
SdcNet: A Computation-Efficient CNN
for Object Recognition

Yunlong Ma

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

March 2019

© Yunlong Ma, 2019

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Yunlong Ma

Entitled: SdcNet: A Computation-Efficient CNN for Object Recognition

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 __ Chair
 Dr. Weiping Zhu

 __ Examiner, External

Dr. Abdessamad Ben Hamza (CIISE) To the Program

 __ Examiner
 Dr. Weiping Zhu

 __ Supervisor

Dr. Chunyan Wang

__ Co-Supervisor

Approved by: ___
 Dr. W. E. Lynch, Chair
 Department of Electrical and Computer Engineering

____________20_____ ___________________________________
 Dr. Amir Asif, Dean

Gina Cody School of Engineering and
Computer Science

Abstract

SdcNet: A Computation-Efficient CNN for Object Recognition

Yunlong Ma

In many computer-vision systems, object recognition is one of the most commonly-used

operations. The challenging task in this operation is to extract sufficient critical features related

to the targets from diverse backgrounds. Convolutional neural networks (CNNs) can be used to

meet this challenge, which, however, often requires a large amount of computation resources.

In this thesis, a computation-efficient CNN architecture for object recognition is proposed.

It aims at using the lowest computation volume to achieve a good processing quality. This is

achieved by applying image filtering knowledge in the design of the CNN architecture. This work

is composed of two parts, the design of a CNN module for feature extraction, and an end-to-end

CNN architecture. In the module, in order to extract the maximum amount of high-density feature

information from a given set of 2-D maps, successive depthwise convolutions are applied to the

same group of data to produce feature elements of various filtering orders. Moreover, a particular

pre-and-post-convolution data control method is used to optimize the successive convolutions. The

pre-convolution data control is to organize the data to be convolved according to their nature. The

post-convolution data control is to combine the critical feature elements of various filtering orders

to enhance the quality of the convolved results. The CNN architecture is mainly composed of the

cascaded modules. The hyper-parameters in the architecture can be adjusted easily so that each

module is tuned to suit the signals in order to optimize the processing quality. The simulation

results demonstrated that the architecture gives a better processing quality using a significantly

lower computation volume, compared with existing CNNs of the similar kind. The results also

confirm the computation efficiency of the proposed module, which enables more object recognition

applications on embedded devices.

iii

Acknowledgments

I would like to express my deep gratitude to my supervisor Dr. Chunyan Wang for her immense

support and brilliant guidance during my study in Concordia University. She consistently allowed

this thesis to be my work, but steered me in the right direction whenever she thought I needed it. I

feel extremely privileged to be able to work under her supervision.

I would also like to thank my friends: Bao Zhu, Ameen Elsiddiq and Mohamed Hamid for the

discussion of research and for all the fun we had in the last two years.

A very special gratitude goes out to Compute Canada and Calcul Quebec for providing the

powerful servers for this work.

Last but not the least, I would like to thank my girl friend Suya Tang and my family in China,

for all the love and support from them.

iv

Contents

List of Figures viii

List of Tables x

List of Acronyms and Abbreviations xi

List of Symbol xii

1 Introduction 1

1.1 Background and Challenges . 1

1.2 Motivation and Objective . 1

1.3 Scope and Organization . 3

2 Background and Relevant Work 4

2.1 Introduction . 4

2.2 Fundamentals of CNN . 5

2.2.1 CNN Structures . 5

2.2.2 CNN Training Procedure . 11

2.3 Relevant Work for Object Recognition . 13

2.3.1 AlexNet . 14

2.3.2 VGGNet . 16

2.3.3 ResNet . 16

2.3.4 Pruning . 18

2.3.5 Xception . 19

v

2.3.6 MobileNetV2 . 20

2.3.7 ShuffleNet . 21

2.4 Summary . 21

3 Design of SdcBlock 23

3.1 Introduction . 23

3.2 Different Convolution Modes . 24

3.3 SdcBlock . 25

3.3.1 Successive Depthwise Convolutions(Sdc) 26

3.3.2 Data Preparation for the Successive Depthwise Convolutions(Sdc) 26

3.3.3 Data Arrangement to Generate the Output 27

3.4 Deviations From the Basic SdcBlock . 28

3.5 Summary . 30

4 Design of SdcNet 31

4.1 Introductation . 31

4.2 Processing in SdcNet . 31

4.3 Examples of SdcNet Design . 35

4.3.1 SdcNet-S . 35

4.3.2 SdcNet-M . 38

4.3.3 SdcNet-L . 41

4.4 Summary . 42

5 Performance Evaluations of SdcNets 45

5.1 Introduction . 45

5.2 Test Conditions . 45

5.3 Training Detials . 47

5.4 Training Behavior . 48

5.5 Testing Results of SdcNets . 51

5.6 Summary . 53

6 Conclusion 55

vi

References 59

vii

List of Figures

Figure 1.1 The dog on the left is similar to the cat on the middle, while the difference

between the cat on the middle and that on the right is large. 2

Figure 2.1 A typical CNN architecture . 5

Figure 2.2 An example of a typical CNN architecture (AlexNet) 6

Figure 2.3 An example of fully connected layer . 8

Figure 2.4 The Architecture of AlexNet [27] . 14

Figure 2.5 Visualization of features in a fully trained AlexNet [28]. For layer 1, the

feature maps are easy to visualize. For layers 2-5, the top 9 activations in a random

subset of feature maps, based on training dataset, are projected down to pixel space

using deconvolutional methods. 15

Figure 2.6 VGGNet Example [14]. 16

Figure 2.7 ResNet architectures for ImageNet [15]. Left: a plain network with 34

layers. Right: a residual network with 34 layers. 17

Figure 2.8 A residual module [15]. 18

Figure 2.9 Detailed Xception Net [32]. 19

Figure 2.10 A MobileNetV2 module [33]. DWConv stands for depthwise convolution. . 20

Figure 2.11 A ShuffleNet module [34]. DWConv stands for depthwise convolution. . . . 21

Figure 3.1 SdcBlock Modules. G_Conv denotes group convolution and DWConv

denotes dethwise convolution. 25

Figure 3.2 SdcBlock Modules(Stride=2) . 29

Figure 4.1 General scheme of SdcNet. 32

Figure 5.1 Examples of CIFAR-10 dataset . 46

viii

Figure 5.2 Variable Learning Rate in the Training Epochs. The minimum learning rate

for SdcNet-S and SdcNet-M is 0.002 and that for SdcNet-L is 0. 49

Figure 5.3 Loss curve for the training dataset of the three SdcNets 50

Figure 5.4 Error Rate Curve for the Training Dataset in the Training Epochs 50

Figure 5.5 Error rate curve for the test dataset of the three SdcNets 51

ix

List of Tables

Table 4.1 Details of SdcNet-S Configuration . 35

Table 4.2 Detail of SdcNet-M Configuration . 39

Table 4.3 Detail of SdcNet-L Configuration . 42

Table 4.4 Comparison Among Three SdcNets . 44

Table 5.1 Comparison of classification error rate on CIFAR- 10 (C-10) and CIFAR-100

(C-100) with existing CNNs . 52

Table 5.2 Error Rates of Per Class . 53

x

List of Acronyms and Abbreviations

BN Batch Normalization

CIFAR Canadian Institute For Advanced Research

C-10 CIFAR-10 Dataset

C-100 CIFAR-100 Dataset

CNN Convolutional Neural Network

DWConv Depthwise Convolution

FC Fully Connected Layer

G_Conv Group Convolution

LR Learning Rate

MSE Mean Squared Error

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

Sdc Successive Depthwise Convolutions

SdcBlock A Successive Depthwise Convolutions Block

SdcNet A CNN Built by SdcBlocks

SCR Specific Color Reordering

xi

List of Symbol

Ψ The weights in a CNN.

ϕ The gradients.

ζ The momentum weight in an optimizer.

a Input to a layer.

E The expansion number in a SdcBlock.

Ep The epoch number of training.

ER The classification error rates.

g Group number.

ti The ground truth label.

H The height of a matrix.

I Input data to a SdcBlock.

K The number of convolution kernels in a layer.

m The number of images in a mini-batch.

Loss The loss value.

M The height of a convolution kernel.

NI The channel number of data I .

N The width of a convolution kernel.

Pe The number of incorrectly predicted images.

TN The number of the test images.

W The width of a matrix.

al ∈ RHl×W l×Dl
The input tensors for the l layer.

xii

(il, jl, dl) The element of the row il, the column jl, the channel dl in a tensor in the l
layer.

X Input data to the Sdc in a SdcBlock.

X ′ Results of the first operations in a SdcBlock.

X ′′ Results of the second operations in a SdcBlock.

Xc Concatenated results of X ′ and X ′′ in a SdcBlock.

yi The results of a CNN.

xiii

Chapter 1

Introduction

1.1 Background and Challenges

In recent years, computer-vision-based applications, such as autopilot , surveillance security

systems and augmented reality systems [1, 2, 3, 4], have increased tremendously, which demands

rapid development of techniques in this area. Object recognition is one of the most commonly-

used operations in computer-vision-based systems [5]. It is to identify objects in an image or a

video and the goal is to teach a computer vision system to gain a level of understanding of what an

image contains [6]. In a car equipped with an autopilot system, object recognition is being used to

recognize traffic signs, pedestrians, other vehicles and other traffic elements.

In general, an object recognition approach is performed by, (i) extracting various features related

to the objects from diverse backgrounds, and (ii) classifying the objects according to the features.

However, since there can be a huge amount of feature variations for the same object class, while the

same feature elements appear in the different object classes, like the situations in Fig. 1.1, it is a

critical challenge to achieve high performance of an object recognition system.

1.2 Motivation and Objective

Since the development in the domain of object recognition is highly demanded, a lot of research

efforts have been made to achieve a good performance. Usually, the recognition systems can

be designed by two kinds of approaches, knowledge-based filtering and machine learning. The

1

Figure 1.1: The dog on the left is similar to the cat on the middle, while the difference between the
cat on the middle and that on the right is large.

approach of knowledge-based filtering [7, 8, 9, 10, 5, 11] is normally composed of three parts: data

analysis, feature extraction and object recognition. The natures of the input images and the targeted

objects are firstly analyzed, and then particular kinds of feature information related to the target

objects are extracted by specifically designed filters. Finally, the recognition results are generated

based on these extracted feature information. This approach is usually computation-efficient, but it

has limitations in handling a huge number of variations in object features.

Machine learning approaches, in particular convolutional neural networks(CNNs), can provide a

good solution to deal with the huge variations of features [12, 13, 14, 15]. This kind of networks uses

a large number of samples to progressively determine the system parameters in order to generate

various object features. The networks such as VGG [14] and ResNet [15] have been reported to

deal with complex object recognition problems. However, CNNs normally require a large number

of parameters, which, in consequence, leads to a huge computation volume in order to achieve a

good performance [16]. The computation resource requirement is too strict for many embedded

devices, which limits the implementation of object recognition by CNNs.

In fact, implementing object recognition functions in mobile devices is needed to improve the

quality of life of ordinary people. It can be used, e.g., to identify diseases by a photo, to simplify

shopping by taking a picture of what you need, and also to start a task when the camera recognize

a particular object [17, 4]. Thus, it is desirable to apply the image filtering knowledge in the design

of CNN, in order to improve the computation efficiency by reducing its computation volume while

without sacrificing the processing quality.

The objective of the work presented in this thesis is to develop a computation-efficient CNN

architecture for object recognition tasks. Based on the image processing knowledge and the CNN

2

procedure, it seeks to use the lowest computation volume to achieve a good recognition quality with

a view to enabling the implementation in more different applications.

