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ABSTRACT 
 

An Instructional Analogy Between Unitizing and Fraction Division: Seventh-Graders’ 

Conceptual Understandings of Division and Interpretations of Fractional Remainders 

Anna Tomaszewski 

Fraction division is not a simple concept. In fact, both students and teachers struggle to 

understand and explain this operation. This study examined whether using instructional analogies 

between unitizing and division were effective when teaching fraction division to seventh-grade 

students. The extent to which the analogies were explicitly supported varied by condition. The 

aim was to investigate whether condition differences existed in participants’ understanding of 

fraction division, in their interpretations of fractional remainders, and in their understanding of 

unitizing. Fifty-one participants were randomly assigned to the explicit-links condition (n = 17), 

the implicit-links condition (n = 17), or the control condition (n = 17). Students in the explicit 

and implicit-links conditions were first presented with a unitizing problem in which six was 

regrouped using various units and then they were taught how to solve a fraction division 

equation. The instructor in the explicit-links condition made connections between both concepts 

by using gestures, spatial cues, relational language, and other cognitive supports. The link 

between both concepts was in no way emphasized for the participants in the implicit-links 

condition. Finally, participants in the control condition saw the fraction division instruction twice 

and did not receive unitizing instruction. No condition differences were found at posttest in 

participants’ division explanations nor in their understandings of unitizing. When interpreting a 

fractional remainder, participants in the implicit-links condition referred to the original unit 

significantly more than participants in the other two conditions, but no differences were observed 

in their uses of the referent unit when interpreting the remainder. The present study is relevant to 
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teaching professionals as it provides new information about the ways children think of fraction 

division and the fractional remainder.   
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Statement of the Problem 

Mathematical knowledge cannot be exclusively characterized by memorized rules or 

step-by-step instructions. Recognizing and understanding the connections between different 

concepts in mathematics in a meaningful way is an important aspect of mathematical thinking 

(Hiebert & Lefevre, 1986). Fractions knowledge, for example, is linked to students’ future 

success in algebra (Hoffer, Venkataraman, Hedberg, & Shagle, 2007). Conceptual understanding 

of fraction operations not only predicts students’ later achievement in mathematics, but will also 

positively impact their future adult lives. In fact, the use of fractions is common in many careers, 

even in those that do not require formal mathematical training, and is essential in other everyday 

life situations, as well, such as following a recipe or even measuring the length of a wall (Lortie-

Forgues, Tian, & Siegler, 2015).  

Despite the importance of these concepts, both teachers and students seem to struggle 

with fraction arithmetic, especially fraction division. Operations with fractions are more complex 

than operations with whole numbers (Empson & Levi, 2011) and, in particular, division with 

fractions is considered one of the most challenging concepts taught in elementary school 

mathematics (Petit, Laird, & Marsden, 2010). Sharp and Welder (2014) explained that seventh-

grade students, despite having had previous instruction on fractions and division in elementary 

school, still have difficulties with fraction division. For one, they struggle with correctly 

identifying remainders and labeling units. They also use inappropriate or inefficient techniques 

when dividing with fractions, such as modifying fraction division problems into ones with whole 

numbers or overly relying on repeated subtraction, a potentially correct but inefficient and time-

consuming strategy. Sharp and Welder (2014) also observed that seventh-graders had more 

difficulties correctly using discrete representations (i.e., set of chocolates in a box or a row of 
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children) than continuous representations of fractional quantities (i.e., area of a shape, distance).  

Students must also be wary of transferring whole number concepts inappropriately to 

contexts involving operations with fractions (Graeber & Tirosh, 1990). For instance, a 

misconception that the result of a multiplication will always be larger than its initial number will 

be true for multiplication with whole numbers (e.g., 4 x 5 = 20), but will not always be true for 

multiplication with fractions (e.g., 4 x !" = #" ). Similarly, the misconception that division always 

results in a smaller number is true for division with whole numbers (e.g., 20 ÷ 5 = 4), but not 

always for division with fractions (e.g., 20 ÷ !" = 100). Students are forced to re-evaluate their 

understandings of multiplication and division when operating with fractions, making the process 

of learning how to multiply or divide by a fraction more complex. Other reasons for difficulties 

with operations with fractions have also been identified. For instance, solving equations with 

fractional amounts involves learning new mathematical procedures and concepts that are not 

present in operations with whole numbers (Empson & Levi, 2011), including the introduction of 

a novel notational form ($%) (Hasemann, 1981; Lortie-Forgues, Tian, & Siegler, 2015).  

Fraction division also presents difficulties for elementary school teachers. In fact, 

teachers display similar misconceptions as their students (Van Steenbrugge, Lesage, Valcke, & 

Desoete, 2014) and consider fraction division as the most complex operation taught at the 

elementary school level (Newton, 2008). Because of the teachers’ uncertainties about how to 

effectively teach this operation and their commonly observed conceptual difficulties, they often 

depend on procedures, such as “invert-and-multiply,” often without addressing why the 

procedure works. This type of instruction results in students themselves acquiring procedural and 

superficial understandings of fraction division, which may explain their own misconceptions. In 

this context, where teachers have been observed to struggle with teaching a specific 
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mathematical concept, it is important to determine what type of instruction would be effective 

and what type of supports students would need under various conditions. Research addressing 

these questions promises to prevent the development of misconceptions and foster students’ 

conceptual understanding.  

At a broad level, this study aims to investigate more deeply how the use of instructional 

analogies can support students’ learning in mathematics and the degree to which explicit 

supports are necessary to facilitate conceptual learning. The aim is to design and test instruction 

that focuses on making conceptual connections through analogical reasoning. More specifically, 

the objective is to examine effective approaches to teaching fraction division conceptually, 

because such research can be translated into effective instructional methods in classrooms and in 

teacher preparation, leading to students’ better understanding of the concepts involved in 

operations with fractions.  
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Literature Review 

Division of fractions is the operation elementary school teachers are least certain about 

when teaching mathematics (Newton, 2008), especially because teachers display similar 

misconceptions about fraction division as elementary school students (Ball, 1990; Van 

Steenbrugge et al., 2014). Teachers are not always able to explain why the procedures work and 

rarely make connections between the procedures and their conceptual meanings while teaching, 

which suggests that students also struggle to learn the meaning behind the operation (Olanoff, 

Lo, & Tobias, 2014). Such instruction may not be most effective for students’ understanding of 

fraction division, particularly in light of the research showing that teachers who emphasize 

connections between written mathematical fraction symbols and their conceptual meanings has 

been shown to be effective (Osana & Pitsolantis, 2013).  

Research on making conceptual connections in mathematics instruction indicates that 

increases in students’ conceptual knowledge can lead to observable improvements in procedure 

and strategy use (Hiebert & Wearne, 1996; Rittle-Johnson & Alibali, 1999). Students with strong 

conceptual understanding often create their own strategies, modify existing ones when solving a 

novel problem, and discuss the reasoning behind other children’s invented procedures (Hiebert & 

Wearne, 1996). On the other hand, students with weak conceptual understanding can perform 

taught procedures correctly, but have difficulty explaining the concepts underlying the 

procedures used (Hiebert & Wearne, 1996).  

It is important to determine what types of instruction will effectively facilitate students’ 

conceptual understanding, because such knowledge can positively affect their flexibility in 

applying mathematical concepts to known or novel contexts. In order to determine whether 

instruction emphasizing connections would be effective, Rittle-Johnson and Koedinger (2009) 
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compared the effects of a concepts-first teaching condition to that of an iterative condition on 

sixth-graders’ understanding of place value and regrouping in decimal arithmetic. In the 

concepts-first condition, students received three conceptual lessons followed by three procedural 

lessons, while those in the iterative condition received conceptual lessons alternating with 

procedural lessons. Their findings suggested that students in the iterative condition learned more 

and made fewer mistakes on the problems than students in the concepts-first condition. The 

students who received the lessons iteratively also appropriately transferred acquired knowledge 

to novel arithmetic tasks. On the contrary, students in the concepts-first condition were more 

successful at applying the concepts to tasks that were familiar to them. Rittle-Johnson and 

Koedinger (2009) speculated that the students learned less in the concepts-first condition because 

they each saw each set of lessons as two different unrelated systems, instead of recognizing and 

reflecting on the conceptual similarities between the concepts and procedures (see also Resnick 

& Omanson, 1987). 

Other studies also supported the notion that making connections is essential to acquiring 

mathematical knowledge. For example, Rittle-Johnson and Alibali (1999) demonstrated that 

teaching novel concepts of mathematical equivalence by comparing multiple problem-solving 

strategies presented simultaneously and pointing out the similarities between them positively 

impacted students’ conceptual understanding and transfer accuracy. Similarly, Canobi (2009) 

found that seven- and eight-year-old students’ accuracy on a series of arithmetic problems and 

their conceptual explanations of the commutativity property improved when they were presented 

with addition and subtraction problems that were sequentially organized to highlight the 

conceptual connections between them. These results suggest that instruction that encourages 
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students to make conceptual connections could be more effective when teaching mathematics 

concepts than teaching concepts in isolation.  

Making Connections in Mathematics Instruction through Analogies 

Although there appear to be clear advantages to teaching concepts through comparisons, 

further research is necessary to determine how these connections should be supported by the 

teacher. In teaching mathematics, there are several representational systems that can be used to 

illustrate and explain concepts to students through comparisons, including equations, word 

problems, graphs, diagrams, manipulatives, and drawings. For example, an equation can be 

represented using standard notation (i.e., 1 + 2 = 3), but the same relationships among the 

quantities can also be represented in a word problem (i.e., There is one boy in the playground. 

Two children join him. How many children are there in the playground now?) or even with 

manipulatives, which are concrete objects such as chips or blocks meant to reflect abstract 

concepts (i.e., one green chip and two red, totaling three chips).  

Mathematics instruction can be designed to highlight a number of different types of 

comparisons, such as two different external representations of the same concept (i.e., instruction 

of place value concepts with two sets of manipulatives Base-ten blocks and Digi-Blocks; see 

Blondin, Tomaszewski, & Osana, 2017), worked-out problems sharing the same structure 

(Sidney & Alibali, 2017b) or different problem-solving strategies for the same problem 

(Richland & McDonough, 2010). Two representations that differ on the surface (i.e., color, 

shape, context) but correspond to the same underlying mathematical idea can be considered 

analogs to each other (Gentner, 1983; Gick & Holyoak, 1983). Therefore, analogies and 

analogical reasoning can be used as a theoretical framework for concept instruction in 

mathematics (English, 2004). 
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To illustrate how analogies can be used in a mathematics instruction, consider the 

example in Figure 1. As shown, half-ness can be represented with the standard notation !&, but 

also with an area model, where half of a rectangle is shaded in. Both these representations, 

though different on the surface, correspond to the same concept of “half-ness.” When these two 

structurally-similar representations of “half-ness” are compared, they become analogs to each 

other. The first analog, usually the more familiar one, is considered the source analog (Gentner 

& Colhoun, 2010). The second analog, usually the less familiar one or an entirely novel one, is 

considered the target analog (Gentner & Colhoun, 2010). In the case of one-half illustrated here, 

if a student were more familiar with the area model, this representation would be considered the 

source, while the standard notation (i.e., “1/2”) would be the target.  

 

Figure 1. Instructional analogy of the mathematical concept of “half-ness.” 

According to developmental research, when children see the relational connections 

between analogical representations, the development of a deeper understanding of their shared 

conceptual structure is facilitated (Colhoun & Gentner, 2009; Richland & Simms, 2015). When 

students recognize the conceptual commonalities between a source and target analog, they 

engage in a process called structure mapping (Boulton-Lewis & Halfrod, 1992; Gentner, 1983; 
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Holyoak & Thagard, 1989). The learning that results from structure mapping can be identified or 

assessed through the transfer of the concept induced from both analogs to a novel context 

(English, 2004; Gick & Holyoak, 1983). Indeed, empirical evidence suggests that an integral part 

of good teaching involves encouraging students to make comparisons between representations 

(Gick & Holyoak, 1980; Osana & Pitsolantis, 2013).  

Unitizing and Fraction Division  

Using analogies in the mathematics classroom may be an effective way to encourage the 

development of conceptual understanding of fraction division. In my study, I propose instruction 

that will emphasize the conceptual connections between fraction division and the mathematical 

notion of unitizing. In the following section, I first provide a detailed description of both 

concepts and then explain why the two are analogous.  

Defining unitizing. Lamon (2012) defined unitizing as a process of “constructing mental 

chunks in terms of which to think about a given quantity” (p. 104). In other words, unitizing can 

be understood as mentally assigning the value of a unit to an item or collection of items (Steffe & 

Olive, 2010). A unit can be understood as a quantity or measure representing one whole (Lee, 

2017). Lee and Sztajn (2008) also explained a unit as “the item that can be repeated to quantify 

an object” (p. 21).  

Units can be composed either of discrete sets of objects (e.g., a carton of eggs or a six-

pack of juice) or continuous quantities (e.g., a chocolate bar, a pizza), depending on the 

representation chosen to represent the whole quantity (Lamon, 1996). For example, Figure 2 

illustrates how to regroup the same quantity using a number of different units. Six muffins can be 

seen as one group of six muffins (here, the unit is six muffins), two groups of three muffins 

(here, the unit is three muffins), or even as six groups of one muffin (here, the unit is one 
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muffin).  

 

6 groups of 1 muffin (unit: 1 muffin) 
 
2 groups of 3 muffins (unit: 3 muffins) 
 
1 group of 6 muffins (unit: 6 muffins) 
 

Figure 2. Example of unitizing based on different units.  
 

When regrouping a quantity, as in the muffin example in Figure 2, we are partitioning it 

into equal-sized parts of a specific size, where the size of each part is the unit (Lamon, 2012; 

Olive, 1999; Steffe, 2002). If the partitioning occurs abstractly without physically partitioning 

the whole, the process is called disembedding (Norton & McCloskey, 2008). Lamon (1996) 

explained that children are naturally able to partition or decompose a quantity into smaller units, 

especially in contexts of sharing, but that recomposing a quantity by repeating, or iterating, a 

unit is more complex and develops over time.  

Tobias, Roy, and Safi (2015) developed various tasks to teach preservice teachers about 

these components of unitizing. The tasks involved iterating units when solving whole-number 

problems in different bases, creating visual representations by iterating units and composite unit 

fractions, as well as composing and decomposing units to represent equivalent amounts using 

groupings of boxes, rolls, and pieces. Contextualized problems involving sharing items among 

sharers (e.g., five pizzas shared by four people) also encouraged discussions about the unit used 

when solving the problems. As evidenced by the Tobias et al. (2015) study, unitizing plays a 

central role in mathematics education, as it forms the conceptual basis for whole numbers 

(Lamon, 2005), fractions and rational numbers (Lamon, 2002; Thanheiser, 2009), place value 

(Cobb & Wheatley, 1988; Steffe, 2004), and operations (Tobias, 2013).  
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Defining fraction division. Division can be interpreted in two distinct ways: partitive or 

measurement division (Timmerman, 2014). The partitive model of division describes a situation 

in which the total amount and the number of groups is known, reflecting an equal sharing context 

(Empson & Levi, 2011). To solve, the total number of items is distributed equally into the 

number of groups. An example of a partitive division word problem for the whole-number 

equation 12 ÷ 2 = 6 is, “There are 12 chocolate bars. Two children split the bars equally between 

themselves. How many chocolate bars will they each get?” Here, the total number of bars is 12 

and the number of groups is two. The solution, the unknown element in the equation, is the 

number of items in each group.  

The reasoning needed to solve fraction division problems varies from the reasoning 

needed for whole-number division problems, because in the context of partitive division, the 

number of groups in the problem is no longer a whole number, but a fraction of a group (Empson 

& Levi, 2011). Empson and Levi (2011) noted that these types of problems, also called Partial 

Groups Problems, are more complex for children to solve, particularly when the divisor is a non-

unit fraction (e.g., 2/3). In the problem, “Twenty-four cupcakes remain at the end of a birthday 

party. If these 24 cupcakes represent two-thirds of the cupcakes that were baked for the party, 

how many cupcakes were there at the beginning?” In this problem, the total number of cupcakes 

at the end of the party is known. We also know that these represent two-thirds of the initial 

number of cupcakes. The solution to the problem is the number of cupcakes in one full group.  

The measurement model of division, on the other hand, describes a situation in which the 

total amount and the amount in each group is known, but the number of groups is unknown. A 

whole-number word problem reflecting the equation 12 ÷ 2 = 6, but through a measurement lens, 

would be, “There are 12 chocolate bars. If each child receives two chocolate bars, how many 
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children can share the 12 chocolate bars?” Here, the total number of chocolate bars is 12 and the 

amount each child receives is two. The solution is the number of children sharing those 12 

chocolates. This model of division could also be understood as “How many times does 2 fit into 

12?” or “How many groups of two are there in 12?” The measurement division model provides a 

more accessible context to understand or visualize fraction division, especially when the divisor 

is a fractional amount (Ervin, 2017; Van de Walle et al., 2008). For instance, the word problem, 

“There are 24 cupcakes at the party. If each child receives only half a cupcake, how many 

children will be needed to eat all 24 cupcakes?” can also be envisioned as “How many groups of 

½ are there in 24?”  

Unitizing and measurement fraction division as analogs. The mathematical concepts 

of unitizing and measurement fraction division are analogous because they share the same 

conceptual structure of regrouping or reorganizing a certain quantity based on a new unit. 

Timmerman (2014) explained that the question, “What is the whole or unit?” is also central to 

students’ interpretation of the quotient of a fraction division, and in particular, the fractional 

remainder (p. 117). This is especially the case of measurement division, where the dividend and 

quotient are interpreted using different units (Lee & Sztajn, 2008). Students find it challenging to 

interpret remainders of whole-number division situations, but the interpretation of fractional 

remainders appears to be even more challenging because of confusion over which unit should be 

used when interpreting the remainder (Lamberg & Wiest, 2015; Perlwitz, 2005). 

 Consider the following example as an illustration of unitizing in a fraction division 

problem. In any fraction division problem, the dividend and the divisor are interpreted using the 

original unit of one. For instance, in the equation 1 ÷ &
) =	?, both the dividend (the amount that is 
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divided) and the divisor (the amount by which the dividend is divided) are interpreted using the 

original unit (see Figure 3).  

    

 

     

Original Unit  Dividend (1 of 1 Original Unit)  Divisor (&) of 1 Original Unit)  
Figure 3. Dividend and divisor represented using the original unit. 

