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Abstract

Calibration model selection is required for all quantitative methods in toxicology and
more broadly in bioanalysis. This typically involves selecting the equation order (quadratic
or linear) and weighting factor correctly modelizing the data. A mis-selection of the cal-
ibration model will generate lower quality control (QC) accuracy, with an error up to
154%. Unfortunately, simple tools to perform this selection and tests to validate the
resulting model are lacking. We present a stepwise, analyst-independent scheme for se-
lection and validation of calibration models. The success rate of this scheme is on average
40% higher than a traditional “fit and check the QCs accuracy” method of selecting the
calibration model. Moreover, the process was completely automated through a script
(available in Supplemental Data 3) running in RStudio (free, open-source software). The
need for weighting was assessed through an F -test using the variances of the upper limit
of quantification and lower limit of quantification replicate measurements. When weight-
ing was required, the choice between 1/x and 1/x2 was determined by calculating which
option generated the smallest spread of weighted normalized variances. Finally, model
order was selected through a partial F -test. The chosen calibration model was validated
through Cramer–von Mises or Kolmogorov–Smirnov normality testing of the standard-
ized residuals. Performance of the different tests was assessed using 50 simulated data
sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-
1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the
developed procedure using real LC-MS/MS results for the quantification of cocaine and
naltrexone.
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1. Introduction

Every toxicologist performing quantitative method development eventually faces the
challenge of choosing a calibration model for the analyte. Most data acquisition and
processing software (e.g., Agilent’s ChemStation or Mass Hunter, AB Sciex’s Analyst�)
offer options with regards to forcing the calibration equation through the origin, apply-
ing a weight and model order (e.g., quadratic or linear). When only the most common
weighting (none, 1/x, 1/x2) and model order (linear, quadratic) options are taken into
account, there are six possible calibration models per analyte.

Although in principle, all systems should have a linear response to the concentration
and generate linear calibration curves, in reality, some physical and chemical phenomenon
can create quadratic calibration curves. Processes such as competition in the LC-MS ion-
ization process or saturation of the detector will create saturation phenomenon at high
concentrations, even if this is imperceptible to the naked eye. It is important to properly
identify occurrences of quadraticity in the data, because this can have a large impact
on quality control (QC) accuracy. Simulations using experimentally obtained calibration
curves showed a 12% average improvement in QC accuracy when properly using the
quadratic calibration model with uniformly weighted data (Supplemental Data 1). In a
similar fashion, Gu et al. [1] demonstrated that there is a notable improvement in QC
accuracy when the proper weighting is used for the calibration curve. Identifying the
correct calibration model is, therefore, a crucial step in method validation that will have
impacts on QC accuracy in production.

The Scientific Working Group in Toxicology (SWGTOX) guidelines state that “ul-
timately, the best approach is to use the simplest calibration model that best fits the
concentration response relationship” [2]. The SWGTOX recommends that the fit be
evaluated using a standardized residuals plot. Although this type of graph is a very use-
ful tool to roughly estimate the fit, the visual interpretation of the data renders model
selection very analyst-dependent and therefore subjective. The SWGTOX validation
guidelines also mention that the correlation coefficient (r) alone cannot be used to eval-
uate the fit, and that other alternatives can be used, such as analysis of variance - lack
of fit (ANOVA LOF), significance of the second order term and the coefficient of de-
termination. However, the calculations for these tests are not detailed in the validation
guidelines, and there are no recommendations with regards to the circumstances in which
they should be applied. Additionally, as is shown in the second paper of this series, the
ANOVA LOF and significance of the second order term techniques have significant issues
in terms of performance or ease of use.

