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ABSTRACT Electroencephalogram (EEG) is getting special attention of late in the detection of sleep
apnea as it is directly related to the neural activity. But apnea detection through visual monitoring of
EEG signal by an expert is expensive, difficult, and susceptible to human error. To counter this problem,
an automatic apnea detection scheme is proposed in this paper using a single lead EEG signal, which
can differentiate apnea patients and healthy subjects and also classify apnea and non-apnea frames in
the data of an apnea patient. Each sub-frame of a given frame of EEG data is first decomposed into
band-limited intrinsic mode functions (BLIMFs) by using the variational mode decomposition (VMD).
The advantage of using VMD is to obtain compact BLIMFs with adaptive center frequencies, which give
an opportunity to capture the local information corresponding to varying neural activity. Furthermore,
by extracting features from each BLIMF, a temporal within-frame feature variation pattern is obtained
for each mode. We propose to fit the resulting pattern with the Rician model (RiM) and utilize the
fitted model parameters as features. The use of such VMD-RiM features not only offers better feature
quality but also ensures very low feature dimension. In order to evaluate the performance of the proposed
method, K nearest neighbor classifier is used and various cross-validation schemes are carried out. Detailed
experimentation is carried out on several apnea and healthy subjects of various apnea-hypopnea indices from
three publicly available datasets and it is found that the proposed method achieves superior classification
performances in comparison to those obtained by the existingmethods, in terms of sensitivity, specificity, and
accuracy.

INDEX TERMS EEG signal, entropy, goodness of feature, KNN classifier, model fitting, Rician model,
sleep apnea, sub-framing, variational mode decomposition.

I. INTRODUCTION
Sleep apnea, a prevalent sleep disorder disrupting sleep
quality of the patients, affects about 6-17% of the gen-
eral population where among the elderly, this may be as
high as 49% [1], [2]. Apnea is defined as complete closure
of airflow where repetitive cessation of breathing during
sleep occur lasting for few seconds to minutes. Patients usu-
ally suffer from daytime sleepiness, headaches, and various
cardio-respiratory disorders [3], [4].

The study of overnight polysomnography (PSG) is a stan-
dard method for sleep apnea diagnosis where, in a sleep lab,
the patient spends the whole night and several accessible
bio-signals are collected and with the help of these signals,
expert scores the apnea events manually. Visual identification
of sleep apnea events with the help of a sleep expert is costly,
time consuming and erroneous. Hence, it is of great neces-
sity to develop an algorithm for automatic apnea detection.
There are many automatic detection methods available in the
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literature, however, most of them utilize multiple biomedical
signals including EEG. For example, in [5], oxygen satura-
tion, heart rate variability and the respiratory signals, in [6],
EOG, EMG, heart rate variability, oronasal temperature, nasal
pressure, in [7] oximetric signal, in [8] pupil size, in [9]
EMG signal, in [10] EOG, EMG, ECG signals are utilized.
However, use of multiple (or multi-channel) bio-signals has
several disadvantages, such as the cost of additional sensors,
discomfort for the patient, excessive data acquisition and
processing requirement and computational expense in terms
of time and implementation. Hence apnea detection with a
single channel bio-signal is of great necessity. The advance-
ment in wearable EEG data acquisition system has opened up
a new direction for various EEG based disease analysis and
thus apnea detection from EEG signal is now getting special
attention by the researchers [11]–[22].

