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ABSTRACT 

The stress–strain behavior of soft clay soil is dependent on the applied strain rate and such 

time dependency behavior should be considered in geotechnical engineering projects such as the 

bearing capacity analysis for a foundation. Most previous studies focus on elastic-viscoplastic 

behavior of clay soil under an undrained stress path condition. The developed constitutive models 

cannot simulate the strong time-dependent stress-strain relation of soft clay under the drained stress 

path condition. In the long-term bearing capacity analysis for a shallow foundation, the neglect of 

the time-dependent stress-strain relation of soft clay may result in inaccurate result.  

In this study, the strain-rate-dependent soil behavior is modeled using the Drucker-

Prager/Cap model with the consideration of soil creep behavior. Both consolidation creep and 

shear creep mechanisms are considered in the modeling. A simplified approach is proposed to 

derive creep parameters from stress relaxation test results. The constitutive modeling is validated 

against experimental measurements on strain-rate-dependent behavior of Regina clay soil under 

the drained stress path condition. Finite element modeling on the long-term bearing capacity of a 

shallow foundation on soft clay is also performed. The result shows that the considering of 

viscoplastic behavior of clay soils does not affect the ultimate bearing capacity. However, it yields 

the lower bound of developed shear stress of a shallow foundation at a given vertical displacement, 

which is to be conservative from the engineering point of view. 

Keywords: Drucker-Prager/Cap model, time-dependent stress-strain relation, finite element 

modeling, bearing capacity analysis 
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1. Introduction 

1.1. Background 

Due to the rapid growth of infrastructure and transportation development, the construction 

on soft soil deposits has become increasingly important in the past decade (Karim and Gnanendran 

2008，Yin et al. 2011，Fang 2013). The behavior of sensitive soft clay is remarkably complicated 

because of the low shear strength, strain-rate dependent, high water content and large time-

dependent deformations (Picornell and Nazarian 1992，Suhonen 2018). For example, light 

infrastructure buried in the Regina clay are often subjected to severe distress during their service 

life (Vu et al. 2007). 

The mechanical behavior of soft clay soil is highly dependent on the applied stress path 

and strain rate, which makes soft clay soils display strong viscoplastic behavior (Fodil et al. 1998，

Yin and Graham 1999，Yin et al. 2011). In order to properly analyze some geotechnical problems 

related to the viscoplastic behavior of soft clay soils, a large number of researchers focused on the 

creep, the stress relaxation, and the strain-rate dependent behaviors in clay soils (Fredlund 1967，

Picornell and Nazarian 1996，Liingaard et al. 2004，Marques et al. 2004). Perzyna (1963) 

proposed some preliminary models which were based on elastic viscoplastic framework to study 

this behavior. Bjerrum (1967) provided a time line model to better describe this situation. Tavenas 

(1977) proposed a qualitative model (YLIGHT) of the clay behavior to observe the relationship 

between stress, strain and time. However, most previous studies focus on elastic-viscoplastic 

behavior of clay soil under an undrained stress path condition (Yin and Graham 1999，Yin et al. 

2010，Yin et al. 2011). 
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The developed constitutive models cannot simulate the strong time-dependent stress-strain 

relation of soft clay under the drained stress path condition. An accurate characterization of the 

complex shear and consolidation behavior of clay soil is critical for a solve geotechnical problems 

(Taiebat and Carter 2000). For example, in the long-term bearing capacity analysis for a shallow 

foundation or the long-term stability analysis of a clay slope, the neglect of the time dependent 

stress-strain relation of soft clay may result in inaccurate result.  

1.2. Objectives of the Current Study 

During the last decades, the big amount of model has been carried out to investigate various 

aspects of time effect on the strength-deformation behavior of soils under undrained condition. 

The aim of the thesis is to develop a numerical tool for modelling the viscoplastic behavior of soft 

sensitive clays under the drained stress path condition and performed finite element modeling on 

the bearing capacity of a shallow foundation on soft clay using Drucker-Prager/Cap model 

combined with Singh-Mitchell creep model, to derive a more accurate bearing capacity. The 

specific objectives of the research are shown in the following: 

1) Introducing constitutive models on describing viscoplastic behavior of soft clay with 

the consideration of consolidation yielding and shear yielding behaviors. 

2) Deriving creep parameters from experimental work. 

3) Putting into the implementation of the constitutive model using numerical tools.  

4) Performing numerical analysis of a traditional footing problem considering drained 

viscoplastic behavior. 
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1.3. Structure of thesis 

This thesis has been prepared according to the guidelines of the Faculty of Graduate Studies 

at Concordia University. It comprises seven chapters. The purpose of this work is to perform 

constitutive modeling on the elasto-viscoplastic behavior of Regina clay soil under the drained 

stress path condition. Chapter 1 includes the background and brief content about thesis. Chapter 2 

contains the basics of the modelling the behavior of soft clay by composing literature reviews 

about different stress-strain theories and models. Chapter 3 introduces the constitutive model 

which contains the Drucker-Prager/Cap plastic model combined with Singh-Mitchell creep model. 

Chapter 4 tells about the approach of parameter identification from experimental results. Chapter 

5 focus on modeling drained tri-axial tests on small samples by using ABAQUS. In chapter 6, 

numerical modelling bearing capacity of a strip foundation is presented. The numerical modeling 

results can be found in Chapter 5, 6 and conclusions and recommendations for further work are 

presented in Chapter 7. 

1.4. Original Contributions 

Previous researches did not pay enough attentions on the strain-rate dependent 

consolidation or shear behavior of clay soils under the drained stress path condition. The neglecting 

of strain-rate dependent shear behavior of clay soil under the drained stress path condition could 

result in an underestimate of the risks related to geotechnical engineering problems. In this research, 

constitutive modelling viscoplastic behavior of clay soils under the drained stress path condition 

will be investigated. In addition, in order to minimize the experimental procedures and time, an 

innovative approach is proposed to derive creep parameters from stress relaxation test results. 
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2. Literature Review 

The published studies on analyzing the viscoplastic behavior of clay soils by conducting 

experimental work and theoretical modeling are presented separately in this chapter.  

2.1. Experimental study 

2.1.1. Background 

Viscoplasticity is a behavior which describes (strain) rate-dependent non-recoverable 

behavior. The relaxation tests, creep tests and stress-strain tests can satisfactorily characterize the 

viscoplastic behavior (Yin et al. 2006).  

Creep is defined as the increase in the deformation with time under a constant effective 

stress. The stress-strain behavior of many soft clays is strongly time-dependent, which can affect 

the stress distribution, deformation, and capacity of foundation soils beneath embankments, oil 

tanks, silos, etc., especially when the stresses are high enough to cause yielding (Yin and Graham 

1989，Kurz 2014). Therefore, creep is a result of time and plastic deformation. 

Lacerda (1973) and his team conducted a series of stress relaxation tests during a constant 

rate of strain consolidated undrained triaxial compression tests on several different clayey soils. 

They observe the relationship between initial time delay and strain rate prior to stress relaxation 

tests.  

Tavenas et al. (1978) in Laval University investigated on a marine silty clay in Quebec 

City using triaxial tests. During their tests, special treatments were conducted to reduce the leakage 

due to osmosis through the membrane. All tests were carried out on small samples which were 

firstly reconsolidated to the in situ stress condition, and with a back pressure equivalent to the in 
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situ hydrostatic pore pressure. Both drained and undrained tests were carried out over durations of 

100 000 min, but the results were considered to be acceptable only for the first 4000 min for the 

undrained tests because of the leakage. Vertical deformations and volume changes or pore 

pressures were measured at regular intervals in the triaxial tests. The primary consolidation is 

greatly diminished and the observed behavior is essentially representative of secondary 

consolidation or creep in their experimental work. They also conducted a series of long duration 

odometer consolidation tests. 

In order to analysis the effects on the strain rate and viscoplastic strain on consolidation of 

natural clay, Kabbaj et al. (1988) performed an experimental test under an embankment built on 

soft clay in Quebec, which combined process of pore pressure during the consolidation. The test 

embankment has a diameter of 24 m at the crest and a height of 2.4 m, it was built in 4 days, with 

30 cm of fill applied in the morning and the same height in the afternoon for this oedometer test. 

