SW ⊆ K, |Sd| ≤ hd, |SW | ≤ hW (2.12)

y ≥ 0 (2.13)

(x, z) ∈ Θ.

Observe that the above formulation contains a polynomial number of variables - it

only contains one extra continuous variable with respect to the deterministic UHLP.

However, it requires an exponential number of constraints (2.12) whose separation

problem is equivalent to the solution of SP, which is NP-hard. Therefore, we resort

to a cutting-plane algorithm to handle this formulation with a general purpose solver.

Details are given in the next sub-section.

2.3.4 A cutting plane algorithm for the UHLP-DTC

To solve the more challenging UHLP-DTC using the MIP formulation given in Section

3.3, we need to handle the huge number of robust constraints (2.12) in an efficient

way. For this reason, we develop a branch-and-cut algorithm based on this MIP. The

idea is to solve its LP relaxation with a cutting-plane algorithm by initially relaxing

all of constraints (2.12) and then iteratively adding only those violated by the current

LP solution. When no more violated inequalities (2.12) exist, within a threshold

value of 10−4, or when the objective function has not improved by at least 0.5% in

the last seven iterations, we resort to CPLEX for solving the resulting formulation by

enumeration, using a call-back function for generating additional violated inequalities

at some nodes of the enumeration tree.

22



In our implementation, we solve the following linearized version of SP with CPLEX

to find the most violated inequality, if any.

(SP ) maximize
∑
k∈K

∑
a∈A

WΔ
k CL

akx̄akuk +
∑
k∈K

∑
a∈A

∑
(i,j)∈Aak

κij
akW

L
k d

Δ
ij x̄akwij

+
∑
k∈K

∑
a∈A

∑
(i,j)∈Aak

κij
akW

Δ
k dΔij x̄akvijk

subject to
∑
k∈K

uk ≤ hk

∑
(i,j)∈A

wij ≤ hd

vijk ≤ uk ∀(i, j) ∈ A, k ∈ K (2.14)

vijk ≤ wij ∀(i, j) ∈ A, k ∈ K (2.15)

vijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (2.16)

uk ∈ {0, 1} ∀k ∈ K,

wij ∈ {0, 1} ∀(i, j) ∈ A.

The linearized model is obtained by substituting the nonlinear term ukwij with

the binary variable vijk and including constraints (2.14), (2.15) and (2.16). The usual

linearization constraints uk + wij − vijk ≤ 1, ∀k ∈ K, (i, j) ∈ A, are not necessary

because of the non-negative coefficients of the vijk variables and the maximization of

the objective function.

Note that the parameters of SP depend solely on the routes taken by commodities

through the network. This means that even for a fixed set of open hubs there exists

an exponential number of SP problems defined by the possible routings of this hub

configuration. To avoid solving SP a substantial number of times, we do so at most

once for fractional solutions (z̄, x̄, ȳ) obtained from nodes of the enumeration tree at

a depth divisible by three. This rule avoids solving SP an excessive number of times

and prevents the underlying LPs from having a large number of dense constraints
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(2.12).

The cutting plane algorithm used to solve UHLP-DTC is formally described in

Algorithm 1 where the following notation is used: Ξ is the pool of constraints (2.12)

generated thus far, δ and Depth are the identifier and depth of the enumeration tree

node that is currently being explored, respectively. At each node δ, we define Ψ(δ) as

the set of branching constraints and ρ(δ) as the number of constraints of type (2.12)

added at δ. Let UHLP-DTCLP (δ) denote the MIP formulation of UHLP-DTC where

constraints (2.12) are replaced by Ξ, integrality of the location variables z is relaxed,

and the constraints in Ψ(δ) are added. Finally, tol is a given cut tolerance and φ is a

function whose value is 0 if the objective function value of UHLP-DTCLP (0) has not

improved by at least 0.5% in the last seven iterations and 1 otherwise.

Algorithm 1 Branch-and-cut algorithm for UHLP-DTC

Require: 0: Initialization
δ = 0, Ξ = ∅, Ψ(δ) = ∅, Depth = 0, ρ(δ) = 0, φ = 1, tol=1E-4

Require: 1:
Solve UHLP-DTCLP (δ) and denote (z̄, x̄, ȳ)δ as the optimal solution
Update φ
if [( Depth = 0 and φ = 1 ) or ( Depth mod 3=0 and ρ(δ) < 1 ) ] then

Goto Step 2
else

Goto Step 3
end if

Require: 2:
Solve SP (z̄, x̄, ȳ)δ and denote (S∗

w(x̄), S
∗
d(x̄)) as the optimal solution

if [R(z̄, x̄, S∗
w(x̄), S

∗
d(x̄))− ȳ > tol] then

Add constraint y ≥ R(z, x, SW , Sd) to the cut pool Ξ
ρ(δ) ← ρ(δ) + 1
Goto Step 1

else
Goto Step 3

end if
Require: 3 Continue exploring the enumeration tree
if [optimality gap is > ε ] then

Update δ, Depth and Ψ(δ) accordingly and Goto Step 1
else

Stop with an ε-optimal solution
end if
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2.4 Computational Experiments

In this section we describe the extensive computational experiments we have run

in order to analyze the performance of the three studied robust counterparts of the

UHLP. This section is structured as follows. We first describe the computational

environment and the sets of benchmark instances we have used in our experiments.

In Section 2.4.1 we give insights on the impact of the level of uncertainty (worst

estimation error of the nominal value) in optimal solutions of the robust counterparts,

whereas in Section 2.4.2 we study the effect of the budgets of uncertainty hd and

hW on the solution networks and objective values. Section 2.4.3 provides numerical

results to assess the usefulness of the proposed MIP formulations when solved with a

general purpose solver and to compare the computational difficulty of the three robust

counterparts. Finally, in Section 2.4.4 we compare the performance of optimal solution

networks of the deterministic model, the robust counterparts and a commensurable

stochastic model in both worst-case and risk-neutral settings. This provides some

indication of the virtues and limitations of each approach when dealing with demand

and transportation costs uncertainty.

All experiments were run on HP servers managed by Calcul Québec and Compute

Canada with an Intel Xeon X5650 Westmere processor at 2.67 GHz and 24 GB of

RAM under Linux environment. All MIP formulations were coded in C and solved

using the callback library of CPLEX 12.6.0. We use a traditional (deterministic)

branch-and-bound solution algorithm with all CPLEX parameters set to their default

values with the exception that the number of threads was set to only one.

We have used three different sets of benchmark instances found in the literature

to construct a testbed for our experiments. The first is the well-known CAB data set

of the US Civil Aeronautics Board. These instances were obtained from the website

(http://www.researchgate.net/publication/269396247 cab100 mok). The data in the

CAB set refers to 100 cities in the US. It provides Euclidean distances between cities,
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dij, and the values of the service demand Wk between each pair of cities, where o(k) 
=
d(k). Since CAB instances do not provide the setup costs for opening facilities, we

use the setup costs fi generated by de Camargo et al. [68]. We selected the instances

with |N | = 25. The second set is the classical AP (Australian Post) set of instances,

which is the most commonly used in the hub location literature. They were obtained

from the OR library (http://people.brunel.ac.uk/�mastjjb/jeb/orlib/phubinfo.html).

Transportation costs are proportional to the Euclidian distances between 200 postal

districts in the metro Sydney area and the values Wk represent postal flows between

pairs of districts. We selected instances with |N | = 10, 20, 25, 40, and 50. Finally, the

third set is the Set I instances introduced in Contreras et al. [50] for the stochastic

counterparts of the UHLP. We used all instances within this set with |N | = 10, 20,

30, 40, and 50. For each of the considered instances in the entire testbed, the nominal

values WL
k and dLij were set to the associated deterministic values provided in each

dataset, and the collection and distribution factors χ = δ = 1. To control the size

of the generated intervals of uncertainty for WK and dij, we define an additional

parameter Ω as the maximum possible deviation of the value of each parameter. For

each k ∈ K, we independently set WΔ
k by considering WΔ

k ∼ U
[
0,ΩWL

k

]
, and for

each (i, j) ∈ A we independently set dΔij by considering dΔij ∼ U
[
0,ΩdLij

]
.

2.4.1 The Impact of Uncertainty on Optimal Solutions

We first illustrate the differences between each of the robust counterparts’ solutions

and those from the deterministic model. Using a 10-node instance from the AP data

set with Ω = 1.0 and an uncertainty budget of
√|A| and √|K| (10%), Figure 2.1

shows the resulting hub networks from the deterministic model and the three robust

counterparts. These figures also show the number of commodities routed on each arc

of the network. When this quantity is asymmetric, this information is presented as

an ordered pair where the label (a, b) on edge (i, j) with i > j is interpreted as a
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commodities routed from j to i and b commodities routed from i to j.

The first evident difference is the selection of hub nodes. Note that each model,

except UHLP-TC and UHLP-DTC, selects a different set of hubs. Another distinction

between the robust and deterministic model solutions is the number of access arcs

in the hub network. This is more palpable in the networks obtained from UHLP-TC

and UHLP-DTC where most non-hub nodes use all hubs to route commodities. This

comes as a result of a small percentage of commodities being routed on multiple paths

through the network, see Figures 2.1c and 2.1d. This is surprising given that these

problems do not consider any capacity constraints.

From a practical perspective, it is reasonable for a commodity to take multiple

paths when faced with uncertain transportation costs. This strategy would allow for

alternatives in the event that arcs on the cheapest route take their worst-case value.

As a result, unlike the deterministic and UHLP-D solutions, the number of commodi-

ties routed on the arcs of UHLP-TC and UHLP-DTC solutions is asymmetric. For

some access arcs, shown with dotted lines in Figures 2.1c and 2.1d, commodities are

only sent in one direction.

To demonstrate the value of using robust counterparts to deal with uncertainty,

we note the following. Using the deterministic model solution leads to a 13%, 20%

and 34% cost increase when 10% of the commodities, arcs, and both simultaneously

are allowed to take their worst-case value, respectively. On the other hand, the ro-

bust counterpart solutions of UHLP-D, UHLP-TC and UHLP-DTC are only 2%, 4%,

and 4% more costly than the optimal solution of the deterministic model, respec-

tively, if we assume no uncertainty exists. This shows the cost stability of networks

obtained from the proposed robust counterparts compared to that from the deter-

ministic model.
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Figure 2.1: Hub Networks of robust optimization models

For the next set of experiments we use the Set I 20-node instances with a transfer

discount factor α = 0.2. We consider a 5% and 15% uncertainty budget, equiv-

alent to a budget of (
√|A|,√|K|) and (3

√|A|, 3√|K|) respectively, for both the

number of commodities and arcs. For each value, we generate instances with Ω ∈
{0.1, 0.2, 0.3, ..., 2.0} for the three robust counterparts. We note that smaller values

of Ω correspond, on average, to narrower intervals whereas larger values to wider

intervals.

Figure 2.2 illustrates the increase in the optimal solution values (equivalent to

the total hub network cost) for the Set I instances of each robust counterpart as the

intervals of uncertainty increase in size (i.e., Ω increases). In particular, they show the

percentage increase of the optimal solution value with respect to the optimal value of
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the deterministic (or nominal) UHLP.

For the considered instance, increasing Ω implies a higher optimal value for each

of the robust counterparts. This is to be expected as larger values of Ω are associated

with the possibility of wider intervals of uncertainty. It is interesting to note how the

change in relative cost seems almost constant through the range of considered values

of Ω.
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Figure 2.2: Impact of interval of uncertainty for Set I 20-node instances with α = 0.2

Another interesting characteristic is the interaction of the robust counterparts. At

a 5% budget, UHLP-D is the least sensitive to the increase of Ω followed by UHLP-

TC and the most sensitive being UHLP-DTC. At a 15% budget, the gap in behaviour

between UHLP-D and UHLP-TC becomes smaller. In fact, the sensitivity relation is

inverted, UHLP-D appears to be slightly more sensitive to Ω than UHLP-TC. This

comes from the effect the uncertainty budget has on the robust counterparts. This is

further explored in Section 2.4.2.

2.4.2 Impact of Budget of Uncertainty on Optimal Solutions

Our modeling approach allows decision-makers to select the level of conservatism of

the robust counterparts by means of the uncertainty budgets hd and hW . For some

problems, it is unrealistic to assume that all values of the parameters will change
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and require protection against this possibility. With this in mind, we study the

effect that different uncertainty budgets have on the robust counterparts using the

20-node AP, 20-node Set I and 25-node CAB instances with Ω = 1.0 and α =

0.2. We test the models at budget values of hd ∈ {0.05, 0.1, 0.15, ...1}|A| and hW ∈
{0.05, 0.1, 0.15, ...1}|K|. As before, we analyze the effects on UHLP-D, UHLP-TC,

and UHLP-DTC with respect to the relative increase of the optimal solution value

and the set of open hubs.

Figures 2.3, 2.4a and 2.4b give for the CAB, AP and Set I instances, respectively,

the increase in the optimal solution values of each robust counterpart as the budget of

uncertainty increases. In particular, they give the percentage increase of the optimal

solution value with respect to the optimal value of the deterministic UHLP.

We note that while increasing the budget of uncertainty for UHLP-D leads to a

greater optimal value for all budgets, for UHLP-TC there is a point after which the

effect of increasing the budget becomes null and the objective value remains the same.

In fact, we note from the figures that this crucial point tends to be at small values of

the budget of uncertainty hd. This can be partially explained by the fact that hub-and-

spoke networks only use a small percentage of the total arcs of the underlying network

in an optimal solution, thereby nullifying the additional protection acquired by using

a higher budget. When taking into account both demand and transportation cost

uncertainty in UHLP-DTC, we note a somehow similar behaviour. As the uncertainty

budget becomes larger, the rate of increase in the objective function value decreases,

although it does not completely become null before reaching a budget of 100%.

Another interesting characteristic is the interaction between these models. In

particular, that between UHLP-D and UHLP-TC. Note that at budgets close to 0,

the optimal value of UHLP-TC is greater than that of UHLP-D. However, as the

budgets increase past the critical point at which the optimal value of UHLP-TC

becomes stable, the optimal value of UHLP-D draws closer to that of UHLP-TC as
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seen in Figure 2.3 for the CAB instance. In the AP and Set I instances, Figures 2.4a

and 2.4b show that the optimal value of UHLP-D surpasses that of UHLP-TC.
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Figure 2.3: Effect of budget of uncertainty for CAB 25-node instance
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Figure 2.4: Effect of uncertainty budget

As for the optimal hub configurations, in the case of the CAB 25-node instances

these remained unchanged for all budgets strictly greater than 0. These are {13, 19, 25}
for UHLP-D and UHLP-TC which coincide with the deterministic case, and {5, 13, 19, 25}
for the UHLP-DTC. This reaffirms the stability (or robustness) of the hub configu-

rations for this particular dataset. In Table 2.1, we present the sets of open hubs

for each of the robust counterparts for the AP and Set I 20-node instances. Each

row corresponds to a set of values of the uncertainty budget for which the optimal

solution is the same.
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Budget UHLP-D UHLP-TC UHLP-DTC
0.00 7 14 7 14 7 14
0.05 7 14 1 7 14 1 7 14

[0.1, 0.55] 7 14 1 7 14 2 7 8 14
[0.6, 1.0] 6 11 14 1 7 14 2 7 8 14

(a) AP 20-node instance

Budget UHLP-D UHLP-TC UHLP-DTC
0.00 2 20 2 20 2 20

[0.05, 0.10] 2 4 6 11 2 4 13 2 4 6 11
[0.15, 1.00] 2 4 6 11 2 4 13 2 4 6 9 20

(b) Set I 20-node instance

Table 2.1: Optimal hub configurations for different budgets of uncertainty

We note that the budget of uncertainty does not lead to a wide variety of differ-

ent hub configurations. This supports the hypothesis that the impact caused by an

increase in uncertainty budgets for UHLPs becomes negligible after a relatively small

value, in particular for the robust counterpart of uncertain transportation costs. It

is also interesting to see how early the optimal set of open hubs of the deterministic

solution is no longer optimal for the UHLP-TC and the UHLP-DTC for both the

AP and Set I instances. For these cases, the set of open hubs begins to differ from

that of the deterministic solution from as early as a 5% uncertainty budget. For the

UHLP-TC, these robust hub configurations remain unchanged for increased uncer-

tainty budgets while for UHLP-DTC only an additional hub configuration is obtained

at 10 and 15% for the AP and Set I instances, respectively. Finally, we remark the

fact that each of the robust counterparts converges to a different optimal solution

when assigned a 100% uncertainty budget, thereby showing the uniqueness of each

model.

2.4.3 Computational Performance of MIP Formulations

For this set of experiments we use the AP and Set I instances with up to 50 nodes

as well as the CAB 25-node instances. We consider α ∈ {0.2, 0.5, 0.8}, and Ω ∈
{0.5, 1}. Table 2.2 summarizes the results obtained by CPLEX when solving the MIP

formulations of UHLP-D and UHLP-TC. The first two columns give the information

associated with the instance size |N | and interval of uncertainty Ω. The columns

under the heading Solved give the number of optimal solutions found within 345,600
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seconds (four days) of CPU time. The columns under the heading %LP provide the

average optimality gap relative to the linear programming relaxation bound of the

MIP formulations of each model. The columns under the heading Time (sec) give

the average CPU time in seconds needed to obtain the optimal solution of each group

if instances. The columns under the heading Nodes provide the number of explored

nodes in the branch and bound.

UHLP-D UHLP-TC

|N | Ω Solved LP% Time (secs) Nodes Solved LP% Time (secs) Nodes

10
0.5 6/6 0.06 0.07 0.00 6/6 1.11 0.59 4.67

1 6/6 0.13 0.08 0.00 6/6 2.06 0.93 5.50

20
0.5 6/6 0.00 0.59 0.00 6/6 1.41 24.55 7.83

1 6/6 0.00 0.67 0.00 6/6 4.86 102.47 44.33

25
0.5 6/6 0.00 1.52 0.00 6/6 1.62 143.93 10.33

1 6/6 0.00 1.80 0.00 6/6 5.78 1,017.75 86.50

30
0.5 3/3 0.00 7.37 0.00 3/3 0.93 871.52 19.33

1 3/3 0.00 10.14 0.00 3/3 3.72 3,996.24 47.33

40
0.5 6/6 0.01 52.47 0.50 6/6 1.70 5,254.59 21.00

1 6/6 0.06 82.72 1.33 6/6 4.69 32,597.16 73.50

50
0.5 6/6 0.00 289.46 0.00 6/6 2.02 69,444.89 35.50

1 6/6 0.01 474.61 0.00 1/6 7.04 185,957.97 107.00

Table 2.2: Summary results of UHLP-D and UHLP-TC

From Table 2.2 we note a significant difference in solution times between these

models, in particular for the larger instances. For example, the average CPU time for

50-node instances with Ω = 0.5 is under five minutes for UHLP-D while for UHLP-

TC it is over 19 hours. This behaviour can be partially explained by the fact that

the additional robust constraints (2.11) used in the MIP formulation of UHLP-TC

are much more dense than the analogue robust constraints (2.8) of UHLP-D. Another

important difference that contributes to this increased difficulty is that the LP gap

for UHLP-D is significantly tighter than that of UHLP-TC, which leads to the need

for further exploration in the enumeration tree for the latter as seen in Table 2.2.

Another interesting observation is the increase in computation time required when
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solving instances with Ω = 1 when compared to Ω = 0.5. This characteristic is

seen for both models and shows how instances with larger uncertainty sets are more

difficult to solve. Finally, we point out that 5 of the 50 node instances were not

solved within the time limit for the UHLP-TC model while for the UHLP-D model

20 minutes was the longest computation time required.