In [11], detrended fluctuation analysis (DFA) is used
to compute EEG scaling exponents which are utilized as
features for classifying apnea and healthy subjects. Here,
the result is reported for six apnea and six healthy subjects
where 360 epochs for both the cases are considered only.
In [12], [13], wavelet transform of EEG is employed to
identify sleep apnea events and in [14], particle swarm opti-
mization based hermite decomposition algorithm is proposed.
Instead of using the full band EEG signal, an effective way
is to divide the EEG signal into well-known EEG sub-bands
and analyze the band-limited signals. But for band-limited
signal extraction bandpass filters with fixed bandwidth are
used whereas neural activity varies from time to time, person
to person. Hence, the possible benefits in analysis with the
use of adaptive bandwidth based decomposition for band lim-
ited signal extraction is yet to be explored. Recently in [15],
sub-frame based features are modeled for band-limited sig-
nals, where the signals are obtained by simple bandpass
filtering. However, in the method, the effect of including
higher frequency bands (>40Hz) in apnea detection is not
considered. In [16], for apnea classification, energy and vari-
ance are computed from each sub-band. In [17], random
characteristics of EEG signal is exploited by multi-band
entropy values to use as features while in [18], the cumulative
delta-power ratio of overlapping frames is used. Variation of
within frame EEG beta band energy is studied and various
statistical features are extracted in [19]. In [20], intrinsic
mode functions (IMF) of empirical mode decomposed EEG
signal are separated into amplitude modulated (AM) and
frequency modulated (FM) components using Teager energy
operator which are used for feature extraction. The extracted
features from separated components are given as input to
support vector machine. Bispectral characteristics of EEG
signal are investigated in [21], where the degree of quadratic
phase coupling (QPC) is analyzed for each sub-band. In [22],
variation of Hilbert spectrum frequency is studied. However,
most of the reported methods, classify between apnea and
healthy subjects and the challenging task of differentiating
apnea and non-apnea frames of an apnea patient is not much
investigated.

Instead of using multiple bio-signals, this paper focuses
on automatic sleep apnea detection using a single lead EEG
signal. In this paper, both classification scenarios- classify-
ing apnea and non-apnea frames in the data of an apnea
patient and classification of apnea and healthy subjects,
are taken into consideration. The given raw EEG frame is
pre-processed and divided into overlapping sub-frames. Vari-
ational mode decomposition (VMD) analysis is introduced in
each sub-frame and features are extracted from each mode.
VMD gives an opportunity to obtain compact BLIMFs with
adaptive center frequencies in direct relevance to the varying
neural activity of the brain. Instead of directly using the
extracted feature vector, within frame feature value variation
pattern is modeled with a suitable characteristic probability
distribution function (PDF) and the fitted model parameters
are then used in K nearest neighbor (KNN) classifier to
classify apnea and non-apnea frames. Publicly available three
large databases are used for detailed experimentations and
performance analyses.

II. PROPOSED METHOD
Features are extracted from themode functions obtained from
each sub-frame by applyingVMDand finally, temporal varia-
tion of each feature is modeled with a suitable PDF. Different
major steps involved in the proposed method is presented
in Fig. 1. A detailed description of the steps is presented in
this section.

A. ANALYSIS WITH SUB-FRAMING
DC offset removal and frame amplitude normalization are
performed in each frame for pre-processing. The neural activ-
ity level of the recorded EEG signal changes with respect
to time during sleep. Hence, in different EEG frames, there
exists a large variation in energy content. To counter this
phenomenon, in each frame, energy normalization is also
applied. Usually, in the frame by frame analysis, the analysis
of a test frame is carried on the full duration. In this paper,
as an alternate, the sub-frame based analysis is proposed
where the test frame is divided into a shorter frame duration
(to be called sub-frame) and a reasonable amount of time
overlap is kept between successive sub-frames to obtain sev-
eral sub-frames.

For example, from the frame of N length, with sub-frame
duration ofM samples and shifting it by p samples, the second
sub-frame can be found from (p + 1)th sample to (p +M )th
sample. This procedure can be continued until reaching the
end of the frame. Considering p << M < N , total N−Mp + 1
sub-frames can be obtained. Figure 2 shows the procedure of
sub-frame operation.

Sub-frame based analysis can minimize the effect of ran-
dom fluctuations in the test frame. For example, an unex-
pected value in the original data can significantly hamper the
overall analysis carried out on the entire frame. On the con-
trary, in the sub-frame based analysis, only a few sub-frames
will be affected by that unexpected value. Thus analysis
using sub-frames is expected to obtain better characteristics
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FIGURE 1. Flow chart of the proposed method.

FIGURE 2. a) First Sub-frame b) Second Sub-frame c) Last Sub-frame.

in comparison to working with the entire test frame at a time.
Such use of sub-frame based analysis ensures extraction of
local information better within a frame.