Marques et al. (2004) performed a special laboratory test program on the St-Roch-de-

l’Achigan clay, to study the behavior of creep on the different temperatures and strain rates. Their 

practical work included special incremental loading oedometer tests, constant rate of strain (CRS) 

oedometer tests performed at different strain rates, isotropic and anisotropic triaxial compression 

tests, and undrained shear tests. All these tests were performed under a constant temperature, 

varying from 10 to 50 °C. From test results, they found the vertical yield stresses and the entire 

limit state curve are dependent on strain rate and temperature. 

Hicher (2016) conducted his experimental study on the clay from an earth dam core under 

complex loading condition to study a very pronounced time-dependent behavior because of the 

soil viscous properties. There are two rounds of tests have been performed on a compacted 

clay. The first round consists of constant-strain-rate compression, stress relaxation and creep. The 
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second round of test was performed at different levels of stress and strain in triaxial loading–

unloading–reloading phases which consisting of creep and stress-relaxation tests. 

Several experimental tests which includes odometer compression tests, drained triaxial 

compression tests and undrained triaxial tests were also conducted by Hewage (2018) to 

investigate numerous factors affecting the time-dependent compression behavior of Calgary clay 

and Regina clay, especially for relaxation and creep phenomenon. 

2.1.2. Limitations on investigations  

Numerous investigations have been proposed on the effects of time on the strength and 

deformation behavior of soft clays. However, there are limitations in the investigations.  

Firstly, geologists have followed the classical pattern of separating the problems of stability, 

which investigated by means of strength tests. Then two types of long-term-time effects have been 

separately defined and investigated: creep as related to strength problems and secondary 

consolidation as related to settlements, however, there is practically no interconnection has been 

established even in the similarity of the phenomena. 

Secondly, the problem of creep has been dealt with essentially as a theoretical exercise 

aimed at the proposal of various rheological models and it has been poorly related to in situ 

problems. For example, the majority of investigations, at least in North America, have been 

conceived with undrained creep tests. However, in all field situations partial or full drainage can 

develop (Tavenas et al. 1978). 

Thirdly, with few exceptions, most studies focus on whether the effect of strain rates or the 

effect of temperature. However, the influence of anisotropy of natural clays and of microstructure 

was not considered in the experimental work (Marques et al. 2004).  
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2.2. Elastoplastic soil models 

2.2.1. Introduction 

In order to analysis the stress-strain behavior of soft clay, it is necessary to propose some 

theoretical soil models to simulate the stress-strain-time relation. Since 1960’s, an increasing effort 

has been devoted to develop a more comprehensive description of soil behavior. Numerous 

formulations which are based on experimental findings and embodied in numerical methods have 

been proposed in the soil mechanics literature and considerable attentions have been given to the 

development of constitutive equations for soil. For example, the finite element method is a 

significant aspect of soil mechanics. Constitutive models allow engineers to solve various types of 

geotechnical engineering problems, especially problems that are inherently complex and cannot 

be solved using traditional analysis without making simplifying assumptions (Helwany 2007). 

Soils are full of discrete particles, and most soil models assume that continuous stresses 

and strains can represent the forces and displacements within these particles. These stress–strain 

constitutive laws are normally fitted to experimental measurements which performed on specimens.  

Elastic strains will produce when an elastic material is subjected to load. Elastic strains are 

reversible when the load is removed. However, if a plastic material is subjected to a load, it will 

sustain both elastic and plastic strains. Even the load is removed, the material will still sustain 

permanent plastic (irreversible) strains, no matter the elastic strains are recovered or not.  

An elastic-plasticity model includes three sections: (1) a yield criterion which predicts 

whether the material should respond elastically or plastically because of a loading increment, (2) 

a strain hardening rule which controls the shape of the stress–strain response during plastic 
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straining, and (3) a plastic flow rule which determines the direction of the plastic strain increment 

that caused by a stress increment. 

2.2.2. Modified Cam clay model 

Modified Cam clay model is capable of describing the stress–strain behavior of soils, 

especially, the models can predict the pressure-dependent soil strength and the compression and 

dilatancy (volume change) which caused by shearing. The model can predict unlimited soil 

deformations without changes in stress or volume when the critical state is reached, because the 

models are based on critical-state theory (Roscoe and Burland 1968).  

The modified Cam clay model formulations are based on the triaxial stress condition in 

which the intermediate and the principal minor stresses are equal (σ2 = σ3). This model is 

particularly useful for problems which involves three-dimensional stress conditions and plane 

strain conditions that are common in geotechnical engineering. 

2.2.3. Modified Drucker-Prager/Cap Model 

A considerable amount of finite element analysis has been conducted for a variety of 

geotechnical engineering applications by using the Drucker–Prager/cap plasticity model. The cap 

model is capable of including the effect of stress history, stress path, dilatancy, and the effect of 

the intermediate principal stress (Helwany 2007).They are multi-surface plasticity models, which 

used most frequently with an associated flow rule. The cap may harden or soften that is coupled 

to the Drucker-Prager yield surface (Resende and Martin 1985).  

2.2.4. Lade’s Single Hardening Model 

Lade’s model is an elastoplastic model with a single yield surface which expressed in terms 

of stress invariants. The hardening parameter in this model is assumed to be the total plastic work, 
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which is used to define the evolution of the yield surface. Compared to the modified Cam clay 

model and Drucker-Prager model, this model involves 11 parameters that can be determined from 

three CD triaxial compression tests and one isotropic compression test. 

2.3. Elastic Viscoplastic Models  

 It is essential to use a constitutive model that account for time dependency of the stress–

strain–strength properties of soils to obtain realistic solutions for time-dependent engineering 

problems which considering viscoplastic behavior of soil.  

2.3.1. Hypothesizes 

In terms of the calculations based on the assumption of creep starts at the beginning of the 

loading, there are two hypothesize: 

Hypothesize 1: 

Consolidation includes primary consolidation and secondary consolidation. For the 

hypothesize 1, Yin and Graham (1994) proposed that primary consolidation occurs because of the 

changes in pore water pressure (hydraulic gradients), however, the 'secondary compression' is due 

to creep (viscosity) of clay structures. This hypothesize is supported by Terzaghi's 1-D 

consolidation theory.  

In the Terzaghi's 1-D consolidation theory, he assumes that the relationship between 

effective stress and void ratio is independent of time and that changes in void ratio is because of 

the changes in excess pore water pressures (Mesri et al. 1973). In some special cases, the creep 

deformation is insignificant during primary consolidation, and is assumed to start at the end of 

primary consolidation.  



10 
 

However, in the general case, the total deformation results from a coupled process 

involving both mechanical loading and viscous (creep) effects. Creep deformation should be 

assumed to commence at the start of the loading (Wong et al. 2018).  

Hypothesize 2: 

Hypothesis 2 assumes that creep (viscous) behavior occurs during the whole consolidation 

process. Given that primary consolidation consists of a creep deformation, which is increasing 

with time, the value of eEOP (void ratio at the end of primary consolidation) for thin and thick soil 

samples should be based on the results of this assumption (Azari et al. 2014).  

Hypothesize 2 is consistent with approaches adopted in rheology and viscoplastic theories 

and used in continuum mechanics (Yin and Graham 1994). 

2.3.2. Semilogarithmic Creep Law 

In order to analyze the creep behavior on the soil, it is necessary to establish some creep 

laws. Semilogarithmic creep law is convenient to plot the secondary compression against the 

logarithm of time to describe the magnitude the creep strains in the odometer tests (Azari et al. 

2014).  

However, there are some limits for this creep law. Firstly, the coefficient of secondary 

compression is assumed equal for one specific soil. It is an oversimplification of the volumetric 

confined creep of any soil, because there are a lot of factors (e.g, time and the applied vertical 

stress) which may have effects on the results. What’s more, logarithmic law is strictly valid only 

for conditions that are identical to those of the tests from which they have been derived, for 

example, one-dimensional conditions, the strains tend toward infinity when time tends toward 

infinity, and so the logarithmic law may overestimate the long-term creep settlements.  
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This implies that any application of the expressions requires the definition of an origin for 

the time scale. To overcome the limitations of the logarithmic law, Suklje (1957) introduce a strain-

rate approach which identified a unique relationship between the current state of effective vertical 

stress and strain for a given constant strain rate, in other words, the isotach concept. There is an 

example using the isotach concept in the Figure 2-1. 

 

Figure 2-1 Typical CRS oedometer tests on Batisean day, from Leroueil et al. (1985). 