The detailed results of the branch-and-cut algorithm for the UHLP-DTC are given

in Table 2.3. The columns under the headings Solved, %LP, Nodes, and Time (sec),

have the same interpretation as in the previous table. The columns under the headings

Int cuts and Frac cuts provide the average number of cuts added at integer and

fractional solutions, respectively. The last column under the heading % Sep time

gives the average percentage of the total time spent solving the separation problem

SP.

|N | Ω Solved %LP Int cuts Frac cuts Nodes Time (sec) % Sep time

10
0.5 6/6 0.89 97.83 7.17 5.83 4.20 42.54

1 6/6 1.93 231.83 10.83 17.17 10.61 38.37

20
0.5 6/6 1.68 58.17 14.33 22.33 164.45 10.93

1 6/6 4.80 437.33 53.83 197.33 1,997.09 8.11

25
0.5 6/6 1.67 65.50 16.67 32.50 848.30 7.63

1 6/6 6.21 611.67 151.50 621.50 37,273.18 3.51

30
0.5 3/3 0.74 134.33 24.33 38.67 5,660.83 2.97

1 2/3 1.40 153.00 37.00 73.00 12,268.55 1.92

40
0.5 6/6 1.46 117.17 25.17 54.00 35,489.97 1.45

1 2/6 1.73 223.00 50.00 157.00 218,011.02 0.53

50
0.5 4/6 N/A 147.75 28.25 55.25 247,633.79 0.82

1 1/6 N/A 222.00 22.00 3.00 322,896.84 0.80

Table 2.3: Summary results of UHLP-DTC

From Table 2.3, we observe that UHLP-DTC requires the longest solution time

of all three robust counterparts. Our algorithm is capable of consistently solving

instances with up to 30 nodes. After that, it is capable of solving 10 out of 12

instances with 40 and 50 nodes with Ω = 0.5 but is only capable of solving 3 out of
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12 instances with Ω = 1 in four days of CPU time. The long solution times come

as a result of the need for the algorithm to explore more nodes in the enumeration

tree to prove optimality and having to add many dense cuts to a large model. Note

that although many cuts are added, very little time is spent solving the separation

problem, showing that despite the theoretical NP-hardness of SP, CPLEX is still able

to solve it efficiently. Finally, we point out the relatively small %LP gaps of this

formulation.

2.4.4 A Comparison of Deterministic, Stochastic and Robust

Solutions

In this final set of computational experiments, we compare the solutions obtained

from the deterministic UHLP, a two-stage stochastic variant of the UHLP presented

in Contreras et al. [50], and our proposed robust counterpart UHLP-TC. Our analyses

only consider the hub configurations and disregard the routing decisions obtained from

each of the approaches. We point out that this is not equivalent to using an adaptive

robust approach as those in Bertsimas et al. [27] and Zeng and Zhao [180]. For our

model, both location and routing decisions must be made in a single stage prior to

any revelation of the uncertain parameters unlike two stage stochastic and adaptive

robust optimization approaches. While one expects that this difference leads to a poor

performance of our solutions in a two-stage setting, we show that their performance

is close to that of solutions obtained from the two-stage stochastic approach.

To evaluate these solutions as fairly as possible we define Wk(ξ) and dij(ω) as

independent random variables following both uniform distributions over the intervals

Wk(ξ) ∼ U [WL
k −WΔ

k ,WL
k +WΔ

k ] and dij(ω) ∼ U [dLij−dΔij ,d
L
ij+dΔij ] and normal distri-

butions defined byWk(ξ) ∼ N
(
WL

k ,
√

(2WΔ
k )2/12

)
and dij(ω) ∼ N

(
dLij,

√
(2dΔij)

2/12
)
,

respectively.

As mentioned in Section 2.2, Contreras et al. [50] show that when considering de-
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mand uncertainty, the two-stage stochastic model of UHLP is actually equivalent to

its associated expected value problem in which the uncertain demand is replaced by its

expectation. However, when considering both demand and independent transporta-

tion cost uncertainty this situation does not hold. For the sake of completeness, we

next present the stochastic model with demand and transportation cost uncertainty.

We assume that the random parameters dij(ω) and Wk(ξ) are independent and

use the notation Cak(ω) = χdo(k)i(ω) + αdij(ω) + δdjd(k)(ω) where a = (i, j). We

define zi as first stage variables and xak(ω, ξ) as second stage variables that adjust

depending on the realization of the uncertainty parameter. The uncapacitated hub

location problem with stochastic demands and transportation costs (UHLP-SDTC)

can be stated as follows:

minimize
∑
i∈N

fizi + Eω,ξ[
∑
k∈K

∑
a∈A

Cak(ω)Wk(ξ)xak(ω, ξ)] (2.17)

subject to
∑
a∈A

xak(ω, ξ) = 1 ∀k ∈ K,ω ∈ Ω, ξ ∈ Ξ (2.18)

∑
a∈A:i∈a

xak(ω, ξ) ≤ zi ∀k ∈ K, i ∈ N,ω ∈ Ω, ξ ∈ Ξ (2.19)

zi ∈ {0, 1} ∀i ∈ H (2.20)

0 ≤ xak(ω, ξ) ≤ 1 ∀a ∈ A, k ∈ K,ω ∈ Ω, ξ ∈ Ξ. (2.21)

Since both parameters are independently distributed then Eω,ξ = EωEξ. Also,

note that for a first-stage vector z and a fixed realization of distances ω, the opti-

mal route xak(ω, ξ) is the same independent of the realization of ξ, i.e., xak(ω, ξ) =
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xak(z, ω). Therefore, given (z, ω) we have

EωEξ|ω

[∑
k,a

Cak(ω)Wk(ξ)xak(ω, ξ)

]
= EωEξ|ω

[∑
k,a

Cak(ω)Wk(ξ)xak(z, ω)

]
(2.22)

= Eω

[∑
k,a

Eξ [Cak(ω)Wk(ξ)xak(z, ω)]

]
(2.23)

= Eω

[∑
k,a

Cak(ω)W
L
k xak(z, ω)

]
, (2.24)

where (2.22) comes from the independence of xak(ω, ξ) of the realization of ξ, (2.23)

comes from the independence of ω and ξ, and (2.24) is from our assumptions on the

uncertainty distributions of the Wk(ξ). As a consequence, UHLP-SDTC reduces to

the uncapacitated hub location problem with stochastic independent transportation

costs presented in Contreras et al. [50]. Hence, we use the sample average approxi-

mation algorithm proposed in Contreras et al. [50] to obtain ε-optimal solutions for

the stochastic counterparts. In our experiments, we take 20 samples of size 1,000

to estimate a lower bound and a larger sample size of 100,000 to estimate an upper

bound.

Our comparison methodology is comprised of two steps. The first is to note when

the solutions obtained from the stochastic, robust and deterministic models coincide

with respect to the open hubs. The second is to study instances for which these differ

and compare each proposed solution in both a risk-neutral and worst-case scenario.

This analysis is done with the AP and Set I 20-node instances as well as the CAB

25-node instance for values of Ω ∈ {0.5, 1.0, 1.5, 2.0} and α ∈ {0.2, 0.5, 0.8}. To

obtain the corresponding robust solutions, we solve UHLP-TC at budget values of

{0.1, 0.2, 0.3, ..., 1}|A| and consider all hub configurations obtained for these. Tables

2.4, 2.5 and 2.6 show the optimal hub configurations obtained by each approach for

the CAB, AP and Set I instances, respectively. Note that for the robust approach,

if more than one hub configuration is obtained throughout the budget values tested,

37



then all distinct configurations will be taken into account in the table.

Ω α Det Stoch U(A,B) Stoch N(μ, σ) Robust

0.5 0.2, 0.5, 0.8 13 19 25 13 19 25 13 19 25 13 19 25

1.0 0.2, 0.5, 0.8 13 19 25 13 19 25 13 19 25 13 19 25

1.5 0.2, 0.5, 0.8 13 19 25 13 19 25 13 19 25 5 13 19 25

2.0 0.2, 0.5, 0.8 13 19 25 5 19 25 5 19 25 5 13 19 25

Table 2.4: Optimal hubs for each approach with CAB instances

Ω α Det Stoch U(A,B) Stoch N(μ, σ) Robust

0.5 0.2, 0.5, 0.8 7 14 7 14 7 14 7 14

1 0.2 7 14 7 14 7 14 1 7 14

1 0.5, 0.8 7 14 7 14 7 14 7 14

1.5 0.2 7 14 7 14 7 14 1 7 8 14

1.5 0.5 7 14 7 14 7 14
1 8 11 14

1 7 14

1.5 0.8 7 14 7 14 7 14 6 8 14

2 0.2 7 14 7 11 14 7 11 14 1 7 8 14

2 0.5 7 14 7 11 14 7 14
1 8 11 14

1 7 8 14

2 0.8 7 14 7 11 14 7 11 14

1 8 11 14

1 7 8 14

7 8 14

Table 2.5: Optimal hubs for AP instances
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Ω α Det Stoch U(A,B) Stoch N(μ, σ) Robust

0.5 0.2, 0.5 2 20 2 20 2 20 2 4 13

0.5 0.8 2 20 2 20 2 20 2 20

1 0.2, 0.5 2 20 2 20 2 20 2 4 13

1 0.8 2 20 2 20 2 20
2 6 11

2 13

1.5 0.2 2 20 2 11 20 2 4 20 2 4 13

1.5 0.5 2 20 2 11 20 2 11 20
2 4 6 11

2 4 13

1.5 0.8 2 20 2 11 20 2 20
2 6 11 19

2 4 6

2 0.2 2 20 2 11 20 2 4 13 2 4 6 9 20

2 0.5 2 20 2 11 20 2 19 20
2 4 6 11

2 4 13

2 0.8 2 20 2 11 20 2 19 20

2 6 11 19

2 4 6 11

2 13 19

Table 2.6: Optimal hubs for Set I instances

From Table 2.4 we note that for the CAB data set, the open hubs of all three

approaches coincide for all instances with Ω ∈ {0.5, 1.0}. This shows the stability of

the open hubs for this dataset requiring an increase of 150% of the nominal cost for

the hub configuration to change. Even at a 150% level of uncertainty, the stochastic

approach still keeps the same hub configuration as the deterministic case while the

robust counterparts open only one additional hub. Table 2.5 shows that for the case

of the AP instances, for Ω ∈ {0.5, 1.0} and α ∈ {0.5, 0.8}, all three approaches give

the same optimal hub configuration. At all other values, the robust solutions differ

from those obtained from the other approaches while the stochastic approach opens

the same hubs as the deterministic model for all values except for Ω = 2.0. For

the Set I instances, Table 2.6 shows that all three approaches give the same hub

configuration only when Ω = 0.5 and α = 0.8. The robust approach differs from

the other approaches for all other tested values while the stochastic approach obtains

different hub configurations when Ω ∈ {1.5, 2.0}.
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For the next step in our analysis, we ignore the two-stage stochastic model with

uncertain parameters following a normal distribution. The reason is that, in our view,

the uniform distribution is a more fair comparison to the interval uncertainty that we

assume. From each dataset, we arbitrarily select a value of Ω and α that yield different

hub configurations for each approach to measure their performance in a worst-case

and risk-neutral setting. To evaluate in a worst-case framework, we fix the hub

variables zi from UHLP-TC to the hub configurations obtained from each approach

and solve the remaining model for budgets of {0.1, 0.2, 0.3, ..., 1.0}, while in the risk-

neutral setting we use Monte Carlo simulation to evaluate the average performance of

all hub configurations assuming realizations follow the previously mentioned normal

distribution.

A summary of the performance of optimal hub configurations obtained from each

approach (deterministic, stochastic, and robust) in a worst-case setting for the CAB,

AP and Set I instances is given in Figures 2.5, 2.6a and 2.6b, respectively. In par-

ticular, these figures give the percentage increase in the optimal solution value with

respect to the deterministic (nominal) cost for different values of the budget of un-

certainty. Table 2.7 shows a similar analysis for a risk-neutral setting.

For the case of the Set I instance, note that in a worst-case scenario, the relative

increase in optimal value is almost 30% greater for the hub configuration from the

stochastic model than that from the robust model. Also, note that the hub configura-

tion of the deterministic model has the worst performance of the three in this setting.

However, observe that in the case of the risk-neutral setting the average performance

of the hub configuration of the robust model is only 5.56% worse than that of the

stochastic model while that of the deterministic model is 3.38% worse.
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Figure 2.5: Solution performance in worst-case setting for CAB instance with Ω = 2
and α = 0.2

40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 i

n
cr

e
a

se
 f

ro
m

 n
o

m
in

a
l 

co
st

 

Uncertainty Budget

Deterministic Stochastic Robust_1 Robust_2

(a) AP instance with Ω = 2 and α = 0.2
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(b) Set I instance with Ω = 2 and α = 0.5

Figure 2.6: Solution performance in worst-case setting
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Instance Approach Open Hubs Exp. Cost σ %Increase

CAB

Stochastic 5 19 25 1,421,798.65 824.57

Deterministic 13 19 25 1,424,828.17 866.89 0.21

Robust 5 13 19 25 1,433,177.30 758.16 0.80

AP

Stochastic 7 11 14 199,390.29 95.38

Deterministic 7 14 200,442.11 106.96 0.53

Robust1 1 8 11 14 214,087.97 78.69 7.37

Robust2 1 7 8 14 216,080.27 74.48 8.37

Set I

Stochastic 2 11 20 40,576.19 31.96

Deterministic 2 20 41,946.05 38.78 3.38

Robust 2 4 6 9 20 42,832.30 17.07 5.56

Table 2.7: Solution performance in a risk-neutral setting

This shows how the hub configuration of our robust approach significantly outper-

forms those obtained from the stochastic and deterministic approaches in a worst-case

setting and is only slightly worse in a risk-neutral setting. A somehow similar be-

haviour is noted for the CAB instance as seen in Figure 2.5 and Table 2.7, although

in a risk-neutral setting both deterministic and robust models have an increase that

does not exceed 1%. For the AP instance the hub configuration of the stochastic

approach is the worst performing in a worst-case setting as seen in Figure 2.6a while

the hub configurations of the robust approach are on average under 8.4% more costly

than the stochastic solution in a risk-neutral setting as seen in Table 2.7.

2.5 Conclusion

In this paper we introduced robust counterparts of the well-known uncapacitated hub

location problem with multiple assignments for the cases considering uncertain de-

mands, transportation costs, and both simultaneously. We considered an interval of

uncertainty for demands and transportation costs and used a budget of uncertainty

to control the level of conservatism in solution networks. We presented mixed inte-

ger linear programming formulations for each of the considered robust counterparts.
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We performed extensive computational experiments to evaluate the performance of

our formulations and to study the impact of the intervals of uncertainty and of the

budgets of uncertainty in the optimal hub configurations. Finally, we compared the

performance between solutions obtained from deterministic, stochastic and robust

models in both worst-case and risk-neutral settings.

The proposed robust counterparts have provided important insights on the ideal

topology for uncapacitated hub networks when the demand quantity, transporta-

tion costs and both simultaneously are uncertain. In particular, we note that when

transportation costs are uncertain, commodities are routed through multiple paths;

a behaviour mostly seen in capacitated models. An interesting question to explore is

the adaptation of these robust counterparts for capacitated hub location models.

In terms of algorithmic refinements, there are possibly three lines of research that

could lead to an improved solution method, in particular for larger models. The

first deals with cut density. As seen in our computational experiments, cut density

is one of the main contributing factors to the long computation times. Methods

that substitute these dense constraints for a family of equivalent or possibly weaker

but sparser constraints could lead to a faster method. Second, the large number

of variables in these models also leads to longer solution times. Methods such as

variable elimination and on the fly variable generation seem to be promising lines to

circumvent this and speed up the solution time of the LP subproblems. Finally, along

with having a large number of variables, these models also contain a large number of

constraints. To reduce this, the relaxation and on-the-fly generation of some of the

families of constraints seems to be a promising approach.
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Chapter 3

Exact Algorithms for

Multicommmodity Uncapacitated

Fixed-charge Network Design

Abstract

This paper presents two exact algorithms based on Benders decomposition for solving

the multicommodity uncapacitated fixed-charge network design problem. The first

is a branch-and-cut algorithm based on a Benders reformulation enhanced with an

in-tree matheuristic to obtain improved feasible solutions and valid inequalities in the

projected master problem space to close the linear programming gap. In addition,

implementation details crucial to the algorithm’s efficiency such as cut and core point

selection criteria are addressed. The second exact algorithm exploits the problem’s

structure to combine a cut-and-solve strategy with Benders decomposition. Extensive

computational experiments show both exact algorithms provide a speedup of between

one and two orders of magnitude compared to a state-of-the-art general-purpose MIP

solver.
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3.1 Introduction

Network design problems (NDPs) lie at the heart of designing and operating efficient

systems in several sectors such as personnel scheduling [13, 19], service network design

[8, 60, 61], logistics network design [54, 91, 162], and transportation [128, 138]. They

are able to capture the system-wide interactions between strategic and operational

decisions, namely arc activation and routing, to ensure cost-effective paths among a

selected set of nodes. NDPs can be classified into single and multicommodity variants

depending on the characteristics of the demand. In single-commodity problems, the

demand at each node can be satisfied by any of the other nodes’ supply since they

all route the same commodity. In multicommodity problems, demand is expressed as

origin-destination (OD) pairs where a destination node’s demand must be satisfied

by a corresponding origin node’s supply.

In this paper we focus on a fundamental NDP: the multicommodity uncapacitated

fixed-charge network design problem (MUFND). The problem is defined on a directed

graph and considers a set of commodities modeled by OD pairs, each with an origin

node, a destination node, and a demand quantity. The objective is to install a subset

of arcs to route all commodities from their origins to their destinations at minimal

cost. The MUFND is NP-hard [109] and generalizes a large class of well-known

problems such as the traveling salesman problem, the uncapacitated lot-sizing problem,

and the Steiner network design problem [146].

At the same time, the MUFND is generalized by the multicommodity capacitated

fixed-charge network design problem. The latter has been extensively studied from

different research directions. Some authors have approached this problem from a

polyhedral perspective, proposing new families of valid inequalities that strengthen

well-known mixed integer formulations [9, 10, 29, 98, 153]. Recently, Chouman et al.

[43] provided insight on the computational impact that commodity representations

have on the efficiency of five families of these valid inequalities. Others have focused
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on the development of decomposition methods [62, 64, 85–87, 156] that exploit the

problem structure to decompose the model into smaller subproblems. Despite the

significant contributions presented in these papers, solving the capacitated network

design problem to proven optimality in reasonable time still remains an open problem.

Another line of research for solving the capacitated variant is the use of heuris-

tic algorithms to obtain high quality solutions. Among these are the slope scal-

ing heuristics [63, 110, 112, 113]; cycle-based and other neighbourhood searches

[93, 94, 151, 175]; and matheuristics that exploit available mathematical program-

ming software [90, 103, 139, 160].

In the case of the MUFND, the first proposed solution algorithm is an add-drop

heuristic by Billheimer and Gray [31]. Other heuristics are those of Dionne and

Florian [69], Boffey and Hinxman [35], Los and Lardinois [124], and Kratica et al.

[115]. Lamar et al. [119] proposed a novel form of iteratively obtaining strengthened

dual bounds from a weaker formulation by adjusting artificial capacity constraints.

Balakrishnan et al. [12] presented a dual ascent algorithm and a primal heuristic to

obtain solutions for large-scale instances with up to 600 arcs and 1,560 commodities.

Their method obtains solutions that are between 1% and 4% away from optimality in

less than 150 seconds of computing time. With respect to exact methods, Magnanti

et al. [126] developed a tailored Benders decomposition for the variant with undirected

design decisions of the MUFND. They were able to solve instances with up to 130

arcs and 58 commodities to proven optimality. Holmberg and Hellstrand [105] used a

Lagrangean branch-and-bound algorithm to solve directed instances with up to 1,000

arcs and 600 commodities. Recently, Fragkos et al. [84] used Benders decomposition

to solve a multi-period extension of the MUFND. They experimented with the use

of Pareto-optimal cuts and with the unified cut approach of Fischetti et al. [78],

obtaining significant computational gains with the latter on instances with up to 318

arcs, 100 commodities and 108 time periods. To the best of our knowledge, these are
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the current state-of-the-art exact methods for the undirected and directed variants of

the MUFND.