However, to solve the equation, the quotient needs to be interpreted using a new unit, called the 

referent. When dividing by a fraction, “the divisor becomes the referent unit for the dividend” 

(Orrill, de Araujo, & Jacobson, 2010, p. 3). When dividing, one is technically asking “How many 

groups of the size of the referent unit enter into the dividend?” or in this specific context, “How 

many groups of &) enter into one?” As illustrated in Figure 4, the solution to 1 ÷ &
) is 1!& because 

there are one and a half groups of &) (the referent unit) in the dividend. Using referent units 

flexibly, by keeping track of the unit, and recognizing when the unit shifts during problem 

solving, are important when reasoning with fractions (Jacobson & Izsák, 2015).  
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In sum, unitizing is analogous to fraction division because an original set of objects (i.e., 

six) can be regrouped using various new “referent” units (as shown in Figure 2), just like a 

dividend is regrouped using the divisor as the referent unit (as shown in Figure 4). In this 

analogy, the notion of unitizing can be considered the source analog. Unitizing is more familiar 

to students because it is a concept that they are exposed to in other mathematical contexts, such 

as in place value (where 100 can be considered as one group of 100, 10 groups of 10, or 100 

groups of one;  Cobb & Wheatley, 1988), set representations or composite units (where a whole 

is represented using various items, such as a box of 16 cupcakes; Steffe, 2004), or even unit 

fractions (where a whole is divided into equal parts, such as one whole represented by five fifths; 

Lamon, 1996). Fraction division can be a target analog, because it is typically the concept that 

both students and teacher struggle with the most in elementary mathematics (Petit et al., 2010). 

Supporting Analogical Reasoning through Instruction 

A teaching framework based on analogical reasoning can potentially strengthen 

children’s conceptual understanding of mathematical concepts because of the emphasis on the 

common conceptual structures of both analogs. In the case where structure mapping focuses on 

   

Original Unit Dividend (1 of 1 original unit) Referent Unit (&) of 1 original unit) 
   

Referent Unit Dividend separated into thirds Solution 1!& referent units 

Figure 4. Solution to 1 ÷ &
) =	?   
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the shared conceptual structure of two concepts, such as unitizing and fraction division, for 

example, the focus is no longer on the surface similarities of both analogs, but on the 

mathematical concepts embedded in both of them. Instruction with appropriately-supported 

analogs has been empirically demonstrated to strengthen students’ conceptual understandings 

and their ability to make connections between analogs (Gick & Holyoak, 1983; Richland & 

Simms, 2015).  

Children do not necessarily engage in effective connection-making on their own, 

however, because they are often distracted by surface features of analogs used during instruction 

(e.g., Gick & Holyoak, 1980). English (2004) explained that when students are presented with 

new mathematical word problems with the same structure but couched in different contexts (for 

example, one word problem about a market place and the second about a summer camp), they 

tend to be distracted by the context and have difficulty detecting the structural similarities 

without additional instructional support. Richland, Morrisson, and Holyoak (2006) also argued 

that young children are often distracted by surface features (i.e., color, shape, context) because of 

limitations in their executive functioning, specifically working memory and inhibitory control 

(Markman & Gentner, 1993). This distractibility, however, decreases with age as children’s 

executive functioning skills develop (Gentner, 1988; Richland et al., 2006).  

Although analogical reasoning has been shown to be developmental, students do not 

spontaneously make analogies within a school-based context. Even in adults, some analogical 

reasoning occurs spontaneously, while at other times, it needs specific intervention. Dunbar 

(2001) observed an analogical paradox where adults were able to reason spontaneously with 

analogies in everyday naturalistic situations, but required more supports to use analogies within a 

formal educational or experimental situation. Even if children reason analogically in their 
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everyday lives while problem solving (English, 2004), making mathematical connections 

between different representations in the classroom context is often challenging and is not 

automatic (Hiebert, 1992; Osana, Przednowek, Cooperman, & Adrien, 2018; Resnick & 

Omason, 1987; Richland, Stigler, & Holyoak, 2012). Therefore, the teacher’s role in explicitly 

guiding students’ structure mappings between school-based analogs needs to be explored, 

especially because children’s analogical reasoning skills predict their future mathematical 

reasoning (Buehl & Alexander, 2004).  

Evidence for explicit instruction with analogies. Using highly-supported analogies in a 

classroom context is one way to support children’s analogical reasoning in the mathematics 

classroom (Richland, Zur, & Holyoak, 2007). The use of cognitive supports has several benefits, 

including decreasing the demands on the children’s working memories (Gentner, 1988; Gentner 

& Toupin, 1986; Rattermann & Gentner, 1998; Richland et al., 2006). Richland and her 

colleagues (2007) identified a number of explicit cognitive supports for instructional analogies 

by comparing eighth-grade mathematics instruction in the United States with instruction in Hong 

Kong and Japan. The authors randomly selected ten lessons per country from the Third 

International Mathematics and Science Study 1999 video database and qualitatively coded the 

teachers’ use of supports of analogs and supports of structure mappings between analogs. The 

authors observed the teachers using a variety of supports, presented in Table 1, which included 

(a) presenting a familiar source, (b) presenting the source visually, (c) keeping the source and 

target visible simultaneously, (d) spatially aligning the analogs in a way that emphasizes their 

conceptual similarities, (e) using linking gestures between both analogs, and (f) using imagery. 
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Table 1 

Definitions and Examples of Cognitive Supports based on Richland et al. (2007) 

 
Cognitive Support 

 
Definition 

 
Examples 

 

Familiarity of Source 

 

Familiarity of the source can be 

defined as prior exposure to a 

specific analog (i.e., prior classroom 

experience or everyday life 

situations).  

 

Use of fingers to count whole 

numbers 

 

Classroom materials students 

have already used (e.g. Base-

Ten blocks)  

 

Mathematical concept already 

mastered by a student 

 

Simultaneous visual 

presentation of source 

and target 

Both the source and target analogs 

are presented visually and are kept 

visible throughout the entire process 

of structure mapping.   

 

   
#
" 

 

Spatial alignment The source and target analogs are 

spatially positioned in a manner that 

highlights their conceptual 

similarities.  
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Linking gestures Gestures that highlight the 

conceptual similarities between both 

analogs 

Simultaneously or 

sequentially pointing to one 

analog and then the next.  

 

Capturing a concept of the 

source analog through a 

gesture and repeating the 

same gesture with the target.  

 

Imagery Visualizing the source: the analog 

can be a familiar object (e.g., scale 

in the context of equivalency) or a 

specific situation from the past (e.g., 

previously taught concepts).  

 A teacher addressing the 

class: “Remember when we 

were skip counting by twos 

last class, visualize in your 

mind the number line we 

used, now we are doing the 

same thing but instead of 

counting groups of two, we 

are counting groups of ten.”  

 
The effect on student learning of cognitive supports that highlight the explicit 

connections between two analogs has been supported through experimental and laboratory 

studies. For instance, both Sidney (2016) and Thompson and Opfer (2010) explained that using a 

familiar source facilitates students’ connection-making, because the students are comparing a 

target to their prior knowledge in a specific domain. The other cognitive supports described by 



	 18 

Richland et al. (2007) have also been shown to facilitate structure mapping, including the 

simultaneous visual presentation of both analogs (Begolli & Richland, 2016; Christie & Gentner, 

2010), spatial alignment that highlights the similarities between the source and target analogs 

(Matlen et al., 2014), gestures linking both analogs (Alibali et al., 2014; Alibali & Nathan, 2007), 

and the use of imagery (Richland et al., 2007).  

Studies simulating classroom instruction have also established the effectiveness of 

Richland and colleagues’ (2007) framework for mathematics teaching with analogies. In one 

study, Richland and McDonough (2010) performed two laboratory experiments using videotaped 

instruction to determine whether cognitive supports encouraged undergraduate students’ transfer 

after instruction. The instructional focus of the first experiment was on permutation and 

combination problems, while the instructional focus of the second experiment was on problem-

solving strategies in the context of proportionality. The mathematical concepts for both 

experiments were chosen because undergraduate students have been known to struggle with 

those concepts (e.g., Vanderstoep & Seifert, 1993).  

Two conditions were part of the design: In one condition, the instruction incorporated 

highly-supported analogies and the second one used minimally-supported analogies. Highly-

supported analogies included the visual presentation of the source, which was kept visible when 

compared to the target. The source and target were also spatially aligned and gestures were used 

to highlight the similarities between both analogs. Minimally-supported analogies incorporated 

the same source and target analogs, but no cognitive supports were used. The first experiment 

compared these two conditions in the context of comparing two problem types. The second 

experiment compared participants exposed to a highly-supported condition, a minimally-

supported condition, and a no-analogy control group on a transfer task.  
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The results of the first experiment indicated that there were no differences between 

conditions on transfer to problems that were similar both on the surface and in structure to the 

problems presented during the intervention. However, participants in the highly-supported 

condition transferred better to structurally-similar problems that differed on the surface. The 

participants in the minimally-supported condition were more likely to apply the learned 

strategies to problems that were similar on the surface but not in structure, resulting in incorrect 

reasoning, possibly because of a reliance on surface features for comparison and transfer. The 

second experiment replicated the findings of the first experiment. 

A similar study was conducted with fifth-grade students examining the degree to which 

cognitive supports should be used when teaching division involving both whole numbers and 

fractions (Richland & Hansen, 2013). All participants were instructed using the same division 

problems (more precisely, 24 ÷ 8 = ? as the source and  !) ÷
!
- =	? as the target), but the level of 

support that was offered to the students varied. In the “high cuing” condition, the two problems 

were taught using all of the cognitive supports identified by Richland and colleagues (2007), 

except for imagery. This means that they supported the analogy using a familiar source (i.e., the 

whole-number problem presented first), kept the source visible when presenting the target, 

spatially aligned both equations on the board, and used gestures to link both analogs. In the 

minimal cuing condition, none of the above supports were used, and to ensure that the source 

was not familiar to the students, the order in which the two problems were presented in the high 

cuing condition was reversed. The results supported Richland and McDonough’s (2010) 

findings. Participants in the high-cuing condition were better at extending their learning from the 

analogy to transfer problems, but there was no difference between conditions on posttest 

problems that were highly similar to the problems presented during instruction, suggesting that 



	 20 

using cognitive supports is possibly more effective for far transfer (complex analogies), but is 

less necessary for near transfer (simpler analogies). 

Evidence for implicit instruction with analogies. Despite the Richland and 

McDonough (2010) and Richland and Hansen (2013) studies, conflicting evidence exists as to 

the minimum level of explicitness required to teach effectively with analogies. It is perhaps not 

necessary, or it could even be detrimental, to include all cognitive supports. Sidney and Alibali 

(2015) investigated whether students learned more about fraction division from surface-similar 

analogs (i.e., where the source would be a fraction addition or subtraction problem and the target 

a fraction division problem), or from structure-similar analogs (i.e., where the source would be a 

whole-number division problem and the target a fraction division problem). Using a two by two 

design, the authors also examined the difference between encouraging participants to make their 

own links between analogs and offering no such encouragements. 

In the study, participants completed a worksheet either with fraction addition and 

subtraction problems (i.e., the worksheet contained the surface analog) or with whole-number 

division problems (i.e., the worksheet contained the structure analog). This activity was followed 

by instruction on fraction division. In the conditions without links, the initial worksheet, once 

completed, was collected by the researcher and removed from the participants’ view for the 

remainder of the intervention. This reduced the possibility of making connections to the source 

analog, and participants were in no way encouraged to make any connections to the worksheet 

during the lesson. In the conditions with links, the participants kept the worksheet and the 

researcher asked them three times to refer to it. In this condition, the specific connections were 

not explicitly taught by the researcher, but the participants were encouraged to make connections 

if they could.  
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On measures of conceptual learning, all participants who received the structure analog 

worksheet performed better than those in the surface-analog condition, suggesting that a source 

analog that is more structurally similar to the target analog facilitates learning. Surprisingly, the 

greatest gains were achieved by participants in the structurally-similar analog condition who 

were not encouraged to make links. These findings stand in contrast to previous similar studies, 

in which participants were most successful after having been encouraged to make their own 

connections (Gentner et al., 2003; Osana, Adrien, & Duponsel, 2017; Rittle-Johnson & Star, 

2007). Sidney and Alibali (2015) argued that in this context, encouraging the participants to 

make their own links, without providing any explicit supports, might have been a difficult and 

error-prone process.  

Sidney and Alibali (2017b) further investigated the question of comparing whole-number 

division to measurement fraction division by creating three conditions: an implicit condition 

without any explicit links, an explicit condition in which explicit links were made by the 

teachers, and a control no-analogy condition. The study was meant to test the effects of teacher 

guidance with the use of cognitive supports (based on the framework of Richland et al., 2007) 

against an implicit condition in which students were not encouraged to make any connections 

between analogs.  

In the implicit links condition, the instructor first presented two whole-number division 

problems, which were familiar to the students, followed by two fraction division problems. The 

whole-number division problems (source) were made visible, but were not kept visible when the 

fraction division problems were presented (target). Furthermore, parallel language was used for 

both analogs, but the instructor never explicitly explained the connections between the two 

analogs, nor did she invite the students to make such connections. In the explicit condition, both 
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representations were kept visible, were spatially aligned to highlight their similarities, and the 

instructor used linking speech and gestures. In the control condition, no analogy was presented, 

but to maintain an equal amount of instruction, four fraction division problems were presented.  

Surprisingly, even though the study’s design (Sidney & Alibali, 2017b) closely 

resembled that of Richland and Hansen’s (2013) study, the results diverged. In the Sidney and 

Alibali study, participants in the implicit-links conditions demonstrated higher conceptual 

learning than participants in both the explicit-links and no-analogy conditions. There were no 

significant differences between the conceptual performance of participants in explicit-links and 

no-analogy conditions. Also, participants in the explicit analogy condition had lower 

performance on procedural knowledge tasks than the participants in both the implicit- and no-

analogy conditions. The finding that an implicit analogy supported higher conceptual and 

procedural gains than an explicitly-guided analogy brings into question the conditions under 

which cognitive supports are beneficial in instruction with analogies.  

One explanation provided by Sidney and Alibali for their unexpected findings was that 

the lessons in the explicit condition were more complex because of the unfamiliar mathematical 

terms, or the visual representations contained irrelevant details. Another possible explanation 

comes from the theory of analogical priming (Leech, Mareschal, & Cooper, 2008), which would 

suggest that simply activating appropriate and related prior knowledge facilitates connections to 

a new concept. Thus, priming theory suggests that students can demonstrate analogical transfer 

without requiring the teacher to state explicitly the similarities between both analogs (Day & 

Goldstone, 2011; Green, Fugelsang, & Dunbar, 2006) and without additional cognitive supports 

(Sidney & Alibali, 2015; Sidney & Alibali, 2017b). Once students have activated a concept they 

have previously mastered, they are “primed,” or biased, towards detecting the same concept, 
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relation, or similarity in the target analog, without the need to map explicitly the similarities 

between both analogs (Day & Goldstone, 2012; Leech et al., 2008). Priming would suggest that 

the order in which knowledge is being activated might play an important role when teaching new 

concepts.  
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 Present Study 

I have described the importance of teaching fraction division conceptually, instead of 

solely relying on procedures, and proposed to investigate analogical reasoning as a framework 

for mathematics instruction. Teaching with an analogy, where the source analog is unitizing and 

the target is fraction division, provides a context in which the teacher has the opportunity to 

emphasize the connections between two analogous mathematical contexts. Supporting the 

structure mappings between both analogs might allow students to develop a stronger 

understanding of fraction division, remainders, and unitizing concepts, and the degree of support 

also has yet to be explored.  

In my research, my objectives were to investigate whether analogies and analogical 

reasoning should be used as an instructional method in mathematics classrooms and to what 

degree teachers should support their students’ structure mappings between concepts of unitizing 

and fraction division. In my study, participants were randomly assigned to three conditions. In 

the explicit-links condition, the connections between unitizing and fraction division were clearly 

stated by the researcher and supported using Richland et al.’s (2007) framework of cognitive 

supports. In the implicit-links condition, the connections between the analogs were left implicit. 

In the control group, no analogy was presented. The participants in the control group were only 

taught how to solve one fraction division problem, but to maintain the same amount of 

instruction as in the other two conditions, the participants in the no-analogy condition saw the 

same fraction division problem solved twice with no instruction on unitizing. Students’ 

understanding of fraction division, their interpretation of the fractional remainder, and their 

understanding of unitizing was assessed before and after the intervention. 

My specific research questions were as follows: 
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1. Are there condition differences in the students’ understanding of fraction division, 

fractional remainders, and unitizing concepts after the intervention?  

2. What is the nature of any changes from pretest to posttest in students’ thinking about 

fraction division, fractional remainders, and unitizing concepts? If so, do these changes 

differ by condition? 

Despite the few studies suggesting that implicit analogies are beneficial, the 

preponderance of research supports the use of explicit analogies in instruction (e.g., Christie & 

Gentner, 2010; Matlen et al., 2014; Richland et al., 2007; Richland & McDonough, 2010), which 

allowed me to make the following predictions for participants’ understanding of fraction 

division, their interpretations of fractional remainders, and their understanding of unitizing. 

Because the emphasis of both the explicit- and implicit-links conditions was on participants’ 

conceptual understanding of fraction division in relation to unitizing and because of the research 

that supports making connections explicit in mathematics instruction, I hypothesized that the 

performance in both these conditions would differ at posttest from the control condition on all 

measures. I also predicted that the participants in the explicit-links condition would demonstrate 

significantly higher scores following intervention than participants in the implicit-links condition 

because of the above-mentioned literature supporting the use of cognitive supports when 

teaching with analogies. The students in the control condition would not perform as well as those 

in the analogy conditions because the focus of instruction would be solely on solving a fraction 

division problem and not on the conceptual connections between unitizing and fraction division. 
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Method 

Participants 

 Before data collection began, I provided the schools’ principals with information about 

the study, and they introduced me to seven teachers who were interested in participating in the 

project. I met with the teachers to present the project in greater detail. Letters about the project 

were then sent home to the parents of the students in the participating classes. With the letter, 

there was a consent form for the parents to sign. Once the participants were identified, I asked 

them to sign an assent form before any data were collected. Only those students who gave their 

assent participated. The consent and assent forms are in Appendix A.  