Another key point is that not only a portion of the frame
correspond to apnea as generally apnea duration is lesser
than the frame duration taken. A limited period of the entire
duration of the frame may be the occurrence of apnea.
As sub-framing provides an opportunity for analysis with
high temporal resolution, it allows to capture changes in char-
acteristics within an apnea frame, especially at the transition
between apnea and non-apnea events. Analyzing the entire

frame one at a time is unlikely to represent such changes.
Hence, in the proposed scheme, the sub-frame based analysis
is being adapted.

B. SHORT DESCRIPTION OF VARIATIONAL
MODE DECOMPOSITION (VMD)
The VMD algorithm decomposes any input signal adap-
tively into k discrete number of band-limited intrinsic mode
functions (uk ). Here each mode is mostly compact around
the respective center frequency ωk . The algorithm searches
for a given number of uk and the corresponding center fre-
quencies ωk utilizing alternate direction method of multi-
pliers (ADMM). The input signal can be reproduced either
exactly or in the least square sense by using these modes.
A detailed description of the VMD algorithm can be found
in [23]. The major steps involved in the VMD algorithm can
be briefly summarized as-

i) for each mode uk , the associated analytic signal is com-
puted using Hilbert transform in order to obtain a unilateral
frequency spectrum

ii) Mode’s frequency spectrum is shifted by mixing with
an exponential tuned to the respective calculated center
frequency

iii) Bandwidth is estimated through Gaussian smoothness
of the demodulated signal

To search for uk andωk , it is required to solve a constrained
variational problem, which is described by the following
equation:(

min
uk , ωk

)
=

{∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

) ∗ uk (t)
]
e−jωk t

∥∥∥∥
2

}
,

(1)∑
k

uk = f (2)
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where t is the time script, δ(·) is the Dirac distribution and
* denotes convolution operator, f is the signal to be decom-
posed and k is the number of modes.

The number of modes has to be predefined in the applica-
tion of VMD and its value (underbinning or overbinning) has
a considerable impact on the quality of decomposed signals.
In different applications, EEG signal is divided into five
frequency band-limited signals, namely- delta (0.25-4 Hz),
theta (4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz) and beta
(16-40 Hz), where the frequency bands are well established
in literature and exhibit differences in frequency (Hz), ampli-
tude and activity level. Delta, theta and alpha bands corre-
spond to deep sleep, mild sleep and relax state, respectively
while sigma and beta bands refer to alert states [24], [25].
During apnea, as the breathing is paused, the level of carbon
dioxide rises in the bloodstream. Increased carbon dioxide
level in the bloodstream is recognized by the chemorecep-
tors. As a result, person sleeping is signaled by the brain to
breathe in air and wake up [26]. Hence, there can be signif-
icant variation in different EEG frequency bands due to the
above-mentioned changes in neural activity from non-apnea
to apnea. However, in a particular band, it is expected that the
dominant frequencies caused by neural activity shift slightly
from time to time and person to person.

Hence, simple bandpass filtering of EEG data with fixed
center frequency will not be able to capture the shifts. VMD
analysis results in band-limited IMFs where the center fre-
quencies are dynamically calculated. This allows the center
frequency to shift and accurately represent the neural activ-
ity. Moreover, in order to correspond with the variation of
neural activity in different frequency bands, the number of
VMD modes should be chosen in such a way that both lower
and higher frequency bands are covered. In order to present
variation in spectral representation for a various number of
modes, in Fig. 4, a frame of EEG data is considered and
the corresponding power spectral densities are plotted. It is
clearly observed thatK = 3 and 4 do not havemodes covering
frequency above 30 Hz. Moreover, K = 4 has a mode at
around 10 Hz, representing the original alpha state, which
is missing for K = 3. For K = 5 the earlier four modes
stay on their positions and an extra mode appears cover-
ing higher frequency band (>40 Hz). The higher frequency
band is further divided into an increased number of modes
as the value of K is taken greater than five. As EEG data
mostly have significant information lying in lower bands
(frequency<40 Hz), it is redundant to have too many modes
in higher frequency. Division of higher frequency band into
more bands corresponding to new modes does not pro-
vide necessary information for apnea detection. Moreover,
the increase in a number of modes increases computational
complexity. Hence, in this paper k = 5 is proposed to uti-
lize the entire frequency band and to have modes represent-
ing conventional EEG Sub-bands. Moreover, it also ensures
not having redundant modes increasing the computational
complexity. Detailed performance comparison with a various
number of modes is given in section III.