Benders decomposition has been an effective tool for solving several classes of

network design problems with various applications [58]. Some fields in which it has

recently been applied are closed loop supply chains [107], hazardous material trans-

portation [81], and health services [179]. It has also recently been proven effective

in solving fundamental network design problems such as the optimum communica-

tion spanning tree problem [182] and extensions such as the multi-layer [82], hop-

constrained [37], and multi-period [84] network design problems. In the last few

years, it has also been applied to NDPs with parameter uncertainty as in Keyvan-

shokooh et al. [111], Lee et al. [121] and Rahmaniani et al. [155]. Other applications

of Benders decomposition to fixed-charge NDPs can be found in Costa [58] while Rah-

maniani et al. [154] provides a survey on the algorithm and its use in optimization

problems.

This paper revisits the use of Benders decomposition proposed by Magnanti et al.

[126] to solve the undirected design variant of the MUFND. As in Fischetti et al. [79],

our purpose is to redesign this once discarded approach for solving the MUFND to

exploit the state-of-the-art of algorithmic and computational resources. The resulting

Benders algorithms use branch-and-cut [148], local branching [76], and cut-and-solve

[45] procedures implemented within the cut callback framework available in today’s

general purpose mixed integer programming solvers. We present, in detail, the nu-

ances of adopting these tools and propose novel refinements to reduce the computation

time required to solve the MUFND with directed arc design decisions.

We present two exact algorithms based on the Benders reformulation of a well-

known mixed integer programming model of the directed MUFND. Both algorithms

solve the linear relaxation of the Benders reformulation with a cutting-plane procedure

to obtain Pareto-optimal cuts and cutset inequalities at each node of the enumeration
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tree. To accelerate the algorithms’ convergence we introduce new valid inequalities

referred to as Benders lift-and-project cuts to improve the linear programming relax-

ation and an in-tree matheuristic that finds better feasible solutions by using path

information generated while exploring the branch-and-bound tree.

The first algorithm, referred to as a branch-and-Benders-cut algorithm, solves the

Benders reformulation in one enumeration tree. We address critical implementation

details that should be considered when separating cuts at fractional and integer points

such as core point selection for Pareto optimal cuts and propose a tailored core point

selection criterion that provides a significant speed-up for solving the MUFND.

The second method is based on the combination of a modified cut-and-solve

scheme [45] and our branch-and-Benders-cut algorithm. The method iteratively re-

stricts the potential design arcs to solve smaller problems that produce a sequence of

feasible solutions with non-increasing objective function value. The algorithm also al-

lows for the recycling of Benders cuts generated in previous iterations thereby saving

computational effort.

We report computational experience on several sets of benchmark instances to

assess the performance of our algorithms. The proposed exact methods are up to

three orders of magnitude faster than the state-of-the-art MIP solver CPLEX 12.7.1

and solve instances of larger size than those previously presented. This computational

contribution is accompanied by methodological insights such as the simultaneous use

of a path and arc-based formulation for the MUFND, the introduction of Benders

lift-and-project cuts to reduce the linear programming gap, and the hybridization of

two well-known mixed integer programming tools.

The remainder of the paper is organized as follows. Section 3.2 provides a for-

mal definition of the MUFND and presents the arc-based formulation. Section 3.3

describes the Benders reformulation for the MUFND while Section 3.4 details the en-

hancements implemented in our branch-and-cut algorithm. In Section 3.5, we present
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our second algorithmic framework, a hybrid cut-and-solve Benders algorithm. Sum-

marized results of our computational experiments are given in Section 3.6, while

Section 3.7 presents concluding remarks and future lines of research.

3.2 Problem definition

The MUFND is defined on a directed graph G = (N,A) where N is a set of nodes, A

is a set of arcs and K is a set of commodities each defined by the tuple (ok, dk,Wk)

representing the origin, destination, and demand quantity of a commodity k ∈ K,

respectively. The key feature of this problem is its use in evaluating the trade-off

between infrastructure investment and operational costs. The former is modeled by

the fixed cost paid for using an arc fij joining node i to node j. The latter is modeled

by a linear transportation cost ckij paid per unit of commodity k routed on arc (i, j).

The goal is to route all commodities from origins to destinations at minimal cost.

Two well-known mixed integer models for this problem are the formulations with

aggregated and disaggregated constraints. Both use a set of binary variables yij to

model whether arc (i, j) is installed or not and a set of continuous variables xk
ij

to represent the fraction of commodity k’s demand routed on arc (i, j). In this

study, we use the disaggregated formulation since its tighter linear programming (LP)

relaxation is preferred when applying Benders decomposition [127]. The MUFND can

be formulated as follows:
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(P) minimize
∑

(i,j)∈A
fijyij +

∑
k∈K

∑
(i,j)∈A

W kckijx
k
ij (3.1)

subject to
∑
j∈N

xk
ji −

∑
j∈N

xk
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 if i = ok

1 if i = dk

0 otherwise

∀i ∈ N, k ∈ K (3.2)

xk
ij ≤ yij ∀(i, j) ∈ A, k ∈ K (3.3)

xk
ij ≥ 0 ∀(i, j) ∈ A, k ∈ K (3.4)

yij ∈ {0, 1} ∀(i, j) ∈ A. (3.5)

The objective function (4.2) is the total cost of the network including both the

installation and routing costs for all arcs and commodities. Flow conservation con-

straints (3.2) ensure that the demand for all commodities is routed from origin to

destination. Constraint set (3.3) assures that no flow is sent through an arc that

has not been installed, while (3.4) and (3.5) are the non-negativity and integrality

conditions on x and y, respectively.

Note that depending on the instance data, P is a valid formulation for the Steiner

tree problem (all commodities share the same origin and no transportation costs

exist) or the travelling salesman problem (all arcs have the same fixed cost, the

underlying graph is complete, commodities are sent between every pair of nodes, and

transportation costs are commodity independent) [105]. This shows the wide range

of special cases generalized by the MUFND and as such the inherent difficulty in

developing an efficient exact algorithm for this general model.
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3.3 Benders decomposition for the MUFND

Benders decomposition is a well-known solution method for mixed integer program-

ming problems [22]. It splits large formulations into two problems, an integer master

problem and a linear subproblem. The principle behind Benders decomposition is the

projection of a large problem into a smaller subspace, namely the space of the integer

constrained variables. As a consequence, the projected model contains an exponen-

tial number of constraints known as Benders cuts, indexed by the extreme points and

extreme rays of a special linear programming problem known as the dual subproblem

(DSP) or slave problem. Noting that not all Benders cuts are necessary to obtain

the optimal solution, Benders [22] proposed to relax these and iteratively solve the

integer master problem to obtain a lower bound on the integral optimal solution value

and then substitute the solution into the dual subproblem thereby obtaining an upper

bound and a Benders cut to be added to the master problem. This is to be repeated

until the upper and lower bounds are within a given optimality tolerance ε. In this

section, we present the derivation of the Benders reformulation of P and the use of

cutset inequalities to replace the classic Benders feasibility cuts.

3.3.1 Benders reformulation

The following steps describe the process of applying Benders decomposition to for-

mulation P of the MUFND. Note that by fixing y = ȳ, where ȳ ∈ Y and Y = B
|A|

denotes the set of binary vectors associated with the yij variables, we obtain a linear

program in x that is easily solved. This new linear program will be denoted as the

primal subproblem (PSP) and has the following form:
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(PSP) minimize
∑
k∈K

∑
(i,j)∈A

W kckijx
k
ij

subject to
∑
j∈N

xk
ji −

∑
j∈N

xk
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 if i = ok

1 if i = dk

0 otherwise

∀i ∈ N, k ∈ K (3.6)

xk
ij ≤ ȳij ∀(i, j) ∈ A, k ∈ K (3.7)

xk
ij ≥ 0 ∀(i, j) ∈ A, k ∈ K.

Note that PSP can be split into |K| subproblems PSPk, one for each commodity. Let

λ and μ denote the dual variables of constraints (3.6) and (3.7), respectively. From

strong duality, each PSPk can be substituted by its linear programming dual, denoted

as DSPk, of the form:

(DSPk) maximize λk
dk

− λk
ok
−

∑
(i,j)∈A

μk
ij ȳij (3.8)

subject to λk
j − λk

i − μk
ij ≤ W kckij ∀(i, j) ∈ A

μk
ij ≥ 0 ∀(i, j) ∈ A

λk
i ∈ R ∀i ∈ N.

From Farkas’ Lemma, we know that for a given k ∈ K, PSPk is feasible if and

only if

ȳ ∈ Rk =

⎧⎨
⎩y ∈ Y | 0 ≥ λk

dk
− λk

ok
−

∑
(i,j)∈A

μk
ij ȳij, ∀(λk, μk) ∈ Θ

⎫⎬
⎭ ,

where Θ is the recession cone of DSPk. The inequalities that define Rk are known

as Benders feasibility cuts and, although by Farkas’ Lemma there exists an infinite
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number of them, only those associated with the (finite) set of extreme rays are nec-

essary. Therefore, we use the representation of each polyhedron associated with each

DSPk in terms of its extreme points and extreme rays to determine whether PSP is

infeasible or feasible and bounded.

Let Ext(DSPk) and Opt(DSPk) denote the sets of extreme rays and extreme points

of DSPk, respectively. If, for a given y ∈ Y , there exists at least one k ∈ K and one

extreme ray (λ, μ) ∈ Ext(DSPk) for which

0 < λk
dk

− λk
ok
−

∑
(i,j)∈A

μk
ij ȳij,

then DSPk is unbounded and PSP is infeasible. However, if

0 ≥ λk
dk

− λk
ok
−

∑
(i,j)∈A

μk
ij ȳij,

for each k ∈ K and each extreme ray (λ, μ) ∈ Ext(DSPk), then all DSPk are bounded

and the PSP is feasible. The optimal value of each DSPk is then equal to

max
(λ,μ)∈Opt(DSPk)

λk
dk

− λk
ok
−

∑
(i,j)∈A

μk
ij ȳij.

Using continuous variables zk for the transportation cost of each commodity k ∈
K, the Benders reformulation of P is
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(MP0) minimize
∑

(i,j)∈A
fijyij +

∑
k∈K

zk (3.9)

subject to zk ≥ λk
dk

− λk
ok
−

∑
(i,j)∈A

μk
ijyij ∀k ∈ K, (λ, μ)k ∈ Opt(DSPk) (3.10)

0 ≥ λ̄k
dk

− λ̄k
ok
−

∑
(i,j)∈A

μ̄k
ijyij ∀k ∈ K, (λ̄, μ̄)k ∈ Ext(DSPk) (3.11)

z ∈ R
|K|

y ∈ {0, 1}|A|.

MP0, also known as the Benders master problem, exploits the decomposability

of the subproblems by disaggregating the feasibility and optimality cuts per com-

modity. This type of multi-cut reformulation leads to a better approximation of the

transportation costs at each iteration, which has been empirically shown to improve

solution times [49, 126].

Exploiting the structure of the MUFND, we replace the Benders feasibility cuts

(3.11) with cutset inequalities which are sufficient to guarantee the feasibility of PSP

[59]. The advantage of using cutset inequalities is that they can be efficiently sep-

arated by solving a minimum cut problem over an auxiliary network. Algorithms

such as the Edmonds-Karp algorithm [70] and breadth first search are efficient in

separating cutset inequalities for fractional and integer solutions, respectively. With

this in mind, we substitute the use of Benders feasibility cuts with cutset inequalities

yielding the following final Benders reformulation:
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(MP) minimize
∑

(i,j)∈A
fijyij +

∑
k∈K

zk (3.12)

subject to zk ≥ λk
dk

− λk
ok
−

∑
(i,j)∈A

μk
ijyij ∀k ∈ K, (λ, μ)k ∈ Opt(DSPk) (3.13)

∑
(i,j)∈δ(S)

yij ≥ 1 ∀S ∈ ΔK (3.14)

z ∈ R
|K|

y ∈ {0, 1}|A|,

where δ(S) = {(i, j) ∈ A|i ∈ S, j ∈ N\S} and ΔK is the set of subsets S ⊂ N such

that ok ∈ S and dk /∈ S for some k ∈ K.

3.4 A branch-and-Benders-cut algorithm for the

MUFND

Since its introduction, Benders decomposition has been successfully used to solve

several difficult problems such as airline scheduling [53, 150], facility location [79,

91, 147], hub network design [49], and fixed-charge network design [58]. Although

the initially proposed algorithm suffered from slow convergence, through the years

researchers have devised enhancements to significantly increase its speed. Recent

implementations of Benders decomposition incorporate additional strategies such as

the generation of strong cuts, cut selection, stabilization, lower bound reinforcing,

and solving one enumeration tree [3, 33, 37, 79, 140, 147, 154, 171]. Choosing the

best enhancements for a given problem is not a trivial task since each improves the

performance in a different manner.

Our branch-and-Benders-cut algorithm employs the following algorithmic features:
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a preprocessing routine to solve the linear relaxation, the generation of Pareto-optimal

cuts, a core point selection criterion, lower bound strengthening via lift-and-project

cuts, an in-tree matheuristic, and fine-tuning of cut parameters. In the following

sections we explain each of the aforementioned enhancements.

3.4.1 Preprocessing

Since MP is a Benders reformulation of the original formulation P, by relaxing the

integrality constraints and adding all Benders cuts to MP, we would obtain the LP

relaxation solution of P. This is particularly important to note when implementing

Benders decomposition in a single enumeration tree. One of the recent common

practices is to solve MP as a linear program with a cutting plane algorithm and use

the Benders cuts generated as part of the problem definition declared to the MIP

solver. General-purpose solvers use this information to increase lower bounds, infer

good branching rules, and fix variables in their preprocessing routine to reduce the

underlying linear program’s size.

In our algorithm, we solve MP as a linear program before declaring it within the

MIP framework. However, instead of defining the problem with all Benders cuts

generated so far, we only include the Benders cuts that are binding at the optimal LP

solution as in Fischetti et al. [79] and in Bodur and Luedtke [33]. This guarantees that

we obtain the LP optimal value before attempting to separate Benders cuts but pass

on only the essential information to the general-purpose solver and avoid declaring an

excessively large problem. This step, while obvious, significantly helps the solution

process.

3.4.2 Pareto-optimal cut separation

Since the seminal paper on cut selection for Benders decomposition by Magnanti and

Wong [127], Pareto-optimal cuts have become a standard practice. The approach ap-
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plies to problems for which there is an infinite number of alternative optimal solutions

to DSPk and therefore Benders optimality cuts. This is particularly the case in net-

work design problems known for their primal degeneracy. For a minimization problem,

the authors define cut dominance as follows. Given two cuts defined by dual solutions

u and u1 of the form z ≥ f(u) + yg(u) and z ≥ f(u1) + yg(u1), respectively, the cut

defined by u dominates that defined by u1 if and only if f(u)+yg(u) ≥ f(u1)+yg(u1)

with strict inequality holding for some feasible y of MP . If a cut defined by u is not

dominated by any other optimality cut, then this cut is said to be a Pareto-optimal

Benders cut.

In general, to obtain Pareto-optimal Benders cuts an additional linear program

must be solved at each iteration. This additional linear program is the same as the

dual subproblem with two exceptions. The first is that a point y0 in the relative inte-

rior of the master problem space, known as a core point, replaces the master problem

solution ȳ in the objective function (3.8). The second is that an equality constraint is

added to ensure that the obtained solution belongs to the set of alternative optimal

solutions of DSPk for the current master problem solution ȳ. In most cases, these

modifications break the structure of the dual subproblem exploitable by an efficient

combinatorial algorithm. This leads to having to solve an additional linear program.

Papadakos [149] addresses this issue and presents a modified procedure that does not

require solving an additional linear program. The modified dual subproblem uses

a point that must satisfy characteristics that are more relaxed than Magnanti and

Wong’s conditions.

In our algorithm, we use the “tailored” subproblem for the MUFND as presented

in Magnanti et al. [126]. The authors point out that the additional linear program

for each commodity k ∈ K in the classic Pareto-optimal approach is equivalent to

solving the following parametric minimum cost flow problem:
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(MCFk) minimize
∑

(i,j)∈A
W kckijx

k
ij −DSPk(ȳ)x0 (3.15)

subject to
∑
j∈N

xk
ji −

∑
j∈N

xk
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(1 + x0) if i = ok

1 + x0 if i = dk

0 otherwise

∀i ∈ N (3.16)

xk
ij ≤ y0ij + x0ȳij ∀(i, j) ∈ A (3.17)

xk
ij ≥ 0 ∀(i, j) ∈ A

x0 ∈ R.

The problem can be interpreted as that in which a rebate of DSPk(ȳ) is given

for each additional unit of the commodity routed on the network with demand and

capacities defined by (3.16) and (3.17), respectively [126]. The authors show that

any fixed value x0 ≥ ∑
(i,j)∈A y0ij is optimal for MCFk, leaving a minimum cost flow

problem to be solved for each commodity k ∈ K.

As a result of fixing x0, it is no longer necessary to solve DSPk(ȳ) since it is

now multiplied by a constant in MCFk. This observation allows us to save compu-

tational time by solving MCFk directly as the separation problem rather than as a

complementary problem for Pareto-optimal Benders cuts.

Magnanti and Wong [127] note that the selection of different core points y0 leads

to varied Pareto-optimal cuts. To the best of our knowledge, the question of selecting

an adequate y0 has not been addressed before in the literature. We provide some

guidelines and computationally test different strategies for this in Section 3.6.2.
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3.4.3 Benders lift-and-project cuts

With the current trend of implementing Benders decomposition within a branch-and-

cut framework, the need for problem formulations to have a strong LP relaxation has

become more important. Unfortunately, several problems do not satisfy this property.

Recently, Bodur and Luedtke [33] and Bodur et al. [34] proposed the use of general

mixed integer cuts such as mixed integer rounding and split cuts, respectively, within

a branch-and-Benders-cut algorithm to improve the LP relaxation. Their results show

a significant decrease in the LP gap leading to faster solution times.

Although Hellstrand et al. [102] show that the polytope defined by P is quasi-

integral, the use of modified pivots for integral basic solutions is impractical due to

P’s degeneracy [15]. In addition, modified integral pivots require the complete for-

mulation whereas our Benders reformulation is a projection into the smaller subspace

of the integer variables. As a result, we must find a way to close the LP gap within

the Benders decomposition framework. To do this, we adopt the lift-and-project cuts

proposed by Balas et al. [17] to strengthen the master problem LP relaxation.

Lift-and-project cuts, a result of disjunctive programming theory [14], were ini-

tially proposed as a cutting plane algorithm by Balas et al. [17] but were later extended

to the branch-and-cut framework [18] by proving the ability to find globally valid cuts

at nodes within the enumeration tree by means of a closed form lifting procedure.

The framework is as follows.

Given P = {x ∈ R
n|Ãx ≥ b̃} with inequalities of the form 1 ≥ x ≥ 0 included in

Ãx ≥ b̃ and PD = conv{x ∈ P |xj ∈ {0, 1}, ∀j = 1...p} where p < n, lift-and-project

cuts can be obtained by:

1 Selecting an index ĵ ∈ {1...p}. Multiplying Ãx ≥ b̃ by (1− xĵ) and xĵ.

2 Linearizing the obtained system by substituting yi = xĵxi and xi = xixi.

3 Projecting the system back into the original space by means of a cone projection.
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Balas [14] shows that it is possible to obtain the “deepest” lift-and-project cut of

the form
∑

i∈I αixi ≥ β that cuts off the LP optimum x̄ for a given ĵ ∈ {1...p} by

solving the following linear program:

(CGLPĵ) minimize
∑
i∈I

αix̄i − β

subject to α− uA+ u0eĵ ≥ 0

α− vA− v0eĵ ≥ 0

− β + ub = 0

− β + vb+ v0 = 0

u, v ≥ 0,

where eĵ is the vector of all 0s except for a 1 in the ĵ-th component.

The feasible space of CGLPĵ is a convex cone. Therefore, a normalization con-

straint must be added to ensure a finite optimal solution. It has been shown [16] that

varied normalizations lead to significantly different cuts. In our implementation, we

use the following normalization constraint:

∑
i

ui + u0 +
∑
i

vi + v0 = 1.