The study was conducted with seventh-grade students from two high schools in a 

Montreal metropolitan area school board (N = 51). The only inclusion criterion was for 

participants to have entered seventh-grade in September 2017. The participants in the sample 

were 37% female and 63% male. Their ethnicity data are presented in Table 2. The mean age of 

participants was 13 years and one month. The youngest participant was 12 years and four months 

old, while the oldest participant was 13 years and nine months old.  
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Table 2 

Frequencies and Percentages of Participants’ Ethnicities in Sample 

 Frequency (Percentage of Sample) 

Ethnicity  

White 

Black 

Black/White 

Asian 

Caribbean 

Black/Caribbean 

Black/White/Caribbean 

Black/Latin American 

White/Latin American 

Middle Eastern 

Aboriginal/Other 

Other 

27 (53%) 

8 (16%) 

2 (4%) 

2 (4%) 

1 (2%) 

1 (2%) 

1 (2%) 

1 (2%) 

1 (2%) 

1 (2%) 

1 (2%) 

3 (6%) 

Note. The total percentage adds up to 101% because of rounding. The categories are mutually 

exclusive, because new categories were created for participants who selected more than one 

ethnicity on the demographic questionnaire.  

 

Design  

The design of the study, including the three conditions and assessment tasks, are 

presented in Figure 5. In a three-group pretest-posttest experimental design, participants were 
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assessed on their conceptual and procedural knowledge of fraction division, fractional 

remainders, and unitizing concepts before and after the intervention. 

Pretest 1  
 

Pretest 2 Intervention Posttest 
Tasks 

 
Prior Knowledge 

Tasks: 
a) Identify Fraction  

(8 items) 
 

b) Select Larger 
Fraction 
(4 items) 

 
Division Test  

(8 items)  
 

Procedures Test  
(4 items) 

 

Tasks 
 

Division 
Explanation Task 

(1 item) 
 

Bar Diagram Task 
(4 items) 

 
Symbolic Task  

(2 items) 
 

Area Model Task  
(2 items) 

 
 

 
Implicit-Links 

Tasks 
 

Unifix Cube Task 
(4 items) 

 
Bar Diagram Task 

(5 items) 
 

Symbolic Task  
(2 items) 

 
Area Model Task  

(2 items) 
 

Division 
Explanation Task 

(1 item) 
 

Division Test  
(8 items)  

 
Procedures Test  

(4 items) 
 

 
Explicit-Links 

 
Control  

(No Analogy) 

 
Figure 5. Study design including all assessment tasks and intervention conditions. 

For the instructional intervention, participants were randomly assigned to one of the three 

conditions: (a) implicit-links, (b) explicit-links, and (c) control. In the implicit-links and explicit-

links conditions, the participants received instruction on unitizing in the context of measurement 

fraction division. The conditions differed according to how explicit the links were between two 

analogs, which consisted of a unitizing problem and a measurement fraction division problem.  

In the implicit-links condition, I delivered instruction on unitizing, followed by a 

demonstration of how to solve a measurement fraction division problem. The objective of this 
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condition was to activate appropriate prior knowledge related to unitizing, but leave the 

connection between unitizing and division implicit (based on the analogical priming framework 

by Leech et al., 2008). In this condition, I did not explicitly identify the conceptual mappings 

between the two analogs (unitizing and measurement fraction division).  

In the explicit-links condition, I delivered instruction on unitizing and fraction division 

identical to the one in the implicit-links condition, but here, I explicitly mapped the conceptual 

similarities between unitizing and fraction division for the students, applying the framework of 

cognitive supports for instructional analogies described by Richland et al. (2007). In this 

condition, I explicitly supported the conceptual mappings between both analogs, not only 

through verbal statements highlighting conceptual similarities, but also through the use of a 

number of cognitive supports that have been previously addressed in the literature. The cognitive 

supports I used from Richland et al. (2007)’s framework were familiar representations, 

simultaneous visual presentation of both analogs, spatial cues highlighting conceptual 

similarities, and linking gestures. Additionally, I referred to relational language to make the 

connections between both analogs more explicit (Vendetti, Matlen, Richland, & Bunge, 2015). 

In the control group, I presented one fraction division problem twice to the participants 

and I did not deliver a lesson on unitizing; as such, there was no possible analogy between 

unitizing and measurement fraction division. Since no analogy was presented, no explicit 

supports were used either. If two different division problems had been presented to the 

participants, both problems could have been considered analogs to each other because they 

would have shared the same conceptual structure despite having different numbers in their 

equations. Repeating the same fraction division problem twice removed the possibility of 
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participants making implicit links between the two cases, and ensured that participants in each 

condition received the same amount of instruction.  

Instructional Intervention 

Three different lessons were video-recorded, one for each condition (for the transcripts of 

each lesson, please refer to Appendix B). Unifix cubes were used as a visual support during the 

instruction in all three conditions. Unifix cubes are concrete objects that can snap together and be 

taken apart, and are often used in elementary mathematics classrooms to provide visual and 

concrete reifications of abstract concepts. Previous research has recommended using length 

models, such as number lines or bar diagrams, to represent fraction division and remainders 

because they more easily direct attention to units (Hackenberg, 2013; Steffe, 2002). Unifix cubes 

can be used to form towers to represent wholes (i.e., twelve towers of four cubes to represent the 

number 12). Such “tower-like” representations, lying flat on their sides, provide a perspective of 

length to each whole and can be physically broken apart when they need to be regrouped in both 

the unitizing and division contexts. 

In the implicit-links conditions, the lesson began with the presentation of a unitizing 

activity. In the video, the instructor placed 24 cubes snapped together into six towers (see Panel 

A in Figure 6). Each tower, lying flat on a table, was made out of four connected Unifix cubes 

and the distance between each Unifix tower was about one inch. The instructor stated that these 

six towers represent the numerical quantity of six: “Here is six: one, two, three, four, five, six 

(point to each tower while counting).” The instructor then explained that each tower is composed 

of four fourths by saying: “Each whole has four fourths. One, two, three, four fourths (point to 

each cube while counting), so this is a whole made up of four fourths. The same goes for each of 

these (make a swooping pointing gesture to remaining five towers).”  
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a. b. 

  

c. d. 

  

Figure 6. Screenshots of the configuration of the manipulatives used in the unitizing instruction 

in both the implicit-links and explicit-links conditions. The first photo shows how six can be 

represented as six groups of one (a). The second photo shows how six can be represented as two 

groups of three (b). The third photo shows how six can be represented as 12 groups of !& (c). The 

fourth photo shows how six can be represented as eight groups of )# (d).  

The instructor then explained that the collection of six towers can be thought of in 

different ways: as one group of six, as two groups of three, as 12 groups of half, and as eight 

groups of three fourths (see Panels B, C, and D in Figure 6). The Unifix cubes were rearranged 

in each case to illustrate the above-mentioned groups. For example, when saying that six can be 

thought of as two groups of three, the six towers were physically rearranged into two separate 

groups of three towers with about a three-inch distance between both groups. Once these four 

different ways of regrouping six were presented, all the Unifix cubes were removed.  

The second phase of the implicit-links intervention entailed demonstrating how to solve a 

measurement fraction division problem. The instructor in the video presented the equation (4 ÷ )# 

= ?) on an index card and read it out loud: “Let’s see what four divided by ¾ is.” The instructor 
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then brought out four towers to represent the dividend, each tower made up of four stacked 

Unifix cubes (see Panel A in Figure 7). The instructor explicitly stated that each tower represents 

one whole. The instructor also mentioned that each of these wholes is composed of four fourths 

and pointed to each fourth, counting them. The exact words used by the instructor were: “Each 

whole has four fourths. One, two, three, four fourths (points to each cube while counting), so this 

is a whole made up of four fourths. The same goes for these (make a swooping pointing gesture 

to remaining three towers).” The Unifix cubes used in this phase of the intervention were of a 

different color (red) than the ones used in the first phase (green). 

a. b. 

  

Figure 7. Screenshots of the materials used in the fraction division instruction in both the 

implicit-links and control conditions. The left panel shows four Unifix cube towers as 

representing the dividend prior to solving the problem 4 ÷ )# = ? (a). The right panel shows the 

cubes representing the quotient of the problem: five groups of )#  and !) of a group of )#  (b). 

The instructor then began solving the division problem by saying, “I want to find out how 

many groups of )#  there are in four. Let’s see.” The instructor created groups of three cubes from 
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the original set of cubes (“one, two, three… Here is one group of )#”). The resulting 

rearrangement was five towers made up of three cubes with one cube remaining (see Panel B in 

Figure 7). To explain the fractional remainder and its interpretation as !) to the participants, the 

instructor said, “Here I have one piece out of the three I need to have a full group of )#. I have !) of 

a group of )#. This means that there are one group, two groups, three groups, four groups, five 

groups of )#  and !)	of a group of )#  (gesturing to each group while counting). The answer to four 

divided by )#  is 5!).” The answer to the problem was only said out loud. It was not written down 

on the index card on which the equation was initially presented.  

 In the explicit-links condition, the same unitizing and fraction division problems were 

presented as in the implicit-links condition. The differences in instruction were in the cognitive 

supports used. The instructor first presented the unitizing problem, using the same script and 

materials as in the implicit-links condition. Once the unitizing activity was completed, the final 

set of green Unifix cubes (groups of )#) was kept visible for the participants (see Figure 8). Then, 

the instructor presented the fraction division problem, using the same red cubes as in the 

implicit-links conditions. 
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a. b. 

 
 

Figure 8. Screenshots of the configuration of materials used in the fraction division instruction in 

the explicit-links condition. The left panel shows how the dividend, represented by four red 

Unifix cube towers, is aligned with the last unitizing set (a). The right panel shows how the 

quotient of the problem, 5 groups of )# and !) of a group of )#, is spatially aligned with the last 

unitizing set (b).  

Throughout the part of the lesson on fraction division, the instructor referred back to the 

unitizing lesson using relational language. She began by saying, “Fraction division can be 

thought of in the same way as regrouping the number six based on different sized groups. Here is 

the six made out of groups of three fourths. Here are my four wholes, just like here I had the six 

wholes to start.” The instructor made explicit connections like the ones above using relational 

language and made linking gestures between both representations. She provided visual supports 

by spatially aligning the elements of the fraction division problem to the unitizing set by 

arranging both the fraction division and unitizing Unifix cube sets horizontally one under the 

other and by keeping both sets visible throughout the explanation.  

 In the control condition, one fraction division problem was presented two times. The 

problem was identical to the one from both the implicit-links and explicit-links conditions (i.e., 4 
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÷ )# = ?). Also, the instructor used the Unifix cubes in the same way as in the implicit-links 

condition and delivered an identical script. The instructor did not explain any unitizing concepts 

and did not provide the participants with any explicit supports.  

Measures 

Participants’ initial understanding of fraction division was assessed using a two-part 

pretest. Part 1 was designed to assess both conceptual and procedural knowledge of division. The 

first part of the pretest was a paper-and-pencil test composed of the prior knowledge tasks 

(Identify Fraction Task and Select Larger Fraction Task), the Division Test, and the Procedures 

Test. Part 2 was delivered in individual meetings with each participant, and included assessment 

tasks designed to assess the participants’ conceptual understanding of fraction division, their 

interpretation of the fractional remainder, and their knowledge of unitizing. Posttest tasks were 

delivered in individual meetings following the intervention, and were designed to assess 

participants’ thinking about division, remainders, and unitizing.  

Prior Knowledge Tasks 

Identify Fraction Task and Select Larger Fraction Task. The participants’ prior 

knowledge was assessed at pretest with two tasks. First, they were asked to write fractions that 

corresponded to presented area models (for an example of this Identify Fraction Task, see Figure 

9). This task assessed participants’ conceptual understanding of part-whole interpretations of 

fractions. On a second task, participants selected the larger fraction between two symbolic 

fraction representations (e.g., !# or !&) on four individual items (for an example of the Select 

Larger Fraction Task, see Figure 10). This task assessed participants’ conceptual understanding 

of symbolic representations of fractions. Items on both tasks were assigned 1 point for a correct 

answer and 0 points for an incorrect answer, for a maximum of eight points on the Identify 
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Fraction Task and a maximum of four points on the Select Larger Fraction Task. The Identify 

Fraction score was the total number of points divided by the number of items on the task, 

resulting in percent scores. The Select Larger Fraction score was computed in the same way. 

 
Figure 9. Example of an item on the Identify Fraction Task. 
 
 

 

Figure 10. Example of an item on the Select Larger Fraction Task. 

Division Test 

The participants’ conceptual understanding of fraction division was assessed with the 

Division Test, an eight-item multiple-choice paper-and-pencil test. Two items on this test 

included whole-number division problems. One of these items had a solution with no remainder 

(20 ÷ 4 = ?) and one had a solution with a fractional remainder (57 ÷ 8 = ?). The remaining six 

items were composed of fraction division problems involving a whole number dividend and a 
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fractional divisor, including both unit (3 ÷ !-	= ?; 10 ÷ !)	= ?, 12 ÷ !" = ?) and non-unit fractions (5 

÷ -!.	= ?; 20 ÷ #" = ?, 6 ÷ )!.	= ?). For each problem, the participants selected one response from 

four choices. The choices were in the form of word problems: one correct answer and three 

distractors. Participants were instructed to select the word problem that best represented the 

symbolic expression provided, but were not asked to solve the problems.  

For each item, the correct response was a word problem that incorporated either partitive 

or measurement division. Half of the correct responses on the test had a partitive division context 

and the remaining half had a measurement division context. For whole number division items 

(for example, 20 ÷ 4 = ?), a word problem with a partitive division structure would be, “There 

were 20 cupcakes at the party. If four children share all the cupcakes, how many cupcakes will 

each child eat?” A word problem with a measurement division structure for the same equation 

would be, “There were 20 cupcakes at the party. If each child at the party ate exactly four 

cupcakes, and there were no more cupcakes left, how many children were at the party?” One of 

the three distractors was a word problem reflecting subtraction instead of division (e.g., There 

were 20 cupcakes at the party. Julianna ate four cupcakes. Now, how many cupcakes are left?). 

The second distractor involved inversing the quantities of the dividend and divisor (e.g., There 

are four cupcakes and 20 children. If shared equally, how much of a cupcake will each child 

get?). The final distractor involved multiplying by the value of the divisor instead of dividing 

(e.g., There are 20 children at the party. If each child eats four cupcakes, how many cupcakes 

were there altogether?).  

Fraction division items had another set of distractors. This time, the participants chose 

between a correct answer and three incorrect word problems with structures that mirrored typical 

incorrect strategies used to model or solve fraction division operations (Sidney & Alibali, 2017a; 



	 38 

Siegler & Pyke, 2013). For example, for the fraction division item 3 ÷ !-	= ?, the first distractor 

involved multiplying by the value of the divisor, instead of dividing (e.g., There are three 

children at the party. If each child ate !- of the cake, how much of the cake did they eat 

altogether?). The second distractor was based on multiplying by the reciprocal of the divisor 

(e.g., There are three children at the party. If each child eats six pieces of a cake, how many 

pieces of the cake did they eat altogether?). The final distractor required dividing by the 

reciprocal of the original divisor, thereby conflating the standard procedures for multiplication 

and division (e.g., There are three pieces of cake left. If six children share the remaining three 

pieces of cake, how much of a cake will each child eat?). Correct responses were assigned 1 

point and incorrect responses 0 points, for a maximum of eight points on the Division Test. Each 

participant’s score on the Division Test was calculated by summing the total number of points 

and dividing it on the task, resulting in percent scores.  

Procedures Test 

The Procedures Test assessed the participants’ knowledge of division procedures. The 

Procedures Test included four division problems presented using standard symbolic notation. 

The items included one whole-number division (27 ÷ 3 = ?), one whole-number division with a 

fractional quotient (50 ÷ 8 = ?), and two fraction division problems, one with a whole number as 

dividend and a unit fractional divisor (4 ÷ !) = ?), and the other with a whole number dividend 

and a non-unit fractional divisor (5 ÷ &/ = ?). The students could use any strategy to solve the 

problems and were asked to show their work. Correct answers were assigned 1 point and 

incorrect answers 0 points, for a maximum of 4 points on the Procedures Test. If a participant 

left an item blank, he or she would receive 0 points for that specific item. Each participant’s 
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score on the Procedures Test was calculated by summing the total number of points and dividing 

it by the number of items on the task, resulting in percent scores.  

Division Explanation Task 

The second part of the pretest took place in individual meetings with the participants, 

who were assessed on their understanding of concepts related to fraction division, fractional 

remainder, and units. On the Division Explanation Task, participants were asked to answer the 

question, “What does it mean to divide something by a fraction?” The coding rubric for 

participants’ responses to this task is presented in Table 3.  

Table 3 

Definitions and Examples of Fraction Division Interpretations in the Division Explanation Task 

Interpretation Definition Example 

Fraction Division 

Measurement 

Interpretation 

When dividing by a fraction, the 

participant is trying to find the 

number of times the fractional 

divisor can fit in the dividend. 

“Let's say you have a dollar, you 

can divide it by quarters, like 1 

over 4 and you can see how 

many quarters you need to make 

a dollar.” 

Partitive Interpretation When dividing by a fraction, the 

participant is looking for the total 

amount of one group, while 

knowing the value of part of a 

group.  

“I am looking for what the total 

amount of money I have, if a 

dollar is a quarter of my 

amount.” 

Whole Number Division 
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Measurement 

Interpretation 

The participant changes the 

fractional divisor into a whole 

number. In this new context, when 

dividing by a whole number, the 

participant is trying to find the 

number of times a whole number 

divisor can fit in the dividend. 

 

“I want to find out how many 

people I can feed with 10 pizzas 

if each person eats 2 pizzas.” 

Partitive Interpretation The participant changes the 

fractional divisor into a whole 

number. In this new context, when 

dividing by a whole number, the 

participant is trying to find the size 

of a group, knowing the number of 

groups a total amount is being 

divided into. 

“I want to know how much of a 

pizza will each person get if I 

share 5 pizzas with my three 

friends.” 

General Division 

Measurement 

Interpretation 

The participant provides a general 

measurement division explanation 

without mentioning whole numbers 

or fractions. 

“I want to see how many equal 

sections of a certain amount will 

enter in my whole number” 

Partitive Interpretation The participant provides a general 

partitive division explanation 

“I want to share an amount of 

food equally with my friends.” 
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without mentioning whole numbers 

or fractions.  

Partitioning Approach 

Splitting or Grouping The participant mentions the actions 

of splitting, cutting, sharing, 

breaking, separating, or making 

parts without providing any more 

detail. There is no mention of whole 

numbers or fractions. It is unclear 

whether the action of splitting 

results in equal groups. It is unclear 

whether the participant is looking 

for the number of groups 

(measurement division) or for the 

amount in each group (partitive 

division) following the partitioning 

action.   

