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ABSTRACT

AUTOMATIC GENERATION OF SDL
SPECIFICATIONS FROM MSCs

Mohamed Musa Abdalla

Software systems go through different phases during their life cycle. From user
requirements to the deployment and maintenance, a software system goes through design,
implementation and testing phases. The time for developing software systems is crucial.
The goal of software teams is to shorten the development time and guarantee the quality
of the end product. Formal Description Techniques (FDTs) has been used in the
development cycle to provide clear, correct and unambiguous specifications throughout
the phases in order to achieve this goal.

In order to speed up the development cycle and to guarantee the correctness of the design,
we devise and implement an approach for generating SDL (Specification and Description
Language) design specifications from requirement specifications given as a set of MSCs
(Message Sequence Charts) and a target SDL architecture. Our approach handles
MSC’96, except the parallel operators.

Our approach bridges the gap between requirements and design and guarantees the
quality of the design. The generated SDL design specification is free of any design error,
such as deadlocks or unspecified receptions, and conforms to the MSC requirements

specification.
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CHAPTER 1

INTRODUCTION

1.1 SOFTWARE PROCESS

The software process goes through several phases. As shown in Figure 1.1, it starts with
the requirement phase where the analysts have to interact with the user/consumer, and
identify and recognize the user needs and clarify any ambiguity in the requirements. In
this phase, formal or semi-formal documentation of the requirements in a high-level of
abstraction is produced for the next phase. Furthermore, test cases will be generated from
these requirements for testing the final product or the prototype. The output of the
requirement phase feeds, as input, the design phase. In the design phase, the designers
start the system development with an abstract specification of the design, (e.g., overall
architecture). More design details will be gradually introduced into the specification. In
the implementation phase, programmers implement the design specification provided by
the designers in a target platform. Finally, before deployment, the product is tested

against the requirements using the generated test cases.

User/Customer -
Requirement/ Design [mplementation| Product
—»!| Analysis |—» — -
Phase Phase Phase T

Figure 1.1.Software process.



Many software processes, such as Waterfall and Spiral models [1]. have been developed
to reduce the development time and to ensure the consistency among the software process

phases.

1.2 TELECOMMUNICATIONS SOFTWARE

Nowadays. the global telecommunications network is the largest software system in the
world. The development of telecommunications and distributed software systems is more
complicated than general purpose software systems since it consists of independent
components running in parallel with different speeds and environments, and developed
by different teams.

Computers and software are playing major roles in telecommunications systems. These
software systems have to be reliable and easy to maintain. The development of
telecommunications systems requires powerful tools that can capture clear system

specifications and help developers throughout the development cycle.

1.3 FORMAL DESCRIPTION TECHNIQUES (FDTs)

Using natural languages in the software process may lead into ambiguous and incomplete
specifications. The increasing of size and complexity of the developed systems urged the
need for more precise, expressive and unambiguous languages.

To overcome the ambiguity and incompleteness of the “informal” tools/documentation
involved in the software process, stronger and more expressive techniques, based on
mathematics, such as Z [13], SDL [8], MSC [10] and UML [14] were introduced to

improve the quality of specification and design.



The main goal of FDTs is to produce formal specitication that is unambiguous, clear and
concise. FDTs are also intended to provide a foundation for analysis. simulation,
validation and testing of specifications for correctness. Furthermore. using FDTs

facilitates maintenance and reusability, as well as improves the quality of the product.

1.4 SDL AND MSC

SDL, Specification and Description Language, is a standard formal language that has
been widely adopted for the description of telecommunications systems. The
International Telecommunications Union (ITU) has standardized SDL in the
Recommendation Z.100 [8]. The SDL language has graphical and textual representations.
Several commercial tools support SDL and provide validation and simulation features for
SDL specifications as well as code generation for the most popular implementation
languages as C++ and Java and popular platforms. In the same way, MSC is a standard
formal language widely adopted. It is used to capture the requirements of
telecommunications systems. It has been standardized by ITU in its Recommendation
Z.120 [10]. It also has graphical and textual representations.

SDL and MSC are compatible languages that complement each other. In addition to
capturing the requirements, MSC is used to generate test cases for SDL specification

validation or end product testing, as well as to visualize simulation traces.

1.5 GOAL OF THE THESIS

MSCs combined with SDL has been used by telecommunications software system

developers to capture system requirements and design specifications, respectively. In a



typical software process, as shown in Figure 1.2, MSC is used to capture the system
requirements at the requirement phase. while at the design phase. SDL is used to describe
the design.

With the increasing complexity of telecommunications systems, manual translation from
MSC specification (requirement phase) into SDL specification (design phase) will be
time consuming and subject to human errors. In addition to syntax errors, semantic €rrors
such as deadlocks may be produced by manual translation. Providing an automatic

translation tool saves time and eases the engineers’ task.

tools needed tools available
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- Re.quuemem. 2| Specification |-» ‘Imp.lementauon -
in MSC inSDL inC+,..

Figure 1.2.MSC and SDL in the software process.

In addition to the use of formal techniques, a full or partial automation of the software
process will have a major improvement for telecommunications systems development,
and will lead to better quality product. Several approaches have been presented to move
automatically from an SDL design specification to an implementation. Many tools that
generate source code from SDL specifications have been introduced such as
ObjectGEODE [17] and SDT [18]. Our goal is to bridge the gap between the requirement
phase and the design phase. In order to reach our goal, we take MSC as a requirement
specification language, and SDL as the design specification language. Through two years
of work, we have investigated the translation of MSC specifications to SDL
specifications. In this document, we present an approach for automatic translation of

MSC specifications to SDL specifications with a given target architecture.



More precisely. we have extended an existing approach introduced by G. Robert and F.
Khendek [4] to cover MSC timers. coregions. inline expressions, message overtaking and
HMSC operators. We also handle MSC specifications with multi-instances of the same
process. In addition, we have addressed the inconsistency between MSC instance
identifications and SDL instance identifications. Furthermore, we provide MSC semantic
error detection algorithms. which detect deadlocks, process divergences, non-local
choices. unspecified receptions and the implementability of a given MSC specification

under the target SDL architecture.

1.6 ORGANIZATION OF THE THESIS

The rest of this document is structured as follows:

Chapter 2 gives an overview of the MSC language.

Chapter 3 introduces the SDL language.

Chapter 4 is devoted to the basic translation approach, which was introduced
in [4]. It illustrates the translation of basic Message Sequence
Charts (bMSCs) that contain instances and messages into SDL
specifications. It also presents our extensions to the basic approach
by including timers, instance creations, inline expressions, coregion
as well as the consistency problem between MSC and SDL
specifications and its verification.

Chapter 5 introduces our expansion of the basic approach to cover most of the
MSC concepts. Actually, it covers HMSC and multi-instance

specifications. We will also discuss the semantic problems, as non-



Chapter 6

Chapter 7

local choice and process divergence. which may result from the
introduction of HMSC and our techniques to detect them. Later in
this chapter, the implementability of MSC specifications under the
target SDL architecture is also discussed and a verification
algorithm is described.

gives an overview of the MSC2SDL tool. MSC2ZSDL implements
our translation approach. We also provide in this chapter real cases
that have been conducted with MSC2SDL tool.

summarizes the results of our research and provides suggestions for

further research and investigations.



CHAPTER 2

MESSAGE SEQUENCE CHARTS (MSCs)

2.1 INTRODUCTION

MSC is a graphical language, which describes the system behavior in terms of sequences
of message exchanges among the system entities and its environment. MSCs had been
used for a long time before they were standardized by International Telecommunications
Union (ITU) in Recommendation Z.120. Since then, MSCs have been widely adopted
within many software methodologies and tools. MSCs gain vast popularity for their
intuition for both engineers and designers as well as their well-defined semantics.

MSCs basically describe the message exchange between the system processes (instances),
and abstract out data and internal computations. Communication is asynchronous. In the
7.120 recommendation, the system processes are called instances, and to avoid any
conflict, this document follows the Z.120 notation.

Nowadays, there are many tools, (e.g., Object GEODE and SDT,) that support MSC to
e Capture system requirements
e Describe test cases
e Express system properties

e Visualize simulation traces



This chapter describes briefly the syntax and semantics of a subset of basic and high-level

MSCs that we use throughout the report. For more details, reader can refer to [10] and
[3).

Graphical representation

r I Textual representation
msc mscl
process Pl
msc mscl;
instance Il . process P!,
X1 in X1 from env,
__n__.’ out )2 1o env
endinstance,
endmsc;
[

Figure 2.1.MSC graphical and textuai representations.

The MSC has two representation forms: textual (MSC/PR) and graphical (MSC/GR). The
mapping between the two representations is not linear because the textual representation
does not have graphical information. Figure 2.1 illustrates both forms. From now on, this
report will focus on MSC/GR for illustration purpose. In the latest revision (MSC'96),
Recommendation Z.120 defines two main concepts: Basic Message Sequence Charts

(bMSCs) and High-level Message Sequence Charts (HMSCs).

2.2 BasiC MESSAGE SEQUENCE CHARTS (bMSCs)

A MSC is composed essentially of a set of parallel process instances that exchange
messages in an asynchrono'us mode. In addition to message exchanges, Z.120 allows a
bMSC to contain conditions, which describe the state of a subset of processes in the

MSC, actions, timers and instance instantiation and termination.
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Figure 2.2. Essential bMSC constructs.

2.2.1 ENVIRONMENT

Within a bMSC, the system environment (env) is represented by a frame symbol that
forms the boundary of the bMSC diagram, as shown in Figure 2.2. There is no assumed
ordering among the environment events (sending/consuming). However, it is assumed

that the environment behaves according to the bMSC specification.
2.2.2 INSTANCES

Instances, along with the environment, play the actor role in MSCs. They communicate
by exchanging messages in one-to-one basis. Instances are depicted by vertical lines with
time progressing downwards, as shown in Figure 2.2. A rectangle on the top of the
vertical line denotes the instance head, which determines the start of the description of the
instance within the bMSC, but does not describe the creation of the instance. At the other
end of the vertical line, a filled rectangle donates the instance end. The instance end
determines the end of the description of the instance within this bMSC, but does not
describe the termination of the instance. Each instance has a unique name in the complete

MSC specification. Within the instance heading an entity name, (e.g. process name,) may



be specified in addition to the instance name. In addition to exchange messages, instances
can individually execute internal actions, use timers to express timing constraints, create
instances and terminate themselves. Within each instance, events are totally ordered
according to their positions from the start to the end symbols on the instance axis. Along
each instance axis, the time is running from top to bottom, though, a proper time scale is

not assumed.

2.2.3 MESSAGES

MSC instances communicate with each other through messages. These messages are
represented by horizontal or slopping arrows associated with messages names, as shown
in Figure 2.2. At least one of the ends should be attached to an instance axis. The tail of
the message arrow denotes the sending event, while the head of the message arrow
denotes the consumption event. For each message, its sending event precedes its
consumption event in order. Nevertheless, MSC does not describe the actual receiving

events.

2.24 ACTIONS

In addition to messages, an instance can include actions, which describe internal activities
of the instance. An action may contain assignments, expressions and/or text separated by
semicolons. It is represented by a rectangle containing informal text, as illustrated in
Figure 2.3 where instance /I consumes message i, and executes internal assignment

“j=i*1”, then sends the result j to the environment.
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mscex! I

Action
L/

Figure 2.3.MSC action.

2.2.5 CONDITIONS

Conditions are used to emphasize important states within a bMSC. They are used for

documentation purposes. A condition can be

e A global condition, which describes a global system state referring to all
instances within bMSC: such as condztzonl in Figure 2.4. Global conditions

can be used to restrict composition of bMSCs.

e A non-global condition, which describes a state referring to a subset of

instances within bMSC: such as condition2 in Figure 2.4.

e Or a local condition, which describes a private state referring to a single

instance within bMSC: such as condition3 in Figure 2.4.

Conditions are represented by hexagons covering the instances involved.

mscex

:ﬂtf:m;:l

condition!

msgl

|

condition?

)

**

ms

.

g2

{ condition3 )

Figure 2.4.MSC conditions.
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2.2.6 INSTANCE TERMINATIONS

An instance can terminate itself by executing a stop event. Execution of a stop event is
permitted only as the last event in the description of an instance. The stop symbol is

presented by a cross at the end of the instance axis: as shown in Figure 25.

mscex! I

— | St
L~ op

X

Figure 2.5.MSC instance termination.
2.2.7 INSTANCE CREATIONS

Instances can be created dynamically by another instances. As soon as the instance has
been created, it runs, independently, in parallel to its parent. The created event is
represented by a dashed arrow, see Figure 2.6. A created event arrow originates from a

parent instance and points at the instance head of the child instance.

mscex!
I  create
C 1 ﬁ_
action
msg ‘
oananm X

Figure 2.6.MSC instance creation.

2.2.8 INLINE EXPRESSIONS

Inline operator expressions define events composition inside bMSCs. The operators refer

to parallel, alternative composition, iteration, exception and optional regions.
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A parallel inline expression defines the parallel execution of bMSC. No ordering is

preserved between events in different sections. In Figure 2.7.a, sending and reception of

message C executes in paralle! to the sending and reception of messages B and D.

msc exl il 2 msc ex2 I 12
e R s I O s R
par c [t B .
LB D o |
o — o——— ——
@) (®)
oop, A —>
RN o=/ B )
—— —— C >
() a— ——
@)
msc ex5 n 12
Pl
opt B
| c )
— at—
(€

Figure 2.7.MSC inline expressions.

An alternative inline expression defines alternative executions of bMSC sections. Only

one section will be executed for each execution trace. In Figure 2.7.b, after consuming

message A, instance /] will send either message B or message C to instance /2.
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An iteration inline expression defines iteration execution of bMSC section. Events in the
iteration area will be executed many times (O-inifinite). In Figure 2.7.c. instances // and
12 will exchange messages A and B at least once.

An exception inline expression defines exceptional cases in bMSC. Either the
specification in the exceptiém area will be executed or the reset of MSC specification will
be executed. In Figure 2.7.d, instance /! will send message B or message C, after
consuming message A.

An optional inline expression defines an optional execution of bMSC section. Events in
optional area may or may not be executed. In Figure 2.7.e, after consuming message A,

instance // may send message B before sending message C.
229 TIMEREVENTS

Timers may be defined within bMSC to express timing constraints (timer expiration and
time supervision). There is no global time axis for MSCs. Along each instance axis, the
time is running from top to bottom, though, a proper time scale is not assumed. Figure 2.8

shows time events that can be used within MSCs:

msc ex

msg3
-
T1

B

Figure 2.8.MSC timer events.

e Set event is represented by an hourglass connected with the instance axis by a
(bent) line symbol. A timer set event denotes setting the timer.
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e Reset event is represented by a cross connected with the instance axis by a
(bent) line symbol. A reset timer event denotes resetting the timer.

e Time-out event is represented by an arrow, which is connected to the hourglass

symbol, and the arrowhead pointed to the instance axis. A time-out event
denotes expiration of the timer.

For each timer setting event, a corresponding time-out or/and timer reset has to be
specified and has to follow it in order. However, corresponding timer events may be split
among different bMSCs in cases where the whole scenario is obtained from the

composition of several bMSCs
2.2.10 GENERAL ORDER

General Order relations describe orders between events which otherwise would not be
ordered. They can prescribe the order relations, in time, between events within coregions.
General Order is presented by connecting lines, Figure 2.9, between order events where

the upper end of the line defines the preceding event.
2.2.11 COREGION

Events along each MSC instance are totally ordered. Coregions are introduced to relax
the order in some parts of the instance axis. Within a coregion, the specified
communication events are not ordered. However, the order between the corresponding
timer events is preserved within coregions.

Furthermore, events can be ordered within coregions by prescribing an order relations
between them in a form of general order relations. Coregions may be used to describe
events, whose order is not specified yet and will be determined in the next phases, (e.g.,

design phase or implementation phase.) A coregion is represented by a dashed section of

15



an instance. In Figure 2.9, message msg/ precedes both messages msg2 and msg+. but

there is no order relation between messages msg2 and nmsg+.

msc ex

12
I J [ J General Order among msgl

|_—T and both msg2 and msgd

msgl

> T msg2
_msg4 msgd
’ - coregion

Figure 2.9.MSC coregion.