The resulting cut can be strengthened by using a closed formula derived by impos-

ing integrality constraints of other {0, 1} variables [16]. We adopt this strengthening

procedure in our algorithm. For a given variable xk, its coefficient αk in the lift-and-

project cut can be replaced by α′
k = min{uak + u0
mk�, vak − v0�mk�}, where

mk =
vak − uak
u0 + v0

.

While solving our Benders reformulation we do not have the complete polyhedral
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description of P since there would be exponentially many constraints. We resort to

defining Ã as the feasibility and optimality cuts that are binding at the LP relaxation

and the 1 ≥ x ≥ 0 constraints. Although this is known to give a weaker lift-and-

project cut, we also highlight its role in significantly reducing the size of CGLPĵ

leading to times of less than 0.02 seconds to obtain a cut. A similar strategy is

used by Balas and Perregaard [16] outside the context of Benders decomposition.

Another important factor in the lift-and-project process is selecting the index ĵ. In

our implementation we choose the fractional variable of the LP solution with highest

fixed cost.

During our experiments we noted that these lift-and-project cuts are very dense

and often with small, numerically unstable coefficients. This led to numerical issues

when too many were added to the master problem at the same time. To circumvent

this, we ensure that at most seven lift-and-project cuts are added. We use an addi-

tional stopping criterion of increase in the LP optimal value. In other words, if the

effect of adding a Benders lift-and-project cut is negligible, we then stop generating

them. Note that the effect of the lift-and-project cut is highly dependent on the

variable ĵ chosen. However, we found this criterion to be an effective rule to prevent

numerical instabilities in our algorithm.

3.4.4 An in-tree matheuristic

An important factor in solving difficult optimization problems, in particular when

using branch-and-bound methods, is obtaining high quality feasible solutions. Finding

these early in the enumeration process often leads to smaller search trees since they

provide better bounds for pruning and a guide for selecting variables to branch on.

If found in a preprocessing stage, they can be used to perform variable elimination

tests as in Contreras et al. [48, 49]. Preliminary tests showed that the latter approach

eliminated few variables from the problem even if the optimal solution value was used
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for these variable elimination tests. We therefore propose an in-tree matheuristic that

exploits the information generated during the enumeration process. Our algorithm

uses the paths obtained while solving the Benders subproblems as variables in a path-

based formulation of the MUFND.

Let Θμ
k denote a binary variable whose value is 1 if path μ is used for commodity

k and 0 otherwise, while yij denotes the network design variables as in P. Define

parameter vμk (i, j) = 1 if arc (i, j) belongs to path μ for commodity k, and 0 otherwise.

Finally, let Ωk denote the set of paths from o(k) to d(k) and Ω represent the union of

these sets over K. With this notation we have the following path-based formulation

for the MUFND:

(PHeur) minimize
∑

(i,j)∈A
fijyij +

∑
k∈K

∑
μ∈Ωk

[W k
∑

(i,j)∈A
ckijv

μ
k (i, j)]Θ

μ
k (3.18)

subject to
∑
μ∈Ωk

Θμ
k = 1 ∀k ∈ K (3.19)

∑
μ∈Ωk

vμk (i, j)Θ
μ
k ≤ yij ∀(i, j) ∈ A, k ∈ K (3.20)

Θμ
k ∈ {0, 1} ∀k ∈ K,μ ∈ Ωk. (3.21)

yij ∈ {0, 1} ∀(i, j) ∈ A. (3.22)

The objective function (3.18) represents the total cost of routing the commodities

on the network, including design and transportation costs. Constraints (3.19) ensure

that each commodity is routed by exactly one path while (3.20) force the design

variables of the arcs used in a path to take value 1 if the path is used to route a

commodity. We note that (3.20) can be disaggregated. However, preliminary tests

showed it to have a negative effect on the computation time.

Given the exponential number of paths for a given commodity, PHeur is usually

solved using column generation and branch-and-price when used to represent the
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MUFND. In our algorithm, however, we will only use this formulation to solve for

improved MUFND solutions obtained from paths generated while solving the Benders

subproblems. This avoids having to solve several rounds of pricing problems at each

branch-and-price node. The only added computational effort comes from the fact that

primal solutions to MCFk, the Benders subproblem to obtain Pareto optimal cuts,

sends different amounts of flow through several paths from origin to destination. To

obtain single paths to be used in PHeur, we solve a shortest path problem over two

networks derived from the primal solution of MCFk. The first network contains the

arcs that send any flow greater than 0.1 in the solution while the second contains arcs

that send more than 1 unit of flow. This provides us with the potential to generate

two different paths at a low computational cost every time the Benders subproblem

is solved.

Finally, note that the branching over design variables during the enumeration

process of our Benders algorithm forces the generation of a varied set of paths for

the Benders subproblems and hence variables for PHeur. The integration of our in-

tree matheuristic into our branch-and-Benders-cut algorithm provides a means of

exploiting two formulations of the same problem simultaneously as in Hewitt et al.

[103] for capacitated multicommodity network design with the difference that our

algorithm solves the problem to optimality whereas theirs finds feasible solutions

with a quality certificate.

3.4.5 Implementation details

We begin our solution process by solving the LP relaxation of MP using our cutset

separating routines and MCFk as our separation oracle to obtain Pareto-optimal

Benders cuts with core points defined as will be described in Section 3.6.2. Upon

confirming that no more violated Benders cuts exist, we use those that are binding

at the optimal solution to obtain a violated Benders lift-and-project cut. This cut
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is added to the MP relaxation and we resume separating violated Benders cuts. We

repeat this process until our stopping criteria are satisfied.

We then define the MIP problem in CPLEX with the active Benders and lift-and-

project cuts as lazy and user constraints. This prevents defining an excessively large

initial problem. Another of the important aspects to consider when implementing

this method is the separation and cut adding frequency. Adding too few cuts leads

to an underestimation of the lower bounds of nodes in the enumeration tree, while

adding too many cuts leads to large LPs that require a longer computation time to

solve.

Several cutting frequencies were tested in preliminary experiments. The best of

the tested strategies was separating Benders cuts at all nodes in the first five levels

of the enumeration tree and then separating at every 100th node. For all these, only

one round of violated Benders cuts are added. For fractional solutions, a minimum

violation of 0.01 was required to add the cut to the constraint pool of the node’s

linear problem.

Lastly, to prevent executing our in-tree matheuristic too frequently, we limit its

use to only one node at each depth of the enumeration tree greater than ten that

is divisible by five. In addition, to ensure it has the potential to find an improved

solution, it is only called if at least N new paths have been generated since its last

execution. Finally, to avoid spending excessive time in this heuristic process, a time

limit of thirty seconds was set for each execution.

3.5 A cut-and-solve algorithm for the MUFND

Introduced by Climer and Zhang [45] in the artificial intelligence community, cut-and-

solve has been used to solve well-known combinatorial optimization problems such

as the travelling salesman problem and the single-source capacitated facility location
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problem [89, 177]. The cut-and-solve framework is closely related to local branching

[76] in the sense that at each level of the enumeration tree only two child nodes exist,

one corresponding to a smaller “sparse” problem and the other as its complement

known as the “dense” problem. However, while in local branching one begins with a

feasible solution and defines the subproblems based on the Hamming distance, cut-

and-solve allows for more generic problem definitions and does not require an initial

feasible solution. Since our proposed framework is more closely aligned with the

latter, we adopt the cut-and-solve terminology and notation for the rest of the paper.

We next provide a brief description of the cut-and-solve procedure as presented by

Climer and Zhang [45].

The “sparse” and “dense” problems are defined by constraints over a set of vari-

ables. These constraints, known as “piercing” cuts, are of the form
∑

i∈I xi ≤ σ and∑
i∈I xi ≥ σ+1 where I ⊂ N is a subset of the problem’s binary variables and σ ∈ Z.

Upon branching, the “sparse” problem is solved to optimality by means of branch-

and-bound or any exact method to obtain a primal bound (UBsparse) on the original

problem. This highlights the need to define sparse problems that are easily solved.

Next, the linear relaxation of the dense problem is solved to obtain a lower bound

(LBdense) on the remaining solution space of the original problem. If LBdense ≥
UBsparse then UBsparse is optimal for the complete problem. Otherwise, another

piercing cut is defined over the dense problem and the procedure is repeated.

We propose the use of our branch-and-Benders-cut algorithm as the black box

MIP solver within the cut-and-solve algorithm and a tailored rule for selecting the

variables to consider in the “sparse” problems. Two important advantages of using our

Benders algorithm within the cut-and-solve framework are the reduced problem size

and the re-usability of the Benders cuts generated in previous sparse problems. On

the other hand, some advantages to using cut-and-solve over Benders is that piercing

cuts significantly reduce the solution space and the optimal values of previous sparse
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problems are useful for pruning branches in the enumeration tree.

Our cut-and-solve algorithm begins by considering the union of shortest paths,

denoted as ∪k∈KPk, of each commodity using only their transportation costs. The

resulting set contains on average approximately 90% of the arcs open in an optimal

solution and is thus an ideal candidate to define our first “sparse” problem.

For ease of exposition we introduce the following notation. Let (ȳ, z̄)(t) represent

the solution of the t-th sparse problem, I(t) denote the set of indices of arc variables

whose value is 1 in (ȳ, z̄)(t) and χ(ȳ, z̄)(t)) be its objective function value. In partic-

ular, (ȳ, z̄)(0) refers to the objective function value of activating and routing on the

arcs of the union of shortest paths.

At a given t ≥ 1, we define the following sparse problem:

(MPsparse(t)) minimize
∑

(i,j)∈A
fijyij +

∑
k∈K

zk (3.23)

subject to zk ≥ λk
dk

− λk
ok
−

∑
(i,j)∈A

μk
ijyij ∀(λ, μ)k ∈ Opt(DSPk), k ∈ K

(3.24)∑
(i,j)∈δ(S)

yij ≥ 1 ∀S ∈ ΔK (3.25)

z ∈ R
|K| (3.26)

y ∈ {0, 1}|A| (3.27)∑
(i,j)/∈I(t−1)

yij ≤ t (3.28)

∑
(i,j)/∈I(s)

yij ≥ s+ 2 ∀s = 0, ..., t− 1 (3.29)

∑
(i,j)∈A

fijyij +
∑
k∈K

zk ≤ χ((ȳ, z̄)(t− 1)), (3.30)

where Δk = {S ⊂ N |∃k ∈ K where ok ∈ S, dk /∈ S}. The constraints (3.23)-(3.27)

are the Benders master problem reformulation of the MUFND. Constraint (3.28)
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is the piercing cut that allows at most t variables not in the previous solution to

take the value of 1 while constraints (3.29) are the negations of (3.28) from previous

iterations. The latter ensure that previously searched areas of the feasible space are

not considered in the new sparse problem. Finally, constraint (3.30) imposes that

the optimal solution of the current sparse problem has objective value of at most the

optimal value of the previous one. This constraint ensures that the obtained solutions

do not worsen after each iteration and saves computation time since its value is used

as a pruning criterion for the enumeration tree.

If MPsparse(t) is feasible, we define MPsparse(t + 1) without solving the LP re-

laxation of the corresponding dense problem. In this respect, our algorithm bears

resemblance to local branching as proposed in Fischetti and Lodi [76]. This is done

until two successive optimal solutions to MPsparse(t) are the same or until MPsparse(t)

is infeasible, due to (3.30). If either occurs, the dense problem, MPdense, is defined.

The dense problem is similar to MPsparse(t) with the exception that (3.28) is replaced

by
∑

(i,j)/∈I(t−1) yij ≥ t + 1 and (ȳ, z̄)(t− 1) in (3.30) is replaced by the best solution

found so far. We then solve MPdense(t) which will either be feasible and hence provide

the true optimal solution or will be infeasible meaning that the best solution found

so far is indeed optimal.

The presented framework provides a novel research direction, different from Rei

et al. [158], for combining cut-and-solve and Benders decomposition. Below we present

the pseudocode of our cut-and-solve Benders algorithm.
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Algorithm 2 Cut-and-solve Benders algorithm for the MUFND

Require: 0: Initialization
(ȳ, z̄)(0) = ∪k∈KPk, t = 1, best = (ȳ, z̄)(0)
Step 1: Define and solve MPsparse(t)
if (MPsparse(t) is feasible ∧ (ȳ, z̄)(t− 1) 
= (ȳ, z̄)(t)) then

best = (ȳ, z̄)(t)
t = t+ 1;
Goto Step 1

else
Goto Step 2

end if
Step 2: Define and solve MPdense

if MPdense is feasible then
Update best

end if
Return best.

3.6 Computational experiments

We perform extensive computational experiments to evaluate the efficiency of our

proposed methods and the effect of the enhancements implemented. Our analyses

focus on: the LP gap closed by adding Benders lift-and-project cuts to MP’s linear

relaxation, adequate core point selection, and the efficiency of our proposed solution

methods versus the state-of-the-art general-purpose MIP solver CPLEX 12.7.1.

We use the well-known “Canad” multicommodity capacitated network design in-

stances [62] as our testbed. This dataset consists of 205 instances with arc capacities.

Ignoring the capacity constraints leaves a total of 93 distinct instances for our ex-

periments. The testbed can be divided into three classes. The first are the 31 “C”

instances with many commodities compared to nodes while the second are eight “C+”

instances with few commodities compared to nodes. Finally, Class III is divided into

two subgroups. Class III-A and III-B are each comprised of 27 “R” instances on small

and medium sized graphs, respectively.

We generate eight large-scale instances, denoted as Class IV, on which we test
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our algorithms with a 24-hour time limit. These were generated using the Mulgen

generator [62] available at http://pages.di.unipi.it/frangio/ with sizes of up to 1,500

arcs and 1,500 commodities. To the best of our knowledge these are the largest

instances of the MUNDP to be solved by an exact algorithm.

Another characteristic of our testbed is the existence of instances that have an

LP gap strictly greater than 0. This is important in our analysis as we need to test

our algorithm’s ability to quickly explore the enumeration tree and the efficiency of

our proposed lift-and-project Benders cuts. The “Canad” testbed contains several

instances with this property. Table 3.1 details the number of instances for each LP

gap range (%) in our testbed.

Table 3.1: Distribution of “Canad” instances’ LP gaps (%)

Class 0 (0, 1] (1, 2] (2, 3] (3, 4] [4, 7.2] Total

Class I 10 7 2 4 2 6 31

Class II 7 1 8

Class III-A 26 1 27

Class III-B 9 2 2 5 9 27

Class IV 0 3 3 2 8

Total 52 13 6 8 7 15 101

All algorithms were coded in C using the callable library for CPLEX 12.7.1. The

separation and addition of cutset inequalities and Benders optimality cuts is imple-

mented via lazy cut callbacks and user cut callbacks. For a fair comparison, all use of

CPLEX was limited to one thread and the traditional MIP search strategy. Exper-

iments were executed on an Intel Xeon E5 2687W V3 processor at 3.10 GHz under

Linux environment.

3.6.1 Impact of lift-and-project cuts on LP gap

As shown in Table 3.1, Class I, III-B, and IV contain most of the instances with

higher LP gap. Preliminary tests showed these to be the most difficult to solve, in
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particular when it came to proving optimality. It is in this spirit that we proposed

using lift-and-project cuts to improve the LP bound at the root node.

Table 3.2 shows the percentage of the LP gap (LPimp%) closed by applying at most

seven lift-and-project cuts to the linear relaxation of our Benders master problem.

This percentage is calculated as LPimp = 100 × (LPMPLP−LPMP )
Opt−LPMP

where LPMPLP is

the optimal value of the linear relaxation of the master problem with the additional

lift-and-project cuts, LPMP is the optimal value of the linear relaxation of the master

problem, and Opt is the optimal value of the problem.

Table 3.2: LP gap (%) closed

Class No. of instances LPimp

Class I 21 6.61

Class II 1 9.07

Class III-A 1 20.45

Class III-B 18 3.65

Class IV 8 2.99

Total 49 5.26

The average improvement of the LP gap is of 5.26% over the 50 solved instances

with an LP gap. There are many factors that contribute to this behavior. The first

is that lift-and-project cuts as proposed by Balas et al. [17] require the complete

formulation of the problem. In our implementation, we use a relaxation comprised

of only the Benders cuts that are binding at the LP solution. In Balas et al. [18],

this relaxation is shown to generate weaker cuts. Second, our stopping criterion for

lift-and-project cuts is conservative, avoiding generating too many of them at the

beginning due to their numerical instability. Finally, our simplified variable selection

rule also contributes to this performance.
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3.6.2 Impact of core point selection

Despite the use of Pareto optimal Benders cuts being now common practice, little

computational experimentation with core point selection strategies has been done. We

next show how core point selection influences the solution time and that a tailored core

point selection strategy can lead to significant time savings. We test three strategies

for core point selection. The first is the most common practice in the literature while

the second is a novel strategy that can be applied to any Benders reformulation of a

mixed binary program. Finally, the third is a strategy tailor-made for the MUFND

and is based on the union of shortest paths of the commodities k ∈ K, as in the

definition of our initial “sparse” problem. Let y0 and ȳ denote the current core point

and master problem solution, respectively. The details of the three core point selection

strategies are as follows:

1 Initialize y0={1}|A| and dynamically update the core point as y0 = 0.5y0+0.5ȳ

as in Papadakos [149] and similar to Fischetti et al. [79].

2 Initialize a stabilizer point ŷ as ŷ = {1}|A| which will then be updated as better

incumbent solutions are found during the enumeration process. Dynamically

update the core point as y0 = 0.5ŷ + 0.5ȳ.

3 Fix the core point throughout the entire process based on the arcs that are

present in at least one of the commodities’ shortest paths, denoted as ∪k∈KPk.

The fixed core point is defined as y0ij = 0.7 if (i, j) ∈ ∪k∈KPk and y0ij = 0.2

if (i, j) /∈ ∪k∈KPk. These values were chosen after running preliminary experi-

ments with the values of {0.5, 0.6, 0.7, 0.8, 0.9} for arcs in the routing solution

and {0.1, 0.2, 0.3, 0.4, 0.5} for arcs not in the routing solution.

Note that in all three cases, the proposed core point is in the interior of the

{0, 1}|A| hypercube. However, to solve MCFk, y
0 must not only lie in the interior
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of the {0, 1}|A| hypercube but must also define a network through which one unit of

demand can be sent from ok to dk, ∀k ∈ K. Failure to do so could lead to MCFk

being infeasible despite ȳ being a feasible solution for the MUFND. This was observed

empirically to have a particularly pernicious effect on the overall computation time.

To remedy this we solve a minimum cut for each k ∈ K to check for feasibility

when defining the fixed core point of strategy 3. If there exists a minimum cut δ(S)k =

{(i, j) ∈ A|ok ∈ S and dk ∈ N\S} for a commodity k ∈ K with
∑

(i,j)∈δ(S)k y
0
ij < 1,

we then increase the value of each arc in δ(S)k by [1/|δ(S)k|]+0.01 and check again for

a violated cutset. This is repeated until no such cutset exists. We place a cap on the

value of y0ij to be at most 0.9999 to ensure y0 remains an interior point. Given that

the core point is fixed throughout the solution process, this verification is only done

once at the beginning. Since the other strategies constantly update the core point,

running this procedure every time proved to be time consuming. To circumvent this

we run this procedure only when MCFk becomes infeasible. The solution times, in

seconds, of these strategies implemented in our branch-and-Benders-cut algorithm

are shown in Table 3.3.

Table 3.3: Impact of core point selection- time in seconds

Class Nb Strategy 1 Strategy 2 Strategy 3

Class I 31 119.46 286.42 73.74

Class II 8 12.96 6.50 6.91

Class III-A 27 0.03 0.04 0.04

Class III-B 27 227.52 451.77 187.15

Class IV 6 112.17 204.02 67.25

Total 99 107.31 225.80 78.78

The best performing is our tailored core point selection strategy (strategy 3) which

saves over a quarter of the average computation time of the second best performing

strategy, the well-known dynamic mid-point update (strategy 1). The worst is the

incumbent stabilizer update (strategy 2). These results show the added value of using

core point selection strategies that exploit problem structure.
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3.6.3 Computation time

We now compare the computation time of each of our proposed algorithms. We

begin by focusing on our branch-and-Benders-cut algorithm since we use the best

performing as the black box solver in our cut-and-solve/local branching algorithm.