In order to address these issues, we have developed a stepwise, systematic method to
choose and validate the calibration model for an analyte. This method is not biased by
the interpretation of the analyst since conclusions are reached by comparing test results
to a cut-off. Furthermore, the testing and interpretation has been automated using a
script in RStudio, allowing scientists with limited knowledge or comfort in statistics to
perform these tests easily, reliably and quickly. As an example, a method validation for
60 analytes required 1 hour of data treatment time to objectively select the calibration
model. Using 2610 calibration data sets spread over different calibration models, curva-
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ture levels (magnitude of the x2 term) and %RSD values, this automated scheme was
shown to have a success rate in average 40% higher than the traditional method of fitting
with more complex models until QC accuracy is acceptable (Supplemental Data 1). This
vast improvement in the exactness of calibration model selection will ultimately result
in higher QC accuracy in production. The selection method was developed by testing
different approaches on data sets both from 50 analytes quantified by LC-MS/MS and
simulated data sets with varying numbers of replicates. In this paper, we detail the
calculations and interpretation steps that constitute the developed process. As practi-
cal examples, two different analytes were chosen to demonstrate this protocol: cocaine
and naltrexone. The theoretical basis underlying the choice of each test, as well as the
mathematical considerations for different aspects of the scheme (including data collec-
tion, outliers and forcing calibration through the origin), is covered in the second paper
(II —Theoretical Basis).

2. Materials and methods

2.1. LC-MS/MS quantification

Cocaine and naltrexone (Cerilliant, Round Rock, TX, USA) were spiked in bovine
blood at concentrations of 5, 10, 15, 50, 75, 100, 400, 500 and 1000 ng/mL to produce
calibration standards. Considering that most of the samples analyzed with this method
fall in the low concentration range (i.e., therapeutic concentrations), it is appropriate
to place more calibration levels at the lower end of the working range. Cocaine-D3 and
codeine-D3 (Cerilliant) were used as internal standards (IS, 5 and 100 ng/mL, respec-
tively). Solid phase extraction of the standards was performed using Oasis cartridges
(HLB 3cc, product WAT094226, Waters, Mississauga, ON, Canada). A 2 mL volume of
blood was extracted and reconstituted in 100 μL of 15:85 methanol:ammonium formate
(10 mM). The samples were analyzed on an Agilent 1200 HPLC equipped with an AB
Sciex 4000 QTrap mass spectrometer. An aliquot (5 μL) was injected and separated
on an Agilent Zorbax Eclipse C18 column (100 � 2.1 mm, 3.5 μm) using a 25 minute
step/ramp gradient from 10 mM ammonium formate + 0.2% formic acid to methanol.
Quantitative analysis was performed with m/z transition 305.2/183.0 Da for cocaine (the
13C-containing species was used to reduce the signal and remove saturation at the upper
levels of the working range) and m/z transition 342.1/212.0 Da for naltrexone. The peak
area ratio of the analyte to the IS was used as the response. This method has been
validated according to ISO 17025 and CAN-P-1578 guidelines and is currently used as a
routine quantification method. Five injections of each extracted standard were performed
in order to create measurements replicates on which to base the statistical analysis. The
selection of this experimental setup to obtain replicate measurements is explained in the
“Results and discussion” section of the second paper (Raw data necessary and replicate
analysis). Chromatographic data analysis was performed with MultiquantTM (AB Sciex,
Framingham, MA, USA).

2.2. Simulated data sets

To validate the calibration model selection accuracy for all six types of possible mod-
els (linear-no weight, quadratic-no weight, linear-1/x, etc.), simulated data were produced
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using a script written and run in RStudio (RStudio, Boston, MA, USA). R (program-
ming environment, https://www.r-project.org/) and RStudio (graphical interface,
https://www.rstudio.com/) are free open-source statistical software tools. The script
for simulated data generation is available in Supplemental Data 2.

Using experimental LC-MS/MS calibration data for 50 analytes, intervals spanning
the maximum and minimum calibration parameter values for b0, b1 and b2 for quadratic
models were established. Synthetic calibration data were generated using calibration
parameters chosen at random from within these intervals. For the present study, interval
boundaries were 9×10−3 to 5×10−1 for b0, 3×10−3 to 8×10−1 for b1 and −7×10−5 to
−7×10−8 for b2. Using these parameters, the predicted signal (yi) for each concentration
level was calculated.

For every weighting scheme (none, 1/x, 1/x2), each data set was assigned a maximal
%RSD value at random between 1% and 20%. This 20% upper boundary was chosen by
keeping in mind the SWGTOX guidelines that state precision values should not be higher
than 20% [2]. From the randomly assigned %RSD at the lower limit of quantification
(LLOQ), the standard deviations for other concentration levels were calculated according
to the chosen weighting pattern.

Using the calibration parameters and calculated standard deviations, 50 data sets,
each with 5, 7 or 10 normally distributed replicate measurements, were generated at each
concentration level for each of the six calibration models tested here.

