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ABSTRACT 

 

Equity Return Forecasting Using Risk-Neutral Option-Implied Moments 

 

Charles-Gabriel Filion 

 

Using OptionMetrics implied volatility surfaces for a sample of S&P 100 constituent stocks as of 

April 29, 2016, with historical data spanning from January 1996 to April 2016, this research 

provides additional empirical data regarding the informational content of option implied risk-

neutral distributions. Two different methodologies are used to compute option-implied moments 

for the years 1996-2016: the first is based on Breeden-Litzenberger (1978) and the other on Bakshi, 

Kapadia and Madan (2003). 
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1. INTRODUCTION 

The efficient market hypothesis theory states that asset prices fully reflect all available 

information. Based on this premise, we can infer market expectations by comparing the price of 

various financial instruments. A frequently used example is computing inflation expectations by 

comparing the prices of T-Bills and Treasury Inflation Protected Securities (TIPS). Both securities 

being identical with the exceptions of TIPS being protected for inflation, we can thus compute the 

market-expected term structure of inflation. Similarly, we can infer many types of market 

expectations using the vast amount of ever-increasing financial products created. Every financial 

product has several market expectations imbedded in their price and it is possible, through 

mathematical processes, to find what are the expectations attributed to each factor that affect the 

underlying asset price. By translating prices into concrete market expectation factors, a practitioner 

that has extensive fundamental knowledge of the topic can more easily determine and explain his 

reasoning regarding whether markets are pessimist, optimist or in line with what his own 

predictions would be. This difference between market and the expert’s expectations can then be 

used to help determine whether an asset is undervalued or overvalued. 

Among those financial products, derivatives markets provide forward-looking information that can 

be used by investors, regulators and other economic agents in their decision making. Over the past 

decades, an extensive literature has been written on topics such as whether option implied volatility 

provides an accurate forecast of realized volatility and on various methods that can be used to 

extract implied probability density functions from option prices. Although implied density 

functions have received much attention, there is fewer research on the application of option-

implied information to asset allocation and ability to forecast future stock returns.  
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Previous papers including among others Bates (1991), Conrad et al. (2009), Rehman and Vilkov 

(2010) and DeMiguel et al. (2012), suggest option-implied moments might be useful in the 

prediction of future returns. However, the relationships are not clear as some of these papers report 

conflicting results. This paper also addresses forecasting future returns using the first four 

statistical moments of the option implied density function, namely the mean, standard deviation, 

skewness and kurtosis. It builds on previous literature by comparing results obtained using either 

a methodology based on Bakshi, Kapadia and Madan (2003) (BKM) or on Breeden-Litzenberger 

(1978) (B-L) whilst also testing results for a range of time to maturities, two time windows and 

various levels of interpolation granularity.  

Using option prices for a sample of 64 US stocks with American exercise style, this research aims 

to provide additional empirical data regarding the informational content of option implied risk-

neutral distributions. This will be done by extracting and comparing distribution statistics for the 

years 1996-2016. Results at various levels of interpolated option price data granularity are also 

compared both for older (prior to June 24th, 2003) and recent data (post June 24th, 2003). This 

analysis allows to have a better idea of whether there is an increase in result accuracy when using 

higher granularity and if it justifies the additional computational requirements when compared to 

using lower granularity. The comparison of interpolated vs non-interpolated data is partly 

motivated by the fact that exchange rules for strike intervals have changed over the years. While 

it was common to see very few options contracts traded for a given maturity in the past, in recent 

years the quantity of option contracts with different strike prices has considerably increased. With 

new standard listing procedures, strike intervals for equity options are listed in increments of $2.50 

for strikes below $25, $5 increments for strikes ranging from $25 to $200 and strikes over $200 

are listed in $10 increments. Nevertheless, many stocks are exempt from those standard listing 
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procedures and are listed in $1 increments or even smaller since the $1 Strike pilot program was 

implemented on June 24th, 2003. With more observable option prices than there were when 

research in this area first began, it becomes relevant to re-evaluate the need for data interpolation 

due to the significant computational requirements when applying those additional steps in the 

calculation of option-implied moments. Observing the extent to which changes in options markets 

over time affect results obtained is also pertinent. 