To show the impact of each enhancement, we present four versions of our branch-and-

Benders-cut algorithm. The first is without using our in-tree matheuristic nor our

lift-and-project cuts (B0). The second is the same, with the addition of the in-tree

heuristic (B1). B2 is the branch-and-Benders-cut algorithm with lift-and-project cuts

added at the root node and the final version (B3) combines them all. A time limit of

24 hours is set for all algorithms.

The results are presented in Table 3.4 with the exception of the instances of

classes II and III-A which were all solved in less than a second by our four algo-

rithms and CPLEX. The first three columns describe the problem class, instance

sizes (|N |, |A|, |K|), and number of instances in each instance group respectively. For

each version of the algorithm, two columns are displayed,“Seconds” which denotes

the average solution time in seconds and “Nodes” which refers to the average number

of nodes explored. Finally, we point out that the averages of class IV and the total

test bed are taken only over the instances with comparable solution times to avoid

the averages being skewed by large numbers, i.e., instance groups 50,1500,1000 and

50,1500,1500 are omitted.
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Table 3.4: Computational performance of branch-and-Benders-cut algorithm

B0 B1 B2 B3

Class (|N |, |A|, |K|) Nb Seconds Nodes Seconds Nodes Seconds Nodes Seconds Nodes

I

20,230,40 3 0.22 0 0.21 0 0.21 0 0.21 0

20,230,200 4 15.17 274.50 15.65 271.00 21.58 395.00 26.15 496.00

20,300,40 4 0.24 0.25 0.24 0.25 0.28 0.75 0.28 0.75

20,300,200 4 12.11 200.50 12.80 159.00 25.94 371.50 34.67 384.25

30,520,100 4 305.08 3,335.25 157.50 2,456.50 286.05 2,694.75 233.35 4,439.25

30,520,400 4 9.14 35.25 9.06 35.25 12.21 36.75 12.34 36.25

30,700,100 4 8.86 188.25 7.92 162.00 9.42 209.25 8.55 256.25

30,700,400 4 332.35 4,613.25 293.22 5,322.25 254.17 3,800.50 276.19 3,716.75

Sub-Total 31 88.14 1,115.77 64.07 1,084.68 78.68 968.84 76.35 1,203.81

III-B

20,120,40 3 0.11 0 0.10 0 0.10 0 0.11 0

20,120,100 3 1.97 70.67 1.98 70.67 3.42 88.67 3.50 93.00

20,120,200 3 214.59 1,808.00 255.64 1,921.00 166.83 1,062.33 178.16 1,521.67

20,220,40 3 2.00 100.67 1.95 99.00 2.08 111.67 2.34 99.33

20,220,100 3 39.81 688.67 49.54 839.33 177.31 2,548.33 124.55 2,232.33

20,220,200 3 775.17 3,644.67 929.44 3,285.33 1,320.94 3,583.33 1,460.67 3,738.00

20,320,40 3 11.44 876.67 15.14 849.67 12.47 872.00 12.69 832.67

20,320,100 3 6.87 104.33 7.17 104.33 12.50 223.67 11.81 199.33

20,320,200 3 625.82 1,723.00 669.79 2,273.67 1,012.85 2,476.67 1,087.30 3,176.00

Sub-Total 27 186.42 1,001.85 214.53 1,049.22 300.94 1,218.52 320.13 1,321.37

IV

40,1200,400 1 9.19 6.00 8.97 6.00 15.56 7.00 15.68 7.00

40,1200,800 1 53.00 537.00 55.98 669.00 68.69 715.00 63.87 711.00

40,1200,1200 1 57.07 61.00 57.34 61.00 82.95 74.00 86.69 74.00

50,1400,400 1 29.94 649.00 31.70 580.00 34.82 601.00 36.54 597.00

50,1400,800 1 117.31 1,938.00 127.06 1,886.00 177.01 3,860.00 196.47 3,215.00

50,1400,1200 1 201.33 2,162.00 198.49 2,257.00 183.17 1,655.00 208.59 1,929.00

50,1500,1000 1 54,074.52 419,563.00 54,680.74 420,298.00 44,367.11 389,246.00 57,487.39 555,136.00

50,1500,1500 1 69,637.47 262,007.00 69,055.11 262,007.00 time 483,149.00 time 438,179.00

Sub-Total 6 77.97 892.17 79.92 909.83 93.70 1,152.00 101.31 1,088.83

Total 64 128.65 1,046.75 129.03 1,053.33 173.86 1,091.34 181.53 1,242.63

We note that with respect to computation time, implementing Benders without

including Benders lift-and-project cuts performs on average the fastest. Between the

two versions that exclude it, B0 is on average marginally better than B1 over the

instances of class III-B and IV but 30% slower on average over the instances of class

I. This shows that although in most cases using the in-tree heuristic will increase

the solution time, there are instances for which it pays off significantly, for example

instance groups 30,520,100 and 30,700,400 of class I.

While incorporating Benders lift-and-project cuts has a better solution time when

compared to B0 for the instances in class I, it produces on average over a 30% increase
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in solution time over the complete testbed. B2 provides the fastest solution time for

instance groups 30,700,400 of class I; 20,120,200 of class III-B; and 50,1500,1000 of

class IV; however, for other instance groups, it can double the solution time despite

exploring fewer nodes (see instance group 20,220,200 of class III-B). An explanation

for this is the density and numerical instability of the Benders lift-and-project cuts.

As mentioned before, these cuts have several non-zero coefficients close to zero. This

leads to more time required to solve the underlying linear programs and in some

instances numerical instability that prevents CPLEX from constructing an advanced

basis for nodes in the tree. We also note that their use rarely leads to a reduction

in the size of the enumeration tree as both B3 and B4 show a larger average number

of nodes explored than B0 and B1. This indicates that the addition of these cuts

negatively influences the branching within the enumeration tree.

Incorporating both Benders lift-and-project cuts and our in-tree heuristic simul-

taneously is the version that requires the most computation time on average over the

entire test bed. In fact, its solution time is worse than the versions that incorpo-

rate them individually. One of the main factors contributing to this is the increase

that comes from incorporating Benders lift-and-project cuts which as we have seen,

also negatively influences the branching within the enumeration tree. The rest of the

solution time increase can be explained by the additional time the in-tree heuristic

required to solve PHeur.

Finally, we note that both B0 and B1 are able to solve the two largest in-

stances that required significantly more time. In particular, incorporating our in-

tree matheuristic proved marginally beneficial for the largest instance. On the other

hand, including Benders lift-and-project cuts rendered a time saving of one-fifth of

the computation time required by B0 to solve the second largest instance. This again

shows the unpredictable effect of lift-and-project cuts in our branch-and-Benders-cut

algorithm.
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Considering these results, we choose B0 as the black box solver for our cut-and-

solve algorithm. Figure 3.1 is the performance profile of our branch-and-Benders-cut

algorithm (BB&C), our cut-and-solve (CS/LB) and solving P with CPLEX 12.7.1’s

branch-and-cut algorithm CPX. We do not compare with CPLEX’s black box Ben-

ders implementation since preliminary results showed it to perform significantly worse

than CPLEX’s branch-and-cut. Figure 3.1 plots the number of instances solved by

each algorithm within a given number of seconds.
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Figure 3.1: Number of instances solved in a given time limit

We note that both our proposed methodologies are able to solve more instances

in less time than CPLEX, having solved close to 83% of the instances in less than 100

seconds and solving all except the two largest instances within 45 minutes. CPLEX

on the other hand manages to solve only 41 instances within 100 seconds; less than

the number solved by our branch-and-Benders-cut algorithm in 20 seconds. CPLEX

runs into trouble proving optimality for 10 instances requiring over an hour for the

least troublesome and over half a day for the most burdensome. In addition, it is

unable to solve the two largest instances within the one-day time limit while our

branch-and-Benders-cut algorithm solves all instances within twenty hours of CPU

time.

When comparing the performance between (CS/LB) and (BB&C), we see from
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Figure 3.1 that the latter is faster at solving instances. However, when given addi-

tional time, both algorithms have similar behavior. To make a more precise com-

parison, Table 3.5 contains the average times, in seconds, required for each class and

description of our testbed.

Our results show that on average both BB&C and CS/LB are an order of magni-

tude faster than CPLEX for instances all three are able to solve. This speedup is even

more significant when limiting our analysis to the large-scale instances. For these,

our branch-and-Benders-cut algorithm is up to three orders of magnitude faster than

CPLEX. The instances of Class III-B also show a significant saving in computation

time in favor of our Benders decomposition-based algorithms. The savings obtained

with BB&C can be largely attributed to solving smaller underlying linear programs

in the enumeration tree and exploring the nodes in significantly less time.

Table 3.5: Comparison of computation times in seconds

Class (|N |, |A|, |K|) Nb CPX CS/LB BB&C

I

20,230,40 3 0.07 0.21 0.22

20,230,200 4 252.95 34.56 15.17

20,300,40 4 0.17 0.33 0.24

20,300,200 4 303.24 30.35 12.11

30,520,100 4 3,181.33 172.15 305.08

30,520,400 4 95.46 20.61 9.14

30,700,100 4 71.61 19.56 8.86

30,700,400 4 10,479.58 550.03 332.35

Sub-Total 31 1,856.05 106.80 88.14

III-B

20,120,40 3 0.05 0.10 0.11

20,120,100 3 13.42 5.56 1.97

20,120,200 3 361.23 245.47 214.59

20,220,40 3 6.91 6.81 2.00

20,220,100 3 153.86 54.32 39.81

20,220,200 3 1,615.31 1,396.17 775.17

20,320,40 3 27.79 36.06 11.44

20,320,100 3 69.25 29.36 6.87

20,320,200 3 2,592.58 435.30 625.82

Sub-Total 27 537.82 245.46 186.42

IV

40,1200,400 1 59.82 19.95 9.19

40,1200,800 1 4,483.75 141.31 53.00

40,1200,1200 1 1,664.10 110.68 57.07

50,1400,400 1 575.91 68.06 29.94

50,1400,800 1 39,051.12 296.61 117.31

50,1400,1200 1 57071.73 500.18 201.33

50,1500,1000 1 time time 54,074.52

50,1500,1500 1 time time 69,637.47

Sub-Total 6 17,151.07 189.47 77.97

Total 64 2,733.83 173.05 128.65
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This is surprising because unlike solving P with CPLEX, our branch-and-Benders-

cut algorithm does not explicitly have a complete description of the problem’s poly-

tope but must instead estimate it on the fly by generating Benders cuts. This leads

to the possibility of underestimating the solution of the underlying linear programs

at each node of the enumeration tree, leading to weak dual bounds. This is more

likely to occur in BB&C since we only allow for one round of Benders cuts to be

added at non-root nodes of our enumeration tree. However, due to the enhancements

proposed, we leave the root node with a linear program that captures most of the

important characteristics in a smaller problem.

On the other hand, our modified cut-and-solve algorithm’s performance is also

two orders of magnitude faster than CPLEX for large-scale instances while for Class

III-B, it saves over 50% of the solution time. On average, CS/LB solves five sparse

problems before proving optimality of its obtained solution. Each of these sparse

problems are solved up to three orders of magnitude faster than solving the complete

problem with CPLEX and sometimes in half the time than if solved with branch-

and-Benders-cut algorithm. It is because of these time savings that it outperforms

CPLEX in all instances and our branch-and-Benders-cut algorithm in instance group

20,320,200 of class III-B. The advantage of this method is that it finds the optimal

solution early on and spends the rest of the time proving optimality by solving another

sparse problem followed by the remaining dense problem.

Finally, we point out that while dimensionality does play a role in the computation

time required to solve these instances, there exist other factors that contribute to the

difficulty of these problems. This can be seen in the difference in solution time between

the instance group 30,520,100 and 30,520,400 of class I where the group with four

times more commodities is solved in significantly less computing time. The same is

seen when comparing differences in number of arcs. Instance group 30,700,100 (class

I) requires significantly less computing time than the instance group 30,520,100 (class
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I) which has less arcs. Identifying the other factors that make some network design

instances particularly difficult for mixed integer programs would allow researchers to

devise algorithms with an improved, more stable performance.

3.7 Conclusion

We have presented two exact solution algorithms for the multicommodity uncapac-

itated fixed-charge network design problem that significantly outperform the state-

of-the-art general-purpose MIP solver CPLEX. The first exact algorithm is based

on implementing Benders decomposition within a branch-and-cut framework using

Pareto-optimal cuts, appropriate core point selection, and an in-tree matheuristic.

These additional refinements also serve as general guidelines for implementing this

algorithm for other mixed integer problems.

We present a novel strategy for improving the LP bound of our Benders refor-

mulation by means of Benders lift-and-project cuts applied to the master problem’s

feasibility and optimality cuts. These are obtained using a modified cut generating

linear program that takes less than 0.02 seconds to solve. This procedure extends

beyond the MUFND and can be applied to all problems that allow a mixed integer

programming formulation and corresponding Benders reformulation.

Finally, we present a strategy that combines ideas from cut-and-solve/local branch-

ing and our proposed branch-and-Benders-cut algorithm. The advantages of this

method are: breaking down the problem into a few sparse MIPs which make it easier

to obtain high quality feasible solutions, the non-increasing optimal values obtained

from the sparse problems, the reduced size of the sparse problem solution space, and

the re-usability of Benders cuts generated in previous iterations. The results of our

implementation show this fusion to be a promising method for solving large-scale

MIPs.
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Chapter 4

Profit-oriented Fixed-charge

Network Design with Elastic

Demand

Abstract

This paper extends classic fixed charge multicommodity network design by explicitly

considering demand elasticity with respect to routing cost in a profit maximization

context with service commitments. Demand quantity is determined by a spatial in-

teraction model that accounts for routing costs thus capturing the trade-off between

infrastructure investment, efficient routing, and increased revenue. A numerical ex-

ample is presented to demonstrate the added value of incorporating demand elasticity

in profit-oriented network design problems. An arc-based and a path-based formula-

tion, both with the flexibility of incorporating O/D pair selection by means of network

and data transformations, are presented. The arc-based formulation is solved using

state-of-the-art global optimization software while the path-based formulation serves

as the basis for a hybrid matheuristic that combines a slope scaling metaheuristic and
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column generation. Computational experience shows the hybrid matheuristic to be

superior in terms of solution quality and computation time.

4.1 Introduction

Fixed charge multicommodity network design (FMND) is a fundamental optimization

problem arising in industries such as transportation and communications to capture

the trade-off between strategic investment and operational efficiency. The problem

consists of selecting a subset of potential arcs to be installed and to route the demand

of commodities from several origin/destination (O/D) pairs using only the installed

arcs. A fixed cost is incurred upon installing an arc and a unit transportation cost is

paid for each unit of commodity transported through each arc. It generalizes a large

class of well-known combinatorial problems such as the shortest path problem, the

traveling salesman problem, the uncapacitated lot-sizing problem, and the Steiner net-

work design problem [105, 181], and models a variety of problems in communications

and transportation [128, 138].

In this paper, we extend the FMND by incorporating demand elasticity with re-

spect to routing cost in a profit maximization context where a predetermined amount

of revenue is received for each unit of demand routed. The problem considers the

same decisions as the classic model: selecting a subset of arcs to install and rout-

ing the demand of O/D pairs using them. In addition, the decision maker selects

which O/D pairs to serve subject to a service commitment constraint. Since demand

quantity is a function that depends on route distance which in turn is determined by

the solution of the model, the proposed framework endogenously captures the feed-

back loop between the network design decisions and demand quantities, leading to

equilibrium-like conditions at its optimal solutions.

In the network optimization literature, demand quantities are exogenously esti-
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mated via historical information and given as fixed parameters to the problem. This

makes the resulting optimization model highly dependent on the quality of the initial

demand estimate. To circumvent this, researchers have developed models for FMND

that account for demand uncertainty via robust optimization as in Lee et al. [121] and

Keyvanshokooh et al. [111] or stochastic programming as in Rahmaniani et al. [155].

The former assumes demand realizations are within a predefined set and finds the

best solution considering the worst possible demand realization occurs (risk-averse).

The latter assumes that demand follows a given probability distribution and seeks

the solution with the best expected value (risk-neutral).

Both approaches assume demand behaves statically in the sense that it does

not depend on the network’s configuration, i.e., demand is inelastic. This does

not hold in many of the applications of FMND. An example is the construction of

the U.S.A’s interstate highway system which led to a significant increase in trans-

portation of commodities among cities in particular within the “Sunbelt states”

(https://www.fhwa.dot.gov). Another example is the shift in travel patterns when

shorter flight routes are offered between cities [36]. The myopic perspective of ig-

noring demand elasticity compromises the applicability of FMND at the strategic

level where decisions have long-lasting repercussions, a context in which its use is

ubiquitous.

In the literature, there are three areas of network design in which elastic demand

has been considered: transit network design, service network design, and network

pricing. Each models demand elasticity according to the level of detail needed for

the problem. In transit network design, elastic demand is incorporated by means of

traffic assignment problems (TAP), where demand information is obtained at the link

level. Service network design and network pricing problems on the other hand use a

distance decay function to estimate demand between O/D pairs.

Traffic assignment problems on congested networks were the earliest to incorporate
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elastic demand into network problems. The purpose of these models is to calculate the

use of each link (road) on a network considering: 1) users are selfish and will use paths

that minimize their travel time; 2) travel time over a link is inversely proportional

to the number of users on it; and 3) the number of users going between two points

in the network is a function of the travel time. Beckmann et al. [20] presented a

non-linear formulation whose optimal solution also solves the TAP, satisfying what

later became termed as a “user-equilibrium”. Solution algorithms that converge to

this user-equilibrium for the fixed demand case were first proposed by Dafermos [65]

and LeBlanc et al. [120], while Florian and Nguyen [80] and Evans [74] devised the

first efficient algorithms for the elastic demand case. Numerous extensions have been

proposed for both the static TAP [135] and the dynamic TAP [152].

As mentioned before, the TAP is a subproblem of transit network design prob-

lems in which higher level decisions such as added road capacity, vehicle outgoing

frequency, or vehicle sizes must be determined [141]. These problems are posed as

bilevel programs in which the upper level seeks to maximize social benefit and the

lower level corresponds to a TAP. Due to the difficulty of solving the TAP, in particu-

lar when considering elastic demand, and the added challenge of bilevel programming,

most solution methods for these problems have been heuristic in nature [44].

Demand elasticity has also been incorporated into location models by means of

distance decay functions, spatial interaction models, or user-equilibrum constraints

to characterize demand loss due to travel time/cost, congestion and decline in utility.

Two families of location problems have considered demand elasticity. The first is

Competitive Facility Location in which the decision maker seeks to maximize the

market share captured or minimize lost demand by strategically locating facilities

for customers whose willingness to patronize it is sensitive to travel and waiting

time. Solution algorithms and extensions of these can be found in Aboolian et al.

[1], Berman et al. [23], Marianov et al. [131] and Marianov et al. [132]. Other works
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with a specific application to healthcare service network design are Zhang et al. [183]

and Zhang et al. [184] in which the former uses queueing theory to determine expected

demand and the latter models demand elasticity via user-equilibrium conditions to

account for willingness to participate in preventive healthcare.

The second family of location problems to consider demand elasticity is the profit

maximizing service network design problem presented in Aboolian et al. [2]. The

model seeks to determine the optimal facility locations and their corresponding ser-

vice levels so as to maximize the profit obtained as the difference between the revenue

received from the captured demand and the investment in infrastructure. The model

accounts for sensitivity to both travel and waiting time where the latter is incorpo-

rated as constraints derived from well-known queueing theory results. It is solved to

optimality by a successive improvement algorithm that removes non-optimal feasible

solutions at each iteration. However, the solution time shows to be sensitive to the

allowed minimum number of workers per facility.