2.3. Heteroscedasticity testing

Only the description of the calculations and/or R functions used to carry out tests
will be described in this section. The purpose of the tests and interpretation of the re-
sults will be described in Section 3. All calculations required to choose and validate a
calibration model were performed using an R script running in RStudio. A compressed
file containing all required R scripts as well as instructions for their use, including a video
tutorial, is available as Supplemental Data 3.

The presence of heteroscedasticity (a change in variance across concentration levels)
was determined by calculating the probability that the variance of measurements at
the upper limit of quantification (ULOQ) was equal to or smaller than the variance of
measurements at the LLOQ using an F -test. This unilateral F -test was performed using
the following RStudio formula:

var.test(MeasurementsLLOQ,MeasurementsULOQ, alternative = “less”) (1)

with the probability being stored in the P value element of the output list.

2.4. Variance evaluation for weight selection

Variance evaluation was performed by first applying each weighting scheme (Wi) to
the measurements to calculate the concentration levels’ normalized weighted variances
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(V i
W ), which were used to calculate the total normalized weighted variance (VW ) [3].

S =
∑
i

√
Wi (2)

V i
W =

V ar {yi1, yi2, . . . , yij} ×Wi

S2
(3)

VW = V ar
{
V 1
W , V 2

W , . . . , V i
W

}
(4)

where S is the scaling factor, Wi was the weighting applied at the ith concentration
level (e.g., for a 1/x weighting at the 5 ng/mL concentration level W5 will be 1/5 = 0.2),
V i
W is the weighted and normalized variance at the ith concentration level for weighting

scheme W and concentration level i, V ar is the variance operator, which calculates the
variance of the elements inside the braces, yij is the measurement at the ith concentration
level and the jth replicate and VW is the total normalized weighted variance for weight
W . Three values of VW should be obtained using this calculation, one for each possible
weight (uniform or “no weight” (Wi = 1), 1/xi and 1/x2

i ).

2.5. Partial F -test for model order selection

To perform the partial F -test, the sum of squares for the linear (yL = b1 ·x+ b0) and
quadratic (yQ = b2 · x2 + b1 · x+ b0) models were calculated by [4]

SSreg,Q =

i∑
n=1

Wi × nj × (ŷi − ȳ)
2
=

i∑
n=1

Wi × nj ×
({

b2 · xi
2 + b1 · xi + b0

}− ȳ
)2

(5)

SSreg,L =

i∑
n=1

Wi × nj × (ŷi − ȳ)
2
=

i∑
n=1

Wi × nj × ({b1 · xi + b0} − ȳ)
2

(6)

where SSreg,Q and SSreg,L are the sum of squares of the regression of the quadratic
and linear models, respectively, Wi is the weighting applied at the ith concentration
level, nj is the number of measurement replicates (here, 5) per concentration level, ŷi
is the predicted measurement at the ith concentration level (obtained by inserting the
value of x in the calibration equations, which need to be previously determined) and ȳ is
the average of measurements over all samples analyzed (nine concentration levels × five
replicates = 45 measurements).

The sum of the residuals squared (SSres,Q) was calculated for the quadratic model
from

SSres,Q =

i×j∑
n=1

Wi × (yij − ŷi)
2

(7)

where yij was the jth measurement at the ith concentration level.
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The F statistic was then calculated by

Fcalc =
SSreg,Q − SSreg,L(

SSres,Q

n−3

) (8)

where n is the total number of measurements (i× j, here 45).

The probability (P ) associated with the calculated F statistic was found using the
RStudio command

1− pf (Fcalc, 1, (n− 3)) (9)

2.6. Normality of the residuals

Normality of the standardized residuals was evaluated through the Kolmogorov–Smirnov
(KS) and Cramer-von Mises (CVM) tests. The calculations necessary for these tests are
fairly complicated and are covered in the accompanying paper ((II —Theoretical basis of
the developped procedure). The probability values (output of the tests) were collected
in the .txt file created by the script.

3. Results and discussion

3.1. Raw data

Raw data resulting from the replicate analysis (j = 5) of the nine calibration stan-
dards for cocaine and naltrexone are presented in Table 1. Calibration curves and vari-
ance graphs for both analytes are shown in Figure 1.

