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ABSTRACT 
 

Studying the role of Ran-GTP in cytokinesis in C. elegans embryos 

 

Imge Özügergin 

Cytokinesis is a well-conserved process where one cell divides into two daughters, and 

must be tightly regulated to prevent aneuploidy and fate changes. The mitotic spindle regulates 

the assembly and ingression of an actomyosin ring that pinches in the cortex. Though less 

understood, microtubule-independent mechanisms also regulate cytokinesis and their 

requirement may vary depending on cell type. Our lab discovered that a novel chromatin 

pathway signals through Ran-GTP to regulate cytokinesis in human cells, and my thesis explored 

the biological relevance of this pathway in Caenorhabditis elegans embryos. Our model is that 

importin-alpha or beta forms an inverse gradient to Ran-GTP and facilitates the recruitment 

and/or activation of contractile regulators. To test this model, I explored the requirement of the 

Ran pathway in regulating cytokinesis of P0 (one-celled zygote), AB (anterior daughter) and P1 

(posterior daughter fated to be germline) cells. I found that each cell has unique ingression 

kinetics, and reducing Ran-GTP by partial RNAi of RCC-1 (Ran-GEF) increased their rate of 

ingression. Through co-depletion experiments, I found that the Ran pathway regulates ANI-1 

(anillin) in P0 and AB cells, but not in P1 cells. Anillin is a scaffold that coordinates cytokinesis 

and is directly regulated by importin in human cells. I also found that regulators of contractility, 

such as ECT-2 (RhoA GEF) and LET-502 (Rho binding kinase) are in the Ran pathway in P0, 

AB and P1 cells. Thus, the Ran pathway regulates cytokinesis in all cell types, but the molecular 

effectors vary depending on cell type. 
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Chapter 1: Introduction 

This project uses the soil nematode Caenorhabditis elegans as a model organism to study 

the Ran regulation of cytokinesis in vivo. Recent studies in our lab uncovered a novel mode of 

cytokinesis regulation in cultured human cells, whereby chromatin provides a cue in the form of 

active Ran that modulates the activity of cortical proteins. Our goal is to determine if this 

pathway is conserved in metazoans using C. elegans as a model, and study the biological 

relevance for this pathway in vivo. The invariant cell lineage of C. elegans is very well described, 

and the highly stereotypical, reproducible divisions allow the easy detection of deviations from 

wild-type. In addition to being amenable to RNAi, transgenics and live imaging, 60-80% of C. 

elegans genes have human homologues, including key regulators of cytokinesis and the Ran 

pathway, which are the focus of this thesis (Bamba et al., 2002; Askjaer et al., 2002; Kaletta and 

Hengartner, 2006; Lundquist, 2006). The introductory chapter of this thesis will first provide a 

general review of cytokinesis in mammalian cells and C. elegans, followed by an overview of 

early C. elegans embryonic development. The chapter will then conclude with a brief overview 

of our findings. 

 

1.1 Cytokinesis 

Cytokinesis, the final step of mitosis, is the physical separation of a cell into two daughter 

cells. It is a highly conserved process that must be tightly regulated both in time and space to 

avoid aneuploidy and changes in cell fate (Green et al., 2012; Glotzer, 2017). In early anaphase, 

actomyosin filaments assemble at a broad region of the cortex and then transition into a tight 

contractile ring, which is the main structure that drives cytokinesis in metazoans (D’avino et al., 

2015; Beaudet et al., 2017; Glotzer, 2017). The ring is assembled just below the plasma 
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membrane in a plane perpendicular to the spindle and forms the division plane (Oliferenko et al., 

2009; Fededa and Gerlich, 2012). As the ring constricts, it pulls in the attached cortex and forms 

an ingressing furrow, followed by its transition to a midbody ring and abscission (Fededa and 

Gerlich, 2012). A graphic summary of cytokinesis is shown in Figure 1.  

The division plane must be aligned with the mitotic spindle to ensure the equal 

distribution of genomic content, and correct partitioning of cytoplasmic material into the 

daughter cells (D’avino et al., 2015; Petry, 2016; Glotzer, 2017). The prevailing dogma in the 

field is that the anaphase spindle determines the division plane of cytokinesis by directing the 

assembly and ingression of the contractile ring (Bement et al., 2005; Piekny et al., 2005; Green et 

al., 2012), however signals from other cellular components have also been shown to affect the 

localization of contractile proteins (e.g., von Dassow et al., 2009; Sedzinski et al., 2011; 

Kiyomitsu and Cheeseman, 2013; Rodrigues et al., 2015).  

 Although the mechanism of contractile ring assembly is not fully understood, the role of 

key players is well-described. Actin and myosin are the main components of the contractile ring 

(D’avino et al., 2015; Glotzer, 2017). Active RhoA mediates contractile ring assembly through 

its effectors, including formin and Rho kinase (ROCK or RhoK; C. elegans LET-502) (D’avino 

et al., 2015; Glotzer, 2017). Formin (C. elegans CYK-1) and profilin stimulate actin 

polymerization to form unbranched F-actin (Severson et al., 2002; Piekny et al., 2005). Rho 

kinase (ROCK; C. elegans LET-502) phosphorylates the regulatory light chain of nonmuscle 

myosin for filament assembly and to regulate its activity for ingression (Piekny and Mains, 2002). 

Other proteins associate with and regulate the contractile ring. One of these proteins is anillin, a 

highly conserved scaffold protein that serves as a link between the actomyosin cortex, plasma 

membrane and microtubules (MTs) to position the ring (Piekny and Glotzer, 2008; Piekny and 
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Figure 1. Graphical summary of cytokinesis. A) An active zone of RhoA is generated at the 

equatorial zone of the cell. This occurs through a combination of positive signaling from the 

central spindle (via Ect2), and negative signaling from the astral microtubules (MTs).  B) Active 

RhoA coordinates the assembly of the actomyosin ring. C) The contractile ring is made up of 

filamentous actin (F-actin; nucleated by formin) and myosin and is anchored to the membrane by 

anillin, which also recruits the membrane-associated filament, septin. D) In abscission, the final 

stage of cytokinesis, the contractile ring forms the midbody, which organizes an intercellular 

bridge. E) An ESCRT-III mediated process generates two daughter cells by membrane scission 

occurring on either flanking side of the midbody. Figure taken from Green et al., 2012.  
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Maddox, 2010; Beaudet et al., 2017). Anillin directly binds and is recruited by active RhoA. It 

also has binding domains for F-actin, myosin, septins, phospholipids and MTs (Piekny and 

Maddox, 2010; Green et al., 2012). While anillin is essential for cytokinesis in Xenopus embryos, 

C. elegans neuroblasts, Drosophila cells and cultured mammalian cells, it is not clear if it is 

required for cytokinesis in the early C. elegans embryo (Maddox et al., 2007; Straight et al., 

2005; Wernike et al., 2014). Part of this discrepancy is due to limitations with the model system 

– it is impossible to have complete knockdown of the C. elegans homologue ANI-1 in the early 

embryo due to its requirement in the germline, and the threshold may be different in the early 

embryo due to redundancy with other pathways that ensure cytokinesis is robust. C. elegans has 

two other anillin homologues, ANI-2 and ANI-3, which will not be further discussed since ANI-

2 does not function in the early embryo and ANI-3 has no known function (Figure 2; Maddox et 

al., 2005).  

The mechanisms mediating contractile ring constriction vary depending on the cell. The 

first model is based on force generation through myosin motor activity:  contractility is achieved 

through a sliding filament mechanism similar to muscle, where motor heads walk along actin 

filaments. The regulatory light chain of non-muscle myosin is phosphorylated by Rho kinase 

(ROCK) to promote their assembly into bipolar filaments. Through ATP hydrolysis, the motor 

heads at either end of the bipolar myosin filament associate with F-actin and attempt to walk 

towards their plus ends, causing the filaments to generate force and ring constriction. The second 

model is based on changes in cortical properties through crosslinking F-actin: many different 

crosslinkers, such as anillin, septin and myosin have unique ways of crosslinking neighboring 

actin filaments to generate different types of cortical tension in the equatorial plane, and the  
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Figure 2. Localization of anillin and structure of anillin homologues. A) A cartoon schematic 

of a cell in anaphase, with the inset showing anillin acting as a scaffold for its binding partners at 

the contractile ring (depicted by the red ring in the cell). B) Structure of human, Drosophila 

melanogaster and C. elegans anillin. Binding domains are highlighted: N-terminal myosin-

binding (green) and actin-binding (blue) domains, C-terminal anillin homology regions (red), 

and pleckstrin homology (PH) domains. The AHD of human anillin and ANI-1 contains a C-

terminal NLS. Figures taken from Piekny and Maddox, 2010 (A), and Maddox et al., 2005 (B). 

A 

B 
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depolymerization of actin filaments drives ingression of the ring (Mendes et al., 2013; Descovich 

et al., 2017; Heer and Martin, 2017). 

Multiple MT-dependent and -independent pathways work together to regulate cytokinesis 

and have varying levels of importance depending on cell architecture, fate, and spindle 

morphology (Figure 3; Dechant and Glotzer, 2003; Murthy and Wadsworh, 2008; Basant et al., 

2015; Price and Rose, 2017).  

 

1.1.1 Microtubule (MT)-dependent pathways regulating cytokinesis 

The anaphase spindle is one of the main regulators of cytokinesis. It consists of astral 

MTs, which emanate from the centrosomes toward the cortex, and the central spindle, which are 

antiparallel bundled MTs that arise between segregating chromatids in anaphase (Fededa and 

Gerlich, 2012). Both sets of MTs position the division plane, and the current model is that the 

central spindle promotes contractility, whereas astral MTs inhibit contractility at the cell poles 

(Fededa and Gerlich, 2012; van Oostende Triplet et al., 2014; D’avino et al., 2015). Promoting 

contractility at the cell equator while inhibiting it at the cell poles creates a narrow zone in the 

equator to mediate ingression (Zanin et al., 2013; van Oostende Triplet et al., 2014). The 

requirement for astral and/or central spindle pathways varies among cell types and organisms, 

and likely depends on spindle morphology, cell size or shape. For example, early C. elegans 

embryos have spindles with large asters, which dominantly regulate contractile ring assembly 

(D’avino et al., 2015).  

The model for how cytokinesis is regulated by MTs in the C. elegans embryo can be split 

into early anaphase and late anaphase/early telophase (Lewellyn et al., 2010). In early anaphase, 

aster-mediated inhibition refines active myosin to a broad equatorial region (Tse et al., 2011).  
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Figure 3. MT-dependent and -independent regulation of cytokinesis. Key pathways that 

regulate cytokinesis are shown. They can be divided into MT-dependent (central spindle; blue, 

and astral; green) pathways, and MT-independent (Ran pathway; red, cortical; orange) pathways. 

Mitotic spindle MTs stimulate ring assembly via the central spindle pathway (CYK-4, AIR-2) or 

inhibit assembly via the astral pathways (TPXL-1). MT-independent pathways include the 

chromatin-associated Ran-GTP pathway, where Ran-GTP and importin (not shown) gradients 

function as a molecular ruler to ensure optimal ring assembly or placement. Abbreviations: CPC 

(chromosomal passenger complex).  
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Then, in late anaphase/early telophase, the central spindle promotes the coalescence and 

ingression of the contractile ring (Lewellyn et al., 2010).  