Primary findings from the thesis include the following: First, realized daily return moments tend 

not to be well predicted by their respective option-implied moment except for standard deviation 

which is relatively accurate. Furthermore, firms with higher option-implied volatility & 

skewness, positive momentum, lower market capitalization, dollar volume, price to cash flows 

and total debt to EBITDA tend to outperform their opposites. Second, the BKM approach does 

not appear to be positively impacted by data interpolation whereas the B-L approach benefits 

from interpolation. However, the interpolation benefits quickly decay when increasing the 

number of data points. Finally, coefficients for higher moments (skewness & kurtosis) tend to be 

less stable than mean and standard deviation coefficients through time. 
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2. LITERATURE REVIEW 

The Black-Scholes-Merton model: 

Assuming a constant volatility geometric Brownian motion, constant risk-free rates, lognormally 

distributed asset returns and frictionless markets, the famous Black-Scholes (B-S) formula used to 

value European options takes as input the time to expiration (T), strike price (K), underlying asset 

value (S) and the interest rate (r), together with the volatility to output the price. Every variable 

except the volatility and interest rate are known and either fixed or decreasing at a constant pace 

(time to maturity). Given interest rates have a relatively small effect on option premiums, it is 

frequently argued that the implied volatility is the most important input of an option’s price. The 

Black-Scholes implied volatility (IV or BSIV) is the volatility of the underlying, which, when 

substituted into the B-S formula, gives a theoretical price equal to the market price. It therefore 

represents the market’s view of volatility over the life of the option. When looking at options with 

the same underlying and time to expiration but different strike prices, we will most likely find that 

implied volatility follows a skewed shape commonly known as the volatility smile/smirk 

(depending on the skewness of the smile). Consequently, the assumption of lognormally 

distributed underlying returns is incorrect since if this assumption was accurate, implied volatility 

should be the same (flat) for such contracts. While many assumptions made in the B-S formula do 

not correctly depict reality, investors often choose to simply adjust implied volatility for different 

strike prices. Thus, one could say that they obtain the right option price using a wrong model. 

Nevertheless, this model is merely a translation tool between option price and its IV. Using these 

implied volatility values, it is possible to infer the market expected return probability density over 

the time to expiration of each group of options. If enough options are traded, these expected return 
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distributions can be available from one week (for weekly options) up to a maximum of 39 months 

for Long Term Equity Anticipation Securities (LEAPS). 

Accuracy of implied volatility: 

Before testing strategies that use implied volatility as an input, we need to know the extent to 

which BSIV is an accurate forecast of realized volatility. On that note, several studies test the 

ability of option-implied volatility in forecasting the future volatility of the underlying asset. 

For instance, Christensen and Prabhala (1998) test the relationship between implied and realized 

index option volatility for the S&P 100 Index (OEX) between 1983 and 1995. They find that 

implied volatility predicts future realized volatility better than past volatility. Similarly, Emmanuel 

and Oscar (2013) study both the S&P 500 and OMX30 from November 2007 to November 2013. 

Their results also support that implied volatility is an efficient estimator of realized volatility. 

Muzzioli (2010) also test this relation for the DAX index options market. The results found by his 

study suggest that both call and put implied volatility forecasts are unbiased and efficient. 

However, early studies mostly use at-the-money (ATM) implied volatility values for their tests. 

Alternatively, a study written by Jiang & Tian (2005) empirically test the informational efficiency 

of the option market using an implied volatility measure that is independent of option pricing 

models. This implied volatility measure, known as the model-free implied volatility, or MFIV, can 

be estimated by numerically integrating a cross-section of option prices over a big (approaching 

infinity) range of strike prices. In other words, as mentioned in Proposition 1 of their research 

paper, “The integrated return variance between the current date 0 and a future date T is fully 

specified by the set of prices of call options expiring on date T”. The output is a single implied 

volatility value that is said to encompass all the information available for that specific expiration. 
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Consistent with this idea, the authors find (with univariate and encompassing regressions) that the 