1.3 Scope and Organization

The work presented in this thesis is focused on designing a low-computation object recognition

system. It is done by using image processing knowledge to improve the computation efficiency of a

CNN architecture and it is composed of two parts, a design of CNN module for feature extraction,

since a general CNN architecture is mainly formed by a stack of feature-extracting modules, and an

end-to-end CNN architecture for object recognition.

The work will start with an investigation of different convolution modes in CNNs and the

analysis of the data in the different computation stages. Based on the results of the investigation, the

module is designed following the image processing principles. In fact, the CNN module is a basic

building block in the image filtering area. In order to extract extensive high-density features from a

given set of feature maps, it is designed to use appropriate convolution modes and data flow control

methods. Besides, the module is made to facilitate its use in different stages to extract features for

various CNN applications. The other part is to develop a CNN architecture by an optimal use of the

designed modules to achieve the high computation efficiency in object recognition.

The thesis is organized as follows. In Chapter 2, a brief review of the fundamentals of CNN is

given, and the existing methods relevant to this work are also described. In Chapter 3, a design of the

computation-efficient CNN module for feature extraction is proposed. A detailed description of the

design ideas based on image processing principles and its implementation is presented. In Chapter

4, an end-to-end CNN architecture, based on the proposed CNN modules, for object recognition

tasks is presented. Three detailed network configurations are given with different emphasis in

performance. In Chapter 5, the performance of the three networks is evaluated, which is also used

to assess the computation efficiency of the proposed module. The test results are compared with

CNNs reported recently for the same tasks. Finally, Chapter 6 concludes the work and highlights its

contributions.

3

Chapter 2

Background and Relevant Work

2.1 Introduction

Object recognition is highly demanded in the computer-vision-based applications. However,

due to the limitation of computation requirements, the processing quality of object recognition can

be degraded in the embedded devices, especially in the mobile devices. Therefore, the development

of a computation-efficient architecture for object recognition tasks is necessary for most mobile

computer-vision-based applications.

A variety of methods for object recognition have been developed, including the knowledge-

based filtering and machine learning approaches. Among these methods, the knowledge-based

filtering approach is usually computation-efficient, but it has limitations in handling a huge

number of variations in object features. However, the machine learning approaches, in particular

convolutional neural networks(CNNs) , can achieve a good processing quality requiring a large

computational volume. Thus, it is desirable to apply the image filtering knowledge in the design

of CNN, in order to improve the computation efficiency by reducing its computation volume while

without sacrificing the processing quality.

In this chapter, an introduction of some fundamental CNNs for object recognition is given in

Sub-chapter 2.2. Some recent CNNs for object recognition are reviewed in Sub-chapter 2.3. A brief

summary is presented in Sub-chapter 2.4.

4

2.2 Fundamentals of CNN

A typical architecture of CNNs is illustrated in Fig. 2.1. From image processing point of view,

it can be divided into three signal processing parts: early processing, feature extraction and decision

processing. Each of these parts is composed of a stack of different computation layers, i.e. the

basic components in CNNs. However, once a CNN architecture is built using the basic components,

in order to make it functional, all the weights need to be updated by the training procedure using

training samples.

Figure 2.1: A typical CNN architecture

2.2.1 CNN Structures

A typical CNN architecture example is given in Fig. 2.2, and it is composed of a stack of

different functional layers. Normally, these layers can be divided into convolution layers, pooling

layers, fully-connected layers, non-linear layers and loss layers, in terms of functions.

5

Figure 2.2: An example of a typical CNN architecture (AlexNet)

Convolution layer

In computer vision and object recognition, a convolution layer is a basic operation in CNNs to

extract the features. The below is an example of a convolution layer.

Suppose the input data for the convolution layer l is al ∈ RHl×W l×Dl
, the weights for this layer

is Ψl ∈ RM×N×Kl
. The three-dimension convolution layer expand the two-dimension convolution

layer to all input channels, i.e. Dl.

After each training epoch, Ψl
m,n,dl,k

will be updated according the update strategy and loss

functions, i.e., learnable weights. It is clear that the weights are same for different positions in

the input data. This is called the weight sharing for the convolution layers. Furthermore, there

are some other important hyper parameters such as stride, filter size, dilation and different styles

of convolutions. Using proper convolution layers is important to extract feature information and

contribute a good result.

• Standard convolution. In this mode, each of the K convolution kernels is applied to all the

Dl input channels to generate one output channel.

• Group convolution (G-Conv). The Dl input channels is divided into g groups, and K

convolution kernels are also divided into g sets. Each group of input data is convolved with a

set of K/g kernels. The standard convolution can be seen as the specific case, with g = 1, of

group convolution.

• Depthwise convolution (DW-Conv). It is, in fact, the conventional 2-D spatial convolution.

In the context of CNN, it can be seen as another special case of group convolution, in which

6

g = Dl, i.e., one channel per group, and each of the K kernels is applied only to one input

channel, requiring g = Dl = K.

Pooling Layers

Pooling is a kind of down-sampling methods which can be done by specific pooling layers or

stride convolution layers. It is to progressively reduce the spatial size of the feature maps to reduce

the amount of weights and computation.

• Feature Down-Dimension. Because of down-sampling, an element of the pooling result

represents for a sub-region of the input data. This means pooling is equivalent as spatially

dimension reduction, therefore the network have an ability to extract feature information in a

larger region. Meanwhile, the pooling layer can decrease the input data size, which can also

decrease computation cost and the number of parameters.

• Scale Invariance. Pooling layer make the network focus more on feature itself other than the

locations of features. This means that even a feature locates in a different location in the test

case, the network can still extract enough feature information for the final classification.

• Lessening the Chance of Overfitting. According to our and the other researchers’ experiment

records, applying pooling can somehow lessen the chance of overfitting. It can make the

network easy for training.

Fully connected layers

A fully connected layer [18] is usually used in the decision processing part to generate the final

output by involving all the neurons in the previous layer, as shown in Fig 2.3. Neurons in a fully

connected layer have full connections to all the inputs in the previous layer, as in regular Neural

Networks. A fully connected layer can involve a huge computation volume but it can calculate a

result based on all the neurons.

Normalization Layers

Batch Normalization (Batch Norm or BN) has been established as a very effective component

in deep learning, largely helping push the frontier in computer vision. BN normalizes the features

7

Figure 2.3: An example of fully connected layer

by the mean and variance computed within a batch [19]. This has been shown by many practices to

ease optimization and enable deep networks to converge. The uncertainty of the batch statistics also

acts as a regularizer that can benefit generalization.

Non-linear layers

A non-linear layer is used to introduce non-linearity to a network. It allows to model a class

label that varies non-linearly with independent variables. Non-linear means the output cannot be

replicated from a linear combination of inputs, which allows the model to learn complex mappings

from the available data, and thus the network becomes a universal approximate. Another important

aspect of the non-linear layer is that it should be differentiable. This is required during the

backpropagation to compute gradients, and thus the weights can be tuned accordingly. The non-

linear functions should be continuous and be able to transform the input into a desirable range.

(1) Rectified Linear Unit (ReLU)

Mathematically, ReLU [20] is given by this simple expression

σ(a) = max(0, a) (1)

This means that when the input a < 0 the output is 0 and if a > 0 the output is a. This

activation makes the network converge much faster. It does not saturate which means it is

8

resistant to the vanishing gradient problem at least in the positive region (when a > 0),

so the neurons do not backpropagate all zeros at least in half of their regions. ReLU is

computationally very efficient because it is implemented using simple thresholding. But there

are few drawbacks of ReLU neuron :

• Not zero-centered: The outputs are not zero centered similar to the sigmoid activation

function.

• The other issue with ReLU is that if a < 0 during the forward pass, the neuron remains

inactive and it kills the gradient during the backward pass. Thus weights do not get

updated, and the network does not learn. When a = 0 the slope is undefined at that

point, but this problem is taken care of during implementation by picking either the left

or the right gradient.

To address the vanishing gradient issue in ReLU activation function when a < 0, Leaky

ReLU is given as an attempt to fix the dead ReLU problem.

(2) Leaky ReLU

Leaky ReLU [21] was an attempt to mitigate the dying ReLU problem. The function

computes

σ(a) = max(0.1a, a) (2)

The concept of leaky ReLU is when a < 0, it will have a small positive slope of 0.1. This

function somewhat eliminates the dying ReLU problem, and it has all the characteristics of a

ReLU activation function, but the results achieved with it are not consistent.

(3) Sigmoid

Sigmoid [22] is also known as Logistic Activation Function. It takes a real-valued number

and squashes it into a range between 0 and 1. It is also used in the output layer where our

end goal is to predict probability. It converts large negative numbers to 0 and large positive

numbers to 1. Mathematically it is represented as

9

σ(a) =
1

1 + e−a
(3)

The three major drawbacks of sigmoid are:

• Vanishing gradients: The sigmoid function is flat near 0 and 1. In other words, the

gradient of the sigmoid is 0 near 0 and 1. During backpropagation through the network

with sigmoid activation, the gradients in neurons whose output is near 0 or 1 are nearly

0. These neurons are called saturated neurons. Thus, the weights in these neurons

do not update.Furthermore, the weights of neurons connected to such neurons are also

slowly updated. This problem is also known as vanishing gradient. So, if there was a

large network comprising of sigmoid neurons in which many of them are in a saturated

regime, the network would not be able to backpropagate.

• Not zero centered: Sigmoid outputs are not zero-centered.

• Computationally expensive: The exp function is computationally expensive compared

with the other non-linear activation functions.

(4) Tanh

Tanh is also known as the hyperbolic tangent activation function. Similar to sigmoid, tanh also

takes a real-valued number but squashes it into a range between -1 and 1. Unlike sigmoid, tanh

outputs are zero-centered since the scope is between -1 and 1. In practice, tanh is preferable

over sigmoid. The negative inputs considered as strongly negative, zero input values mapped

near zero, and the positive inputs regarded as positive.

Mathematically it is represented as

σ(a) = tanh(a) =
ea − e−a

ea + e−a
(4)

The main drawback is that the tanh function also suffers from the vanishing gradient problem

and therefore kills gradients when saturated. To address the vanishing gradient problem,

another non-linear activation function known as the rectified linear unit (ReLU) is given which

is a lot better than the previous two activation functions and is most widely used these days.

10

2.2.2 CNN Training Procedure

Once a CNN architecture is built using the basic components mentioned above, in order to

achieve a good processing quality, all the weights in these components need to be updated by the

training procedure using training samples. The training procedure includes forward-propagations

and backward-propagations. The forward-propagations is to follow the network sequence to

generate predicted results from the input samples, and then the loss is calculated based on the

predicted results and the ground truth data. For the backward-propagations, the weights of each

convolutional kernel is updated based on the loss calculated in order to gain a better result in the

next epoch.

Loss function

The loss function is used to guide the training process of a neural network. For classification

problem, cross entropy loss is widely used.

(1) Cross-Entropy

Cross-entropy loss [6], or log loss, measures the performance of a classification model whose

output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted

probability diverges from the actual label. A perfect model would have a log loss of 0.

The formula is shown below.

Loss(y, t) = Σitilog(yi) (5)

Where ti is the ground truth label of training instance and yi is the prediction result of the

classifier for training instance. During training, minimize cross entropy Loss(y, t).

Backward Propagation

The back-propagation algorithm was originally introduced in the 1970s, but its importance was

not fully appreciated until a famous 1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald

Williams [23]. That paper describes several neural networks where back-propagations work far

faster than other approaches, making it possible to use neural nets to solve problems which had

11

previously been insoluble. Today, the back-propagation algorithm is still the workhorse of learning

in neural networks.