The most recent area of network design to incorporate elastic demand is that of

network pricing introduced by Labbé et al. [118]. This problem seeks to maximize the

revenue raised from tolls placed on a network that must transport multiple commodi-

ties. Kuiteing et al. [116] extended the original version to include elastic demand by

means of a linearly decreasing function. The resulting problem is posed as a bilevel

program and reformulated into a mixed integer quadratic program which is solved by

a general-purpose solver. Kuiteing et al. [117] later extended the model to include

non-linear demand decay functions and proposed an exact method based on piecewise

linear approximations of the demand function that asymptotically converges to the

optimal solution.

These studies demonstrate the importance and impact of accounting for elastic

demand in strategic network design problems both in “directed choice” models where

a central decision maker establishes the O/D routes and in “user-choice” models where
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routing is determined by user-equilibria. Recently, Daganzo [66] presented conditions

under which demand estimation and system design can be done separately in public

infrastructure network design through user-choice models. These problems seek to

maximize social benefit by deciding on the system design, including its layout and

control, and the prices to be charged for the service. We note that this result does not

apply to the problem presented in this paper as it is a directed choice model placed in

a more abstract context to allow its use in applications beyond public infrastructure.

Among the classes of problems reviewed, the most closely related to the proposed

framework is that of Aboolian et al. [2]. It also captures the trade-off between ad-

ditional investment and increased revenue. However, the presented model differs in

that it assumes a maximum threshold of possible demand, and that elasticity is mod-

eled by both a distance and congestion decay function. In addition, the inherent

difference between location and network design problems makes the corresponding

approaches significantly different. In location problems, locating a facility directly

impacts the travel costs of nearby patrons. On the other hand, the effect on routing

costs of installing an arc in a network is dependent on the other arcs that determine

the shortest paths of commodities.

With respect to modeling demand elasticity, the methods used in the reviewed

literature do not fit well with the assumptions and level of detail of FMND. Compared

to the TAP, we do not require traffic levels per link nor does the model assume having

the parameters necessary to formulate the equilibrium model. On the other hand,

distance decay functions are useful when modeling lost demand whereas the goal

of the proposed framework is to also capture the possibility of increasing demand

quantity based on network decisions.

In this paper we propose the use of a gravity model to incorporate demand elastic-

ity to routing cost into a profit-oriented variant of FMND. One of the key advantages

of the use of the gravity model is that its simplest version allows for the incorporation
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of demand elasticity by using an O/D demand matrix as in the classic FMND. On

the other hand, more sophisticated gravity models that consider other determining

features for demand prediction can be easily incorporated by doing the necessary

calibration. This allows for a wide spectrum of possible gravity models to predict

demand being incorporated into FMND. The gravity model also generalizes distance

decay functions as it does not assume an estimated maximum possible demand. In-

stead, the maximum possible demand is implicitly determined by the underlying net-

work’s shortest distances. In addition, we allow the decision maker to choose which

O/D pairs will be served subject to a service commitment constraint that enforces

a minimum number of them to be routed. We present two non-linear mixed integer

programming formulations obtained by incorporating a general form of the gravity

model and demonstrate the added value of incorporating demand elasticity by com-

paring solutions obtained from the proposed model and from its inelastic version.

Both formulations are able to model O/D pair selection by means of simple net-

work transformations. Finally, we present solution algorithms and a computational

comparison of their performance with respect to solution quality and computation

time.

The rest of the paper is organized as follows. In Section 4.2, we provide some pre-

liminaries on the use of gravity models, present the notation, formally describe the

problem, and give a numerical example that demonstrates the value of incorporating

demand elasticity. Section 4.3 presents an arc-based and a path-based formulation

and the transformations necessary to incorporate O/D pair selection and service com-

mitment constraints. Section 4.4 details the components of the hybrid matheuristic

used to solve the path-based formulation while Section 4.5 compares its performance

with that of solving the arc-based formulation with a state-of-the-art global optimiza-

tion solver. Finally, Section 4.6 provides conclusions and future lines of research.
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4.2 Problem definition

As the proposed framework is based on the FMND, we adopt the same notation.

The problem is defined on a directed graph G = (N,A) with node set N and arc set

A. We assume the existence of a set of O/D pairs, which we denote by K, between

which demand must be routed on a single path. Each O/D pair will also be referred

to as a commodity. Each arc has a corresponding fixed installation cost fij ≥ 0 and

a unit transportation cost ckij > 0 for each commodity k ∈ K. A revenue of αk ≥ 0 is

received for every unit of commodity k ∈ K that is routed.

There is an added value in allowing the decision maker to select which commodities

to route in a profit-oriented problem. A commodity may be left unserved if the

resulting installation and operational costs do not compensate the obtained revenue

in the overall network design. This additional decision level is incorporated in the

problem along with a service commitment constraint that enforces that at least Γ O/D

pairs are routed, where Γ ∈ Z
+. Considering all previously mentioned characteristics,

the proposed problem consists of finding the network configuration that maximizes

the total profit obtained from routing at least Γ of a set of given O/D pairs. The

flexibility of the resulting problem allows it to be used in both regulated industries

where service commitments are imposed and unregulated industries where the service

provider has complete freedom to selfishly pursue profit.

Given that the total revenue depends on the demand quantities of the commodities

routed, the role of demand elasticity to routing cost directly impacts our objective.

The proposed problem implicitly seeks an equilibrium between spending on network

infrastructure to increase demand quantities of commodities while ensuring maximum

profitability in the overall endeavor. We next introduce the preliminaries of gravity

models, the tool used to model demand elasticity to routing cost.
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4.2.1 Gravity models

Based on Newton’s law of universal gravitation [142], gravity models have spread to

other fields in the social sciences [101]. Since the late 19th century, ideas based on

gravity models have been used to explain principles of social science [42], to define

laws of migration [157], to explain retail gravitation [159], to model consumer behavior

[106], and to analyze traffic patterns [172]. In the optimization community, Huff-like

models have been used in competitive facility locations [1, 71, 75] with both market

share capture and profit maximization objectives.

The original idea behind gravity models was to measure the interaction between

two locations as being directly proportional to their size and inversely proportional

to the distance between them. The model’s simplified form led to skepticism about

its prediction capabilities [108]. As a response, theoretical refinements were made to

improve its reliability as a prediction tool. Wilson [173] presented gravity models that

considered information restrictions and provided a corresponding taxonomy for the

resulting families of gravity models: unconstrained, production constrained, attrac-

tion constrained, and production-attraction constrained. Later, Senior [163] provided

a means of extracting information at a disaggregated level based on entropy maxi-

mization. Throughout the years, other refinements have been proposed that allow for

the inclusion of industry-specific features into the gravity model [83]. Today, refined

and meticulously calibrated gravity models such as those presented in Grosche et al.

[97], Hodgson [104], Lesage and Polasek [122], Zhong et al. [185] and Boonekamp

et al. [36] provide reliable estimates of interactions between locations.

In general, gravity models assume the interactions Wij from city i to j can be

estimated as Wij = f(Ūi, V̄j, D̄ij) where Ūi is a vector of origin features, V̄j is a vector

of destination features, D̄ij represents a set of separation attributes, one of which is

the travel cost, and f(.) is a real-valued function [83]. To ease notation, we assume
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the following simplified version of the gravity model:

Wij =
PiPj

(dij)r
, (4.1)

where Pi is a weight attributed to the population size at location i, dij represents

the distance between them, and r ≥ 0 is an exponent that models the sensitivity to

distance. As seen in Black [32], depending on the context in which the gravity model

is used, different values of r have been shown to better approximate demand patterns.

In practice, its value often varies between 0.5 and 2.0 [83].

The formulations and solution algorithms presented in this paper are also compat-

ible with more sophisticated gravity models. Note that the components of Ūi and V̄j

are not affected by the decisions taken in network design problems. In fact, the only

feature affected by network design decisions is the distance between the locations.

Therefore, the addition of features would appear in the proposed optimization model

as constants. On the other hand the variability of the exponent r is accounted for

and, as will be seen in Section 4.4, the presented solution algorithm easily adapts to

any value of r.

4.2.2 Profit-oriented network design with elastic demand

We next present the objective function of the problem resulting from incorporating

(4.1) into FMND where distances considered are based on routing costs. Let the

variable xk
ij ∈ {0, 1} represent whether arc (i, j) ∈ A is used in the route of commodity

k ∈ K while yij represents the activation of arc (i, j) ∈ A. To model revenue, we

convert the demand quantity into a monetary value by multiplying it by the per unit

revenue αk ≥ 0 received for each unit of commodity k ∈ K routed. We assume

that the routing costs used in the gravity model are directly proportional to the

transportation costs incurred ckij, i.e., dij = τckij, where τ > 0 is a transportation
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cost scaling factor. Substituting the gravity model form (4.1) for the fixed demand

parameter Wk of the FMND, we obtain the following objective function for the profit-

oriented network design problem with elastic demand (POFMND-E):

(OF )
∑
k∈K

αkPo(k)Pd(k)

(τ
∑

(i,j)∈A
ckijx

k
ij)

r
−

∑
k∈K

Po(k)Pd(k)

(τ
∑

(i,j)∈A
ckijx

k
ij)

r

∑
(i,j)∈A

ckijx
k
ij −

∑
(i,j)∈A

fijyij (4.2)

=
∑
k∈K

Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijx

k
ij]

(τ
∑

(i,j)∈A
ckijx

k
ij)

r
−

∑
(i,j)∈A

fijyij (4.3)

=
∑
k∈K

PPk(x)−
∑

(i,j)∈A
fijyij. (4.4)

The first, second and third terms of (4.2) correspond to the total revenue, trans-

portation cost and investment cost, respectively. Note that unlike classic multicom-

modity network design problems, in OF the demand quantities between O/D pairs

will depend on the cost of the routes used. This models the effect the decision maker’s

choice of routes has on demand quantities, i.e., demand elasticity to routing cost.

Simplifying, we obtain (4.3) from which we can more clearly see the profit max-

imization and demand elasticity characteristics of the non-linear objective function.

Note that each addend of the first term, rewritten as PPk(x) in (4.4), lends itself to

the interpretation of “partial profit” obtained from serving commodity k ∈ K. For

each O/D pair, it calculates the difference between the per unit revenue and trans-

portation cost, multiplied by the demand quantity obtained according to the gravity

model.

Since no assumptions, except non-negativity, are imposed on the value of the per

unit revenue αk of a commodity, the model is capable of handling cases in which for

a given commodity k, PPk(x) < 0. In other words a loss is incurred. One such case

is when the per unit revenue of a commodity is strictly less than the cheapest route

over the complete underlying network, pks .
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An important characteristic of PPk(x) is that it is the composition of two functions

dk(x) : R
n → R and PPk(dk) : R → R, where dk(x) =

∑
(i,j)∈A ckijx

k
ij and PPk(dk) =

Po(k)Pd(k)
[αk−dk]
(τdk)r

. The following proposition uses this to provide insights on the shape

of the function PPk(x).

Proposition 1. For r > 1,

a) dk(x) =
rαk

r−1
is a minimum of PPk(dk(x)),

b) PPk(x) is convex for 0 < dk(x) ≤ (r+1)αk

(r−1)
,

c) PPk(x) is concave for dk(x) ≥ (r+1)αk

(r−1)
.

Proof. Given that PPk(dk) : R → R, i.e., the partial profit of commodity k as a

function of distance dk > 0, is a twice differentiable univariate function, we can

calculate its first and second order derivatives. We denote f ′(x) and f ′′(x) as the

first and second order derivatives of f(x), respectively. Using univariate calculus we

obtain the following differential information for PPk(dk):

PP ′
k(dk) = Po(k)Pd(k)

(dk(r − 1)− rαk)

τ rdr+1
, (4.5)

PP ′′
k (dk) = Po(k)Pd(k)r

((r + 1)αk − (r − 1)dk)

τ rdr+2
. (4.6)

From (4.5) and (4.6) we observe that for any r > 1:

� PP ′′
k (dk) ≥ 0 when dk ≤ (r+1)αk

(r−1)
=⇒ PPk(dk) is convex for dk ∈ (0, (r+1)αk

(r−1)
] .

� PP ′′
k (dk) < 0 when dk >

(r+1)αk

(r−1)
=⇒ PPk(dk) is concave for dk ∈ ( (r+1)αk

(r−1)
,∞) .

� PPk(dk) obtains a minimum of
−Po(k)Pd(k)αk(r−1)(r−1)

(rταk)r
at dk =

rαk

r−1
since PP ′

k(
rαk

r−1
) =

0 and PP ′′
k (

rαk

r−1
) > 0.

Given that dk(x) is an affine transformation and PPk(x) is the composition of

PPk(dk) and dk(x), we conclude that PPk(dk) is convex when 0 < dk(x) ≤ (r+1)αk

(r−1)
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and concave when dk(x) ≥ (r+1)αk

(r−1)
[38, section 3.2.2] and is therefore a non-convex

function throughout the domain x ∈ R
|A|.

The case of 0 ≤ r ≤ 1 merits special attention because the function PPk(x) pos-

sesses properties that can be exploited from a mathematical programming perspec-

tive. Although the scope of this study is to present a general solution methodology

adaptable to any r ≥ 0, we present these special characteristics for completeness.

Substituting 0 ≤ r ≤ 1 into (4.6) we note that PP ′′
k (dk) ≥ 0 for all dk ∈ R. This

implies that PPk(dk) is a convex function throughout the entire domain of x ∈ R. In

fact, as r �→ 0, PPk(dk) tends to become more linear, achieving linearity at r = 0. In

addition, not only is PPk(dk) convex throughout its domain, it also does not attain its

minimum. This can be seen by substituting 0 ≤ r ≤ 1 into the expression (4.5) = 0

whose solutions give the stationary points of PPk(dk). We note that a key assumption

of these results is that ckij > 0 for all k ∈ K and (i, j) ∈ A, since routes with a cost

of zero are undefined in the presented definition of partial profit. The advantage of

convexity lies in the fact that there exist efficient ways of dealing with OF by using

subgradients to under-approximate each PPk(x).

Figure 4.1 shows the shape of PPk(dk) with respect to per unit routing cost dk for

three parameter values of r. For a given k ∈ K, note that the partial profit PPk(dk)

may take negative values, i.e., incur a loss, when the per unit routing cost dk is greater

than αk. After attaining its minimum, which as seen from our previous analysis will

always be a maximum loss, if the demand sensitivity parameter r > 1 then an increase

in per unit routing cost decreases the loss. Therefore in this particular case, after a

certain point, there is an incentive for the decision maker to route commodities on

a longer path so as to dissuade demand of a particular commodity whose efficient

routing does not globally compensate the revenue obtained.

On the other hand, if r ∈ [0, 1] then the partial profit PPk(dk) is a convex function

that keeps decreasing as the routing cost increases therefore there would be no incen-
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tive to route commodities through a longer route. This flexibility in modeling demand

behavior and its effect on the partial profit is one of the most important reasons for

using the gravity model. It generalizes schemes such as demand decay functions and

is able to capture phenomena such as the effect of hyper-sensitivity to routing costs

(r > 1) on partial profit that may be missed from more conventional demand func-

tions. Finally, we point out that in the context of our problem, the values dk(x) are

bounded above and below by the most expensive (pkl ) and the cheapest (pks) possible

routes, respectively, in the complete underlying graph. Therefore, depending on their

values, the corresponding problem may consider only the convex part of PPk when

r > 1. However, in general, the problem to be solved is a non-linear optimization

problem for all r ≥ 0.

r=2

r=1.67

r=1

Figure 4.1: Shape of PPk(dk)

These nuances capture other levels of trade-off inherent to profit maximization

where taking losses or offering worse service levels for some commodities compensates

the overall profitability of an enterprise’s operation. The proposed framework can also

be used as a means of finding how to create commodity groups with better operation

synergy, i.e., considering them together leads to decisions that do not dissuade demand

by offering poorer service.

Comparing the shape of the partial profit for varying values of r, we note that

the minimum value of partial profit is larger for greater values of r. This comes from
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the fact that larger values of r represent greater demand sensitivity to routing cost

leading to fewer units of the commodity being routed at the minimum value of partial

profit and therefore a smaller loss.

4.3 Formulations

We next propose two non-linear mixed integer programming formulations for the

profit-oriented network design problem with elastic demand (POFMND-E) in which all

commodities must be served. These formulations can be easily adapted to incorporate

O/D pair selection decisions and service commitments. Both formulations fall in the

domain of global optimization problems. Given the limited resources to efficiently

solve these types of problems, we use one of the formulations as a base to develop

a hybrid matheuristic that is applicable to any r ≥ 0. It exploits known results of

similar network design problems and converges in a reasonable amount of computation

time. The other formulation serves as a benchmark for solving the POFMND-E with

O/D pair selection and service commitments using a state-of-the-art general purpose

global optimization software.

4.3.1 Arc-based formulation

Our arc-based formulation is based on the well-known strong formulation for the

uncapacitated FMND with the difference that the routing variables xk
ij are binary

instead of continuous. In the case of POFMND-E, when the per unit revenue αk of

a commodity k is less than the cheapest possible route pks , the model then seeks to

make the loss resulting from PPk(x) as small as possible by increasing the length of

the route as much as possible. Since flow conservation constraints alone do not pro-

hibit circuits, formulations based only on the constraints of the classic uncapacitated

FMND formulation lead to solutions having routes with sub-circuits within the path
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and isolated from it.

Given the inability of most global optimization software to allow for cut callbacks,

we implement the subtour elimination constraints (SEC) via a modified version of the

well-known, but weak, Miller-Tucker-Zemlin (MTZ) subtour elimination constraints

[137]. These require an additional set of variables uk
i for each i ∈ N, k ∈ K and

that xk
ij be binary leading to the following arc-based formulation. The variables u

represent the order in which all nodes except the depot are visited.

(P1) maximize
∑
k∈K

Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijx

k
ij]

(τ
∑

(i,j)∈A
ckijx

k
ij)

r
−

∑
(i,j)∈A

fijyij (4.7)

subject to
∑

j∈N :(j,i)∈A
xk
ji −

∑
j∈N :(i,j)∈A

xk
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 if i = ok

1 if i = dk

0 otherwise

∀i ∈ N, ∀k ∈ K

(4.8)

xk
ij ≤ yij ∀(i, j) ∈ A, k ∈ K (4.9)

uk
ok

= 1 ∀k ∈ K (4.10)

uk
i − uk

j + 1 ≤ (N − 1)(1− xk
ij) ∀(i, j) ∈ A, k ∈ K (4.11)

2 ≤ uk
i ≤ N ∀i ∈ N\{ok}, k ∈ K (4.12)

xk
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (4.13)

yij ∈ {0, 1} ∀(i, j) ∈ A. (4.14)

The objective function (4.7) seeks to maximize profit, while constraints (4.8) and

(4.9) are the flow conservation constraints and binding constraints from the classic

uncapacitated FMND, respectively. Finally, constraints (4.10) and (4.11) are the

MTZ subtour elimination constraints, while (4.12)-(4.14) are the variable definitions.
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As a required input of the algorithms used in global optimization software, we

provide the lower and upper bounds for the values of each PPk(x) as detailed in

Section 4.2.2. This model is solved with the general-purpose global optimization

solver Baron 18.8.23 [114, 161, 170] accessed through the AMPL modeling language.

4.3.2 Path-based formulation and pricing problem

We next present a path-based formulation of the problem. Let Θμ
k denote a binary

variable whose value is equal to 1 if path μ is used for commodity k, and define the

parameter vμk (i, j)=1 if arc (i, j) belongs to path μ for commodity k, 0 otherwise.

Finally, let Ωk denote the set of simple paths from o(k) to d(k) and Ω represent the

union of these over k ∈ K. With this notation we have the following path-based

formulation for the POFMND-E.