MFIV informational content encompasses both BSIV and historical volatility. They also show that 

both MFIV and BSIV are more accurate predictors when looking at shorter time to expiration 

values. For example, in Table 4 Panel C of their paper, the regressions that only includes the model-

free beta has an adjusted R-squared of 0.75 for 30 days to expiration in contrast to 0.61 for 180 

days in Table 6 Panel C. Finally, they also find that both MFIV and BSIV tend to be greater than 

realized volatility. On that note, using data from January 1996 to February 2003, a research made 

by Carr & Wu (2009) quantifies the variance risk premium on 35 stocks and 5 indexes.  Comparing 

a synthetized variance swap rate to annualized 30-day realized variance, the authors demonstrate 

that the market variance risk premiums are significantly negative under both bearish and bullish 

market conditions. According to the authors, negative variance risk premiums mean that investors 

are willing to pay a premium to hedge increases in the return variance of the stock market (IV is 

greater than realized volatility over the long-run, which is consistent with other studies). The 

variance risk premium is also found to be time-varying and mostly unexplained by Fama-French 

risk factors (regression unadjusted r-squared values ranging from 0.005 to 0.30 for the different 

stocks and indexes tested) except for the market expected return and SMB (Small Minus Big) 

factors, both appearing to be negatively correlated with the variance risk premium. 

A common use of implied volatility: 

Also known as the investor’s fear index, the VIX volatility index published by the Chicago Board 

Options Exchange (CBOE) is one of the most known and used example of option-implied 

information. Since 2003, the VIX relies on a model-free methodology that replicates variance 

swaps using options and is based on a paper published by Demeterfi et al. (1999). The VIX is 



7 

computed using out-of-the-money and at-the-money call and put options and represents the 30-

day option-implied volatility of the S&P500 where the value of the VIX is presented on an annual 

basis. For example, a VIX value of 20 would suggest that the market expects the next 30 days 

standard deviation of returns to be approximately equal to 
20

√(365/30)
= 5.73%. 

Methodologies used to compute option-implied risk-neutral densities (RNDs): 

The AIMR research foundation monograph written by Jackwerth (2004) provides a comprehensive 

review of the (pre-2004) literature on this topic, covering a wide variety of methodologies and 

potential applications. Notably, the author mentions that the easiest and most stable methods tend 

to be within the group of methods for curve-fitting the implied volatility smile. Because observable 

option prices span over a narrow range of strike prices with relatively large strike price intervals, 

those methods first try to fit the implied volatility smile with some functions such as polynomials 

or splines then transform back the IV values to option prices. This create a nearly continuous call 

(or put) price function. 

In the creation of that smooth price function, there are three main aspects which tend to vary, 

namely the choice of independent variable, the interpolation and extrapolation method. 

Observing that implied volatilities tend to be smoother than option prices, Shimko (1993) first 

proposed a transformation of option prices into implied volatilities. He then used a quadratic 

interpolation within the IV-Strike space and for probabilities beyond the range of traded strike 

prices, he simply pasted lognormal tails on the RND, thus the transition between the interpolated 

and extrapolated sections was not smooth. Although far from perfect, comparing approximation 

errors of the Shimko extrapolation to a simple truncation method using a parametric Gram-Charlier 
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expansion model, Vial (2013) has shown that Shimko’s extrapolation methodology provides more 

accurate results than a simple truncation. These results coincide with those obtained by Jiang & 

Tian (2005). 

The most commonly used interpolation methods are polynomials and splines. Constructed of 

piecewise polynomials, splines have the particularity of requiring the interpolated function to pass 

through every original point and requiring continuity for N-1 order derivatives where N is the order 

of the spline (i.e. a natural cubic spline first and second derivatives will be continuous whereas the 

first, second and third derivatives will be continuous for a natural quartic spline.) Forcing the 

function to pass through all original data points can potentially cause issues. Since differentiation 

amplifies even the smallest irregularities, errors and frictions can have a considerable effect on the 

estimated RND and can result in unrealistic interpolation outputs such as negative values and 

spikes (Figlewski, 2010). Examples of errors and frictions include data errors, infrequent trading, 

high bid-ask bounces, limited quote precision, etc.  

Clews, Parnigirtzoglou and Proudman (2000) used a natural smoothing cubic spline to interpolate 

the implied volatility curves. By introducing a smoothing parameter with a value ranging from 0 

to 1, smoothing splines allow a trade-off between curve smoothness and how closely they fit the 

observed data points. If this parameter is set to 1, it forces the interpolation to pass through all 

original points whereas if it is set below 1, it is progressively allowed to deviate from those points. 

Thus, smoothing splines are particularly useful when used to interpolate noisy data.  