2.3 HIGH-LEVEL MESSAGE SEQUENCE CHARTS (HMSCs)

High-level Message Sequence Charts (HMSCs) give an overview of the complete system
specification in terms of the composed bMSCs. HMSCs provide four operators to connect
bMSCs to describe sequential, alternative, iterating and parallel execution of basic MSCs.
In addition, HMSCs can describe a system in a hierarchical manner by combining
HMSCs within a HMSC. Global conditions in HMSCs represent global system states.
Sequential HMSC operator defines the sequential execution of several bMSCs. The
bMSCs will be executed one by one in the order that has been specified within HMSC. In
Figure 2.10.a, bMSC bMSC1 will be executed before bMSC bMSC2.

Alternative HMSC operator defines alternative executions of bMSCs. Only one of the
alternative bMSCs will be executed for each execution trace. In Figure 2.10.b, either
bMSC bMSCI or bMSC2 will be executed.

Iteration HMSC operator defines iteration execution of bMSCs. In Figure 2.10.c, bMSC

bMSC will be executed repeatedly.
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Parallel HMSC operator defines the parallel execution of bMSCs or HMSCs. In Figure

2.10.d, HMSCs HMSCI and HMSC?2 will be executed simultaneously.
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Figure 2.10.HMSC operators.
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2.4 A MSC EXAMPLE

The given MSC, in Figures 2.11 and 2.12, demonstrates sequential and alternative bMSC
compositions. The system is composed of two instances, caller! and calleel. Instance
callerl tries to connect to instance calleel. In case, instance callerl does not receive a

response from instance calleel during a certain period of time, it will try again for two

17



more times. If caller] does receive a response from calleel, they will be connected.
Otherwise. caller] cancels the connection request and returns to the idle state.

The system overview is captured on the HMSC specification, as shown in Figure 2.11 the
system begins its life by interpreting the start node. Initially, the system is in an idle state.
Then. the system executes the bMSC Request scenario, and wait for the calleel response

to execute bMSC Connected scenario or time-out signal to execute bMSC Time-out

scenario.

\/
e )

— o——

[ Connected J ( Time_out ]
Comzety A
/\

Figure 2.11.An example: HMSC specification.

Figure 2.12 shows the corresponding bMSC specifications for the HMSC in Figure 2.11.
In bMSC Request, instance caller! initializes the variable N, which holds the number of
tries that will be made to connect to calleel. Next, callerl sends a request message
(request) to calleel and sets up the timer (Th).

In bMSC Connected, instance calleel sends a response message (response) to instance
caller]. As soon as caller] consumes message response, it resets the timer T1.

In bMSC Time-out, the timer T1 is expired, consequently, instance callerl sends a cancel
message (cancel) to instance calleel in order to terminate the previous request. Next,

caller] checks the value of N. If N is greater than three, then the system will go to the idle

I8



state. Otherwise, N will be incremented, a new request message will be sent. and the

timer T/ will be set up again.

[msc¢ Request msc Time_out
callerl calleel caller] calleel
['proceas caller I l;ocess callee l (protess callerJ | process calleﬂ

< Il > 4 Wait D

1
N1 ‘—X i
request L

— cancel 4’1

7& T y >3
j 1
<—w¥ . o )
...... o bo——---c-----d-------
[ ted v om
mee 0::;12; calleel N <I_3
| process caller | rvmesa callee I N=N+1
< - Wait : > request

respnse
“%t i —_Xn

< Connected ) < Wait _>

Figure 2.12.bMSC specifications correspond to HMSC in
Figure 2.11.

In the later bMSC, the choice between the alternatives of the inline expression alt is non-
deterministic because the comparison is informal and is specified within an MSC action.
However, the newest revision of MSC, MSC2000, has solved this problem by providing

guards, which look like conditions, that control the flow of execution.
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CHAPTER 3

SPECIFICATION AND DESCRIPTION

LANGUAGE (SDL)

This chapter briefly describes the syntax and semantics of a subset of SDL used

throughout the report. For more details, the reader can refer to [8] and [11].

3.1 INTRODUCTION

SDL is a formal language used to specify and describe systems, especially
telecommunications systems. It is mainly concerned with the specification of the
behavior, structure and data. SDL was developed by ITU, and standardized for the first
time in the ITU Recommendation Z.100, 1976. Since then, many releases had been
issued, however, the language matured only in 1988 release, called SDL-88. To cope with
new software engineering techniques such as Object Oriented programming, the ITU has
released SDL-92 in 1992 and SDL-96 in 1996. While SDL is intended to be used for
telecommunications systems, it may be used in all kind of real time systems. During the

last decade, it has gained popularity because of the following reasons:

e It is an international standard with committed support from ITU.

e It is supported by powerful commercial tools, such as ObjectGEODE and SDT,
that simulate, verify and generate code from the SDL specifications.

o [t has a clear structured graphical representation.

e Its ability to view the systems at several abstract levels.
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SDL has two concrete representations: graphical (SDL/GR) and textual (SDL/PR). which
share the same abstract syntax. Henceforth. this report will concentrate on SDL/GR for
illustration purpose. For further details, the reader can refer to [8].

An SDL system specification is a formal model that defines the relevant properties of an
existing or planned system in the real world. The world, within SDL, is divided into two
parts: the system and its environment, and they communicate using discrete signals.
Everything outside the system is considered as part of the environment. A complete SDL

system specification essentially consists of two main parts:

e Architecture, which describes the communication among the system entities

e Behavior, which describes the behavior of each entity in the system

3.2 SDL ARCHITECTURE

An SDL architecture defines the communication among the system entities and with the
outside world, namely the environment. An SDL architecture can be typically divided
into different levels of hierarchy. The highest level shows only the major components
(top-level blocks) of a system, whereas the lowest level shows the details (behavior) of
the system. Figure 3.1 shows three levels of an SDL system specification.

The highest level shows the system specification of the SDL system S/. The system
consists of two blocks (B and B2) that communicate with each other through channel
Ch2. Block B2 communicates with the environment through channel Ch1.

The intermediate level, in this Figure, is represented by the specifications of blocks Bl
and B2, for illustration, the Figure shows only B! specification. Block B! consists of two

processes Pl and P2 that communicate through the signal route Sr2. Process Pl



communicates with the block environment through signal route Sr/. which is connected
to channel Ch2 at the block border. Process P2 sends signal (Z) to the block environment
throueh sienal route Sr3, which is connected to the channel Ch2 at the block border
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iz i
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system S1% -
FGNAL AT.A2,B1,B2,Q,2,W,X,YC; ﬁ]
,_’_'___'_,_,_—-————'—‘_'—"—/ channels
/
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/ :xjonment
Ch2 Chi

«— B2 «—>
81,
[a 1,42] [sz"]

B1
€ [zw]
;' 1‘ .'\‘ / FSM
| //(a)‘H;%hest level (System). process name /
: y
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blocks .

[}
]
.‘ .
! bi-disectional A
' signal route uni- directional N !
' signal zoute s N
J ~ . ?
) block name chmls /signal routes ~ .
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— prooess 0
~
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signal zoute .
(b) Intermediate level (Block). (c) Lowest level
(Process behawior).

Figure 3.1.SDL system hierarchy.

The lowest level is represented by the process behaviors. The Figure shows the behavior
of process P2. Process P2 has only one state S1, and after interpreting the start node, it

consumes signal X, which is sent by P! according to the block specification. Next, P2
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increments the value of the received parameter i. and sends it within the signal Z to the

other block B2 through signal route Sr3.
3.2.1 ENVIRONMENT

The environment has the ability to exchange signals with the SDL system. [t is expected
that the environment behaves in an SDL-manner and that it does not send signals to the
system in a fully random fashion. The environment is represented by the boundary of the

SDL system.
3.2.2 THE SYSTEM

The system may compose of a set of nested blocks communicating with each other and
with the environment through channels. They communicate by sending/receiving signals
(referred to as messages in MSCs). Blocks may contain recursively sub-blocks or contain
processes. Processes communicate with each other and with the block environment
through signal routes that convey signals. Channels and signal routes are infinite FIFO
(First [n First Out) queues and convey signals in one or two directions. These channels
and signal routes exchange their signals at block borders. The only difference between
channels and signal routes is that channels can postpone signals for a non-deterministic

period (called delayed channels), while signal routes deliver signals instantaneously.
3.2.3 BLOCKS

Blocks are used to provide multi-level hierarchy within the SDL system. Blocks are
components either of a system or of higher-order enclosing blocks. Lower level blocks

only contain one or more processes. Blocks communicate with each other via channels.
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They also communicate with the system environment or higher-order block environment

via channels. which connect to signal routes at the border of blocks.
3.2.4 PROCESSES

Processes define the behavior of the SDL system. A process behavior is described as an
Extended Finite State Machine (EFSM). The dynamic system, during lifetime, may have
multi-instances of a process, called process instances'. The number of instances cf a
process that are created at the system startup can be specified between parentheses in the
process definition. Furthermore, the maximum number of instances that can be existing
together throughout the system execution can be specified. For example, the following
process definition, PROCESS PI(2,5), allows the system to create two instance of PI at
the startup, and no more than five instances can be exist together. The instances may
communicate with each other and with the environment via signal routes. There is no
hierarchy associated with instances, and they run in parallel with equal rights. Some
instances may create others, but once created, the new instances run in parallel with the
creating ones.

Each instance has a unique FIFO queue called (input queue) that preserves the order of
the received signals. However, it does not guarantee the order of signals that sent via
different channels/signal routes. Furthermore, each instance has a unique identification
address called (pid). Signals travel associated with their sender pids. Instances can be
created immediately by the system at the start of the execution, or by other instances

during the system run time.

! A process defines the static behavior of the SDL system, while process instance defines the dynamic behavior of the SDL system.



3.2.5 COMMUNICATION BETWEEN INSTANCES

Each instance is assigned a unique address during the system startup. This address can be

used by other instances to send signals. However, an instance, when created. does not

have any information about other instances except about the following:

Itself by using the pre-defined expression self.

Its parent, the instance that created it, by using the pre-defined expression
parent, if does not created by the system.

Its last child which has been created by it, by using the pre-defined expression
offspring.

The sender of the last consumed signal by using the pre-defined expression
sender.

At creation time, instances usually require to handshake with each other to build a

database of their world/system. An instance can send signals using explicit or implicit

addressing. Still, the specifier has to take on his account the following SDL rules:

If a signal cannot find a unique path for delivery, an arbitrary path out of the
possible ones is selected.

If the destination process has more than one instance, an arbitrary instance is
selected.

Signals that do not find a destination instance are discarded.

3.2.5.1 EXPLICIT ADDRESSING

An instance can send signals to a unique instance by providing the exact pid of the

destination instance. Since instance pids are known only during execution time, explicit

addressing can be used just in the following cases:

1

An instance can explicitly address itself by using the predefined expression
itself.
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An instance can explicitly address its parent by using the predefined expression
parent.

An instance can explicitly address its latest child by using the predefined
expression offspring, or other children. which their pids had been saved
previously.

(V8]

4 An instance can address explicitly the sender instance of last consumed signal
by using the predefined expression sender, or other instances which their pids
had been saved previously. In this case, the consumed signal should be
uniquely identified, otherwise, the instance may communicate with undesired
instance.

3.2.5.2 IMPLICIT ADDRESSING
In the case where the pid of the destination instance is not known, SDL instances have to
address their destination implicitly using one of the following methods:
I  An instance can send signals to the target instance by specifying the path,
which connects the sender instance with the receiver instance. The path is

composed of a list of signal routes and channels. To ensure the delivery of the
signal, the path should be unique.

9

An instance can send signals to the target instance by specifying the SDL
process name of the target instance. In this case, the target process should have
only one instance to ensure the delivery of the signal.

3 An instance can send signals to the target instance without specifying the target
address. The signal should be unique, and it is used only by the two parties.

3.3 SDL BEHAVIOR

An SDL system behavior is composed of a set of process behaviors. Each process
describes a part of the system behavior, as an Extended Finite State Machine, as shown in
Figure 3.2. An SDL process is either in a state or in transition between two states. A

transition is triggered by the consumption of a signal.
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Figure 3.2.SDL behavior.
3.3.1 STATE

States are stable points in the behavior of a process. The transition from state to state is
triggered by consuming a received signal from the instance input queue. A spontaneous
transition can be used to progress the SDL behavior without consuming a signal. It is
expressed by using the keyword none in an SDL input construct. While spontaneous
transitions do not depend on the contents of the input queue, their activation is non-
deterministic and makes the state unstable. No priority is assumed between transitions
activated by signal consumption and spontaneous transitions. To provide a simple clear
specification, the same state can be shown in different places, in the process behavior,
with different inputs. Each process has a single start node and as soon as a process

instance is created, it begins its lifetime by interpreting the start node.
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3.3.2 INPUT

An instance cannot consume a signal until it has been received in its input queue. If the
input queue is empty. the instance remains in the current state until one of the specified
input signals has been arrived in the put queue. Unspecitied input signals, which are in
the head of the input queue, are discarded. The consumed signals will be removed from
the input queue. The pid of the sender can be discovered after the consumption of the

signal by using the pre-defined expression sender.
3.3.3 SAVE

If a signal in the head of the input queue is not specified by the current state, it will be
discarded without triggering the state, i.e. the instance remains in the same state. To
protect the signal for later consumption, SDL provide a save construct. Any signal that
included in the save construct will stay in the input queue, and the next signal in the input
queue will be used. In Figure 3.3.a, for instance, signal ¥ will be protected while looking
for signal X in the input queue. In case of protecting all signals that may arrive before the
specified signal in the current state, one save construct can be used with an asterisk, as

shown in Figure 3.3.b.

D
/] T

(a) spectfic save. (b) wild save.
Figure 3.3.SDL save.
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3.3.4 TRANSITIONS

During transition to the next state, instances can perform activities such as sending
signals, setting timers. creating instances, etc.

3.3.4.1 OuTpUT

An instance can send signals to other instances, environment or itself during transition
between states. The signal can be send implicitly (Figure 3.4.a), via a particular path
(Figure 3.4.b) by providing the list of signal routes/channels of the desired path, or to a
process cntity (Figure 3.4.c) by providing the process name. Furthermore, the signal can
be send explicitly (Figure 3.4.d) to the destination instance by providing the destination

instance pid.

(-

\/.

~_|
£

X to P1 X to sonnder

e
1i6ais

© @)
Figure 3.4.SDL output.

3.3.4.2 TasK
In addition to output, a transition can include tasks. Tasks represent process internal

activities. These tasks may contain informal text or assignment expressions.



3.3.4.3 DECISION

Using a decision, a transition may split into two or more branches depending on the result
of the decision expression. (e.g.. Figure 3.5). Each result may lead to a separate state. The
pre-defined expression any can be used to represent a non-deterministic choice, as shown

in Figure 3.5.b.

r 1 [ 1
true false
l I
(a) deteministic choice. (b) non-deterministic choice.

Figure 3.5.SDL decision.

3.3.4.4 Srtopr

An instance can only be terminated by itself. In process definition, it may have many
transition branches that lead to a stop node. After the stop node, the instance ceases to
exist.

3.3.4.5 CREATING NEW INSTANCES

Instances may create other instances that present in the same block. However, as soon as
an instance is created, it runs in parallel to, and independently from, the creating instance.
3.3.4.6 TIMERS

Timers, in SDL, are independent processes. They are created by the SDL system as soon
as the owning instances are created. They run in parallel with the owning instances and
with equal rights, until the owning instances stop. Initially, timers are inactive. When a

timer is activated, it is set to a given time and supervises the current time. As soon as the
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timer expired, a timer signal is put in the input queue of the owning instance. A timer

becomes inactive when the timer signal is consumed, or reset by the owning instance.