Algorithm 1 Back-propogation Algorithm

Input: DateSet: (x1
n, yn), n = 1, ..., N ; Epoch Number: Ep

Output: ωl, i = 1, ...L
1: for ep = 1 → Ep do
2: while (x1

n, yn) in DataSet do
3: Forward propogation to calculate xl for each layer and the loss z
4: for l = L, ..., 1 do
5: Compute the derivatives of the loss to the weights of the l layer;
6: Compute the derivatives of the loss to the input of the l layer;
7: Updates the weights;
8: end for
9: end while

10: end for

Optimizer

Optimization algorithm is used to minimize (or maximize) an objective function or loss function,

and it is a mathematical function to modify the internal learnable weights used in computing

the predicted values. Various optimization strategies and algorithms are designed to calculate

appropriate and optimum updated-values of weights, which influences the learning process and

also the outputs of a model.

(1) Stochastic Gradient Descent(SGD)

SGD [24] updates model weights (Ψ) in the negative direction of the gradient (ϕ) by taking a

subset or a mini-batch of data of size (m):

ϕ =
1

m
▽Ψ ΣiLoss(f(ai; Ψ), ti)

θ = Ψ− ε× ϕ

(6)

The network outputs is represented by f(ai; Ψ) where ai are the training data and ti are the

training labels, the gradient of the loss Loss is computed with respect to model weights Ψ.

The learning rate ε determines the size of the step that the algorithm takes along the gradient

(in the negative direction in the case of minimization and in the positive direction in the case

of maximization).

12

Now due to these frequent updates, weight updates have high variances, which causes the loss

function to fluctuate to different intensities. This is actually a good thing because it helps us

discover new and possibly better than local minima , whereas Standard Gradient Descent will

only converge to the minimum of the basin as mentioned above. But the problem with SGD is

that due to the frequent updates and fluctuations, it complicates the convergence to the exact

minimum and will keep overshooting due to the frequent fluctuations .

(2) Momentum

Momentum [25] accumulates exponentially decaying moving average of past gradients and

continues to move in their direction:

v = ζ × v − ε▽Ψ (
1r

m
ΣiLoss(f(ai; Ψ), ti))

θ = θ + v

(7)

where ζ is the momentum weight. Thus step size depends on how large and how aligned the

sequence of gradients are, common values of momentum parameter alpha are 0.5 and 0.9.

(3) Nesterov Momentum

Nesterov Momentum is inspired by Nesterov accelerated gradient method [26] :

v = ζ × v − ε▽Ψ (
1

m
ΣiLoss(f(ai; Ψ + ζ × v), ti))

θ = θ + v

(8)

The difference between Nesterov and standard momentum is where the gradient is evaluated,

with Nesterov’s momentum the gradient is evaluated after the current velocity is applied, thus

Nesterov’s momentum adds a correction factor to the gradient.

2.3 Relevant Work for Object Recognition

In this sub-chapter, serval widely-used CNN architectures for object recognition are investigated

and the relevant work trying to improve the computation efficiency is more focused.

13

2.3.1 AlexNet

AlexNet [27] is the first widely focused and used convolution neural network(CNN) in image

processing. It was proposed in 2012 and famously won the 2012 ImageNet LSVRC-2012

competition by a large margin (15.3% VS 26.2% (second place) error rates). Because of the

good results achieved by AlexNet, many researchers focus on CNN to deal with problems in image

processing.

Figure 2.4: The Architecture of AlexNet [27]

AlexNet contains 5 convolution layers and 3 fully connected layers and the architecture is shown

in Fig 2.4. A visualization of features in a trained AlexNet is also given in Fig. 2.5.

The main contributions of AlexNet are:

• It is the first CNN applied on the ImageNet dataset which contains of more than 1.5 million

images in 1000 classes. This reveals the CNN has the ability of updating a large number of

parameters to represent huge amounts of various features.

• GPUs were used to accelerate the network training and testing. For the research of neural

network in 1980s, the limited computation resources blocked the development of the neural

network. AlexNet decreased the training time from serval months to serval days, which allows

that various networks and applications can be designed in a short time.

• The network building methods used in AlexNet are still useful today.

◦ Using ReLU instead of sigmod or tanh to add non-linearity.

◦ Using data augmentation and dropout to deal with overfitting.

◦ Using normalization to reduce the error rates.

14

Figure 2.5: Visualization of features in a fully trained AlexNet [28]. For layer 1, the feature maps
are easy to visualize. For layers 2-5, the top 9 activations in a random subset of feature maps, based
on training dataset, are projected down to pixel space using deconvolutional methods.

15

2.3.2 VGGNet

This architecture is from VGG group, Oxford and the structure is shown in Fig. 2.6 [14]. It

makes the improvement over AlexNet by replacing large kernel-sized filters(11 and 5 in the first and

second convolutional layer, respectively) with multiple 3X3 kernel-sized filters one after another. In

other words, all the convolution layers in VGGNet are uniformed with standard convolution layers

with 3X3 kernels. VGGNets have the two versions, VGG-16 having 16 stacked convolution layers

and VGG-19 having 19 similar layers. The multiple stacked smaller size kernel helps to extract

more complex features using a lower computation cost, with respect to the larger size kernel.

Figure 2.6: VGGNet Example [14].

2.3.3 ResNet

In 2015, most researchers think that increasing the depth should increase the accuracy of the

network, as long as over-fitting is taken care of. However, in most cases, for plain networks, the

classification error rate will be higher when the networks are more deeper. This is called degradation

problem. The reason is that the signal required to modify the weights, which is from the end of the

network by comparing ground-truth and prediction, becomes very small at the earlier layers, since

the increase of the depth. In other works, the weights in the earlier layers are hard to be updated.

This is called gradient vanishing.

16

Figure 2.7: ResNet architectures for ImageNet [15]. Left: a plain network with 34 layers. Right: a
residual network with 34 layers.

17

Figure 2.8: A residual module [15].

Residual networks (ResNets) [15] is proposed to allow training of such deep networks by

constructing the network through modules called residual models. The comparison of Resent and

a plain net is illustrated in Fig. 2.7. and the residual module is shown in Fig. 2.8. The intuition is

to add an identify mapping between the input and output, thus the convolution layer only needs to

learn the residual. Furthermore, this direct path between the input and the output allow the loss data

directly pass to the earlier layers without vanishing. From signal processing view, the output result

is enhanced by the addition with the original input information. Moreover, these input information

can be further enhanced in the later layers. The identify mapping idea in the residual modules is

critical to improve the computation efficiency because of the feature reusing. The residual path

allows the CNNs to be deeper to achieve a good processing quality, however, normally a large a

number of weights in these deep networks are redundant and can be reduced. Hence, some research

effort, such as pruning, has been made to further improve the efficiency.

2.3.4 Pruning

Pruning neural networks [29, 30, 31] is an old idea to improve the computation efficiency. The

idea is that among all the weights in a network, some are redundant and do not contribute a lot

to the output. If one could rank the kernel weights in the network according to how much they

contribute, the low ranking weights could be removed from the network, resulting in a smaller and

faster network. Here are some examples of pruning VGGNets and ResNets [14, 15]. However,

the problem is that the ranking methods are difficult to design and the pruning may result in a

big accuracy drop. Moreover, the training of a large network and the fine-tuning of a pruning

18

network are a huge computation volume. Since these drawbacks of the pruning method, depthwise

convolutions are used in CNN to build the computation-efficient CNN architectures.

2.3.5 Xception

Xception [32] is a convolutional neural network architecture based entirely on depthwise

separable convolution layers. The detailed architecture is shown in Fig 2.9. It follows the hypothesis

that the mapping of cross-channels correlations and spatial correlations in the feature maps of

convolutional neural networks can be entirely decoupled.

The idea of using depthwise convolution to replace the full standard convolution is good and

it does improve the computation efficiency. However, in most conditions, the cross-channels

correlations and spatial correlations in the feature maps need to be calculated in a specific way

according to the nature of data, which needs the cooperation with the data organization method.

Figure 2.9: Detailed Xception Net [32].

19

2.3.6 MobileNetV2

MobileNetV2 [33] is designed to be a computation-efficient network trying to reduce the cost.

The basic idea is to replace a full standard 3X3 convolution layer with an 1 × 1 convolution layer

and a 3 × 3 depthwise convolution layer, indicated by DWConv in the Fig. 2.10. The structure of

the MobileNetV2 module is also shown in Fig. 2.10. Moreover, it also introduces the residual path

to improve the performance.

It is a good idea to improve the computation efficiency by replacing the standard convolution

layers with several separate layers. A full standard convolution always combines two operations

together: the data organization and the feature extraction, but the operation of data organization

should be done in a specific way determined by the nature of data. Hence, using the depthwise

convolutions to extract the features and using the 1 × 1 convolution to organize data can improve

the computation efficiency. However, it should be also noted that the method of data organization

can be further designed in a more careful way, and the computation efficiency should be even higher.

Figure 2.10: A MobileNetV2 module [33]. DWConv stands for depthwise convolution.

20

2.3.7 ShuffleNet

The structure of ShuffleNet [34] module is given in Fig. 2.11. The design idea is similar to

the MobileNetV2. The main difference is that the 1 × 1 standard convolutions in MobileNet are

replaced by the 1× 1 group convolution and a channel shuffle.

With respect to MobileNetV2, ShuffleNet uses a more specific way to organize the input data.

It is done by group convolution and channel shuffle, thus the computation volume can be reduced.

However, if the data organization operation can be designed based on the nature of the data from

image processing view, the expected result should be better.

Figure 2.11: A ShuffleNet module [34]. DWConv stands for depthwise convolution.

2.4 Summary

In this chapter, a brief description of the fundamentals of CNNs is given. The basic components,

i.e. different computation layers, are presented. Moreover, since CNNs have a huge amount of

learnable weights to extract various features, the training procedure including forward-propagation

and backward-propagation is also introduced to determine the weights by using training samples.

Study on relevant CNN architectures for object recognition is also presented. A commonly

used CNN architecture, such as VGGNet, uses multiple uniformed 3X3 kernels for simplicity.

This network and its variations are widely used as references to evaluate the performance of other

21

networks. Based on VGGNet, ResNet was proposed to allow training a very deep network by using

the residual modules. From image signal processing point of view, in each residual module, the

input signals are combined with the convolved data thus the existing features can be enhanced for

re-using and new features can also be generated. Since a large CNN architecture could not be

implemented on mobile devices, two potential solutions have been tried to reduce the computation

volume. Pruning a trained network trying to remain the same error rate was first used. However,

it is difficult to determine which paths should be pruned, and a huge volume of computation is

also required for training the un-pruned network and fine-tuning the pruned network. The second

solution is to build a computation-efficient architecture by replacing full standard convolutions with

depthwise convolutions, since standard convolutions have a large computation cost and some of

the connections are unnecessary. XceptionNet is claimed to be the first CNN architecture based

on entirely depthwise convolutions. MobileNetV2 and ShuffleNet used the combination of a 3X3

depthwise convolutions and 1X1 convolutions to replace a 3X3 standard convolutions trying to

achieve the equivalent processing quality. They follow the similar idea i.e. splitting a standard

convolution layer into serval separate layers including the depthwise convolution layer. However,

the motivation comes from the computation view rather than image signal processing view, thus

the data organization methods are not optimized to suit the various natures of the data in each

computation stage.

Based on these investigation results, our computation-efficient CNN will follow the idea that

using depthwise convolutions and other CNN components to replace the full standard convolutions.

The goal is to extract maximum feature information from a given group of data using the least

computation volume. With respect to MobileNetV2 and ShuffleNet, the design of proposed CNN

modules and architectures will start from the analysis of image data. Then the feature extraction

part and the data organization part will be carefully designed to suit the nature of data. The modules

and architectures will be presented in the following chapters.

