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Productivity is described as the quantitative measure between the number of resources used and the output produced, generally
referred to man-hours required to produce the final product in comparison to planned man-hours. Productivity is a key element
in determining the success and failure of any construction project. Construction as a labour-driven industry is a major contributor
to the gross domestic product of an economy and variations in labour productivity have a significant impact on the economy.
Attaining a holistic view of labour productivity is not an easy task because productivity is a function of manageable and un-
manageable factors. Compound irregularity is a significant issue in modeling construction labour productivity. Artificial Neural
Network (ANN) techniques that use supervised learning algorithms have proved to be more useful than statistical regression
techniques considering factors like modeling ease and prediction accuracy. In this study, the expected productivity considering
environmental and operational variables was modeled. Various ANN techniques were used including General Regression Neural
Network (GRNN), Backpropagation Neural Network (BNN), Radial Base Function Neural Network (RBFNN), and Adaptive
Neuro-Fuzzy Inference System (ANFIS) to compare their respective results in order to choose the best method for estimating
expected productivity. Results show that BNN outperforms other techniques for modeling construction labour productivity.

1. Introduction

Artificial Intelligence (AI) has been a powerful tool in the
construction industry over the past decade. Several Al
modeling techniques have been employed in the con-
struction industry such as expert systems (ES) and Artificial
Neural Network (ANN). Modeling labour productivity is
challenging as it requires the quantification of substantial
factors that affect labour productivity and consideration of
influential factor interdependencies. Productivity is a deli-
cate aspect of any construction project. Unquestionably,
arriving at a definition of construction productivity can
cause confusion because of the various different ways at
defining it. Strictly speaking, productivity is a component of
cost and is not a method for estimating the cost of resources;
rather, it is a quantitative assessment of the correlation
among the number of resources used and the amount of
output made [1]. Productivity in construction is considered

as a measure of output achieved by a combination of inputs.
Considering this perspective, two concepts for measuring
productivity described in the literature are total factor
productivity and circulating capital [2]. Total factor pro-
ductivity is the most common construction productivity
measurement technique where the output is measured
against all inputs. Partial factor productivity is referred to as
single-factor productivity, in which the output is measured
against a single input or selected inputs. Partial factor
productivity is a cost-effective model and very advantageous
for developing strategy and assessing the state of the
economy; however, it is not beneficial for contractors [2].
Circulating capital is any kind of capital that will be depleted
during the course of a project, such as material and operating
expenses, whereas fixed capital refers to any kind of capital
that is not exhausted during the course of a project.
Productivity modeling has been a topic of interest for
many researchers and the various models being developed
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today can be classified into two major groups: statistical and
Al Regression analysis is the most common statistical
method for modeling labour productivity. The main ad-
vantage to regression analysis is that a productivity model
can be developed to reach anticipated clarification or
forecasting levels with as few predictor variables as possible.
However, for regression methods, the degree of relationship
(linear and nonlinear) needs to be selected prior to model
development. In Al modeling, ANN models are the most
common for developing labour construction productivity.
Unlike regression methods, the degree of relationship is not
a concern in ANN modeling. Those studies that have applied
various ANN methods to predict different types of pro-
ductivity are discussed in the next section.

Lu et al. [3] estimated construction labour productivity
using real historical data from local construction companies.
They applied a Probability Inference Neural Network
(PINN) model and compared it to a feed-forward back-
propagation neural network model. AbouRizk et al. [4]
developed a two-stage ANN model for predicting labour
productivity rates. They stated that understanding input
factors and having a sufficient historical database are the
most important parts in productivity prediction. Later, [5]
introduced a neural network model for defining the impact
of a change order on labour productivity and found that the
ANN model shows better performance in comparison to
other techniques. Ezledin and Sharara [6] established an
ANN model for productivity prediction in formwork ac-
tivity, steel fixing, and concrete-pouring activities. Ok and
Sinha [7] applied ANN to estimate the daily productivity of
earthmoving equipment. Song and AbouRizk [8] presented a
productivity model for steel drafting and fabrication pro-
ductivity through ANN and discrete-event simulation using
actual data. Oral and Oral [9] utilized a Self Organizing Map
(SOM) to analyze the relationship between construction
crew productivity and different factors. They also predicted
productivity in given situations for ready-mixed concrete,
formwork, and reinforcement crew. Data were collected
randomly from a construction site in Turkey. They con-
cluded that SOM can predict productivity better than re-
gression methods due to its complexity. Muqeem et al. [10]
predicted production rate values for installation of beam
formwork using ANN. Meanwhile, Mohammed et al. [11]
predicted the productivity of ceramic wall construction
using data from general contractor companies. They applied
ANN since analysis required performing complex mapping
of environment and management factors to productivity.
AL-Zwainy et al. [12] developed a model for estimating
construction labour productivity in marble finishing works.
They used multilayer perceptron training through a BNN
algorithm. Moselhi and Khan [13] ranked labour
productivity-influencing parameters in construction using
Fuzzy Subtractive Clustering, Neural Network Modeling,
and Stepwise Variable Selection. They determined that work
type, floor level, and temperature were the parameters with a
larger effect on productivity. Heravi and Eslamdoost [14]
considered 15 important factors in the motivation of labour,
supervision sufficiency, and competency and suggested a
model for labour productivity rate estimation. Aswed [15]
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applied ANN for estimating the bricklayer (builder) pro-
ductivity and modeled 13 productivity-influencing factors.
El-Gohary et al. [16] proposed a framework to document,
control, and predict contractor labour productivity using
ANN and hyperbolic tan function. They considered factors
at micro and macro/microlevels and applied the models to
construction crafts, carpentry, and fixing reinforcing steel
bars.