3.4 DATA PARTINSDL

In our investigation, we have not focused on data types since MSC so far does not have a
clear semantics for data types. However, our approach declares all generated SDL timers,
pid variables and some action variables. In this section, we give a brief description of
SDL data types.

SDL uses the concept of abstract data types. Data types are called sorts in SDL. As in
programming languages, SDL provides the user with some pre-defined sorts, and allows
him to create new sorts. Table 3.1 shows SDL pre-defined sorts. Sorts can be defined at
any level, system, block or process, and they can be used by any entity in the same level
or a sub-level of it. SDL signals, Timers and variables should be declared before they can
be used. SDL signal names should be declared at the system level by using the keyword
SIGNAL (e.g., SIGNAL X, y, Z;). SDL timers are declared within the owning process scope by
using the keyword TIMER (e.g., TIMER T1;). SDL variables are declared within the process

scope by using the keyword DCL (e.g., DCL X, y integer;)

Pre-defined sort Example
Boolean true, false
Character ‘AP, <Y
Charstring ‘Hy’, ‘SDL’

Integer -3,0,902

Natural 0,12

Real -2.305, 0, 34.84010
Pid (Process Identification) | null

Duration -4,0,1

Time -1,0,103

Table 3.1. SDL pre-defined sorts.
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3.5 ANSDL SPECIFICATION EXAMPLE

For illustration purpose. we will consider here the SDL system S shown in Figure 3.6. It
consists of one block Blk. There is no communication between the system and the
environment. Block Blk consists of two processes P/ and P2 which exchange signals X
and Y through signal route Sr. From the shown process behaviors, the two processes
exchange signals X and Y one hundred times.

SDL process PI begins its life by initializing the loop counter (N) and transits to the next
state St1. Since there is no signal specified in order to be consumed, P/ waits until the
spontaneous input (NONE) is activated. Next, P! sends the signal X to process P2, and
moves to the next state Wait. P! remains in the state Wair until signal Y is received in its
input queue. As soon as signal Y arrives in the input queue of PI, PI consumes it and
checks the value of the counter N. If N is greater than 100, then process P/ will terminate.
Otherwise, P/ increments the counter by one, and returns to the state St/.

On the other hand, SDL process P2 begins its life by initializing the loop counter (N) and
transits to the next state Wait. P2 remains in the state Wait until signal X is received in its
input queue. As soon as signal X is arrived in the input queue of P2, P2 consumes it and
sends signal Y to PI. Then, P2 checks the value of the counter N. If N is greater than 100,
then process P2 will terminate. Otherwise, P2 increments the counter by one, and return

to the state Wair.
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system 3

block Blk

Pl

process P2
DCL
N integer,
DCL Plopid;
N=1
X

Wat

process Pl

DCL _
N integer,
DCL P2 pid,

Stl

Figure 3.6.An SDL example.
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CHAPTER 4

GENERATION OF SDL BEHAVIOR FROM A

bMSC

4.1 MOTIVATIONS

The rapid growth of the volume of software being produced and the almost exponential
increase in the complexity of problems being solved with software have urged the
demand for systematic software development techniques. Due to the increase of the
complexity of telecommunications systems in recent years, systems specifications are
more difficult to capture, and their manual translations have become complex and error
prone.

Furthermore, competition in the telecommunications market has resulted in more pressure
on software system developers to respond quickly to the growing market demands. In
order to meet these demands, developers may need several weeks to months depending
on user requirements. This translates into time-to-market going far beyond consumer
expectations. One of the causes of this situation is the lack of synthesis tools that support
transition between software development phases, especially between the requirement and
design phases.

Our particular interest is in a systematic translation from behavioral requirements to

design with a given and fixed architecture. For the purpose of this research, we have
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tuken MSC as a requirement specification language and SDL as a design specification
language. Our goal is to provide a systematic approach to generate SDL specification
from MSC specification.

MSC and SDL have been widely adopted within the telecommunications industry, and
currently many tools support both languages. Each tool provides a complete package of
documentation/specification languages used throughout the software process. However.
users are required to go manually from one phase of the software process to the next
phase. For instance, ObjectGEODE, which we have used in our approach, does not have
any mechanism for translating MSC to SDL. Consequently, users have to manually
translate their MSC specification, requirement phase, into SDL specification, design
phase. This manual translation is a repeated effort and is time consuming. Since MSC and
SDL are compatible languages, a synthesis tool can be implemented. On the other hand,
most of these tools can transform SDL specifications into C++ or Java code,

implementation phase.

4.2 THE BASIC APPROACH

The basic approach, which we have implemented and extended, was introduced by
Robert and Khendek in [4]. The approach translates a bMSC specification with a given
SDL architecture into SDL process behaviors. Essentially, the bMSC consists of
instances that exchange messages. The approach ensures, by construction, consistency
between the SDL specification and the bMSC specification. The generated SDL
specification requires non-additional validation against the requirements, in this case the

given bMSC specification. The approach also builds two tables to prevent any deadlock
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that may be generated during translation. In the following subsections, the basic approach
will be introduced using an example with one bMSC specification (Figure 4.1) and two

different SDL architectures (Figure +4.2).
4.2.1 CONSISTENCY

In the software process, the requirement specification has to be validated against the user
requirement. This approach assumes that the MSC specification has been validated
against the user requirement and is used as a reference for the semantic consistency of the
SDL specification. Since the MSC and SDL specifications of a given system are often
developed independently from each other, the SDL specification has to be validated
against the MSC specification to ensure consistency between the requirement phase and
design phase. An SDL specification is semantically consistent with respect to a bMSC if
and only if the set of traces defined by the bMSC is included in the set of traces of the
SDL specification. Since the approach synthesizes SDL from bMSC, the approach
ensures, by construction, consistency between the SDL specification and the bMSC
specification, and no further validation against the requirement specification is required.
Furthermore, the approach guarantees that the generated SDL specification is free of
deadlocks (i.e. state where all the queues in the SDL system are empty and there is no
possible progress for any process).

To make sure that the given bMSC specification can be executed under the given SDL
architecture, the architectural consistency between the bMSC and the SDL architecture is

verified. The architectural consistency is defined as follows:

o All processes described in the given bMSC are present in the given SDL
architecture.
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e There is a path connecting the sending and the receiving processes in the given
SDL architecture for each message described in the given bMSC. While SDL
specifications allow implicit and explicit routes, the approach accepts only
explicit routes.

Since bMSCs define only partial behaviors of the SDL system behavior, the SDL
architecture may consist of more processes and routes than the required bMSC

architecture.
4.2.2 EVENT ORDER TABLE

Messages in MSCs are explicitly specified, and the order of the sending/consumption
events with respect to their instances is explicitly specified. However, MSCs do not
specify the actual arrival order of the messages into the input queue of the destination
processes. Rather, the order depends on the underlying architecture and the processes
interleaving. On the other hand, SDL instances implicitly discard signals, which are in the
front of their input queues, and are not expected at the current state. These discarded
signals, which may be required in the next states, may lead to a deadlock. In Figure 4.1,
instance I2 has to consume specified messages in the following order: a, b then c.
However, the actual arrival order of messages to /2 input queue may be different from the
consumption order, depending on the target architecture and processes interleaving. For
the target SDL architecture given in Figure 4.2.a, the possible message interleavings for
12 are:

® g, bthenc

® g,cthenb

® b athenc
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H 13

12
process P! ! process F2 pracess P3
|
a

Figure 4.1.bMSC specification used to illustrate the basic
approach.

According to the SDL specification, there is no problem with the first order since signals
a, b and ¢, arrive according to the consuming order. The other two lead to deadlocks. In
the second order (a, c then b), after /2 consumes signal a, signal c is discarded since 12 is
expecting signal b not c. Consequently, /2 will never reach completion. In the last order,
(b, a then c), signal b is discarded since /2 is expecting to consume a. After consuming a,
signal c is discarded and /2 will wait for the previously discarded signal b. More deadlock
scenarios can arise, if the SDL architecture allows signals a and b to travel through

different paths as in Figure 4.2.b.

[block B!
Cht Ch2
[+4 (4
(a)
block B!
Cht
P e 5 e
[4
®)

Figure 4.2.Target SDL architectures used to illustrate the
basic approach.
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To prevent deadlocks. the approach adds an SDL save construct for each signal that may
arrive in the input queue earlier than expected. The need for a save construct can be
determined by checking the order relation of each specified input event against the order
of all successive input events for the same instance. The order relation between each pair
of events, according to ITU Recommendation Z.120, can be determined by the following
rules:

e Events are totally ordered for each instance axis

® The output event of a message precedes the corresponding input event
The approach builds a table, called Event Order Table, which maintains the order
relations in time between input/output events represented by rows and columns. The table
cells are filled by a logic value (true), if the row event precedes, in time, the
corresponding column event. First, all input/output events in the given bMSC will be
assigned a unique sequential number, as in Figure 4.3. Then, the cells of each row are

marked if the row event precedes the corresponding column event.

examplel
h] 2 i3
process P process P2 rpmcess P3

a

el ple?

ed a e6

]

el e5

L] + ]

Figure 4.3. Numbering input and output events.

Table 4.1 shows the Event Order Table corresponding to the bMSC in Figure 4.3. For
instance, event e6 is an output event. By applying the first rule, there are no events below

event e6 on I3 axis, so no events will be put in the event row. Since €6 is an output event,
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the second rule will be applied, e4 is the corresponding input event. The approach puts e+

in row ¢6. Furthermore, e+ is above e5 on 12 axis. and consequently, 3 will be put in row

é0.
el e2 e3 ed es eb

el T T T T
e2 T
el T T
ed T
es

e6 T T

Table 4.1. Event Order Table corresponds to bMSC
specification in Figure 4.3.

4.2.3 OCCUPANCY TABLE

In addition to building an Event Order Table, the approach builds Occupancy Tables. The
Occupancy Table maintains the order relations between the input signal of the
corresponding SDL process. The number of tables is equal to the number of MSC
processes that have input events. The rows of each table represent only the input events of
the corresponding MSC process. The columns of each table represent the incoming routes
that convey signals from other processes. The table is filled with all input signals that
may exist in the input queue when the process is ready to consume the row event by
applying the following expression on all input events in the same instance axis:
NOT (e; < €e.) AND NOT (e; < €5)

where

e. denotes the current row event in the Occupancy Table.

e, denotes the current input event.

es denotes the corresponding output event of e;.
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<« denotes order relations (precedes).

(ex < e,) mean e, precedes ey in time. This relation can be extracted from

the Event Order Table where e, represents the row event and ey represents

the column event. For instance, from Table 4.1, (e;<<e;)=T and (e, K eq)=F.
Table 4.2 shows the Occupancy Table corresponding to the bMSC specification in Figure
4.3 and SDL architecture in Figure 4.2.a. Since processes £ and P3 do not have input
events, there is no corresponding Occupancy Table. Process P2 has three input events e3,
e4 and e5, and two incoming routes Ch/ and Ch2. For example, when P2 is ready to
consume b (row e4), the approach checks the input messages a, b and c.

For message a
NOT (e; < e) AND NOT (e, < €s)
NOT (€3 < €5) AND NOT (e < €1)
from the Event Order Table in Table 4.1
NOT T AND NOT F = FANDT =F
Then, message a is not included in the Occupancy Table row of event e4.

For message b
NOT (e, < e¢) AND NOT (e; < ¢e5)
NOT (e4 << €4) AND NOT (e4 < €g)
from the Event Order Table in Table 4.1
NOTFANDNOTF= TANDT = T
Then, message b is included in the Occupancy Table row of event e4 at the
appropriate column Ch2.

For message ¢
NOT (e, < e.) AND NOT (e, < &)
NOT (&5 < e4) AND NOT (&4 < €3)
from the Event Order Table in Table 4.1
NOTFANDNOTF= TANDT = T
Then, message c is included in the Occupancy Table row of event e4 at the
appropriate column Chl.
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input events input Route Route
for P2 message Chl Ch2
e3 a a, ¢ b
e b c b
eS c c

Table 4.2. Process P2 Occupancy Table for SDL
architecture in Figure 4.2.a.

Table 4.3 shows the Occupancy Table corresponding to the bMSC specification in Figure
4.3 and SDL architecture in Figure 4.2.b. Since processes P! and P3 do not have input
events, there is no corresponding Occupancy Table. Process P2 has three input events e3,

e4 and €3, and three incoming routes Chl, Ch2 and Ch3.

input events input Route Route Route
for P2 message Chl Ch2 Ch3
e3 a a b c
e4 b b c
e5 c c

Table 4.3. Process P2 Occupancy Table for SDL
architecture in Figure 4.2.b.

4.2.4 TRANSLATION

After building the necessary tables, the approach begins translating MSC constructs to
SDL constructs on a one-to-one basis. An SDL process progresses from a state to another
state by consuming an input signal. The approach inserts a new SDL state before each
MSC input event. Consequently, the approach adds an SDL save construct for each
message in the corresponding Occupancy Table row, except for messages that are sent by
the same instance and travel on the same route of the input message. Figure 4.4 shows the
generated SDL process behaviors from the given MSC specification in Figure 4.1 and the

target SDL architecture in Figure 4.2.a.
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Figure 4.4.Generated process behaviors for SDL

architecture in Figure 4.2.a.
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Figure 4.5.Generated process behaviors for SDL
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Figure 4.5 shows the generated SDL process behaviors from the given MSC specification
in Figure 4.1 and the target SDL architecture in Figure 4.2.b. The only ditference
between the two generated system behaviors is that in Figure 4.5 process P2 saves signal

¢ while waiting for signal a because signals a and ¢ are coming through different routes.
4.2.5 ALGORITHM

In this section, we describe the steps that should be followed to apply the basic approach
as has been described in [4].

1- Check the architectural consistency between the given SDL and MSC.
- For each process described in the MSC, there is a corresponding process
type in the SDL architecture.
- Each message described in the MSC is enumerated in the SDL
architecture by a route connecting the sending process and the receiving
one.

2- Number each input/output event uniquely.

3- Build the Event Order Table.
- For each input/output event, the corresponding column of all input/output
events below the current row event is marked.
- For each output event, the column of the corresponding input event is
marked. Furthermore, all events that are marked in the corresponding
input event row are marked.

4- Fill the Occupancy Tables
for each instance Pi in the MSC diagram

for each out event e, sending message m to instance Pj
find the related input event e, in instance Pj
for each in event ey, in instance Pj
if NOT (ex < e5) AND NOT (e X &)
add message m to the appropriate receiving queue
end
end
end
end



5-Generate the SDL code
for each instance Pi in the MSC diagram

for each event ¢;
if the event is an out generate a SDL output
else if the event is an in of message m
generate a SDL input of message m
for each receive queue of Pi (except the queue to which m belongs)
generate a SDL save for all the messages in the queue
end
end
end
end

4.3 EXTENSIONS TO THE BASIC APPROACH

In this section, we illustrate our contributions to the basic approach. We have extended
the bMSC approach to include MSC timers, instance creations, inline expressions and
coregions. In addition, we discuss inconsistency problems between the MSC specification

and the SDL specification.
4.3.1 SDL PROCESS INSTANCE IDENTIFICATION AND ADDRESSING

Messages exchange between instances is explicitly illustrated in the MSC graphical
representation. The sender and the receiver of any message are clearly expressed without
using any addressing or identification scheme. The sender is identified by attaching the
tail of the message to the sender axis, as shown in Figure 4.6.a. At the other end, the
message head points to the receiver axis. In SDL, process instances have to communicate
with each other using pid (process identification) addresses. The pid addresses are
dynamically assigned during the system startup time, so on every system startup,
different pids may be assigned to SDL process instances. Initially, instances do not know

each other, and they have to handshake with each other in order to gather information

45



(pid) about other existing parties. Inconsistency between MSC and SDL may appear at
initialization part of the specification, if an output signal can be sent to different processes
or process instances without knowing the pid of the destination instance. We use the
scenario in Figure 4.6.a to illustrate this problem. In this MSC specification, it is
explicitly specified that instance // has to send message X to instance /2. However, we
cannot express it under the given SDL architecture given in Figure 4.6.b, since the signal
can be received by undesired instance /3, I4 or Env instead of instance /2. To solve this
problem, SDL users have to assign a unique signal between instances to handshake, and

split multi-instances into different blocks.

msc addressing
It 12 i3 14
process P1 process P2 process P3 process P2

X(a,b,4 X(a,d,S
(3,b,4) N (3,d,5)

¥(ch,1)

X(¢,b,2)

BN NN NN

(a)
system S1
blockBl —————

e block B2
BT = S e s
N

P3 X
N

(®)

Figure 4.6.Indistinguishable signals.
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A similar situation may arise at the receiving side, when two or more instances send the
same signal to one instance. This situation is illustrated by the MSC shown in Figure
4.6.a. In fact. while instance /2 is waiting for signal X from instance /I, /2 may consume
signal X sent by instance /3, which may be the first one to arrive into the input queue of
12. According to SDL, /2 cannot distinguish between the two X signals, since the sender
pid can only be known after consuming the signal (which can be the wrong signal). This
scenario may not be typical, however, it does illustrate the usefulness of a new construct
in SDL for the modeling of distributed systems. It will allow for checking the sender pid
or another condition on signals in the input queue without consuming them. and without
having a side effect as in Promela [5].