“To like split it into what it is 

being divided by…”  

 

“to cut it into different groups” 

Other Codes   

Fraction seen as a 

Quotient 

The fraction itself is defined as the 

quotient of the numerator divided 

by the denominator.  

 

“It means to divide the numerator 

by the denominator to give you 

the answer.”  
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Fraction seen as Part of a 

Whole 

A fraction is described as a part of a 

whole.  

 

“A fraction is a slice of a whole 

pizza.” 

Fraction seen as a 

Decimal or Percentage  

A fraction is considered the same as 

their equivalent decimal number or 

percentage.  

 

“If I have #", I’m getting a decimal 

of 0.8 or 80%.”  

Procedural Approaches The participant describes a 

procedure when explaining what it 

means to divide by a fraction. It can 

be the standard division algorithm, 

an invented algorithm or even an 

incorrect one. The participant 

mentions the inverse relationship of 

division and multiplication within 

the use of a procedure. 

 

“keep, switch, flip, multiply” 

 

“It means you have to inverse 

and multiply.” 

Multiplication The participant explained 

multiplication instead of division 

with fractions.  

“I am looking for half of a third.” 

“I am looking for how much I 

will have if I have 3 groups of 

¾.”   
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Subtractive 

Understanding of 

Division 

The participant sees division as a 

repeated subtraction of the value of 

the divisor. The participant can also 

describe a subtraction problem 

instead of a division.  

“It’s when I remove a piece of a 

whole to give me the answer.”  

“I take the fraction and I take it 

away from the whole as many 

times as I need until I have 

nothing left.” 

Finding the Simplest 

Form 

The participant describes division as 

finding the simplest form of a 

fraction. For example, 3/6 would be 

½ in its simplest form.  

“I need to divide the numerator 

and the denominator by the same 

number to get a fraction that is 

easier to work with.” 

 

Misconceptions about 

Fractions 

The participant described a 

misconception about fractions, 

instead of explaining the meaning 

of fraction division. 

 

“in a fraction, the denominator is 

always bigger and the numerator 

is always smaller” 

Did Not Know The participant did not know what 

dividing by a fraction meant.  

 

“I don’t know… I really don’t.” 

Vague or Unclear 

Explanation 

The explanation was vague or 

unclear.  
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As indicated in Table 3, participants’ responses were coded using the following 

categories: (a) measurement division with fractions (i.e., “I want to see how many groups of the 

specific fraction will enter into the initial amount”), (b) partitive division with fractions (i.e., “I 

want to see how much is in one full group, if a fraction of a group and the total amount is 

known”), (c) measurement division with whole numbers (i.e., “I want to see how many groups of 

two there are in six”), (d) partitive division with whole numbers (i.e., “I want to distribute six 

muffins equally among my three friends”), (e) general measurement division (i.e., “I want to 

know how many groups of a certain amount go into a total amount”), and (f) general partitive 

division (i.e., “I want to share a certain amount into equal groups”). I also developed two 

categories of codes for responses that were conceptually less sophisticated. The first category 

was for general descriptions of partitioning, which were observed when participants referred to 

the action of splitting or grouping (i.e., “I am splitting an amount”). The second category was 

called Other and included a variety of responses, including definitions of fractions instead of 

definitions of division with fractions, procedural explanations, and also incorrect or unclear 

explanations of division.  

Some of the codes in Table 3 were anticipated prior to data analysis, including 

interpreting division using the measurement approach, interpreting division using the partitive 

approach, and referring to procedures when describing division. All other codes were generated 

from the data while coding. To analyze the data, I reorganized the codes from Table 3 into 

higher-level categories based on two scenarios. In the first scenario, I looked at whether 

participants referred to division in quantitative or non-quantitative ways. The participants’ 

responses were placed into the following categories: (a) division with fractions, (b) division with 
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whole numbers, (c) division with non-specified quantities, and (d) other non-quantitative 

answers, regardless of whether participants referred to measurement or partitive division.  

In the second scenario, I looked at the type of division interpretation the participants used 

when explaining division with fractions. The participants’ responses were placed into the 

following categories, regardless of whether they referred to division in quantitative or non-

quantitative ways: (a) measurement division, (b) partitive division, (c) measurement and partitive 

division, (d) general division, (e) splitting or grouping, and (f) other. 

Bar Diagram Task 

The participants were also assessed on their understanding of the fractional remainder 

using the Bar Diagram Task (inspired by Barnett-Clarke, Fisher, Marks, & Ross, 2010). At 

pretest, the task had four items. Two tasks involved dividing one by a non-unit fraction and the 

other two tasks involved dividing a whole number larger than one by a non-unit fraction.  

1 ÷ 01 = ? 

 

Figure 11. Example of a Bar Diagram Task. 

On each item, the participant was presented with two bar diagrams, one representing the 

dividend and one representing the partitioned dividend in such a way that the divisor was 

illustrated (see Figure 11). For instance, for the equation (1 ÷ #2 = ?), the top bar represents “1,” 

and the bottom bar is separated into three sections. The first two sections in grey on the bottom 
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bar represent one full group of  #2 each, and the smaller section in white represents the remainder. 

The researcher read the question, “In this problem, Eric wanted to divide 1 by #2. He drew the 

first bar to represent one. Then, he looked at how many groups of  #2 would go into one. He found 

two groups of #2, but then he did not know what to do anymore. Help Eric figure out what the last 

piece on the bar represents.” The researcher gestured to the whole, the groups created by the 

divisor, and then the white bar representing the remainder as she read through the problem.  

Coding of participants’ thinking about the fractional remainder at pretest and posttest 

were based on the type of unit the participant used to interpret the fractional remainder, as seen 

in Table 4 in Appendix C. Apart from the referent-unit and original-unit interpretations, which 

have been previously identified in research (e.g., Lambert & Wiest, 2015), the rest of the codes 

were developed based on the data provided by the participants. For instance, if for the equation 1 

÷ #2 = ?, the participant identified the remainder as !2, he or she would have incorrectly interpreted 

the remainder by using the original unit instead of the referent unit. If the participant identified 

the remainder as !#, they would have correctly identified the remainder with the use of the 

referent unit. Some participants described a remainder using both the referent and original units 

(i.e., the remainder is !2  and !# of my group of #2). The participants could identify the remainder 

using an actual fractional amount as seen in the above examples (e.g., !# or !2) or describe the 

remainder as part of a unit, without mentioning a specific fractional amount (e.g., I am missing a 

few more pieces to have another full group of  #2). Incorrect codes were identified in participants’ 

answers as well, including, among others, interpreting the remainder using a new unit (e.g., the 

dividend is considered as the unit); not assigning a numerical value to the remainder, but 
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referring to it as a “leftover” or “a missing piece”; demonstrating a whole number bias where the 

remainder was not a part of a group, but a whole group by itself; using a procedure to solve the 

equation; or concentrating on the superficial features of the remainder (e.g., the size or color of 

the bar).  

Participants’ thinking about the remainder were assessed by collapsing categories seen in 

Table 4 in Appendix C into higher-level categories: All sub-codes related to the referent unit 

were collapsed into a general Referent category, all sub-codes related to the original unit were 

collapsed into an Original category, and finally all codes that did not refer to referent or original 

units were placed into the Other category. In some cases, the participants’ responses reflected 

thinking about both the referent and original units. I used one code, Referent or Original, for 

these responses according to the following criteria: (a) if the remainder based on the referent was 

expressed as a fractional quantity, regardless of whether the original unit was expressed as a 

fraction or simply identified more generally as part of an original unit, the response was placed 

in the Referent category, and (b) if the original unit was expressed as a fraction, but the referent 

unit thinking was expressed more generally as part of a referent group and not an explicit 

fraction, the response was placed in the Original category. For each participant, the Referent 

score was the number of times each participant interpreted the remainder using the Referent 

category, divided by the number of items. Original scores and Other scores were computed for 

each of the Original and Other categories in the same way.  

Symbolic Task and Area Model Task 

The final pretest tasks, the Symbolic and Area Model Tasks, assessed if participants 

could justify whether two quantities were equivalent by composing or decomposing the 

fractional amounts using different units. These two tasks were designed to assess participants’ 
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understanding of unitizing, which entails either decomposing a fractional amount into unit 

fractions or composing a whole from unit fractions. These decomposing and composing actions 

are central to unitizing because when quantities are composed or decomposed, they are being 

regrouped into a certain amount by referring to a new unit (e.g., one group of )) can also be seen 

as three groups of !)). 

 In the Symbolic Task, participants were asked to compare two fractional quantities 

presented using standard written notation. The fractional amounts in the first item were 

equivalent to each other (“Is ") the same as 1&)?”) and not equivalent in the second item (“Is "# the 

same as 1)#?”). The Area Model Task had the same structure, but instead of providing equations 

to the participants, the two items presented the quantities using area models. In each item, one 

area model represented a certain number of unit fractions and the second area model represented 

a certain number of wholes and unit fractions (see a sample item in Figure 12). The participants 

were asked whether both area models represent the same amount or not: “Is this [point to first 

fractional representation in Panel a] the same as this [point to second fractional representation in 

Panel b]?” 
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a.

 
b. 

 

Figure 12. An example of an Area Model Task. 

For the Symbolic Task, which presented fractions using written notation, participants’ 

answers were placed in three different categories: (a) characterizing unitizing by composing 

and/or decomposing wholes (e.g., “") is the same as 1&), because there are five thirds in total, three 

of which together compose a whole with two thirds remaining”), (b) using a correct procedure 

(e.g., “") is the same as 1&), because ((3x1) + 2) is 5, so 5 placed over 3 is ")”), and (c) using an 

incorrect procedure (e.g., “") is not the same as 1&), because 3 x 2 is 6, but I also have the 1, so it is 

even more”). 

The Area Model Task was also coded with the same category of composing or 

decomposing wholes with a shift of unit was used to code participants’ understanding of 

unitizing in the area model items. Two new codes were created to code this specific task. The 

Joining Strategy code was used for the case where a participant would use joining and separating 

strategies, but with no evidence of a shift in unit (e.g., “Here I have five colored pieces, and here 
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I also have five colored pieces, so they must be the same.”). All other answers were coded as 

Other Strategy (e.g., referring to superficial features like color or shape, incorporating 

misconceptions about fractions in their responses, using different units to describe each 

fractional amount, or presenting an unclear explanation). 

The Composing/Decomposing score for the Symbolic Task was the number of times the 

participant used composing or decomposing with a unit shift. These sums were divided by 2 to 

obtain percent scores. The same process was used to compute Correct Procedure and Incorrect 

Procedure scores. Scores for Composing/Decomposing, Joining Areas, and Other Strategy on the 

Area Model Task were computed in the same way.  

Posttest 

The posttest was composed of tasks that were isomorphic to some administered at pretest 

and one task not administered at pretest. The isomorphic tasks included the Division Explanation 

Task (one item), the Bar Diagram Task (five items), the Symbolic Task (two items), the Area 

Model Task (two items), the Division Test (eight items), and the Procedures Test (four items). 

On the Bar Diagram Task, there was one item that was not isomorphic to any item on the pretest. 

It consisted of dividing a mixed fraction by a non-unit fraction (i.e., 2 !) ÷
"
- =	?). The 

participants had not been exposed to mixed fraction dividends, neither at pretest nor during the 

intervention. Each of these tasks was assessed using the same requirements as at pretest.  

The new task administered at posttest was the Unifix Cube Task. Participants’ 

interpretations of the fractional remainder were assessed at posttest by combining performance 

on the Unifix Cube Task and a version of the Bar Diagram Task that was isomorphic to the one 

administered at pretest. 
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Unifix Cube Task. The Unifix Cube Task consisted of four items and required the 

participants to interpret the remainder of four different equations (4 ÷ )/ = ?, 5÷ #"  = ?, 7 ÷ &) = ?, 

and 6 !&÷ "- = ?). These four items were presented by the researcher using the same script as for 

the Bar Diagram Task. 

For each item, the researcher displayed the equation on a card and used a set of Unifix 

cubes to solve the problems. The Unifix cubes were organized into towers of stacked cubes 

ahead of time by the researcher to represent the quantities required in each problem. For 

example, the number of Unifix cube towers reflected the equation’s dividend and the number of 

cubes in each tower was determined by the denominator of the equation’s divisor. For the first 

equation (4 ÷ )/ = ?), the participants were shown four towers each made up of seven stacked 

Unifix cubes. To introduce this first item, the researcher said, “Amy wanted to do four divided 

by )/” and placed the four Unifix cube towers in front of the participant. The researcher 

continued, “She first represented four using these blocks. Then, she looked at how many groups 

of )/ would go into four (pointed to the dividend and divisor in the equation)”. Here, the 

researcher separated the initial four towers composed of seven Unifix cubes each into nine 

smaller towers composed of three cubes each to represent the division. The researcher continued, 

“She found nine groups of )/. One, two, three, four, five, six, seven, eight, nine (pointed to each 

newly-created tower of three cubes while counting). But then, Amy didn’t know what to do with 

this last piece (pointed to the remaining Unifix cube). Can you tell me what this piece 

represents?” The same script was used to present the remaining three items.  

The participants’ answers were coded using the same rubric as for the Bar Diagram Task. 

Distinctions among the participants’ interpretations of the fractional remainder were made based 
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on the type of unit used. To evaluate participants’ interpretations of the remainder at posttest, the 

data on the Unifix Cube Task and on the Bar Diagram Task were combined. The score for each 

category of interpretations (i.e., referent-unit interpretation, original-unit interpretation, and other 

interpretation) was calculated by summing the points on all nine items (four from the Unifix 

Cube Task and five from the Bar Diagram Task at posttest) and dividing by the number of items 

(i.e., nine).  

Procedure 

Part one of the pretest was a 28-minute paper-and-pencil test delivered to the participants 

in their mathematics classrooms. The paper-and-pencil test was composed of the two prior 

knowledge tasks (Identify Fraction and Select Larger Fraction Tasks), the Division Test, and the 

Procedures Test. Participants were given one minute and a half to answer the Identify Fraction 

Task and one minute to complete the Select Larger Fraction Task. For the eight items on the 

Division Test, the researcher instructed the participants to turn the page to the next item every 

three minutes. Finally, the participants were given one minute and a half to work on the four 

items on the Procedures Test, which were all presented on one page.  

Part two of the pretest was delivered in an individual interview with each participant. The 

meetings were videotaped, but the camera was angled so that the participants’ faces were not 

visible. At the beginning of the interview, the researcher asked a few demographic questions to 

obtain general information about the participants, namely date of birth, gender, and 

race/ethnicity. Then, the participant was presented with the Division Explanation Task, the Bar 

Diagram Task, the Symbolic Task, and the Area Model Task. Once the participant completed 

each item, the researcher asked the participant to explain his or her reasoning out loud, using 

specific prompts, described below.   
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After these three tasks, the researcher showed the student the instructional intervention 

video associated with his or her condition. The intervention was presented on an iPad, and the 

researcher did not provide feedback. Once the participant had watched the video, the iPad was 

removed. After the participants viewed the video, the researcher administered a 30-minute 

posttest beginning with the Unifix Cube Task. This was followed by a series of tasks that were 

isomorphic to six of the tasks given at pretest. These isomorphic tasks included the Bar Diagram 

Task, the Symbolic Task, the Area Model Task, the Division Explanation Task, the Division 

Test, and the Procedures Test.  

There were no time limits placed on any of the tasks delivered individually to the 

participants. On all individually-delivered assessments, participants were prompted to explain 

their reasoning, except for the isomorphic Division and Procedures Tests. Prompts included 

questions such as: “How did you figure this out?” or “Can you explain to me how you got your 

answer?” If the participant appeared frustrated or tired, the researcher directed the participant to 

the next task. If the participant provided very clear explanations and did not appear to need 

additional prompts, the researcher said, “You explained yourself clearly. I understand how you 

figured that out,” and continued to the next task.  
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Results 

The main objective of my study was to investigate changes in children’s thinking about 

fractions following an intervention on fraction division. My second objective was to determine 

the effects of making the links between unitizing concepts and measurement fraction division 

during instruction explicit. The students were randomly assigned to three instructional 

conditions: (a) the explicit-links condition, where the links between both analogs were directly 

stated and supported by the instructor, (b) the implicit-links condition, where children needed to 

make their own links between unitizing and fraction division concepts, and finally, (c) a control 

condition, in which children were only presented with a fraction division problem and no 

unitizing. In this results section, I discuss intervention effects on participants’ conceptual 

understanding of fraction division, their interpretations of the fractional remainder, and their 

understanding of unitizing.  

Fifty-one participants were randomly assigned to the three conditions, resulting in 17 

participants per condition. Because of an administrative error, two participants had missing data 

on the Fraction Division Explanation Task at posttest, which meant that for this specific task, the 

implicit- and explicit-conditions had a total of 16 participants. In the Bar Diagram and Unifix 

Cube Tasks combined (also referred to as the Remainder Tasks), one participant’s data from the 

explicit-links condition were excluded from the analysis because the participant used a procedure 

to describe the remainder, making it impossible to determine what conceptual interpretation he 

was using. This meant that for this specific task, the explicit-links condition had a total of 16 

participants.  
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Condition Differences Prior to the Intervention 

 To determine equivalency of groups at pretest, I administered two prior knowledge 

measures before the intervention: the Identify Fraction Task and Select Larger Fraction Task. 

Mean scores and standard deviations on both prior knowledge measures by condition are 

presented in Table 5. To compare the performance in each condition on the Identify Fraction 

Task, I ran a one-way ANOVA, with condition as the between groups factor (explicit-links, 

implicit-links, control). I found no condition differences on the participants’ performance on the 

task, F(2, 48) = 1.18, p = .32. These data should be interpreted with caution because of the 

apparent ceiling effect in each condition (see Table 5). Regarding the Select Larger Fraction 

Task, another one-way ANOVA, where the between groups factor was the condition (explicit-

links, implicit-links, control), was run to determine whether there were condition differences. No 

differences were observed, F(2, 48) = 1.71, p = .19. In short, it appears that there is no significant 

difference between all three conditions on either of the two prior knowledge measures. 