A considerable issue in the construction industry is that a
lot of problems such as last-minute bids, design under
pressure, and so on are analogy-based in form. Thus, ANN
techniques as compared to other conventional practices are
more appropriate in modeling construction industry
problems that demand analogy-based resolutions [17]. There
are four major steps for modeling analogy-based problems
using ANN: (i) gathering historical data, (ii) building and
configuring relevant network, (iii) initializing weights and
biases, and (iv) training and validation step. In this research,
four types of ANN were applied for modeling labour pro-
ductivity. These were Backpropagation Neural Network
(BNN), Radial Basis Network (RBF), Generalized Regression
Neural Network (GRNN), and Adaptive Neuro-Fuzzy In-
ference System (ANFIS). A detailed explanation of all the
applied modeling techniques will be discussed along with the
data collection procedure in the following sections.

2. ANN Model Development

Construction projects are highly dynamic with many
challenges in the areas of costs, delays and disruptions,
impaired productivity, quality issues, safety aspects, mate-
rials unavailability, and escalation among others. These
challenges are highly complicated in nature and information
related to these challenges is vague. Therefore, construction
projects are within the purview of ANN in which the given
ambiguous information can be effectively interpreted in
order to arrive at meaningful conclusions. In other words,
because of ANN’s capability to draw the relationships be-
tween input and output provided via a training dataset, ANN
is suitable for nonlinear problems where vague information,
subjective judgment, experience, and surrounding condi-
tions are key features, and traditional approaches are in-
sufficient to calculate the complex input-output relationship
necessary for predicting construction labour productivity.
This paper reviews the application of various ANNs in
predicting construction labour productivity for formwork
assembly with a limited given dataset. Figure 1 shows the
overall flowchart of the research. The first step in the model
development process was the choice of inputs from the
available data and appropriate model outputs. Then, the data
were processed through normalization and for handling
missing data. The data were divided into training and testing,
and the BNN, RBF, ANFIS, and GRNN AI models were
applied to the datasets. The models were calibrated via a
performance evaluation and were compared using a de-
termination coefficient (R-squared), Mean Squared Error
(MSE), and Mean Absolute Error (MAE). Ultimately, the
best AT model was selected. Development of each model and
their results is presented in the following sections.
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FIGURE 1: Overall flowchart of the study.

2.1. Data Collection. The dataset used for modeling labour
productivity in this research was gathered by Khan [1] and
collected from field observations and data collection from
two high-rise buildings located in downtown Montreal over
a period of eighteen months. The buildings were 17 and 16
floors. The first building is a concrete, mainly flat slab
structure with Roller Compacted Concrete (RCC) con-
struction and several typical levels with a surface of
68,000 m”. The project was constructed over three years. The
second building also has a similar structure system and is a
flat slab building. Two hundred and twenty-one data points
were collected from both projects for formwork activity. The
collected data was classified into three groups of weather,
crew, and project. Data related to temperature, humidity,
wind speed, and precipitation were classified into weather
data while gang size and labour percentage as crew. Floor
level, work type, and method were the parameters used in
the project category. These variables were selected because
they cause variations in productivity on a daily basis [1].
Data of nine factors classified into three major categories
were available, as shown in Table 1, for performing the task.