In order to use explicit addressing, our approach creates SDL pid variables to save the
pids of the other instances that communicate with it. After each input signal, the approach
saves the pid of the sender instance into an SDL variable if the pid will be used iater, as
shown in Figure 4.11 and Figure 4.15. Therefore, if an instance receives a signal where
there is no output specified in the MSC specification to the same instance, the sender pid
will not be saved. Moreover, the child pid is saved into an SDL variable as soon as the
child is created, if the parent instance is required, by the MSC specification, to send

messages to its child as shown in Figure 4.15.
4.3.2 INSTANCE CREATION

MSC create event defines an order relation between the created instance input/output
events and all input/output events that are above the create event on the creator instance.

In other words, events that precede a create event also precede all events on the child
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instance. The instance creation modifies the Event Order Table by adding more order

relations. For illustration. see the example given in section 4.3.8.
4.3.3 TIMERS

SDL timers are independent processes that run simultaneously with their owning
instances. Timers, which are activated by a set signal, will stay activated as long as the
current time does not exceed the setting time. When the current time reaches the setting
time, the timer immediately sends a time-out signal to the input queue of the owning
instance. If the time-out signal is discarded from the input queue, the timer will send
another time-out signal. Timers become inactive upon the consumption of their time-out
signal. Timers may also be deactivated by receiving a reset signal. This action (reset
timer), will remove corresponding timer signals from the input queue of the owning
instance. Consequently, in accordance to SDL after setting a timer, the owning instance
has to expect a time-out signal (as shown in Figure 4.7) at the successive states until
resetting the corresponding timer or consuming a corresponding time-out signal. On the
other hand, the approach neglects the time-out expectation if the given bMSC
specification does not specify the time-out event.

Furthermore, MSC timers may express a time delay, as shown in Figure 4.8.a. In this
case, the approach issues an SDL input signal, with a new state, corresponding to the
MSC time-out event. As shown in Figure 4.8.b, after setting timer T2, process Pl will

wait at state 52 until timer expiration in order to progress.
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Figure 4.7. Timer events in bMSC.
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Figure 4.8. Time delay specification.
4.3.4 INLINE EXPRESSIONS

Because of the semantic similarities between inline expression operators and HMSC

operators, we will discuss them in section 5.1.
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4.3.5 COREGION

The order between events on the axis of an instance is preserved. To relax the order

between events, coregion has been introduced to bMSC. Events inside coregion are

unordered except if an order relation has been explicitly specified. In addition, the order

of related timer events are preserved. For instance, events e4 and ¢6 in Figure 4.9 are

ordered inside the coregion, but there is no order relations between event e5 and both e4

and ¢6.
msc caregion
Ll 2 13
rpmcesa P1 ] [ﬂocess P2 | [ process Fi]
X e
el . '
! e v »
e had 36: '
e3 Z e7
E— ——
(a) bMSC specification. (b) SDL architecture.

Figure 4.9. A coregion example: bMSC specification and
target SDL architecture.

The approach completes the Event Order Table, as shown in Table 4.4, with all possible

order relations caused by coregion in addition to other relations outside the coregion,

while preserving any stated order relations in the form of MSC general order.

el el e3 ed es eb el e8

el T T T T T T
e2 T T
e3 T
ed T T T T T
es T T T T T
e6 T T T T
e7

e8 T T T T T T

Table 4.4. Event Order Table for the coregion example in
Figure 4.9.
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While events on an MSC instance axis create only one executable trace, events in
coregions create many exceutable traces. Consequently, coregion input events may have
different messages to save on each trace. To translate MSC coregion to SDL, the
approach extracts all possible traces in a tree, as shown in Figure 4.10, called Coregion
Tree. After creating the Occupancy Table (Table 4.5), the approach distributes the saved

messages of corcgion input events into the Coregion Tree.

a7

Figure 4.10.Coregion Tree for example in Figure 4.9.

To illustrate this, message Y (e5) has two saved messages X (e4) and Z (e7), as shown in
Table 4.5. However, since e4 is an alternative node to e5 or precedes e5 in the Coregion
Tree, as shown in Figure 4.10, no save construct is needed for message X (e4). On the
other hand, message Z (e7) is saved in the e5 middle node in the Coregion Tree, while no
save construct is made for message Z on the left and right nodes. This is because message
Z (e7) cannot be expected before sending message W (¢6), which follows e5 left and right

nodes, as shown in Figure 4.10.
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input events input Route
for Pl message Srl
e2 w
input events input Route Route
for P2 message Srl Sr2
ed X Y
e Y X Z
e7 Z

Table 4.5. Occupancy Tables for the coregion example in
Figure 4.9.

The generated SDL behavior of process P2 is shown in Figure 4.11.

[process P2 PeL N
n PID;

IRt

I = SENDER
x
I = SENDER MONE A4 <

QRN

©

Y
i«

B
g

Figure 4.11.Generated SDL behavior for process P2 in
Figure 4.9.



TIME-OUT WITHIN COREGION
MSC semantics for timer events are straightforward in that the setting event of a timer
always precedes its corresponding reset and/or time-out event. The time-out, in MSC, can

be used in the following two scenarios:

e To bypass some instance events. As an example: in the telephone systems,
instead of waiting for a call confirm event from a non-responding callee
forever, the caller can set the timer to bypass this event after the timer is
expired (receiving a time-out event).

e To delay instance for a certain time. This happens by setting the timer with a
desired delay duration and waiting for the timer expiration (time-out event

arrival).
W Ee‘[ E T
! vel
el ONONO
'

(a) MSC specification. ° ° e

(b) Coregion Tree.

Figure 4.12.Time-out event in coregion.

However, time-out events inside coregion, regardless of the corresponding setting event

position, produce an ambiguous behavior (Figure 4.12) for the following reasons:

e If the timer has expired (especially if the timer has been set before coregion),
the system cannot identify which time-out branch to take. This is shown in the
above figure where there are three places (shadow nodes) that represent a time-
out event (e2).

e MSC ITU-Recommendation only preserves the order of the timer events
inside coregion. Including time-out event in coregion provides only one goal
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which is to delay the instance exit from coregion. In other words, the instince
will not leave the coregion at least until the timer is expired which can be
reached by specifying the time-out event outside the coregion. To illustrate
this. if we take the first level of the above tree, we find that the instance has to
receive the message X (e/) or time-out message (e¢2). If we assume that X is not
vet in the input queue and timer is expired, than the instance will proceed to the
right branch of the tree where it will wait for message X again. As such, the
instance cannot bypass message X. Further, the time-out event is distributed
evenly throughout the tree, therefore, the instance has to wait for the time-out.

4.3.6 MESSAGE OVERTAKING

Message overtaking, as shown in Figure 4.13.a, can be described as two messages sent
from one instance to another instance, but the receiving instance will consume them in
the opposite order of the sending order. In the case where both messages are conveyed
through the same route, as shown in in Figure 4.13.b, the basic approach does not issue a
save construct for the earlier message. Consequenctly, a deadlock will arise in the
generated behavior. To solve this problem, our approach checks for the existence of
overtaking messages in the given bMSC specification, and makes a save construct for the

earlier message for later consumption as shown in Figure 4.13.c.

msc Overtaking process P2
)l 12
P
process P1 process P2 process Pl
X DCL D
P2 PID;

EN|E

PN

() bMSC specification.
SyeiEms X TO P2
Sr \
YTO P2
(] _/ "
(b) SDL architecture. (c) SDL process behawiors.

Figure 4.13.Overtaking messages.
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4.3.7 ENVIRONMENT

The approach assumes that the MSC environment consists of several independent
instances with their independent behaviors. Moreover, no assumption is made about any
order between the messages sent by these instances. Therefore, the approach generates a
save construct for every message sent by the environment for all the SDL states that

precede the state that consumes this message.
4.3.8 ENHANCED EVENT ORDER TABLE

The Event Order Table has been enhanced to include instance creation events as well as
coregion events. The given MSC specification and SDL architecture in Figure 4.14 are

used to demonstrate the manipulation of the Event Order Table.

imse S
" 2
process Pl process F2
W e 13
o2 Y ed
L oeeee- - »| process P3
Y
es e8yle9 2
el0 M
e3 w o7 e6 Z  ell

(o) SDL architecture.
Figure 4.14.Example for the enhanced Event Order Table.
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To fill the Event Order Table for any input/output event, the approach uses the following
criteria:

® Anevent precedes all events that follow it on the same instance axis except in
coregion.

e Qutput events always precede their corresponding input events.
e Anevent precedes all events that are marked in the Event Order Table rows of
any of the marked events in its row. For instance, since event ¢7 is marked in

e5 row, as shown in Table 4.6, all marked events in e7 row are marked in e5
row, as shown in Table 4.7.

e Events, which precede an instance creation event, precede all events in the
axis of the created instance.

e All possible order relations among coregion events are marked in the Event
Order Table.

The calculation of Event Order Table may require several iterations for the third criterion,
depending on the complexity of the bMSC specification. Table 4.6 shows the first

iteration for the Event Order Table.

el e3 | ed | e5 | e6 | e7 | e8 | €9 |el0 |ell
el T
e2 T| T
e3

ed T T

(4}
o} TN

e6
e7 T
e8 T T
e9 T
el0
ell T

3|3

Table 4.6. Event Order Table (first round) for example in
Figure 4.14.

The second iteration is shown in Table 4.7, where the approach applies the third criterion

on the Event Order Table shown in Table 4.6. For illustration purpose, cells having
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caused the updating are printed in bolded font, cells, which are newly marked, are printed

in italic font, and for newly marked cells which causes for a new iteration, we use bolded

italic fonts.

el | e2 | e3 | ed | e5 | e6 | e7 | €8 | €9 | el0 ] ell
el T T
e2 T T T T T
e3
ed T T T T T
e5 T T T T T T T
e6 T T
e’ T
es T T T | T
e9 T T | T
el T T
ell T T T

Table 4.7. Event Order Table (second round) for example
in Figure 4.14.

The Final Event Order Table is shown in Table 4.8 that is completed after the forth

iteration.
el | e2 | e3 | ed4d | e5 | e6 | e7 | e8 | €9 [el0 ]| ell
el T T | T | T|T|T|T|T]|T
2 T| T | T | T | T|T|T|T]|T
e3
ed T T| T | T|T|TI|[T]|T
es T T | T | T|T|T]|T
e6 T T
e7 T
e8 T T | T T | T T
€9 T TI| T T | T
el0 T T | T T
ell T T | T

Table 4.8. Final Event Order Table (forth round) for
example in Figure 4.14.

The generated SDL process behaviors are shown in Figure 4.15. In this example, after

receiving signal Y, process P2 saves the pid of sender process P/ to use it later to send
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signal W. Process P2 also saves the pid of the created process P3 because it will use it
later to send signal Y. In the same manner, process P3 saves the pid of sender process P2

to use it later to send signal Z.

process P1 process P2 process P3

PCL DC‘- DCL
P2 PID; n,P3, 13 P'D 12 PID; B]

11 := SENDER 12 := SENDER
- _1__\
P3 ZTO ENV

I

13 := OFFSPRING

YTO 3

wTO I

Figure 4.15.Generated SDL process behaviors for example
in Figure 4.14.



4.3.9 bMSC ALGORITHM

In this section, the basic algorithm is rewritten to cover all previously discussed issues.
Below is the general algorithm to generate an SDL specification from a bMSC
spectfication.

1- Check the architectural consistency between the given SDL and MSC.
- For each process described in the MSC, there is a corresponding process
type in the SDL architecture.
- Each message described in the MSC is enumerated in the SDL architecture
by a route connecting the sending process and the receiving one.

2- Number each input/output event uniquely.

3- Build the Event Order Table.
For each instance / in the bMSC.
For each input/output event E on the axis of instance / except events in
coregion.
Mark all of the following input/output events on the same [ axis
including events in coregion.
If a create event exists below E.
Mark all input /output events that exist on the created instance axis.
EndIf
If £ is an output event.
Mark the corresponding input event.
EndIf
EndFor
If there are coregions on [ axis.
For each coregion area C on [ axis.
For each event E in C.
Mark all events in C that have no order relation with E specified
by the given bMSC.
EndFor
EndFor
EndIf
EndFor
Repeat
For each event row R/.
For each event cell C! in R1.
Look for the correspond event row R2 of C1.
For each event cell C2 in R2.
If C2 is not marked in R1.
Mark C2 in RI.
The Event Order Table has been changed.
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EndIf
EndFor
EndFor
EndFor
Until there is no change in the Event Order Table entries

4- Create the Coregion Tree
For each instance I in the bMSC.
[f there are coregions on / axis.
For each coregion area C on [ axis.
Extract events that precede all other events in C or have equal
footing.
If only one event found.

Create the tree header node and put this event in the header.

CreateChildren(reset of events in C). /* a recursive function that
extracts events that precede all others given or have equal
footing and create child nodes*/

Else

Create an empty tree header node.

CreateChildren(all events in C). /* a recursive function that
extracts events that are precede all other given or have equal
footing and create child nodes */

EndIf
EndFor
EndIf
EndFor

5- Fill the Occupancy Tables
For each instance / in the bMSC.
For each input event E on [ axis, and corresponding output event S.
For each input event Er on [ axis, and corresponding output event Es.
If (E and Er does not have the same message
name)AND((overtaking message)OR(NOT(Er < E)AND(NOT
(E< Es)OR(Es=env))))))
Add message Erto E row in the Occupancy Table
EndIf
EndFor
EndFor
If a coregion exist on [ axis.
Get the corresponding Coregion Tree.
Distribute the saved messages of coregion events among the tree
nodes.
EndIf
EndFor
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6- Generate the SDL code
For each instance / in the BMSC.
Generate an SDL start node.
For each event E on [ axis.
Case (E type) of
Input event:
Generate an SDL state construct.
Generate an SDL input construct.
If there are messages assigned to be saved
Generate an SDL save construct for each one.
EndIf
If a timer has been active
Generate an alternative SDL input construct.
EndIf
[f a message will be sent later to the sender instance
save the sender pid into an SDL variable.
Generate an SDL task construct.
Generate an SDL variable definition.
EndIf
Output event:
If the pid address of the destination is known
Use the pid variable to send the signal.
Else
Use the process name of the destination to send the signal.
EndIf
Generate an SDL output construct.
Start of coregion:
Translate the Coregion Tree.
Go to the end of coregion region.
Set timer event:
Generate an SDL timer definition.
Generate an SDL set timer construct.
Time-out event:
If timer used as a delay process
Generate an SDL state construct.
Generate an SDL input construct.
EndIf
otherwise:
Generate the equivalent SDL construct.
EndCase
EndFor
EndFor
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CHAPTER 5

GENERATION OF SDL SPECIFICATIONS FROM

HMSCs

This chapter deals with HMSCs and multi-instances translation as well as MSC semantic

€ITOrS.