3.2. Heteroscedasticity testing

The purpose of testing for heteroscedasticity was to determine if weighted least-
squares regression was necessary. Data are heteroscedastic if the absolute error (stan-
dard deviation of the replicates) varies systematically across concentration levels. Figure
2 shows the calibration curve of simulated homoscedastic (a) and heteroscedastic (b and
c) data sets. In least-squares regression, the best model parameters (e.g., slope and in-
tercept for linear models) are found by minimization of the sum of the squared error
between the measured values and the values predicted by the model (squared residuals).
In unweighted (also called uniformly weighted) least-squares regression, the default re-
gression, all squared errors are treated equally in the summation. On the other hand,
when data are heteroscedastic, there is greater confidence in the measured values that
have the smallest error. This greater certainty should be used advantageously by giving
a greater weight to the values with the smallest error in the summation of errors and
therefore a greater influence in fixing the calibration parameters [5].

The F -test was applied to the measurements at the LLOQ and the ULOQ, where the
difference in variance (error) is the largest inside the calibration range for heteroscedas-
tic data sets of the 1/x and 1/x2 type. The P -value obtained represents the probability
that variance at the ULOQ is smaller than or equal to the variance at the LLOQ (null
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Table 1: Area ratio (analyte/IS) at nine concentration levels with five measurement replicates for cocaine
and naltrexone

Area ratio
Concentration (analyte/internal standard)

(ng/mL) Cocaine

j = 1 j = 2 j = 3 j = 4 j = 5

5 0.131 0.127 0.131 0.126 0.130
10 0.256 0.249 0.244 0.249 0.249
15 0.340 0.333 0.328 0.331 0.311
50 1.235 1.257 1.224 1.234 1.225
75 1.596 1.663 1.710 1.656 1.613
100 2.055 2.046 2.109 2.033 2.127
400 7.733 7.727 7.964 7.687 7.747
500 9.688 9.447 9.557 9.476 9.346
1000 16.298 15.575 15.807 15.926 15.420

Area ratio
Concentration (analyte/internal standard)

(ng/mL) Naltrexone

j = 1 j = 2 j = 3 j = 4 j = 5

5 0.052 0.054 0.047 0.049 0.053
10 0.101 0.104 0.103 0.099 0.102
15 0.133 0.132 0.136 0.131 0.135
50 0.528 0.510 0.515 0.497 0.503
75 0.669 0.676 0.649 0.682 0.639
100 0.923 0.909 0.924 0.964 0.964
400 3.419 3.451 3.497 3.673 3.595
500 4.426 4.455 4.458 4.529 4.600
1000 8.656 9.092 9.139 9.110 9.269
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(a) Calibration curve of cocaine
Calibration equation:
y = 7 × 10−6x2 + 0.0224x + 0.0174,
where y is the area ratio and x is the
concentration in ng/mL.

(b) Variance graph of cocaine

(c) Calibration curve of naltrexone
Calibration equation:
y = 0.0091x + 0.0059,
where y is the area ratio and x is the
concentration in ng/mL.

(d) Variance graph of naltrexone

Figure 1: Calibration curves and variance graphs of cocaine and naltrexone

8



(a) Calibration curve with homoscedastic data (b) Variance graph with homoscedastic data

(c) Calibration curve with heteroscedastic data,
1/x weight

(d) Variance graph with heteroscedastic data, 1/x
weight

(e) Calibration curve with heteroscedastic data,
1/x2 weight

(f) Variance graph with heteroscedastic data, 1/x2

weight

Figure 2: Calibration curves and variance graphs of linear models, created to show as well as possible
the patterns of changing variance
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hypothesis). If P > 0.05, this null hypothesis is accepted and data are considered to
be homoscedastic (constant variance across concentrations), therefore no weighting is
required. On the other hand, if P < 0.05, the null hypothesis is rejected and we accept
the alternative hypothesis, which states that the variance at the ULOQ is larger than the
variance at the LLOQ. This means that data are heteroscedastic and a weighting factor,
which will be decided using the variance evaluation, should be used.

For cocaine and naltrexone, the F -test yielded P -values of 7 × 10−9 and 7 × 10−8,
respectively, indicating that the data sets were heteroscedastic and weighting should be
applied in both calibration procedures.