22

Chapter 3

Design of SdcBlock

3.1 Introduction

As mentioned previously, extracting various features related a particular class of objects from

diverse background is a great challenge. CNN-based approaches are considered effective to solve

this kind of problem. It is to use huge amounts of samples to progressively determine the system

parameters in order to detect various object features. Normally, it requires a large number of

layers, which, in consequence, needs a huge number of computation volumes to achieve a good

performance.

With a view to reducing significantly the computation volume without sacrificing the processing

quality in object recognition tasks, in this chapter, the design of a convolution module, named

SdcBlock, is presented. It aims at extracting feature information of high density from a given set

of data. Since the core operations in CNNs are 2-D convolutions, the first stage of the research

in developing the efficient feature extraction methods presented in this thesis is to study different

convolution modes, and then the optimization of the convolved results supported by the suitable

data control. Preliminary results of the proposed algorithm are presented in [35].

In subchapter 3.2, a discussion about different convolution modes is presented. The basic

scheme of the proposed module, SdcBlock i.e. Successive Depthwise Convolutions Block, is

described in subchapter 3.3. In subchapter 3.4, a number of variations of SdcBlock for different

computation purposes are presented.

23

3.2 Different Convolution Modes

The purpose of a convolution in CNN is to generate feature vectors based on the input data,

in a way that the information relevant to the object features is extracted, composed, strengthened,

and/or concentrated, while filtering out those irrelevant. To build effective convolution modules

with a maximized capacity of extracting critical feature information, it’s important to look into the

different convolution modes and to direct the data to the appropriate convolution operations. In

general, an input data of NI channels can be transformed to an output data of K channels by a

convolution with K kernels in one of the following three modes.

• Standard convolution. In this mode, each of the K convolution kernels is applied to all the

NI input channels to generate one output channel. It can generate an output result involving

all the input information. It is often used when all the inputs are correlated.

• Group convolution (G-Conv). The NI input channels are divided into g groups, and K

convolution kernels are also divided into g sets. Each of the input data groups is convolved

with a set of K/g kernels. The standard convolution can be seen as the specific case, with

g = 1, of the group convolution. A group convolution can reduce computation volume by

a factor of g, compared with the standard convolution. Furthermore, this convolution mode

gives a flexibility in process because the inputs can be divided into serval groups according to

their correlation levels to generate outputs containing different feature information.

• Depthwise convolution (DW-Conv). It is, in fact, the conventional 2-D spatial convolution

with the weights progressively updated in the training process. In the context of CNN, it can

be seen as another special case of the group convolution, in which g = NI , i.e., one channel

per group, and each of the K kernels is applied only to one input channel, requiring g = NI =

K. Depthwise convolutions, if performed successively to a single input channel, can generate

feature maps of different orders.

With given NI and K, the standard convolution mode is the most computation-demanding, as

it generates each of the output vectors based on the data sampled from all the input channels. On

the contrary, the depthwise convolution mode is the least computation-demanding, and each of its

output vectors is produced exclusively based on the data of a single channel. The group convolution

24

mode allows a flexibility for a desirable data organization. Improving the computation efficiency in

this module is related to an appropriate choice of the convolution mode.

Figure 3.1: SdcBlock Modules. G_Conv denotes group convolution and DWConv denotes dethwise
convolution.

3.3 SdcBlock

The basic scheme of the proposed convolution module, named SdcBlock (Successive Depthwise

Convolution Block), is illustrated in Fig. 3.1. It is designed to make the best use of the input

data to generate critical feature vectors of different orders. Appropriate convolutions supported

by optimized data management are implemented to produce various feature information of high

density.

25

In this module, three functions, Successive Depthwise Convolutions (Sdc), data preparation for

the convolutions and arrangement of the convoluted data to form the output are performed. These

functions are described in the following subsections.

3.3.1 Successive Depthwise Convolutions(Sdc)

Object recognition needs feature information of different natures that can be generated by

filtering operations of different orders. Successive convolutions are used in this module to efficiently

generate such features. These convolutions must be applied solely to the same set of data,

for which only the depthwise convolution mode is suitable. Hence the Successive Depthwise

Convolutions(Sdc) make the pivotal part in this module. They are are performed by the two boxes,

indicated by 3×3 DWconv, as illustrated in Fig. 3.1. I denotes the input of the module and X

denotes the input of the depthwise convolution. X ′ and X ′′ denote the results of the first and second

order filtering operations, respectively. It should be mentioned that each channel in X can be formed

either from a single channel or a group of multiple channels in I .

If the module is placed in an early processing part of a network to handle raw image data, the

successive depthwise convolutions will generate the first and second order gradient maps in order

to obtain various low-level features. If the module is placed in the middle or final stages of a CNN,

these operations will produce vectors containing higher order feature information. In each case, the

extracted information of each of the two convolutions needs to be carefully preserved. Hence, the

two sets of the convolution results are concatenated, instead of being summed up.

In the basic version of SdcBlock illustrated in Fig. 3.1, the kernel size of the two successive

depthwsise convolutions is 3×3. It can, however, be extended to a larger size depending on the

nature of the input data. Batch normalization and a non-linear function, such as ReLU, are applied

after each of these two convolutions for the following operations.

3.3.2 Data Preparation for the Successive Depthwise Convolutions(Sdc)

Since the core operation in the proposed module consists of the successive depthwise

convolutions, it is important to transform the input data I to a good form for the two depthewise

26

convolutions. Thus, a conversion in form of a 1×1 group convolution is applied to the input data I ,

as illustrated in Fig. 3.1, to covert I into the set X for the purposes stated as follows.

• Scaling of the input elements. This 1×1 convolution provides a scaling weight to the input

channels of the module and these scaling weights can be adjusted to facilitate the feature

extraction in the succeeding convolutions.

• Conversion of the input channel numbers. By applying the 1×1 group convolution, the input

data I with NI channels can be converted to X with E × NI channels, a desirable number

for the following successive depthwise convolutions.

• Grouping the input channels. As mentioned previously, the output of the two successive

convolutions, namely X ′ and X ′′, are exclusively produced from the input set X . Each

channel in X can be formed by a single channel, or a group of multiple channels from the

input data I . In other words, by grouping multiple channels from I , more input information is

involved in each channel in X and the succeed depthwise convolutions can generate feature

maps containing information of higher density.

This component of data preparation converted the input data I to the data set X to meet the

requirements of the successive depthwise convolutions. It allows an effective adjustment in the

data format and makes it possible to involve multiple channels of data in depthwise convolutions to

optimize the filtering process.

3.3.3 Data Arrangement to Generate the Output

This component in the SdcBlock is used to handle the two sets of data, i.e. I , the input to the

module and Xc, the concatenated data from the successive depthwise convolutions. In order to

generate the output data of higher density and more varieties, an appropriate combination of these

two sets is critical. In general, they can be combined in two different ways.

• Addition. The convolved data are added to the input data of the block, which can result in

feature enhancements and/or a generation of new features.

• Concatenation. The two sets of data are concatenated. It is suitable in feature reusing and

preserving feature information of the three different orders for further processing.

27

The decision to use the addition or concatenation is based on the nature of the input data I and

the purposes of the processing in the block. In order to implement the combination, the two sets

of data ,I and Xc, need to have the same dimensions and formats. Hence, an 1×1 convolution, is

placed, as shown in Fig. 1 to compress or extend the concatenated data Xc to a desirable data form

Xp. Meanwhile, it can also provide a scaling function to the data. Also, a similar process is applied

to I , in order to meet the requirements of dimensions and channel sequences.

It should be mentioned that, as the data X ′ and X ′′ produced respectively by the different

depthwise convolutions are concatenated, they are sequenced naturally in Xc. A box of reordering

is placed to rearrange the sequence of these channels before the 1×1 group convolution. It is

important, in many cases, to ensure that each group of the channels in this group convolution have

the feature information of both the first and second orders.

3.4 Deviations From the Basic SdcBlock

Some details of the SdcBlock can be specified by users for specific computation purposes. For

example, the combination of the input data I and the convolved results Xc can be either addition or

concatenation. Also, before being combined, I can be converted to match Xc by an 1×1 convolution

or a particular way of pooling. Another important element to be determined is Stride, a hyper-

parameter in convolutions. It can be Stride = 1 or Stride = 2.

As filtering operations with Stride = 1 normally give more precise results than those with

Stride = 2, the convolution with Stride = 1 is used in the basic version of the SdcBlock. In this

version, the dimension of feature map in each channel, i.e. its height and width, remains the same

during the whole processing of this module.

In some cases, the module with Stride = 2 is used and the main motivation is to reduce

the dimension of feature maps in order to improve computation efficiency in object recognition

tasks. Because there is information redundancy in the feature maps, the dimension size could be

reduced without high risk of missing information. Meanwhile, the dimension reduction contributes

to decrease computation cost and increase the convergence speed. SdcBlock with Stride = 2 can

be used in CNN processes to simplify the computation and to improve the efficiency. To be specific,

Stride = 2 is usually applied to the first 1×1 convolution. In the following examples, the size of

28

a input will be reduced half per side of its original height and width at the first convolution thus all

the following computation cost can be also reduced. In Fig. 3.2(a) and Fig. 3.2(b), two examples of

SdcBlock with Stride = 2 are illustrated, named SdcBlock-S2 and SdcBlock-S2-F, respectively.

(a) SdcBlock-S2 (b) SdcBlock-S2-F

Figure 3.2: SdcBlock Modules(Stride=2)

In case of SdcBlock with stride = 2, the SdcBlock-S2 shown in Fig. 3.2(a) is the most

commonly used. The hyper-parameter Stride = 2 is used in the first group convolutions only while

Stride = 1 is applied in the other convolutions. In order to re-use low-level feature information and

compensate the eventual information lost due to dimension reduction, a concatenation of sampled

input data and the rearranged convolved data is performed.

To perform this concatenation, the dimension of the input data should be converted to match that

of the convolved results. In this case, an average pooling is applied to perform the conversion. The

29

average pooling can preserve most feature information of the input data while the size is reduced to

one quarter. However, the average pooling can be replaced by another conversion approach.

In this version, the output contain both the sampled input information and the successive

depthwise convolution results. Furthermore, the importance of the input data compared to the

convolved results, i.e. the proportion of the input data in the output, can be adjusted according

to the data natures and computation purposes.

Another version of the SdcBlock(Stride = 2), named SdcBlock-S2-F(Feature), is shown in

Fig. 3.2(b). In some cases, the results of successive depthwise convolutions make the output of the

block thus the concatenation and the conversion of the input data in SdcBlock-S2 can be removed.

This version is called SdcBlock-S2-F, a special case of SdcBlock-S2.

In this version, the output are exclusively from the successive depthwise convolutions without

being combined with the input. It can be useful in the later stages of a network, where almost all of

low-level feature maps such have been converted to the high-level feature maps. There is almost no

need for low-level feature reusing thus the concatenation of the input data can be removed.

3.5 Summary

In this chapter, a CNN module, named SdcBlock, has been proposed. In this module, optimized

successive depthwise convolutions, supported by appropriate data managements, are applied to

generate vectors containing varieties of feature information of high density. The successive

depthwise convolutions can generate features of the first and the second order filtering. Meanwhile,

the data management can not only organize the input data for the successive depthwise convolutions

but also combine and compress the feature information of different orders. These methods can

improve computation efficiency and reduce the computation volumes. Furthermore, some variations

of this module has also been given for different computation purposes. This module can be adjusted

easily to meet the computation requirements of different network stages in order to form an end-to-

end network for object recognition tasks.