A smoothing spline minimizes over all functions s: 

𝑝 ∑ 𝑤𝑖(𝑦𝑖 − 𝑠(𝑥𝑖))
2

+ (1 − 𝑝) ∫ (
𝑑2𝑠

𝑑𝑥2
)

2

𝑑𝑥

𝑖
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Where 𝑝 is the smoothing parameter with value between 0 and 1, 𝑤𝑖 are specified weights (if the data 

is to be weighted), 𝑥𝑖 and 𝑦𝑖 where i = 1,…, n is the set of observations to interpolate. 

Nevertheless, implied moments are less sensitive to measurement errors than densities, meaning 

that a spline interpolation can still provide very accurate results (Vial, 2013).  

Whether using polynomials, natural or smoothing splines, the exponent order level is also of 

critical importance.  High order equations sometime exhibit an oscillatory behavior commonly 

known as Runge’s phenomenon. Spline interpolation is often preferred to polynomial interpolation 

since it yields similar results at low exponent degree while avoiding this oscillatory behavior at 

higher degrees. Natural cubic splines also require the second derivative of each polynomial to 

equal zero at the endpoint knots, thus approaching a linear form at the tails. 

Figlewski (2010) suggests the use of fourth-order polynomial to avoid negative values in the 

derived RND. He argues that negative values that can occur when using third-order splines are due 

to the discontinuous third derivative of the implied volatility curve translating into a discontinuous 

first derivative in the RND (after differentiating twice using the B-L 1978 formula).  

Several papers including Bates (1991), Campa, Chang and Reider (1998) and Jiang and Tian 

(2005) use a cubic spline to interpolate IV across strike prices. The interpolated IVs are then 

used to compute corresponding option prices using the B-S model. Although this methodology 

uses the B-S model, it does not assume the validity of the model or log-normality of the 

underlying price process, but rather simply uses it as a tool for mapping option prices. 

Some also attempt to extrapolate the volatility smile outside of observable values. The 

methodologies used greatly differ depending on the research paper. In some case, the authors opt 



10 

for a truncation, therefore ignoring strike prices beyond the truncation interval, in others they 

assume that the last known IV on each end is used for extrapolation while in other papers they 

assume a structure for IV beyond each boundary. Such tail extrapolations may be performed with 

caution only and one must keep in mind that values outside of the observable range might greatly 

differ from reality. An example of truncation is done in Jiang & Tian (2005) study of model-free 

implied volatility. The authors find that the truncation error is relatively small when truncation 

points are more than 2 standard deviations (σ) from the current futures price. However, in several 

cases, the range of available strike prices do not even span up to 2σ. In those cases, the use of 

extrapolation is necessary. In table 1 of their paper, Jiang & Tian (2005) also show using a 

stochastic volatility and random jump model that the approximation error created from 

extrapolating by assuming a flat implied volatility function beyond the truncation point is smaller 

than the truncation error occurring when a simple truncation methodology is used. In addition, 

they find that the approximation error is greater for options with longer maturities and that 

approximation error decreases when increasing the range for strike prices from [0.9S0, 1.1S0] to 

[0.8S0, 1.2S0] and this effect becomes insignificant after reaching [0.7S0, 1.3S0]. Nevertheless, 

those results may only be applicable to model-free implied volatility and not higher moments such 

as skewness and kurtosis which are even more sensitive to changes in the tails of the distribution. 

On that note, Chang, Christoffersen, Jacobs, & Vainberg (2012) tested the accuracy of moments 

computations by conducting Monte Carlo experiments. The authors look at volatility and skewness 

approximation error for three different biases, namely discretization of strike price (using 

interpolation or only discrete strike prices), truncation of the integration domain (range for strike 

prices) and asymmetry of the integration domain. Results from their experiments suggest that the 

integration method (cubic spline interpolation and extrapolation with constant implied volatility 
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beyond end-points) used by Jiang & Tian (2005) does a good job at mitigating approximation 

error. Since implied volatilities are derived using the B-S framework, extrapolating the volatility 

curve horizontally forces the tails to be lognormal. (Figlewski, 2010; Kostakis, Panigirtzoglou & 

Skiadopoulos, 2011) Thus, this means that when Shimko (1993) appended log-normal tails to the 

RND, he was essentially doing a flat IV extrapolation. In contrast, Figlewski (2010) proposed 

using the Generalized Extreme Value (GEV) to extrapolate the tails. The GEV distribution is built 

upon the Fisher-Tippett theorem which states that the maximum within samples might converge. 