FIGURE 3. Frequency signature of the proposed method.

The frequency characteristics can be further presented by
demonstrating the variation of center frequencies of each IMF
of the sub-frames within a frame for both apnea and non-
apnea. The frequency signature is presented in Fig. 3. Here for
each sub-frame center frequencies are calculated and plotted
for each IMF. As it is mentioned above that different VMD
IMFs represent different frequency bands, which is clearly
visible from the figure.

C. PROPOSED FEATURES FOR EACH MODE
During apnea, patients experience a disturbance in normal
breathing and this can lead to grunting, gasping, body move-
ments. Hence, it is expected that there will be changes in
information content in the EEG signal during apnea events as
EEG corresponds directly with various neural activity level.
Moreover, variation in EEG data increases during apnea than
non-apnea instances. Such changes in information content
and the data variation are expected to be better reflected
in different VMD modes of sub-frame EEG data than the
whole duration frame. In order to capture the changes, in the
proposed method, entropy and log-variance are chosen as
features to be extracted from each VMD mode of sub-frame
EEG data.

Entropy of a discrete random variable Y with (M + 1)
number of possible values {y0, y1, y2,. . . , yM} is defined as

H (Y ) = E(I (Y )), (3)

where E(·) denotes the expectation operator and I (Y ) rep-
resents the information content. For a particular value yi of Y ,
the information content can be expressed as

I (Y = yi) = − log2(p(yi)), (4)
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FIGURE 4. Power spectrum densities of K number of VMD modes of an EEG frame (a)K=3 (b)K=4 (c)K=5 (d)K=6.

where p(yi) = ni/N , denotes the probability of occurrence
of yi, with ni be the number of occurrence of coefficients
in a bin in proximity of yi value among the N number of
values, i.e.

∑
i ni = N . Using (4), the entropy in (3) can be

re-written as

H (Y ) = −
M∑
i=0

p(yi)× log2(p(yi)), (5)

here p(yi) = ni/N , with ni be the number of occurrence of
coefficients in a bin in proximity of yi value among the N
number of values, i.e.

∑
i ni = N .

For data x[n] with lengthN andmeanµ, Log-variance (LV)
is calculated as

LV = loge[
1
N

N∑
n=1

(x[n]− µ)2]. (6)

D. FEATURE VARIATION PATTERN GENERATION
In the proposed sub-frame based VMD analysis scheme,
features are extracted from each mode of overlapping sub-
frames. If the amount of frame shifting (p) in sub-framing
is kept small, features extracted for each mode in sub-frame
based VMD analysis can provide a precise variation profile of
that feature characteristic. Such use of sub-frame and VMD
provides an opportunity to obtain a temporal variation profile
of a particular feature for a specific mode within a frame.
If there areW number of sub-frames, the within frame feature
variation pattern for kth mode can be generated as

Variation Pattern = [F1k ,F2k ,F3k , . . . . . . . . . .FWk ], (7)

where FWk denotes the feature calculated from the kth mode
of the W th sub-frame.
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FIGURE 5. Entropy feature variation profile obtained from different IMFs
of VMD of both apnea and non-apnea. Here, the test frame is divided into
multiple sub-frames and each sub-frame is variational mode
decomposed. Entropy is calculated from each resulting IMF and the
variation profile of with-in frame entropy feature is plotted.

In order to represent the within frame feature variation in
different VMD modes, in Fig. 5, entropy values calculated
from different modes are presented for both apnea and non-
apnea. Entropy values are calculated in proposed sub-frame
based VMD analysis from each mode and the variation pat-
terns of entropy values are shown. It is evident from the fig-
ure that in different modes, characteristics of feature variation
is different from apnea to non-apnea.

E. PROCESSING OF THE EXTRACTED FEATURE SEQUENCE
Within frame feature variation pattern can be directly given
as input to the classifier. But sub-framing calculates more
features for a single frame than compared to conventional fea-
ture extraction method. Hence, if sub-frame based extracted
features are directly utilized for classification, it will increase
the feature dimension considerably, which will in a way affect
the computational time and cost. As an alternate, charac-
teristics of feature variation profile can be investigated for
classifying apnea and non-apnea frames. One idea can be
to carry out statistical analysis on feature variation pattern.
Among various statistical features, in the proposed method,
mean and variance are used.