5.1 HMSC

HMSCs operators, sequential, iterative, parallel and alternative, are used to compose
bMSCs in order to capture the complete system behavior. bMSC inline operator
expressions, alternative, exception, optional, parallel and iterative, are used to define
events composition within bMSCs. Because of the similarities among these operators,
similar operators have been grouped and discussed together for the translation from MSC

to SDL.
5.1.1 SEQUENTIAL OPERATOR

HMSC Sequential operator composes bMSCs in a sequential order. In fact, the bMSCs
can be replaced by one bMSC that contains the entire scenario. The order relations
between events in two different bMSCs can be determined by the order relation between
the corresponding bMSCs. In general, if the two bMSCs have the same instances, then
events of an instance in the preceding bMSC precedes all events of the same instance in

the other bBMSC. For the example shown in Figure 5.1, events e/ and e2, precede events



e5 and ¢6, because events el, 2, e5 and ¢6 are in the same instance axis (//), and bMSC

S1 precedes bMSC S2 in the sequential HMSC.

[process Pl !pTN:ess P2

DCL DCL
1, P2 PlD;j i1 PID;

. TOP2 !
(a) HMSC specificaton. a 51
msc S1 msc S2
Il 2 It 12 a
[pmcess P1 I [process PQI Wmcess Pﬂ process P2
e.

REES

el a e S ¢ e7
> i1 = SENDER
e2 b ed e  d o8
RN IR 2= SENDER
(b) bMSCs specifications.

cT012

A0U

(c) SDL architecture. (d) Generated SDL processes behaviors.

Figure 5.1.Sequential HMSC example.

Table 5.1 shows the Event Order Table for the sequential HMSC given in Figure 5.1.

el | e2 | e3 | ed | e5 | e6 | e7 | €8
el T|T|T|T|T|T|T
2 T | T|T|T
e3 T T T| T ;| T|T
ed T T | T | T} T
e5 T! T | T
eb
e7 T T
e8 T

Table S.1. Event Order Table for example in Figure 5.1.
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5.1.2 ALTERNATIVE OPERATORS

Alternative HMSC operators have the same semantics of alternative inline operators.
They define alternative compositions between two scenarios or more. The exception
inline operators have also the same semantics of alternative operators, but have only one
scenario and the other scenario is represented by the rest of the bMSC specifications.
Therefore, on each run, the system executes either the exception scenario or the rest of
the bMSC specification. The optional inline operators have the same semantics of
alternative operators, but have only one scenario while the other scenario is assumed
empty. The system may or may not execute the optional scenario on each execution.
This group of operators can be translated into SDL states or SDL decisions depending on
the initial MSC condition of the operator. Our approach searches for the initial condition
in the following order:
e Global Initial Condition
If the operator is preceded by a bMSC global condition or HMSC condition
(for HMSC operator only), then this condition will be the initial condition of
the operator, as shown in Figure 5.2.a. Consequently, an SDL state is
generated for each process specification in the alternative scenarios.
Furthermore, the behaviors of the alternative scenarios of each instance are
evaluated. Alternative instance specifications, which begin with an input
message, are translated into SDL input construct, as shown in Figure 5.2.b.
Otherwise, an SDL spontaneous transition will be generated followed by a
non-deterministic SDL decision (if more than one non-input event is found),

as shown in Figure 5.2.c.



[process P2 ]
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msc I - msc i 0 \ / >
‘ process Pl | [ process Pz‘ rprocess Pt l [pmceas Pﬂ | ) \ |
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(a) Alternative HMSC specification.
Answer Answer
process Pl

(c) Process P2 behawor.
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() Process P1 behawor.
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Figure 5.2. Alternative HMSC example with global initial
condition.

® Local Initial Condition
In the case where there is no global initial condition found, the approach
analyzes the alternative behaviors of each instance separately. As shown in
Figure 5.3.a, if a common local condition is found, then this condition will
be the initial condition of this instance. Consequently, an SDL state is
generated for the corresponding SDL process. Furthermore, as shown in
Figure 5.3.b, alternative instance specifications, which begin with an input

message, are translated into SDL input construct. Otherwise, an SDL
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spontaneous transition will be generated followed by a non-deterministic

SDL decision (if more than one non-input event is found), as shown in

Figure 5.3.c.

Y
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imsc S1

I2

I
LTmcess P1 I rpmcess P21
D IRED

mse S2 mscS3

( Il 12 1t 2
[pmcess P1 l [pmcess EI [pmcess PLI [pmcesa P2|
Cwat > Lo ceadls

(a) Alternative HMSC specification.

{process P1
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readyTOP1 )

(®) Process P1 behawor.

process P2

resp

0

MNONE

,

"

(

S~

OK TO P1 NO TO Pl
ready <
(c) Process P2 behawior.

Figure 5.3. Alternative HMSC example with local initial

e No Initial Condition

condition.

If neither global initial condition nor local initial condition is found, as

shown in Figure 5.4.a, the results of the previous analysis, done while

searching for local initial condition, is used. If an MSC instance has

alternative input messages, then an SDL state construct is generated and an
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SDL input construct is generated for each input message, as shown in Figure
5.4.b. Otherwise. a non-deterministic SDL decision is generated and all
alternative events are linked to this decision, as shown in Figure 5.4.c. In the
case where the alternatives have mixed input and non-input events. then the
approach alerts the user of a non-local choice problem (described in section

5.4.3).

Y

| ~ |

EREs

1 O

A

[mse S1 fmscS2
I 2 [1 I2
[ process Fl' rpmcess P2| ’;ocess PIJ F;rotess PEI
OK | NO
I N .

(a) Altemative HIMSC specification.

<>

OK < NO < OK TO P1 NO TO PI

(o) Process P1 behavior. (c) Process P2 behavior.

process P2

process P1 f

Figure 5.4. Alternative HMSC example with no initial
condition.

Additionally, the final condition has to be determined, since all alternative scenarios have
to be joined to return to the same point after the alternative operator. If the specification

after the alternative operator begins with a global condition (as shown in Figure 5.2),
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local condition. or input events (as shown in Figure 5.3.c), then all alternative scenarios
are ended by SDL nextstate constructs. Otherwise, an SDL label is used to refer to the
final condition (as shown in Figure 5.3.b). However, if there is no MSC specification
after the alternative operator, then no further SDL construct is generated (as shown in

Figure 5.4).

5.1.3 ITERATIVE OPERATORS

Translation of an iterative operator is similar to the translation of a sequential operator
except that the initial states of the loop should be determined. The approach checks and
saves the initial state of the iteration in order to refer to it at the end of the iteration. [n
case the initial state is neither condition nor input event, an SDL label is generated. If the
last state is a condition, then nothing will be done. Otherwise, the approach generates an
SDL nextstate construct (if the initial state is a condition or input event) or an SDL join
construct. Figure 5.5 shows an example of iterative HMSC specification and the
corresponding SDL process behaviors. In the given example, the initial state is HMSC
condition again, and since the loop does not end with a condition, an SDL nextstate

referring to the initial state again is issued.
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Figure 5.5.Iterative MSC example.

5.1.4 EVENT ORDER TABLE FOR HMSCs

The introduction of HMSC has made the order between MSC events - mainly sending
and receiving events - more complex to trace and visualize. Moreover, loops need to be
unfolded many times to get all order relations among the events in their corresponding
loops. Furthermore, there is no order relation between events in alternative behaviors

except when the alternative operator is inside a loop.
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Figure 5.6. HMSC example for Event Order Table.

To create Event Order Tables for HMSCs, our approach first assigns a unique number to
all input/output events in the given HMSC specification, as shown in Figure 5.6. Next, as
shown in Table 5.2, the approach creates an individual Event Order Table of each bMSC
in the HMSC by applying the bMSC Event Order Table algorithm, already mentioned in

the previous chapter.
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EOTI | el | e2 EOT2 | e3 | e4
el T e3
e2 ed T
(a) bMSC S1. (b) bBMSC S2.
EOT3 | e3 | €6 EOT+ | ¢7 | €8
es e7 T
eb T e8
(c) bMSC S3. (d) bMSC S4.

Table 5.2. Event Order Table (first step) for HMSC in
Figure 5.6.

Then, the approach updates all events of an instance in the Event Order Table from
events of the instance in the other Event Order Tables according to the order relations
between their corresponding bMSCs. The columns of the Event Order Tables will be
extended to manage all input/output events in the whole MSC specification. To illustrate
our approach, we will update the first two tables (EOTI and EOT2).

Updating events el and e2 in EOT1.

Since bMSC S1 precedes all other bMSCs, we will have:

Event el precedes all events (e3, 5 and e7) that relate to instance I/ in
bMSCs S2, S3 and 54, consequently, their corresponding cells are
marked. In addition, all marked cells (e8) in the rows of these events will
also be marked.

Event ¢2 precedes all events (e4, e6 and e8) that relate to instance I2 in

bMSCs S2, S3 and S4, consequently, their corresponding ceils are
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marked. In addition. all marked cells (e3 and e3) in the rows of these
events will be marked.

Table 5.3 shows the updated Event Order Tables EOT! and EOT2.

EOTI | el | €2 | €3 | e4 | e5 | e6 | e7 | €8

el T | T T T | T
e2 T T T | T T
(a) bMSC S1.

EOT2 Vel | €2 | €3 | e4d | e5 | e6 | e7 | €8
e3 T | T
ed T T

(b) bMSC S2.

Table 5.3. Event Order Table (second step) for HMSC in
Figure 5.6.

The next step will be updating each Event Order Table internally, i.e. events in the
same Event Order Table will update each other. For instance, since event e/ and
¢2 in EOTI has been updated and e/ has 2 column marked, e/ will be updated

from e2 as shown in Table 5.4.

EOT! | el | €2 | €3 | e4 | e5 | e6 | e7 | €8
el T|T| T | T|T]|T|T
e2 T | T T | T T

(a) bMSC S1.

EOT2 | el | €2 | e3 | e4d | e5 | €6 | e7 | €8
e3 T! T
ed T T| T

(b) bMSC S2.

Table 5.4. Event Order Table (third step) for HMSC in
Figure 5.6.
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The last two steps are repeated as long as there is at least an updated Event Order Table.
After the last round. all Event Order Tables are joined to create one Event Order Table as

shown in Table 5.5.

el | e2 | e3 | ed | &5 | e6 | €7 | €8
el Ti{T!|T | T | T | T|T
e2 TlT!{T | T|T]|T
e3 T | T
e4 T TI| T
eS T T
e6 T T T
e7 T
e8

Table 5.5. Event Order Table (final step) for HMSC in
Figure 5.6.

5.1.5 PARALLEL OPERATORS

Due to time limitations for our research, we did not investigate parallel compositions, and

shall leave it for future investigation.

5.2 MULTI-INSTANCES

MSC specifications may visually describe the behavior of multi-instances of the same
process. However, SDL specifications describe the total behavior of a process, which
may lead to one or more instance behaviors. Therefore, to generate SDL process behavior
from MSC multi-instances, the multi-instance behaviors need to be compared and
merged. Comparing multi-instances within HMSCs is a complicated task, since instances
can be initiated in different bMSCs, and instances can be discontinued where in some
bMSCs they are not described. Because of the comparison, identical instances will be

replaced with only one SDL process behavior, and different instances will be merged as
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alternative SDL process behavior. The result of merging instances may produce a non-

local choice, which may not be implemented in SDL.
5.2.1 MERGING IDENTICAL MULTI-INSTANCES

[dentical multi-instances inherit the behavior of their corresponding process, as shown in
Figure 5.7 instance I/ and instance [3 are identical instances of process Pl.
Consequently, only one instance of an MSC specification is translated into an SDL
process behavior, as shown in Figure 5.8. The specifications of the other identical
instances will be ignored. Furthermore. to ensure the creation of the instances. the
corresponding SDL process definition should be modified to accommodate the number of

instances that has been specified in the MSC specification.

[msc S1 imsc S2
Il 12 I3 Il 2 I3
ﬁmcess Fl] [pncesa le mceas P1 ] [pmcess P1 I I process P2| mtesﬂl
dial 5 red ) ng ind req g dial |
——— P ‘__——

conf ‘_’fﬂ’_—. resp conf

Figure 5.7.Identical multi-instance MSC specification.

5.2.2 MERGING DIFFERENT MULTI-INSTANCES

SDL process specification has only one start node, and each created instance has to

interpret this node to start its life. SDL process behavior may be composed of only one



instance behavior, or of several instance behaviors. This leads us to the question. how one
can distinguish between these instance behaviors? Behaviors of multi-instances should be
checked against each other to find the divergence points between the different instances.
These divergence points can be caused by an internal process decision. or by an external

process decision.

process P12, ) |process P2

dial< ind<

] I
teq To P2 resp To P? Vl = SENDER

Disconnect

req

Figure 5.8.Generated SDL process behaviors for MSC
specification in Figure 5.7.
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5.2.2.1 INTERNAL PROCESS DECISION

The internal decision will generate a non-deterministic state. which may lead to non-
intended behavior that is not specified in the corresponding MSC specification. To
illustrate this case, process PI in Figure 5.9 has two instances 11 and I3. According to the
MSC specification, [ begins its life by sending message X, and I3 begins by sending
message Y. However, when instances [/ and I3 of the SDL process Pl are created, they
interpret the start node. They will then randomly select to send signal X or signal Y. There
is no guarantee that the generated SDL behavior will be consistent with the given MSC
specification, since there is a high probability that the created SDL instances will take the
same behavior (either [1 or I3). However, the approach generates the SDL behavior and
alerts the user, since the initialization part is sometimes handled in a later phase of the

software process.
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(b) Generated SDL processes behavior.

Figure 5.9. An example for internal process decision.

5.2.2.2 EXTERNAL PROCESS DECISION

Instances with external decision will be controlled by other instances messages. Upon
consuming a message, the instance will identify which behavior to follow. As shown in
Figure 5.10, instances of SDL process PI will wait for receiving either signal X or signal
7 to continue their execution. Unfortunately, the instance identification problem, which
has been addressed in section 4.3.1, can occur. This is caused by the fact that during the
system startup neither the environment nor instance 12 has the pids of instances /1 and I3.
Consequently, instances /1 and /3 will be implicitly addressed, and signals X and Z may

be received by only one instance (/1 or I3).
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Figure 5.10.An example for external process decision.

5.3 SHARED CONDITIONS
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A condition name may be used repeatedly within a MSC instance specification. This
repetition states an alternative composition between specifications below the shared
condition. As shown in Figure 5.7, condition Disconnect is used to identify the beginning
of BMSCs SI and S2. Furthermore, same condition name may be shared by multi-instance
specifications to identify similarities among their specifications, as shown in Figure 5.7
where condition Disconnect is shared by instances I1 and I3 of process PI.

Consequently, since MSC conditions are equivalent to SDL states, the MSC
specifications below the shared condition are merged by the corresponding SDL state.

These specifications may be identical as in the case between specification of instance /1



in bMSC S! and specification of instance /2 in bMSC §2. As a result. only one
specification will be translated. as shown in the generated behavior of process Pl in
Figure 5.8. On the other hand. specifications below the shared condition may be ditferent
and will be merged as alternatives under the generated SDL state. As shown in Figure
5.8, instance /1 has different specifications in bMSC SI and bMSC S2 that share the same
condition Disconnect.

Shared conditions may have the same MSC constructs but different semantic
specifications. As shown in Figure 5.7, shared condition Disconnect of process P2 has the
same MSC constructs (input req, output ind, input resp and output conf) in both bMSC §!
and S2. However, the messages’ sources and destinations are different. Our approach
detects this case and generates the appropriate SDL behavior to distinguish between the
sources, as shown in Figure 5.8. Unfortunately, this case may raise the implementability
issue (discussed later), if one of the distinguishable sources pid (in this case the pids of

instances /] and [3) are unknown at the current SDL state.