Application to simulated data showed this test is robust, with an average success rate
of 98% for all types of calibration model utilizing five replicate measurements (Table
2). The success rate represents the percentage of data sets that was correctly classified
(e.g., declared homoscedastic when it was indeed homoscedastic). Because the P -value
threshold is set at 0.05 (5%), a 95% success rate is expected. Since the observed success
rates for all models are near the expected rate, as is the average rate, this test is considered
robust.

3.3. Variance evaluation for weight selection

Most data analysis software offers unweighted or uniform regression (weighting factor
= 1) as the default as well as weighted regression using 1/x and 1/x2 weighting factors. The
theoretical basis for these three common weighting factors is beyond the scope of this pa-
per, but is a result of the type of noise that dominates over the calibration range [6, 7, 8].
Examination of the variance plot (variance of replicates vs. concentration) provides con-
firmation of the heteroscedasticity test results and is also suggestive of the appropriate
weighting factor. The variance plot is provided as a PDF output when the R script is
executed. Constant error across the calibration range from the LLOQ to the ULOQ
is indicative that unweighted regression was appropriate (see Figure 2 (d)). Weighted
regression was justified through heteroscedasticity testing and is apparent as increas-
ing error across the variance plot. Plots which exhibited a linear trend, where variance
increased proportionally to the concentration, indicated that 1/x weighting should be
selected (see Figure 2(e)). If a parabolic trend was found, where variance increased pro-
portionally to the square of the concentration, a 1/x2 weighting factor should be used [1]
(see Figure 2(f)).

These characteristics were the basis for an automated, analyst independent selec-
tion of the required weighting using a variance evaluation. Indeed, properly weighted
variances should be constant across the calibration range. For example, if the raw vari-
ances increase linearly with concentration (x), multiplying all variances by the appro-
priate weighting, 1/x, will result in constant weighted variances across all the calibration
range. Conversely, multiplying by an inappropriate weighting factor, say 1/x2, will pro-
duce changing weighted variances across the calibration range. Therefore, the weighting
factor producing the most uniform set of weighted variances, as evaluated by taking the
variance of the weighted and normalized variances for the different concentration levels,
is the closest to the proper weight and should be used. Variance evaluation also acts
as a double-check of the F -test result, building a healthy redundancy in the weighting
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Table 2: Success rate of different tests in the process of calibration model selection and
validation for 5, 7 or 10 simulated measurement replicates; 50 data sets were generated for each
weighting/order combination

5 replicates

Model order Linear Quad. Linear Quad. Linear Quad.

Weighting 1 1 1/x 1/x 1/x2 1/x2

F -test (Heteroscedasticity) (%) 98 92 100 98 100 100

Variance test (Weight selection) (%) 100 98 58 70 100 100

Partial F -test (Order selection) (%) 96 96 98 88 90 50

Validation (CVM) (%) 100 100 100 100 100 100

7 replicates

Model order Linear Quad. Linear Quad. Linear Quad.

Weighting 1 1 1/x 1/x 1/x2 1/x2

F -test (Heteroscedasticity) (%) 94 98 100 100 100 100

Variance test (Weight selection) (%) 100 100 86 90 100 100

Partial F -test (Order selection) (%) 98 100 100 94 98 48

Validation (CVM) (%) 100 100 98 100 100 100

10 replicates

Model order Linear Quad. Linear Quad. Linear Quad.

Weighting 1 1 1/x 1/x 1/x2 1/x2

F -test (Heteroscedasticity) (%) 100 98 100 100 100 100

Variance test (Weight selection) (%) 100 100 98 92 98 100

Partial F -test (Order selection) (%) 98 100 88 90 94 58

Validation (CVM) (%) 100 100 100 98 98 98
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selection for the calibration curve.

Calibration data and variance plots obtained for cocaine and naltrexone are shown
in Figure 1. Both variance plots show a parabolic pattern, although this pattern was
subjectively less clear for naltrexone. Variance test scores for cocaine (VW1

= 1.7×10−6;
VW1/x

= 2.0 × 10−9; VW
1/x2 = 6.2 × 10−12) and naltrexone (VW1

= 3.8 × 10−7; VW1/x
=

5.0× 10−10; VW
1/x2 = 2.6× 10−12) confirmed that a 1/x2 weighting factor should be used

to build calibration models for both analytes, since this weight produced the smallest
spread of weighted variances. Both the plot and weighted variance evaluation provide
confirmation of the heteroscedasticity F -test results. Nearly, all LC-MS/MS analyses
spanning a few concentration orders of magnitude can be expected to produce data with
this weighting [1].