The GEV distribution has 3 parameters that require to be set: the first two (µ and σ) respectively 

control the location and scale of the distribution while the shape parameter (ξ) determines the tail 

behavior of the distribution. When this parameter takes values smaller, equal or greater than zero, 

the resulting distributions are named as “Weibull, Gumbel or Fréchet families”, respectively. The 

shape parameter allows to control whether the GEV distribution has smaller, equal or greater tails 

than the normal distribution. To find which value these parameters should take, the author uses 

standard optimization procedures with respect to 3 conditions. First, he constraint the total tail 

probabilities such that the total tail probability for the RND is equal to that of the GEV. Second 

and third, he selects parameters that will allow the GEV shape density to have the same shape as 

the RND at the point where the two overlaps and at a more extreme point. While the logic behind 

the second condition (same value where GEV and RND overlap) is easy to understand, the first 

condition and the third conditions may not be appropriate in all circumstances. Nevertheless, since 

extreme returns are rarely observed, the small number of extreme value data makes it more difficult 

to determine the appropriate shape that should be applied to the tails. This directly impacts, 

estimated distribution higher moments which tend to be more affected by changes in extrapolation 



12 

methods in comparison to lower moments (mean and variance) which are not affected in the same 

magnitude. 

Next, once interpolated values have been computed, a function of option prices across strike prices 

is fitted, thus finding the theoretical value of options for strike prices which are not traded on the 

market. This methodology then applies the Breeden-Litzenberger (1978) (B-L) result that the 

implied probabilities can be inferred from the second partial derivative of the European call price 

function with respect to the strike price:  
𝛿2𝐶(𝐹𝑡,𝐾,𝜏)

(𝛿𝐾)2 = 𝑒−𝑟𝜏𝑓(𝐹𝑡)  

Where C is the call function, K is the option strike price, r is the risk-free rate, Ft is the value of 

the underlying future at time t and 𝑓(𝐹𝑡) is the probability density function which describes the 

possible outcomes for the underlying futures at time t. Put options can also be used. 

If the implied volatility smile is relatively smooth, the computed risk-neutral probability 

distribution will be positive and arbitrage-free. One advantage of the Breeden and Litzenberger 

procedure is that it is said to be model-free. A variation of this method has been introduced by 

Malz (1997). By fitting implied volatility across deltas instead of strike price, the author limited 

the bounds to [-1,0] for put options and [0,1] for call options instead of a range of [0, ∞) when 

using strike price. However, translating the implied volatility vs delta curve back to implied 

volatility vs strike price can be a challenge, especially when working with American options which 

can have several discrete dividend payments until time to expiration.1 

                                                           
1 The derivation of the European-style option with continuous yield dividends formula that can be used to compute 

strike prices for given delta values is shown in Appendix A. I attempted converting delta values to strike prices 

using sample data S&P European options and comparing the values obtained to observed market data. 

Unfortunately, computed strike prices were not accurate for deep in-the-money or deep out-of-the-money options. 

Furthermore, this formula would need to be adjusted before using it for American options with discrete cash 

dividend payments. Typically, researchers that used delta interpolation did so using European options. 
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Non-parametric methods do not assume the data follow a specific distribution and thus work best 

when there is plenty of data point available whereas parametric models are most efficient in scarce 

data environment, assuming reasonable parameter assumptions are used. In a paper published by 

Bakshi, Kapadia and Madan in 2003 (BKM), the authors developed one of the most widely used 

model-free measure of RND moments. The BKM approach to compute RND moments uses OTM 

calls and puts to recover the volatility, cubic and quartic contract prices. The formulas apply a 

weighting structure that is much higher for deep OTM options relative to near-the-money OTM 

options. This aspect is of crucial importance as it also serves as an argument supporting the validity 

of the model when used with American options. The authors argue that their model generalizes to 

American options since OTM options have negligible early exercise premiums and that their model 

applies greater weights to deep OTM options relative to near-the-money OTM options, knowing 

that the further out of the money an option is, the lower the probability of early exercise and thus 

the lower the exercise premium. In addition, several researches including Bliss and Panigirtzoglou 