5.4 MSCs SEMANTIC ERRORS

The specification of telecommunications systems should satisfy some general properties
such as the absence of non-local choice, deadlocks, etc. in order to ensure correctness. To
ensure that our generated SDL specification satisfies these properties, the approach
checks the given MSC specification against these properties. This section describes our

techniques for detecting some of the MSC semantic errors.
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5.4.1 DEADLOCK

Our approach works efficiently when the MSC specification and SDL architecture are
free of syntax and semantic errors. However, as in the tool presented in [7], the approach
detects semantic errors such as deadlocks. A deadlock can be defined as a system state
where all the queues in the system are empty and there is no possible progress for any
process. In Figure 5.11. the system cannot progress because each instance (/! and [2) is
waiting to receive a signal (X and Y respectively) from the other instance. The detection
of deadlocks is done on fly during the generation uf the Event Order Table. The approach
checks for an event entry that refers to itself in the Event Order Table which should only
be caused by unfolded loops. For instance, bold cells in the generated Event Order Table
(as shown in Table 5.6) are an indication of a deadlock. As soon as the approach

encounters a deadlock, the user is prompted and the translation is cancelled.

ﬁlsc Deadiock
i 12
process P1 process P2
el e3
el ed

Figure 5.11.Deadlock example.

el | e2 | €3 | ed
el T| T | T | T
2|l T| T | T | T
e3| T | T | T|T
4| T| T | T)|T

Table 5.6. Event Order Table for the deadlock example in
Figure 5.11.
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5.4.2 PROCESS DIVERGENCE

During system execution. instances run with equal priorities. Depending on the
underlying architecture and the speed of processes, some instances may run faster than
others. When the receiver instance cannot cope with the speed of the sender instance, and
there is no handshaking mechanism between the two, process divergence may happen.
Process divergence can be present in loop specifications. For instance, in Figure 5.12, if
11 is faster than 2. 11 can send several messages before /2 can consume even the first
message. Consequently, after a while the input queue of 12 will be flooded. To overcome
the process divergence error, instances should have some kind of handshaking protocols
inside iterative operators. This handshaking can be achieved indirectly through other

parties.

msc 51
" 12

—1 \/ Lprocesa P1J | process 2]

again

N ﬁ

Figure 5.12.Process divergence.

r~

Our approach detects process divergence by unfolding the loop one time, and updating
the Event Order Table. Next, all input events in the loop are checked to see whether or
not their corresponding output events are in their Event Order Table rows. A process
divergence may exist, if an input event does not have the corresponding output event cell
marked in the Event Order Table, as shown in Table 5.7 the corresponding cell of event
el is not marked in event e2 row. In this situation, the user will be alerted of the presence

of process divergence.
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el | e
el T
e2 T

—

Table 5.7. Event Order Table for divergence situation.
5.4.3 NON-LOCAL CHOICE

The introduction of alternative operators may cause a non-local choice. The semantics of
MSC states that the first instance to reach the alternative is in charge of picking one of the
alternative scenarios, and all other instances must follow the same choice. However, this

semantics cannot be forced in distributed systems.

msc S1 |mse 52
it 12 " 2

[ process F1 J rpmcess iﬂ [ process P1 J rpmcess P2J

X Y

SIS SRR || S S

Figure 5.13.Non-local choice.

Figure 5.13 shows a simple non-local choice scenario. The specification says that if []
reaches the alternatives first and chooses to send message X, /2 must take the same bMSC
S/ and consume message X, and vise versa. Nevertheless, there is no synchronization
between the two instances, while I1 executing bMSC SI and sending message X, I2 may

decide to execute bMSC S2 and sends message Y.
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Figure 5.14.Synchronization between Instances.

Figure 5.14 shows a solution for the non-local choice presented in Figure 5.13. As
ilustrated in this solution, 1 is in charge of picking one of the alternatives, while /2 has
to wait for the decision made by /1 and follow the same bMSC.

Non-local choice can be more complex and harder to detect, visually, within nested
alternative bMSCs. Let us follow the scenario in Figure 5.15, the choice between bMSCs
S1 and S2 controlled by instance /1, and the choice between bMSCs §3 and S4 controlled
by instance /3. One can conclude that independently, each alternative is free of non-local
choice. However, there is a non-local choice within the whole MSC. The MSC semantics
states that system should execute bMSC S/ only or bBMSC §2 then bMSC S§3 or bMSC
S4. But, since /I and I3 are independent instances, and run in parallel, /3 may decide to

execute bMSC S3 or bMSC S4, while 1 is executing bMSC S1.
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Figure 5.15.Nested non-local choice.

To detect the presence of non-local choice, our approach uses the following criterion:

e At least one alternative bMSC is controlled by more than one instance.

e bMSCs of the same alternative are controlled by different instances. As
shown in Figure 5.13, while bMSC S1 is controlled by instance /1, bMSC
S2 is controlled by instance /2.

e In case of nested alternatives, two criterion have to be satisfied to ensure the
presence of non-local choice:

s The lower alternative and the higher alternative are not controlled by the
same instance. For instance in Figure 5.15, the lower alternative is
controlled by instance I3, while the higher alternative is controlled by
instance /1.

e The controller instance of the lower alternative is not depending on the
controller instance of the higher alternative. To illustrate this criteria,
instance I3 is not depending on instance /I in Figure 5.15. However, the
non-local choice can be avoided if instance I3 receives a message from
instance I or instance /2 before the lower alternative.

84



5.4.4 UNSPECIFIED RECEPTION

Our approach also detects the unspecified reception, which is the other semantic error.
The unspecified reception error can be stated as being for an instance while waiting for
receiving a message in the input queue, it receives an unexpected message. In Figure
5.16, choosing one of the alternative bMSCs is decided by instance I1. As soon as [
executes one of the bMSCs (S or S2) all other instances must follow the same choice
and execute the same bMSC. Let us assume that instance /] has executed the following
sequence bMSC S/ then bMSC 52, Consequently, instances /2, I3 and /4 have to follow
the same sequence. Since instances /3 and /4 have only been specified in one side of the
alternatives, they will follow that side. However, after extracting all possible messages
interleaves for this scenario, as shown in Figure 5.17, there is a chance that instance 2
executes bMSC S2 before executing bMSC S1. By following the bolded executable trace

in Figure 5.17, it may receive (unexpected) message Z while instance /2 is waiting for

message Y.
| A‘f ]
St S2
) (=)
FacSl [msc 52
I 12 13 n 12 14
I e R
(—I e f) { " idie ; h
X W

Y Z

C idle DI K¢ idle D)
man SEan e |mie e ..

Figure 5.16.Unspecified reception.
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| denotes send

? denotes recetve

Figure 5.17.Trace diagram for unspecified reception
example.

We characterize this problem if an instance has at least two alternative specifications that
start with a message consumption. Consequently, we check the messages interleaving of
the execution of these two alternative bMSCs, and verify if there is a trace that does not

satisfy the MSC specification.
5.4.5 IMPLEMENTABILITY OF MSCS UNDER TARGET ARCHITECTURE

The implementability issue has been discussed in [6]. Depending on the given SDL
architecture, MSC specifications may be implementable or non-implementable. Messages
that control the flow of the instance behaviors are of particular interest in regards to this
approach. Since these messages effect the behavior of the system, there should be no
ambiguity or overlapping among them. The implementability issue can arise at alternative
operators, where more than one controlled message is required to distinguish between the
alternative scenarios as shown in Figure 5.18. The controlling messages in this figure are
a and b, and depending on the reception order of the messages, instance /2 will execute
bMSC send_a_b or bMSC send_b_a. In this case, the order of the controlled messages is

crucial, and depends on the given target SDL architecture. If the given target architecture
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allows messages (« and b) to only travel on the same route as shown in Figure 5.19.a,
then the messages will be received in the input queue of process P2 in the same order.
However. if the given target architecture allows the messages to travel on two different
routes, as shown in Figure 5.19.b, then the order between a and b cannot be predicted.
Consequently, process P2 cannot figure out which alternative process P1 has taken.

Our detection approach is on the fly, while translating MSC specification into SDL
specification. The approach checks, at every generated SDL state, if any of the
controlling messages requires saving by the other controlling messages. To illustrate our
detection technique, Figure 5.19.c and Figure 5.19.d show the generated SDL behavior
for process P2 under two different SDL system architectures $1 and S2. In the first figure,
there is no need to save both messages a and b because they are conveyed on the same
route Sr. In the second figure, the save construct is required since the two messages come
through different routes (Srl, Sr2). The approach alerts the user with the error and

terminates the translation.

[

~ 1
raend_a_b ] L send_b_a

L O J

A

msc send_a_b msc send_b_a
Sender Receiver Sender Receiver
l process Pl l ‘ process Fﬂ [ process P1 l process le
b
b a a
c d
[ ] I [ ] ]

Figure 5.18.An example: non-implementable MSC
specification under some SDL architectures.
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Figure 5.19.Generated SDL process behaviors for the non-
implementable MSC example in Figure 5.18.

5.5 THE COMPLETE ALGORITHM

The following algorithm generates SDL process behaviors from MSC specifications for

the given SDL architecture.

1- Check the architectural consistency between the given SDL and MSC.
- For each process described in the MSC, there is a corresponding process
type in the SDL architecture.

- Each message described in the MSC is enumerated in the SDL architecture
by a route connecting the sending process and the receiving one.
2- Number each input/output event uniquely.

3- Check the presence of non-local choice.

4- Check the presence of unspecified reception.



5- Build the Event Order Table.
Build Event Order Table for each bMSC in the given specification as has
been described in bMSC algorithm.
Repeat
For each Event Order Table EOT!, and corresponds to bMSC bmsc/.
For each event row R/ in EOT!, and belongs to instance [/.
For each Event Order Table EOT2, and corresponds to bMSC
bmsc2.
If binscl precedes bmsc2.
For each event row R2 in EOT2, and belongs to instance /2.
[f 11 equal I2.
EOTI[RI,R2}=T
/* X[A.B]=T = mark the cell at the row A and the Column B in
Table X */

For each cell C that is marked in row R2
EOTI[RI],C]=T
EndFor
The Event Order Table has been changed.
EndIf
EndFor
EndIf
EndFor
EndFor
EndFor
Until there is no change in the Event Order Table entries
Merge all Event Order Tables.

6- Create the Coregion Tree
As described in bMSC algorithm.

7- Fill the Occupancy Tables
As described in bMSC algorithm.

8- Check the existence of multi-instances
Check the presence of multi-instances. If there are multi-instances of a
process, compare the specification and merge alternative instances. During
the comparison, check for the divergence points and alert the user of any
ambiguities.

9- Generate SDL code.
Same as for bMSC algorithm.
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5.6 DISCUSSION

In this chapter. we have presented our approach for generating SDL specifications from
MSCs. under a given SDL architecture. Our approach ensures high quality SDL
specification, free of any design error. Moreover, in our approach we check the
correctness of the given MSC and its implementability.

Recently, during the last year, many research groups have started similar projects [12]
[19] [16]. In this section, we describe briefly each one of them.

In his thesis, [12] is mainly concerned with extracting SDL architecture specification
from the given MSC specification. The approach searches the MSC instance headers for
architectural keywords such as block, system and process. According to the given
information, the main objects of SDL architecture are constructed. Then, the approach
creates a single route, signal route/channel, between each two communicated processes Lo
convey their signals. In his thesis report, our work was mentioned as a complement to his
work.

In [19] approach, MSC processes have a parallel behavior. Therefore, a generated SDL
process behavior composed of only one state and all input signals are initiated from this
state. Furthermore, the approach is more interested in measuring the performance of the
specification than translation of MSC into SDL.

In contrast to our approach, the main characteristic of the ongoing research [16] is the
generation of the SDL architecture in addition to the SDL process behavior. However,
since MSC specifications are gathered during the requirement phase, it is too early to
decide the target system architecture. In addition, the MSC specification becomes more

complicated by the enriched information required by the approach. Moreover, most of the
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requirement specifications may target different hardware, and that may lead to an earlier
redundancy of the specified work. Consequently, at the requirement phase. the
specifications lose their properties of reusability and maintainability. Furthermore. most
of the time. the target hardware (architecture) is already known and the MSC
specification is an additional or updating feature to the current specification, for instance

adding new features to telephone systems.
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CHAPTER 6

THE MSC2SDL TOOL AND APPLICATIONS

6.1 OVERVIEW

Our approach has been implemented on a unix platform. It can be easily ported to other
platforms such as DOS, Windows and Linux. The tool, MSC2SDL, has been
implemented using the C language [15]. The user interface is built with the Tcl/Tk([2]
scripting language.

The MSC2SDL tool has been interfaced with ObjectGEODE, as shown in Figure 6.1.
(see section 6.4 for more information about ObjectGEODE.) Consequently, we adopted
the ObjectGEODE graphical format for both MSC and SDL representations. The
MSC2SDL tool takes two files as an input. One contains the textual representation of the
given MSC specification, and the other contains the textual representation of the target
SDL arcitecture. Both files contain informal graphical information in CIF format{9]. In
the current version, the two input files follow the ObjectGEODE format, and
ObjectGEODE MSC and SDL editors are used for the creation of these files.

The MSC2SDL tool extracts the MSC and SDL specifications and builds the
corresponding data structures. Then the algorithm is applied, and the tool produces the
textual representation as well as the CIF graphical information for the generated SDL
process behaviors. The generated SDL behaviors are inserted into the given SDL

arctitecture, and saved into the input file or, as an alternative, into a new file. The output
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file can be viewed and modified with ObjectGEODE SDL editor. Moreover, the

generated SDL specification can be simulated using ObjectGEODE tools.

ObjectGEODE

’ SDL Editor MSC Editor

MSC
specification

architecture

textual representations

MSC2SDL

textual representation
SDL &
specification / CIF graphical info.

Figure 6.1.MSC2SDL and ObjectGEODE.

6.2 ARCHITECTURE OF MSC2SDL TooL

The code of the MSC2SDL tool consists of several modules, as shown in Figure 6.2.
Below, we give a brief description of each module in the tool. All modules are coded in C

except for Msc2sdl.tcl, which is in Tcl/Tk.

® Main module is the main module. It starts the execution, and initializes all
other modules. It also interprets user events received by Msc2sdl.rcl module
and passes them to the appropriate module.

® Msc2sdl.tcl is the user interface module. It provides the main window as

shown in Figure 6.3, as well as all other necessary dialog windows required by
the MSC2SDL tool. The module passes all user requests to Main.
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FileInterfuce reads MSC and SDL specification files as well as writes the
generated SDL process behaviors into the output file. In the current version.
this module recognizes only ObjectGEODE file format.

Algorithm applies the translation on the given data structure to generate SDL
behaviors. It is also responsible for the actual translation of MSC constructs
into its corresponding SDL constructs.

SDL creates and manages the SDL data structure.

MSC creates and manages the MSC data structure.

CheckComp checks the static architecture consistency between the given MSC
specification and the SDL architecture.

HMSC is responsible for checking the semantics within the HMSC
specification. In the current version, the module checks for the presence of
non-local choice errors in the given MSC specification.

EventOrder creates the Event Order Table for the given MSC specification.

Multilnstance checks the existence of multi-instances and evaluates their
behavior.

MatchCondition checks for shared conditions among multi-instances or
alternatives of the same instance.

Coregion is responsible for detecting any general order among coregion
events and creating coregion trees.

SaveMessages checks for the messages that are required to be saved at a
certain state.

RefineSDL enhances the produced SDL process behaviors. After the behavior
has been generated, the module checks for the existence of different states that
have the same behavior. These states merge into one state and update all the
related links.

Graphics is responsible for distributing the generated SDL behavior on the
graphical sheet. The produced graph may be spread over several pages.

Tree handles tree data structure that is required for coregion.
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RefineSDL Graphics Tree
_________________ l e m -
Strings Stack

Figure 6.2.MSC2SDL architecture.

e Strings handle special string functions used by the algorithm. It is used by
almost all of the other modules.

e Stack handles stack operations. The stack is used by HMSC module to save the

status of the current generated FSM when an alternative operator is translating.
As a result, all other alternative branches will be joined at the same position.