Table 5 

Means and Standard Deviations of the Scores on the Identify Fraction and Select Larger 

Fraction Tasks by Condition 

 Explicit-Links Implicit-Links Control 

 (n = 17) (n = 17) (n = 17) 

Measures M SD M SD M SD 

Identify Fraction .94 .21 .99 .03 .91 .16 

Select Larger Fraction .81 .26 .90 .18 .74 .31 

 



	 56 

The intercorrelations between the two prior knowledge tasks and all outcome measures at 

posttest are presented in Table 6. The Select Larger Fraction Task was not correlated with any of 

the measures at posttest. Four individual significant correlations were observed between the 

outcomes and the Identify Fraction Task. Performance on the Identify Fraction Task and the 

Division Test in the implicit-links condition were negatively correlated. The Identify Fraction 

Task was negatively correlated with Other interpretations of the remainder on the Bar Diagram 

and Unifix Cube Tasks at posttest in both the explicit-links and control conditions. Also, the 

Identify Fraction Task was negatively correlated with the Other strategy on the Area Model Task 

in the control condition. All correlations between performance on the Identify Fraction Task and 

Other codes indicate that the better able students were in identifying a fraction prior to the 

intervention, the fewer instances of lower-level codes were observed at posttest. Both prior 

knowledge measures were dropped from further analyses because they did not consistently 

predict performance in all conditions on any of the outcome measures used in this study.  
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Table 6 

Correlations between the Identify Fraction and Select Larger Fraction Tasks and Posttest Tasks 

by Condition 

Measures  Explicit-

Links 

Implicit-

Links 

Control 

Identify Fraction     

Division Test  .25 -.49* -.11 

Procedures Test  .28 -.12 .25 

Remainder Tasks Referent-Unit 

Interpretation 

.33 -.33 .34 

 Original-Unit 

Interpretation 

.19 .31 .23 

 Other Interpretation -.56* .13 -.53* 

Symbolic Unitizing 

Task 

Composing/ 

Decomposing 

.13 .12 .21 

 Correct Procedure .20 -.24 .24 

 Incorrect Procedure -.29 .16 -.43 

Area Model Unitizing 

Task 

Composing/ 

Decomposing 

.17 -.41 .22 

 Joining Strategy -.27 .21 .26 

 Other Strategies .13 .13 -.88** 

Select Larger Fraction     

Division Test  .03 .27 -.20 
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Procedures Test  .14 .24 -.11 

Remainder Tasks Referent-Unit 

Interpretation 

.07 -.17 .39 

 Original-Unit 

Interpretation 

.43 .09 -.36 

 Other Interpretation -.39 -.44 -.23 

Symbolic Unitizing 

Task 

Composing/ 

Decomposing 

.26 .28 .28 

 Correct Procedure .08 .12 -.23 

 Incorrect Procedure -.28 -.37 -.03 

Area Model Unitizing 

Task 

Composing/ 

Decomposing 

.22 .26 -.01 

 Joining Strategy -.32 -.33 .23 

 Other Strategies .14 .10 -.40 

*p < .05. ** p < .001. 
 
Intervention Effects on Conceptual Understanding of Fraction Division Concepts 

 In the following section, the effects of the intervention on participants’ conceptual 

knowledge of fraction division are presented. More specifically, I ran analyses of covariance to 

test for differences between conditions following the intervention in participants’ thinking about 

(a) fraction division, as assessed using the Division Test and on the Fraction Division 

Explanation Task, (b) fractional remainders, as assessed using both the Bar Diagram Task and 

Unifix Cube Task combined, and, (c) unitizing concepts, as assessed using the Symbolic Task 

and Area Model Task. Exact McNemar tests were also run to determine changes in each 
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condition from pretest to posttest in the proportion of participants explaining division using 

fractions and changes in proportions of participants using the measurement interpretation to 

explain division. McNemar tests were also run to test for changes in the ways children thought 

about remainders by examining the proportions of participants in the Integrated Thinking and the 

Referent-Thinking profiles from pretest to posttest.  

Conceptual Understanding of Fraction Division  

Division Test. The division test was a multiple-choice written test in which participants 

were asked to select the word problem that best represented the structure of the division equation 

provided. Means and standard deviations of the Division Test scores at pretest and posttest as a 

function of condition are presented in Table 7.  

 

Table 7 

Mean Scores and Standard Deviations on the Division Test at Pretest and Posttest by Condition 

 Explicit-Links Implicit-Links Control 

 (n = 17) (n = 17)  (n = 17)  

Measure M SD M SD M SD 

Pretest .46 .20 .39 .26 .33 .18 

Posttest .34 .25 .45 .29 .43 .24 

 

Two separate analyses of covariance were run. The first was a one-way ANCOVA using 

mean scores on the Division Test at posttest as the dependent measure with condition as the 

between-groups factor (explicit-links, implicit-links, control) and the mean scores at pretest as 

the covariate. No significant effect of condition was found on the Division Test scores at 
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posttest, F(2, 47) = 1.39, p = .26. The second analysis was a 3 (condition) x 2 (division type) 

ANCOVA with condition as the between groups factor and division type (measurement, partitive 

division) as the repeated measures factor, using pretest scores on the measurement division and 

partitive division items as covariates. Again, no effects of condition, F(2, 46) = 1.31, p = .28 or 

division type were found, F(1, 46) = 0.97, p = .33, nor was the condition by division type 

interaction significant, F(2, 46) = 0.46, p = .63. In short, no condition differences were observed 

in participants’ conceptual understanding of fraction division at posttest, when controlling for 

their understanding at pretest.  

Procedures Test. The Procedures Test was composed of two whole number division 

items and two fraction division items. Both types of division items had one item with a 

remainder and one without. Using this task, I tested for condition effects on students’ procedural 

knowledge of division following instruction. The mean scores and standard deviations on the 

Procedures Test at pretest and posttest as a function of condition are presented in Table 8.  

 

Table 8 

Mean Scores and Standard Deviations on the Procedures Test at Pretest and Posttest by 

Condition 

 Explicit-Links Implicit-Links Control 

 (n = 17) (n = 17) (n = 17) 

Measure M SD M SD M SD 

Pretest .31 .25 .34 .18 .26 .30 

Posttest .32 .30 .38 .25 .37 .28 
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An ANCOVA was conducted to test for group differences at posttest on the Procedures 

Test, using the pretest scores as the covariate. No condition effects were found, F(2, 47) = 0.51, 

p = .60, which means that there were no differences between conditions at posttest on students’ 

procedural knowledge of division when their pretest knowledge on the task was taken into 

account.  

Division Explanation Task. On the Division Explanation Task, participants were asked 

to explain verbally what it means to divide something by a fraction. This task allowed me to 

assess changes in students’ knowledge of fraction division from pretest to posttest. The 

participants’ explanations of division were evaluated in two ways. I first looked at the types of 

quantitative or non-quantitative references made by the participants when explaining division 

and then I analyzed the type of interpretation participants referred to when discussing division 

(e.g., measurement or partitive division).  

Changes in participants’ quantitative and non-quantitative division interpretations. 

First, I assessed students’ interpretations of division using specific references to quantities (i.e., 

division explained using fractions, division explained using whole numbers, or division 

explained using general unspecified quantities). The proportions of participants in each condition 

who made references to quantities in their explanations of division (fractions, whole numbers, 

general quantities, or non-quantitative responses) at pretest and posttest are presented in Table 9.  
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Table 9 

Proportion of Participants in Each Condition at Pretest and Posttest Who Interpreted Division 

in Quantitative and Non-Quantitative Ways on the Fraction Division Explanation Task   

  Fractions  Whole 

Numbers  

General 

Quantities 

Non-

Quantitative 

Condition      

Explicit-Links 

(n = 16) 

Pretest 

Posttest 

0.06 

0.25 

0.06 

0.06 

0.13 

0 

0.75 

0.69 

 

Implicit-Links 

(n = 16) 

Pretest 

Posttesta 

0.06 

0.31 

0.06 

0 

0 

0.06 

0.88 

0.62 

 

Control 

(n = 17) 

Pretesta 

Posttest 

0 

0.12 

0.12 

0.06 

0.12 

0.24 

0.77 

0.58 

a Total proportion in each identified row is 0.01 more or less than 1 because of rounding. 

As seen in Table 9, increases in participants’ references to fractions are observed across 

conditions. In the explicit-links condition, 25% of the participants referred to fractions in their 

explanations of what it means to divide at posttest compared to 6% at pretest, which amounts to 

an increase of 19 percentage points. In the implicit-links condition, 31% of participants referred 

to fractions at posttest, when only 6% did at pretest, amounting to an increase of 25 percentage 

points. Finally, an increase in participants’ mentions of fraction division was also observed in the 

control condition: At posttest, 12% of participants mentioned fractions in their explanations 

compared to no mention at pretest. Another consistent change across conditions was a decrease 
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in the number of participants who provided non-quantitative fraction division explanations from 

pretest to posttest. Also, it appears that whole numbers were used infrequently across conditions 

at both time points with little change from pretest and posttest. Changes in participants’ thinking 

about fraction division can be summarized by an increase in the mention of fractions and a 

decrease in non-quantitative ways of explaining division. 

Three exact McNemar tests were run, one per condition, to determine whether the 

proportions of participants who interpreted division using fractions changed from pretest to 

posttest. The proportion of participants in the analogy-based conditions who interpreted division 

using fractions did not significantly change from pretest to posttest (explicit-links condition, p = 

.25, and implicit-links condition, p = .13). There was also no significant change in the 

proportions of participants in the control condition who interpreted division using fractions from 

pretest to posttest (p = .50). In conclusion, the change in participants’ use of fractions to explain 

division at posttest compared to pretest was not significant in any of the three conditions.   

Changes in participants’ references to division types in their division explanations.  

Participants’ responses to the Fraction Division Explanation Task were coded according 

to whether they referred to measurement or partitive interpretations in their explanations. I also 

placed responses in which neither the measurement nor the partitive interpretation was clearly 

identified into a General category, and responses in which participants only referred to elements 

of sharing or splitting into a Splitting/Grouping category. The proportions of participants whose 

responses reflected these categories when explaining the meaning of division at pretest and 

posttest are presented in Table 10.  
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Table 10 

Proportion of Participants Who Explained Fraction Division by Referring to Division Types on 

the Fraction Division Explanation Task at Pretest and Posttest by Condition 

  Measurement Partitive Measurement 

and Partitive 

General Splitting/ 

Grouping 

Other 

Condition        

Explicit-

Links 

(n = 16) 

Pretesta 

Posttest 

0.13 

0.25 

0.13 

0.06 

0 

0 

0 

0 

 

0.19 

0.19 

0.56 

0.50 

Implicit-

Links 

(n = 16) 

Pretest 

Posttesta 

0.06 

0.31 

0 

0 

0 

0.06 

0.06 

0 

 

0.44 

0.06 

0.44 

0.56 

Control 

(n = 17) 

Pretesta 

Posttesta 

0.06 

0.18 

0.12 

0.24 

0 

0 

0.06 

0 

0.18 

0.06 

0.59 

0.53 

a Total proportion in each identified row is 0.01 more or less than 1 because of rounding.  

As seen in Table 10, the only change that occurred in participants’ interpretations of 

division that is consistent across conditions is an increase in measurement division 

interpretations. In the implicit-links condition, 31% of the participants referred to measurement 

division when defining division at posttest compared to 6% at pretest, which amounts to an 

increase of 25 percentage points. There was an increase of 12 percentage points for both the 

explicit-links condition (13% at pretest and 25% at posttest) and the control condition (6% at 

pretest and 18% at posttest). There was only one participant in the implicit-links condition at 

posttest who interpreted division using both the measurement and partitive division 
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interpretation. The largest observed change was the proportion of participants who referred to 

splitting or grouping in their explanations in the implicit-links condition at posttest (6%) when 

compared to at pretest (44%), which amounts to a decrease of 38 percentage points. In short, an 

increase in measurement division interpretations was observed across conditions following the 

intervention.  

Three exact McNemar tests, one per condition, were run to determine whether the 

proportion of participants who explained division with the measurement interpretation changed 

from pretest to posttest. Proportions of participants in the analogy-based conditions who referred 

to measurement division on the Fraction Division Explanation Task did not change significantly 

from pretest to posttest (explicit-links conditions, p = .63, and implicit-links condition, p = .13), 

and neither did the proportions of participants in the control condition (p = .63). In short, no 

changes in measurement thinking about division were observed in any of the conditions 

following intervention.  

Interpretations of the Fractional Remainder 

 Participants’ interpretations of the fractional remainder were tested after the intervention 

using two tasks: the Bar Diagram Task and the Unifix Cube Task. Both tasks consisted of 

fraction division problems solved by a fictitious student using bar diagrams on the Bar Diagram 

Task and Unifix cubes on the Unifix Cube Task. The researcher asked the participants to 

interpret the remainder of each problem because it was left uninterpreted in the solution by the 

fictitious student.  

Bar Diagram and Unifix Cube Tasks. Participants’ interpretations of the fractional 

remainder were identified at pretest using the Bar Diagram Task and at posttest using their 

combined performance on the Unifix Cube Task and an isomorphic version of the Bar Diagram 



	 66 

Task. The students’ remainder interpretations were classified into three general categories: 

referent-unit thinking, original-unit thinking, and other thinking. Three analyses of covariance, 

one per remainder interpretation category, were run to determine whether there were differences 

in thinking about the remainder at posttest, considering their pretest knowledge of the remainder 

as covariate. The mean scores and standard deviations of the Referent score, the Original score 

and the Other score on the Bar Diagram Task at pretest and the Bar Diagram and Unifix Cube 

Tasks combined at posttest are presented in Table 11.  

 

Table 11 

Mean and Standard Deviations of the Referent Score, Original Score and Other Score on the Bar 

Diagram and Unifix Cube Tasks at Pretest and Posttest by Condition  

 Explicit-Links Implicit-Links Control 

 (n = 16) (n = 17) (n = 17) 

Score M SD Ma SD Ma SD 

Referent        

Pretest .17 .20 .26 .29 .24 .27 

Posttest .60 .40 .49 .40 .56 .42 

Original        

Pretest .25 .30 .29 .28 .10 .20 

Posttest .15 .21 .43 .36 .10 .22 

Other       

Pretest .58 .31 .44 .31 .66 .36 

Posttest .25 .30 .07 .14 .33 .37 
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a Mean score totals for the implicit-links condition within pretest and within posttest are 0.01 less 

than 1 because of rounding. The mean score totals for the control condition within posttest is also 

0.01 less than 1 because of rounding.  

 
Referent-unit interpretations of the fractional remainder. A one-way analysis of 

covariance was run, where the dependent measure was the Referent score at posttest and the 

covariate was the corresponding score at pretest. No significant condition effect was found, F(2, 

46) = 0.51, p = .61, which means that there were no differences among conditions at posttest in 

students’ use of the referent unit to interpret the remainder when their pretest interpretations were 

taken into account.  

Original-unit interpretations of the fractional remainder. A one-way ANCOVA was 

run to test for an effect of condition at posttest. The dependent measure was the Original score at 

posttest and the covariate was the corresponding score at pretest. Controlling for original-unit 

thinking at pretest, the ANCOVA revealed a significant effect of condition, F(2, 46) = 5.82 p = 

.006. Post hoc comparisons with Bonferroni corrections revealed a significant difference 

between the implicit-links condition and the control condition, t(32) = 3.04, p = .01, as well as 

between the implicit-links condition and the explicit-links condition, t(31) =  2.85, p = .02. There 

were no differences between the explicit-links condition and the control condition, t(32) = 0.25, 

p = 0.99. In short, these results revealed that participants in the implicit-links condition 

interpreted the remainder using the original unit more often than participants in the explicit-links 

and control conditions, who did not differ from each other.  

Other interpretations of the fractional remainder. A one-way ANCOVA, where the 

dependent measure was the Other score at posttest and the covariate was their corresponding 

score at pretest, indicated no condition effects, F(2, 46) = 2.18, p = .12. This means that there 

were no differences between the conditions in participants’ use of units other than the referent 
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unit or original unit to interpret the remainder at posttest, when taking their pretest interpretations 

into account. 

Changes in thinking about the fractional remainder. Having observed condition 

differences at posttest in participants’ thinking about the original unit, I decided to explore 

whether there were qualitative differences in the ways participants interpreted remainders across 

items on the Bar Diagram Task at pretest and the Unifix Cubes and Bar Diagram Task 

(combined) at posttest. Did they always interpret the remainder using the same unit on all items, 

did they use the referent unit on one item and the original unit on another, or did they use the 

referent and original units simultaneously on one item when interpreting the remainder?  

The participants were placed in profiles based on how they interpreted remainders across 

all items at pretest and again across all items at posttest. The Integrated Thinking profile was 

defined by responses where the remainder was identified using both the original and referent 

units on at least one item on a task. For example, a participant could say “This is ½ of the group 

of 2/5, so it is also 1/5.” In this case, the participant used the referent unit to interpret the 

remaining piece by saying that it is half of 2/5, but also made a statement that the remainder is at 

the same time 1/5 of the original unit. The Separate Thinking profile was also based on both 

original and referent unit thinking, but only if they occurred on separate items on each task. For 

instance, the remainder could have been interpreted by a participant using the referent unit on the 

first item and the original unit on the second item. The Referent-Only Thinking profile described 

participants who interpreted the remainder using the referent unit on at least one item, without 

referring to the original unit in their interpretations on any other items. The Original-Only 

Thinking profile included participants who interpreted the remainder using the original unit on at 

least one item, without using the referent unit on any of the other items on the task. Finally, the 
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Other Thinking profile was characterized if no remainder on any of the items was interpreted 

using the referent or original units. The proportions of participants in each profile as a function 

of condition are presented in Table 12. 

 

Table 12 

Proportion of Participants in the Integrated Thinking, Separate Thinking, Referent-Only 

Thinking, Original-Only Thinking, and Other Thinking Profiles within each Condition at Pretest 

and Posttest 

  Integrated Separate Referent-

Only 

Original-

Only 

Other 

Condition       

Explicit-Links 

(n = 16) 

Pretest 

Posttest 

0.06 

0.25 

0.13 

0.25 

0.31 

0.44 

0.31 

0.06 

 

0.19 

0 

Implicit-Links 

(n = 16) 

Pretest 

Posttesta 

0.29 

0.71 

0.12 

0.18 

0.18 

0.12 

0.29 

0 

 

0.12 

0 

Control 

(n = 17) 

Pretest 

Posttesta 

0 

0.24 

0.29 

0.12 

0.24 

0.53 

0 

0.12 

0.47 

0 

a Total proportion in the row is 0.01 more than one because of rounding. 