2.3.3. Perzyna Viscoplastic Model 

Perzyna (1963) proposed some models based on the elastic viscoplastic (EVP) modelling 

framework, in which total strain rates were divided into elastic strain rate and visco-plastic strain 

rate components, under the conditions of tri-axial stress states and generalized stress states. His 

original framework is also known as overstress viscoplasticity. A change of stress within the yield 

surface (F ≤ 0) causes time-independent elastic deformations, on the other side, a change of stress 

resulting in a position outside the yield surface (F > 0) results in time-dependent plastic 

deformations in addition to the elastic deformations (Kurz 2014).  
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The original model for describing the elastic viscoplastic behavior established by Perzyna 

(1963) has provided a foundation. Several models have been developed using this framework, for 

example, the Adachi/Okano model (Adachi and Okano 1974), the Katona model (Katona and 

Mulert 1984), the Prisco model (di Prisco and Imposimato 1996), the Oka model (Oka 1988), the 

Zienkiewicz model (Al-Darzi et al. 1989), the Akai model (Goodman 1974), and the Desai model 

(Desai and Zhang 1987). 

2.3.4. Bjerrum’s assumption 

Bjerrum (1967) defines the 'instant' and 'delayed' compression and he has provided a time 

line model aimed at improving the understanding of the time-dependent stress-strain behavior on 

consolidation, as shown in Figure 2-2. The time lines always begin with an 'instant' time line to 

describe first-time compression (lowest value of e for a given initial load), which can be 

determined as a 1-day time line by applied stress increments at intervals of 24 h, or by 

interpretation of other loading intervals in classical odometer tests (Kurz 2014). He also proposed 

that the delayed compression could be described by parallel lines in a diagram which represents a 

series of equilibrium relationships after different periods of sustained loading.  

Another key feature of Bjerrum’s model is that the model considered the observed 

overconsolidation of aged normally consolidated natural clays (Liingaard et al. 2004).  

However, there is also some limitations in the Bjerrum’s model. Firstly, Bjerrum's 

understanding of the 'instant time line' was flawed and in conflict with observations of high 

constant rate of strain tests. Secondly, the 'instant time line' should be associated with the κ-line, 

not the λ-line. Thirdly, Yin (1990) questions that Bjerrum's time lines were obtained from single-

stage consolidation tests and that the method for finding 'equivalent time' is ill-defined. 
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Figure 2-2 Geological history and compressibility of a young and an aged normally 

consolidated clay, from Liingaard et al. (2004).  

2.3.5. Singh-Mitchell Model 

Sing and Mitchell (1968) supposed a simple three-parameter phenomenological equation 

that may be used to describe the strain-rate–time relation of clayey soils when subjected to constant 

stress, which was based on the analysis of drained and undrained triaxial creep tests on several of 

clays. He observed a general relationship between the logarithm of the axial strain rate and the 

logarithm of time, irrespective of whether the strain versus logarithm of time is linear or nonlinear, 

as shown in Figure 2-3. The Singh and Mitchell model can describe either fading creep or 

nonfading creep.  

But the Singh and Mitchell’s creep model has some limitations: (1) the model can’t 

describe the creep behavior at a constant level of stress in three-dimensional conditions and the 

model is only valid for first time loading; (2) for a particular soil, m is assumed to be constant in 

the model. However, other creep curves at different stress levels may involve different values of 

m for the same soil (Augustesen et al. 2004).  
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Figure 2-3 Creep curves predicted by the stress–strain–time functions, from Liingaard et 

al. (2004).  

2.3.6. Tavenas Model 

Tavenas et al. (1978) held that creep deformations can be broken into volumetric and shear 

components. The development with time of both volumetric and shear strains can be represented 

by a phenomenological equation which was proposed by Singh and Mitchell in 1968. The stress 

function in the equation not only needs to be defined separately for each strain component, but 

also needs to be defined by reference to the limit state of the clay.  

Therefore, Tavenas (1977) proposed a qualitative model (YLIGHT) of the clay behavior 

which was developed on the basis of the limit state concept to observe the relationship between 

stress, strain and time. This model, which not only integrates time effects, pointed out the necessity 

of a stringent consideration of the actual effective stress conditions in the analysis of time 

dependent phenomena, but also clearly indicated that a distinction between strength and 

deformation problems.  
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2.3.7. Leroueil Framework 

Leroueil et al. (1985) investigated the isotach concept by using multiple stage loading tests, 

constant rate of strain tests, controlled hydraulic gradient tests, and long-term creep tests on several 

soils and confirmed the model which provided by Suklje (1957). Their investigation shows the soil 

sample clearly followed a unique compression curve under a constant strain rate until the strain 

rate was changed again (Figure 2-4).   

 

Figure 2-4 Special CRS oedometer tests on Batiscan clay, from Leroueil et al. (1985). 

And they suggested that relationship between the effective stress rate, stress and strain 

could be described completely by two equations, one giving the variation of the pre-consolidation 

pressure with the strain rate, as shown in equation (2.1): 

 
.

( )c vP f    (2.1) 

And another equation presents the normalized effective stress–strain relation: 

 
'

( )v
c

g
P


   (2.2) 
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The results from CRS oedometer tests on Batiscan can prove the above equations, as shown 

in Figures 2-5 and 2-6. 

 

Figure 2-5 Variation in pre-consolidation pressure with strain rate for Batiscan clay, from 

Leroueil et al. (1985). 

 

Figure 2-6 Normalized effective stress-strain relationship, from Leroueil et al. (1985). 

When the two relationships are known for a given soil, any stress–strain–strain rate 

relationship for the soil could easily be reconstructed and the viscous properties of the clay are 

directly related to the primary deformation properties. 
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However, for the Leroueil’s framework, the concept is developed mainly from observations 

in the normally consolidated range, so gives poor predictions in the heavily reconsolidated range 

where the elastic strains are relatively significant. 

2.3.8. Yin and Gracham model 

Yin and Graham (1989) pointed out that the time line which was proposed by Bjerrum for 

considering creep compression under 1D straining should be a line with a carefully defined 

“equivalent time,” not the ordinary duration of loading.  

They defined equivalent time and other concepts such as “instant time” lines and “reference 

time” lines for 1D applications, as shown in Figure 2-7. The concept of ‘‘equivalent time,’ which 

is used to model creep behavior of normally consolidated and reconsolidated clays, as a function 

of the effective stress, stress and strain to predict in a variety of test conditions, e.g., relaxation 

tests, tests with a constant rate of strain or constant rate of stress. Compared to Bjerrum’s model 

and the strain-rate approach, it is emphasized that the ability to model the difference between NC 

and overconsolidation ratio (OCR) clays and relaxation. 

After framing these concepts in terms of logarithmic functions, they derived a general 1D 

EVP constitutive model for time-dependent stress–strain behavior of clays. The predictions of the 

one-dimensional viscous behavior, for example, creep and strain rate effects are generally in good 

agreement with experiments on soft soils. The best agreements are obtained by the use of the power 

function approach is because that improved options for calibrating the model as compared with 

the logarithmic model. 
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Figure 2-7 Illustration of instant time line, reference time line, limit time line, and time 

lines for positive and negative equivalent times, from Liingaard et al. (2004). 
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3. Drucker-Prager/Cap model and Singh-Mitchell model 

3.1. General introduction 

The general understanding of the soil behavior has increased progressively over the last 

decades. However, deposits of soft clays may still be considered as a research subject and may 

lead to huge geotechnical challenges (Bjerre 2015).  

Constitutive models that relate stresses and strains must be established in order to predict 

the material behavior. Several material models aiming to increase the accuracy when predicting 

the stress-strain relationship of real materials have been developed over the last decades. Therefore, 

to develop a viscoplastic model, it is necessary to have a basic understanding of the general elastic-

plastic theory and the continuum mechanics behind constitutive models (Bjerre 2015). 

3.2. Stress and strain 

Principal stresses represent a stress situation where stresses acting perpendicular to the 

plane without any shear stresses. It is possible to determine the principle stresses by use of 

Cauchy's law through an Eigenvalue problem: 

  ' 0I n     (3.1) 

  ' ' 0ij ij n      (3.1.a) 

Where  
1,
0,ij

i j
i j




 


 , I is the identity matrix and n  is a normal vector. 