Furthermore, the amplitude variation of the feature vari-
ation pattern of each VMD mode can be investigated.
In this paper, we propose to fit the sub-frame based feature
variation pattern with probability density function (PDF).

The motivation is to use the parameters of the fitted PDF as
features. In the choice of different PDFs, well-known PDFs
can be considered. Such an approach can investigate the data
distributions of feature variation profile. Asmodel parameters
are mostly one or two, the problem regarding large feature
dimension is eliminated and the computational burden is
reduced. Among different PDFs, in this paper, we propose
to fit the feature variation pattern with Rician PDF.

Detailed analyses with different PDFs are covered in
section III. Histograms of feature variation patterns and the
corresponding Rician fittings of various apnea and non-apnea
frames for different VMD modes are presented in Fig. 6. It is
evident from the figure that the fitted Rician PDFs for apnea
and non-apnea frames differ widely and there is minimum
overlap between the two. Hence the fitted parameters are
expected to quantify the variation pattern better and to have
better feature quality.

The statistical features (Fstatistical) and the model param-
eters (Fmodel) calculated from each mode of overlapping
sub-frames of a frame are cascaded as equation (8),(9)
and (10) to obtain the final feature vector (F). Here, Fmod,1
and Fstat,1 are the model parameters and statistical features,
respectively, calculated from the feature variation patterns of
mode 1.

Fstatistical = [Fstat,1 Fstat,2 . . . ..Fstat,n] (8)

Fmodel = [Fmod,1 Fmod,2 . . . . . . . . . . . . .Fmod,n] (9)

F = [Fstatistical Fmodel] (10)

F. KNN CLASSIFIER
K-nearest neighborhood (KNN) classifier is utilized in the
proposed method where distance function is computed
between the features belonging to the EEG pattern in the test
set and the K neighboring EEG patterns in the training set.
Based on the K closest class labels, the test set is classified.
M-fold cross-validation is followed for performance evalua-
tion. M-fold means, the dataset is partitioned into M portions.
Each portion is tested while remaining (M-1) portions are
used as trainers. The classification is done at least M times
to report the result.

III. RESULT AND DISCUSSION
In the proposed method, a frame of EEG data is preprocessed
and divided into overlapping sub-frames. VMD analysis is
performed on each sub-frame signal. Features mentioned in
section IIC, are calculated for each mode. The feature varia-
tion patterns obtained for each mode are subjected to model
fitting and statistical analysis and the final feature vector
is formed according to (8),(9) and (10). In the following
sections, the database description, feature quality analysis
and the classification results of sleep apnea detection are
presented.

A. DATABASE
For the purpose of experimentation, publicly available three
large databases are used [27], [28] and [29], where [29]
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FIGURE 6. Test frame is divided into multiple sub-frames and each sub-frame is variational mode decomposed. Entropy and log-variance are
calculated from each resulting IMF. Histograms of the calculated feature variation patterns and the corresponding Rician fittings of various VMD
modes are shown for both apnea and non-apnea frames.

contain the data of healthy subjects and the data of apnea sub-
jects are available in [27] and [28]. Polysomnograms scored
as apnea or non-apnea by the experts are available as ground
truth in the databases. Apnea and Hypopnea Index (AHI)
defines the severity of apnea and it is measured by the number
of occurrence per hour. It is known that AHI below 5 is
healthy, 5 to 15 indicates mild, the range of 15 to 30 is moder-
ate and greater than 30 is severe [30]. For [27] and [28], frame
durations taken are 15s and 30s, respectively, depending on

the respective ground truths. There are two considerations to
make in the selection of sub-frame duration and the size of
overlap. A big sub-frame length with large overlap will not
provide enough data for feature variation pattern and thus the
correspondingmodel fittingwill be biased. On the other hand,
a very small sub-frame length with large overlap is an option
but very short sub-frame length might provide an incor-
rect estimate of features, such as entropy and log-variance.
Moreover, a large overlap between consecutive sub-frames
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TABLE 1. Subjects used for the evaluation of the proposed method.

will result in a large number of feature variation data that
will increase the computational complexity. Hence, keeping
both the issues in consideration, in this paper a moderate
sub-frame length of 2s and 4s are used for databases- [27]
and [28], respectively and 80% overlap between two succes-
sive sub-frames are maintained to ensure enough data points
for model fitting with moderate computational complexity.
Detailed information of the subjects used in this paper is
presented in Table 1.