It is important to note here that sampling statistics govern the variance estimation at
each concentration level. Thus, the smaller the number of replicates, the more likely the
variance estimation is to be erroneously large or small. This estimation error propagates
into the weighted variances as a bias toward an erroneous weighting and can result in
incorrect selection of the weight. Tests with simulated data show that this happens up to
42% of the time for 1/x data with five replicates (Table 2). To overcome this fundamental
limitation in the data requires increasing the number of replicates, which increased the
success rate in identifying the proper weighting factor to 86% for 7 replicates and 92%
for 10 replicates. For this reason, the authors suggest that the use of seven measurement
replicates when selecting and validating the calibration model, which provides improved
performance with the tests compared to the five measurement replicates suggested by
the SWGTOX guidelines. In general, improved performance occurs for all tests with
increased replicates, but it is the most marked in the weight selection step. For diverse
practical reasons, analysts may justifiably use five measurement replicates and, with the
aid of the calibration model selection scheme presented here, produce validated cali-
bration models. However, they need to realize that the trade-off will be an increased
frequency of incorrect weight and/or order selection that can ripple through to lower
accuracy and precisions in the results.

3.4. Partial F -test for model order selection

With the weighting factor chosen, the next step was to select the model order (i.e.,
linear or quadratic). The recommended practice by the SWGTOX and the FDA is to
choose the model with the lowest order that adequately describes the calibration system
under study [2, 9]. Often times in bioanalysis laboratories, this is done using the “Test
and Fit” strategy [1], meaning that the lowest order yielding standard and QC accuracies
below the 15% or 20% bar is chosen. However, rather than choosing the model which is
“good enough”, the partial F -test can be used to improve the likelihood of selecting the
true model order underlying the measurements.

Selection of the appropriate model was done by performing a partial F -test. Here,
the test was applied to establish if the quadratic calibration model significantly improved
the captured variance of the data compared to a linear model [4]. Linear or quadratic
calibration responses, which are typically encountered in toxicology validation work, were
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the two models compared. However, it is noteworthy that the partial F -test allows al-
ternate calibration models to be compared. This test compares the improvement in the
sum of squares of the regression when switching from a linear to a quadratic calibration
model (SSreg,Q −SSreg,L) to the sum of squares of the residuals in the quadratic model
(SSres,Q/n − 3). If there is a significant increase in the variance explained by the quadratic
regression, then using a quadratic model is justified [4].

For cocaine and naltrexone, the P -values obtained from the partial F -test were
1 × 10−13 and 0.20, respectively. In the case of cocaine, since P < 0.05, the increase in
the sum of squares of the regression when switching to a quadratic model was significant,
therefore a quadratic (second order) calibration model should be used for this analyte.
On the other hand, the P -value for naltrexone was > 0.05, which means the quadratic
model does not capture a significantly greater portion of the measurements’ variance.
Therefore, a linear model should be used for naltrexone.

Tests with simulated data showed that the erroneous outcome of selecting a quadratic
model when in fact the underlying data model was linear happens in 4% of the cases on
average (Table 2), near the expected value of 5%. The opposite error (selecting linear
when quadratic is the correct model) happens far more often, with an average success
rate of 80% (Table 2). Erroneous selection of a linear model mainly happened when
the second order term was small relative to the error at the upper concentration levels,
for example when increasing variance (heteroscedastic data, especially 1/x2) masked the
curvature. Indeed, quadratic, 1/x2 data with n = 7 show a 78% success rate for model
order selection when %RSD = 2.5%, but the success rate decreased to 26% when %RSD
= 20% (Supplemental Data 4). Large and/or increasing variance can mask curvature
present in the data and result in an undetectable improvement in the fit obtained when
using a quadratic model. Unfortunately, increasing the number of measurement replicates
will not have a marked effect in this case. Satisfyingly, when the partial F -test fails, the
result is to err on the side of caution advocated by the SWGTOX and the FDA: the
lowest order model fitting the data (linear) is selected. Ultimately, when the curvature
is masked, using a linear model instead of a quadratic one will not have an appreciable
impact on the accuracy of the results.