 

1.1.1.1 Central spindle pathway 

The central spindle generates active RhoA in the equatorial cortex. The centralspindlin 

complex, a heterotetramer composed of MKLP1/ZEN-4 and Cyk-4/CYK-4 bundles microtubules 

and recruits Ect2/ECT-2, the RhoGEF to the equatorial plane. Cdk1-mediated phosphorylation of 

Ect2 causes it to form an autoinhibited conformation that prevents it from binding to Cyk-4 or 

being recruited to the plasma membrane until Cdk1 activity drops in anaphase (Yüce et al., 2005; 

Hara et al., 2006; Green et al., 2012). In addition, Polo-like kinase 1 (Plk1) phosphorylates Cyk-

4, permitting it to form a complex with Ect2 (Petronczki et al., 2007; Wolfe et al., 2009; Glotzer, 

2017).  This temporally couples RhoA activation with mitotic exit. Other proteins also help 

regulate Cyk-4/Ect2 complexes at the cortex. For example, the inhibition of a protein called 14-

3-3 permits the plasma membrane recruitment of Cyk4 via its membrane-binding C1 domain, 

where it helps activate RhoA by binding to Ect2 (Yüce et al., 2005; Petronczki et al., 2007; 

Lekomtsev et al., 2012; Basant et al., 2015; Kotynkova et al., 2016). The clustering of 

centralspindlin is regulated by the antagonistic interplay between Aurora B kinase and 14-3-3 

(Douglas et al., 2010; Basant et al., 2015). 14-3-3 is found uniformly in the cytoplasm and on the 

cortex (Morton et al., 2002; Rose and Gönczy, 2014). When bound to 14-3-3, centralspindlin is 

cytosolic, but when another complex called the CPC localizes to the central spindle and cortex 

during anaphase, it inhibits 14-3-3 activity. This results in the recruitment of centralspindlin to 

the central spindle and overlying cortex. The localization of centralspindlin to the plasma 

membrane is crucial because this is where active RhoA needs to be generated for contractile ring 
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assembly and ingression. The central spindle is quite small and centrally positioned far from the 

cortex in the early C. elegans embryo, and the cortical localization of centralspindlin is essential 

to control active RhoA for cytokinesis (Lekomtsev et al., 2012; Basant et al., 2015; Kotynkova et 

al., 2016).  

 

1.1.1.2 Astral pathways 

 Astral MTs have been shown to inhibit polar contractility, since promoting their 

depolymerization leads to ectopic activation of RhoA and an increase in the breadth of 

contractile proteins (Murthy and Wadsworth, 2008; van Oostende Triplet et al., 2014). Although 

it is not clear how astral MTs do this, several mechanisms have been proposed. One model for 

the aster-mediated regulation of cytokinesis is the local sequestering of anillin by MTs, which 

inhibits anillin localization at the cortex to create cortical domains with different contractile 

properties (Tse et al., 2011). This supports the observation that ingression is promoted in regions 

with the lowest MT density (Dechant and Glotzer, 2003). Studies have demonstrated that anillin 

promotes the cortical recruitment and stabilization of myosin, therefore the binding of anillin by 

astral MTs creates a difference in cortical anillin between the polar regions vs. equatorial zone of 

the embryo (Tse et al., 2011).    

Other astral pathway components in C. elegans include LET-99, which is a cortical 

protein important for spindle positioning (Bringmann et al., 2007; Price and Rose, 2017). LET-

99 is hypothesized to promote division by binding to or acting as a scaffold for RhoA, thereby 

promoting ring assembly and ingression (Price and Rose, 2017). In anaphase, LET-99 localizes 

as a band around the posterior cortex, which shifts to align with the ingressing furrow, and is 

regulated by the mitotic spindle (Price and Rose, 2017).  
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Another mechanism for the polar clearance of contractile proteins via astral MTs may 

occur via Aurora A kinase (Mangal et al., 2018). TPXL-1 (C. elegans homologue of TPX2) 

regulates the activity and localization of AIR-1 (C. elegans Aurora A kinase) at the minus ends 

of astral MTs (Mangal et al., 2018). The activation of AIR-1 is linked to the clearance of anillin 

and F-actin from the nearby polar cortex (Mangal et al., 2018). The proposed model is that 

during anaphase, TPXL-1 binds to centrosomal MTs where it recruits and activates AIR-1, 

which could relocate and/or create a gradient of kinase activity that can influence the nearby 

cortex. For example, AIR-1 could phosphorylate proteins at the cortex, causing a change in their 

function that suppresses contractility at the cell poles (Mangal et al., 2018). However, there is no 

biochemical evidence to support this model and it is not known if this pathway is conserved in 

other metazoans.  

 

1.1.2 MT-independent pathways regulating cytokinesis 

A variety of MT-independent pathways have also been found to regulate cytokinesis. 

These pathways may play redundant roles in symmetrically dividing cells, but may be essential 

in polarized cells. Some of these pathways rely more strictly on the cortex, centrosomes, 

kinetochores, and/or chromosomes (Dechant and Glotzer, 2003; Deng et al., 2007; Petronczki et 

al., 2007; Silverman-Gavrila et al., 2008; Cabernard et al., 2010; Kiyomitsu and Cheeseman, 

2013; Zanin et al., 2013; Rodrigues et al., 2015; Beaudet et al., 2017). 

Several cortical mechanisms enrich actomyosin filaments in the equatorial plane for 

cytokinesis. The M phase GAP (MPGAP or RGA-3/4 in C. elegans) localizes to the cortex and 

globally downregulates RhoA, and this inhibition is overcome by Ect2 in the equatorial plane 

(Schmutz et al., 2007; Zanin et al., 2013). This leads to different types of F-actin, which are long 
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and unbranched equatorially vs. short and branched at the poles. The regulation of Rac (C. 

elegans CED-10), a member of the Rho family of GTPases, provides another type of MT-

independent regulation of the cortex (Canman et al., 2008). Active Rac gives rise to branched 

actin filaments through the WAVE/WASp complex and regulation of Arp2/3 (C. elegans WVE-

1/WSP-1). In the equatorial plane, Rac is inactivated by the GAP-activity of Cyk-4, which 

prevents these filaments from being formed. The presence of branched actin filaments hinders 

ring constriction, possibly by acting as a physical barrier against constriction, or by competing 

for contractile ring components (Canman et al., 2008; Saenz-Narciso et al., 2016). However, it is 

not clear if a reduction in Rac activity is required in the equatorial plane, or if it needs to be 

active at the cell poles. 

In early C. elegans embryos, ECT-2, which regulates RhoA activity, is regulated by both 

CYK-4 and NOP-1 (NO Pseudocleavage) (Tse et al., 2012). NOP-1 is a novel, maternal protein 

with no known homologues and localizes to the cytoplasm and ingressing furrow in the early 

embryo. It is not essential for cytokinesis but is required for contractility during pseudocleavage 

and causes strong cytokinesis defects when depleted in combination with ani-1 (Tse et al., 2012). 

The cortical recruitment of myosin and ANI-1, as well as the organization of F-actin is 

dependent on NOP-1 activity (Tse et al., 2012). Although the molecular mechanism of NOP-1 

has not been determined, it is postulated that it directly regulates ECT-2 (Tse et al., 2012).  

 Kinetochores also have been shown to provide signals for cytokinesis (Rodrigues et al., 

2015). The regulatory subunit Sds22 of PP1 phosphatase recruits the complex to kinetochores 

where it dephosphorylates and inactivates ezrin/radixin/moesin (ERM) proteins (Rodrigues et al., 

2015). ERM proteins are cytoskeletal regulators with FERM domains that crosslink F-actin to 

the membrane (Roubinet et al., 2011). During early anaphase, as the chromosomes start to 
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segregate toward the poles, PP1 dephosphorylation of ERM at the cell poles softens the cortex to 

enable anaphase cell elongation (Rodrigues et al., 2015). However, this pathway is only 

functional for a very short period of time during early anaphase and is not essential for 

cytokinesis. 

 

1.1.2.1 The Ran pathway 

 Another MT-independent mechanism regulating cytokinesis involves a Ran-GTP 

gradient formed around chromatin (Kiyomitsu and Cheeseman, 2013; Beaudet et al., 2017). In 

interphase cells, the Ran-GTP gradient controls nucleocytoplasmic transport (Moore and Blobel, 

1993; Xu and Massagué, 2004). In the cytosol, importin-alpha and/or beta bind to cargo 

containing nuclear localization signals (NLS) and transports the cargo into the nucleus (Xu and 

Massagué, 2004). Once inside the nucleus, Ran-GTP binds to importins causing them to release 

the cargo (Görlich et al., 1996). The RanGEF RCC-1 is tethered to chromatin, and generates high 

Ran-GTP in the nucleus, while the RanGAP is in the cytosol and stimulates hydrolysis to Ran-

GDP (Xu and Massagué, 2004). After nuclear envelope breakdown, the Ran-GTP gradient 

persists until early telophase, when the envelope begins to re-assemble (Kalab et al., 2002; Kalab 

et al., 2006; Clarke and Zhang, 2008; Kalab and Heald, 2008). During metaphase, high Ran-GTP 

near chromatin promotes the release of spindle assembly factors (SAFs) from importins (Kalab 

et al., 2002; Kalab et al., 2006; Clarke and Zhang, 2008; Kalab and Heald, 2008). The SAFs then 

form active complexes to nucleate and organize MTs (Kalab et al., 2002; Kalab et al., 2006; 

Clarke and Zhang, 2008; Kalab and Heald, 2008). In this way, Ran-GTP promotes spindle 

assembly in the vicinity of chromosomes. However, recent studies suggest that SAFs could be 

differently regulated depending on how they bind to importins. 
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Our lab found that Ran-GTP also regulates the cortex for cytokinesis (Beaudet et al., 

2017). A gradient of importins ‘free’ from Ran-GTP form with high levels near the cortex and 

lower levels in the vicinity of chromatin (Figure 4; Clarke and Zhang, 2008). We found that 

anillin has an NLS that binds to importin-beta, which regulates the cortical localization of anillin 

(Beaudet et al., 2017). Increasing the levels of Ran-GTP, or mutating the NLS in anillin cause a 

decrease in anillin in the equatorial furrow and cytokinesis phenotypes (Beaudet et al., 2017). 

We propose that importin-beta stabilizes an open conformation of anillin that makes it more 

accessible to the cortex. However, we also found that high over-expression of importin-beta also 

decreases anillin’s cortical localization, suggesting that there is an ideal concentration of 

importin-beta that facilitates vs. hinders anillin function (Beaudet et al., 2017). This supports a 

model where the importin gradient functions as a molecular ruler to control placement of the 

contractile ring to ensure that it forms between segregating chromosomes.  

Our findings reconcile two opposing theories as to how Ran-GTP regulates the cortex in 

cytokinesis (Kiyomitsu and Cheeseman, 2013; Silverman-Gavrila et al., 2008). An earlier study 

showed that importins could regulate anillin function during cellularization in Drosophila 

embryos (Silverman-Gavrila et. al, 2008). This process is when membranes ingress around 

syncytial nuclei. They found that over-expression of importin-alpha outcompeted binding of 

anillin to septins, causing a decrease in the cortical localization of anillin (Silverman-Gavrila et. 

al, 2008). They proposed a model where in the vicinity of nuclei, high Ran-GTP promotes the 

release of importins from anillin, so it can bind to septins for its cortical recruitment (Silverman-

Gavrila et. al, 2008). However, there were many issues with this model. First, anillin was not 

recruited close to nuclei, and second the entire study was based on over-expression vs. loss-of- 
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Figure 4. Cartoon schematic of the importin gradient in a cell. During anaphase, a gradient of 

importins ‘free’ from Ran-GTP forms with higher levels (dark blue) near the cortex and lower 

levels (white) in the vicinity of chromatin (red). Importin-alpha or beta near the cortex could 

bind to and influence the localization of contractile ring components (pink). This pathway works 

in concert with mitotic spindle pathways (green and purple MTs) that control active RhoA in the 

equatorial plane. Figure adapted from Beaudet et al., 2017.  

  



15 

function studies. In another study in mammalian cells, Ran-GTP was shown to inhibit the 

cortical localization of contractile proteins, such as anillin (Kiyomitsu and Cheeseman, 2013). 