 ' ' '
1 1 2 3I        (3.1.b) 
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 ' ' ' ' ' '
2 1 2 1 3 2 3I            (3.1.c) 

 ' ' '
3 1 2 3I      (3.1.d)

  

The deviatoric stress is defined as:   

 s p    (3.2) 

  '
ij ij ijs p     (3.2.a) 

Where  
1,
0,ij

i j
i j




 


, , 1, 2,3i j   . 

where p  is the mean stress tensor containing the mean stress in the diagonal. The mean stress is 

defined by: 

    ' ' ' ' ' ' 1
11 22 33 1 2 3

1 1
3 3 3

Ip               (3.2.b) 

And the Mises stress is given by: 

 3 2ij ijq s s   (3.3) 

 
11 12 13

21 22 23

31 32 33

, ,
, ,
, ,

  

   

  

 
 


 
  

  (3.4) 

 The total stain for a soft clay is given by: 
 e p crd d d d        (3.5) 
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Where ed  is the elastic strain, pd  is the time-independent plastic strain, and crd  is the creep 

strain. 

The volumetric strain is given by: 

 1 2 3p v          (3.6) 

The deviatoric strain is given by: 

 2 2 2
1 2 2 3 3 1

2 ( ) ( ) ( )
3q              (3.7) 

    
T

11 22 33 12 23 31, , , , ,d d d d d d d         (3.8) 

    
T

11 22 33 12 23 31, , , , ,e e e e e e ed d d d d d d         (3.9) 

3.3. Elastoplastic theory 

The material response is partly reversible and partly irreversible in elasto-plastic theory. 

Therefore, the strains can be decomposed into recoverable elastic strains e  and irrecoverable 

plastic strains p . 

 e pd d d      (3.10) 
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Figure 3-1 Stress-strain path for a real soil, from Bjerre (2015). 

Yielding is defined as the transition between the elastic and plastic region, which is shown in the 

Figure 3-1 (point A).  

An elastic-plastic model includes the information of elasticity, plasticity and yielding to 

predict the relationship between stresses and strains, which can divide into two parts: 1) Stress 

changes inside the yield surface which are associated by pure elastic strains; 2) Stress changes at 

the edge of the yield surface which are associated by a combination of elastic and plastic strains. 

The flow rule describes the relationship between the plastic strains to the plastic potential, the flow 

rule includes: 1) associated flow rule; 2) non-associated flow rule.  

For the associated flow rule, then the yield and the plastic potential surfaces should have 

the same shape and size, 

 p Q Fd d d  
 

 
 

 
  (3.11) 

where F  represents the yield surface, Q  represents the plastic potential. 

For the non-associated flow rule, then the yield and the plastic potential surfaces should 

not have the same shape and size, 

 p Q Fd d d  
 

 
 

 
  (3.12) 

The hardening rule is associated to the development of plastic strains with respect to the 

evolution of the yield surface through the plastic multiplier d .  
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For the given stress state and for any stress state which can be introduced by incremental 

stresses, the following derivations are applied to derive the plastic multiplier d  based on 

consistency condition. 

 ( , ) 0F      (3.13) 

 ( ,H ) 0F d dH      (3.13.a) 

 0
TF FdF d dH

H




    
     

    
  (3.13.b) 

   0
T T

p
P

F F Hd d
H

 
 

     
    

     
  (3.13.c) 

 0
T T

P

F F H gd d
H

 
  

        
      

        
  (3.13.d) 

Then  

 

T

T

P

F d
d

F H g
H






 

 
 
  

     
   

     

  (3.13.e) 

Assume  

 
T

P

F H gA
H  

     
     

     
  (3.13.f) 

Then  
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TF d
d

A






 
 
 

   (3.13.g) 

3.4. Modified Drucker-Prager/Cap model 

In this research, Drucker-Prager/Cap model was used to perform constitutive modelling on 

stress-strain relations of soft clays considering the viscoplastic behavior. 

The computer simulation of the compaction behavior of particulate materials (e.g., ceramic, 

metal, pharmaceutical powders and soils) has received much interest for decades. Beside the shear 

yielding (failure) behavior, particulate materials exhibit hydrostatic pressure-dependent yielding 

behavior, however, the yielding of bulk metals do not exhibit the hydrostatic pressure dependency. 

The modified Drucker–Prager cap (MDPC) constitutive model has been frequently employed in 

many engineering areas to describe such yielding behavior of particulate materials (Shin et al. 

2015).  

Compared to the original Drucker–Prager model, the modified Drucker–Prager model 

adds a cap yield surface. The cap surface serves two main purposes: firstly it bounds the yield 

surface in hydrostatic compression, therefore providing an inelastic hardening mechanism to 

represent plastic compaction; secondly, it helps control volume dilatancy when the material yields 

in shear by providing softening as a function of the inelastic volume increase created as the material 

yields on the Drucker–Prager shear failure and transition yield surfaces. The model uses 

associated flow in the cap region and a particular choice of nonassociated flow in the shear failure 

and transition regions (Abaqus 2016). 
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The modified Drucker–Prager/cap plasticity model yield surface consists of three parts: a Drucker–

Prager shear failure surface, an elliptical cap, and a smooth transition region between the shear 

failure surface and the cap. If we neglect the transition region between the shear failure surface 

and the cap, the yield surface is shown in Figure 3-2. 

q

d

d+
P

at
an

β 

β 

Cap, Fc

Pa Pb

R(d+Patanβ )
p

 

Figure 3-2 Yield surfaces of the modified cap model in the meridional (p–q) plane, after 

Abaqus (2016). 

The Drucker-Prager failure surface and the cap yield surface determine the shear and 

consolidation yielding, respectively. When the stress state causes yielding on the Drucker–Prager 

shear failure surface, the soil is treated as perfect plastic material where shear hardening is not 

considered in this study. Failure and plastic potential functions for time-independent plastic 

behaviors are shown in Table 3-1.  
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Table 3-1 Failure and plastic potential functions for the time-independent plastic 

behavior. 

Functions  Descriptions  

dpqf p
s  tan  

Failure function for shear 

    )tan(22
aa

p
c pdRRqppf   

Failure function  for cap-hardening 

 
2 2tanp

s ag p p q      
Plastic potential for shear 

 
2 2 2p

c ag p p R q    Plastic potential for  cap-hardening 

Elastic behavior is considered as linear elastic which uses the generalized Hooke’s law. 

Alternatively, in order to calculate the elastic strains, an elasticity model in which the bulk elastic 

stiffness increases when the material undergoes compression.  

The onset of plastic behavior is determined by the Drucker–Prager failure surface and the 

cap yield surface. The cap yield surface, which is an ellipse with eccentricity = R in the p–t plane. 

The cap surface hardens or softens can be considered as a function of the volumetric plastic strain. 

R is a material parameter that controls the shape of the cap and α is a small number (typically, 0.01 

to 0.05) which is used to define a smooth transition surface between the Drucker–Prager shear 

failure surface and cap surface (Abaqus 2016). 
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For the deviatoric plane, as shown in Figure 3-3, the cap yield surface is dependent on the 

third stress invariant, r. The cap surface hardens (expands) or softens (shrinks) as a function of the 

volumetric plastic strain. When the stress state causes yielding on the cap, volumetric plastic strain 

(compaction) results cause the cap to expand (hardening). But when the stress state causes yielding 

on the Drucker–Prager shear failure surface, volumetric plastic dilation results, which causing the 

cap to shrink (softening) (Abaqus 2016). 

S3

S1

S2

K=0.8

K=1

t=q/2[1+1/K-(1-1/K)(r/q)^3]

 

Figure 3-3 Projection of the modified cap yield/flow surfaces, after Abaqus (2016). 

In Abaqus, the deviatoric stress is defined as: 

 
3

1 11 (1 )
2
q rt

K K q

  
     

   

  (3.14) 

Where K is the parameter, which controls the shape of yielding surface in the deviatoric plane (π 

plane) and r  is the third invariant of deviatoric stress. In this research, a value of 1 is used for K , 

so t q . 

In the Drucker-Prager/Cap model, the flow potential surface in the p–t plane consists of 

two parts, as shown in Figure 3-4. In the cap region, the shape of the plastic flow is identical to the 
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yield surface (i.e., associated flow). For the Drucker–Prager failure surface and the transition yield 

surface, a nonassociated flow is assumed: the shape of the flow potential in the p–t plane is 

different from the yield surface. As shown in Figure 3-4, the two elliptical portions, Gc and Gs, 

which provide a continuous potential surface. The material stiffness matrix is not symmetric 

because of the non-associated flow used in this model.  
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Figure 3-4 Flow potential of the modified cap model in the p–t plane, after Abaqus 

(2016). 