These variables were chosen since they can cause dif-
ferences in productivity on a daily basis or in the short-term.
Short-term influence means that factors change value every
day and do not have a cumulated or ripple effect impact on
other activities. Thus, it is worthwhile to consider the
abovementioned labour productivity factors for modeling
labour productivity. Table 2 shows the descriptive statistics
of the collected data which can provide a summary of the
dataset.

The Pearson correlation coefficient is used to examine
the strength and direction of a linear relationship between
two variables in a database. A correlation coefficient ranges
between —1 and +1. A larger absolute coefficient value results
in a stronger relationship between variables. In the case of a

TaBLE 1: Labour productivity factors.

Weather Crew Project
Temperature (T) Gang size (GS) Work type (WT)
Humidity (H) Labour percentage (LP) Floor level (FL)

Wind speed (WS)
Precipitation (P)

Work method (WM)

Temperature: based on an average of eight working hours a day (°C).
Humidity: average humidity of eight working hours a day in percentage
form. Precipitation: includes four numerical value terms assigned as: no
precipitation = 0, light rain = 1, snow = 2, and rain = 3. Wind speed: average
wind speed for eight working hours a day and included in the calculation in
terms of km/h. Height: related to the floor being worked on and included in
terms of the number of floors. Work type: three different types of formwork
installation included as slabs = 1, walls = 2, and columns = 3. Work method:
covers two techniques built in place (BIP) and flying forms (FF). BIP was
coded as 1 and FF was coded as 2. Gang size: number of persons in a crew.
Labour percentage: the ratio of labour to gang size obtained from the
following equation: (labour% = labour size/gang size) x 100.

TaBLE 2: Collected data descriptive statistics.

Variable Mean SE Std. Min. Median Max.
mean dev

Temperature 4.08 0.81 12.03  -26 3 25
Humidity 66.34 1.05 15.67 18 67 97
Precipitation 0.28 0.04 0.6 0 0 3
Wind speed 15.42 0.57 8.46 3 14 43
Gang size 16.03 0.34 5.07 8 18 24
Labour 3549 026 379 29 36 47
percentage

Work type 143 0.03 0.51 1 1 3
Floor level 11.38  0.25 3.75 1 12 17
Work method 1.44 0.03 0.5 1 1 2
Productivity 1.57 0.02 0.35 0.82 1.51 2.53

Pearson correlation, an absolute value of 1 specifies a perfect
linear relationship and a value of 0 indicates nonlinear re-
lationship between variables. Table 3 shows that the
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TaBLE 3: Pearson correlation matrix for input and output parameters.

Variables T H P WS LP WT FL WM Productivity
T 1 0.151 -0.093 -0.122 0.390 -0.120 -0.122 0.358 0.078 0.589

H 0.151 1 0.338 0.026 -0.167 0.219 -0.110 0.048 0.176 0.090

P -0.093 0.338 1 0.076 0.065 -0.063 -0.037 -0.288 -0.057 -0.175
WS -0.122 0.026 0.076 1 -0.415 0.051 0.065 0.235 0.030 -0.202
GS 0.390 -0.167 0.065 -0.415 -0.310 -0.175 -0.352 -0.036 0.183

LP -0.120 0.219 -0.063 0.051 -0.310 1 -0.135 0.142 0.177 -0.053
WT -0.122 -0.110 -0.037 0.065 -0.175 -0.135 1 -0.052 -0.761 -0.353
FL 0.358 0.048 -0.288 0.235 -0.352 0.142 -0.052 1 0.225 0.301
WM 0.078 0.176 -0.057 0.030 -0.036 0.177 -0.761 0.225 1 0.328
Productivity 0.589 0.090 -0.175 -0.202 0.183 -0.053 -0.353 0.301 0.328 1

correlation between parameters most of the time is an ap-
proximate near 0. Consequently, none of the correlates very
much and there is no over-estimation phenomenon. The
Pearson p-values and R-squared prove the same the inputs
and output behaviour.

2.2. Backpropagation Productivity Modeling. In this section,
BNN was applied to model labour productivity. BNN is
mostly used for unknown function approximation. As de-
scribed in the literature review, a key BNN feature is its
learning ability. It can be trained by historical datasets to find
the accurate relation between inputs and outputs as well as
predict the output(s) for new inputs. In this research, BNN
models were developed, trained, validated, and tested in
MATLAB 2017a with 221 data points. The dataset was
randomly divided into 80% and 20% groups used for
training and testing results, respectively. Several BNN
models were developed which were different in three aspects:
number of neurons in hidden layer varied between five and
100, random groups of datasets, and the number of hidden
layers of one and two.