In cells lacking MTs, contractile proteins failed to accumulate at the cortex close to 

chromatin and if Ran-GTP was reduced, they recovered (Kiyomitsu and Cheeseman, 2013). This 

study showed that there was a correlation with chromatin position and elongation of the cortex 

during anaphase (Kiyomitsu and Cheeseman, 2013). Thus, they proposed a model where 

chromatin-enriched Ran-GTP inhibits the recruitment of cortical proteins when the mitotic 

spindle shifts too close to part of the cortex to permit recovery of the division plane (Kiyomitsu 

and Cheeseman, 2013). However, this study did not explore the molecular mechanism by which 

the Ran pathway regulates the cortex. 

The advantage of a model whereby the importin gradient acts as a molecular ruler to 

regulate the cortex is that it provides plasticity to cells. If chromatin position changes, the cortex 

can rapidly respond. If the spindle is perturbed, this can provide a back-up system to ensure that 

chromosomes are properly inherited by the daughter cells. It can also ensure a robust division 

plane in cells with altered size, ploidy, or geometry. We also postulate that the Ran pathway 

regulates multiple cortical regulators vs. only anillin. For example, Ect2 contains a conserved 

NLS in the middle of the protein, and is located nearby the phosphorylation site for Cdk1 

regulation of Ect2 autoinhibition (Hara et al., 2006). An exciting hypothesis is that importin 

binding could stabilize the open conformation of Ect2 to control RhoA activity. 

Importantly, the biological relevance of the Ran pathway in regulating cytokinesis needs 

to be tested in vivo. For example, is it essential in smaller cells or polarized cells where 

chromatin is positioned closer to the cortex vs. larger cells? Does the requirement vary 

depending on cell fate, based on the expression of different pathways? Also, it is crucial to 
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establish a genetic model system where molecular components of the Ran pathway can be 

identified. To address some of these questions my thesis involved testing the role of the Ran 

pathway in cytokinesis in C. elegans embryos. 

 

1.2 C. elegans  

1.2.1 C. elegans as a model organism 

C. elegans is a well-established genetic model amenable to transgenics, and its 

transparency lends itself to cell division studies and fluorescence microscopy. The invariant cell 

lineage was determined by John Sulston, and the highly stereotypical divisions allow for the 

detection of those that deviate from wild-type. In addition, genes of interest can be knocked 

down by RNAi using simple protocols involving the feeding of bacteria expressing double-

stranded RNA (dsRNA) (Brenner, 1974; Riddle et al., 1997, Corsi et al., 2015). C. elegans 

homologues for 60-80% of human genes have been identified, including components of the Ran 

pathway – the focus of this thesis (Bamba et al., 2002; Askjaer et al., 2002; Kaletta and 

Hengartner, 2006; Lundquist, 2006). 

 

1.2.2 Role of asymmetric division in establishment of polarity and cell fate 

  Proper establishment of cell fate and polarity are crucial aspects of early embryonic 

development (Rose and Gönczy, 2014). Asymmetric division is an important mechanism by 

which cell fates are correctly established in the embryo (Hawkins and Garriga, 1998; Rose and 

Gönczy, 2014). Six founder cells give rise to the different tissues; the AB, MS, E, C, D and P4 

cells. These cells are generated through five asymmetric divisions, as detailed in Figure 5. This 

research project focuses on the first three divisions (P0, AB and P1).  
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Figure 5. Division of the early C. elegans embryo. A) Diagram showing the invariant cell 

lineage of the early embryo. Horizontal lines represent sister cells arising from one division, and 

the length of the vertical line represents the duration of the cell cycle. B) Diagram shows the 

symmetric (black) and asymmetric (color) division of the early embryo that generate the founder 

cells. The germ-line precursor P cells are in green. As is convention, anterior is to the left of the 

image, posterior to the left, dorsal up and ventral down. ABa: AB anterior daughter, ABp: AB 

posterior daughter; ABal: ABa left daughter; ABpl: AB posterior left daughter. Figure taken 

from Rose and Gönczy, 2014.  

  

B A 
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The first division (P0) divides the zygote into a larger anterior blastomere called the AB 

cell, and a smaller posterior blastomere called the P1 cell (Rose and Gönczy, 2014). This first 

asymmetric division requires symmetry breaking and polarization of the zygote. The posterior of 

the zygote is determined by the location of sperm entry, which may bring in excess CYK-4 

(Wallenfang and Seydoux, 2000; Jenkins et al., 2006; Zonies et al., 2010). CYK-4 locally 

inactivates RhoA at the posterior to initiate anterior-posterior (AP) polarity (Jenkins et al., 2006). 

Hence, the initial uniformity of the cortical actomyosin network is broken and mutually 

inhibitory contractile domains are established: a retracting, contractile anterior domain and an 

expanding, non-contractile posterior domain (Rose and Gönczy, 2014). PAR (for partitioning 

defective) proteins play a role in symmetry breaking and are required to establish polarity in the 

zygote (Kemphues et al., 1988; Watts et al., 1996; Morton et al., 2002; Goldstein and Macara, 

2007; Rose and Gönczy, 2014). Their fundamental role is carried out through their mutually 

exclusive, asymmetric cortical localization: the PAR-3/PAR-6/PKC-3 complex remains 

anteriorly-localized, and PAR-2/PAR-1 is enriched on the posterior cortex (Riddle et al., 1997; 

Rose and Gönczy, 2014). Establishment of the AP axis also contributes to the asymmetry of 

division by asymmetric positioning of the mitotic spindle: though formed in the center of the cell, 

the spindle is displaced towards the posterior of the cell through unequal pulling forces regulated 

by cortical PAR proteins (Grill et al., 2001; Labbe et al., 2004). In addition to the role of cortical 

PAR proteins in asymmetric divisions, their AP polarity also enables the formation of 

cytoplasmic asymmetries/gradients of cell fate regulators, helping to further specify the fate of 

founder cell descendants (Schubert et al., 2000; Cuenca et al., 2003). 

The AB cell divides symmetrically, and its descendants give rise to tissues such as the 

nervous system, hypodermis and pharynx. The P1 cell divides asymmetrically likely via similar 
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mechanisms that regulate AP polarity in the P0 cell, to produce a P2 daughter that is fated to 

become the germline via further rounds of asymmetric divisions. The other P1 daughter is the 

EMS cell, which in turn gives rise to the MS and E blastomeres (Gilbert, 2000; Rose and Gönczy, 

2014). 

Whereas the AB cell divides equatorially and perpendicular to the AP axis, division of 

the P1 cell is slightly delayed and occurs after a 90o rotation of the centrosomes in late prophase, 

causing the spindle to orient longitudinally to the AP axis (Goldstein et al., 1993; Riddle et al., 

1997; Rose and Gönczy, 2014). This heterochronicity is thought to be based on AP polarity cues 

that are determined by PAR proteins, as par mutants undergo synchronous divisions (Kemphues 

et al., 1988; Watts et al., 1996; Goldstein and Macara, 2007). For example, the PAR proteins 

influence the asymmetric distribution of regulators of cell cycle progression, such as polo-like 

kinase PLK-1 and cyclin-dependent kinase phosphatase CDC-25, which are enriched in the AB 

cell (Budirahardja and Gönczy, 2008; Rivers et al., 2008). In addition, higher amounts of DNA 

replication factors are inherited by the larger AB cell, making them rate limiting in the smaller P1 

cell (Brauchle et al., 2003; Rose and Gönczy, 2014). Collectively, these molecular mechanisms 

delay the P1 cell cycle in comparison to the AB cell (Budirahardja and Gönczy, 2008; Rose and 

Gönczy, 2014). 

 

1.2.3 C. elegans contractile ring: its inherent asymmetry and model of kinetics 

The contractile ring ingresses asymmetrically in the early embryo. Not to be confused 

with anterior-posterior polarity – asymmetric ingression refers to the ‘off-centre’ axis of the ring 

as it constricts. This asymmetry could arise stochastically and provide mechanical advantages for 

ingression, making cytokinesis more robust (Maddox et al., 2007). The underlying cause for 
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asymmetric furrowing may be due to the unequal distribution of anillin and septins around the 

contractile ring (Maddox et al., 2007). It has been proposed that anillin recruits septins and F-

actin, which in turn recruits additional anillin to that side of the contractile ring to further 

enhance the asymmetry of components to one side of the ring (Maddox et al., 2007). 

The current model for ring constriction in C. elegans takes into consideration several 

observations: first, the duration of cytokinesis is uniform across cells of different sizes where the 

large P0 cell has a faster rate of closure compared to the relatively smaller AB and P1 cells. This 

makes the duration of cytokinesis independent of cell size, which could have an impact 

developmentally and help coordinate the cell cycle. Second, an increase in constriction rate is 

observed as the ring perimeter decreases, but the concentration of actin and myosin per unit 

length of the contractile ring remains constant (Carvalho et al., 2009). The proposed model for C. 

elegans ring constriction assumes that the ring consists of individual “contractile units”. These 

contractile units are of fixed size and function, and are progressively disassembled as the ring 

constricts. Since the rings of larger cells incorporate proportionally more units, their rate of 

constriction is proportionally faster than smaller rings of fewer units. The kinetics of constriction 

occur in two phases: first, there is a constant rate of constriction that decreases linearly with ring 

perimeter, which is followed by a second phase in which there is a strong negative linear 

relationship between ring perimeter and the average constriction rate (Carvalho et al., 2009). It is 

important to note that the measurement of constriction rates that were the basis of these phases 

were based on data collected every 20 seconds, whereas ingression kinetics described in this 

thesis are based on five second intervals. This has allowed us to refine the phase definitions of 

cytokinesis, and hence elucidate the role of Ran in the early phases of cytokinesis.   
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1.3 Summary 

This thesis elucidated the role of Ran-GTP in cytokinesis in early C. elegans embryos. By 

studying cytokinesis in C. elegans P0, AB and P1 cells with high temporal and spatial resolution, 

I was able to define three phases after anaphase onset reflecting the different kinetics of 

cytokinesis: ring assembly (no change), furrow initiation (shallow ingression) and ring 

constriction. P0 and P1 cells have all three phases, however, they are less distinct and more 

uniform in AB cells. Partially decreasing Ran-GTP by weak RCC-1 RNAi or decreasing 

importin-alpha by IMA-3 RNAi, increased ingression kinetics in P0, AB and P1 cells. 

Interestingly, P1 cells also showed a strong delay in prophase, which is not explored in this thesis. 