B. GOODNESS OF FEATURE
Quality of the proposed feature vector is analyzed by the
goodness of feature measures, such as Geometrical Separa-
bility Index (GSI). GSI, called Thornton’s separability index
as well, gives the measure of the separability in the nearest
neighbor sense of two classes. It is defined as the fraction of
a set of data points whose labels for classification are similar
to those of their nearest neighbors. It is defined as [31]

s =

∑N
i=1(f (xi))+ f (x

′
i )+ 1) mod 2

N
, (11)

where N is the number of data points and x ′ is the nearest
neighbor of x.
From (11) it is understandable that separability index,
s approximates to one when two classes are separable and
zero for inseparable classes, hence higher the GSI value,
better the feature quality. In Table 2, GSI values are given
for the purpose of comparison among method of differ-
ent distribution fitting to multi-band feature variation pat-
tern and the proposed method. From Table 2 it is evident
that out of different PDFs, Rician PDF fitting gives bet-
ter performance, while the proposed method of combining
Rician PDF parameter and statistical features, offers the best
GSI index.

FIGURE 7. Distribution of model parameters. (a) Rician Model
Parameter (υ). (b) Rician Model Parameter (σ ).

TABLE 3. Definition of accuracy measures.

The distribution of Rician parameters (υ, σ ) is presented
in Fig. 7 via boxplot using the data of Table 1. Here entropy
feature variation in mode 5 is considered. It is obvious from
the figure that there is are a significant separation in the
distribution of the parameters between apnea and non-apnea.

C. CLASSIFICATION RESULT
For classification purpose, two distinct cases are considered,
(i) apnea and non-apnea classification in the data of apnea
patients and (ii) apnea patients and healthy subjects clas-
sification. In KNN classifier, cosine distance function and
K equal to 9 are chosen. Standard performance measures
described in (12)-(14) are used to evaluate the performance
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TABLE 2. Feature quality by GSI.

TABLE 4. Performance analysis of the proposed method for various PDf fitting using leave-one-out cross validation (database- [27]).

of the proposed method. These were computed using TP, FP,
FN, and TN values [32] as shown in Table 3.

Accuracy(Acc) =
TP+ TN

TP+ FP+ TN + FN
∗ 100 (12)

Sensitivity(Se) =
TP

TP+ FN
∗ 100 (13)

Specificity(Sp) =
TN

TN + FP
∗ 100 (14)

1) CLASSIFICATION OF APNEA AND NON-APNEA
FRAMES IN THE DATA OF APNEA PATIENTS
Here, only apnea patients are considered, where test and train
data are from the same patient.

a: PERFORMANCE ANALYSIS OF DIFFERENT PDFs
For every subject mentioned in Table 1 the proposed method
is evaluated for different PDFs. Performance analyses using
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TABLE 5. Performance analysis of the proposed method for various PDF fitting using leave-one-out cross validation (database- [28]).

leave-one-out cross validation technique for each PDF are
reported in Tables 4 and 5 for databases [27] and [28],
respectively.

FIGURE 8. Variation profile of with-in frame feature is modeled with
different PDFs and model parameters are used as input to classifiers.
Mean of all the performance criteria are plotted for various PDFs.

In the tables, ’Stat’ represents the method utilizing sta-
tistical features (Fstatistical) as mentioned in (8). From the
results reported in Tables 4 and 5, it is found that for both the
datasets, specificity values acquired by the proposed feature
set (Rician parameters and statistical analyses) are similar
to those achieved by other PDFs. But, the sensitivity and
the accuracy values are found to be far better compared to
all other cases. Greater sensitivity means high apnea detec-
tion performance, hence it serves as a big advantage of the
proposed method. The mean of the performance criteria for
different PDFs is presented in Fig. 8. As found earlier, among
different PDFs, Rician PDF offers the best sensitivity and
accuracy and competitive specificity whereas, the proposed
method achieves the best performance in each criterion.

b: COMPARISON OF PROPOSED METHOD
WITH OTHER APPROACHES
Comparison of the proposed sub-frame based analysis is
carried out with the conventional feature extraction method.