30

Chapter 4

Design of SdcNet

4.1 Introductation

As mentioned previously, SdcBlock has been proposed as a feature extraction module aiming

at improving the computation efficiency of CNNs in object recognition. In this chapter, the

design of SdcNet, a CNN architecture, is presented. This architecture is mainly composed of

cascaded SdcBlocks. The objective of this work is to make good use of SdcBlocks to optimize

the computation in order to obtain desired results with particular resource limitations. Since the

SdcBlock is modularized, one can use a number of hyper-parameters in each SdcBlock to achieve

the optimization.

In this chapter, the general structure of SdcNet, in terms of processing functions, is presented in

Subchapter 4.2. Three different networks are described in detail, as design examples of SdcNet, in

the following subchapter.

4.2 Processing in SdcNet

The general scheme of the proposed architecture, SdcNet, is shown in Fig. 4.1. The input

of this network is images and the output is the data representing the recognition results, such as

object classification labels. The network can be divided into three function parts:early processing,

feature extraction and decision processing. The first and second parts are to extract low and high

level feature information from the input images. This feature information is used in the third part to

31

Figure 4.1: General scheme of SdcNet.

generate the final decisions. The decision processing part is composed of a conversion layer and a

fully connected layer, as shown in Fig. 4.1.

Since the quality of the extracted feature information applied to the third part can make

significant difference in the final decisions, it is critical to design the early processing and feature

extraction parts to extract varieties of feature information and to present it in a high-density form.

The design of SdcNet is to make good use of SdcBlock by determining a number of hyper-

parameters in each block according to the input signal and the specific computation purpose. These

hyper-parameters are listed as follows.

32

• The group number g. In a SdcBlock, it controls the partition of the data channels in the group

convolution. It is used to organize the data and should be determined according to the nature

and correlation of the data channels in each layer. Meanwhile, convolutions with a larger

value of g decrease the amount of computation.

• The number of output channels. In each SdcBlock, the output channels should be sufficient to

extract enough varieties of feature elements in order to decrease the risk of information lost.

However, it should be mentioned that excessively increasing the number of output channels

can not only result in a larger computation load, but also can reduce the information density

and decrease the rate of convergence.

• The hyper-parameter Stride. It can be either Stride = 1 or Stride = 2 in a SdcBlock. A

convolution with Stride = 1 can generate more precise results than that with Stride = 2.

However, the latter downsizes the feature maps, which can concentrate the feature information

and also reduce the computation volume by three quarter. It should be noted that convolutions

with Stride = 2 may result in some data loss.

• The combinations of the data from different filtering operations. As mentioned previously, it

can be either concatenation or addition.

• The way of reordering convolved data. The purpose is to reorder the data channels produced

by the proceeding operations to match what required in the succeeding operations in order to

obtain more kinds of feature information. In other words, these data are re-indexed based on

the nature and correlation of the data in each SdcBlock. In the examples of SdcNet presented

in Subchapter 4.3, details of the reordering are described.

• The expansion number E. As mentioned in Chapter 3, the first group convolution in a

SdcBlock will convert the input data of NI channels to E ×NI for the following successive

depthwise convolutions.

The early processing part of a SdcNet contains an initial convolution layer and one or more

SdcBlocks, as shown in Fig. 4.1. In most cases, the input of this part is a color image composed

of three channels, such as RGB ones. In this processing part, early feature information is extracted,

33

preserved, organized and enhanced. In terms of the processing quality, it is necessary to generate

a sufficient number of feature maps to catch most of the low-level features critical for the later

processing. However, in order to improve the computation efficiency, it is essential to minimize

the number of convolution kernels. In the initial convolution layer, if standard convolutions were

used, a large number of kernels should been needed to capture various color features. In the design

of SdcNet, based on the fact that the number of variations in a color channel is much smaller,

the initial convolution is designed to be a group convolution with g = 3 so that each group of

convolution kernels is applied to an individual color channel to generate monochromatic features.

Thus one can use a smaller number of channels to perform a low-level feature extraction with a

reduced risk of information lost. The SdcBlock in this part is used to further process these feature

elements by successive depthwise convolutions. These elements are organized and enhanced by

selecting suitable hyper-parameters for the later processing.

The feature extraction processing part is a stack of SdcBlocks as shown in Fig. 4.1 and it is

the main processing part in the SdcNet. The input of this part is the data representing low-level

features generated by the early processing, and the data are in the form of a small number of large-

dimension channels. The processing in this part is to generate, from these low-level features, a

sufficient number of small-dimension maps representing high-level features, ready to be applied

to the decision processing. In this part, the early feature elements which might contribute to

the final decisions are normally dispersed widely in the input channels. These elements should

be transformed to the form of condensed information organized in different data channels each

containing a specific kind of information. In order to achieve this target, the output channels of

each processing stage increase progressively. SdcBlocks with Stride = 2, instead of pooling,

are applied in some stages to downsize the feature maps, while the increase of the output channel

number in these stages compensates for the eventual information lost. However, it should be noted

that the successive use of SdcBlokcs with Stride = 2 should be avoided. Furthermore, other

hyper-parameters, like the group number g, should be carefully chosen to optimize the processing

performance, as group convolutions require less computation volume if g is larger, which suits the

condition of low computation cost.

34

In the following subchapter, three SdcNets are presented, based on the design ideas described

in this subchapter. In particular, the way of choosing hyper-parameters to better suit the application

requirements is described.

4.3 Examples of SdcNet Design

In this subchapter, the design of three SdcNets, named SdcNet-S, SdcNet-M and SdcNet-L, with

different emphases for the object classification tasks is presented in details. The network SdcNet-S is

considered as the standard version of SdcNet and it has the lowest computation cost among the three

and produce an acceptable processing quality. SdcNet-M and SdcNet-L are designed to achieve a

higher processing quality. For these networks, the kernel size of all the depthwise convolutions is

3× 3. In the design, the inputs of these SdcNets are the RGB images of 32x32 pixels in 10 classes

from the CIFAR dataset.

4.3.1 SdcNet-S

Table 4.1: Details of SdcNet-S Configuration

Layer Stride Repeat
Times

Group No.
g

No. of Output
Channels

Output size

Input image data sized 32x32, 3 channels.
G-Conv* 1 1 3 36 32x32
SdcBlock 1 1 3 24 32x32
Stage 1 1 2 3 24 32x32
Stage 2 2 1 3 36 16x16

1 2 3 36 16x16
Stage 3 2 1 3 72 8x8

1 3 3 72 8x8
Stage 4 1 3 3 96 8x8
Stage 5 2 1 3 150 4x4

1 2 3 150 4x4
Stage 6 1 1 3 300 4x4
Avg Pool** 2 1 300 1x1
FC 1 10 1x1
Complexity*** 55.12 M Flops No. of Weights: 1.04 M

* G-Conv stands for group convolution with 3x3 kernel and g = 3.
** The kernel size of this average pooling is 4x4.
***The complexity is evaluated on 32× 32 input images of 10 classes

35

The detailed configuration of SdcNet-S is shown in Table 4.1. As mentioned previously, this

network can be divided into three parts, in terms of functions. The early processing part consists of

a 3×3 group convolution layer and a SdcBlock. The succeeding feature extraction part is composed

of sixteen SdcBlocks grouped into six stages, named from Stage 1 to Stage 6, as shown in Table 4.1.

Each stage consists of one or more cascaded SdcBlocks and the number of output channel increases

progressively stage by stage. A global average pooling layer and a fully connected layer are used to

generate the final decisions.

SdcNet-S has the simplest structure among the three networks. It is designed to target a wide

range of users. 17 SdcBlocks are used in this network. The majorities of them are the SdcBlock

(Stride = 1), shown in Fig. 3.1. The remaining SdcBlocks are SdcBlock-S2 (Stride = 2),

shown in Fig. 3.2, used at some stages where downsizing feature maps is needed. Among the

hyper-parameters, the most important ones are determined based on the principles stated as follows.

• Group number g. The group number g = 3 is carefully chosen and kept identical for a

simplicity through out the network. For the early processing, g = 3 is chosen to match

the number of the input color channels so that three groups of low-level feature maps are

generated, corresponding to the three kinds of monochromic information. For the feature

extraction processing part, it is also appropriate to use group convolutions with g = 3, instead

of standard convolutions, aiming at reducing the computation volume significantly. One

may, however, have the concern that each convolution in this part needs to involve different

data from a sufficient number of channels, in particular in later stages, to generate enough

information varieties and to secure the processing quality. To address this concern, it should

be noted that the correlation among the feature maps gets stronger stage by stage, while the

number of channels in each group also increases progressively with the fixed group number

g = 3. Thus there is a sufficient number of channels in each convolution in different stages.

• The numbers of data channels and the convolution Stride in each stage. The initial group

convolution with Stride = 1 generates 36 feature channels, 12 from each of the three input

color channels. The 12 channels are sufficient to accommodate basic monochromic feature

elements. The number of channels increases from 36 to 300 progressively, as shown in Table

4.1, meanwhile by using multiple SdcBlock-S2s, the size of each map decreases from 32×32

36

to 4 × 4, ready to produce the final decisions. The 300 channels for the decision part are

chosen to produce sufficient kinds of feature information to secure a good processing quality

without need for a excessive amount of computation. Furthermore, too many data channels

may influence the information density and decrease the rate of convergence. SdcBlock-S2

are used as the first SdcBlocks in each of Stage 2, Stage 3 and Stage 5 to downsize the

feature maps, meanwhile the numbers of channels at these stages are extended. There are

at least 3 SdcBlocks with Stride = 1 between two SdcBlock-S2, following the principle

of using SdcBlocks with Stride = 2 stated previously. In these stages, the data have

been convolved multiple times and most of them have already been transformed to higher-

level feature information sparsely distributed. The SdcBlock-S2 also contributes to produce

concentrated information and improve the information density.

• Expansion number E. E = 1 is used in the first SdcBlock placed in the early processing

part and E = 6 is applied to each of the other SdcBlocks in this network. The hyper-

parameter E is used to expand the number of feature maps applied to the successive depthwise

convolutions in each SdcBlock. The main purpose is to produce more varieties of information

from the given input channels, as the depthwise convolutions need to involve more feature

information. To this end, in this network, by using E greater than 1, the number of feature

maps is multiplied and then applying to the depthwise convolutions. The expansion number

E can be also used to adjust the computation volume to reach a appropriate trade-off between

the processing quality and the computation volume. In this network, for a simplicity, E = 6

is used in the entire feature extraction part while it can be adjusted easily, if needed, according

to computation conditions.

• Reordering data. In SdcNets, data reordering is applied to the concatenated convolved-data,

and in some cases, also to the input data of a SdcBlock before combining the data of different

orders. The purpose is to secure the information varieties for the succeeding processes.

Shuffle is a general way to perform the reordering. It is to rearrange feature channels so

that each group for convolutions has channels randomly taken from different sources. In

SdcNet-S, the concatenated convolved-data are reordered by shuffle so that each group of the

convolved channels contains information of different filtering orders.

37

• The combinations of the data from different filtering operations. For all the SdcBlock-S1,

the convolved data are added to the input data in order to enhance the features and generate

new feature maps. For all the SdcBlock-S2, the data of different orders are concatenated for

feature-reusing.

• Data conversion in the decision part. A conversion layer should be placed before the fully

connected layer and is used to convert the 4×4 feature maps to one element to facilitate the

process in the fully connected layer. In this network, in order to include as much information

in each map as possible when the size is reduced significantly, an average pooling layer is

used for the conversion. However, it can be replaced by a convolution layer or another pooling

method according to a specific computation purpose.

SdcNet-S has the simplest network configuration among the three examples presented in this

subchapter. It uses a small amount of 55.12M Flops and a number of 1.03M weights. However, a

good processing quality of the network is predicted since the hyper-parameters in this network is

determined based on the principles of image processing. Nevertheless, if the hyper-parameters are

chosen more carefully to better suit the signal natures in different stages, an even better performance

can be expected.