As seen in Table 12, an increase in participants’ Integrated Thinking from pretest to 

posttest is observed in all three conditions. The largest change is observed in the implicit-links 

condition: At pretest, 29% of participants were in the Integrated Thinking profile and 71% at 
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posttest, indicating an increase of 42 percentage points. In the explicit-links condition, 25% of 

the participants were placed into the Integrated Thinking profile at posttest compared to 6% at 

pretest, which amounts to an increase of 19 percentage points. In the control condition, there 

were no participants in this profile at pretest and at posttest 24% of participants demonstrated 

Integrated Thinking. There were also decreases in the number of participants in the Other 

Thinking profile from pretest to posttest in all conditions. In fact, across all condition, there were 

no participants in the Other Thinking profile at posttest, meaning that they demonstrated more 

conceptually-appropriate thinking after the intervention.  

Six exact McNemar tests were run to determine whether there were significant changes in 

the proportions of participants in the Integrated Thinking and Referent-Only Thinking profiles 

between pretest and posttest. These two profiles were identified for further analysis because the 

Integrated Thinking profile demonstrated the highest flexibility of thinking about the remainder. 

Participants in this profile were able to think of the remainder using two units simultaneously, 

which very closely resembles the process of regrouping in unitizing. I also focused on the 

Referent-Only Thinking profile because using the referent unit to interpret a remainder does lead 

to the correct final answer when dividing, making it the most appropriate unit to use when 

performing a division operation.  

The first three McNemar tests, one per condition, were run to determine whether there 

were changes in the proportion of participants in the Integrated Thinking profile following 

intervention. No significant change in the proportion of participants using Integrated Thinking 

from pretest to posttest was observed in the explicit-links condition (p = .38). In the implicit-

links conditions, no differences were seen either (p = 0.07). There were also no significant 
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differences in the proportion of participants reflecting Integrated Thinking at posttest in the 

control condition when compared to pretest proportions (p = 0.13).  

A second set of McNemar tests was run to determine whether the proportions of 

participants in the Referent-Only Thinking profile changed from pretest to posttest in each 

condition. No significant changes in the proportion of participants using Referent-Only Thinking 

from pretest to posttest were observed in the implicit-links condition (p = 0.99) nor in the 

explicit-links condition (p = 0.73). No pretest to posttest differences were noted in the control 

group either (p = 0.13). In short, there were no significant changes in the proportions of 

participants in the Referent-Only Thinking profile following the intervention in any of the three 

conditions.  

Understanding of Unitizing Concepts 

In this section, participants’ use of unitizing concepts when comparing two fractional 

quantities is discussed. Two tasks, each using different representations of fractions, were used to 

assess this: the Symbolic Task and the Area Model Task. Participants’ strategies for comparing 

both fractional amounts are analysed at posttest, taking their strategies at pretest into account.  

Symbolic Task. Participants’ strategies for comparing fractions on the Symbolic Task 

were placed in one of three categories: (a) composing and decomposing wholes with unit shift, 

(b) using a correct procedure, and (c) using an incorrect procedure. The mean and standard 

deviations of the Composing/Decomposing score, Correct Procedure score, and Incorrect 

Procedure score on the Symbolic Task at pretest and posttest as a function of condition are 

presented in Table 13.  
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Table 13 

Mean and Standard Deviations of the Composing/Decomposing Score, Correct Procedure Score, 

and Incorrect Procedure Score on the Symbolic Task at Pretest and Posttest by Condition  

  Explicit-Links Implicit-Links Control 

  (n = 17) (n = 17) (n = 17) 

Interpretations  M SD M SD Ma SD 

Composing/Decomposing 

 

Pretest 

Posttest 

.18 

.21 

.25 

.40 

.06 

.18 

.24 

.39 

.26 

.26 

.40 

.20 

Correct Procedure Pretest .32 .39 .59 .48 .32 .39 

 Posttest .35 .46 .53 .51 .47 .45 

Incorrect Procedure Pretest .50 .47 .35 .46 .41 .48 

 Posttest .44 .50 .29 .47 .26 .44 

a Mean score totals for the control condition within pretest and within posttest are 0.01 less than 1 

because of rounding.  

Three one-way analyses of covariance were run to determine whether the participants’ 

thinking about unitizing varied by condition after the intervention. The first ANCOVA that was 

run for this task had the Composing/Decomposing score at posttest as the dependent variable and 

the corresponding pretest score as covariate. No condition effects were found, F(2,47) = 0.17, p 

= .84. The second one-way ANCOVA had as dependent measure the Correct Procedure score at 

posttest, with the corresponding pretest score as covariate. Again, no condition effects were 

found, F(2, 47) = 0.42, p = .66. The third ANCOVA, where the dependent measure was the 

Incorrect Procedure score at posttest and the covariate was the corresponding score at pretest, 

revealed once more no condition effects, F(2, 47) = 0.54, p = .58. To conclude, no condition 
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effects were found for any response category on the Symbolic Task, when taking into 

consideration corresponding performance at pretest. 

Area Model Task. The final set of tests were run on the Area Model Task. The 

participants’ answers on this task were coded based on whether they composed or decomposed 

wholes using a unit shift, joined areas without re-unitizing, or used other strategies. The means 

and standard deviations for the Compose/Decompose score, the Joining Areas score, and the 

Other Strategies score on the Area Model Task as a function of condition at pretest and posttest 

are presented in Table 14. 

Table 14 

Means and Standard Deviations of the Composing/Decomposing Score, Joining Areas Score, 

and Other Strategies Score on the Area Model Task at Pretest and Posttest by Condition  

  Explicit-Links Implicit-Links Control 

  (n = 17) (n = 17) (n = 17) 

Score  M SD M SD Ma SD 

Composing/Decomposing  

 

Pretest 

Posttest 

.18 

.26 

.30 

.40 

.21 

.32 

.40 

.43 

.29 

.41 

.40 

.44 

Joining Areas Pretest .50 .43 .53 .48 .56 .43 

 Posttest .56 .43 .47 .45 .53 .45 

Other Strategies Pretest .32 .47 .26 .44 .14 .29 

 Posttest .18 .35 .21 .40 .06 .24 

a Mean score totals for the control condition within pretest are 0.01 less than 1 because of 
rounding.  
 

Three one-way analyses of covariance were run to determine whether participants’ 

strategies for solving the Area Model Task varied at posttest by condition. The first ANCOVA 
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was run to test for condition effects in participants’ use of composing or decomposing wholes 

with a unit shift at posttest. This ANCOVA had as dependent measure the 

Composing/Decomposing score at posttest with the corresponding pretest score as covariate. No 

condition effects were found, F(2, 47) = 0.22, p = .81. The second ANCOVA, testing for 

differences in condition in participants’ use of joining areas without a unit shift, had as 

dependent measure the Joining Areas score at posttest and the corresponding pretest score as 

covariate. Again, no condition effects were observed, F(2, 47) = 0.33, p = .72. The final 

ANCOVA had as dependent measure the Other Strategies score at posttest with the 

corresponding pretest score as covariate. No condition effects were found, F(2, 47) = 0.56, p = 

.58. In short, no condition differences were found following intervention for 

composing/decomposing, joining areas, or other strategies when taking into account the pretest 

scores for each of these strategies. This suggests that there were no differences in unitizing 

understanding, demonstrated through the composing/decomposing with unit shift, following the 

intervention between the three conditions.  
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Discussion 

The present study examined seventh-graders’ understanding of fraction division concepts, 

following instruction using an analogy of unitizing and measurement division. The first objective 

of the study was to determine whether there would be condition differences at posttest in 

students’ understanding of fraction division, fractional remainders, and unitizing concepts. The 

extent to which analogies should be explicitly supported by the teacher during instruction was 

investigated by looking at the effects of an analogy in which the links between both analogs were 

kept implicit and by looking at the effects of an analogy in which the links between analogs were 

made explicit by the teacher. The second objective was to determine the nature of any changes 

that occurred in students’ thinking about these three fractional concepts (fraction division, 

fractional remainders, and unitizing) from pretest to posttest and whether there were condition 

differences in the nature of these changes. I hypothesized that there would be posttest differences 

between conditions on all fractional concepts when taking their corresponding pretest scores into 

consideration. I made the prediction that both analogy conditions would differ from the control 

condition on all measures at posttest, and that the students’ performance at posttest in the 

explicit-links condition would be significantly higher than those in the implicit-links condition.  

Following the pretest measures, participants were presented with a video-recorded 

intervention. They were randomly assigned to one of three conditions. In the explicit-links 

condition, participants received instruction on unitizing and fraction division, in which the 

similarities between both concepts were explicitly stated and emphasized by the teacher using 

cognitive supports, such as gestures, spatial cues, and relational language. The implicit-links 

condition had the same instruction on unitizing and fraction division, but the connections 

between both analogous concepts were left implicit. The control condition consisted of 
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presenting the same fraction division two times without an analogy being present to ensure the 

same amount of instruction as the other two conditions. Following the intervention, I 

administered posttest tasks to measure participants’ interpretations of remainders (the Unifix 

Cube Task and the Bar Diagram Task), their understanding of unitizing (the Symbolic Task and 

the Area Model Task), and their understanding of fraction division (Division Explanation Task, 

Division Test, and Procedures Test).  

The analysis of students’ prior knowledge, as indicated in the results section, did not 

reveal any condition differences. Because of the apparent ceiling effect, the Identify Fraction 

Task may not have been a suitable measure of students’ conceptual understanding of part-whole 

interpretations of fractions. In addition, the Select Larger Fraction Task, intended to measure 

conceptual understanding of symbolic representations of fractions, was not correlated with any 

of the posttest measures. One might expect this prior knowledge measure to have been at least 

correlated to the Symbolic Task, on which students were asked to compare two fractional 

quantities represented in symbols. Because that was not the case, it brings into question whether 

the Select Larger Fraction Task itself was sensitive enough to measure what it was designed to 

measure.  

Contrary to my predictions, there were no significant differences following the 

intervention between the conditions in students’ conceptual understanding of division, as 

assessed by the Division Test and Fraction Division Explanation Task. There were, however, 

some interesting qualitative findings regarding the Fraction Division Explanation Task. Although 

condition differences were not significant, seventh-graders, regardless of condition, struggled to 

explain the meaning of fraction division at posttest, which aligns with the research identifying 

fraction division as the most complex concept taught at the elementary level (Newton, 2008).  
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On the same task (Fraction Division Explanation), less than a quarter of all participants 

across conditions referred to fractions when explaining fraction division at posttest. The 

remaining participants resorted to other quantities (e.g., whole numbers) or simply attempted to 

explain division without putting it in a quantitative context. Only about a quarter of the 

participants referred to measurement division in their interpretation and few participants referred 

to partitive division interpretations of fraction division. More than half of participants across 

conditions mentioned other interpretations of fraction division (i.e., referring only to procedures 

when explaining division, defining multiplication or subtraction instead of division, referring to 

misconceptions about fractions, or providing vague and unclear explanations).   

My findings on students’ conceptions of fraction division contribute to the literature, as 

few studies have revealed the variety of interpretations that children use to describe it. Sidney, 

Thompson, and Rivera (2018) investigated the effects of different representations used to solve 

fraction division problems. They compared students’ performance using three different 

diagrams: number lines, rectangular areas, and circular areas. To identify the participants’ 

conceptual understanding of fraction division, Sidney and colleagues (2018) investigated the 

strategies participants used when solving the division problems to determine whether they held a 

measurement or partitive interpretation of division. All other categories were coded into a 

“neither” category. The authors found that children who completed fraction division problems 

using number lines demonstrated a more conceptual approach to solving fraction division 

problems when compared to participants using rectangular and circular areas to solve the same 

problems. Their study investigated children’s fraction division explanations using the 

measurement and partitive division approaches. My study contributes to the discussion on 

children’s knowledge of division because, to my knowledge, no one has described the variety of 
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different interpretations that students hold. I was able to reveal the nuances in students’ thinking 

by asking them to explain in their own words what division with fractions means. Coding all 

types of responses (e.g., general division interpretations, mentions of partitioning quantities) 

went beyond identifying whether they used measurement or partitive interpretations in their 

explanations (Sidney & Alibali, 2017; Sidney et al., 2018).  

Tirosh (2000) explained that the literature on children’s mistakes when dividing fractions 

places them into three categories: (a) incorrectly following the procedure (e.g., inverting the 

dividend instead of the divisor), (b) misconceptions about division (e.g., the belief that the 

quotient has to be smaller than the dividend), and (c) misconceptions about fractions and 

operation properties (e.g., not recognizing that a fraction is one quantity or the belief that 

division is commutative). I observed each of these error categories in my participants’ conceptual 

explanations as they attempted to define the meaning of dividing with fractions. The data 

demonstrated that students used procedural approaches to explain what it means to divide by a 

fraction and referred to misconceptions about the meaning of a fraction when talking about the 

division operation. The participants also confused division with fractions with other operations. 

For instance, in some cases, students described multiplication instead of division in their 

explanations (e.g., “I am looking for how much there will be if I have three groups of	&)”) and as 

a subtraction (e.g., “Dividing is like taking away a part from the whole”). In other cases, my data 

revealed that some participants did not attempt to describe division at all, but instead focused on 

the meaning of a fraction, often providing correct quotient, part-whole, or decimal interpretations 

of fractions.   

Seventh-graders’ interpretations of remainders were particularly interesting. Students 

produced a variety of interpretations for the remainder, mainly before the intervention. In fact, 
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my findings revealed a larger variety of remainder interpretations than was found in previous 

research (e.g., Sharp & Adams, 2002; Zembat, 2017). Aside from the tendency to view the 

remainder as part of the referent or original unit, I observed that students invented new, but 

inappropriate, units to quantify the remainder. These new units either made sense in the context 

of the problem (e.g., dividend as unit) or they did not (e.g., the number of groups of the divisor 

as unit). The larger variety of interpretations is perhaps a result of the external knowledge 

representations used to solve the fractions problems; had I used word problems instead, for 

example, the students’ responses may have been directed by the context of the problems, where 

fractional remainders are "grounded" in real-world contexts that can foster sense-making (Foster 

& Osana, 2018; Koedinger et al., 2008; Sharp & Welder, 2014; Zembat, 2017).  

Contrary to my predictions, there were no condition differences following the 

intervention in participants’ use of the referent unit when interpreting remainders, but differences 

were found in seventh-graders’ use of the original unit when interpreting remainders. It makes 

sense for students to think of the remainder using the original unit, because it is that unit that is 

initially used to represent the dividend and the divisor. In the context of 1 divided by 2/3, for 

example, it is not inaccurate to say that the remainder is 1/3 of the original unit. One must make 

the unit shift to provide a correct answer to the division equation, however. An interpretation of 

the remainder using the original unit would not be mathematically incorrect, but it would not 

reflect a completed division operation. After the intervention, I observed the students in the 

implicit-links condition refer to the original unit more often than students in the other two 

conditions. Similar to the results of Sidney and Alibali (2017b), when students' prior knowledge 

of unitizing is activated, which may have occurred in the implicit-links condition because of the 

priming theory (Leech et al., 2008), students may have been prompted to make their own 
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connections between unitizing and fraction division concepts. Sidney and Alibali found that 

participants in the implicit-links condition outperformed participants from the explicit-links 

condition on fraction division when whole number division was the source analog. The 

participants did not require the experimenter to make the links explicit between both concepts to 

develop significantly higher conceptual understanding than participants in the explicit-links 

condition.  

I argue that it may have been beneficial for students in the implicit-links condition to 

construct their own mappings between unitizing and fraction division concepts. The instruction 

in the explicit-links condition that included clear verbal descriptions of the links between both 

concepts and provided a number of other cognitive supports may have restricted the students’ 

thinking. In fact, the students in the control condition and the explicit-links condition, in which 

direct explanations and explicit supports were provided during instruction, either understood the 

unit shift (i.e., referred to the referent unit) or resorted to incorrect interpretations. They did not 

consider the original unit as a way of thinking about the remainder.  

The effects of direct instruction on students’ exploration was empirically tested by 

Bonawitz and colleagues (2011). In their study, the instructor showed children four to six years-

old an unfamiliar toy that had four separate functions. The children were given the toy to play 

with and were assessed on how many of the four functions they would discover by interacting 

with the toy. In the Pedagogical condition, the experimenter showed the child only one of the 

functions and made no explicit statements about the three additional functions before giving the 

toy to the child. In the Interrupted condition, the experimenter also showed one of the functions 

of the toy to the participating child, but the experimenter pretended to stop her explanations 

suddenly to go take care of something she forgot to do, creating the illusion that she had not 
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finished talking about the toy before giving it to the child. In the Naïve condition, the 

experimenter pretended to have just found the toy. The experimenter pretended to accidentally 

trigger the function (a squeaking sound), and after making a statement as if she was surprised by 

the function, she repeated the action before giving the toy to the child. In the Baseline condition, 

the experimenter did not introduce any of the functions of the toy before giving it to the child. 

The authors found children in the Pedagogical condition would spend less time exploring the toy, 

perform fewer actions on the toy, and ultimately discover fewer of the toy’s functions than 

children in any of the other three conditions. In short, when the examiner explicitly demonstrated 

a function of the toy, children showed constrained exploration efforts and discovered fewer 

functions of the toy.  

Although Bonawitz and colleagues (2011) did not directly test the effects of analogies, a 

similar process might have occurred in our study, where students from the explicit-links 

condition and the control condition, both of whom received direct instruction, were restricted 

from exploring other mathematically appropriate alternatives when interpreting the remainder. 

Bonawitz and colleagues (2011) explained this constrained exploration by theorizing that if a 

knowledgeable teacher shows that a function exists, the student assumes it exists. Similarly, if a 

knowledgeable teacher does not mention additional functions of the toy, students will assume 

that these additional functions do not exist. In the context of the present study, if a teacher makes 

a direct statement about interpreting the remainder using the referent unit, students may assume 

that no other interpretations are possible. Even if interpreting the remainder using the original 

unit is not ideal in the context of solving a division problem, it still reflects sophisticated, and not 

incorrect, thinking about the remainder relative to many of the other responses I observed.  
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I also found no differences in students’ use of unitizing to compare fractions at posttest, 

regardless of the representation used in the task to identify each pair of fractions. I observed that 

students used different strategies when comparing fractions in symbolic notation than when the 

fractions were represented with area models, however, the most notable observation was that the 

majority of students used a procedure, either appropriately or inappropriately, when working 

with fraction symbols. In this symbolic context, many students were unable to explain 

conceptually why two fractional amounts were the same or different, even after being prompted 

to think of another way to explain how the fractions compared. In contrast, the students did not 

use an algorithm when comparing fractional quantities represented with area models. In this 

case, more than half of the students regrouped the areas (i.e., the shaded rectangles) in such a 

way to show that the two fractions either were or were not equivalent. When students engaged in 

this regrouping process, however, it was most often without implementing a unit shift. These 

results might suggest that the task itself was not sensitive enough to measuring unitizing 

concepts because students did not need to use a new unit to solve the problem correctly.  