FIGURE 9. Relative Improvement with the proposed method comparing
to the conventional approach. In the conventional approach,unlike
sub-frame based analysis, entire frame is used for feature extraction and
those are given as inputs directly to the classifier.

In the conventional approach, instead of using sun-framing,
the features are computed using the entire frame duration and
directly used as input to the classifier. The relative improve-
ment achieved for both the datasets by the proposed approach
with respect to the conventional approach is reported in Fig. 9.
It is readily observable from the figure that there is relatively
a large improvement in sensitivity and accuracy for both the
databases.

Instead of modeling the within frame feature variation
pattern, another alternative could be to model the data varia-
tion of the given frame. Pre-processed frame data are being
subjected to the modeling and statistical analysis and the per-
formance comparison of is made with the proposed method.
The results are shown in Fig. 10. It is clearly shown from the
figure that the proposed method offers significant improve-
ment than modeling the original pre-processed data.

It is generally regarded that most information in scalp EEG
lies in low frequencies (<40Hz). However, a recent study
shows that neural activity extends far beyond the conventional
frequency ranges. At high frequencies of EEG signal, rhyth-
mic band activities are identified and it is shown that their
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FIGURE 10. Comparison of Proposed Method with Data Modeling. In data
modeling, unlike using the feature variation profile, modeling is applied
on the pre-processed EEG data.

FIGURE 11. Classification Accuracy with different number of VMD modes
taken.

properties depend on the state of vigilance [33]. In this paper,
the analysis is carried on with various numbers of IMFs.
Figure 11 shows the accuracy of the proposed method using
a various number of modes. It is shown that the utilization
of higher frequency IMFs improves the overall result signifi-
cantly. The analyses with a number of modes above five have
higher accuracies compared to the analyses with a number
of modes below five. It is also seen that analysis with five
modes provides the best accuracy, which is recommended in
this paper. As is discussed in section IIB, number of modes
below five provides low accuracy as they fail to encapsulate
the higher frequency band and for the number of modes
above five the accuracies are similar indicating redundant
high-frequency modes.

To show the effect of modeling, the proposed method
is compared with the use of the extracted feature variation
pattern as a direct input to the classifier. It is revealed from
Table 6 that the proposed method offers significantly better

TABLE 6. Effect of model fitting on classification performance (results
with and without using the proposed model fitting).

classification performance and GSI value. It shows the effec-
tiveness ofmodeling and statistical analysis in quantifying the
feature variation pattern and providing a discriminative set of
features.

TABLE 7. Performance comparison with the methods available in
literature.

Comparison of the proposed method is made with the
existingmethods for the subjectsmentioned in Table 1 and the
result is reported in Table 7. From the Table, it is evident that
the proposed method provides a better result compared to the
existing methods. It can be seen that the performance of [15]
is close to the proposed method. However, in [15] EEG signal
is divided into sub-bands using fixed bandwidth bandpass
which may fail to capture the variation in dominant frequen-
cies from person to person, time to time due to changes neural
activity which is discussed in section IIB. Moreover, unlike
the proposed method, high frequency (>40Hz) EEG data are
not taken for analysis.

In order to evaluate the performance of the proposed
method, instead of subject-specific analysis, one idea could
be to apply cross-validation schemes on all frames from all
subjects mentioned in Table 1 for [27] together. The result
achieved for this approach is shown in Table 8. It is evident
from the Table that the proposed method shows very satisfac-
tory performance in classifying apnea and non-apnea frames.

TABLE 8. Classification performance with all subjects combined.