Bayesian Regularization (BR) algorithm was used for
data training. BR is commonly used in noisy and small
problems. The algorithms attempted to minimize the sum of
the squared errors by updating the network’s bias and
weight. Training sets were used to adjust the network
structure based on the associated errors until the best
structure was reached. Validation sets were utilized to
measure network generalization capabilities and to pause
training when generalization stopped improvement. After
training, testing sets provided an independent network
performance index. For each BNN model, trials were per-
formed to reach lowest error. Model performance was
assessed based on R-squared and MSE developed through
MATLAB coding according to the following equations,
where “¢;” is the target value while “0;” is the output value:

RE=1- Zi(ti_oi)z X (1)
2i(ti- (1/”)Ziti)2

MSE = % Z (t;—0,)". (2)

R-squared is often used in statistical analysis since it is
easy to calculate and understand. It fluctuates between [0, 1]

and evaluates the percentage of total differences between
estimated and target values with respect to the average.
Several BNN models with different numbers of neurons and
hidden layers were developed to find the best model for
identifying labour productivity. The number of hidden
layers varied between one and two and the models were
trained by five, ten, ..., 100 neurons. Considering the dif-
ferences in the number of neurons and the hidden layer, 32
different models were developed and their results compared.

Figures 2 and 3 display the effect the number of neurons
has on the R-squared for one and two hidden layers. As can
be seen from Figure 2, R-squared values are mostly between
90 and 100% for the training phase and 70-90% for the
testing phase. The model with one hidden layer and 50
neurons shows maximum accuracy. For the two hidden
layers’ models, the model with 20 neurons in each layer
showed the best performance in predicting labour
productivity.

Increasing the number of hidden layers resulted in better
performance; however, this approach takes more compu-
tational time and does not change model accuracy in any
significant way. In this research, the maximum number of
neurons that could be considered in the ANN model was set
at 60 due to the extreme computational time needed for what
is an insignificant improvement to model accuracy. Figures 4
and 5 show that the MSE value was the smallest in the
models with two hidden layers and 20 neurons and one
hidden layer and 50 neurons.

It should be mentioned that no performance index was
available during the validation phase while the given datasets
were trained by the BR algorithm because the algorithm does
not validate data and the datasets were randomly divided
into trained and tested datasets only.

Model performances were assessed based on R* and
MSE, as summarized in Table 4 for one hidden layer and
Table 5 for two hidden layers. As can be seen, the final model
was the one with two hidden layers and 20 neurons, which
showed the highest accuracy for identifying labour pro-
ductivity. The model had MSE and R* performance value
indices of 0.0054 and 0.949, respectively. Therefore, this
model was considered for comparison with the ANIFS
model in the next sections.

The error histogram of the final model with two hidden
layers and 20 neurons demonstrates that most of the errors
oscillate between —0.55 and 0.75 in all training and testing
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FIGURE 2: R* values of ANN models using BP algorithm with 1 HL.
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FIGURE 4: MSE values of ANN models in 1HL for distinct phases of
ANN.

phases. The concentration of errors was 0.003, which is a
small error for prediction. The R-squared in the selected
model shows the fitted line for all data as output = 0.97 x
target + 0.099 and an R’ value of 97.68% in the training
dataset, demonstrating that the outputs are very close to
target values. The R” value for testing was 83.27%, proof that
the model is able to predict 83% of future outcomes accu-
rately. The applied method is able to rank predictor variables

MSE

0 20 40 60 80 100
Neurons

—eo— MSE
—e— MSE training
MSE testing

FiGure 5: MSE values of ANN models in 2HL for different phases
of ANN.

for the selected model as shown in Figure 6. The model
shows that temperature and floor level are the most im-
portant factors in labour productivity.

2.3. RBF Productivity Modeling. RBF is a three-layer forward
network applied for modeling science and engineering
problems fast and precisely. RBF is a branch of ANN first
introduced in the late eighties. RBFNN architecture is simple
and includes one hidden layer and output. The RBF was
selected to model labour productivity because of its feed-
forward training done on a layer-by-layer basis in default of
having input signals going through convoluted and time
consuming multihidden layer developments. Thus, as
compared to other ANN techniques, RBFNN is faster and
has application flexibility [18].

Because of the abovementioned advantages, an effort
was made in this research to model the nine predictor
variables’ convoluted relations and target based on actual
datasets gathered from two high-rise buildings using
RBFNN. The RBFNN model was trained using a BP al-
gorithm to minimize MSE with selected predictor variables.
The RBF neural network included three layers: input,
hidden, and summation.