4.3.2 SdcNet-M

The detailed configuration of SdcNet-M is shown in Table 4.2. This network is an updated

version of SdcNet-S, aiming at improving the processing quality. Compared with SdcNet-S, in the

design of SdcNet-M, more consideration is put in determining the hyper-parameters in different

convolution layers. Since the high-level feature information for the decision part is produced from

the data of basic feature elements, it is thus critical to improve the quality of information in these

elements. The efforts in the design of SdcNet-M are made on the configuration of the first SdcBlock

of the network and the first two stages of the feature extraction part, namely Stage 1 and 2. The rest

of the network is identical to that in SdcNet-S. The updates in designing SdcNet-M are made on the

principles stated below.

38

Table 4.2: Detail of SdcNet-M Configuration

Layer Stride Repeat
Times

Group No.
g

No. of Output
Channels

Output size

Input image data sized 32x32, 3 channels.
G-Conv* 1 1 3 36 32x32
SdcBlock 1 1 12 36 32x32
Stage 1 1 2 6 36 32x32
Stage 2 2 1 3 66 16x16

1 2 3 66 16x16
Stage 3 2 1 3 72 8x8

1 3 3 72 8x8
Stage 4 1 3 3 96 8x8
Stage 5 2 1 3 150 4x4

1 2 3 150 4x4
Stage 6 1 1 3 300 4x4
Avg Pool** 2 1 300 1x1
FC 1 10 1x1
Complexity*** 73.41 M Flops No. of Weights: 1.11 M

* G-Conv stands for group convolution with 3x3 kernel and g = 3.
** The kernel size of this average pooling is 4x4.
***The complexity is evaluated on 32× 32 input images of 10 classes

(1) As the quality of the feature extraction is related to the number of feature maps produced in

each stage, SdcNet-M has a relatively larger number of output channels in the early stages

specified above, with respect to those in SdcNet-S, to accommodate more feature maps.

(2) In order to effectively use these channels, the group number g in the beginning stages of

the network is carefully selected to improve the processing quality in convolutions, unlike a

fixed g = 3 through-out the stages in SdcNet-S. Considering that the data channels generated

in each convolution layer have certain correlation among them, it is important to group the

channels having stronger correlation together for convolutions. A flexible group number g

facilitates the data channel grouping to produce a better result. Moreover, g can also be

adjusted in each stage to find the balance of the computation volume and the processing

quality.

(3) In order to generate more varieties of features from given input data, the data channels are

rearranged in different ways for the succeeding convolutions. In this network, with respect to

39

SdcNet-S, channel reordering by shuffle is used in most of the stages. However, in the first

SdcBlock, the monochromic channels are rearranged in a specific way in order to control the

data flow and to produce the feature maps containing specific combinations of color feature

information. Moreover, it is also possible to rearrange the data channels in a specific way, in

other designs, according to their natures to achieve particular purposes.

As shown in Table 4.2, the number of output channels for the first SdcBlock and Stage 1 is 36,

instead of 24 in SdcNet-S. In Stage 2, there are 66 output channels in SdcNet-M, with respect to 36

in SdcNet-S. The group number g = 12 is used in the first SdcBlock and g = 6 is used in Stage 1,

compared to g = 3 in the corresponding parts of SdcNet-S. The increase of g is to counter-balance

the increase of the computation volume due to the increased number in data channels. In these

stages, each convolution group does not have to involve a large number of channels. Thus applying

g = 12 and g = 6 to the group convolutions in these stages is appropriate. Moreover, considering

the data channels are from the three colormaps, the numbers of 12 and 6 are selected to facilitate

the grouping.

In SdcNet-M, in all the SdcBlocks found in Stage 1 to 6, the data channels produced by

the successive depthwise convolutions are rearranged by shuffle. However, a specific reordering

approach, namely Specific Color Reordering (SCR) is proposed and applied to the first SdcBlock

to control the data flow of monochromic channels in order to group them in a particular sequence,

which can not be done by using shuffle. The monochromic feature maps produced by the successive

depthwise convolutions are originated from the three color maps and the SCR reordering is designed

to rearrange particularly these maps according their chromic characters to enhance the monochromic

information as well as to produce varieties of full-color features. It is done by dividing these maps

into two data sections for the succeeding convolutions. Each of the channel groups in the first

section is composed of the same monochromic maps and that in the second section has mixed color

maps. By doing so, the correlation among the feature channels produced from maps of the same

color is well taken into consideration in producing high-level feature information, and that among

the channels produced from maps of different colors is not ignored.

In this network, 36 channels are generated by the initial convolution layer from the three

color maps and naturely, 12 from each color map. In the first SdcBlock, the successive

40

depthwise convolutions produce 72 monochromic feature maps, 36 from each of the two depthwise

convolutions. These 72 channels are divided equally, in terms of numbers of channels, colors and

filtering orders, into two sections. Then the 36 channels in the first section are divided into 3 groups,

each has the channels of all the RGB information. While the other 36 channels in the second section

are also grouped into 3, but monochromatically. By doing so, full-color feature maps are generated

from the channels in the first section, and in the other section, monochromic feature information is

produced and enhanced for feature re-using. These two kinds of feature information are included

in the process to maximize the effective use of the early features and to generate more varieties of

information. Furthermore, the input data of the block should also be rearranged in the same manner

to have the same sequence before being combined with the rearranged filtered channels.

The SdcNet-M is designed to obtain a better processing quality, with respect to that of SdcNet-S,

by improving the quality of the basic features in the early stages. The total computation amount of

the network is 73.41M Flops with 1.11M weights, which is still a modest amount compared to those

reported for similar tasks. In the following subsubchapter, another version of SdcNet is presented

and it is expected to have a lower error rate without excessive computation load.

4.3.3 SdcNet-L

The configuration of SdcNet-L is shown in Table 4.3. Based on SdcNet-S, the objective in

designing SdcNet-L is to obtain a better processing quality by extending feature channels in Stage 2

to 6. As more channels can accommodate more feature maps, more varieties of feature information

can be extracted from the given input data. As shown in Table 4.3, the number of output channels

of Stage 6 is 600, twice of that in SdcNet-S, providing the decision part with more precise feature

information.

Two measures are taken to compensate for the increase of computation volume due to the

extended channels. Firstly, the number of channels in the initial convolution or Stage 1 is kept

the same as that in SdcNet-S before downsizing the map dimension. The channel extending starts

from Stage 2, where the feature map size is reduced from 32×32 to 16×16. The second measure is

to increase the group number g in all the stages, except the initial group convolution, from g = 3 to

g = 4, reducing the number of parameters in order to decrease the computation volume. It should be

41

noted that this change does not reduce the numbers of channels per convolution group as the total

numbers of the channels are increased, which avoid the degradation of the processing quality.

In this design, SdcNet-L is built to achieve the best processing quality among the three SdcNets

by extending the channels. It requires 103.3M Flops and uses 2.53M weights to generate a good

result. Compared with the reported CNNs for similar tasks, the computation volume is still a modest

amount.

Table 4.3: Detail of SdcNet-L Configuration

Layer Stride Repeat
Times

Group No.
g

No. of Output
Channels

Output size

Input image data sized 32x32, 3 channels.
G-Conv*(g = 3) 1 1 3 36 32x32
SdcBlock 1 1 4 24 32x32
Stage 1 1 2 4 24 32x32
Stage 2 2 1 4 72 16x16

1 2 4 72 16x16
Stage 3 2 1 4 96 8x8

1 3 4 96 8x8
Stage 4 1 3 4 144 8x8
Stage 5 2 1 4 300 4x4

1 2 4 300 4x4
Stage 6 1 1 4 600 4x4
Avg Pool** 2 1 600 1x1
FC 1 10 1x1
Complexity*** 103.3 M Flops No. of Weights: 2.53 M

* G-Conv stands for group convolution with 3x3 kernel and g = 3.
** The kernel size of this average pooling is 4x4.
***The complexity is evaluated on 32× 32 input images of 10 classes

4.4 Summary

In Table 4.4, the three different SdcNets are summrized and the main differences among

them are highlighted. SdcBlocks are used in all the networks to extract feature information.

All of them requires a modest computation resource while they are expected to give a good

processing performance. Hence they can be used in applications with restricted conditions of

computations. Among the three networks, SdcNet-S has the simplest structure and requires the

42

smallest computation volume, SdcNet-L can achieve the best processing quality, and SdcNet-M

is the best trade-off between processing quality and computation volume. Furthermore, since the

SdcBlocks are modularized and are designed to be customized, a large variation of SdcNets can be

formed to meet particular requirements, in terms of computation cost and/or processing quality by

easily adjusting the hyper-parameters of the SdcBlocks.

43

T a
bl

e
4.

4:
C

om
pa

ri
so

n
A

m
on

g
T

hr
ee

Sd
cN

et
s

N
et

w
or

k
C

om
po

ne
nt

s
G

ro
up

N
um

er
g

O
ut

pu
t C

ha
nn

el
s

R
eo

rd
er

in
g

Fl
op

s
W

ei
gh

ts
C

om
m

en
ts

Sd
cN

et
-S

In
iti

al
G

ro
up

C
on

v.

3

36
-

55
.1

2M
1.

04
M

Si
m

pl
es

ta
nd

st
an

da
rd

ve
rs

io
n

1-
Sd

cB
lo

ck
24

Sh
uf

fle
St

ag
e

1
24

St
ag

e
2

36

O
th

er
St

ag
es

72
∼

30
0

Sd
cN

et
-M

In
iti

al
G

ro
up

C
on

v.
3

36
-

73
.4

1M
1.

11
M

Im
pr

ov
ed

pr
oc

es
si

ng
qu

al
ity

1-
Sd

cB
lo

ck
12

36
SC

R

by
op

tim
iz

in
g

th
e

ba
si

c
fe

at
ur

e
el

em
en

ts
St

ag
e

1
6

36

Sh
uf

fle
St

ag
e

2
3

66

O
th

er
St

ag
es

72
∼

30
0

Sd
cN

et
-L

In
iti

al
G

ro
up

C
on

v.
3

36
-

10
3.

3M
2.

34
M

B
es

tp
ro

ce
ss

in
g

qu
al

ity
1-

Sd
cB

lo
ck

4

24

Sh
uf

fle
by

ex
te

nd
in

g
ch

an
ne

ls
St

ag
e

1
24

St
ag

e
2

72

O
th

er
St

ag
es

96
∼

60
0

44

Chapter 5

Performance Evaluations of SdcNets

5.1 Introduction

In order to evaluate the performance of SdcNet and to assess the computation efficiency of

SdcBlock, the three SdcNets, namely SdcNet-S, SdcNet-M and SdcNet-L proposed in Chapter 4

are tested for object classification tasks. The computation complexity and the processing quality of

these SdcNets have been measured and compared with the CNNs of the same tasks reported in the

recent year.

In this chapter, the test conditions and the training elements of the SdcNets are described. The

characteristics of the training and test process are also given. The test results of the SdcNets and the

comparison with the existing CNNs are also presented.

5.2 Test Conditions

In this test, the CIFAR datasets have been used to train and test the networks to evaluate the

network performance.

The CIFAR dataset [36] contains two sub-datasets, i.e. CIFAR-10 and CIFAR-100. CIFAR-10

dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are

50000 training images and 10000 testing images. The testing part contains exactly 1000 randomly-

selected images from each class. The training part contain all the remaining images in random order

45

and exactly 5000 images from each class. Here are the classes in the dataset, as well as 10 random

images from each:

Figure 5.1: Examples of CIFAR-10 dataset

The object classes in the CIFAR datasets are completely mutually exclusive. It should be noted

that automobiles and trucks are two separate classes. The class of "Trucks" contains exclusively big

trucks and all the other kinds of automobiles are exclusively in the class "Automobile". Furthermore,

each image sample contains exactly one object from one of the ten classes. CIFAR-100 dataset is

similar as CIFAR-10 except that the number of classes in CIFAR-100 is 100 and there are 500

training images per class and 100 testing images per class.