EEG signals reflect the underlying cortical activation,
and therefore different electrodes exhibit distinct functional
roles during sleep. According to the recommendations of
Rechtschaffen and Kales [34], it requires one EEG lead
with electrodes placed either at C4-A1 or C3-A2 accord-
ing to the 10-20 system of electroencephalography elec-
trodes placement on the skull. In agreement with this view,
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the 2007 AASM Manual [35] recommended the use of three
standard EEG electrodes for the scoring of sleep; includ-
ing central, frontal and occipital electrodes. However, [36]
showed that no differences are observed in arousal scoring
statistics when the only central electrode is used compared
to using three electrodes (frontal, central, and occipital).
In the proposed method, the databases used for apnea patients
utilized different electrodes for data acquisition. The per-
formance of apnea detection of the proposed method with
respect to electrode position is presented in Table 9. It is inter-
esting to note that the result verywell supports the recommen-
dation of Rechtschaffen and Kales. Here the electrodes with
a central position (C3-A2, C4-A1) have significantly better
apnea detection performance compared to other positions.

TABLE 9. Effect of position of electrode in apnea detection.

TABLE 10. Performance of different classifiers.

TABLE 11. Performance of different distance function in KNN classifier.

The proposedmethod is tested with various classifiers. The
performance of different classifiers is presented in Table 10.
It is to be found that out of several classifiers KNN provides
the best result, hence it is selected in the proposed method.
Moreover, in KNN, different distance functions can be used
for classification. In this paper, the performance of KNN
with different distance functions is investigated and it is
reported in Table 11. From the table it is evident that all the
functions have quite similar performances, however, out of
these functions, cosine distance function gives the best perfor-
mance. Hence, cosine distance function has been adopted in
this paper. Alongside the distance function, the classification
performance of KNN also depends upon the value of K used.
Figure 12 presents the detailed performance analysis of the
classifier with various values of K. It is observed from the
figure that the performances are quite similar for K upto 12.
However, the specificity declines onwards, hence the overall
accuracy also falls. In order to have a consistent performance,
in this paper K = 9 is selected.

FIGURE 12. Performance of KNN classifier in the proposed method with
different values of K.

TABLE 12. Performance of the proposed method in classifying apnea and
healthy subjects.

2) CLASSIFYING APNEA PATIENTS AND HEALTHY SUBJECTS
Here, non-apnea frames are taken from healthy subjects and
the task of classifying apnea and healthy subjects is consid-
ered. Different cross-validation schemes are applied for per-
formance evaluation and the details of the result are reported
in Table 12. For each cross-validation scheme, the average
result of ten independent trials is reported. From the Table,
it is evident that the proposed method achieves superior per-
formances in classifying apnea and healthy subjects in terms
of all performance criteria.

IV. CONCLUSION
In this paper, instead of considering the entire frame of given
EEG data at a time, a unique sub-frame based VMD analysis
is followed. VMD divides a signal into K band-limited intrin-
sic mode functions (BLIMFs) which are compact around a
center frequency calculated solving a constrained variational
problem. Such BLIMFs with adaptive center frequency can
represent neural activity better compared to band limited EEG
signal collected by bandpass filtering with definite center
frequency and bandwidth. Moreover, it is shown that for
EEG data, the number of VMD modes can be taken as five
ensuring better result and limited computational complexity.
Features expected to be discriminative for apnea detection
are computed from each BLIMF of small duration sub-frame
EEG data and temporal variation of features are generated
for each mode. Unlike analysis over the entire frame, such
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small duration sub-frame based analysis and feature extrac-
tion can preserve local characteristics better. It is shown
that if the extracted temporal feature variations are directly
used for classification, it yields a poor result. Hence, mod-
eling and statistical analysis are carried out on the extracted
feature variation pattern, which provides an opportunity to
characterize the amplitude variation of it. Among different
PDF models, it is discovered that in terms of GSI Rician
PDF offers the best feature quality. Unlike the established
methods, the proposed is employed to classify apnea and
non-apnea frames of apnea patients as well as discriminate
apnea and healthy subjects, which has a great demand in the
field of diagnosis. The proposed method is evaluated on three
different and large public databases of apnea patients with
wide variation in AHI and healthy subjects and three different
criteria of classification have been adopted to measure the
effectiveness of the proposed method. In each of the cases,
the proposed method offers significantly better classification
performance in comparison to some existing methods in
terms of sensitivity, specificity, and accuracy. As a result,
the proposed scheme can be employed in clinical applications
to reduce the burden of the clinicians in apnea detection.
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