The ingression kinetics in P0 and P1 cells was suppressed by co-depletion of contractile 

regulators such as ECT-2 or LET-502, however ANI-1 suppressed kinetics in P0 and AB cells, 

but not in P1 cells. Thus, the Ran pathway regulates cytokinesis through different molecular 

effectors depending on the cell type. We propose that similar to human cells, Ran-GTP can 

influence the cortex by regulating the gradient of importins binding to contractile regulators 

(Figure 4). While decreasing Ran-GTP may free more importins for binding to cargo, lowering 

importin alpha may free importin beta for cargo binding.  
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Chapter 2: Materials and Methods 

 

2.1 Strains and alleles 

C. elegans strains were maintained according to standard protocol (Brenner, 1974) on NGM 

(Nematode Growth Medium) plates seeded with E. coli OP50, kept at 20°C. NGM plates were 

made by adding 3g NaCl, 17g Agar, 2.5g BactoPeptone to 1 L of distilled water. After 

autoclaving and cooling down to 55°C, 1mM CaCl2, 1 mM MgSO4, 5 µg/ml cholesterol solution, 

and 25 mM potassium phosphate buffer was added. The following strains were received from the 

Caenorhabditis Genetics Center (CGC): N2 (wild type), OD95 (unc-119(ed3) III; ItIs37 IV; 

ItIs38) - ItIs37 [(pAA64 Ppie-1::mCherry::HIS-58 + unc-119(+)] ItIs38 [pie-

1p::GFP::PH(PLC1delta1) + unc-119(+)], TY3558 unc-119(ed3) ruIs32 III; ojIs1 – ruIs32 

[pie-1p::GFP::H2B + unc-119(+)] ojIs1 [Ppie-1::GFP::tbb-2 + unc-119(+)]. The following 

strains were generously obtained from Dr. Labbé (IRIC, Université de Montréal): UM445 ItIs38 

[pie-1p::GFP::PH(PLC1delta1) + unc-119(+)] zuls244[Pnmy-2::PGL-1::mRFP-1; unc-

119(+)], UM463 cpIs42[Pmex-5::mNeonGreen::PLCδ-PH::tbb-2 3'UTR; unc-119(+)] II; 

ltIs37[pAA64; Ppie-1::mCherry::HIS-58; unc-119(+)] IV. In addition, the following strain were 

made in-house for this study: ItIs37 [(pAA64 Ppie-1::mCherry::HIS-58 + unc-119(+)] ItIs38 

[pie-1p::GFP::PH(PLC1delta1) + unc-119(+)] ojIs1 [Ppie-1::GFP::tbb-2 + unc-119(+)], and 

cpIs42[Pmex-5::mNeonGreen::PLCδ-PH::tbb-2 3'UTR; unc-119(+)] II itIs37 [pie-

1p::mCherry::H2B::pie-1 3'UTR + unc-119(+)] IV.  
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2.2 RNA interference 

RNA interference (RNAi) was carried out using feeding vectors for induction of dsRNA 

expression in E. coli, as described in Kamath et al., 2001. The following strains were generously 

provided by Dr. Roy (McGill University): ran-3 (C26D10.1), ima-3 (F32E10.4), ect-2 

(T19E10.1). The following strains were generously provided by Dr. Glotzer (University of 

Chicago): ani-1 (Y49E10.19), let-502 (C10H11.9). The following strains were generously 

provided by Dr. Labbé (IRIC, Université de Montréal): par-1 (H39E23.1), par-3 (F54E7.3), par-

6 (T26E3.3).  

Bacteria transformed with the various plasmids were grown in overnight cultures, then 

centrifuged and resuspended in the following volumes of LB media (5g yeast extract, 10g NaCl, 

10g tryptone in 1 L of distilled water): 100 µL for ran-3, par-1, par-3, par-6, and let-502; 300 

µL for ima-3; 300 or 500 µL for ani-1; and concentrations ranging from 400 to 1400 µL for ect-2. 

Resuspension volumes were optimized based on the severity of embryonic phenotypes. Since all 

phenotypes in this study are based on a partial knockdown of the protein, RNAi concentrations 

were optimized accordingly. For example, cytokinesis was analyzed only in embryos with proper 

DNA segregation and full ingression. 

The resuspended bacterial cultures were plated on NGM plates with IPTG (final 

concentration of 1mM) and ampicillin (final concentration of 100µg/mL) and left overnight for 

the liquid to dry, and to ensure induction of the dsRNA. Approximately 10-12 L4 

hermaphrodites were placed onto each dsRNA plate and kept for 24 hours, except for ima-3 

RNAi, where worms were kept for 30 hours. Embryos were dissected out of the gravid 

hermaphrodites and imaged as discussed in the following section.    
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2.3 Microscopy 

M9 was added into the well of a depression slide, and gravid hermaphrodites were placed 

into the liquid. They were dissected at two points corresponding to the spermatheca in order to 

obtain early embryos. To prepare slides for imaging, an air-permeable silicone pad with a square 

cut out was stuck onto a slide to hold the agarose pad in place. Agarose pads were prepared by 

dissolving 0.08g agarose in 4mL distilled water. After the solution was heated for 30 seconds, a 

drop was placed in the cut-out of the silicon pad, and another glass slide was placed on top until 

the solution dried. Embryos were then mouth pipetted onto the agarose pad (along with liquid to 

ensure that embryos were covered), and a coverslip was placed onto the slide. Phenotypes were 

then assessed using live imaging. This was done on an inverted Nikon Eclipse Ti microscope 

fitted with the Livescan Sweptfield scanner (Nikon), Piezo Z stage (Prior), an Andor IXON 897 

EMCCD camera, and 488 and 561 lasers. Using NIS Elements (Nikon) acquisition software, 

images were collected using the 100x/1.45 NA objective. Images of 0.7 µm Z-stacks for a total 

range of 4 µm were collected at 5 second intervals. Images were exported as ND2 files. 

 

2.4 Data Analysis 

2.4.1 Image analysis 

Time-lapse images were analysed in FIJI (NIH, MD, USA) using a macro developed by 

Dr. Chris Law. Images were staged to anaphase onset based on DNA (mCherry-tagged and 

imaged via the 561 laser), which was subsequently removed to analyze the membrane 

(mNeonGreen or GFP-tagged imaged via the 488 laser). A line was drawn manually over the 

ingression furrow at every time point starting from anaphase onset until furrow closure; 5 pixels 

on each side of the line were aligned parallel with each other, and placed in order by time, 
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producing the kymographs used throughout this thesis. The width of the advancing ingression 

furrow was measured manually at each timepoint using the straight line tool. 

  

2.4.2 Quantitative data analysis 

Measurements from FIJI were exported to Google Sheets or Microsoft Excel (Version 

16.16.2) for data analysis. The diameter of the cell at the time of anaphase onset was used to 

normalize ingression. This distance was used to convert inter-membrane distances to a percentile, 

with 100% as the maximum distance between the two sides of the cortex before furrowing, and 

decreasing values reflect ingression - closure of the ring as the sides come into contact. To 

account for biological variability, a minimum of 10 cells was measured for each dataset.  

Excel was used to calculate the means and SEM (standard error) and plot them in a graph 

of inter-membrane distance (% ingression, where 100% is before furrowing) against time (in 

seconds). To characterize ingression and determine changes in velocity (distance/time), data was 

plotted using GraphPad Prism 7. All data-points were used when possible, or until ~40% closure 

due to technical challenges in imaging at this stage, but also because variability tended to 

increase in the latter stages of ingression in the various RNAi conditions. First, a sigmoidal line 

of best fit was plotted using the control data for the different cells, then the second derivative of 

the best fit line was plotted. The x (time) values of the minimum and maximum values of this 

second derivative curve represent the time points at which there is a change of slope in the 

original data. The y (% ingression) value at the last time point of Phase 1, 2 and 3 was noted for 

each control cell. These values were used as a cut-off to define phase transitions in the RNAi 

treated embryos. These values were then verified in Excel, and the rate of each phase of 

ingression was determined by drawing tangents to the curve for each phase. To calculate 
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tangents, data for each treatment were first separated into three phases, and the data points of 

each individual phase were then plotted as a scatter graph. For example, in Control P0 cells, the 

first phase transition occurs at 96% normalized inter-membrane distance, so the tangent for 

Phase 1 of ran-3 P0 was drawn by plotting the subset of y- values that lie between timepoint 0, 

and the last timepoint before the inter-membrane distances drop below 96%. A linear trendline of 

best fit was then drawn through this subset of data to determine the slope of ingression (tangent) 

at that phase. Due to changes in the quality of imaging data at the end of ingression, coupled with 

increased variability due to RNAi, there tended to be high noise at the end of the curves. To 

improve the fit of tangents, data was cut off at 40% closure. 

A change in the slope of the tangent to the curve reflects a change in velocity, hence 

defining the change from one phase to the next. The tangents were used to determine the 

timepoints for each phase (Figure 6). If the tangent was parallel to the data between two time 

points, the latter was included in the phase, if not (i.e. the data sloped away from the tangent), it 

would indicate a phase transition and the beginning of the subsequent phase. If the first two 

tangents overlapped or were parallel to each other (for example in the case of curves missing the 

plateau of the first phase), the end of phase 2 was the last time point in which the curve was still 

parallel to the tangent. 

Two sets of heat maps were generated by Dr. Chris Law using MatLab (MathWorks) to 

visualize the data. Data was plotted by ingression rate using a color scale, with changes in colors 

indicating different relative rates - the ‘Jet’ colormap was used for its wide dynamic range. The 

heat maps show the ingression rates for the main phases. The duration of the phase was 

determined by the timepoints found with the tangent method, and the distance travelled by the 

cortex was determined using the y values at those timepoints. Ingression rate was then calculated  
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Figure 6. Determining phase duration with tangents. A) A graph shows tangents to the three 

phases of ingression for an ani-1 P1 cell. The tangent to the first phase is in blue, the tangent to 

the second phase in green, and the tangent to the third phase is in red. Data is cut off at 40% 

closure. B) A graph shows tangents to the three phases of ingression for ect-2 AB cells. The 

tangent to the first phase is in blue, the tangent to the second phase in green, and the tangent to 

the third phase is in red. Data is cut off at 40% closure. 
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as follows, with a = first time point of the phase, and b = last time point of the phase, and 

reported in units of percent/s: 

𝑖𝑛𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 =
%	𝑖𝑛𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡0 − 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡2)

𝑡𝑖𝑚𝑒(𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡0 − 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡2)
 

 In addition, graphs of normalized % ingression for all cells (P0, AB and P1) for control or 

ran-3 were grouped together and plotted with a color scale for cell size by Dr. Chris Law using 

MatLab. The ‘Cool’ colormap was used to indicate initial cell size (diameter at t=0), and scaled 

to accentuate the variation in cell diameter. The scale was derived from the diameter of cells 

within the same treatment type. 
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Chapter 3: Results 

 

3.1 Ran-GTP influences cortical activity during anaphase in early C. elegans 

embryos 

3.1.1 P0, AB and P1 cells have different ingression kinetics in control embryos 

The overall goal of this project was to determine if and how the Ran pathway regulates 

cytokinesis in early C. elegans embryos. Before doing this, we needed to characterize the 

kinetics of cytokinesis in control embryos. Strains with a marker for the cortex (PH tagged with 

GFP or mNeonGreen, which localizes to the membrane) and a marker for DNA (H2B or HIS-58 

tagged with mCherry, which localizes to chromatin) were used to visualize membrane ingression 

at 5 second intervals from anaphase onset until furrow closure. Time-lapse images of dividing P0 

cells from control embryos (Figure 7A) were used to generate kymographs (Figure 7B) that 

were measured to plot the % change in normalized distance (ingression) over time (Figure 7C). 

To account for biological variability, we obtained an n of at least 10 for each cell (Figure 7C). 

We noticed that cells did not ingress linearly, but rather had an initial plateau phase with no 

ingression, followed by indentation and subsequently more rapid ingression. These phases have 

been described previously in the literature as ‘ring assembly’, ‘furrow initiation’ and ‘ring 

constriction’ (Figure 7D; Osorio et al., 2018). I defined these phases in an unbiased way by 

plotting tangents for subsets of data determined via plotting sigmoidal lines of best fit and second 

derivatives for these lines as described in the methods section (also Figure 7E). I found that the 

ring assembly phase had a slow velocity of 0.07 percent/s, the furrow initiation phase was 0.5 

percent/s and constriction phase was 1 percent/s (Figure 7F). To better show changes in the  

 



31 

0

20

40

60

80

100

120

5 20 35 50 65 80 95 11
0

12
5

14
0

15
5

17
0

18
5

20
0

21
5

23
0

24
5

N
or

m
al

iz
ed

 in
gr

es
si

on
 (%

)

Time (s)
Ring Assembly Furrow Initiation Ring Constriction

Anaphase Onset Furrow Indentation Ingression Ring Closure

            
 

      
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 

  

0

20

40

60

80

100

120

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215

N
or

m
al

iz
ed

 in
gr

es
so

in
 (%

)

Time (s)

A 

B C 

D 

Ring Assembly Furrow Initiation Ring Constriction 

m
C

he
rr

y:
:H

IS
-5

8;
 

G
FP

::P
H

 
G

FP
::P

H
 

Ring 
Assembly 

Furrow 
Initiation 

Ring 
Constriction 

E 



32 

      

         
 

 

Figure 7. Characterization of control P0 divisions. A) Time-lapse images show a P0-cell 

division in a C. elegans embryo expressing mCherry::HIS-58 (magenta) and GFP::PH (green). 