3.5. Normality of the residuals

After having chosen the calibration model that best represents the data (weight and
order), its validation was required. In principle, the correct model should describe all
the systematic trends in the data with only random error remaining in the residuals [5].
Therefore, the residual errors are expected to follow a normal distribution. Both the
CVM and KS procedures can be used to test whether the standardized residual distribu-
tion is significantly different from a normal distribution. In practice, to adhere correctly
to statistical procedures and for clarity of decision, the user is expected to choose only
one of them as a validation test. The authors favor the use of the CVM normality test,
because the results obtained in simulations demonstrate that it is stricter than the KS
test (lower P -values obtained) and therefore has greater ability to detect departure from
normality.
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The CVM test produced P -values of 0.865 and 0.992 for cocaine and naltrexone,
respectively. In both cases, KS and CVM produced P -values > 0.05 suggesting that
the standardized residuals did not depart significantly from a normal distribution. The
calibration model was, therefore, considered validated. When P < 0.05, the distribution
of the standardized residuals is significantly different from a normal distribution. This
indicates that the calibration model chosen did not accurately account for all systematic
trends in the data and therefore should not be validated.

When the CVM test was applied to the simulated data, the success rate was more
than 98% across all six calibration models and higher than the expected rate of 95%
(Table 2). Again, low numbers of measurement replicates and/or high variance will
negatively impact the ability of the tests to detect departure from normality (i.e., inap-
propriate models producing non-normally distributed residuals). This too points toward
the benefits of using a higher number of measurement replicates as a better practice.

When a model fails to pass the validation step, the analyst should attempt to under-
stand why, so that the fundamental problem can be addressed. A detailed exploration
of all possible problems is well beyond the scope of this paper but certainly systematic
errors or instrument drift should be investigated. Where appropriate, the method should
be modified so an adequate model for the data can be found. This might involve a change
of IS, a modification of the MS–MS transition(s), a reduction of the dynamic range or
a move toward more exotic calibration models (e.g., logarithmic) when justified by the
expected analyte/instrument response. The analyst should also be wary of methods with
excessively high %RSD since, paradoxically, these methods are easier to validate but are
inherently less precise and potentially less accurate.

4. Conclusions

We developed a general procedure to select and validate quantitative calibration mod-
els (Figure 3). The two model analytes, cocaine and naltrexone, were quantified by LC-
MS/MS. The F -test demonstrated that both data sets were heteroscedastic and required
weighting in the calibration process. Variance evaluation indicated that the spread of
weighed normalized variances was the lowest for 1/x2 weighting. Visual examination of
the variance graph and evaluation of the variance confirmed the F -test results. A weight
of 1/x2 was, therefore, chosen for both analytes. A partial F -test demonstrated a signif-
icant increase in the sum of squares of the regression when switching from a linear to a
quadratic model for cocaine, but not for naltrexone. Therefore, a quadratic calibration
model was adopted for cocaine but a linear model was retained for naltrexone. Both cali-
bration models were validated through CVM normality testing of the residuals. Analysis
of simulated data sets showed good performance level of all tests; but it also pointed to
benefits of increased replicate analysis (n = 7) in accurate selection of the calibration
model.

Choosing the correct calibration model can have tremendous impact on the accuracy
of the QCs. The process of selection and validation of a calibration model explained here
is a stepwise, biasfree alternative to other less rigorous methods such as visual inspec-
tion of the standardized residuals graph. Simulations using experimentally determined
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Figure 3: Flowchart for the selection and validation of the calibration model

calibration curves have shown that this approach performs much better than a more tra-
ditional approach of fitting increasingly complex models until QC accuracy is satisfying.
Additionally, the calculations and interpretation of tests results have been automated
through the use of RStudio scripts made available to all readers in Supplemental Data
3. Experimental workload is not modified by the use of this scheme, and only a minute
or two per analyte are added to the data treatment time, making this a very efficient
option to remove the subjectivity in calibration model selection. This tool is intended to
aid analysts in better calibration model selection in toxicology and bioanalysis.
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du Québec – Nature et technologies.

6. Acknowledgements
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