(P2) maximize
∑
k∈K

∑
μ∈Ωk

[Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijv

μ
k (i, j)]

(τ
∑

(i,j)∈A
ckijv

μ
k (i, j))

r
]Θμ

k −
∑

(i,j)∈A
fijyij (4.15)

subject to [λ]
∑
μ∈Ωk

vμk (i, j)Θ
μ
k ≤ yij ∀(i, j) ∈ A, ∀k ∈ K (4.16)

[μ]
∑
μ∈Ωk

Θμ
k = 1 ∀k ∈ K (4.17)

Θμ
k ∈ {0, 1} ∀(i, j) ∈ A. (4.18)

yij ∈ {0, 1} ∀(i, j) ∈ A. (4.19)

The objective function (4.15) calculates the total profit obtained from the selected

network configuration. Constraint set (4.16) ensures that all design variables of the

arcs used in the routing take value one while constraints (4.17) ensure that each

commodity is routed through one path. Finally, λk
ij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K and

μk ∈ R, ∀k ∈ K are the dual variables corresponding to (4.16) and (4.17), respectively.
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We point out that, unlike P1, the presented path-based formulation is a binary linear

formulation.

Given the exponential number of potential paths that can be used to route each

commodity, traditionally these are added on the fly to P2 by means of a column

generation algorithm which adds columns based on the solution of a pricing problem

that determines whether new columns are needed to calculate the linear relaxation

of P2. In this case, the pricing problems of POFMND-E decompose to one for each

commodity k ∈ K. These have the following form for each k ∈ K:

(Prk2) maximize [Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijv

μ
k (i, j)]

(τ
∑

(i,j)∈A
ckijv

μ
k (i, j))

r
]−

∑
(i,j)∈A

λijv
μ
k (i, j) (4.20)

subject to
∑

j∈N :(j,i)∈A
vμk (j, i)−

∑
j∈N :(i,j)∈A

vμk (i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 if i = ok

1 if i = dk

0 otherwise

∀i ∈ N

(4.21)

uk
ok

= 1 ∀k ∈ K (4.22)

uk
i − uk

j + 1 ≤ (N − 1)(1− vμk (i, j)) ∀(i, j) ∈ A (4.23)

2 ≤ uk
i ≤ N ∀i ∈ N\{ok} (4.24)

vμk (i, j) ∈ {0, 1} ∀(i, j) ∈ A. (4.25)

The objective function (4.20) seeks to maximize the reduced cost of the column

to be added while constraints (4.21) are the classic flow conservation constraints.

Constraints (4.22) and (4.23) are the MTZ subtour elimination constraints. Note

that Prk2 is similar to P1 in that it is a non-linear formulation, with binary variables

and MTZ subtour elimination constraints. However, Prk2 is significantly smaller since

it is defined for each k ∈ K and the fixed costs are replaced by the dual variables of
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(4.16). It is a modified shortest path problem with a non-linear objective function.

The difficult non-convexity present in P1 is transferred to the pricing problem Prk2.

Our efforts will therefore be placed in finding alternative ways of adding new columns

to P2 by heuristically solving an easier problem based on Prk2.

4.3.3 Incorporating O/D pair selection and service commit-

ments

Formulations P1 and P2 do not account for O/D pair selection and service commit-

ment. Both formulations allow for the convenient incorporation of both considerations

by either performing simple transformations on the network or defining artificial vari-

ables, and adding a knapsack-type constraint, respectively. For P1 to allow O/D pair

selection, the only modification required is done to the underlying graph used in the

formulation. The following network transformation incorporates O/D pair selection

into P1.

Let Δ = {i ∈ N |∃(o, d) ∈ K such that i = d} denote the set of nodes that are

destinations of some commodity k ∈ K. For each node δ ∈ Δ create an artificial

node δo and an arc (δ, δo) ∈ A with fδδo = 0 and ckδδo = 0 for all k ∈ K. In addition,

redefine all commodities (o, δ) as (o, δo) ∈ K and add another artificial arc (o, δo) ∈ A

with fδδo = 0 and ckδδo = αk for all k ∈ K. Figure 4.2 illustrates the proposed

transformation.
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(a) Original network

( , )

1

(b) Transformed network

Figure 4.2: Network transformation to allow O/D pair selection

Note that by carrying out this transformation and using the resulting network in

P1, its solution accounts for the decision maker selecting which commodities to route.

If a commodity k̄ ∈ K used the arc (o, δo) ∈ A, it obtains no revenue and incurs no

fixed cost. In other words, the model has selected not to route commodity k̄ ∈ K. On

the other hand, if a commodity uses the arc (δ, δo) ∈ A, its routing, fixed cost, and

corresponding revenue remain the same as if it was routed from (o, δ) in the original

network.

Finally, to impose a service commitment constraint in P1 stating that at least

Γ commodities are to be routed, the following knapsack type constraint on the arc

variables of the transformed network should be added:

∑
(o,δo)∈K

xoδo

oδo ≤ |K| − Γ. (4.26)

Incorporating O/D pair selection in P2 requires significantly less work. The addi-

tion of an empty route γk̄, with PPk̄(x) = 0 for each commodity k̄ ∈ K into the pool

of routes Ωk is enough to account for O/D pair selection. The associated binary vari-
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ables for these empty routes will be denoted as Θμ0

k̄
. If in a solution, the associated

Θμ0

k̄
is equal to 1, then commodity k̄ is not routed.

Imposing a service commitment in P2 where at least Γ commodities are to be

routed is also done by incorporating a knapsack-type constraint. In this case, the

inequality is defined over the artificial variables Θμ0

k̄
of the empty routes and has the

following form:

∑
k∈K

Θμ0

k ≤ |K| − Γ. (4.27)

The network transformations or empty routes can be added as a preprocessing

step leaving the incorporation of either inequality (4.26) or (4.27) as the only mod-

ification of P1 and P2, respectively, to incorporate O/D pair selection and service

commitment. These transformations allow us to formulate the POFMND-E with

commodity selection and a service commitment of Γ, denoted as POFMND-E(Γ).

P1(Γ) is defined as P1 with the addition of constraint (4.26) while P2(Γ) is defined as

P2 with the addition of constraint (4.27).

In the interest of brevity, particular attention will be placed on the two extreme

cases Γ = |K| and Γ = 0 referred to as variants I and II, respectively. Note that

for both cases, one can omit the service commitment constraints (4.26) or (4.27). In

variant I, it suffices to not carry out the network transformation or not define the

empty routes in P1 or P2, respectively. In variant II, the service commitment con-

straints become redundant as the right hand side value |K| is the maximum possible

value that can be taken.

We next present a numerical example to show the value of incorporating demand

elasticity in profit-oriented network design. Although the example presents a compar-

ison for variant I, a similar conclusion can be derived for the general POFMND-E(Γ).
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4.3.4 The value of considering demand elasticity

To demonstrate the value of considering demand elasticity within POFMND, we solve

variant I for a small example of a network with 10 nodes numbered from one to ten, 35

arcs and ten commodities. Table 4.1 details the parameters of the ten commodities:

origin, destination, population at origin, population at destination, per unit revenue

and cheapest route over the complete network, respectively.

Table 4.1: Commodity parameters of example

ok dk Po Pd αk pks

2 8 524 1,076 93 93

3 1 228 744 141 76

4 2 792 524 210 122

4 7 792 160 189 106

6 1 640 744 245 141

6 10 640 448 53 41

8 1 1,076 744 220 117

8 6 1,076 640 157 93

9 8 292 1,076 215 123

10 4 448 792 304 164

As mentioned in Section 4.2, POFMND-E obtains solutions with equilibrium-like

characteristics between demand quantity and routing cost. Therefore, to formulate

an equivalent profit-oriented FMND with inelastic demand (POFMND-I), we must

assume a fixed demand quantity for each commodity. A demand quantity value

that exploits all information in the instance data is to assign the demand quantity

between nodes i and j as Wij =
PiPj

(pks )
r . This is an optimistic value of demand quantity

as it assumes all commodities are routed along the path with least travel cost over

the complete underlying network. Note that by fixing demand quantity, the model

becomes a binary linear program which can then be solved by any of a plethora of

available integer linear programming tools.

Figure 4.3a is the optimal solution POFMND-I while Figure 4.3b is the optimal
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solution of POFMND-E.

(a) POFMND-I (b) POFMND-E

Figure 4.3: Optimal solutions POFMND where all commodities are served

We note that at a design level, the optimal solution POFMND-I has one additional

arc from node 2 → 8 as a result of routing commodity (2,8) directly from origin to

destination. POFMND-E instead routes this commodity along nodes 2 → 9 →
6 → 8 with a routing cost of 136. POFMND-I routes all commodities except (6,1)

along their cheapest possible path, pks , therefore their corresponding demand quantity

values coincided with that obtained from the presented gravity model. To ensure the

solutions of both models are comparable, we substitute the solution obtained from

POFMND-I into the objective function of POFMND-E. The objective function value

obtained from POFMND-I is 9.55% worse than that of POFMND-E. This comes as

a result of POFMND-I not having the flexibility to identify the overall benefit of

routing commodity (2,8) along a more costly, unprofitable route with less demand.

We next present a hybrid matheuristic algorithm for solving P2.

4.4 Solving the path-based formulation

To exploit existing algorithms for classic network design problems, we replace the use

of Prk2 with the classic uncapacitated FMND formulation to generate new paths. By
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doing this, we are no longer able to obtain dual bounds to assess the solution quality.

However, given that our purpose is to develop a fast heuristic adaptable to any value

of r ≥ 0, the loss of dual bounds does not hinder our purpose. On the other hand, the

classic uncapacitated FMND is itself solved by a metaheuristic since its main purpose

is to generate a varied set of paths. As we will see later on, the solutions obtained

from our proposed heuristic are optimal for most cases for which the general purpose

global optimization solver was able to prove optimality.

4.4.1 A hybrid matheuristic for the path-based formulation

We begin by presenting the logic behind the tools used for the matheuristic part of

the proposed solution algorithm. For each k ∈ K let Wk =
Po(k)Pd(k)

(τ
∑

(i,j)∈A
ckijv

μ
k (i,j))

r then:

maximize
∑
k∈K

Po(k)Pd(k)

[αk −
∑

(i,j)∈A
ckijx

k
ij]

(τ
∑

(i,j)∈A
ckijx

k
ij)

r
−

∑
(i,j)∈A

fijyij (4.28)

⇐⇒ maximize
∑
k∈K

Wk[αk −
∑

(i,j)∈A
ckijx

k
ij]−

∑
(i,j)∈A

fijyij (4.29)

⇐⇒ minimize
∑

(i,j)∈A
fijyij +

∑
k∈K

∑
(i,j)∈A

Wkc
k
ijx

k
ij (4.30)

where the equivalence between (4.29) and (4.30) comes from the fact thatWkαk is now

a constant. Expression (4.30) is in fact the objective function of the uncapacitated

FMND and methods for this problem can thus be applied to obtain new routes,

update Wk based on the best routes found, and then repeat.

Given that the uncapacitated FMND instance obtained assumes a particular value

for Wk, it is not in our interest to solve it exactly. A more suitable strategy is to use

a metaheuristic that generates diverse routes for each commodity. In this spirit, we

use a slope-scaling metaheuristic (SS) based on that presented in Crainic et al. [63]
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for the capacitated FMND. This heuristic will be detailed later on in this section.

We next outline the algorithm which embeds the slope-scaling metaheuristic within

two loops, the first updates the assumed Wk while the second solves a relaxation of

the path-based formulation and updates the transportation costs of the network used

for the slope-scaling.

We begin by initializing Wk based on the maximum possible demand, ∇k, calcu-

lated by substituting the cheapest route pks into (4.1). If the per unit revenue αk of

commodity k is less than the cheapest route pks , we initialize Wk as 0.2∇k. Otherwise

we initialize it as Wk = ∇k.

The slope-scaling metaheuristic is then called and all routes generated during the

process are stored in Ω with the proper evaluation of PPk(x). Wk is then updated

based on the routes of the best solution found, with respect to the uncapacitated

FMND, and the process is then repeated. This loop is terminated when the values

of Wk no longer change. We then add all generated paths to the formulation P2(Γ)

and solve its linear relaxation. The values of λ in P2(Γ) are then used to update the

transportation costs of each commodity k ∈ K on each arc (i, j) ∈ A as ckij = ckij +λk
ij

and the entire process is repeated.

The purpose of this algorithm is to keep generating new routes based on modified

demand quantities and transportation costs. Greater diversification leads to a richer

pool Ω of routes in the master problem P2(Γ). We denote this problem as P2(Γ,Ω(t)).

The final loop is terminated when no new paths have been generated. After this step,

we then proceed to solve the restricted master problem P2(Γ,Ω(t)) as an integer

program to obtain a heuristic solution. Algorithm 3 summarizes the proposed hybrid

matheuristic.
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Algorithm 3 Hybrid matheuristic for POFMND-E

Initialization: t = 0; Ω(t) = ∅; Wk(0) = ∇k if αk > pks , Wk(0) = 0.2∇k otherwise;
do

do
Execute SS; add all generated routes μk to Ωk(t); best solution=(ȳ, x̄).
Update Wk(t+ 1) = (Po(k)Pd(k))/(τ

∑
(i,j)∈A ckijx̄

k
ij)

r

t=t+1
while (∃k such that |Wk(t+ 1)−Wk(t)| > 0)
Solve LP of restricted master problem P2(Γ,Ω(t)); obtain dual variables λ.
Update ckij = ckij + λk

ij

while (|Ω(t)| > |Ω(t− 1)|)
Solve restricted master problem P2(Γ,Ω(t)) with integrality constraints.

We point out that in general the metaheuristic SS can be substituted by any

metaheuristic that generates a rich variety of paths. Other metaheuristics such as

local and neighborhood searches can also prove effective if embedded within this

hybrid matheuristic. The key to the complete procedure is to keep information at the

path level therefore allowing P2 the freedom to choose paths that were previously not

considered together during the metaheuristic phase. A similar logic is used in Zetina

et al. [181].

4.4.2 A Slope Scaling Metaheuristic

Slope scaling was first presented in Yaged [174] and later in Kim and Pardalos [112,

113] as a heuristic to solve network optimization problems. Crainic et al. [63] improved

it by adding Lagrangean perturbation and long term memory to help in diversifying

and intensifying the search. The method is based on the idea that there exists a linear

program of the form
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(SS) min
∑
k∈K

∑
(i,j)∈A

ĉkijx
k
ij (4.31)

s.t.
∑
j∈N

xk
ji −

∑
j∈N

xk
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−W k if i = ok

W k if i = dk

0 otherwise

∀i ∈ N, ∀k ∈ K (4.32)

0 ≤ xk
ij ≤ W k ∀(i, j) ∈ A, k ∈ K, (4.33)

that obtains the same optimal solution as the uncapacitated FMND. The algorithm

attempts to estimate the ĉkij for which this equivalence holds by defining it as ĉkij =

ckij+ρkij, where ρ
k
ij is a slope scaling factor that estimates the contribution of the fixed

costs. An initial ρ0 is chosen to begin the algorithm. At each iteration t, SS(ρt) is

solved and its solution is used to obtain ρt+1.

For our implementation, SS is split into |K| shortest path problems with arc

lengths of ĉkij. We use a multi-start method with different initial values of ρ based on

the fixed cost and demand quantity. Let W̄ k =
∑
k∈K

W k/|K|, i.e., the average demand

quantity of the commodities. The initial values for ρ are

� fij/
∑
k∈K

W k: the fixed cost divided by the total demand quantity;

� fij/max
k∈K

W k: the fixed cost divided by the largest demand quantity;

� fij/W̄
k: the fixed cost divided by the average demand quantity;

� fij/[(max
k∈K

W k − W̄ k)/2]: the fixed cost divided by the mid-point between the

average and maximum demand quantities;

� fij/[(
∑
k∈K

W k − W̄ k)/2]: the fixed cost divided by the mid-point between the

average and total demand quantities;
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� fij/[(
∑
k∈K

W k − max
k∈K

W k)/2]: the fixed cost divided by the mid-point between

the total and maximum demand quantities.

Upon obtaining the optimal solution x̃ of SS(ρ(i)), the slope scaling factor is updated

as

ρkij(i+ 1) =

⎧⎪⎨
⎪⎩

fij∑
k∈K x̃k

ij
if
∑

k∈K x̃k
ij > 0

ρkij(i) otherwise.

(4.34)

This process is continued until a given number of iterations (TSS) have been per-

formed. Note that upon solving SS, a feasible solution can be constructed for FMND

by fixing to 1 the arcs through which some flow has been sent and solving |K| shortest
path problems over this subgraph. To improve the quality of the solution, we then

remove any arcs of the subgraph that have not been used in the shortest path of at

least one of the commodities.

When two successive iterations obtain the same solution x̃, then the procedure

will not produce any new distinct solutions. This may occur before having performed

the TSS iterations. To aid in diversifying the metaheuristic’s search, we implement a

perturbation tool similar to that of Crainic et al. [63]. When two successive iterations

of solving SS obtain the same optimal value or a determined number of iterations Tpert

without an improved solution have passed, we then solve a shortest path problem for

each k ∈ K and use the corresponding dual variables (λk, μk) of the classic shortest

path formulation to update the slope scaling factor as ρkij = −λk
j + λk

i + μk
ij and

continue iterating until a maximum number TSS of SS models have been solved.

Finally, as in Crainic et al. [63], we implement a long term memory mechanism

in which we keep statistics throughout the history of the search. These statistics are

used to update ρ and restart the process. Based on whether the current round of the

algorithm produced an improved best solution, we choose to update ρ in such a way

to intensify or diversify the search. The statistics kept for each (i, j) ∈ A and k ∈ K
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up to iteration T are the number of iterations for which x̃k
ij > 0 (nk

ij(T )), average

number of commodities routed through each arc (x̄ij(T )) and maximum number of

commodities routed through each arc (x̂k
ij(T )).

After performing TSS iterations with the corresponding dual perturbations along

the way, we calculate for each (i, j) ∈ A, vij = x̄ij(TSS)/x̂ij(TSS) or vij = 0 if

x̄ij(TSS) = 0. Here, vij measures the variability of the number of commodities sent

through arc (i, j) throughout the last TSS iterations. Hence, vij ≈ 1 means the num-

ber of commodities sent through this arc has been stable throughout the process,

while vij ≈ 0 shows high variability or no commodities sent at all. During intensifi-

cation, variables with stable behavior are favored while the opposite is done when a

diversification step is taken.

An intensification update to ρ is done if in the last cycle an improved best solution

was obtained. Otherwise, a diversification step is taken. A limit of divmax and intmax

diversification and intensification updates, respectively, are applied throughout the

algorithm. The updates for each scheme are presented below where n̄ and Sn are the

average and standard deviation of nk
ij, respectively.

� Normalize ρkij := ρkij − min
(i,j)∈A,k∈K

ρkij so ρkij ≥ 0 ∀(i, j) ∈ A, k ∈ K.

� To apply the intensification scheme, ∀(i, j) ∈ A, k ∈ K

– If nk
ij ≥ n̄+ Sn then ρkij := ρkij(1− vij)

– If nk
ij ≤ n̄ then ρkij := ρkij(2− vij)

– Else ρkij := ρkij.

� To apply the diversification scheme, ∀(i, j) ∈ A, k ∈ K

– If nk
ij ≥ n̄+ Sn then ρkij := ρkij(1 + vkij)

– If nk
ij ≤ n̄ then ρkij := ρkij(v

k
ij)

– Else ρkij := ρkij.
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This metaheuristic is called several times within our hybrid matheuristic to gen-

erate new paths for which we evaluate the true value of PPk(x). For this reason, it

is stopped prematurely if two consecutive dual perturbations do not lead to any new

paths. Our heuristic is run with the parameter values TSS = 30, TDP = 5, divmax =

10, intmax = 2. Figure 4.4 graphically summarizes the slope scaling with dual pertur-

bation and long term memory algorithm sequentially applied to each of the six initial

ρ values.

• Let denote the scaling 
factors.

• Solve a shortest path problem 
for each commodity with arc 
costs + .

• Compare with best solution 
found and update .

1. Slope Scaling: 2. Dual Perturbation:

iterations 
no 

improvement?

No

iterations?

Yes

3. Long Term Memory:

Update using information 
from a dual sub problem.

Update using information from the 
last solution.

New best 
solution found?

Update using 
diversification 

scheme

Update using 
intensification 

scheme

Yes

YesNo

Reset =0

• Reset iteration counter
• Reset statistics

Divers. & Intens. 
limits reached?