The times shown are after anaphase onset in seconds. The scale bar is 10 µm. B) A kymograph 

was generated from a box drawn around the division plane (see box in A), and shows changes in 

the membrane every 5 seconds from anaphase onset until closure. Yellow dashed lines indicate 

the time at which the cell transitions from one phase to the next (i.e. Figure 7D). C) A graph 

shows the % ingression of the membrane (ring closure) over time (in seconds), where each line 

represents a different P0 cell. D) Cartoon schematics show the three phases of ingression; ring 

assembly phase (blue), furrow initiation (green) and ring constriction (red). DNA is in red, 

central spindle microtubules are in green, and the astral microtubules and centrosomes are in 

purple. E) A graph shows the average % ingression of P0-cell ring closure over time in seconds 

(n = 10). Tangents are drawn to show the transition for each phase (blue for ring assembly, green 

for furrow initiation, red for ring constriction). Error bars show SEM. F) Table shows rates of 

ingression (percent/s), represented in G. G) A color heat map shows the different rates for each 

phase of ingression. The corresponding color for each rate of ingression (percent/s) is shown on 

the scale (right). Rates of ingression were plotted from anaphase onset until 40% furrow closure.  
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cortex during earlier stages of cytokinesis (e.g. until 40% closure), we generated a heat map to 

show the relative rate of ingression (in percent/s) and duration of each phase (Figure 7G). In 

these heat maps, the cool colors show no/little ingression or slow ingression rate and warmer 

colors show more ingression or faster ingression rate.  

Using the same methods for control P0 cells, we also characterized ingression in control 

AB and P1 cells (Figure 8). Kymographs generated from time-lapse imaging of embryos at five-

second intervals from anaphase onset until furrow closure (e.g. Figure 8A) were measured to 

plot the average % ingression over time (Figure 8B). Ingression rates were measured (Figure 

8C) and heat maps of the relative changes in phase rates were plotted as described above (Figure 

8D). We observed that the ingression kinetics of AB and P1 cells are different from each other. 

While the P1 cells had ingression kinetics that resembled P0 cells for the plateau/ring assembly 

phase (0.1 percent/s), this phase was very short in AB cells (Figure 8B, C, D). P1 and AB cells 

had a shorter furrow initiation phase in comparison to P0 cells (0.4 percent/s and 0.3 percent/s, 

respectively; Figure 8B, C, D). P1 cells had a similar ingression rate for the ring constriction 

phase, but longer in duration vs. P0 cells (0.9 percent/s; Figure 8B, C, D). Strikingly, AB cells 

had a long, slower constriction phase compared to the other cells (0.7 percent/s; Figure 8B, C, 

D). Our detailed characterization of P0, AB and P1 cell divisions uncovered interesting 

differences in ingression kinetics during cytokinesis, suggesting that their regulation may require 

different mechanisms or combinations thereof.  

 

3.1.2 Ingression kinetics are altered in P0, AB and P1 cells in ran-3 and ima-3 embryos  

Our next step was to perturb the Ran pathway and compare ingression kinetics in P0, AB 

and P1 cells with control embryos. Based on our hypothesis and mammalian model of Ran- 
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Figure 8. Characterization of control AB and P1 divisions. A) Time-lapse images showing 

AB (top, cell indicated by line) and P1 (bottom, cell indicated by line) divisions in a C. elegans 

embryo expressing mCherry::HIS-58 (magenta) and GFP::PH (green). The times shown are after 

anaphase onset in seconds. The scale bar is 10 µm. B) A graph shows the average % ingression 

rates of control P0 (black curve; n = 10), AB (orange curve; n = 16) and P1-cell (grey curve; n = 

35) ring closure over time in seconds. Error bars show SEM. C) Table shows rates of ingression 

(percent/s), represented in D. D) Color heat map shows the different rates for each phase of 

ingression in P0 (top), AB (middle) and P1 (bottom) cells. The corresponding color for each rate 

of ingression (percent/s) is shown on the scale (right). Rates of ingression were plotted from 

anaphase onset until 40% furrow closure.  
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modulation of cytokinesis, we expected to see more rapid ring assembly and/or initiation due to 

increased contractility via a decrease in active Ran. To test this, we knocked down ran-3 (RCC-1 

- the GEF for Ran) via partial RNAi and analyzed kinetics as described for control cells. Mild 

depletion of ran-3 caused faster ingression kinetics in P0, AB and P1 cells compared to control 

cells (Figure 9A, B). In particular, furrowing initiated sooner, and cytokinesis completed in a 

shorter overall time compared to control cells (Figure 9A, B). Ingression rates were calculated 

(Figure 9C) and shown as heat maps (Figure 9D). As shown in the heat maps in Figure 9D, the 

plateau ring assembly phases were shorter, or absent compared to cells in control embryos, and 

the subsequent furrow initiation phases were faster. Thus, in support of our hypothesis, reducing 

Ran-GTP stimulates an increase in cortical contractility during mitotic exit. 

To determine if RCC-1’s role in cytokinesis occurs via regulating Ran vs. having an 

independent function in cytokinesis, we compared ingression kinetics after perturbing another 

component of the Ran pathway – IMA-3 (importin-alpha; Figure 10). Our hypothesis is that 

importin-alpha or beta binding to contractile proteins, such as anillin, potentiates an open, 

accessible conformation to positively regulate their activity. Since importin-alpha forms a 

complex with importin-beta, lowering alpha should ‘free’ more importin-beta for binding to 

contractile regulators. The ingression kinetics of ima-3 RNAi embryos phenocopied ran-3, such 

that ingression initiated sooner, and completed in a shorter overall time in P0, AB and P1 cells 

compared to cells in control embryos (Figure 10A, B). Ingression rates were measured as 

described previously and used to generate heat maps (Figure 10C, D). The heat maps in Figure 

10D show that similar to ran-3, all cells in ima-3 RNAi embryos had a shorter ring assembly 

plateau phase, followed by a shorter and/or faster furrow initiation phase. Thus, in support of our 

hypothesis, reducing importin-alpha increases furrow ingression kinetics of cytokinesis, possibly 
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Figure 9. ran-3 causes P0, AB and P1 cells to initiate and ingress sooner. A) A graph shows 

the average % ingression rates of control P0 (black curve; n = 10), AB (orange curve; n = 16) and 

P1-cell (grey curve; n = 35) ring closure over time in seconds. Error bars show SEM. B) A graph 

shows the average % ingression rates of ran-3 P0 (black curve; n = 10), AB (orange curve; n = 11) 

and P1-cell (grey curve; n = 21) ring closure over time in seconds. Error bars show SEM. C) 

Table shows rates of ingression (percent/s), represented in D. D) Color heat maps show the 

different rates for each phase of ingression for control (top) and ran-3 (bottom) embryos. The 

corresponding color for each rate of ingression (percent/s) is shown on the scale (right). Rates of 

ingression were plotted from anaphase onset until 40% furrow closure. 
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Figure 10. ima-3 causes hypercontractility in divisions. A) A graph shows the average % 

ingression rates of control P0 (black curve; n = 10), AB (orange curve; n = 16) and P1-cell (grey 

curve; n = 35) ring closure over time in seconds. Error bars show SEM. B) A graph shows the 

average % ingression rates of ima-3 P0 (black curve; n = 10), AB (orange curve; n = 12) and P1-

cell (grey curve; n = 15) ring closure over time in seconds. Error bars show SEM. C) Table 

shows rates of ingression (percent/s), represented in D. D) Color heat maps show the different 

rates for each phase of ingression for control (top) and ima-3 (bottom) embryos. The 

corresponding color for each rate of ingression (percent/s) is shown on the scale (right). Rates of 

ingression were plotted from anaphase onset until 40% furrow closure. 
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via freeing importin-beta for binding to contractile regulators. 

One caveat to our studies is that perturbing components of the Ran pathway could affect 

the mitotic spindle, which also regulates cytokinesis, or could disrupt polarity and indirectly lead 

to changes in cytokinesis due to altered cell fate. Spindle assembly factors are released from 

importin-binding in the vicinity of Ran-GTP, which potentiates their activity for nucleating 

microtubules and regulating assembly of the mitotic spindle. Thus, decreasing Ran-GTP could 

prevent their release and disrupt mitotic spindle formation. We do not think that this occurs in 

our experiments because we titrate down the levels of RNAi to ensure that sister chromatid 

segregation occurs successfully, and cytokinesis completes to give rise to daughter cells. 

However, to be sure, we imaged embryos expressing mCherry::HIS-58 (to visualize chromatin), 

GFP::PH (to visualize membrane) and GFP::TBB-2 (to visualize tubulin) and compared 

morphology of the mitotic spindles between control and ran-3-treated embryos (Figure 11A). As 

expected, there was no noticeable difference in cells in control and RNAi embryos. To determine 

if there were any changes in cell fate caused by altered polarity after ran-3 RNAi, we imaged 

embryos co-expressing GFP::PH and PGL-1::RFP (marker for P granules) in control or ran-3 

RNAi embryos at the 2-cell and 4-cell stage (Figure 11B). P granules segregate exclusively to 

the germ line (Rose and Gönczy, 2014), which still occurred in ran-3 RNAi embryos, suggesting 

that polarity is not affected by depletion of ran-3. 

 

3.1.3 ANI-1 could be a target of the Ran pathway in P0 and AB cells 

Our data shows that the Ran pathway increases furrow ingression kinetics in P0, AB and 

P1 cells. We found that rings assemble faster and ingression completes sooner after decreasing 

Ran-GTP or importin-alpha in comparison to control cells, supporting our hypothesis that ‘free’  
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Figure 11. A mild decrease in Ran-GTP does not alter the spindle or polarity. A) Time-lapse 

images show a control (top) and ran-3 (bottom) P0-cell division in a C. elegans embryo 

expressing mCherry::HIS-58 (to visualize chromatin; magenta), GFP::PH (to visualize the 

membrane; green), and GFP::TBB-2 (to visualize microtubules; green). The times shown are 

after anaphase onset in seconds. The scale bar is 10 µm. B) To show that ran-3 depletion does 

not alter anterior-posterior polarity, embryos co-expressing PGL-1::RFP (P granules; magenta) 

and GFP::PH (green) are shown for control or ran-3 RNAi at the 2-cell and 4-cell stage. The 

scale bar is 10 µm. Time-lapse images taken by Karina Mastronardi.  
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importins potentiate the activity of cortical proteins for cytokinesis. In human cells, our lab found 

that importin-beta binds to and facilitates anillin’s recruitment to the cortex, and regulates its 

function for cytokinesis (Beaudet et al., 2017). We tested if ANI-1 is in the Ran pathway in P0, 

AB and P1 cells in C. elegans embryos. We depleted ANI-1 using RNAi and characterized 

ingression as previously described (Figure 12). Compared to control embryos, ani-1 RNAi 

caused overall delays in the ingression of P0, AB and P1 cells (Figure 12B). As shown in the heat 

maps in Figure 12D, ani-1 P0 cells had a slightly shorter ring assembly phase of comparable 

ingression rate, but this was followed by longer furrow initiation and ring constriction phases 

that were slower than in control embryos. AB cells had a longer ring assembly phase of 

comparable ingression rate in ani-1 RNAi embryos, followed by a shorter, but slower furrow 

initiation phase, and a longer and slower ring constriction phase in comparison to control 

embryos. P1 cells had a longer and slower ring assembly plateau phase, followed by a longer and 

slower furrow initiation phase, and a faster constriction phase compared to control embryos. The 

overall net increase in duration of cytokinesis was expected for P0, AB and P1 cells based on ani-

1’s function as a regulator of cytokinesis, but we were surprised to see that each cell showed a 

unique response to ani-1 perturbation, reflecting different requirements in different cell types.  