As mentioned in the literature review, unitizing is a concept that is central to dividing 

with fractions (Lamon, 2002; Thanheiser, 2009). However, few studies have measured children’s 

understanding of unitizing in the context of division (e.g., Lamon, 1996). Most studies have 

concentrated on preservice teachers’ or practicing teachers’ knowledge of division with fractions 

and the role units play in dividing quantities (e.g., Lamberg & Weist, 2015; Lee, 2017; Zembat, 

2017). Because little research on children’s understanding of unitizing exists, the Symbolic and 

Area Model Tasks were inspired by preservice teachers’ discussions in Tobias and colleagues 

(2015), who examined unit fractions and improper fractions. As mentioned above, I believe the 
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task I created was not the most effective at measuring unitizing because students found ways that 

were not related to unitizing to correctly compare the two fractional amounts.  

To create a more valid measure of unitizing knowledge, I would need to develop a task 

where the only mathematically correct way of solving it would involve a change of unit. One 

possibility would be to ask students to interpret a fractional amount using different units. For 

example, the researcher could ask students to measure or represent the quantity 3 #" using various 

units, such as 1, !", and )". To conclude the task, students might be asked to describe each 

unitizing action and explain whether the quantities are equal or not.  

Limitations, Educational Implications, and Future Research 

The present study is a contribution to the literature because it is the first to experimentally 

assess the effects of an intervention designed to augment students' conceptual knowledge of 

remainders in fraction division contexts. Nevertheless, there were limitations to the present 

study. First, the size of the sample was small. A larger sample would have yielded more power to 

the analyses, possibly revealing a greater number of significant results. The data were also 

collected closer to the end of the academic year (i.e., from mid-April to end of May), which 

made it difficult to control for the amount of instruction on fractions or rational numbers the 

students had received during the school year. 

Despite having used a strong experimental design, there were still weaknesses regarding 

methodology that should be addressed in future studies. The observed ceiling effects on the 

Identify Fraction Task suggests that the measure was too easy for the participants, thereby 

reducing variability. Furthermore, the task itself might not have measured participants’ 

conceptual understanding of part-whole representations of fractions, as I had originally intended. 

Participants could have counted the shaded versus not shaded areas of each area model without 
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truly understanding the relationship between the two areas. The validity of the Select Larger 

Fraction Task also comes into question. The fractions being compared were simple (e.g., !" and 

!
!.), which means that participants could have potentially used mental math to arrive at an answer 

(e.g., “!" when multiplied by && will give me &!., which is larger than !!.”), even within the one-

minute time limit. If this were the case, the task might have measured participants’ ability to use 

a mental math procedure to transform the pair of fractions into fractions with common 

denominators instead of their understanding of fractions represented symbolically. This could 

explain why the task was not correlated to any of the posttest measures. Siegler and Lortie-

Forgues (2015) used a different task to assess the conceptual understanding of fraction 

magnitudes of preservice teachers, middle school students, and university students. The 

participants were asked to place 10 fractions between zero and one and another set of 10 

fractions from zero to five on a number line to indicate the fractions’ relative magnitudes. The 

fractions were chosen in such a way that the participants would not be successful on the task by 

simply looking at the magnitudes of the numerators or denominators. Such a task might have 

been more suitable for measuring participants’ conceptual understanding of the symbolic 

representations of fractions.  

In addition, the Division Test limited my ability to assess students’ thinking because of 

its multiple-choice paper-and-pencil format. Because I chose to deliver the test in a whole group 

context, I was unable to determine what the students were thinking as they were choosing the 

answers: What did they truly understand when selecting the right answer? What aspects of a 

selected misconception were salient to them? A suggestion for future research would be to 

deliver the test in a one-on-one interview context. This would allow the researcher to ask each 

participant to explain why the word problem he or she selected reflected the given equation.  
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Another explanation for the nonsignificant results could have been that the instruction in 

the control condition was too similar to the instruction in both analogy conditions. The fraction 

division instruction in the control condition included similar vocabulary to the other two 

conditions (e.g., “here is another group of )#” when performing the division of four divided by )#). 

Even if there was no implicit or explicit connection to unitizing as a separate concept in the 

control group, the concept of unitizing inherent in division itself might have been too strongly 

emphasized for a condition in which no focus on unitizing was intended.  

Interpreting students’ thinking is an important skill for teaching professionals, as it 

informs them of where students might require scaffolding when they are learning and applying 

new mathematical concepts (Ball, Thames & Phelps, 2008; Carpenter, Fennema, Peterson, 

Chiang, & Loef, 1989). The findings of the present study are valuable to teaching professionals 

because the study provides teachers with a detailed and nuanced view of students’ remainder 

interpretations. The findings inform teaching professionals that students can interpret remainders 

using interpretations other than ones based in the original or referent units, as previous research 

has indicated. Teaching professionals could ask their students to explain mathematical concepts 

as a way of measuring their understanding, and identifying students’ misconceptions can help 

teachers develop appropriate instruction in response to their needs (Jacobs, Lamb, & Philipp, 

2010).  

The fact that students found it difficult to explain the meaning of dividing with fractions 

indicates that students need a stronger conceptual understanding of the operation itself, mirroring 

Ball’s (1990) findings of elementary and high school teachers’ conceptual understandings of 

division. Ball (1990) found that teachers struggled to select a correct word problem that best 

reflected a fraction division equation (a task similar to the Division Test). Furthermore, none of 
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the elementary school teachers from the sample could represent the division 1)# divided by !&  with 

an appropriate visual representation. Ball (1990) found that teachers struggled with 

understanding division itself, even outside of the context of dividing by fractions. She explained 

that they mostly referred to the partitive interpretation, making it difficult to interpret division 

with fractions, which is more easily represented with the measurement interpretation (Ervin, 

2017; Van de Walle et al., 2008).  

The results may also suggest that length models, such as the stacked cubes and bar 

diagrams used in the present study, are themselves conducive to aligning the concepts of 

unitizing and measurement division, regardless the type of instruction provided (see also Sidney 

et al., 2018). Osana, Blondin, Alibali, and Donovan (2018), for example, found that not all 

instructional representations offer the same affordances for children’s learning and transfer in 

mathematics (see also Belenky & Schalk, 2014). Additional research is needed to test the effects 

of different fraction representations on students’ learning of fraction division and how different 

representations interact with instructional support.  

Another educational contribution of the present study is the support for instruction that 

holds back providing direct explanations to students on the structural similarities of two analogs, 

such as unitizing and measurement fraction division. Students’ interpretations of the remainder 

using the referent unit in the implicit-links condition did not differ from those of students in the 

other conditions, but their interpretations using the original unit did. This could mean that the 

students were more free to explore when connections between both analogs are more implicit 

than explicit. In the direct instruction of fraction division (i.e., control group) or in the explicit-

links analogy condition, the distribution of students’ answers was more bimodal than in the 

implicit-links condition, with large proportions of students who either used the referent unit to 
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interpret the remainder on the one hand, or who interpreted the remainder using mathematically 

incorrect units or unclear statements on the other. Together, the results of the present study 

suggest that implicit analogies may be beneficial for students’ learning in the mathematics 

classroom, but more research would be needed to support this claim.  
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Appendix A 

Consent and Assent Forms  

Parental Consent Form 

 
 

INFORMATION AND CONSENT TO PARTICIPATE IN A RESEARCH STUDY 
 
Study Title: Understanding Fraction Division in the Seventh-Grade 

Researcher: Helena P. Osana 
Researcher’s Contact Information:  

helena.osana@concordia.ca 
514-848-2424 ext. 2543  
1455 de Maisonneuve Ouest  
Montréal, QC  
H3G 1M8 

 
Study Investigator: Anna Tomaszewski  
Study Investigator’s Contact Information: anna.tomaszewski@concordia.ca 
 
Source of funding for the study: Concordia University 
 
Your child is invited to participate in a research study about how students learn math. Your child has been 
asked to participate because he/she has entered grade 7 in September 2017. This form provides 
information about what participating would mean. Please read it carefully before deciding if you want 
your child to participate or not. If there is anything you do not understand, or if you want more 
information, please contact the researcher. 

 
A. PURPOSE 
 
The purpose of the research is to learn more about how children learn mathematics from different lessons, 
specifically related to fraction division.  
 
 
 
B. PROCEDURES 
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If you decide that your child may participate in this research, he/she will first be asked to solve some math 
problems on his/her own during a 20-minute activity in class. All participating students will complete this 
20-minute activity at the same time.  

Your child will also meet individually on one occasion with a research assistant within one week of the 
20-minute class activity. During this individual meeting, your child will solve a few math problems, then 
receive a brief mathematics lesson. After the lesson, your child will be asked to solve some additional 
problems on his/her own and to explain how he or she solved the problems. This meeting will be 
conducted in the school library and will last a maximum of one hour. The research assistant will be 
present with your child at all times during the interview, and the school library staff will also be 
present in the room.  

The research assistant would also like to videotape the conversations they have with your child about 
math only. This will help us better understand how children think about math problems. The focus of the 
recordings will be on your child’s hands only. His or her face will never be captured on tape. These 
video recordings will be used for research and training purposes only and will not be shared with anyone 
outside the research team. 

 
C. RISKS AND BENEFITS 
 
The direct benefit to your child is that he or she will practice solving math problems related to fraction 
division and will receive a one-on-one lesson with the research assistant about these math problems. The 
content is directly related to the mathematics curriculum your child is learning in school. 
 
Video recordings and other data will be collected for the study. To minimize the risk to participants and to 
maximize confidentiality, we will ensure that throughout the interview only your child’s hands are recorded 
and not their faces. Additionally, all recordings will be stored in Dr. Osana's locked laboratory on a 
password-protected device at all times.  
 
During the individual interviews, the risks are minimal. It is possible that your child gets bored during the 
individual interviews or gets frustrated because the math questions may be different from the ones he or 
she experiences in class. If at any point and for whatever reason your child does not want to continue 
participating, we will stop all activity and bring your child back to the classroom.  
 
D. CONFIDENTIALITY 
 
We will gather the following information as part of this research:  

- Your child’s responses on a 28-min paper-and-pencil test. 
- Videotaped interview (total 1 hour). Your child will solve some math problems, receive a math 

lesson, and solve some more math problems during the videotaped interview. 
- Your child’s age, gender, and ethnicity. 
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By allowing your child to participate, you agree to let the researchers have access to the collected 
information.  
 
We will not allow anyone to access the information, except people directly involved in conducting the 
research (H. Osana, A. Tomaszewski, M. Alibali (Professor at the University of Wisconsin-Madison, USA, 
collaborator on this project), and [name of research assistants – TBD]), and except as described in this form. 
Only H. Osana and A. Tomaszewski will have access to your child’s name. We will only use the information 
for the purposes of the research and training described in this form. 
 
To verify that the research is being conducted properly, regulatory authorities might examine the 
information gathered. By participating, you agree to let these authorities have access to the information.  
 
The information gathered will be kept strictly confidential. This means that the research team (i.e., H. 
Osana, A. Tomaszewski, and Research Assistants who will be hired to assist in the data collection) will 
know your child’s real identity, but it will not be disclosed. 
 
We will protect the information by keeping it on a password-protected computer in the research lab of H. 
Osana in the FG Building (FG 6.403) and in a locked filing cabinet in the same office. Only the research 
assistants on this project will have the password and the key to the filing cabinet. The office is kept locked 
at all times. 
 
We intend to publish the results of the research, but it will not be possible to identify your child in the 
published results. 
 
We will destroy the information five years after the last presentation or publication that is generated from 
this study. 
 
In certain situations we might be legally required to disclose the information your child provides. This 
includes situations where discoveries, such as child abuse or an imminent threat of serious harm to specific 
individuals, are uncovered as a result of our interactions. If this kind of situation arises, we will disclose the 
information as required by law, despite what is written in this form. 
 
E. CONDITIONS OF PARTICIPATION 
 
You do not have to agree for your child to participate in this research. It is purely your decision. If you do 
agree for your child to participate, he/she can stop at any time. You can also ask that your child’s 
information that was provided not be used, and your choice will be respected.  If you decide that you do 
not want us to use your child’s information, you must tell the researcher before June 15, 2018. 
 
We will tell you if we learn of anything that could affect your decision to stay in the research.  
 
There are no negative consequences for not participating, stopping in the middle, or asking us not to use 
your information.  
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We will not be able to offer you compensation if you are injured in this research. However, you are not 
waiving any legal right to compensation by signing this form. 
 
F. PARENTS’/GUARDIANS’ DECLARATION 
 
I have read and understood this form. I have had the chance to ask questions and any questions have been 
answered. I agree for my child to participate in this research under the conditions described. 
 
NAME (please print) __________________________________________________________ 
 
SIGNATURE  _______________________________________________________________ 
 
DATE  _______________________________________________________________ 
 
If you have questions about the scientific or scholarly aspects of this research, please contact Dr. Helena 
Osana at Concordia University, the Principal Investigator on the project. Her contact information is on page 
1 of this form.  
 
If you have concerns about ethical issues in this research, please contact the Manager, Research Ethics, 
Concordia University, 514.848.2424 ex. 7481 or oor.ethics@concordia.ca. 
 

Optional Permission:  

o  I give permission for non-identifiable portions of the videos of my child to be shown to educational 
or scientific audiences (e.g., in a scientific presentation, class, or teacher training).  
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Child Assent Form 

 
 

Research Study Title: Units and Fraction Division 

Researchers 

Dr. Helena Osana (helena.osana@concordia.ca)� 

Anna Tomaszewski (anna.tomaszewski@concordia.ca) 

What is this study about?  

This research study is being done to find out how lessons on fractions help people solve math 
problems. You are being asked if you want to be in this research study because you just started 
seventh grade.  

What will I need to do if I am in this study?  

If you choose to be in the study, this is what will happen. The researcher will give you some 
math problems to solve during a 20-minute period in the classroom. Everyone participating in 
the study will complete this first set of problems on their own but at the same time. You will then 
participate in an individual interview with me or one of my friends from the university. You will 
answer a few more math problems and then receive a short math lesson. After the lesson, you 
will be asked to solve some more math problems. The whole study will take about one hour.  

Can I stop being in the study?  

You may stop being in the study at any time, and there will be no penalty.  

Will anything negative happen to me if I am in the study?  

You may feel uncomfortable if you do not know how to solve some of the problems. We are not 
evaluating your performance. Instead, we are trying to understand how students think about 
fraction problems.  

What good things might happen to me if I am in the study?  
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You may learn new ways to solve fraction problems. This will help you in your math class at 
school. You may feel good knowing that what we find out from this study may help other people 
some day.  

Will anyone know I am in the study?  

We would like to videotape you as you solve the problems, so that we can remember what you 
did. I will only videotape your hands and not your face. My two teachers and I will look at the 
videos to understand your thinking. No one else will see those videos, unless you agree that we 
can show parts of the videos in a class or in a scientific presentation. Your name will not be 
written anywhere on your answer sheet. When we are finished with this study we will write a 
report about what we learned. This report will not include your name or that you were in the 
study.  

Who can I talk to about the study?  

If you have any questions about the study or any concerns, you can talk to your parent or 
guardian or anyone on the research team. You can contact the research team at 
helena.osana@concordia.ca or anna.tomaszewski@concordia.ca. 

What if I do not want to take part in this study? 

You don’t have to be in this study. It is up to you. You can decide whether or not you want to be 
in this study, and you can stop taking part if you want to. If you say okay now, but change your 
mind later, that’s okay too. Just tell one of us.  

Child Authorization:  

Your parent or guardian has to give permission for you to be in this study if you decide you want 
to take part.  

I have been told about the study and what it involves. I agree to be in this study. I have been told 
that I can stop at any time. I have asked and received answers to my questions. I may keep a 
copy of this form.  
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If you would like to be in the study, please fill out the lines below.� 

Child’s Printed Name:�__________________________________________________ 

Child’s Signature: ____________________________________________ 

Date: __________________________ 

 

Optional Permission:  

___I give permission for portions of the non-identifiable videos to be shown to educational or 
scientific audiences (e.g., in a scientific presentation, class, or teacher training).  
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Appendix B 

Transcript of Intervention Lessons 

Implicit Condition Lesson Transcript 
 

PART ONE 
Unitizing 

 (Note: The unitizing problem will be presented using green Unifix cubes. For this problem, 
the unit will be composed of 4 Unifix cubes stacked together to form a tower). 

1. Display 6 towers made out of 4 unifix cubes each. Make sure there is about an inch 
distance between each tower. 

2. Here is 6. (swooping pointing gesture with index finger from the left to the right along 
the bottom of the 6 towers) 1,2,3,4,5,6. (point to each tower while counting).  

3. Each whole (point quickly to each of the 6 Unifix towers one at a time from left to 
right) has 4 fourths.  

4. 1, 2, 3, 4 fourths (point to each fourth while counting starting from the top of the tower 
and going down). So, this is a whole (point to the first tower) made up of 4 fourths.  

5. The same goes for all of those (make a swooping pointing gesture to remaining 5 
towers).  

6. I can think of this 6 (swooping pointing gesture with index finger from the left to the 
right along the bottom of the 6 towers) as one group of 6.  

7. 1 (make a circular gesture around all 6 towers) 
8. I can also think of this 6 in a different way. I can think of this 6 (swooping pointing 

gesture with index finger from the left to the right along the bottom of the 6 towers) as 
2 groups of 3.  

9. Rearrange the 6 towers into 2 groups of 3 towers by leaving a two-inch distance 
between both groups.  

10. 1 (make a circular gesture around first group of 3 towers), 2 (make a circular gesture 
around second group of 3 towers). 

11. I can also think of this 6 in a different way. I can think of this 6 (swooping pointing 
gesture with index finger from the left to the right along the bottom of the 6 towers) as 
12 groups of ½.  

12. Rearrange the 6 towers into 12 groups of ½ towers by leaving a two-inch distance 
between each group.  

13. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. (make a circular gesture around each ½ tower while 
counting). 

14. I can also think of this 6 in a different way. I can think of this 6 (swooping pointing 
gesture with index finger from the left to the right along the bottom of the 6 towers) as 
8 groups of ¾.  