In this model, there is one neuron in the input layer for
each predictor variable, where N is the number of categories
and N-1 the neurons used. Input neurons normalize a range
of the values by subtracting the median and dividing it by an
interquartile range. The input neurons feed the values to
each of the neurons in the hidden layer. The hidden layer has
a changing number of neurons (the optimal number is
determined by the training process). Each neuron contains a
radial basis function centered on a point with the di-
mensions equal to predictor variables. The radius of a RBF
function is different for each dimension. Here, the training
process determined the centers and spreads. A hidden
neuron measured the Euclidean distance of the test case
from the neuron’s center point and then applied a RBF
kernel function to this distance using the spread values when
presented with the x vector of input values from the input
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TaBLE 4: Performance indices for models with one hidden layer.

Neurons 5 10 15 20 25 30 35 40 45 50 60

MSE 0.014 0.014 0.017 0.012 0.015 0.014 0.017 0.015 0.030 0.008 0.011
MSE train 0.010 0.004 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.005 0.003
MSE test 0.034 0.061 0.086 0.060 0.082 0.075 0.085 0.080 0.069 0.025 0.050
R’ 0.94 0.94 0.93 0.95 0.94 0.94 0.94 0.94 0.91 0.97 0.96
R? train 0.96 0.98 0.99 0.99 1 0.99 0.99 0.99 1 0.98 0.99
R® test 0.88 0.77 0.69 0.72 0.68 0.79 0.5 0.77 0.75 0.89 0.77

TaBLE 5: Performance indices for models with two hidden layers.

Neurons 5 10 15 20 25 30 35 40 45 50 60
MSE 0.0162 0.0096 0.1264 0.0215 0.0545 0.0384 0.0212 0.1264 0.0183 0.0184 0.0096
MSE train 0.0055 0.0022 0.1242 0.0200 0.0008 0.0000 0.0000 0.1267 0.0005 0.0008 0.0007
MSE test 0.0665 0.0446 0.1369 0.0230 0.1071 0.1193 0.1213 0.1251 0.1024 0.1010 0.0518
R? 0.935 0.942 0.499 0.949 0.813 0.872 0.929 0.512 0.927 0.932 0.962
R? train 0.979 0.981 0.522 0.976 0.997 1 1 0.537 0.998 0.997 0.997
R® test 0.693 0.693 0.403 0.832 0.335 0.482 0.733 0.395 0.714 0.694 0.785
100 - variables, increasing the population size is recommended.
90 : Increasing the population size helps to prevent local minima
80 - B and find the optimal global solution. In addition, DTREG
o 70 = lets the user modify the network and neuron parameters as
g 60 B well as the testing and validation percentage, select how to
é S0 ] handle missing predictor variable values, and select one of
£ 40: ] four options for target categories’ prior probabilities. An-
30 B other interesting option available to the user is that the
?g H B software can compute predictor variables’ importance [19].
0 To train the DTREG algorithm, sequential orthogonal

T FL H GS WS WT WM LP P

FiGURE 6: BNN model relative variable importance.

layer. The resulting value was handed to the summation
layer. The coming out value of a neuron in the hidden layer
was multiplied by a weight associated with the neuron (W1,
W2, ..., Wn) and passed to the summation which added up
the weighted values and presented this sum as the output of
the network. A bias value of 1.0 was multiplied by a weight
(W0) and fed into the summation layer. For classification
reasons, there was one output along with a separate set of
weights and summation unit for each target category. The
output value of a category equaled to the probability that the
evaluated case has that category.

In order to develop a reliable model, the dataset was
randomly divided into two separate training and testing
subsets. Eighty percent of the dataset was considered for
network training and 20% of data was used for network
reliability and to avoiding overfitting. It should be noted that
RBF was developed using DTREG predictive modeling
software. One of the key advantages of using DTREG for
RBF development is that DTREG uses an evolutionary
method called Repeating Weighted Boosting Search (RWBS)
for building neural networks. In DTREG, a population of
candidate neurons is first built with random centers and
spreads which is limited by the minimum and maximum
specified radius. The population size parameter controls how
many candidate neurons are created. If there are many

training developed by [20] was used. This algorithm uses an
evolutionary approach to determine the optimal center
points and spreads for each neuron. It also determines when
to stop adding neurons to the network by monitoring the
estimated Leave-One-Out (LOO) error and terminating
when the LOO error beings to increase due to overfitting.
Optimal weight computation between the neurons in the
hidden layer and the summation layer was done using ridge
regression. An iterative procedure was used to compute the
optimal regularization Lambda parameter that minimizes
generalized cross-validation (GCV) error [20]. During
training, it was found that model errors can be reduced
sufficiently to a lower level after incorporating 11 neurons
and the model reached a steady state with 47 neurons. Thus,
47 neurons were used to model labour productivity. The RBF
network with 47 neurons developed in this research has R-
squared values of 0.91 and 0.67 for training and testing,
respectively. Table 6 shows the developed model perfor-
mance indicators. The RBF network algorithm ranked hu-
midity, floor level, and temperature as the most important
variables, as shown in Figure 7.