The relationship between soil friction angle,   , cohesion strength c, and Drucker-Prager 

parameters can be found from: 

 

18 cos
3 sin

6sintan
3 sin

cd 









 


 

 

  (3.15) 
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The hydrostatic compression yield stress bp  is a function of volumetric inelastic strain p
v  

(time independent plastic + creep). The strain hardening law used for the cap hardening has the 

form of:  

 01 p
b b v

c

edp p d
k




 
  

 
  (3.16) 

Where c  and k  are the compression and rebound indices. 0e  is the initial void ratio. 

The hardening–softening behavior is simply described by a piecewise linear function 

relating the mean effective (yield) stress Pb and the volumetric plastic strain as shown in Figure 3-

5. 

 

Figure 3-5 Typical cap hardening behavior, from Abaqus (2016). 

Pa is an evolution parameter which controls the hardening–softening behavior as a function of the 

volumetric plastic strain. Pa can be derived from: 

 
1 tan

b
a

p Rdp
R 





  (3.17) 
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The elastoplastic stiffness matrix,  ep
D , can be derived from the following euqations: 

      e pd d d      (3.18) 

         e pD d D d D d      (3.18.a) 

       
gD d d D d  


 
   

 
  (3.18.b) 

     
1 1T TF F gd D d D d
A A

  
  

         
       

        
  (3.18.c) 

     
1 TF gd D d D d
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  
 

      
     

     
  (3.18.d) 
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  (3.18.f) 
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  (3.18.g)
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For shear yielding  

The shear hardening is not considered in this study, so there is no elastoplastic stiffness 

matrix. Before failure, elastic matrix will be used to calculate the stress increment. When the failure 

function was satisfied, all the given strain (strain control approach) is the plastic strain. For triaxial 

test condition, axial strain is given, the radial strain component should be back calculated using 

the flow rule. 

 
p

p sgd 
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  (3.19) 
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where 3
2

q
q


 


sn , and Ι  is the unit vector 

For cap hardening 

The elastoplastic stiffness matrix is given by:  
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Where 
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3.5. Singh-Mitchell model 

In Singh-Mitchell model, there are two separate and independent creep mechanisms. One 

is a shear mechanism ( cr
sd ), and the other is a consolidation mechanism ( cr

cd ). The total creep 

strain is a combination of those two components:  

 cr cr cr
s cd d d      (3.21) 

The regions of activity of shear and consolidation creep mechanisms are illustrated in 

Figure 3-6.  
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Figure 3-6 Regions of activity of shear and consolidation creep mechanisms, after 

Abaqus (2016). 

The Singh-Mitchell creep model for shear creep takes the form as: 

 1
11

s

s s
cr

m
s tA e

t
 

 
  

 
  (3.22) 

where sA , s
 , and s

m  are three creep parameters which should be derived from creep or 

relaxation tests results; 1t  is the initial time, normally a unit value of 1 is used.  

The Singh-Mitchell creep model for consolidation creep takes the form as: 

 1

c

c c
cr

m
c

v
tA e
t

 
 

  
 

  (3.23) 

The shear mechanism is active for all stress states that have a positive equivalent creep 

stress as explained below. The consolidation mechanism is active for all stress states in which the 

pressure is larger than ap . 
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For shear creep, the equivalent creep stress, s
cr  is determined as the intersection of the 

equivalent creep surface with the uniaxial compression curve (Figure. 3-7).  

β 

σcr

1

3

yield surface

equivalent creep surface

no creep

material point

P

q

 

Figure 3-7 Equivalent creep stress for shear creep, after Abaqus (2016). 

For consolidation creep, c
cr  is derived from the mean stress p. The equations for 

calculating cr  and the function expressions are included are included in Table 3-2. 

Table 3-2 Equivalent creep stresses and plastic potential functions for creep behavior. 

 Equivalent creep 

stress 

Creep potentials 

Shear creep tan
11 tan
3
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
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c
cr ap p     

2 2 2cr
c ag p p R q    
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The creep potentials in the p–t(q) plane for both mechanisms are shown in Figures. 3-8 and 

3-9. 

similar hyperboles

material point

Pa P

q
β 

Δ εcr

Δ εcr

 

Figure 3-8 Creep potentials: shear mechanism, after Abaqus (2016). 
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Figure 3-9 Creep potentials: consolidation mechanism, after Abaqus (2016). 

In Abaqus, the creep strain rate can be derived from the creep flow rule (the strain rate is given at 

a unit time interval 1t    so crd  was used): 

 
cr cr

cr
cr

d gd
F









  (3.24) 
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 1 :
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cr
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gF 
 
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  (3.24.a) 

The complicated expression is actually the same with conventional flow rule for creep 

strain rate, which is similar as the scale function used by Yin and Graham (1999). 

 
cr

cr gd



 


  (3.25) 

  can be derived based on lab data. 

For uniaxial compression (dominated by shear creep): 
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Thus the shear creep can be calculated from 
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s
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Where 3
2

q
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
 


sn , and Ι  is the unit vector. 

For volumetric compression (dominated by consolidation creep): 
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Thus the consolidation creep can be calculated from 
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Theories described in this chapter will be used for proposing a simplified approach of deriving 

creep parameters to be presented in Chapter 4. The theoretical basis is also critical for the 

constitutive modeling analysis addressed in Chapters 5 and 6.  
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4. Deriving creep parameters based on stress relaxation tests 

4.1. Introduction 

There are six parameters for the shear and consolidation creep models ( sA , s , sm , cA , c ,

cm ). Usually, a large quantity of time-consuming creep tests is required to derive the creep 

parameters. By contrast, the first three parameters ( sA , s , sm ) and the last three parameters ( cA ,

c , cm ) can be estimated from triaxial relaxation tests, where both consolidation plastic strain and 

shear plastic strain will be generated. In this chapter, an innovative approach based on stress 

relaxation tests to obtain those creep parameters will be presented. Compared to creep tests, 

relaxation tests take much less time.  

4.2. Consolidation creep parameters 

For the consolidation creep parameters, we can obtain parameters by performing stress 

relaxation test using an oedometer test facility. For the oedometer test, the change in consolidation 

creep stress is equivalent to the change in the vertical stress:  

 11
c
cr      (4.1) 

During relaxation test, the axial strain component from creep is compensated by the 

component from linear elastic rebound and expressed as:  

 1 11

c

c cb
cr

a

m
t c

t
c

tA e dt
t E

   
 

 
   (4.2) 

Where cE  is the constrained modulus, which is related to Young’s modulus E  and 

Poisson’s ratio   from: 
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(1 )(1 2 )c
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


 
  (4.3) 

The creep stress, c
cr  is a function of time, which can be derived using curve fitting based 

on laboratory measurement on stress time relation. The decreasing trend of c
cr  with the increase 

of time can be modeled by a simple function as: 

 ( )c
cr

at
t b

 


  (4.4) 

In order to figure out cA  , c  and cm , a derivative free method was used in MATLAB by 

analyzing the relaxation test data. 

There is no analytical solution for 1b
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 , so a special numerical algorithm is 

used to figure out parameters A ,  , and m . 

Basically, a trial and error approach is applied to solve the problem by finding the proper

A ,  , and m to have the minimum value of the optimization function,   
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where i indicates for the relaxation stage number. When there are three stages of relaxation 

tests, n=3. The MATLAB optimization tool box can be applied to conduct nonlinear optimization 

with multiple variables using the derivative-free method (Conn et al. 2009). 
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4.3. Shear creep parameters 

Similarly, under a triaxial testing condition, the shear creep stress is equivalent to the Mises 

shear stress and expressed as  

 s
cr q    (4.6) 

Shown in Figure 3-6, the consolidation creep is usually accompanyed with the shear creep. It is 

also necessary to divide the total creep strain into consolidation and shear components for total 

creep strain occuring during the stress relaxation. Figure 4-1 shows the stress path of a relaxation 

test. During the process of stress relaxation in a triaxial test, the mean stress, p  is expressed by: 

 1
3ip p q    (4.7) 

where ip  is the mean pressure before imposing the shearing load. The relation between 

consolidation creep stress and shear creep stress can be derived as:  

  
1
3

c
cr a rp p q q       (4.8) 

 1
3

c s
cr cr    (4.9) 
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Figure 4-1 Sketch showing the stress path of a relaxation test. 