Next, we determined if ANI-1 is in the Ran pathway in P0, AB and P1 cells. To do this, 

we co-depleted ani-1 and ran-3, and measured ingression kinetics to see if they were similar to 

ani-1, which would be predicted if ANI-1 was a target of Ran regulation. To better compare the 

different experimental treatments, P0, AB and P1 cells were graphed separately (Figure 13, A, B, 

C). As shown in the graphs, P0 and AB cells in embryos co-depleted for ani-1 and ran-3 

displayed ingression kinetics similar to control or ani-1 RNAi embryos (Figure 13A, B), 

whereas P1 cell ingression was similar to ran-3 RNAi embryos (Figure 13C). A more detailed  



44 

  
 
 
  

0

20

40

60

80

100

120

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215

N
or

m
al

iz
ed

 in
gr

es
si

on
 (%

)

Time (s)

Average Control P0

Average AB Control

Average P1 Control

0

20

40

60

80

100

120

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245 260 275 290 305 320

N
or

m
al

iz
ed

 in
gr

es
si

on
 (%

)

Time (s)

Average P0 ani-1 300

Average AB ani-1 300

Average P1 ani-1 300

Average Control P0 

Average Control AB 

Average Control P1 

Average ani-1 P0 

Average ani-1 AB 

Average ani-1 P1 

 

 

A 

B 



45 

 

 

Ring 
assembly 

phase 

Furrow 
initiation 

phase 

Ring 
constriction 

phase 
Control P0 0.07 0.5 1 

Control AB 0.1 0.3 0.6 
Control P1 0.1 0.4 0.9 

 
ani-1 P0 0.06 0.3 0.8 

ani-1 AB 0.1 0.3 0.5 
ani-1 P1 0.06 0.3 1 

 

 

 
 

 

Figure 12. Ingression in ani-1 embryos is delayed. A) A graph shows the average % ingression 

rates of control P0 (black curve; n = 10), AB (orange curve; n = 16) and P1-cell (grey curve; n = 

35) ring closure over time in seconds. Error bars show SEM. B) A graph shows the average % 

ingression rates of ani-1 P0 (black curve; n = 10), AB (orange curve; n = 10) and P1-cell (grey 

curve; n = 14) ring closure over time in seconds. Error bars show SEM. C) Table shows rates of 

ingression (percent/s), represented in D. D) Color heat maps show the different rates for each 

phase of ingression for control (top) and ani-1 (bottom) embryos. The corresponding color for 

each rate of ingression (percent/s) is shown on the scale (right). Rates of ingression were plotted 

from anaphase onset until 40% furrow closure. 
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Figure 13. ANI-1 could be in the Ran pathway in P0 and AB cells.  A) A graph shows the 

average % ingression over time (in seconds) of P0-cell division under Control (black curve; n = 

10), ran-3 RNAi (orange curve; n = 10), ani-1 RNAi (grey curve; n = 10) and ani-1/ran-3 RNAi 

(yellow curve, n = 12) treatment conditions. Error bars show SEM. B) A graph shows the 

average % ingression over time (in seconds) of AB-cell divisions under Control (black curve; n = 

16), ran-3 RNAi (orange curve; n = 11), ani-1 RNAi (grey curve; n = 10) and ani-1/ran-3 RNAi 

(yellow curve, n = 12) treatment conditions. Error bars show SEM. C) A graph shows the 

average % ingression over time (in seconds) of P1-cell divisions under Control (black curve; n 

=35), ran-3 RNAi (orange curve; n = 21), ani-1 RNAi (grey curve; n = 14) and ani-1/ran-3 

RNAi (yellow curve, n = 11) treatment conditions. Error bars show SEM. D) Table shows rates 

of ingression (percent/s), represented in E. E) Color heat maps show the different rates for each 

phase of ingression for P0, AB, P1 under indicated treatment conditions. The corresponding color 

for each rate of ingression (percent/s) is shown on the scale (right). Rates of ingression were 

plotted from anaphase onset until 40% furrow closure. 
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analysis of their ingression rates is shown in the heat maps in Figures 13E. P0 cells in embryos 

co-depleted for ani-1 and ran-3 had a ring assembly plateau phase that was slower vs. ran-3 

RNAi. The rest of the kinetics were similar to control or ani-1 cells, such as a longer, slower 

furrow initiation phase, and a longer constriction phase (Figure 13E). AB cells in embryos co-

depleted for ani-1 and ran-3 had ingression kinetics similar to control embryos for all three 

phases (Figure 13E). P1 cells in embryos co-depleted for ani-1 and ran-3 had a very short ring 

assembly plateau phase, similar to ran-3 RNAi, which was followed by a long, but fast ring 

initiation phase (unique vs. other RNAi conditions) and short constriction phase (Figure 13E). 

Since the kinetics for the ring assembly and/or initiation phases in P0 and AB cells in co-depleted 

ani-1 and ran-3 embryos were similar to control or ani-1 RNAi embryos, we propose that ANI-1 

could be a target of the Ran pathway in these cells. However, ANI-1 does not appear to be a 

target of the Ran pathway in P1 cells, since their kinetics in co-depleted embryos were more 

similar to ran-3. Thus, a different regulator of cytokinesis is regulated by Ran-GTP in P1 cells.  

 

3.1.4 ECT-2 could be in the Ran pathway in P0, AB and P1 cells 

 ECT-2 is another key regulator of cytokinesis, which functions as a RhoA GEF that 

activates RhoA for contractile ring assembly and ingression. ECT-2 has not been studied 

biochemically. However, it’s homologue, Ect2, has been studied more extensively (Yüce et al., 

2005; Hara et al., 2006; Niiya et al., 2006). Ect2 has a well-conserved NLS in the middle of the 

protein that regulates nucleocytoplasmic transport, and has a well-conserved Cdk1 

phosphorylation site close to the NLS that regulates changes in its conformation (Tatsumoto et 

al., 1999; Hara et al., 2006). Prior studies showed that dephosphorylation of the Cdk1 site is 

required for the activation of Ect2 during mitotic exit (Hara et al., 2006). An exciting hypothesis 
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is that importin-binding to the NLS of Ect2 potentiates an open conformation to increase its 

activity for cytokinesis. Previous studies showed that ect-2 RNAi prevents or delays furrowing as 

expected for a regulator of cytokinesis (Motegi et al., 2006). We predict that if ECT-2 is in the 

Ran pathway, then its co-depletion with ran-3 should show phenotypes closer to ect-2 RNAi or 

control. Using mild ect-2 RNAi, we first characterized ingression kinetics in P0, AB and P1 cells 

compared to control embryos (Figure 14A, B). As shown in Figure 14C and D it was difficult to 

distinguish the transition in phases, which took longer and/or were slower for P0, AB and P1 cells 

in ect-2 RNAi embryos compared to control embryos. Thus, furrowing was severely delayed 

after mild ect-2 RNAi, as expected for a crucial regulator of contractile ring assembly and 

constriction. Next, we co-depleted ect-2 and ran-3 and measured ingression kinetics to determine 

if the cells ingressed similar to those in ect-2 RNAi or control embryos. As with ani-1, we 

graphed P0, AB and P1 cells separately to better compare their phenotypes in the different 

treatment conditions (Figure 15A, B, C). All cells in embryos co-depleted for ect-2 and ran-3 

had ingression kinetics that resembled cells in either control or weak ect-2 RNAi embryos, and 

cytokinesis took longer to complete, similar to ect-2 RNAi embryos. As shown in the heat maps 

in Figure 15E, the ring assembly and furrow initiation phases were longer and/or slower in P0, 

AB and P1 cells in co-depleted ect-2 and ran-3 RNAi embryos compared to ran-3 RNAi 

embryos. Our data suggests that ECT-2 could be in the Ran pathway in P0, AB and P1 cells. 

However, due to the crucial role that ECT-2 plays in ring assembly and constriction, our 

experimental approach does not provide direct evidence for ECT-2 as a target of the Ran 

pathway. On the other hand, it does support that Ran regulates cortical contractility.  
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Figure 14. Ingression in ect-2 embryos is delayed. A) A graph shows the average % ingression 

rates of control P0 (black curve; n = 10), AB (orange curve; n = 16) and P1-cell (grey curve; n = 

35) ring closure over time in seconds. Error bars show SEM. B) A graph shows the average % 

ingression rates of ect-2 P0 (black curve; n = 10), AB (orange curve; n = 11) and P1-cell (grey 

curve; n = 12) ring closure over time in seconds. Error bars show SEM. C) Table shows rates of 

ingression (percent/s), represented in D. D) Color heat maps show the different rates for each 

phase of ingression for control (top) and ect-2 (bottom) embryos. The corresponding color for 

each rate of ingression (percent/s) is shown on the scale (right). Rates of ingression were plotted 

from anaphase onset until 40% furrow closure. 
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Figure 15. ECT-2 could be in the Ran pathway in all cells. A) A graph shows the average % 

ingression over time (in seconds) of P0-cell division under Control (black curve; n = 10), ran-3 

RNAi (orange curve; n = 10), ect-2 RNAi (grey curve; n = 10) and ect-2/ran-3 RNAi (yellow 

curve, n = 14) treatment conditions. Error bars show SEM. B) A graph shows the average % 

ingression over time (in seconds) of AB-cell divisions under Control (black curve; n = 16), ran-3 

RNAi (orange curve; n = 11), ect-2 RNAi (grey curve; n = 11) and ect-2/ran-3 RNAi (yellow 

curve, n = 10) treatment conditions. Error bars show SEM. C) A graph shows the average % 

ingression over time (in seconds) of P1-cell divisions under Control (black curve; n =35), ran-3 

RNAi (orange curve; n = 21), ect-2 RNAi (grey curve; n = 12) and ect-2/ran-3 RNAi (yellow 

curve, n = 11) treatment conditions. Error bars show SEM. D) Table shows rates of ingression 

(percent/s), represented in E. E) Color heat maps show the different rates for each phase of 

ingression for P0, AB, P1 under indicated treatment conditions. The corresponding color for each 

rate of ingression (percent/s) is shown on the scale (right). Rates of ingression were plotted from 

anaphase onset until 40% furrow closure. 
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3.1.5 LET-502 has different threshold requirements in P1 cells, and is Ran-dependent in P0, 

AB and P1 cells 

 To further show that Ran regulates cortical contractility, we studied phenotypes caused 

by co-depleting ran-3 with let-502. The homologue of LET-502, Rho-binding kinase, regulates 

cortical contractility by phosphorylating myosin light chain, which is required to form bipolar 

filaments and mediate force generation on F-actin via crosslinking and/or cross-bridge cycling 

(Piekny and Mains, 2002; Piekny et al., 2005). LET-502 has been shown to regulate furrow 

ingression, but does not have an NLS and would not be regulated directly by the Ran pathway 

(Piekny and Mains, 2002). As expected, P0, AB and P1 cells in let-502 RNAi embryos had 

slower ingression kinetics and an overall increase in the length of cytokinesis compared to 

control embryos (Figure 16A, B). However, we observed some very interesting differences in 

ingression kinetics in the different cells. First, we observed that AB cells were particularly 

sensitive to depletion of let-502 and ingression was delayed/slower in comparison to the other 

cell types (Figure 16A, B). Second, we found that P1 cells had a bimodal distribution of 

ingression that we classified as P1-X or P1-Y (Figure 16A, B). To our knowledge, such a 

distribution has not been previously reported. P1-X cells had a severely delayed plateau, followed 

by rapid ingression that was comparable to control, while P1-Y cells had kinetics that resembled 

AB cells. As shown in the heat maps in Figure 16D, all phases were longer and slower after let-

502 RNAi in P0 and AB cells compared to control embryos. However, in let-502 RNAi embryos, 

P1-X cells had an extended ring assembly phase followed by a short furrow initiation phase and a 

constriction phase that more closely resembled control embryos. In addition, P1-Y cells had 

ingression kinetics for the three phases that resembled AB cells. Thus, furrowing was delayed 

after let-502 RNAi as expected for a regulator of contractile ring assembly and constriction.  
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Figure 16. Ingression in let-502 embryos is delayed. A) A graph shows the average % 

ingression rates of control P0 (black curve; n = 10), AB (orange curve; n = 16) and P1-cell (grey 

curve; n = 35) ring closure over time in seconds. Error bars show SEM. B) A graph shows the 

average % ingression rates of let-502 P0 (black curve; n = 10), AB (orange curve; n = 10) and P1-

cell ring closure over time in seconds. P1 divisions have been separated into two groups based on 

kinetics, group X (grey curve; n = 9) and group Y (yellow curve; n = 6). Error bars show SEM. C) 

Table shows rates of ingression (percent/s), represented in D. D) Color heat maps show the 

different rates for each phase of ingression for control (top) and let-502 (bottom) embryos. The 

corresponding color for each rate of ingression (percent/s) is shown on the scale (right). Rates of 

ingression were plotted from anaphase onset until 40% furrow closure. 
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However, there may be unique requirements and different thresholds for let-502 depending on 

the cell type. 