In all the experiments, the SdcNets have been implemented using Python with Pytorch 0.4

and cuDNN 7.0 as the backends. The network training and testing processes have been done on

the machines with two Nvidia Tesla P100s and an Intel Xeon E5-2683 v4 provided by Compute

Canada.

46

Based on the CIFAR datasets and the computation conditions, the details of all the training

elements have been taken into consideration to perform the tests of SdcNets in order to evaluate the

network performance.

5.3 Training Detials

As the computation volume required in the SdcNets is modestly ranged from 55M to 103M

Flops, a relatively small number of epochs to complete the training procedure can be expected. To

this end, serval training elements should be taken into consideration in order to optimize the training

procedure of these SdcNets.

• Training epochs and batch size. First of all, the number of training epochs is chosen to

be 300 [37], which is commonly used for similar tasks. For the batch size, because the

weight updating is relied on the statistic loss of each batch, the batch size should be large

enough to secure the accuracy of the statistic loss, especially at the later part of the training

procedure. Besides, with a given number of epochs, the batch size should be small enough to

secure sufficient updates of the weights. Moreover, an excessively large batch size will lead

to excessive computation complexity in the training process, which requires huge amounts of

computation resources. Hence, after serval preliminary trials, a fixed batch size of 128, for a

simplicity, has been chosen in the experiments and it has been proved to be appropriate in the

computation of the given tasks.

• Optimizer. It is essential to control the magnitude of weight updating each time based

on the learning rate and the statistic loss by selecting a suitable optimizer. As one of the

most commonly used optimization methods, stochastic gradient descent (SGD) [24] has been

chosen to minimize the loss in the experiments. Compared to the adaptive optimization

methods such as Adam, SGD can achieve a smaller residual error and a better generalization

performance. [38] Moreover, in order to increase the convergence rate, Nesterov momentum

[26] with a momentum weight of 0.9 and a weight decay of 0.0001 has also been adopted.

• Learning rate. The learning rate should be variable in the course of the training. In the

beginning epochs of the training procedure, the learning rate could be relatively large to

47

accelerate the loss reduction. While in the later epochs, a relatively small learning rate

can minimize the loss with an appropriate optimizer such as SGD to gain a small residual

error. Hence, in the training of SdcNets, the learning rate has been a variable, i.e., from 0.1

using cosine-shape decreasing method [39] in the 300 epochs. The curve of the loss rate is

illustrated in Fig 5.2.

• Loss function. Cross entropy loss function [6] has been used to calculate the loss in this work

like many other networks to calculate the loss to solve the classification problems.

• Data augmentation. The purpose of data augmentation is for a better generalization

performance by increasing the varieties of the training samples [40] In other words, by

increasing the diversity in a given training samples used in different epochs, the data

augmentation attempts to reduce the difference between the training loss and test loss. In

the training process, the images have been padded with four zero pixels on each side, and

then a 32x32 crop has been randomly sampled from the padded image. Then half of these

images have been randomly selected and flipped horizontally. For the testing process, the

original images of 32x32 have been used to evaluate the network.

• Weights initialization. In order to avoid the divergence in the training procedure, the weights

of the network have been initialized by using the method reported in [41], i.e., the weights

being initialized in such a way that the standard deviation between inputs and outputs is the

same in each layer.

Based these training details, the training behavior is given in the following sub-chapter.

5.4 Training Behavior

In order to validate a network, the first step is to obtain its training behavior. In general,

the training behavior can be captured by the characteristics of the training loss versus training

time, indicated by the index of the training epochs. An ideal training process should have a short

convergence time, displayed by a quick decent of the loss, and a small residual error. In order to

obtain the the training loss characteristics, 50,000 CIFAR-10 training samples containing 10 object

classes have been applied to the three SdcNets, namely SdcNet-S, SdcNet-M and SdcNet-L.

48

Figure 5.2: Variable Learning Rate in the Training Epochs. The minimum learning rate for SdcNet-
S and SdcNet-M is 0.002 and that for SdcNet-L is 0.

The characteristics of training loss versus training epochs are given in Fig. 5.3. The three

characteristics given by the three SdcNets are almost overlapped, and the training loss is around 1.5

initially. After 16 training epochs, the loss has decreased to a level below 0.3, i.e., less than 20% of

the initial loss. In other words, more than 80% loss has been reduced in the first 5% training time

of the 300 epochs, which demonstrates a fast convergence in the network. It has been confirmed

that the effectiveness of the relatively large learning rate and the appropriate set of the optimizer

in the training lead to a quick loss decent. After the training of 256 epochs, all the networks have

approached to their steady states with the loss of around 0.002. From the epoch 256 to the end, the

network is fine-tuned to achieve the best processing quality. The final residual error is around 0.002.

It has also been confirmed that the variable learning rate and the optimizer are suitable to reach a

small residual error.

In different epochs during the training process, the classification error rate has also been

measured. The classification error rate (ER) is defined as follows.

ER =
Pe

TN
(9)

where TN is the number of the test images and Pe is the number of incorrectly predicted images. Fig.

5.4 illustrates the classification error rates of the training samples has decreased with the training

49

Figure 5.3: Loss curve for the training dataset of the three SdcNets

Figure 5.4: Error Rate Curve for the Training Dataset in the Training Epochs

50

loss reducing progressively. This curve is similar to the training loss curve, illustrating that the

network is functional normally.

Based on these training details, it has been verified that SdcNet is effectively functional on the

object classification tasks with a quick convergence and a small residual in the training process. The

effectiveness of the training elements has also been confirmed. However, in order to evaluate the

network performance, the test images are applied to the SdcNets in the following sub-chapter.

5.5 Testing Results of SdcNets

For the object classification tasks, the processing quality is measured by the classification error

rate in the testing process. Fig. 5.5 shows the characteristics of the error rate versus the training

epochs with the test samples from the CIFAR-10. The testing error rates are measured after a given

number of training epochs are completed. The shape of this curve is similar to that of the training

loss and the fluctuation is small after Epoch 255, which has confirmed the functions effectively of

the network.

Figure 5.5: Error rate curve for the test dataset of the three SdcNets

51

Table 5.1: Comparison of classification error rate on CIFAR- 10 (C-10) and CIFAR-100 (C-100)
with existing CNNs

Model FLOPs No. of Weights ER (C10)* ER (C100)**
VGG-16-pruned [29] 206M 5.40M 6.60% 25.28%
VGG-19-pruned [30] 195M 2.30M 6.20% -
VGG-19-pruned [30] 250M 5.00M - 26.20%
ResNet-56-pruned [31] 62M - 8.20% -
ResNet-56-pruned [29] 90M 0.73M 6.94% -
ResNet-110-pruned [29] 213M 1.68M 6.45% -
ResNet-164-B-pruned [30] 124M 1.21M 5.27% 25.28%
SdcNet-S 55.12M 1.04M 5.60% 25.01%
SdcNet-M 73.41M 1.11M 5.41% 24.28%
SdcNet-L 103.3M 2.53M 5.24% 23.12%
* The Error Rates(ER) for CIFAR-10 dataset.
* The Error Rates(ER) for CIFAR-100 dataset.

The performance matrix includes the processing quality error rates measured by the

classification error rates (ER), and the computation complexity expressed by computation volume

and the number of weights. In the CIFAR-10 test process, there are 10,000 samples in 10 classes

while in 100 classes for CIFAR-100. In order to access the computation efficiency of SdcBlock and

to evaluate the performance of SdcNet, these test results of the three SdcNets are compared with

those reported recently using similar computation complexity, namely VGG-pruned and ResNet-

pruned networks.

The test results are presented in Table 5.1. The error rates achieved by SdcNets are 5.6% or

better in CIFAR-10 and 25.01% or better in CIFAR-100. To be more specific, the evaluation details

are given below.

• SdcNet-S. The network requires the lowest computation volume, but has achieved an error

rate of 5.60% in CIFAR-10 with 55 M Flops. This rate is better than those given by the

VGG-pruned and ResNet-pruned networks listed for comparison, except the ResNet-164-B-

pruned network, that yields 5.27% ,however, its computation volume is 2.24 times than that

of SdcNet-S, in terms of Flops.

• SdcNet-L. It has achieved the best processing quality,i.e. the error rate of SdcNet-L is 5.24%

in CIFAR-10 using 103 M Flops with respect to 5.27% given by ResNet-164-B-pruned using

124 M Flops. The result has confirmed that the proposed network gives the best recognition

52

quality using a 20% less computation cost than the best processing quality network listed for

comparaision.

• SdcNet-M. It achieves a low error rate of 5.41% using only 73.41 M Flops. It is a balance

between the processing quality and the computation complexity.

Table 5.2: Error Rates of Per Class

Network Bird Automobile Cat Deer Dog Frog Horse Plane Ship Truck
SdcNet-S 6.8 2.3 13.6 5.2 8.8 3.2 3.7 4.9 3.5 3.9
SdcNet-M 6.3 2.1 13.0 5.1 8.6 3.4 3.7 5.1 3.3 3.5
SdcNet-L 6.2 2.1 11.2 5.1 8.2 4.1 3.8 5.2 3.1 3.4

The error rates of all the classes in CIFAR-10 of the three networks are given in Table 5.2.

For the object classes with distinguished features such as "Automobile" and "Ship", a low error

rate has been achieved. While for the objects having rich variations such as "Cat" and "Bird", the

classification accuracy is less than that of the other classes. The results may be improved if more

training samples of the objects having rich variations are provided in the training process.

In the test process, the performance of these SdcNets has been evaluated and the computation

efficiency of SdcBlock has also been assessed. The test results provides a solid proof of that the

proposed SdcBlock can extract features in high computation efficiency and SdcNet can achieve a

good processing quality using a very modest computation volume.

5.6 Summary

In this chapter, the performance of SdcNet has been evaluated and compared with CNNs for

the same tasks reported recently, which has also been used to assess the computation efficiency of

SdcBlock. The network has been trained and tested using CIFAR dataset. In the training process, a

batch size of 128 has been used to train the network for 300 epochs. An improved SGD optimizer

with a cosine-shape descending learning rate has been applied to update the weights according to

the loss calculated by the cross entropy loss function. For all the three SdcNets, the characteristics

of the training loss versus training epochs illustrated that the architecture of SdcNet allows a short

convergence time and a small residua error. In the test process, by applying 10,000 test samples in

10 classes from the CIFAR-10 dataset, SdcNet-S, the simplest SdcNet example, requires only 55

53

M Flops and its error rate has reached 5.60% in CIFAR-10. A better error rate of 5.24% has been

achieved by SdcNet-L with a modest computation volume of 103 M Flops. SdcNet-M has been

designed to achieve a balance of the processing quality and the computation volume, which gives

a low error rate of 5.41% using only 73.41 M Flops. These results have confirmed that SdcBlock

can efficiently extract extensive high-density feature information, and SdcNet, an end-to-end CNN

architecture composed of SdcBlocks, yields a better performance, in terms of computation volume

and processing quality, compared with CNNs for the same tasks reported recently.

54

Chapter 6

Conclusion

Object recognition is to identify objects in an image or a video. It is widely used in various

applications such as autopilot and surveillance security systems. Extracting various features related

to the objects from diverse backgrounds and classifying them is a challenging task, since there can

be a huge amount of variations in the same object class while the same feature elements appear in

the different classes. Hence, extracting sufficient high-density feature information for recognition

is critical. Machine learning, in particular convolutional neural network(CNN), can be a good

approach to solving this kind of problems. It uses a large number of samples to progressively

determine the system parameters in order to detect various object features. Normally, CNN requires

a large number of parameters, which, in consequence, leads a huge computation volume in order

to achieve a good performance. Improving the computation efficiency of CNNs requires research

effort.