During the relaxation test, the axial strain component from shear creep and consolidation 

creep is compensated by the component from linear elastic rebound. The consolidation creep 

parameters have been derived from the previous section.  

 1 1 11

s c

s s c cb b
cr cr

a a

m m
t ts c

t t

t tA e dt A e dt
t t E

       
    

   
    (4.10) 

Similar to the previous procedure, the creep stress, s

cr  is a function of time, which can be 

derived using curve fitting based on lab data. The decreasing trend of s

cr  with the increase of time 

can be modeled by a simple function as: 

 ( )s
cr

at
t b

 


  (4.11) 
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4.4. Deriving creep parameters for Regina clay soil 

Hewage (2018) conducted a range of stress relaxation tests on Regina clay soil using 

oedometer tests and triaxial tests. Related mechanical parameters for Drucker-Prager/Cap model 

were also derived based his experimental measurements and included in Table 4-1. Three sets of 

1D relaxation tests at different initial consolidation stresses are displayed in Figure 4-2. Before 

each relaxation test, a constant rate of strain (CRS) loading condition (about 3%/day) was applied 

to attain a vertical stress. Using the previous approach in section 4.2, the results for consolidation 

creep parameters are derived and included in Table 4-1.  

 

Figure 4-2 Result of stress relaxation test conducted during the oedometer test on Regina 

clay sample, after Hewage (2018). 

The stress relaxation tests under a triaxial testing condition are displayed in Figure 4-3.  

After drawing the stress path of relaxation test 1, 2 in the p-q plot, we can find that the both 

the shear creep and the consolidation creep are involved in the stress relaxation processes, as shown 

in Figure 4-4.  
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Figure 4-3 Result of stress relaxation test conducted during the shear stage of drained 

triaxial compression test on Regina clay sample, after Hewage (2018).  

 

Figure 4-4 Stress path of two relaxation tests under the drained triaxial testing condition. 

The shear creep parameters are obtained and listed in Table 4-1 according to the approach 

mentioned in the section 4.3. Those parameters will be used for the subsequent numerical modeling 

analysis. 
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Table 4-1 Material properties for constitutive modelling on Regina clay. 

 Parameter Value 

Elastic E  (MPa) 15 

  0.3 

Cap Plasticity Cohesion, d (kPa) 60 

Angle of friction, 

(deg) 

42o  

Cap eccentricity, R 0.3 

Transition surface radius 0 

Initial cap yield surface 0 

Flow stress ratio, K 1 

Strain 

hardening 

Initial void ratio, 0e  0.93 

  0.20 

k 0.03 

Pre-consolidation 

stress, p0 (kPa) 

58 

consolidation 

creep 

Ac 0.000115 

αc(Kpa) 0.023458 

mc 0.929771 

t1 1 

Shear creep As 0.000118 

αs(Kpa) 0.07 
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ms 0.625374 

t1 1 
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5. Numerical modeling of tri-axial tests on Regina clay soil 

5.1. Tri-axial tests on Regina clay soil 

Hewage (2018) conducted drained tri-axial tests on Regina clay at varying strain rates. A 

brief introduction to the laboratory test condition is given herein. Details information including the 

measured procedures and results can be found in Hewage (2018). 

 Preparation of instruments  

For this triaxial cell, VJ tech automatic volume change measuring devices and GDS 

advanced pressure volume controller were used, as shown in Figure 5-1. Before starting a triaxial 

test series, deaerated water were filled in cell pressure supply systems and back and pressure 

controller in order to eliminate any remaining air inside the system.  

 

(a) 
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(b) 

Figure 5-1 (a) Automatic volume change devices; (b) GDS pump, from Hewage (2018). 

 Preparation of sample 

After compacting soil in the mould, Shelby tubes which were wrapped with plastic 

wrappers were driven into the compacted soil. Then, removing Shelby tubes from the mould. After 

that, keeping sample in a moist room until soil specimens were extruded from Shelby tubes.  

 Consolidation and shearing of sample 

Before shearing process, sample was isotropically consolidated to an effective confining 

pressure which is equal to 30kpa. During the shearing process, drainage from the top and bottom 

was allowed for all the samples. Axial deformation of samples can be measured by linear 

displacement sensor (LDS), as shown in Figure 5-2. 



49 
 

 

Figure 5-2 Schematic diagram of triaxial system used for drained triaxial compression 

tests on saturated soils, from Hewage (2018). 

 

Figure 5-3 Measured strain-rate-dependent stress-strain relation of Regina clay soil, after 

Hewage (2018). 
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The measured strain-rate-dependent stress-strain relation of Regina clay soil can be found 

in Figure 5-3. The subsequent numerical modeling analysis were conducted to simulate this set of 

triaxial test using the constitutive modeling parameters described in Chapter 4. 

5.2. FEM modeling 

With the above-mentioned soil models and the corresponding constitutive parameters of 

the Regina clay soil, we were able to perform a FEM numerical model to simulate the strain-rate-

dependent stress strain relations for a small sample on Regina clay under drained triaxial test 

condition.  

The simulation was conducted using Abaqus 6.14 where the finite element method was 

applied. The height of a small sample is 0.09m and the diameter is 0.054m, the sizes are according 

to the sample size from Hewage (2018).In ABAQUS simulation, the three-dimensional 

asymmetric mesh is used with this small sample. The element chosen is a 3D stress 8-node linear 

brick element with hourglass control, and reduced integration, as shown in Figure 5-4. 
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P1

 

Figure 5-4 Sketch showing the configuration, mesh, and one monitoring points of the 

studied problem. 

The boundary conditions of the finite element shown in Figure 5-5 are as follows. On the 

bottom side, the vertical and horizontal component of the displacement is fixed (ux = uy= 0). 

 

Figure 5-5 Boundary conditions of the finite element.  



52 
 

Similar to an actual consolidated–drained triaxial test, this finite element analysis is 

carried out in two steps: a consolidation step and a shearing step. Pore water pressure was not 

considered in this study since we are focusing on the mechanical behavior under the drained stress 

path condition. In the first step, the confining pressure of 30 kPa was applied at the top surface and 

the surrounding surface of the mesh. Step 2 is the shearing step with duration of 0.96, 4.83, 

24.138days as examples. On the top surface a uniform downward displacement of 0.0039 m was 

applied. In this step the loading plate is forced to displace downward at a different strain rates.  

The ABAQUS results are shown below for the different boundary conditions. Figure 5-6 

shows a comparison of the modeled Mises stress distributions in Regina clay soil subjected to 

strain rates. It is evident a slightly lower value of Mises stress can be found for the case with a 

lower strain rate (24.138 days). 

 

 

 

(a) (b) 

 

Figure 5-6 Modeled Mises stress (in Pa) distributions in Regina clay soil using (a) 0.966 

day and (b) 24.138 days. 
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The similar situation can also be found for plastic shear strain, as shown in Figure 5-7. The 

bigger value of plastic shear strain can be found for the case with a lower strain rate (24.138 days). 

 

 

 

(a) (b) 

 Figure 5-7 Modeled plastic strain distributions in Regina clay soil using (a) 0.966 day 

and (b) 24.138 days. 

At a given vertical displacement, the different strain rates would cause different creep 

strains, as shown in Figure 5-8. The shear stress for the case with more creep behavior (24.138 

days) is always lower than the case with less creep (0.966 day). 
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(a) (b) 

Figure 5-8 Modeled creep strains in Regina clay soil using (a) 0.966 day and (b) 24.138 

days. 

The stress path for monitoring point1 is shown in Figure 5-9. The curve shows that the 

stress path for point 1 increase gradually to touch the shear failure line. 

 

Figure 5-9 Modeled stress paths of monitoring point 1 in p–q space. 
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The calculated consolidated–drained stress–strain behavior of the clay specimen is shown in 

below Figures 5-10, 5-11 which compared with the measured data according to the experimental 

results of Hewage (2018). The axial strain versus volumetric strain is also shown in the Figure 5-

11. This means that the Drucker-Prager model combining with the Singh-Mitchell creep model 

embodied in the finite element method is capable of describing the consolidated–drained triaxial 

behavior of soft clays. However, the volumetric-axial strain relations cannot be well simulated 

using Drucker-Prager/Cap model combined with Singh-Mitchell creep model. 