2.4. GRNN Productivity Modeling. GRNN, proposed by
Donald F. Specht in 1990, is often used for nonlinear
function approximation. It has a special linear and radial
basis layer which makes it different from radial basis net-
works. GRNN is a neural network model that mimics
nonlinear relations between a target variable and a set of
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TaBLE 6: Performances indices for RBF.

Performance index R? MSE RMSE MAE
Training 91.30% 0.0103 0.1026 0.0756
Testing 85.84% 0.0471 0.1531 0.1421

Importance

WS WT P

H WM LP GS

FIGURE 7: Relative importance of variables in the RBFNN model.

predictor variables. GRNN falls into the class of probabilistic
neural networks and requires less training samples in
comparison to a BNN. A GRNN’s main advantage is that
since available datasets for developing neural networks are
not usually sufficient, probabilistic neural networks are more
attractive for modeling. In other words, GRNN can solve any
function approximation problem in case sufficient data is
available in abbreviated time.

In GRNN, the target value of the predictor is achieved by
considering the weighted average of the values of its
neighbouring points. Target neighbour variable distance
plays a key role in predicting target value. Neighbouring
points close to target points have a greater impact on target
value; distant points, on the other hand, are not influential as
much as close neighbouring points. A radius base function is
used for calculating the neighbouring point influence level.
As mentioned, GRNN is able to build a model with a rel-
atively small dataset and has the capability to handle outliers
[21]. There are two main disadvantages associated with
GRNN; it needs considerable calculations to evaluate new
points and is not able to ignore unrelated inputs without
assistance and needs major algorithm modifications. Con-
sequently, this method is not a choice for problems with a
substantial number of predictor variables. A GRNN algo-
rithm can be enhanced by advancing GRNN in two ways:
using clustering versions of GRNN and applying parallel
calculations to take advantage of GRNN structure charac-
teristics [22].

In addition to the abovementioned drawbacks, GRNN
models can be large due to having one neuron for each
training row. In the developed GRNN model, DTREG was
utilized; thus, after the model was constructed, DTREG
provided an option for facilitating the removal of un-
necessary neurons from the model. By removing un-
necessary neurons, computational time was reduced and it
became possible to improve model accuracy. DTREG was
utilized in order to select the best possible model. Three
criteria available for guiding the removal of neurons are

minimizing error, minimizing the number of neurons, and
limiting the number of neurons to a certain number.

The developed GRNN model’s accuracy was compared
with other models’ using the same dataset. Therefore, 80% of
the dataset was selected randomly as the training set, which
corresponded to 177 input-output pairs. Twenty percent of
the data were kept unused for testing, which corresponds to
44 input-output pairs. Note that all techniques used for
modeling labour productivity in this study used the same
training and testing datasets for a proper comparison
approach.

In addition, a Gaussian kernel function type was selected
as it is the best function among other kernel functions, and a
single sigma for the whole model was selected to reduce
computational time. Using a trial and error approach to
select the best model, three models were developed based on
three options provided by the software: remove unnecessary
neurons, minimize error, and the constant number of
neuron. Table 7 summarizes various statistical indices for the
developed models.

The models with 34 and 10 neurons had overfitting in
their training process since there was a large difference
between the R*> in the training and testing phases.
Therefore, the best GRNN model was found to have 107
nodes with the R* value of 87.87%, which is higher than the
two other approaches. Like the RBF neural network,
GRNN is able to rank predictor variables for the selected
model as shown in Figure 8. Here, temperature and floor
levels were the significant factors found for modeling
productivity.