Next, we determined how co-depletion of let-502 and ran-3 affects ingression kinetics in 

P0, AB and P1 cells. We predicted that if the Ran pathway regulates contractility, depletion of let-

502 should suppress the faster kinetics caused by ran-3 RNAi. P0 cells in embryos co-depleted of 

let-502 and ran-3 ingressed similar to cells in control embryos (Figure 17A), while AB cells 

took longer to ingress and complete cytokinesis similar to let-502 RNAi embryos (Figure 17B). 

P1 cells in co-depleted embryos no longer separated into two groups – all cells displayed similar 

ingression kinetics, which resembled AB cells (Figure 17C). As shown in the heat maps in 

Figure 17E, the ring assembly and furrow initiation phases were longer and/or slower in P0 and 

AB cells in co-depleted embryos compared to control or ran-3 RNAi embryos. P1 cells in co-

depleted embryos had interesting kinetics – with a shorter ring assembly phase, but a longer, 

slower furrow initiation phase and slower constriction phase compared to control or ran-3 RNAi 

embryos, highly reminiscent of AB cells in let-502 RNAi embryos. Thus, our data supports that 

the faster kinetics observed after perturbation of the Ran pathway is via regulating cortical 

contractility. We also found unique requirements for let-502 in AB vs. P1 cells, which could 

reflect different mechanistic regulation of cytokinesis in different cell types. Our data also hints 

toward a polarity phenotype in let-502 RNAi embryos, where P1 cells may no longer retain their 

identity. 

 

3.2 Ingression kinetics is cell-fate dependent 

 Our data supports that P0, AB and P1 have different ingression kinetics, and we wondered 

if changing the fate of AB and P1 cells would also change these kinetics. In early C. elegans  
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Figure 17. LET-502 may be in the Ran pathway in all cells.  A) A graph shows the average % 

ingression over time (in seconds) of P0-cell division under Control (black curve; n = 10), ran-3 

RNAi (orange curve; n = 10), let-502 RNAi (grey curve; n = 10) and let-502/ran-3 RNAi 

(yellow curve, n = 11) treatment conditions. Error bars show SEM. B) A graph shows the 

average % ingression over time (in seconds) of AB-cell divisions under Control (black curve; n = 

16), ran-3 RNAi (orange curve; n = 11), let-502 RNAi (grey curve; n = 10) and let-502/ran-3 

RNAi (yellow curve, n = 11) treatment conditions. Error bars show SEM. C) A graph shows the 

average % ingression over time (in seconds) of P1-cell divisions under Control (black curve; n 

=35), ran-3 RNAi (orange curve; n = 21), let-502 RNAi (Group X (grey curve), n = 9; and 

Group Y (blue curve), n = 6) and let-502/ran-3 RNAi (yellow curve, n = 12) treatment 

conditions. Error bars show SEM. D) Table shows rates of ingression (percent/s), represented in 

E. E) Color heat maps show the different rates for each phase of ingression for P0, AB, P1 under 

indicated treatment conditions. The corresponding color for each rate of ingression (percent/s) 

are shown on the scale (right). Rates of ingression were plotted from anaphase onset until 40% 

furrow closure.  
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embryos, the first division occurs asymmetrically to produce a larger, anterior AB daughter, and 

a smaller, posterior P1 daughter, which is fated to become the germline (Rose and Gönczy, 2014). 

This anterior/posterior asymmetry is controlled by the PAR proteins, where PAR-3, PAR-6 and 

PKC-3 form a complex at the anterior, and mutually exclude PAR-1 and PAR-2, which form a 

complex at the posterior (Rose and Gönczy, 2014). Cortical contractility is enriched in the 

anterior as it is controlled by and feeds back to reinforce the anterior PAR complex (Cowan and 

Hyman, 2007). To determine how changing polarity affects ingression kinetics, we performed 

RNAi to par-3, par-6 or par-1. We predicted that depletion of any of the PARs would cause 

ingression kinetics to be uniform between cells, and resemble a hybrid of AB/P1 cells, but par-1 

depletion should have caused faster ingression kinetics, because these cells would have ectopic 

cortical contractility. We focused our analysis on the daughters of P0 in the par-depleted 

embryos to compare their ingression kinetics to AB and P1 cells in control embryos. As shown in 

Figure 18, cells had similar kinetics for each RNAi condition, and there was no difference 

between cells in par-3 or par-6 RNAi embryos, which resembled AB cells in control embryos. 

Cytokinesis was faster in par-1 RNAi embryos, although this difference was not as large as 

expected (Figure 18B). As shown in the heat maps in Figure 18D, only two distinct phases were 

observed for cells in par RNAi embryos, and their duration and rate of ingression were more 

similar to AB cells.  

 

3.3 Ran-GTP influences the correlation between ingression and cell size in 

early C. elegans embryos 

Previous studies described a correlation between the rate of ingression and cell size – 

large cells with more contractile units (larger rings with more actomyosin) ingress faster vs.  
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Figure 18. Switching cell fate changes ingression kinetics. A) A graph shows the average % 

ingression rates of control P0 (black curve; n = 10), AB (orange curve; n = 16) and P1-cell (grey 

curve; n = 35) ring closure over time in seconds. Error bars show SEM. B) A graph shows the 

average % ingression rates of control AB cells (black curve; n=16) and 2-cell embryos treated 

with par-1 (orange curve; n = 10), par-3 (grey curve; n = 12) and par-6 (yellow curve; n = 10) 

RNAi. Error bars show SEM. C) Table shows rates of ingression (percent/s), represented in D. D) 

Color heat maps show the different rates for each phase of ingression for control and RNAi 

treated embryos. The corresponding color for each rate of ingression (percent/s) are shown on 

the scale (right). Rates of ingression were plotted from anaphase onset until 40% furrow closure. 
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small cells with fewer contractile units (Carvalho et al., 2009). This mechanism equalizes the 

rates between cells to ensure that their timing is coordinated in the early embryo regardless of 

size. However, prior studies only measured rates of ring constriction and ignored kinetics in 

earlier stages of cytokinesis. This is partly because their temporal resolution was lower in 

comparison to our study (20 second intervals vs. 5 second intervals). In addition, they grouped 

AB and P1 cells together, even though these cells have different sizes (~30%), which may have 

skewed their outcome. Knowing the impact of cell size on furrowing/ingression kinetics is 

important for our study, since we hypothesize that the Ran pathway has a larger influence on 

cytokinesis in smaller cells when chromatin is closer to the cortex. First, to determine if there is a 

difference in ingression kinetics based on cell size from anaphase onset, we plotted the 

ingression of all control cells (P0, AB and P1) and colour coded them according to their size (e.g. 

red is large, blue is medium, and green is small; Figure 19). We observed a large distribution in 

the completion of cytokinesis (>125 seconds between cells) with the bulk of green cells 

completing cytokinesis sooner vs. red cells, which does not agree with the previous study 

(Carvalho et al., 2009; Figure 19). Further, we observed that some of the green cells had a 

longer ring assembly phase, but faster ingression and this difference in early vs. late phase 

kinetics makes it difficult to study their correlation with cell size (Figure 19). Next, we plotted 

multiple P0, AB and P1 cells from ran-3 RNAi embryos in the same way (Figure 19). This time 

we saw a tighter distribution where cytokinesis of all cells completed <100 seconds of each other, 

and most completed within 50-75 seconds, and only the larger cells had a more obvious 

assembly phase (Figure 19). Thus, the larger cells tended to take longer overall to complete vs. 

the smaller cells as before, but their rates were more comparable. For example, it takes longer to 

assemble a contractile ring in a larger cell, but once it is assembled, it can constrict as quickly, or  
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Figure 19. Decreasing Ran-GTP increases the correlation between ingression and cell size. 

A) Graph shows the rates of ring closure for Control embryos (n = 61), color-coded according to 

the size of the cell. Color scale (right) is in microns, with the smallest cell (green) being a 

Control P0, and the largest cell (red) being a Control P1. B) Graph shows the rates of ring closure 

for ran-3 RNAi embryos (n = 42), color-coded according to the size of the cell. Color scale (right) 

is in microns, with the smallest cell (green) being a ran-3 P0, and the largest cell (red) being a 

ran-3 P1. 
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more rapidly in comparison to smaller cells. Therefore, our data suggests that the Ran pathway 

mostly affects the early phases of cytokinesis – ring assembly and/or furrow initiation in smaller 

vs. larger cells.  
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Chapter 4: Discussion 

 

In this thesis, we studied the conservation and biological relevance of the Ran pathway in 

regulating cytokinesis in early C. elegans embryos. Cytokinesis requires tight spatial and 

temporal control to prevent changes in ploidy or cell fate (Green et al., 2012). Microtubule-

dependent and –independent pathways work together to ensure that the division plane is properly 

positioned (Dechant and Glotzer, 2003; Murthy and Wadsworh, 2008; Basant et al., 2015; Price 

and Rose, 2017). However, many of these pathways have not been well-studied, in particular 

their requirement in different organisms and cell types. Our lab recently discovered a role for the 

Ran pathway in regulating human cell cytokinesis, and we wanted to determine if the pathway 

also regulates cytokinesis in C. elegans embryos. Using an in vivo model system permits us to 

study the biological relevance of this pathway, and how its requirement varies depending on cell 

type. For example, in the early C. elegans embryo, the first asymmetric division creates two 

daughter cells (AB and P1) with different fates. First, through extensive characterization of 

cytokinesis in the P0 (fertilized zygote), AB and P1 cells, we found that cytokinesis can be 

divided into three phases based on changes in velocity of the ingressing membrane, and each cell 

has unique ingression kinetics. The first phase is the plateau in our graphs of ingression, with 

very slow velocity (<0.1 percent/s) and is called the ring assembly phase, during which 

actomyosin filaments accumulate in the equatorial plane (Osorio et al., 2018).  The ring 

assembly phase was prominent in P0 and P1 cells, and was noticeably shorter in the AB cells 

(Figure 8B, C). The second phase has an intermediate ingression rate (~0.3-0.5 percent/s) and is 

called furrow initiation phase, where actomyosin filaments align in the equatorial plane and the 

membrane starts to visibly indent (Osorio et al., 2018). This phase varied in duration between P0, 
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AB and P1 cells. The third is the fastest (>0.6 percent/s) and is called the constriction phase due 

to shortening of the actomyosin ring, which brings the membrane together (Osorio et al., 2018). 