 

Figure 5-10 Modeled and measured stress-strain relations for a Regina clay sample. 
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Figure 5-11 Modeled volumetric-axial strain relations for numerical tests under different 

strain rates. 

 

Figure 5-12 Modelled total-creep axial strain relations for numerical tests under different 

strain rates. 

It is clear that the sample displays a higher strength at a higher strain rate (Figure 5-10). 

The difference is due to the creep behavior, where the sample will have more creep strain for lower 
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strain rate test condition (Figure 5-12). However, the creep strain components cannot be exported 

from Abaqus. It's not clear whether the strain is from shear creep or consolidation creep. 

Abaqus 6.14 not only can simulate the simple consolidated–drained triaxial test, but also 

can analysis the consolidated–drained triaxial test includes relaxation behavior. This finite 

element analysis is carried on the same Regina clay which carries out in several steps: as shown in 

Table 5-1. 

Table 5-1 Step information of relaxation tests in Abaqus. 

Name Procedure Time 

Consolidation step Static, General 1 

Shearing step 1 Visco 0.25 

Relaxation step 1 Visco 6 

Shearing step 2 Visco 0.23 

Shearing step 3 Visco 0.8 

Shearing step 4 Visco 2.3 

Relaxation 2 Visco 2.8 

Shearing step 5 Visco 0.25425 

Same as the simple triaxial drained consolidation test, in the first step, the confining 

pressure of 30 kPa was applied at the top surface and the surrounding surface of the mesh. Pore 

water pressure was not considered in this study since we are focusing on the mechanical behavior 

under the drained stress path condition. 

For the shearing step1, a uniform downward displacement of 0.001m was applied on the 

top surface, and to keep the displacement in relaxation step1. In the next step, adding a 
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displacement of 0.0189m on the top surface of sample, which was to keep strain rate at 025  

followed by a strain rate of 05  for the next step. In the shearing step 4, the strain rate was equal 

to 0 . After putting different strain rate in the shear steps, one more relaxation step was added. 

Finally, a strain rate of 025  was re-applied. 

Compared with the measured data according to the experimental results of Hewage (2018), 

the calculated consolidated–drained stress–strain behavior of the clay specimen is shown in 

below Figure 5-13. 

 

Figure 5-13 Relationship between equivalent stress and axial strain by different strain 

rates. 

This means that the Drucker-Prager model combining with the Singh-Mitchell creep model 

embodied in the finite element method is capable of describing the consolidated–drained triaxial 

behavior considering stress relaxation behaviors on soft clays. 
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5.3. Summary 

Under a drained stress path condition, strong strain-rate-dependent behavior is significant 

in soft clay soil like the Regina clay. The Drucker-Prager/Cap model combined with Singh-

Mitchell creep model can be used to simulate the strain-rate-dependent stress-strain relations for 

soft clays by considering both shear and consolidation creep mechanisms. The volumetric-axial 

strain relations cannot be well simulated using Drucker-Prager/Cap model combined with Singh-

Mitchell creep model. Stress relaxation tests can be applied to effectively and efficiently estimate 

creep parameters using facilities for the oedometer test and the triaxial test.  
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6. Bearing capacity analysis of a strip foundation 

As the population increases, people tend to build on soft clay deposits which was 

previously treated unsuitable for residential housing and construction projects (Fang 2013). The 

mechanical behavior of soft clays is highly dependent on the applied stress path and strain rate, 

which make soft clay soils display strong viscoplastic behavior (Fodil et al. 1998, Yin and Graham 

1999, Yin et al. 2011). An accurate characterization of the complex shear and consolidation 

behavior of clay soil is critical for a foundation’s bearing capacity analysis (Taiebat and Carter 

2000). Most previous studies focus on elastic-viscoplastic behavior of clay soil under an undrained 

stress path condition (Yin and Graham 1999, Yin et al. 2010, Yin et al. 2011). The developed 

constitutive models cannot simulate the strong time dependent stress-strain relation of soft clay 

under drained stress path condition. In the long-term bearing capacity analysis for a shallow 

foundation, the neglect of the time dependent stress-strain relation of soft clay may result in 

inaccurate result. In this study, we performed finite element modeling on the bearing capacity of a 

shallow foundation on soft clay using Drucker-Prager/Cap model combined with Singh-Mitchell 

creep model.  

6.1. Analytical solution based on Terzaghi’s bearing capacity equation 

Terzaghi (1951) presented his bearing capacity equation for shallow foundations, as shown 

in Figure 6-1, which was derived for a continuous (strip) foundation with general shear failure.  
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Figure 6-1 Sketch showing a typical shallow foundation, from Helwany (2007). 

The Figure 6-2 shows the assumed failure surface which underlying the foundation. Three 

distinct failure zones of soil under the footing: a triangular zone, DEH, which is immediately under 

the footing; two radial zones, DHG and EIH; and two Rankine passive zones, DGC and EFI. 

 

Figure 6-2 General shear failure of a strip foundation: Terzaghi’s assumptions, from 

Terzaghi (1951). 
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In his assumption, the angle α is assumed to be equal to the soil angle of internal friction 

φ, the soil shear resistance along CA and FB is neglected. Terzaghi (1951) assumed that the bearing 

capacity of the foundation is the pressure of the foundation which will cause the triangular zone to 

be in a downward impending motion condition. When that happens, then the triangular zone will 

push the radial shear zones to the left and right away from the footing, and therefore, the radial 

shear zones will push the Rankine passive zones upward. The impending motion condition is 

assumed to take place in all zones at the same time. Based on this limited assumption, Terzaghi 

derived the following equation for a strip foundation and general shear failure: 

 1'
2u c qq c N qN BN     (6.1) 

Where 'c is the cohesion intercept of soil, q  is the overburden pressure at foundation depth,   is  

the unit weight of soil, B is the foundation width, and cN , qN , and N  are non-dimensional 

bearing capacity factors that are functions of soil friction angle φ. 

 fq D   (6.2) 

 tan 2tan (45 )
2qN e  

    (6.3) 

 (N 1)cotc qN     (6.4) 

 (N 1) tan1.4qN     (6.5) 

The bearing capacity for a strip foundation is given as: 

 ' 0.5u c qq c N qN BN     (6.6) 
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So for the 20m*10m strip foundation, from the equation 3-20, we can get =23, c =9kpa. Therefore, 

by using these equations, we can get q=58kpa, Nq=8.655kpa, Nc=18kpa, Nr=4.8kpa, qu=724kpa 

6.2. FEM modeling  

With the soil models and the corresponding constitutive parameters of Regina clay soil 

included in previous chapters, we were able to perform a numerical analysis of a limit equilibrium 

solution for layers of Regina clay which was loaded by a rigid, perfectly rough footing. The 

simulation was conducted using Abaqus 6.14 where the finite element method was applied, and 

the problem was treated in 2D plane strain condition. The model assumes symmetry about a center 

plane. Shown in Figure 6-3, the modeled Regina clay soil formation is 10 m in deep and 10 m in 

width. The shallow foundation is a 1-m-thick rigid and perfectly rough plate that spans a 1m on 

the top-left side of soil layers. The strip foundation is assumed to be in perfect contact with the 

soil, which means that relative displacement between the foundation and soil is not permitted. 

Reduced-integration bilinear plane strain quadrilateral elements are used for the soil. The mesh is 

set finer in the vicinity of the foundation because as this zone bears most of the stress concentration 

(Figure 6-3). Four monitoring points (P1，P2, P3 and Point4) were selected for tracking the stress 

paths. An inspect of mesh convergency has been conducted for the simulation.  
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10 m

10 m

Footing P1

P2

P3

P4

 

Figure 6-3 Sketch showing the configuration, mesh, and two monitoring points of the 

studied problem. 

This ABAQUS model divide to 15 parts from the top to the bottom, which corresponds to 

the different hydrostatic compression yield stress. The hydrostatic compression yield stress (pre-

consolidation stress) in the top 3 m is the same (58 kPa), and this pre-consolidation stress increases 

with an increase of buried depth below 3 m. The relationship between hydrostatic compression 

yield stress and the height is shown in Figure 6-4. 