No

End

Yes

No

Yes

Figure 4.4: Slope scaling heuristic for MUFND

4.5 Computational Experiments

We test the computational efficiency of the proposed formulations and solution algo-

rithms using the well-known “Canad” multicommodity capacitated network design

testbed [62]. The population weights of each node Pi are calculated as the sum of all

inbound and outbound demand in each node multiplied by four. To adjust for nodes

i ∈ N with no inflow or outflow, we assign them population values of Pmin which
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denotes the minimum non-zero population calculated. Per unit revenue of each com-

modity is αk = pks + σpks where σ is a random number between 0 and 1 and pks is the

cheapest possible route, i.e., the shortest path over the complete network. Finally,

to adjust for the population factors Pi for i ∈ N , the value of the fixed costs of an

arc (i, j) is adjusted based on the original value of the Canad instance f̄ij as follows:

fij =
f̄ijPiPj

νij
where νij = Pmin + .75[max{Pi, Pj} − Pmin]. In total our testbed is

comprised of 85 instances ranging from small to medium scale. The computational

experiments will first focus on the two extreme variants of POFMND-E(Γ), where

variant I refers to Γ = |K| and variant II refers to Γ = 0. As previously mentioned,

in these extreme cases one can omit the service commitment constraint.

The arc-based formulation P1 is solved using the branch-and-reduce algorithm

implemented in the general purpose global optimization software Baron 18.8.23 [114,

161, 170] through its AMPL interface. The hybrid matheuristic is coded in C using

CPLEX 12.7.0 to solve the restricted master problem and the shortest path sub-

problems within the slope-scaling metaheuristic. For a fair comparison, all use of

CPLEX was limited to one thread and the traditional MIP search strategy. All ex-

periments were executed on an Intel Xeon E5 2687W V3 processor at 3.10 GHz under

Linux environment with a time limit of two hours. Finally, we fix the parameters of

POFMND-E to τ = 1 and r = 1.7. Tables 4.2 and 4.3 compare the performance

of P1 solved using Baron and the proposed hybrid matheuristic for variant I and II,

respectively.

The first three columns of Table 4.2 contain the instance class (Class), dimensions

(N,A,K) representing the number of nodes, arcs and commodities respectively, and the

number of instances in each group (Nb.). The next two columns contain the number

of instances for which a feasible solution was found by the hybrid matheuristic and

its average time to completion in seconds. The following three columns correspond to

the number of instances for which solving P1 with Baron found a feasible and optimal
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solution, respectively, while the last column details the average time taken.

Table 4.2: Performance comparison-Variant I

Hybrid Matheuristic Baron

Class (N,A,K) Nb. Feasible Sols Seconds Feasible Sols Optimal Sols Seconds

I

20,230,40 3 3 0.47 3 0 7,200.00

20,230,200 4 4 1.17 0 0 7,200.00

20,300,40 4 4 0.50 4 0 7,200.00

20,300,200 4 4 1.62 0 0 7,200.00

30,520,100 4 4 2.70 0 0 7,200.00

30,520,400 4 4 7.64 0 0 7,200.00

30,700,100 4 4 3.09 0 0 7,200.00

30,700,400 4 4 9.73 0 0 7,200.00

Subtotal 31 31 3.45 7 0 7,200.00

III-A

10,35,10 3 3 0.04 3 3 99.67

10,35,25 3 3 0.08 3 1 4,807.00

10,35,50 3 3 0.12 3 0 7,200.00

10,60,10 3 3 0.03 3 3 13.00

10,60,25 3 3 0.14 3 1 4,862.00

10,60,50 3 3 0.23 3 0 7,200.00

10,85,10 3 3 0.04 3 1 4,808.00

10,85,25 3 3 0.14 3 0 7,200.00

10,85,50 3 3 0.29 3 0 7,200.00

Subtotal 27 27 0.12 27 9 4,821.81

III-B

20,120,40 3 3 0.78 3 0 7,200.00

20,120,100 3 3 2.36 3 0 7,200.00

20,120,200 3 3 4.04 2 0 7,200.00

20,220,40 3 3 1.94 3 0 7,200.00

20,220,100 3 3 2.42 3 0 7,200.00

20,220,200 3 3 5.22 0 0 7,200.00

20,320,40 3 3 1.66 3 0 7,200.00

20,320,100 3 3 3.25 3 0 7,200.00

20,320,200 3 3 5.24 0 0 7,200.00

Subtotal 27 27 2.99 20 0 7,200.00

Total 85 85 2.25 54 9 6,551.46

As seen from Table 4.2 not only is the hybrid matheuristic able to find a fea-

sible solution for all instances compared to only 54/85 for solving P1 with Baron,

it also requires significantly less time. In addition, for nine of the small instances

of Class III-A, Baron’s branch-and-reduce method applied to P1 is able to find and

prove an optimal solution. These solutions coincide with that obtained by our hy-

brid matheuristic for eight of the nine instances while for the remaining instance, the

solution found by the hybrid matheuristic is 0.29% away from the optimal. Similar
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behavior can be observed when solving variant II of POFMND-E that allows for the

decision maker to freely select a subset of commodities to route. Table 4.3 presents a

summary of the performance of both algorithms applied to variant II with the same

column definitions as Table 4.2.

Table 4.3: Performance comparison-Variant II

Hybrid Matheuristic Baron

Class Nb. Feasible Sols Seconds Feasible Sols Optimal Sols Seconds

Class I 31 31 3.29 11 0 6,769.90

Class III-A 27 27 0.13 27 14 3,511.56

Class III-B 27 27 2.81 22 0 6,654.04

Total 85 85 2.14 60 14 5,698.09

We next analyze the quality of the solutions found. Based on the results seen in

Tables 4.2 and 4.3, we note that solving P1 with Baron requires a significant amount

of computation time. To assess whether this effort is compensated by better solu-

tion quality, we analyze the instances for which both algorithms obtained a feasible

solution within the time limit. The study is limited to instances for which optimal-

ity of the solution was not proven for the classes I and III-B, i.e., the execution of

Baron reached the time limit before proving optimality. Table 4.4 details the objec-

tive function value, in millions, of the feasible solutions found in Table 4.2 by the

hybrid matheuristic and Baron, respectively. The last column contains the relative

difference between them calculated as 100∗|HM−Bar|
|HM | where HM refers to the value of

the solution from the hybrid matheuristic and Bar refers to the value of the solution

from Baron.
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Table 4.4: Comparison of solution quality-Variant I

Hybrid Matheuristic Baron

Class instance Obj (Millions) Obj Baron (Millions) Rel. Difference

I

c33.dat 229.95 9.60 95.83

c35.dat 106.99 26.14 75.57

c36.dat 132.14 12.24 90.74

c41.dat 225.16 (3.92) 101.74

c42.dat 245.59 (23.44) 109.54

c43.dat 213.82 (42.58) 119.92

c44.dat 173.11 (62.10) 135.88

III-B

r10.1.dow 1.20 0.60 50.26

r10.2.dow 0.86 0.12 86.07

r10.3.dow 0.52 (0.24) 145.67

r11.1.dow 10.65 (1.43) 113.41

r11.2.dow 9.18 (1.87) 120.38

r11.3.dow 7.61 (2.38) 131.21

r12.2.dow 89.94 (15.64) 117.39

r12.3.dow 84.47 (17.19) 120.35

r13.1.dow 1.56 (0.21) 113.50

r13.2.dow 1.18 (0.41) 134.88

r13.3.dow 0.76 (0.60) 177.92

r14.1.dow 15.66 (5.06) 132.33

r14.2.dow 14.01 (5.34) 138.13

r14.3.dow 12.04 (5.32) 144.17

r16.1.dow 1.50 (0.48) 132.16

r16.2.dow 1.09 (0.53) 148.39

r16.3.dow 0.67 (0.61) 191.48

r17.1.dow 19.32 (6.22) 132.19

r17.2.dow 17.38 (5.41) 131.14

r17.3.dow 15.18 (5.97) 139.32

Total 60.43 (5.86) 109.70

Table 4.4 shows that the solutions found by the proposed hybrid matheuristic

are of significantly better quality. It finds profitable solutions for all instances in an

average of 2.25 seconds as shown in Table 4.2. The results show that not only is it

difficult for Baron to find feasible solutions with formulation P1 but also that the

solutions found are of poor quality. This comes as a result of the solver not exploiting

the network structure of the problem whereas the use of our slope scaling heuristic

bypasses the difficulty presented by the non-convexities of Prk2 to generate good paths.

The proposed hybrid matheuristic also obtains superior solutions than solving P1

with Baron when solving variant II. Table 4.5 contains the instance class (Class),

dimensions (N,A,K) representing the number of nodes, arcs and commodities respec-

tively, and the number of instances considered in each group (Nb.). The following two

columns represent the average objective function value of the best found solution for
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each instance group while the last column represents the average relative difference

between them calculated as in Table 4.4.

Table 4.5: Comparison of solution quality-Variant II

Hybrid Matheuristic Baron

Class (N,A,K) Nb. Obj (Millions) Obj (Millions) Rel. Difference

I

20,230,40 2 119.57 51.15 58.96

20,230,200 1 576.78 576.83 0.01

20,300,40 2 229.72 58.79 74.25

30,520,100 2 26.25 13.91 46.18

Subtotal 7 189.69 117.79 51.25

III-B

20,120,40 2 0.82 0.77 6.00

20,120,100 2 8.49 8.27 2.46

20,120,200 1 84.69 5.57 93.42

20,220,40 3 1.22 0.46 61.78

20,220,100 2 14.88 7.90 49.47

20,320,40 2 0.93 0.00 99.50

20,320,200 3 159.54 52.71 67.04

Subtotal 15 41.15 13.27 52.98

Total 35 88.41 46.52 52.43

As opposed to the previous analysis, the solutions found by Baron are all prof-

itable. This comes from the added flexibility of being able to freely select which

commodities to route. In addition, the difference between the best solutions found

by both algorithms is less significant than for variant I. Unlike the behavior seen

when solving variant I, Baron was able to find a better solution than the proposed

hybrid matheuristic for an instance in the 20,230,200 group of class I. This shows

the increased difficulty of solving variant I with general purpose global optimization

solvers. Being obliged to route all commodities forces the decision maker to consider

influencing demand quantity of commodities with lower margins.

We next compare the results and solution process of the hybrid matheuristic for

both variants. Table 4.6 details for each instance group, the number of instances,

average objective function value of the best solution found in millions (Obj Millions),

the average CPU time (Seconds), and average number of master problem iterations

(CG Iters) of variant I and II. In addition, the last columns present the average % of

commodities not routed in the solution obtained from variant II (% Unserved) and
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the average relative increase in profit between the solutions obtained from variants I

and II.

Table 4.6: Variant I vs II

Variant I Variant II

Class (N,A,K) Nb. Obj (Millions) Seconds CG Iters Obj (Millions) Seconds CG Iters % Unserved % Profit Inc.

I

20,230,40 3 156.36 0.47 3.00 156.37 0.35 3.00 4.19 0.00

20,230,200 4 548.92 1.17 3.00 548.96 1.24 3.00 24.00 0.01

20,300,40 4 214.42 0.50 3.25 214.43 0.47 3.00 7.50 0.01

20,300,200 4 667.60 1.62 3.00 667.63 1.55 3.00 31.00 0.00

30,520,100 4 23.21 2.70 3.00 23.22 2.72 3.25 16.25 0.04

30,520,400 4 2,132.69 7.64 3.00 2,132.71 6.17 3.00 24.44 0.00

30,700,100 4 29.70 3.09 3.00 29.70 2.63 3.00 16.75 0.02

30,700,400 4 2,427.40 9.73 3.00 2,427.43 10.51 3.00 30.19 0.00

Subtotal 31 795.00 3.45 3.03 795.01 3.29 3.03 19.78 0.01

III-A

10,35,10 3 0.05 0.04 3.33 0.06 0.02 3.00 26.67 45.65

10,35,25 3 0.68 0.08 3.00 0.70 0.09 3.33 16.00 2.65

10,35,50 3 4.53 0.12 3.00 4.55 0.14 3.33 3.33 0.40

10,60,10 3 0.10 0.03 3.67 0.11 0.03 3.00 20.00 9.35

10,60,25 3 0.75 0.14 4.00 0.77 0.17 3.00 10.67 3.07

10,60,50 3 6.90 0.23 3.33 6.90 0.31 3.33 0.00 0.00

10,85,10 3 0.06 0.04 3.67 0.07 0.03 3.33 26.67 31.71

10,85,25 3 1.05 0.14 4.00 1.05 0.12 3.00 5.33 0.51

10,85,50 3 6.19 0.29 3.00 6.23 0.25 3.00 8.67 0.71

Subtotal 27 2.26 0.12 3.44 2.27 0.13 3.15 13.04 10.45

III-B

20,120,40 3 0.86 0.78 5.00 0.95 0.69 3.33 28.33 15.02

20,120,100 3 9.15 2.36 3.33 9.22 2.39 3.00 9.33 0.83

20,120,200 3 89.67 4.04 4.00 89.76 3.72 3.33 3.33 0.11

20,220,40 3 1.17 1.94 5.00 1.22 1.98 4.33 25.00 6.68

20,220,100 3 13.90 2.42 3.33 14.04 2.39 3.00 9.67 1.10

20,220,200 3 131.42 5.22 3.33 131.53 4.71 3.67 4.50 0.09

20,320,40 3 1.08 1.66 4.67 1.12 1.11 3.33 18.33 5.05

20,320,100 3 17.29 3.25 3.33 17.45 3.78 3.00 9.00 0.99

20,320,200 3 159.19 5.24 3.00 159.54 4.51 3.00 4.33 0.23

Subtotal 27 47.08 2.99 3.89 47.20 2.81 3.33 12.43 3.34

Total 85 305.61 2.25 3.44 305.66 2.14 3.16 15.30 4.39

One of the important characteristics of the proposed hybrid matheuristic is its

ability to adapt to varying values of r and variants of the problem without it signif-

icantly modifying its performance. Table 4.6 confirms the latter to be true. Both

require similar computation time and number of master problem iterations. Allowing

the decision maker to freely choose which commodities to route (variant II), leads to

an average of 4.39% increase in profit obtained by choosing not to route an average

of approximately 15% of the commodities.

We point out that this marginal increase in profitability is highly dependent on

the instance data. Since in the generated instances there are no commodities whose
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revenue is smaller than the shortest possible path, it is not surprising that on average

there is not a significant difference between the profit of the best solutions for variants

I and II. The same would not be said if the per unit revenue of some commodities

was less than their corresponding cheapest route.

We next analyze one of the instances in the testbed with highest percentage of

commodities being left unserved (50%) for variant II. The instance consists of ten

nodes, 35 arcs and ten commodities. We solve the corresponding POFMND-E(Γ) for

each service commitment level Γ ∈ {1, 2, .., 10}. Figure 4.5 plots the total profit (in

thousands) of the optimal solution against the service commitment value Γ.
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Figure 4.5: The effect of imposing service commitment constraints

Note that imposing a service commitment value of up to 5 commodities has no

effect on the profit obtained. This coincides with what was seen from the result of

variant II where 50% of the commodities were served despite no service commitment

being imposed. As the service commitment value increases, the maximum profit

obtained decreases. This decrease becomes more pronounced as the values of Γ are

closer to |K| with a decrease of 39.3% in profit when increasing Γ from |K| − 1 to

|K|. This result suggests that the decision maker should seek to arrange service

commitment levels close to that obtained from variant II since these have a marginal
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effect on profit.

4.6 Conclusion

We have extended the classic fixed charge multicommodity network design problem

by incorporating demand elasticity to travel cost in a profit-oriented problem by

means of the gravity model. The proposed problem allows the decision maker to

choose which O/D pairs will be served subject to a service commitment constraint.

The resulting model captures additional levels of trade-off missing in classic fixed

charge network design such as the effect of efficient routes on expected demand.

We proposed two non-linear mixed integer programming formulations that model

the profit-oriented fixed-charge multicommodity network design problem with elastic

demand. We showed how both can incorporate O/D pair selection without modifying

the formulations by carrying out simple network transformations or adding artificial

variables. We also note that the inclusion of a service commitment constraint that

requires a minimum number of O/D pairs be served can be done via an additional

knapsack-type constraint. We proposed a flexible hybrid matheuristic capable of

solving the problem for varying gravity model parameters and service commitment

values. Computational results show this algorithm to be superior in terms of both

solution time and quality when compared to the use of a general purpose global

optimization software. The results also give managerial insights on the establishment

of service commitments. The proposed framework allows decision makers to benefit

from the added value of incorporating demand elasticity in the optimization of their

strategic network design.
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Chapter 5

Conclusions

This thesis addressed three aspects of network design problems: parameter uncer-

tainty, demand elasticity, and computational efficiency using mixed integer program-

ming tools. It contributed to the current literature by presenting modelling tech-

niques to consider simultaneous parameter uncertainty and a novel framework that

integrates concepts from geography into mixed integer programming to account for

demand elasticity. These contributions show the capacity of mixed integer program-

ming tools to handle problems in a more realistic setting with imperfect problem

information. In addition, new computational tools obtained from the combination of

seemingly unrelated mixed integer programming concepts were presented, adding to

the repertoire of solution algorithms available to solve mixed integer programs.

In Chapter 2, we addressed demand and transportation cost uncertainty in hub

location by means of robust counterparts. Models considering parameter uncertainty

individually and simultaneously were presented with the latter leading to a non-linear

formulation. This was linearized to a formulation with exponentially many constraints

which were incorporated on the fly via a branch-and-cut algorithm. Finally, an anal-

ysis of the solution performance in both risk-averse and risk-neutral settings was

conducted.
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Chapter 3 presented two exact algorithms to solve large scale instances of the

well-known multicommodity uncapacitated fixed-charge network design problem. We

presented both algorithmic and methodological novelties such as the simultaneous

exploitation of two formulations, the use of Lift-and-Project cuts in the Benders

reformulation, a tailor-made corepoint selection strategy for Pareto optimal Benders

cuts, and a combination of cut-and-solve/local branching enumeration with Benders

decomposition. Computational experiments show both exact algorithms to be up to

three orders of magnitude faster than a state-of-the-art mixed integer programming

solver.

Finally, Chapter 4 presented an extension of the classic fixed-charge network de-

sign problem that incorporated elastic demand, profit maximization, commodity se-

lection, and service commitment. Two formulations for the problem were presented,

one with a linear number of variables and one with exponentially many. A novel hy-

brid matheuristic that combines metaheuristics with column generation concepts was

presented to solve the formulation with exponentially many variables. This algorithm

showed to be significantly better both in solution time and quality than solving the

formulation with linearly many variables using a state-of-the-art global optimization

solver.

Beyond the contributions mentioned, the research results also serve as first steps

toward exploring new lines of thought for the use of mixed integer programming,

both convex and non-convex, in real-life applications. The hybridization approaches

presented in Chapters 3 and 4 show the added value of tailoring tools such as general

mixed integer cuts, branching rules, and metaheuristics to allow for smooth integra-

tion into one efficient solution algorithm. On the other hand, the comparison between

the robust and stochastic approaches to parameter uncertainty leads to considering

a more wholesome approach to these tools by providing a methodology by which fair

comparisons can be done. Finally, the incorporation of demand elasticity into opti-
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mization models presented in Chapter 4 opens a whole new line of research and breaks

the historic setting of assuming parameter uncertainty to be independent of decisions

within the optimization process. Researchers could investigate the use of other tools

apart from the gravity model to incorporate demand elasticity or propose efficient

exact algorithms for the models presented. More importantly, the analysis on the

impact of ignoring demand elasticity shows how crucial it is for strategic decisions.

This in itself should motivate researchers in the field to find novel ways of addressing

this shortcoming.
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[96] B. L. Gorissen, İhsan Yanıkoğlu, and D. den Hertog. A practical guide to robust

optimization. Omega, 53:124–137, 2015.

[97] T. Grosche, F. Rothlauf, and A. Heinzl. Gravity models for airline passenger

volume estimation. Journal of Air Transport Management, 13(4):175–183, 2007.
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