The work presented in this thesis aims at developing a computation-efficient CNN architecture,

i.e. using the lowest computation volume to achieve a good processing quality, for object

recognition. It is composed of two parts, a design of CNN module SdcBlock for feature extraction,

and an end-to-end CNN architecture SdcNet for object recognition.

SdcBlock has been designed to be able to extract the maximum amount of high-density feature

information from a given set of 2-D maps. To this end, filtering operations are applied successively

to the same data to generate features of various orders, which can help to extract more varieties

of image information from a given input channel. Based on this idea, in the design of SdcBlock,

successive depthwise convolutions (Sdc) are applied to generate vectors containing various feature

55

information of high density. For each data channel, its first and second order filtering results are

produced by the Sdc operations and then they are preserved by concatenation for further processing.

Moreover, by using the depthwise convolutions, the computation volume can be significantly

reduced, with respect to the standard convolutions. However, one may have the concern that the

convolutions need to involve sufficient different kinds of data to secure the quality of the features

extracted, especially for high-level features. In a CNN module as an implementation, data of

multiple channels could be involved in each convolution, in particular in the mid-or-late stages. It

should be mentioned that the concern has been addressed by a method of pre-and-post-convolutional

data control method for the successive depthwise convolutions. Meanwhile, because the number of

channels inputed to a module can be large, the data control in SdcBlock has been also used to

optimize the data flow to improve the computation efficiency. The key issues of this data control

method are given as follows.

Before the depthwise convolutions, an 1 × 1 group convolution with carefully selected hyper-

parameters is applied to transform the input data to meet the requirements of the depthwise

convolutions. In order to involve enough input channels required in one depthwise convolution,

this group convolution indeed partitions the input channels, so that each depthwise convolution

can be performed with information from multiple input channels of the SdcBlock. Moreover, this

group convolution can not only help to scale the input data, but can also adjust the number of the

data channels, and/or the map size by Stride = 2, which is required in some stages. The post-

convolution data control is, in fact, a data arrangement applied to enhance useful features generated

in the filtering operations of the two different orders. It is done by three steps, (i) rearranging the

convolved data by a permutation, (ii) compressing the data by an 1× 1 group convolution, and (iii)

combining the compressed data with the input data by using addition or concatenation. By doing

so, the information exchange among the feature channels produced by the depthwise convolutions

is sufficient thus the extensive high-density feature information can be produced and enhanced

for the succeeding computation stage. The pre-and-post-convolution data control is critical for

the successive detphwise convolutions with a view to improving the computation efficiency and

reducing the computation volume.

As mentioned previously, SdcBlock has been designed and proposed to be used in different

stages of a CNN. To this end, this module is to permit the adjustment of hyper-parameters to handle

56

data of different natures. Besides the basic version of the SdcBlock, some variations of this module

have also been given for different computation purposes. Among these hyper-parameters, serval

of them should betaken into primary consideration. First of all, the group number g controls the

input data channels, to prepare for the successive depthwise convolutions and also the convolved

data, produced by the depthwise convolutions, to optimize the results. It should be determined

according to the characters of the data channels in each layer and it is also related to the computation

volume. Next, the number of the output channels should be sufficient to allocate enough varieties of

feature elements while a larger of output channels means more computation volume. The parameter

Stride is also important as it is used to downsample the feature maps in order to condense the

feature information and to reduce the computation volume. However, it should be used carefully to

minimize the risk of information loss.

The end-to-end CNN architecture SdcNet, mainly composed of simply-cascaded SdcBlocks,

has been proposed for object recognition tasks. Since SdcBlock is a modularized design, lots

of different versions of SdcNets can be formed by easily adjusting the hyper-parameters to meet

particular requirements, in terms of computation cost and/or processing quality. In this thesis, three

detailed SdcNet configurations, namely SdcNet-S, SdcNet-M and SdcNet-L, have been given with

different emphasis in performance. Among the three networks, SdcNet-S has the simplest structure

and thus requires the smallest computation volume achieved by assigning an adequate number of

output channels of each SdcBlock. Its group number is g = 3. SdcNet-L has been designed to

achieve a better processing quality by increasing the number of output channels, meanwhile using

a larger g to partially cancel the subsequent increased computation cost. SdcNet-M gives a balance

between processing quality and computation volume. All of three SdcNets require a very modest

computation resource, with respect to other CNNs reported recently, while they are expected to give

a good processing quality.

The performance of the SdcNets mentioned above has been evaluated and compared with CNNs

reported recently for the same tasks. CIFAR dataset has been used in the training and test process.

The characteristics of the training loss versus the training epochs have been illustrated that the

SdcNets yield a short convergence time and a small residual error. Ten thousand test samples in

10 classes from the CIFAR-10 dataset have been used to measure the classification error rates. The

simplest SdcNet, SdcNet-S, which requires a very low computation cost of 55 M Flops, has given

57

an error rate of 5.60%. A better error rate of 5.24% has been achieved by SdcNet-L with a modest

computation volume of 103 M Flops. SdcNet-M gives a low error rate of 5.41% using only 73.41

M Flops. These results have confirmed that SdcBlock can efficiently extract extensive high-density

feature information, and SdcNet gives a better performance, in terms of computation volume and

processing quality, compared with existing CNNs of similar kind.

The work presented in this thesis, the design of SdcBlock and the implementation of SdcNet,

provides an effective solution to the problems of object recognition and helps to facilitate the design

of CNNs. SdcBlock is a computation-efficient CNN module for feature extraction and it can be

easily applied in varieties of CNNs for different image processing applications with a view to

improving the efficiency of feature extraction with cooperation of other CNN layers. The end-

to-end CNN architecture SdcNet can be applied in embedded systems such as mobile devices to

recognize the objects using a limited computation resources.

58

References

[1] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-neural-

network-driven autonomous cars,” in Proc. of the 40th International Conference on Software

Engineering, pp. 303–314, ACM, 2018.

[2] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in Proc. of British

Machine Vision Conference, vol. 1, p. 6, 2015.

[3] X. Cao, D. Wipf, F. Wen, G. Duan, and J. Sun, “A practical transfer learning algorithm for face

verification,” in Proc. of the IEEE International Conference on Computer Vision, pp. 3208–

3215, 2013.

[4] O. Akgul, H. I. Penekli, and Y. Genc, “Applying deep learning in augmented reality tracking,”

in Proc. of International Conference on Signal-Image Technology & Internet-Based Systems

(SITIS), pp. 47–54, IEEE, 2016.

[5] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. of IEEE

International Conference on Computer Vision, vol. 2, pp. 1150–1157, Ieee, 1999.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, p. 436,

2015.

[7] P. Viola and M. Jones, “Fast and robust classification using asymmetric adaboost and a detector

cascade,” in Proc. of Advances in Neural Information Processing Systems, pp. 1311–1318,

2002.

[8] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. of IEEE

International Conference on Computer Vision, vol. 2, pp. 1150–1157, 1999.

59

[9] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for histogram-based

image classification,” IEEE transactions on Neural Networks, vol. 10, no. 5, pp. 1055–1064,

1999.

[10] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape

contexts,” tech. rep., California Univ San Diego La Jolla Dept Of Computer Science and

Engineering, 2002.

[11] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object recognition,”

International Journal of Computer Vision, vol. 61, no. 1, pp. 55–79, 2005.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Proc. of Advances in Neural Information Processing

Systems, pp. 1097–1105, 2012.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” in Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1–9, 2015.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc.

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

[16] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang,

Q. V. Le, et al., “Large scale distributed deep networks,” in Proc. of Advances in Neural

Information Processing Systems, pp. 1223–1231, 2012.

[17] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,

“Dermatologist-level classification of skin cancer with deep neural networks,” Nature,

vol. 542, no. 7639, p. 115, 2017.

[18] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990.

60

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[20] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”

in Proc. of International Conference on Machine Learning, ICML’10, (USA), pp. 807–814,

Omnipress, 2010.

[21] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network

acoustic models,” in Proc. of International Conference on Machine Learning, vol. 30, p. 3,

2013.

[22] M. N. Gibbs and D. J. MacKay, “Variational gaussian process classifiers,” IEEE Transactions

on Neural Networks, vol. 11, no. 6, pp. 1458–1464, 2000.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, p. 533, 1986.

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,

“Backpropagation applied to handwritten zip code recognition,” Neural Computation, vol. 1,

no. 4, pp. 541–551, 1989.

[25] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural Networks,

vol. 12, no. 1, pp. 145–151, 1999.

[26] Y. Nesterov, “A method for unconstrained convex minimization problem with the rate of

convergence o (1/kˆ 2),” in Doklady AN USSR, vol. 269, pp. 543–547, 1983.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Proc. of Advances in Neural Information Processing

Systems, pp. 1097–1105, 2012.

[28] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in

Computer Vision – ECCV 2014, pp. 818–833, Springer International Publishing, 2014.

[29] H. Li, A. Kadav, and I. Durdanovic, “Pruning filters for efficient convnets,” arXiv preprint

arXiv:1608.08710, 2016.

61

[30] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional

networks through network slimming,” in Proc. of IEEE International Conference on Computer

Vision, pp. 2755–2763, 2017.

[31] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural networks,”

in Proc. of IEEE International Conference on Computer Vision, vol. 2, p. 6, 2017.

[32] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” arXiv preprint

arXiv:1610.02357, 2016.

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted

residuals and linear bottlenecks,” in Proc. of 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 4510–4520, IEEE, 2018.

[34] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional

neural network for mobile devices,” arXiv preprint arXiv:1707.01083, 2017.

[35] Y. Ma and C. Wang, “Sdcnet: A computation-efficient cnn for object recognition,” in Proc. of

2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), pp. 1–5, Nov

2018.

[36] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” 2009.

[37] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected convolutional

networks,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,

vol. 1, p. 3, 2017.

[38] N. S. Keskar and R. Socher, “Improving generalization performance by switching from adam

to sgd,” arXiv preprint arXiv:1712.07628, 2017.

[39] I. Loshchilov and F. Hutter, “Sgdr: stochastic gradient descent with restarts,” Learning, vol. 10,

p. 3, 2016.

[40] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,” in Proc. of

Artificial Intelligence and Statistics, pp. 562–570, 2015.

62

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification,” in Proc. of IEEE International Conference on

Computer Vision, pp. 1026–1034, 2015.

63

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	List of Symbol
	Introduction
	Background and Challenges
	Motivation and Objective
	Scope and Organization

	Background and Relevant Work
	Introduction
	Fundamentals of CNN
	CNN Structures
	CNN Training Procedure

	Relevant Work for Object Recognition
	AlexNet
	VGGNet
	ResNet
	Pruning
	Xception
	MobileNetV2
	ShuffleNet

	Summary

	Design of SdcBlock
	Introduction
	Different Convolution Modes
	SdcBlock
	Successive Depthwise Convolutions(Sdc)
	Data Preparation for the Successive Depthwise Convolutions(Sdc)
	Data Arrangement to Generate the Output

	Deviations From the Basic SdcBlock
	Summary

	Design of SdcNet
	Introductation
	Processing in SdcNet
	Examples of SdcNet Design
	SdcNet-S
	SdcNet-M
	SdcNet-L

	Summary

	Performance Evaluations of SdcNets
	Introduction
	Test Conditions
	Training Detials
	Training Behavior
	Testing Results of SdcNets
	Summary

	Conclusion
	References