The execution of the tool starts with the Main module. The Main calls the Msc2sdl.tcl
module, which controls the interactions with the user.
In response to user commands, Msc2sdl.tcl will trigger Main with the corresponding

event. When the user gives an input file (MSC or SDL specification), Main will call
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Filelnterface to retrieve the file and store the specification into a data structure through
MSC or SDL module. Main calls Algorithm to apply the translation. Then, Algorithm will
call the other modules in the following order: CheckComp, EventOrder, Coregion,
SaveMessages, Multilnstance, HMSC, RefineSDL then Graphics.

Finally, Main calls Filelnterface to store the produced process behaviors in the output

file.

6.3 THE USER INTERFACE

The MSC2SDL tool has a simple user interface. The main window, as shown in Figure

6.3, is divided into three parts: main menu, user info and status bar.

mm\m\etm user info
R e e MSC o SDE T ool 75|
File  Translate GEODE Editors Help
i
stas: MsCfe ] . sSoufle [} Product file [ | [
status bar

Figure 6.3.MSC2SDL main window.
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The main menu provides the user with all necessary commands required to apply our
approach. Figure 6.4 shows the file popup menu which will be activated when the user

selects the file button from the main menu.

Open MSC Specification file...
Open SDL Architecture file...
Open SDL Output file...

Options...

Exit

Figure 6.4.File popup menu for MSC2SDL iool.

The user feeds the tool with the input files and the name of the output file. (In case the
output file name is not provided, the tool will write the generated specification into the
given SDL architecture file.) As soon as the user chooses the file type, the file window

(Figure 6.5) will pop up to browse the system for the appropriate file.

Directory: Mome/mm_abdal/GEODE/demolTele —| | @]l
Basic_call.msc Y
7
File Name: || - Open J

1 File Type:  {MSC files} *.msc —|  cancet | |

Figure 6.5.File window for MSC2SDL tool.

As shown in Figure 6.3, the translate button in the main menu performs the translation of

the MSC specification that is provided in the MSC input file. GEODE Editors button, in
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the main menu, assists the user to launch ObjectGEODE MSC and SDL editors. The help
button provides the user with useful information about the tool.

The user info area is designed to prompt the user with any potential errors that may be
detected during the translation.

The status bar shows the names of the input files as well as the output file.

6.4 OBJECTGEODE

ObjectGEODE is a toolset based on complementary formal languages, UML, MSC and
SDL. ObjectGEODE provides graphical editors for these languages. It also supports the
SDL language with simulation and verification tools as well as a C/C++ code generator.
ObjectGEODE is intended to analyze, design, validate through simulation and
verification, for code generation and testing of real-time and distributed systems.

While ObjectGEODE supports the full SDL Language, it supports only a subset of UML
and MSC Languages. Within ObjectGEODE, MSC is mainly used to derive test cases
and observers for the validation of the SDL specification. ObjectGEODE does not
support HMSCs or inline expressions, though it provides logical operators (as shown in

Figure 6.6) which may be used for HMSCs and inline expressions.

—=7 — =] — L] \ Lesf
An Is Exception
Opezatoz Opetstor Opeztot
/T 1 T
o} Pazallel Loop
Opezatoz Operator Opezator

Figure 6.6.0bjectGEODE logical operators.
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The And and Is operators are equivalent to the sequential operator in HMSC. The Or
operator is equivalent to the alternative operator in HMSC and the alt inline expression in
bMSC. The Parallel operator is equivalent to the parallel operator in HMSC and the par
inline expression in bMSC. The Loop operator is equivalent to the iterative operator in
HMSC and the loop inline expression in bBMSC. The Exception operator is equivalent to
the exception inline expression in bMSC. The Leaf is equivalent to a bMSC.

Unfortunately, ObjectGEODE allows users to add timer events within coregions in the
graphical representation of MSC, even if they will be thrown out of the coregion in the

textual representation.

6.5 APPLICATIONS

In this section, we will illustrate the application of MSC2SDL tool to real case studies.
6.5.1 Basic TELEPHONE CALL

This subsection demonstrates the application of the MSC2SDL tool to a basic call in the
telephone system. The MSC specification and SDL architecture have been created using
ObjectGEODE editors.

SCENARIOS

The basic call scenarios have three actors: the caller's local controller, the callee's remote
controller and the telephone system. In this scenario, the users and their telephone
machines are represented by the system environment. The caller will dial the callee phone
number (Call_Request bMSC.) After a short time, in the case of no response from the
callee, the caller will receive a busy signal (No_response bMSC.) If the callee responds to

the ringing signal, the two will be connected (Connected bMSC.) To terminate the call,
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one of the parties has to hang up the telephone (Caller_dis and Callee_dis bMSCs.) On
the other hand. the telephone system may malfunction and disconnect the partes
(system_dis bMSC.)

MSC SPECIFICATION

Figure 6.7 shows the MSC specification of the basic call. This example demonstrates

multi-instances translation, as well as sequential and alternative operators.

Basic_call

| E— L—?_I 1

wac Call_Request Response
| S— L_i_-J 1
connecting w:c No_reponse

- L;J 1

wac Connected Disconnect
| ——

L ) ) I
\msc Cailer _dis \mac Callee_diis wsc system_dis

[msc Call_Request
caller exchangel callee

process controllerl |pTol:ess exchangei [pmcess controller{
I I I
4 Icle >

off_hook
dial_tone
dial num 1
dial_tone_off

| dial_num call_req

call_ind

ring_tone call_ack
T

4 wait ),
R E————————

Figure 6.7.Basic call MSC specification.

ringing
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4 Wat > & wait )
T | off_hook
busy_tone dis_ack ' X - rnging_of
-—— dis_ack ringing_off , call_resp =
on_hook
nng_tone_off) call_conf
{ idle
S S * . Connected )
3¢ Caller _chs sc Cajliee_dis
caller exchange! cajlee caller exchange! callee
rocess controﬂil Eucess exchangel |pmceas controlled Fczsa cuntrollq Fm“” exchanq* process controued
<7 Cannec!ed ( Connected
on_hook dis_req dis_req 4on_hook
= disind | cial_tore dial_tone dis_ind < =
) on_hook ’
dis_ack dis _resp on_haok dis _resp dia_ack
S ldl—e ] <— L —)
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ncess contmlled Fms exchang;* Emcess conlrolle’
< Connected
dial_tone dis_nd dis ind dial_tone
on_hook on_hook
= dis_resp dis _resp
( Idle >

Figure 6.7.Basic call MSC specification. (cont...)

SDL ARCHITECTURE

The SDL architecture of this system, as shown in Figure 6.8, consists of two blocks -

controller and exchange. The two blocks exchange signals through channel Channel?2.

The controller block communicates with the environment through channel Channell.

The exchange block (Figure 6.9.a) contains one process exchange, which communicates

with the block environment through Signalroutel. Signal route Signalroutel is connected

to channel Channel2 at the block border.
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system telephone_system

SIGHNAL
call_req,call_resp,dls_req,d!s_resp,call_req_ca!l_wamng,call_wan_req,call_walt_resp,
can_wan_clear_req,call_walt_clear_resp,r:all__lnd,call_ack,call_conf,dis_md,dxs_ack,
call_ack_call_waiting,call_wait_ind,c all_wait_ack,call_conf_caii_waiting,
call_wait_clear_ind,call_wait_clear_ack,release,

on_hoak,off_hook,dial_num_7 dial_num,flash_key,
dxal__tone,d|a|_t0ne_0ff,ring_t0ne,nng_tone_oﬂ,ringlng,rmgmg_oﬂ,busy_tone,call_want_tone;

Channel2 Channell
exchange < — > contraller < » T

[cat reg, W caf_ing, on_hook: da/_tone, ‘
sl res caf_ack, off_nook, | \daf rore_ot!
ds_req, ca_con, dalrum_7,| | png e,
0’5— f'ES:D, ds_ing L;Sgs_hm' Y. rone_off,
cafl_req_call_wartirg || #°= %% " ey 1 gy,
s i gy caf_ack_call_waitrg, nrgirg_off, l
ca_wast_nesp, cafl_wait_ind, busy_rore,
o vt cea. g || g cof vt o]
Lcav_wt_c.ear_resp_ cal wait clea_ind

caff_wait_clear_ack,

|reicase

Figure 6.8.Basic call SDL architecture (system).

block exchange
Signairoute!
exchange & 4 Channel2
[ cad_req, caf_ing,
ca#_.'esp} ca_ack,
ds_req, ca#_fconf,
call_req_caf_waling, _acK,
'wé'ar_;w(_m cat_ack_caf_vaating,
cal_war't_resp, cal_wart_ind,
cafl_wart_ckar_reg, cafl_ way?_ack,
L caf_wart_clear_resy) ca_conf_cafl_uaiting,
- call_wail_clear_ind,
cafl_walt_clear,_ack,
I reieast
(a) Exchange block.
Block controiler w
Signairoute2 Signalroutet
Channel2 (— controller Channelt
[ r ot | an_hook, dia_tore,
calreg cad_ing, off_hook,
cal_resp, call_ack, dal um ‘
ds_req, ca¥_cont, gy
s resn ds_ird) | ke
call_req_cal_waiting, os_ack, -
caf_wart_reg || caf ack_cad_waiting,
cafl_wart_resp, cafl_wait_and,
call_warl_clkear_req caf_wait_ack,
caf_wait_clear_respl| call_con{_call_waiting,
N call_wait_clear_ind,
calf_wait_clear_ack,
L refe:
(b) Controller block.

Figure 6.9.Basic call SDL architecture (blocks).



The comtroller block, (Figure 6.9.b) contains one process controller. which
communicates with the block environment through Signalroutel and Signalroute2. At
controller border, signal route Signalroutel is connected to channel Channell, and signal
route Signalroute2 is connected to channel Channel2.

SEMANTIC ERRORS

MSC2SDL tool has detected two non-local choice problems in the given MSC
specification.

The first non-local choice is caused by alternative Response, which is controlled by two
different instances env and exchangel. As shown in Figure 6.10, bMSC Connected is

controlled by env, while bMSC No_response is controlled by exchangel.

Error (990): non-local choice may be present.

Alternative HMSC: Response

bMSC msc No_reponse is controlled by Instance exchangel
bMSC msc Connected is controlled by Instance ENV

Do you want to continue!

Yes No

Figure 6.10.Non-local choice alert] for basic call
specification.

The second non-local choice is caused by alternative Disconnect, which is controlled by
two different instances env and exchangel, as shown in Figure 6.11. In Figure 6.7, bMSC
Caller_dis and bMSC Callee_dis are controlled by env, while bMSC system_dis is

controlled by exchangel.
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X S Warning Message - - HR
t

Error (990): non-local choice may be present.

Alternative HMSC: Disconnect

bMSC mse Caller_dis is controlled by Instance ENV
bMSC msc system_dis is controlled by Instance exchangel

Do you want to continue!

Yes No

Figure 6.11.Non-local choice alert2 for basic call
specification.

GENERATED SDL BEHAVIOR

The generated SDL behavior of process exchange is shown in Figure 6.12. The process
behavior saves the caller pid (state Idle) and the callee pid (state Wait) to use them later
in order to identify the sender instance of the received signal dis_req in state Connected.
However, state Connected is not stable because of the spontaneous transition NONE. The
process exchange may execute the spontaneous transition, even if there is a dis_req signal
in the input queue. During the generation, the MSC2SDL tool has alerted the user of such

problem as shown in Figure 6.11.
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process exchange

DCL

caller,controfler,

callee PID; t]
TIMER
T,

aller = SENDER

dis_req
call_ind TO controller
SET (1) ﬁ

r

( =caller >
dall_ack TO callpr e

is_ind TO call is_ind TO calipr
call_resp< T

I L dis_resp dis_resp
dallee := SENDER is_ack TO callsr

I ]

o

call_req

{)

N

__%
e

dis_ack TO calldr  gis_ack TO callye dis_resp

RESET () is_ack TO calf

I_conf TO caljer

Figure 6.12.Generated process behavior (Exchange) for
MSC specification in Figure 6.7.

~

BHH

¢

The generated SDL behavior of process controller is shown in Figure 6.13. The process

behavior is split into two pages. The behaviors of the caller instance and the callee
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instance are merged to produce the process behavior. In the state Idle, each instance will

save its pid in order to distinguish itself later in state Wair.

pracess contraller Page. 1/2

DCL
caller, exchange, exchangel, callee PID; j

off_hago call__ind< /Tm_hool;/ [ dial_num ( / dial_num_! /

hange! = SENDER

caller = SELF excl

dia_tone TO ENV callee = SELF

inging TO EN
dial_num_«< [ on_hook / ﬁial_num j ( Wait

dial| tone_off TO ENV

dial_numj /:n_hook j
req TO exchdnge

cd

Figure 6.13.Generated process behavior (controller) for
MSC specification in Figure 6.7.
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a1

Page: ol

process controlier

————

53

call_ack< /:n_hook ’/

exchange! = SENDER

H

ring_tone TO ENV

L 1

off_hoc»< / on_haak /

ging_off TO E}

rn

ringg

resp TO exchange!

on_hook

dis_ack on_hooki

dis_fesp TO exchange!

Figure 6.13.Generated process behavior (controller) for
MSC specification in Figure 6.7. (cont...)
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6.5.2 AUTOMATIC TELLER MACHINE (ATM)

SCENARIOS
The ATM scenario consists of three actors: the user, the ATM machine and the bank
system. For simplicity, we have specified only two ATM functions (withdraw and get
balance). In this specification, the user will supply his card and password to the ATM
machine. Then, he will choose one of three options:

® Get balance of his account.

e Withdraw allowable amount from his account.

e End the transaction.
However, the user card may be rejected for the following reasons:

e Password has not been supplied.

e [ncorrect password.
MSC SPECIFICATION
The MSC specification of the ATM is shown in Figure 6.14. The specification

demonstrates Sequential, Alternative and Iterative HMSC operators.
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ATM

C
[

S

—— l
N\ msc StartTrans \ msc GetPin PinNo
H_J
| — 1
Processing \msc TryAgain
L T 1
\nsc PracessPin PinCheck
| — 1 1
\msc RefusePin pin_ok m3c CancelTrans
L_i:J
L )
\ msc Pin0k Options
 S—
!
ProcessOption
T
T i 1
N\sc GetBalance Withdraw “sc EndTrans
| a— T 2 i
msc StartTrans
11 12 sc Withdraw Process Actions
| process Uaerl [pmcess AM — o — Y
T I
{ Icile ) \{sc DispanseCash 3¢ RefuseWithdraw
Card
N
GetPin )

msc GetPin
It

12
[process User] | process ATM|
| T
4 GetPin D
Req_PIN
—% T(now+10)
PinProcessing )

o S |

msc Proces?F‘in
|

12 13
|pTocess Userl Fcess ATml |proce:s Bankl
1 1L

<

PinProcessing

by

Enter_PIN

B

o

Verify

Pracessing_MSG
‘_____

-

CheckPin

)

Figure 6.14. ATM MSC specification.
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msc ryAg3an

rnsc RefusePin

i 2 I 12 13
process Ueerl lprocess -TPL [prncess Uaeri F:rocess ATM! [process Sank]
I I T I
¢ ; p- ¢ N
{ PinProcessing J '/‘( 7 { CheckPin )

~ Invalid
’ Return_Card 4___‘T‘ Return_Card
Timeout_MEG INV_PIN_MSG
< Idle ) ¢ Idle )

P

IR

—

‘msc CancelTrans

1] 12 1

msc Pin0k

] 2 13

[pmceas Userl Lprocess ATMI |;mcesa Bankl

3

E] ATﬂ Weas Bank]
I

b

Eo:ess User] I proces.
1 1

C

CheckPin

Cance! I
1 Ahort

e
Return_Card

< Idle >
g

CheckPin

_ )

Option Valid

ﬁ Options )
P ————

msc GetBiance

[msc EndTrans
}] 12

CheckBalance

(——ﬁ

11 12 13 2 13
process Userl [ process ATM] l process Bamﬂ WNG” USCVI limceu ATlﬂ [ proceas Bank|
I ' - 1 T |
( Options < Options >
GetBalance Req_Balance Cancel Abart
P
Print_Balance | Balance Return Card
Option
Idle
o Options > < I I I )
[msc DispanseCash
fmsc WithdrawProcess 5 ) 12 i3
I
" 2 l?mcess User] l process AM lpmcess BankJ
[pmcess UserJ [ process AThd lpmcess Bankl — T —
x n - g CheckBalance )3
Options
oy i > | Give_Money Amount_Approved
T Req_Balance
Req_Amount ol
i ance
Ent_Amount Approve_Amaunt | Print_Trans
. Option

Options

{ D
A I

Figure 6.14. ATM MSC specification. (cont...)
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[msc RefuseWithdraw

2 13
C >

CheckBalance

Not_Passible_MSG Not_Approved

Option

< Options >
T — e

Figure 6.14. ATM MSC specification. (cont...)