 1i iPb Pb rh     (6.7) 
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Figure 6-4 Relationship between the height and mean effective stress. 

For the boundary conditions, the base of the soil layer is fixed in both the horizontal and 

vertical directions. The right and left vertical boundaries are fixed in the horizontal direction but 

free in the vertical direction. In the beginning of the analysis, a surcharge load with a pressure of 

57 kPa was applied to the top surface of soil layer and a gravity load was applied to the whole soil 

body. Pore water pressure was not considered in this study since we are focusing on the mechanical 

behavior under the drained stress path condition.  

After the completion of surcharge and gravity loads, a displacement of 0.85 m was applied 

on the 1m wide foundation part using different time intervals (1 day, 30 days, and 60days). Until 

some soil element in the vicinity of the corner of the foundation have severely distorted, the 

foundation pressure can be increased gradually up to the failure point (termed the bearing capacity) 

at which a failure surface. In the present finite element analysis, such a failure surface is evident 

when the plastic shear strains are plotted for the at-failure condition as shown in Figure 6-5. 
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Smaller values of plastic shear strain can be found for the case with a lower strain rate (30days, 60 

days).  

 

 

(a) 
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(b) 



68 
 

 

(c) 

Figure 6-5 Modeled plastic shear strain distributions in Regina clay soil using (a) one day 

(b) 30 days (c) 60 days. 

The different boundary condition applied to the top surface of foundation causes different 

bearing capacity-displacement results (Figure 6-6). 
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Figure 6-6 Modeled load-displacement curve for the studied footing problem using 

different time intervals. 

The results display that there is no difference in the ultimate bearing capacity (368 kPa) for 

those cases using different strain rates. However, the vertical stress for the case with more creep 

behavior (30 days and 60 days) is always lower than the case with less creep (1 day). At a given 

vertical displacement, for instance 0.2 m, the developed vertical stress for the one with a lower 

strain rate (60 days) gets 10 kPa less than the one with a higher strain rate (1 day). A comparison 

of the modeled Mises stress distributions in Regina clay soil subjected to strain rates are displayed 

in Figure 6-7. A slightly lower value of Mises stress can be found for the case with a lower strain 

rate (30days, 60 days).  
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(a) 

 

(b) 
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(c) 

Figure 6-7 Modeled Mises stress (in Pa) distributions in Regina clay soil using (a) one 

day (b) 30 days (c) 60 days. 

Similar situation was noticed for the volumetric inelastic strain in Regina clay (Figure 6-

8), where the one with a lower strain rate (60 days) displayed less volumetric plastic strain.  
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(a) (b) 

Figure 6-8 Modeled total volumetric inelastic strain in Regina clay soil using (a) one day 

(b) 60days (PEQC4 stands for volumetric inelastic strain in Abaqus). 

Similarly, Figure 6-9 shows the creep strain in vertical direction in Regina clay, where the 

one with a lower strain rate (60 days) displayed more creep strain. 

  

 

(a) (b) 

Figure 6-9 Modeled creep strain in Regina clay soil using (a) one day (b) 60days (CE2 

stands for creep strain in vertical direction in Abaqus). 
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When we compare the reaction force distribution in Regina clay, we can find the one with 

a lower strain rate (60 days) displayed bigger reaction force, as shown in Figure 6-10. 

 

 

 

(a) (b) 

Figure 6-10 Modeled reaction force in Regina clay soil using (a) one day (b) 60days (RF2 

stands for reaction force in vertical direction in Abaqus). 

According to the Figure 6-11, the one with a lower strain rate (60 days) displayed smaller 

equivalent plastic strains for Drucker-Prager failure surface in Regina clay soil. 
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(a) (b) 

Figure 6-11 Modeled equivalent plastic strains for Drucker-Prager failure surface in 

Regina clay soil using (a) one day (b) 60days (PEQC1 stands for equivalent plastic strains for 

Drucker-Prager failure surface in Abaqus). 

A plot of the stress paths of four monitoring points can be found in Figure 6-12. The 

curve shows that the generated creep behavior (for the cases with longer time intervals) affects 

the built of shear stress. However, they attain the same ultimate shear stress when soil gets 

failure.  



75 
 

  

  

Figure 6-12 Modeled stress paths of (a) monitoring point 1  (b) monitoring point 2 (c) 

monitoring point 3 in p–q space (d) monitoring point 4 in p–q space in p–q space. 

6.3. Comparison and summary 

For the ABAQUS results, the bearing capacity is around 368kpa when step 2 is equal to 1 

day, 10 days, 30 days and 60 days, in terms of the displacement is equal to 0.85m. The result is 

shown in Figure 6-13. 
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Figure 6-13 FEM results and the Terzaghi’s results for the bearing capacity. 

It is noticed that the finite element prediction of bearing capacity is significantly smaller 

than Terzaghi’s bearing capacity. There are several reasons which can cause this result, the most 

important of the reason is that Terzaghi’s equation assumes that the soil is a rigid–perfectly plastic 

material which fails abruptly when the bearing capacity of the soil is reached. However, the present 

finite element analysis assumes that the soil is an elastic viscoplastic material with hardening. 

Therefore, this material will deform under applied loads, which is opposed to a rigid material that 

does not deform. What’s more, the soil can yield in a progressive manner because of the nature of 

the finite element formulation—elements can yield gradually and progressively. 
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7. Conclusions and recommendations for future work 

7.1. Conclusion 

The time-dependent stress-strain behavior of clay soils under the drained stress path 

condition is an important part of geotechnical engineering. Modified Drucker-Prager/Cap model 

can simulate the stress path under drained conditions with considering of creep soil behavior. 

Singh-Mitchell creep model could both analyze the consolidation creep and cohesion creep 

mechanics. A simplified approach has been proposed to derive creep parameters from stress 

relaxation tests. Constitutive modelling on Regina clay soil at different scales has been investigated 

in this study using Abaqus. Several conclusions are drawn as the following:  

Deriving creep parameters from relaxation tests 

Creep parameters can be effectively and efficiently estimate from stress relaxation tests 

using facilities. The first three parameters ( sA , s , sm ) can be derive from oedometer relaxation 

tests. The last three parameters ( cA , c , cm ) can be estimated from triaxial tests, where both 

consolidation plastic strain and shear plastic strain will be generated. The derivative free method 

can be applied to figure out creep parameters from stress relaxation tests data. 

Constitutive modeling on elasto-viscoplastic behavior of Regina clay 

The Drucker-Prager/Cap model combined with Singh-Mitchell creep model can be used to 

simulate the strain-stress relations on soft clay with considerations of consolidation creep and 

shearing creep behaviors. It is clear that the sample displays a higher strength at a higher strain 

rate. The difference is due to the creep behavior, where the sample will have more creep strain for 

lower strain rate test condition. However, the volumetric strain-axial strain relations cannot be well 

simulated with Drucker-Prager/Cap model combined with Singh-Mitchell creep model.  
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Bearing capacity analysis of a strip foundation 

A numerical analysis of the bearing capacity of a shallow foundation on Regina clay soil 

shows that the considering of viscoplastic behavior of clay soils does not affect the ultimate bearing 

capacity. However, the vertical stress for the case with more creep behavior is always lower than 

the case with less creep. Considering from a conservative engineering point of view, viscoplastic 

behavior of clay soils can yield the lower bound of developed shear stress of a shallow foundation. 

7.2. Recommendations for Future Work 

Because of the strain-rate dependent and large time-dependent deformations of soft clay, 

the elastic viscoplastic behavior of soft clay soil should be studied further in details for the benefit 

of the construction on soft clay. The following recommendations are made for future work: 

In this study, it's not clear whether the strain is from shear creep or consolidation creep 

because the creep strain components cannot be exported from ABAQUS. Therefore, more research 

is required to analysis the creep components.  

Similarly, Drucker-Prager/Cap model combined with Singh-Mitchell creep model cannot 

well simulated the volumetric strain-axial strain relations. Further research is also required to 

investigative this phenomenon. 

In the current study, the bearing capacity analysis of a shallow foundation on Regina clay 

soil shows that the considering of viscoplastic behavior of clay soils does not affect the ultimate 

bearing capacity. However, it is recommended to apply such viscoplastic model to simulate other 

geotechnical problems where shear plastic strain plays a major role for the factor of safety (e.g., 

slope stability analysis). 
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