15. Rearrange the 6 towers into 8 groups of 3/4 towers by leaving a two-inch distance 
between each group.  

16. 1, 2, 3, 4, 5, 6, 7, 8. (make a circular gesture around each ¾ tower while counting). 
17. Remove all Unifix cubes related to unitizing from participant’s view. 
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PART TWO 
Fraction Division 

4 ÷ 34 =	? 
(Note: The fraction division will be presented using red Unifix cubes. For this problem, the 

unit will be composed of 4 Unifix cubes stacked together to form a tower). 
1. Place index card with equation in front of child. 
2. Let’s look at this problem(point to the equation on index card) In this problem, I 

want to divide 4 by ¾.  (point to the parts of the equation 4, ¾). Here are my 4 
wholes (swooping pointing gesture with index finger from the left to the right along the 
bottom of the 4 towers). 1, 2, 3, 4 (point to each tower while counting) 

3. In this problem (point to the equation on index card), each whole (point to each of 
the 4 Unifix towers one at a time) has 4 fourths.  

4. 1, 2, 3, 4 fourths (point to each fourth while counting starting from the top of the tower 
and going down). So, this is a whole (point to the first tower) made up of 4 fourths.  

5. The same goes for these (make a swooping pointing gesture to remaining 3 towers). 
6. I want to find out how many groups of ¾ (point to ¾ in equation on index card) 

there are in 4 (point to the 4 Unifix towers). Let’s see. 
7. 1, 2, 3… (point to each “fourth” while counting; once counted remove 3 fourths or 3 

stacked Unifix cubes) Here is one group of ¾. (Place the newly created tower of 3 
Unifix cubes to the left of the set of the original towers)  

8. 1, 2, 3… (point to each “fourth” while counting; once counted remove 3 fourths or 3 
stacked Unifix cubes) Here is another group of ¾ (Place the newly created tower of 3 
Unifix cubes to the left of the first ¾ tower).  

9. Repeat instructions in point 9 more three times.  
10. Here I have 1 piece (point to the remaining Unifix cube) out of the 3 (make a 

pointing gesture with index figure and thumb that encompasses the size of the 3 pieces 
– pointing to the cube with the thumb and with the index pointing to the top “empty” 
space where the third cube would be) I need to have a full group of ¾. I have 1/3 
(point with thumb to the bottom of cube and index the top of the cube) of a group of ¾ 
(point with thumb to the bottom of cube and index to the empty space where the third 
cube would be).  

11. This means that there are 1 group, 2 groups, 3 groups, 4 groups, 5 groups of ¾ 
(point to each ¾ tower while counting) and 1/3 of a group of ¾ (point to the 
remainder).  

12. The answer to 4 (point to the 4 in the equation on the index card) divided by ¾ (point 
to ¾ in the equation on the index card) is 5 1/3 (trace along the bottom of the set of 
towers stopping after the 5 towers when saying “5” and then at the remainder when 
saying “1/3”).  

13. Remove all Unifix cubes. 
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Explicit Condition Lesson Transcript 
PART ONE 

Unitizing 
 (Note: The unitizing problem will be presented using green Unifix cubes. For this problem, 

the unit will be composed of 4 Unifix cubes stacked together to form a tower). 

1. Display 6 towers made out of 4 unifix cubes each. Make sure there is about an inch 
distance between each tower. 

2. Here is 6. (swooping pointing gesture with index finger from the left to the right along 
the bottom of the 6 towers) 1,2,3,4,5,6. (point to each tower while counting).  

3. Each whole (point quickly to each of the 6 Unifix towers one at a time from left to 
right) has 4 fourths.  

4. 1, 2, 3, 4 fourths (point to each fourth while counting starting from the top of the tower 
and going down). So, this is a whole (point to the first tower) made up of 4 fourths.  

5. The same goes for all of those (make a swooping pointing gesture to remaining 5 
towers).  

6. I can think of this 6 (swooping pointing gesture with index finger from the left to the 
right along the bottom of the 6 towers) as one group of 6.  

7. 1 (make a circular gesture around all 6 towers) 
8. I can also think of this 6 in a different way. I can think of this 6 (swooping pointing 

gesture with index finger from the left to the right along the bottom of the 6 towers) as 
2 groups of 3.  

9. Rearrange the 6 towers into 2 groups of 3 towers by leaving a two-inch distance 
between both groups.  

10. 1 (make a circular gesture around first group of 3 towers), 2 (make a circular gesture 
around second group of 3 towers). 

11. I can also think of this 6 in a different way. I can think of this 6 (swooping pointing 
gesture with index finger from the left to the right along the bottom of the 6 towers) as 
12 groups of ½.  

12. Rearrange the 6 towers into 12 groups of ½ towers by leaving a two-inch distance 
between each group.  

13. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. (make a circular gesture around each ½ tower while 
counting). 

14. I can also think of this 6 in a different way. I can think of this 6 (swooping pointing 
gesture with index finger from the left to the right along the bottom of the 6 towers) as 
8 groups of ¾.  

15. Rearrange the 6 towers into 8 groups of 3/4 towers by leaving a two-inch distance 
between each group.  

16. 1, 2, 3, 4, 5, 6, 7, 8. (make a circular gesture around each ¾ tower while counting). 
17. Keep the last set of Unifix cubes related to unitizing in participant’s view. 
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PART TWO 
Fraction Division 

4 ÷ 34 =	? 
(Note: The fraction division will be presented using red Unifix cubes. For this problem, the 

unit will be composed of 4 Unifix cubes stacked together to form a tower). 
1. Place index card with equation in front of child. 
2. Fraction division (point to the equation on index card) can be thought of in the same 

way as regrouping the number 6 (point to the unitizing set) based on different sized 
groups. Here (point to the unitizing set) is the 6 made out of groups of ¾s. 

3. Let’s look at this problem(point to the equation on index card) In this problem, I 
want to divide 4 by ¾.  (point to the parts of the equation 4, ¾). Here are my 4 
wholes (point to the 4 wholes), just like here I had the 6 wholes to start (point to the 
unitizing set). 

4. In this problem (point to the equation on index card), each whole (point to each of 
the 4 Unifix towers one at a time) has 4 fourths.  

5. 1, 2, 3, 4 fourths (point to each fourth while counting starting from the top of the tower 
and going down). So, this is a whole (point to the first tower) made up of 4 fourths.  

6. The same goes for these (make a swooping pointing gesture to remaining 3 towers). 
7. I want to find out how many groups of ¾ (point to ¾ in equation on index card) 

there are in 4 (point to the 4 Unifix towers), just like when I wanted to know how 6 
(point to unitizing set) could be thought of in groups of ¾. Let’s see. 

8. 1, 2, 3… (point to each “fourth” while counting; once counted remove 3 fourths or 3 
stacked Unifix cubes) Here is one group of ¾. (Spatially align the created ¾ tower 
with the first ¾ tower in the unitizing set – the fraction division set (red Unifix cubes) 
should be placed below the unitizing set (green Unifix cubes)).  

9. 1, 2, 3… (point to each “fourth” while counting; once counted remove 3 fourths or 3 
stacked Unifix cubes) Here is another group of ¾ (Spatially align the second created 
¾ tower with the second ¾ tower in the unitizing set – the fraction division set (red 
Unifix cubes) should be placed below the unitizing set (green Unifix cubes)).  

10. Repeat instructions in point 9 more three times.  
11. Here I have 1 piece (point to the remaining Unifix cube) out of the 3 (make a 

pointing gesture with index figure and thumb that encompasses the size of the 3 pieces 
– pointing to the cube with the thumb and with the index pointing to the top “empty” 
space where the third cube would be) I need to have a full group of ¾. I have 1/3 
(point with thumb to the bottom of cube and index the top of the cube) of a group of ¾ 
(point with thumb to the bottom of cube and index to the empty space where the third 
cube would be).  

12. This means that there are 1 group, 2 groups, 3 groups, 4 groups, 5 groups of ¾ 
(point to each ¾ tower while counting) and 1/3 of a group of ¾ (point to the 
remainder).  

13. Just like here when I had 1 group, 2 groups, 3 groups, 4 groups, 5 groups, 6 
groups, 7 groups, 8 groups of ¾. (point to the towers in the unitizing set while 
counting).  

14. The answer to 4 (point to the 4 in the equation on the index card) divided by ¾ (point 
to ¾ in the equation on the index card) is 5 1/3 (trace along the bottom of the set of 
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towers stopping after the 5 towers when saying “5” and then at the remainder when 
saying “1/3”).  

15. Remove all Unifix cubes. 
 

Control Condition Lesson Transcript 
PART ONE 

4 ÷ 34 =	? 
(Note: The fraction division will be presented using red Unifix cubes. For this problem, the 

unit will be composed of 4 Unifix cubes stacked together to form a tower). 
1. Place index card with equation in front of child. 
2. Let’s look at this problem(point to the equation on index card) In this problem, I 

want to divide 4 by ¾.  (point to the parts of the equation 4, ¾). Here are my 4 
wholes (point to the 4 wholes). 

3. In this problem (point to the equation on index card), each whole (point to each of 
the 4 Unifix towers one at a time) has 4 fourths.  

4. 1, 2, 3, 4 fourths (point to each fourth while counting starting from the top of the tower 
and going down). So, this is a whole (point to the first tower) made up of 4 fourths.  

5. The same goes for these (make a swooping pointing gesture to remaining 3 towers). 
6. I want to find out how many groups of ¾ (point to ¾ in equation on index card) 

there are in 4 (point to the 4 Unifix towers). Let’s see. 
7. 1, 2, 3… (point to each “fourth” while counting; once counted remove 3 fourths or 3 

stacked Unifix cubes) Here is one group of ¾. (Place the newly created tower of 3 
Unifix cubes to the left of the set of the original towers)  

8. 1, 2, 3… (point to each “fourth” while counting; once counted remove 3 fourths or 3 
stacked Unifix cubes) Here is another group of ¾ (Place the newly created tower of 3 
Unifix cubes to the left of the first ¾ tower).  

9. Repeat instructions in point 9 more three times.  
10. Here I have 1 piece (point to the remaining Unifix cube) out of the 3 (make a 

pointing gesture with index figure and thumb that encompasses the size of the 3 pieces 
– pointing to the cube with the thumb and with the index pointing to the top “empty” 
space where the third cube would be) I need to have a full group of ¾. I have 1/3 
(point with thumb to the bottom of cube and index the top of the cube) of a group of ¾ 
(point with thumb to the bottom of cube and index to the empty space where the third 
cube would be).  

11. This means that there are 1 group, 2 groups, 3 groups, 4 groups, 5 groups of ¾ 
(point to each ¾ tower while counting) and 1/3 of a group of ¾ (point to the 
remainder).  

12. The answer to 4 (point to the 4 in the equation on the index card) divided by ¾ (point 
to ¾ in the equation on the index card) is 5 1/3 (trace along the bottom of the set of 
towers stopping after the 5 towers when saying “5” and then at the remainder when 
saying “1/3”).  

13. Remove all Unifix cubes. 
PART TWO: REPEAT EXACT SAME INSTRUCTION A SECOND TIME 
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Appendix C 

Table 4 

Remainder Interpretations Observed in the Bar Diagram Task and Unifix Cube Task 

Interpretation of 

Remainder 

Definition Examples 

CATEGORY 1: Remainder Interpretations 

REFERENT 

Remainder interpreted 

using the referent unit 

The remainder is clearly interpreted 

using the divisor as the unit (e.g., in 

the equation 1 ÷ &", 
&
"	would be the 

referent unit), reflecting the form of 

a fractional amount.  

 

In the equation, 1 divided by &", 

the remainder would be 

interpreted as: 

• !
& 

• 1 out of the 2 blocks 

needed to make a 

whole. 

Remainder identified 

as a partial group of 

the divisor 

The remainder is interpreted as part 

of a group of the divisor. The 

remainder is not assigned a specific 

numerical value, but there is an 

implicit use of the referent unit. 

In the equation, 1 divided by &", 

the remainder would be 

interpreted as “a piece of the 

groups of &"” or an “incomplete 

group of &".” 

ORIGINAL 
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Remainder interpreted 

using the original unit 

The remainder is interpreted using 

the unit of 1 (e.g., in the equation 1 

÷ &", 1 or ""	would be considered the 

original unit). 

In the equation, 1 divided by 

&
", the remainder would be 

interpreted as !", 1 over 5, or 1 

out of the 5 blocks I need to 

have a full original group.  

Remainder identified 

as partial group of 

original whole 

The remainder is interpreted as part 

of the original unit. The remainder is 

not assigned a specific numerical 

value, but there is an implicit use of 

the original unit. 

In the equation, 1 divided by 

&
", the remainder would be 

interpreted as “a piece of the 

groups of ""”. 

“I need four more pieces to 

have a whole (where there is 

1 remainder and 5 make a 

whole).” 

REFERENT AND ORIGINAL 

Remainder interpreted 

using both the referent 

and original units 

The remainder is explicitly 

interpreted using both the original 

and referent units (e.g., in the 

equation 1 ÷ &", both 1 and &"	would 

be used to interpret the remainder). 

In the equation, 1 divided by 

&
", the remainder would be 

interpreted as both !" and !&.  

“This is !& of &", so it is !".” 

NEW UNIT INTERPRETATIONS 
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Remainder interpreted 

using a new unit 

The remainder is interpreted using 

the dividend as the unit (e.g. in the 

equation 3 ÷ &", the dividend 3	would 

be considered as the unit).  

In the equation, 3 divided by 

&
", the 3 would be considered 

as the new unit of 

interpretation. This new unit 

of 1 would be composed of 3 

original wholes, making the 

unit equivalent to 15 original 

fifths. The remainder would 

be interpreted as 1/15 of the 

new unit.  

Remainder identified 

as part of a new unit 

The remainder is interpreted using 

the dividend as the unit (e.g., in the 

equation 3 ÷ &", the dividend 3	would 

be considered as the unit); however, 

no numerical value is assigned to the 

remainder. 

 

“This (points to the 

remainder) is part of this 

(points to the dividend of the 

equation or the bars 

representing the dividend).”  

“This is not a complete group. 

I need 14 more to have a full 

group of 15 pieces.”  

OTHER PART OF A GROUP INTERPRETATIONS 

Remainder identified 

as part of an non-

identified group 

The participant interprets the 

remainder as part of a group, but 

does not explain which group it is 

 “This is just a part of the next 

group”  

“I need some more pieces, 

this one is not full.”  
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part of or what size the full group 

(unit) should have.  

Remainder identified 

as part of a new 

incorrect unit 

The participant interprets the 

remainder using an inappropriate 

unit and referring without any 

numerical value. 

“This remainder is part of this 

(points to the whole colored 

section of the bar).” 

Remainder interpreted 

using a new non-

logical unit 

The participant interprets the 

remainder using an inappropriate 

unit and referring to the remainder 

with a fractional amount.  

The unit used to interpret the 

remainder is the number of 

referent whole groups (e.g., in 

3 divided by &", 7 groups of 

2/5 would be the unit of 

interpretation).  

Leftover No numerical value is assigned to 

the remainder. It is simply treated as 

the leftover piece from the division.   

“the remainder” 

“the mystery piece” 

“the leftover” 

“the extra unnecessary piece” 

CATEGORY 2: OTHER INTERPRETATIONS 

Whole-Number 

Interpretation of the 

Remainder 

The participant 

interprets the remainder 

as a whole number 

instead of a fractional 

amount. 

The participant counts all sections on the 

second bar and concludes the last piece 

represents the last piece in the sequence (1, 

2, 3, 4, 5, 6, 7, 8, 9. Oh it’s 9).  
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Remainder identified 

through correct 

procedure 

The participant solves 

the problem in a correct 

procedural way. (May 

be used as a support of a 

previous remainder 

explanation)  

In the equation, 1 divided by &", the 

participant would simply solve the equation 

using the algorithm and say the answer is 

2 !&. 

Remainder identified 

through incorrect 

procedure 

The participant solves 

the problem in an 

incorrect procedural 

way. (May be used as a 

support of a previous 

remainder explanation)  

In the equation, 1 divided by &", the 

participant would describe irrelevant or 

incorrect calculations when solving the 

problem (e.g., “1 minus 2/5 instead of 1 

divided by 2/5”). 

Non-Remainder 

Identified 

The participant ignored 

the remainder or 

identified something 

that is not the remainder 

as the remainder. 

The participant says the remainder is 6/7 

because there are 6 colored parts in total in 

a bar made of 7 parts. 

Identified the 

missing part of a full 

referent whole, 

instead of the 

remainder  

 

The participant 

identified the missing 

part which with the 

remainder would form a 

referent whole.   

 

In a problem where the divisor is 4/5 and 

the correct remainder is 1/4, the participant 

responds, “This is 3/4, because I am 

missing 3 blocks to have a full group”.  

 



	 117 

Identified the 

missing part of a full 

original whole, 

instead of the 

remainder  

The participant 

identified the missing 

part which with the 

remainder would form 

an original whole, 

instead of the remainder.  

In a problem where the divisor is 4/5 and 

the correct remainder is 1/4, the participant 

responds: “This is 3/5, because I am 

missing 3 blocks to have a full group”. 

Divisor The participant 

identifies the remainder 

as having the value of 

the divisor.  

“This (points to remainder) is 3/7 (points to 

the 3/7 divisor in equation).”  

 

Remainder identified 

as part of the final 

answer 

The remainder is 

identified using the 

complete answer to the 

division. 

In the equation, 1 divided by &", the 

remainder would be identified as 2 !&.  

 

Superficial features 

of the equation 

and/or of the bar 

diagram identified 

The participant 

describes something 

he/she is seeing without 

making comments 

related to parts or 

groups. The surface 

features can be 

perceptual (e.g., colors, 

shape) or related to the 

“This last piece is this whole over here 

(points to the dividend)” 

 

“This last piece is this invisible 1 that you 

put under your whole when doing 

calculations.” 

 

“This is the piece that was not colored in.” 
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equation (e.g., pointing 

to dividend, division 

sign, denominator or 

numerator without 

conceptual connections).  

“It’s a rectangle.”  

Superficial features 

of the equation 

and/or of the bar 

diagram used as a 

support to explain 

another remainder 

interpretation  

Perceptual features of 

the bar diagram and/or 

of the equation are used 

to support their non-

superficial remainder 

explanations.  

“There are 4 colored blocks and one non-

colored, so I know that this remainder is 

¼.”  

Did Not 

Know/Guess 

The participant did not 

know what the 

remainder represented 

or incorrectly guessed 

what the piece 

represented.  

“I don’t know what this piece represents.” 

 

“I guess it’s maybe 1/5, but I don’t know.”  

Uninterpretable The participant’s train 

of thought is 

uninterpretable.  

 

 

 