SDL ARCHITECTURE

Figure 6.15 shows the SDL architecture of the system, which consists of one block
ATM _Block. The ATM_Block consists of three processes Use, ATM and Bank. Processes
User and ATM communicate through Signalroutel. Processes ATM and Bank

communicate through Signalroute2.

block ATM_Block

SIGNAL
req_pin,processing_msg,return_card,inv_pin_msg,timeout_msg,option,prim_balance,req_amount,
give_money,print_trans,not__possible_msg,card,enter_pin,cancel,getbalance,withdraw,ent_amount,
valid,invalid,balance,amount__approved,not_approved,venfy,abon,req_balance,approve_amcunt;

SignalRoute! I l SignalRoute2
User ATM

Bank
Req_pin, Cad vaid, invaid, Venfy,abor?,
Processing_msy, Enter_pin, . eq_tanee,
Aeturn_Carg, cancel amount_approved,| | 3pProve_amour
nv_pin_msg, getdalance, not._approv
tirmeout_msy, wiharaw,
oplion, ent_amoun
pnt_bakarce,
req_amount,
give_monrey,
print_trans,
_not_possm_m:g

Figure 6.15.ATM SDL architecture.

SEMANTIC ERRORS

MSC2SDL tool has detected two non-local choice problems in the given MSC

specification.
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The first non-local choice is caused by alternative PinNo, which is controlled by two
different instances /1 and [2. As shown in Figure 6.16, bMSC ProcessPin is controlled by

I1. while bMSC TrvAgain is controlled by /2.

f

Error (990): non-local choice may be present.
Alternative HMSC: PinNo

bMSC msc TryAgain is controlled by Instance I2
bMSC msc ProcessPin is controlled by Instance I1

Do you want te continue!

Yes ! No

Figl;re 6. 16.Non-local choice alé&l -fox; ATM specific%ﬁiori.
The second non-local choice is caused by alternative PinCheck, which is controlled by
two different instances /1 and I3, as shown in Figure 6.17. In Figure 6.14, bMSC
RefusePin and bMSC PinOk are controlled by /3, while bMSC CancelTrans is controlled

by /1.

Error (390): non-local choice may be present.
Alternative HMSC: PinCheck

bMSC msc RefusePin is controlled by Instance I3
bMSC msc CancelTrans is controlled by Instance 11

Do you want to continue!

ves | No

- |

Figure 6.17.Non-local choice alert2 for ATM specification.
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GENERATED SDL PROCESSES
The generated SDL behavior of process User is shown in Figure 6.18. The process
behavior is split into two pages. State PinProcessing and state CheckPin are unstable

because of the spontaneous transition NONE.

process User

/ DCL j Page: 1/2
ATM,I2 PID;

Pracessing_MSG

N

[ ]

Option NONE

1

-

Aeturn_C

Card TO ATM

([
<

L ]

i Options Cancel TO 12

&
52

LA

ICZE PN

INV_PIN_M&G

“
NONE Return_C n
1 S

F\ter_PlN T0 I2 ( Sl ) Timeout_MS
Figure 6.18.Generated process behavior (User) for MSC
specification in Figure 6.14.
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process User
Options

)

Cancel TO 12

L,

Withdraw TO |

Give_Mon{ hot_Possible_éG
RN
6 )

O

Figure 6.18.Generated process behavior (User) for MSC
specification in Figure 6.14. (cont...)

The generated SDL behavior of process ATM is shown in Figure 6.19. The process

behavior is split into two pages.
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process ATM

P

-

'L/-

)

Icile

e

Card

i

1t = SENDER

GetPin

DCL

11,Bank,i3 PID;

TIMER
T,

g

NONE

LN

Req_PINTO I1

U

SET (now+10,T)

PinProcessing

[

Enter_PI| T <
T T
RESET (T) eturn_Card %l
.

icessing_MSG n

CheckPin

Verify TO Ban Tyneout_MSG TOX!

Page: 1/2

CheckPin
In 1 -
Invalid < Vdlid Cancel <
— [ S
13 .= SENDER I3 := SENDER Aport TO 13
L ] 1
Return_Card TO i1 Option TO> Return_Card TO H
] L
INV_PIN_MSG TO 11 Uptionj Idle

Figure 6.19.Generated process behavior (ATM) for MSC
specification in Figure 6.14.
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process ATM Page: 2/2

&

Options CheckBalance

/’—'

g

[

fmount_Approved

GetBalanc/ \Mthdraw< Cancel

L~

| I |

Live_Money TO }1 Not|

ANFZ Ve

Heq_Balance TO }3 eq_Amount 1>1 Abart TO I3

N) B {
st 52 ) Return Card T>n meq_Balance TO 13 Option TO 11
/ Options
yint_Balance T>Il Ap rove_Amouit>) i3

Option TO 1 CheckBalance

e 1]

Print_Trans TO [

Option TO I

Options

Options

Figure 6.19.Generated process behavior (ATM) for MSC
specification in Figure 6.14. (cont...)

The generated SDL behavior of process Bank is shown in Figure 6.20. State CheckPin is
unstable because of the spontaneous transition NONE. In this state, the process may
choose, non-deterministically, to wait for signal Aborr and consumes it, or to activate the

spontaneous transition and sends signal Invalid or signal Valid.

116



process Bank
5CT Options
12 PID; :

T 1

n Approve_Amz<nt Abart i
N L
Verify < (;:kﬂalance ( idie J
| ——————

12 = SEMDER

hunt_Approved JO 12 Npt_sApproved TQ 2

2
o I
=
m
& |
o
PN
TN
S~
TN
-
~—

Invalid TO 12 Valid TO 12

n m Y

Figure 6.20.Generated process behavior (Bank) for MSC
specification in Figure 6.14.

6.5.3 INRES PROTOCOL

SCENARIOS
The INRES system contains five actors: [nitiator, Coder_ini, medium, Coder_res and

Responder. The specification shows the three phases of the protocol: connection phase,
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data transfer phase and disconnection phase. In our specification. we assume a reliable
medium.

MSC SPECIFICATION

Figure 6.21 shows the MSC specification of the INRES protocol. This specification
demonstrates the multi-instance translation, where instance [nitiaror and instance
Responder are of the sume process type INRES. Also, instance Coder_ini and instance
Coder_res are of the same process type Coder. Instances Initiator and Coder_ini
represent the initiation side, while instances Responder and Coder_res represent the

responding side.

inres

T L

L
\ msc¢ init response
|

L 1

\mac req_refused confirm
L-‘.'_l

\ msc accept loop C)

data_transfer

l_i.J
[ 1
\nsc send_data N‘ISC disconnect
[msc init
Initiator Coder _ini medium Coder_res Respander

process INRES | process Coder] process Mediu pracess Coder| [process INRES
) - T ) T I

< disconnected >

ICONreq

CR

S —— MDATreq(CR)
————® MDATind(CR)

CR
———————] [CONind

—————»

4 wait >
e e S ————————

Figure 6.21.INRES MSC specification.
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msc req_refused
Initiator Coder_irt medium Coder _res Responder

process INREY | process Coder] process Mediun| | process Coder| |process INRES

1 11 1 T T
C D
DR IDISreqg
oF MDATId(DR) | oATred(DR)
iDISInd g
Q disconnected >
Im3ac accept
Initiator Coder_ini mecium Coder_res Responder

process INRES | process Cader| process Mediun] | process Coder] [process INRES
T T T T I

¢ wait >

ICONres

cc

| MDATreq(CC)

ce | MDATind(CC)

C connected )
e e e e —

ICONconf |«

(msc send_data
initiator Coder_ini medium Coder_res Responder

process lNﬁEEi process Coder| qus Mediun! | process Coder| |process INREY

T T T ) T

< connected >

{DATreq or
'____. MDATreg(DT)
MDATInd(D
(DT) o1
IDATInd

< connected >

msc disconnect
Initiator Coder_ini medium Coder_res Responder

process INRES | process Coder FmessMedSurr process Coder| |process INRES
1 I ] I T

( connected )

iDISreq

DR

MDATreq{DR)

MDATInd(DR)

IDISind | g DR

<7 disconnected >
e S S — —————

Figure 6.21.INRES MSC specification. (cont...)
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SDL ARCHITECTURE

Figure 6.22 shows the SDL architecture of the INRES protocol. which consists of two

blocks INRES and Mediim. The two blocks communicate with each other through

channel Channel2. and block INRES exchanges signals with the environment through

channel Channell.

CR,CC,DR,DT,
ICONind,ICONcanf IDATInd,IDISind,
MDATreq,MDATInd;

system nres_protocal SIGNAL ICONreq,ICONres, IDA Treq,IDISre,

Channell (3

1018k 1015,

ICONInG,| | ICONreg,
ICONcond, ICONres,
1DATing, 1DATreq,

Channeit Channei2
< > INRES < > Medium
[iconwg, ICONreg, . ~
’ 4 ATing|  |(MOATreg
ICONCant, iCONres, [ ] [ 4l
IDATiInG, 1DATreq,
1D1Sind 1D1Sreq
[Biock INRES
Sanel routet Signal_route2 Signal_route3

) Channel2

block Medium

Channei2 e Signal_route Medium

[moarnd  [MOAImg

Figure 6.22.INRES SDL Architecture.

The block INRES consists of two processes INRES and Coder. Processes INRES and

Coder communicate through Signalroute2. INRES communicates with the block

environment through Signalroutel, which is connected to channel Channell at the block
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border. Coder communicates with the block environment through Signalroute3, which is
connected to channel Channel2 at the block border.

The block Medium consists of one process Medium communicating with the block
environment through Signal_route. Signal_route is connected to channel Channel2 at the
block border.

GENERATED SDL PROCESSES

Figure 6.23 shows the generated SDL behavior of process INRES, which play the role of
the instance [nitiator and the instance Responder. As shown, there is no shared behavior

between the two instances, so, there is no need for saving their pids.
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process INRES

DCL
Coder, Coder_ini,
Coder_res PID;

disconnected

1 1 i

ICONreq CR IDATreq ICONres iDISreq

i

)

CR TO Coder

3l

) I L

DR cC IDISreq ICONres IDATreq

[ | [ I

Chder_ini .= SENDER Copder_ini = SENDER DR TO Coder_r CC TO Coder_r
& N
IEQNconf TO EM disconnected connected

IOATreq< DR < DT iDISreq

connected
. -

T 1

| ! |

[
DTTO Cod9 IDISind TO ENW |IDATind TO EMY PR TO Coder ¢

L o £ L
connected (disconnected ' ( connected disconnected

Figure 6.23.Generated process behavior (INRES) for MSC
specification in Figure 6.21.
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Figure 6.24 shows the generated SDL behavior of process Coder, which play the role of
the instance Coder_ini and the instance Coder_res. As shown, there is no shared behavior

between the two instances, so, there is no need for saving their pids.

process Coder

DCL
Initiator, Medium,
INRES, Responder PID,

disconnected

MDATInd(CE)

hedium = SENDER

I I

MDATInd(Dg) MDATINd(CC)

ZN

| !

rthedium = SENDE}h +dum = SEND%

] |

DR TO Initiato CC TO Initiato MD4

N

oT < MDATing( DQ) M DAde(D<

MDATreq(DT) TO m}dlum DR TO Initiatos PT TO Respo MDA
( connected ) (Zbconnected) ( connected ) disconnected

Figure 6.24.Generated process behavior (Coder) for MSC
specification in Figure 6.21.
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The generated SDL behavior of process Medium is shown in Figure 6.25. The process

behavior is composed of only one instance behavior mediunm.

{process hecium

DCL
Coder_ini, Coder,

Coder_res PID;

disconnected

MDATreq( CQ

[w)

pder_ini = SENDER

\

MOWTINd(CR) T?Jdef

MDATreq(CC)

Cq R (o

MDA er_ini  MDATind(CC) TO Caier_ini

MDATreq( ] MDATreq(D&)

MDATINd(DT) TO Coger_res MDAJind(DR) TO Coper _ini

Figure 6.25.Generated process behavior (Medium) for MSC
specification in Figure 6.21.



6.6 MSC2SDL LIMITATIONS AND RESTRICTIONS

The current version of MSC2SDL tool does not support full MSC'96. and has some
restrictions and limitations, which are listed below.

MSC

® Process type instances are the only instances recognized by the tool. System,
block and service instance types are not supported by the current version.

e [n addition to instance names, process names must be specified within the
given MSC specification.

e Time-out events are not allowed in MSC coregions.

e [Instance decomposition, MSC reference, message lost and message found are
not implemented in the current version.

e Unspecified reception and process divergence are not implemented in the
current version.

SDL

e Communication between processes must be explicitly specified in the given
SDL architecture.

® The given SDL architecture must not exceed one level of block hierarchy.



CHAPTER7

CONCLUSION

The main contribution of our work is an approach to tighten the bridge between the
requirement phase and the design phase in the software process. We have chosen MSC
language as a requirement specification language, and SDL language as a design
specification language. We have proposed an automatic approach for synthesizing a
consistent SDL specification from an MSC specification. The approach guarantees that
the generated SDL specification is free of deadlocks, non-local choices, divergences and
unspecified receptions. The approach also checks for the implementability of the MSC
specification under the target SDL system. Therefore, the approach guarantees
consistency between the MSC specification and the SDL specification. Further, there is
no need for more validation of the SDL specification against the MSC specification. To
apply our approach, the target SDL architecture is required in addition to the MSC
specification. In general, for a given MSC, the approach generates different SDL
behaviors for different SDL architectures. Some real case studies have been presented in
Chapter 6 for the evaluation of our approach and tool.

More specifically, our contribution consists of: extending the basic approach, introducing
HMSC and multi-instances and addressing the consistency between MSC and SDL as
well as MSC semantic errors. We have improved the basic approach, which was
introduced in [4], and extended the basic approach to cover MSC timers, coregions and

inline expressions. Furthermore, we have provided an approach to translate HMSC
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operators, sequential, alternative and iterative, into SDL. In Addition, our approach
manages multi-instances MSC specifications. We have also addressed the inconsistency
between MSC instance identifications and SDL instance identifications. Finally, we have
provided MSC semantic error detection approaches, which detect deadlocks, process
divergences, non-local choices, unspecified receptions and the implementability of a
MSC specification under the target system.

Our approach is very promising for telecommunications software development. The
software process for telecommunications systems will be supported by full systematic
tools that will ensure the quality of the product as well as reduce the development time.
Suggested future work is the investigation of the MSC parallel operators. Furthermore,
the investigation of an incremental approach where the given MSC specification will
enrich the existing SDL behavior is highly recommended.

MSC2000 has significantly improved MSCs. Data types, time constraints and control
flow have been introduced and MSC specifiers can now describe their requirements more
precisely. Therefore, our approach should be extended to take into accounts MSC2000
and SDL2000.

From a theoretical point of view, the correctness of our translation algorithms has to be

examined formally.
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