2.5. ANFIS Productivity Modeling. ANFIS is used in various
engineering fields such as environmental, civil, electrical, etc.
[23-25]. ANFIS utilizes a hybrid learning algorithm which
can model the relationship between predictor variables and
respond variables based on expert knowledge by using
neural network capabilities. It represents expert knowledge
in the form of fuzzy “if-then” rules with an approximation of
membership functions from given predictors and response
datasets. Fuzzy logic handles the vagueness and uncertainty
associated with the system being modeled, whereas the
neural network provides model adaptability. By combining
the learning abilities of a neural work with the reasoning
capacities of fuzzy logic into a unified platform, ANFIS can
be considered an enhanced prediction tool in comparison
with a single methodology one. ANFIS can adjust mem-
bership function (MF) parameters and linguistic rules di-
rectly from neural network training capabilities with respect
to refining model performance. ANFIS is able to capture
expert knowledge regarding a nonlinear system and its
behaviour in a qualitative model without quantitative de-
scriptions of the system. Fuzzy interference system (FIS) is a
knowledge interpretation technique based on the concept of
fuzzy set theory, fuzzy “if-then” rules, and fuzzy reasoning,
where each fuzzy rule characterizes a state of the system.
ANFIS uses a Sugeno FIS for a structured approach to
generate fuzzy rules by using a given dataset [26]. Training
and testing data are matrices with ten columns where the
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TABLE 7: Performances indices for GRNN.

Performance index Number of R? train R? test MSE MSE RMSE RMSE MAE MAE
neuron (%) (%) train test train test train test
Minimize error 107 87.87 75.32 0.0103 0.0475 0.1108 0.2219 0.0651 0.1421
Minimize number of neurons 34 85.84 48.70 0.0172 0.0716 0.1311 0.2676 0.0984 0.1785
Number of neurons 10 64.82 41.07 0.0427 0.0823 0.2067 0.2868 0.1471 0.2164

TaBLE 8: ANFIS parameters for modeling labour productivity.

ANFIS parameters

Importance

WT WS GS P H LP WM

T FL

FIGURE 8: Relative importance of variables in the selected GRNN
model.

first nine columns contain data for each FIS predictor
variable and the last column contains the response data. It
should be noted that the same 177 data points were used for
training and the other 44 for testing purposes. Then, the FIS
model structure was generated by choosing the subtractive
clustering technique. Subtractive clustering technique is
faster than grid partitioning and with a satisfactory result for
justifying use. Based on the selected parameters of sub-
tractive clustering, 63 clusters were detected as the most
suitable MF number. Here, the number of clusters and MFs
were equal. The hybrid method was selected for training the
MF because it generates better results rather than BP. The
hybrid method includes BP and least squares for MF pa-
rameter estimation, BP for estimating input MF parameters,
and least square for MF parameters. ANFIS parameters were
selected to reach higher accuracy with less computational
time, as shown in Table 8.

Figure 9 shows the predicted daily productivity against
corresponding actual values, and Table 9 summarizes the
dataset various statistical indices using the developed ANFIS
model.

ANTFIS is also able to rank predictor variables for the
selected model as shown in Figure 10. Temperature and floor
level are the important factors in modeling productivity.
Table 10 summarizes the performance indices of R Train, R*
Test, MSE Train, and MSE Test for the four models. BNN
shows the highest R-squared in the training phase followed
by RBF, ANFIS, and GRNN. Moreover, BNN shows the
highest R-squared in testing phases followed by RBF, ANFIS,
and GRNN. GRNN is the least accurate technique among all
the techniques for the given dataset in both training and
testing phases. BNN has the lowest MSE of the techniques in
the training phase followed by RBF. ANFIS and BNN show
the lowest MSE in the testing phase followed by RBF and
GRNN.

Number of input variables 9
Training data points 177
Testing data points 44
Number of layers 5
Operator Subtractive
Number of membership functions (MF) 63
MF type Bell shape
Transfer function of output layer Linear
Training algorithm Hybrid
Error tolerance 0
Number of epochs 1000

To recognize which algorithm is the best method to be
utilized in modeling construction labour productivity,
analysis of variance (ANOVA) was applied to demonstrate
the significant superiority of the BNN algorithm over other
algorithms, which had the lowest F-Value.

Furthermore, the results of the model were compared
with the SOM model developed by [9] and results show that
for formwork productivity prediction, BNN performs better
in comparison to SOM. The correlation of coefficient and the
MSE for the available database were 94.9% and 0.0215 for
backpropagation method while it was 89.25% and 0.07 for
SOM.

Both regression and Al techniques have merits and
demerits. Three statistical methods, namely, best subset,
stepwise, and Evolutionary Polynomial Regression (EPR),
were applied to the available database, and the coefficient of
correlation and MSE were calculated and are presented in
Table 11. EPR predicted the data better than best subset and
stepwise. However, BNN outperformed and achieved a better
fit and forecast with the given dataset than the regression
models due to the nonlinearity of the dataset in modeling
labour productivity for formwork. The statistical perfor-
mance of those models is far behind BNN. The analysis of
variance for different techniques is presented in Table 12.