This phase is also variable in duration between the P0, AB and P1 cells. Next, we found that 

decreasing the level of Ran-GTP in the cells by partially knocking down the Ran-GEF (ran-3; 

RCC-1) through RNAi caused a change in ingression kinetics in P0, AB and P1 cells – where 

ingression appeared more linear (Figure 9). Most notably, the ring assembly phase was 

proportionally shorter in duration, or gone altogether. We observed a similar effect after partially 

knocking down ima-3/importin-alpha (Figure 10). Therefore, the change in ingression kinetics is 

not RAN-3/RCC-1-specific, but rather involves other components of the pathway. In our model, 

importin-beta binds to cargo, such as ANI-1/anillin or other contractile regulators, and 

potentiates their recruitment to the cortex and/or activity by stabilizing an open conformation 

(e.g. Beaudet et al., 2017). Thus, since importin-beta forms a complex with importin-alpha that 

in turns binds to Ran-GTP to release importin from cargo, reducing Ran-GTP or importin-alpha 

should free up additional importin-beta for cargo binding.  

To test our model, we needed to show that contractile ring components are regulated by 

the Ran pathway. The faster ingression kinetics observed in ran-3 or ima-3-depleted cells 

suggests that the actomyosin filaments assemble more rapidly, and may be more contractile. First 

we studied anillin, since our lab previously showed in mammalian cells that anillin directly binds 

to importin and is regulated by Ran-GTP for its function in cytokinesis (Beaudet et al., 2017). 

While ani-1 RNAi caused overall delays in ingression in all three cells, the ring assembly phase 

was particularly extended in P1 cells (Figure 12). Following co-depletion with ran-3, the length 

and/or ingression rate of the different phases in P0 and AB cells more closely resembled control 

cells, but P1 ani-1; ran-3 cells showed phenotypes more similar to ran-3 (Figure 13). Thus, 
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while ANI-1 could be a target in P0 and AB cells, it may not be in P1 cells, revealing differences 

in how the Ran pathway affects cytokinesis in cells with different fates. Studies currently being 

done by our lab have found that ANI-1 is highly enriched at the cortex in AB, but not P1 cells 

(data not shown). Since the Ran pathway regulates mammalian anillin via importin binding near 

the cortex, these lower levels of cortical ANI-1 may not require regulation via this pathway.  

To study the impact of Ran on contractility, we studied the effects of partially knocking 

down ECT-2, the GEF that generates active RhoA to form F-actin and active myosin for 

cytokinesis. As expected, weak ect-2 RNAi delayed and/or slowed all phases of ingression in P0, 

AB and P1 cells (Figure 14). Co-depletion of ect-2 and ran-3 caused phenotypes of all cells to 

more closely resemble control cells (Figure 15). These results indicate that ECT-2 could be in 

the Ran pathway in P0, AB and P1 cells. This effect could be direct or indirect. As a major 

regulator of cytokinesis, one possibility is that the protein being regulated directly by the Ran 

pathway increases cortical contractility in ran-3 embryos, and reducing a global regulator of 

active RhoA reduces this ectopic contractility to restore balance to the cells (Glotzer, 2005). 

However, another exciting possibility is that ECT-2 is a direct target of the Ran pathway. 

Mammalian Ect2 has an NLS in the middle of the protein, which lies near a Cdk1 

phosphorylation site that promotes autoinhibition of Ect2. A prevailing model in the field is that 

removal of this phosphorylation at anaphase onset permits Ect2 to bind to Cyk4, timing its 

activation and the generation of active RhoA with mitotic exit (Yuce et al., 2005; Hara et al., 

2006; Niiya et al., 2006; Wolfe et al., 2009). But one of the caveats to this model is whether 

dephosphorylation would be sufficient to drastically alter Ect2’s conformation. An exciting 

hypothesis is that importin binding to the nearby NLS could aide this step, to help open Ect2 for 
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mitotic exit. Since the NLS is conserved in C. elegans importin binding could mediate ECT-2 

activation.  

To extend our studies of the impact of Ran on contractility, we also studied another 

regulator of cytokinesis, the Rho kinase LET-502, which activates myosin (Piekny and Mains, 

2002). As expected, let-502 RNAi extended and/or decreased the rate of all phases of ingression 

in P0 and AB cells (Figure 16). The AB cells seemed to be particularly affected by the reduction 

of LET-502, with some P1 cells furrowing well before AB. In addition, reducing LET-502 had a 

very interesting effect on P1 cells, where we saw bimodal distribution in ingression kinetics. 

Some cells (P1-X) had a severely elongated ring assembly phase followed by rapid furrow 

initiation and constriction. The other cells (P1-Y) had a shorter ring assembly phase followed by 

a very linear ingression until furrow closure, which resembles control AB cells. Since this project 

relies on partial knockdown of proteins (vs. null), we believe that we may have uncovered 

different threshold requirements for LET-502 in the P1 cells. The P1-X cells struggle to assemble 

a contractile ring, while the P1-Y cells may have polarity reversal. This could explain why 

heterochronicity between AB and P1 cell division is partially lost in some of the embryos (Guo 

and Kemphues, 1996; Osorio et al., 2018). Co-depletion of ran-3 and let-502 caused ingression 

kinetics that were more similar to control (P0) or slower and more linear vs. control (AB and P1) 

(Figure 17). Importantly, the different phases of ingression were extended and/or slower in rate 

compared to ran-3. Therefore, LET-502 is in the Ran pathway in P0, AB and P1 cells, but since 

LET-502 does not contain an NLS, we hypothesize that this is indirect, through regulation of 

contractility.   

We were also interested to know how altering cell fate would influence ingression 

kinetics. As described in the introduction, P0 embryos have anterior-posterior asymmetry with a 
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more contractile cortex in the anterior. Ingression occurs asymmetrically to produce the anterior 

AB and posterior P1 cell, which is dependent on the PAR proteins. Since PAR-1 and PAR-2 are 

required for determining the posterior cortex, depletion of par-1 is expected to cause expansion 

of the anterior cortex, with more global cortical contractility. Depletion of par-3 or par-6, which 

encode components of the anterior PAR complex should cause expansion of the posterior cortex 

and overall lower global contractility. Not surprisingly, P0 daughter cells in embryos depleted of 

par-1, par-3 or par-6 lost their fate and had similar ingression kinetics (data not shown). 

However, we were surprised to observe that all of the ingression kinetics resembled each other 

regardless of whether the posterior or anterior PAR was depleted, and resembled control AB 

cells (Figure 18). Therefore, our results suggest that changing cell fate does indeed change 

ingression kinetics. We plan to image actin and myosin in these cells to determine how their 

localization compares in par-1 vs. par-3 or par-6 embryos. Our data supports that there is an 

increase in cortical contractility in AB cells (vs. P0 or P1 cells), and this increase may still occur 

when cell fate is lost, suggesting it may be part of a ‘default’ pathway/mechanism. 

Our data also revealed that there is a strong correlation between overall rates of 

ingression and cell size that is ‘hidden’ in the presence of wild-type levels of RAN-3 (RCC-1) 

(Figure 19). While control embryos showed weak correlation with the rate of closure and cell 

size, ran-3-depleted embryos showed stronger correlation with size, such that larger cells had 

faster rates of ingression. A previous study hypothesized that rates of ingression increase 

proportionally with cell size. This is because the contractile ring in larger cells would have more 

units of active actomyosin filaments vs. smaller rings (Carvalho et al., 2009). However, their 

study was done by imaging at 20 second intervals (vs. 5 in this study), and they did not separate 

AB vs. P1 cells in their analysis, which are different sizes. Due to these issues, they only 
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considered constriction (the last phase of ingression) to observe a strong R value. Our data shows 

that by manipulating kinetics to ‘equalize’ the phases as in the ran-3 embryos, this correlation 

can be better revealed.  

It is worth mentioning that one of the major caveats of this study is the use of partial 

RNAi, which may complicate the ordering, or placement of genes in pathways. In addition, there 

could also be different thresholds for gene requirements in cytokinesis and our conditions only 

permit us to observe one or two (e.g. as in the case of let-502 RNAi in P1 cells), but we could be 

missing others. Using separation-of-function mutations or null alleles where possible could 

provide a more accurate placement of these proteins in the Ran pathway. However, all of the 

genes tested in this study are required in the germline, and maternally required in the early 

embryo making the use of null alleles impossible. However, we could take advantage of 

temperature-sensitive alleles, which exist for let-502 and ect-2, and generate CRISPR mutant 

alleles containing NLS mutations in ect-2 and ani-1. Another experiment that is currently being 

done is to determine if importin-β phenocopies importin-α RNAi, and we will determine if ran-2 

(RanGAP) RNAi causes the opposite phenotype to ran-3 and slows furrow ingression.  In 

addition, we are examining the localization of contractile proteins (actin, myosin) and regulators 

such as ECT-2 and ANI-1 in the different RNAi conditions, which could help us to understand 

how Ran modulates their function for cytokinesis.  

Our model is that Ran-GTP regulates cytokinesis through its inverse relationship with 

importins. Near the chromatin, importins are bound to active Ran, while they are free to bind to 

cargo near the cortex. We hypothesize that importin-alpha or beta binding to the NLS region of a 

contractile protein could influence its conformation and/or affinity for other binding partners, 

This is supported by data in mammalian cells showing that importin binding to anillin helps 
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increase its affinity for the cortex. Thus, in our system, reducing Ran-GTP via ran-3 RNAi may 

free more importins for cargo binding, causing hypercontractility. Our data suggests that 

importin-alpha and –beta (although some of this hasn’t been tested) are both able to bind and/or 

positively regulate NLS-containing contractile proteins, but the heterodimer may be less able to 

do so (Figure 20). Therefore, reducing one importin (i.e. importin-alpha, as described in this 

thesis) could reduce the ratio of heterodimer complex found in the cell, and favor a cortically 

enriched pool through binding to the other importin. Importin-beta has been shown to bind 

human anillin, and Drosophila anillin has been shown to bind to importin-alpha and beta 

(Beaudet et al., 2017; Silberman-Gavrila et al., 2008). Mammalian Ect2 also has been shown to 

bind to importin-alpha and beta through its NLS, and it is exciting to speculate that ECT-2 could 

similarly be regulated by importins for enhanced activation and/or cortical recruitment. 

This thesis elucidates a role for Ran in cytokinesis and has uncovered interesting cell-

specific differences in the regulation of contractile proteins. Studying mechanisms regulating 

division in vivo is crucial to uncover their biological importance. The varying requirements of 

Ran, and different regulation of contractile proteins in cells of different fates is crucial for 

development, where the timing of divisions ensures that correct cell-cell contacts are established 

at the right time (Rose and Gönczy, 2014). In addition, cancer cells with higher ploidy have been 

shown to have steeper Ran-GTP gradients, which may mean that the Ran pathway promotes 

division in aneuploid cells, making further investigation of this pathway an interesting research 

avenue (Hasegawa et al., 2013).  
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Figure 20. Model for the Ran regulation of cytokinesis. Schematic overview of the inverse 

gradient between Ran-GTP and importins, such that ‘free’ importins are in highest concentration 

(darkblue shading) by the cortex and lowest by chromatin (no shading).  We propose that 

importin-alpha or beta-binding could potentiate the cortical recruitment of contractile proteins, 

but the heterodimer may not. Thus, reducing either importin-alpha or beta, while reducing 

binding through the heterodimer (dashed arrow), could favor a favor a cortically enriched pool 

via binding to the other importin (bold arrow). Similarly, reducing Ran-GTP levels would 

increase the overall availability of ‘free’ importins, also leading to cortically enriched contractile 

protein localization and faster ingression. Figure provided by Daniel Beaudet.  
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