3. Conclusions

One of the major strategic components in determining the
success or failure of a construction project is the productivity
rate, which has a relationship with different factors. This
paper attempts to demonstrate a way to use Al models to
predict labour productivity. These are effective tools for
quantifying loss of productivity and can be used as a support
method for actual loss of productivity calculations. GRNN,
BNN, RBENN, and ANFIS were tested against Khan’s
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TaBLE 9: Statistical indicators of the developed ANFIS model.
Performance index R (%) R®train (%) R” test (%) MSE train MSE test RMSE train RMSE test MAE train MAE test
Value 81.1 89.3 66.2 0.01 0.02 0.114 0.146 0.017 0.097
TaBLE 12: Analysis of variance for different techniques.
Source DF Adj. SS Adj. MS F-value P-value
Actual 37 214235 0.05790 4.42 0.034
§ BNN Error 6 0.07864 0.01311
£ Total 42 2.22099
g‘ Actual 36 5.69202  0.15811 15.53 0.001
- ANFIS  Error 6 0.06108 0.01018
Total 42 5.75310
: Actual 34  3.4887 0.10261 6.67 0.004
T F. H GS WS WT WM LP P RBF Error 8 0.1231 0.01539
Total 42  3.6118
FIGURE 10: Relative importance of variables in ANFIS Model. Actual 37 559931 0.51333  31.89 0.002
GRNN  Error 4 0.01898 0.004745
Total 42 5.61829

TaBLE 10: Performance results comparison.

R? train R? test MSE train MSE test
BNN 0.98 0.83 0.0023 0.020
RBF 0.91 0.85 0.0096 0.018
GRNN 0.88 0.75 0.0103 0.047
ANFIS 0.89 0.66 0.0100 0.020

TaBLE 11: Statistical performance of the regression methods.

Technique R? MSE  Time (sec) Number of variables
Best subset  46.8  0.259 ~2 8
Stepwise 48.61 0.259 ~2 7
EPR 52.69 0.057 1140 8

datasets of two high-rise buildings related to formwork
operation. From the comparisons, BNN showed the best
performance among the techniques. However, BNN can be
considered a black box approach and is prone to overfitting,
which can be the result of network architecture

(i.e., decreasing the number of nodes), early training phase
stopping, or weight decay use. Furthermore, the dataset used
to develop the aforementioned models was a raw and un-
balanced dataset. Studying the behaviour of the given
datasets prior to feeding it to any Al techniques is required in
order to have a robust model for modeling labour
productivity.

Researchers have proved that supervised BNN models
are more successful in predicting construction crew pro-
ductivity in comparison to statistical methods like re-
gression. Furthermore, if the causal relationship between
input and output has a complex variability in areas other
than construction, in most cases, the learning task is easier
with unsupervised learning. Therefore, this study focuses on
the application of supervised methods in formwork crew
productivity data to compare the predicted results. This
study focused on formwork installation operations since
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they constitute a substantial part of the overall labour
component of concrete framing in building construction.
Results reveal that BNN shows superior performance in
comparison to RFBNN, ANFIS, and GRNN for formwork
productivity prediction in the following ways:

(1) Selected input variables are those that cause varia-
tions in productivity in the short-term or daily basis.
The developed models were compared based on
statistical performances and BNN outperformed the
techniques of RBF, ANFIS, and GRNN. The de-
veloped model of this research can be utilized in
different ways.

(2) The model can help to estimate formwork pro-
ductivity by considering variables such as temper-
ature, humidity, gang size, labour percentages, work
type, etc. In addition, this study also found that
productivity is not significantly correlated with
precipitation, labour percentage, work method, and
humidity. Within the scope of the conducted study,
the number of parameters observed, and the range of
their values, this study found temperature to have the
most significant impact on productivity followed by
floor level.

(3) The model can also be useful for quantifying loss of
productivity by considering the output of the de-
veloped model as the value for unimpacted pro-
ductivity period since the identifying unimpacted
period for quantifying loss of productivity is im-
possible to calculate sometimes. Therefore, BNN can
help save time and cost associated with quantifying
loss of productivity.

Ultimately, this study shows that the backpropagation
model can be an alternative tool to supervised learning-
based tools and can be used in various prediction applica-
tions. One limitation of this study is that the findings are
limited to the collected data range and parameters con-
sidered in the study. It should be noted that the developed
model does not involve any parameters that directly account
for management strategies and skills or any project-specific
conditions.
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The data used to support the findings of this study are
available from the corresponding author upon request.
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