(2000) and De Vincent-Humphreys & Puigvert Gutierrez (2010), just to name a few, show that 

out-of-the-money options tend to be more liquid than in-the-money options. In table 2, p.120 of 

Bakshi, Kapadia and Madan (2003) the authors provide a comparison of Black-Sholes implied 

volatilities versus American option implied volatilities (estimated by binomial tree model and 

using Richardson extrapolation to speed-up the price convergence) for a sample of 10 stocks and 

the S&P 100 index for the year 1995. Results show that American IV tend to be smaller than B-S 

IV for OTM puts whereas they tend to be mostly identical for OTM calls. Generally, there is 

greater difference between American IV and B-S IV for options with greater time to expiration 

and which are near-the-money rather than deep OTM. However, the authors point out that this 

difference is within the bid-ask spread and thus considered negligible. 
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When implementing the BKM approach (just like B-L), the literature is divided when it comes to 

suggesting a methodology to be used when interpolating and extrapolating option prices across 

and beyond observable market prices. This step is done so that a greater number of option prices 

can be used when computing the integral of weighted option prices as seen in formulas for 

volatility, cubic and quartic contract prices shown in Appendix B. 

Using the S&P 500 index for the period of January 1996 to September 2009, Christoffersen et al. 

(2012) look at 30-day log-return option-implied moments (Volatility, Skewness and Kurtosis) 

using the BKM approach. Over the studied period, they find that there is a correlation value of 

0.997 between the BKM volatility and the VIX index. The estimate of skewness is negative for 

the entire period, varying between -3 and 0. They also find positive excess kurtosis (kurtosis >3). 

The overall probability in the tails are thus greater than the normal distribution. 

First published in February 2011, the CBOE S&P 500 Skew index is a good example of how the 

BKM 2003 methodology has been used outside of research papers. The skew index can 

theoretically be translated to a risk-adjusted probability that the 30-day S&P 500 log-return falls 

two or three σ below the mean and the VIX can be used as an indicator for the magnitude of σ. 

(CBOE, 2010) 

 In Appendix C, I performed and show results of an analysis of ex-post S&P500 30-days and 365-

days return when the Skew index is at different levels. Results suggest the skew does not provide 

an accurate estimation that risk-adjusted probability that the 30-day S&P 500 log-return falls two 

or three σ below the mean as first suggested by the CBOE skew white paper. 

American vs. European options: 

So far, both the B-L and the BKM methods are supposed to be computed using European options. 

However, as mentioned earlier, it is possible to input OTM American options instead since the 
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early exercise premium is small (implied volatility differences are minimal). This allows the 

estimation of option-implied moments for a much wider class of underlying assets. Tian (2011) 

tests three alternative methods to extract European option prices from American option prices. 

Those are the iterative implied binomial tree approach (iIB), the Cox, Ross & Rubinstein binomial 

tree model (CRR) and the analytical approximation to early exercise premium (AA). While the 

author favors the iIB approach when using both ITM and OTM options, the CRR still provides 

accurate results for OTM options and unlike the AA approach, the CRR makes no model 

assumptions. The implied volatility of an option is found by running the CRR model iteratively 

with new volatility values until the model and the market price converge. It is also important to 

note that the CRR model can be adapted to account for discrete dividend payments. As suggested 

by Black (1975), this can be done by reducing the initial price of the underlying asset by the present 

value of the expected dividends during the remaining life of the option. 

Forecasting future asset returns using option-implied moments: 

Several studies investigate whether implied moments can predict realized stock returns or other 

variables. Bates (1991) is one of the first to study the relation between option prices and 

expectations of future market crashes. He examines S&P 500 futures option prices during 1985-

1987 and concludes that the unusually negative skewness in the option-implied distribution 

between October 1986 and August 1987 was a sign that the options market expected a crash. An 

example of application to other variables is a paper from Doran et al. (2008) which investigates 

the information content of option prices and volatility surrounding analyst forecast revisions. 

While analyst recommendation changes have been shown to affect ex-post stock prices, the authors 

look at whether changes in analyst recommendations (for which the date and direction is unknown) 



16 

happen following changes in implied volatility. In summary, the results suggest information in 

option market prices and implied volatility leads analyst recommendation changes. In another 

study, DeMiguel et al. (2012) find that the volatility risk premium and option-implied skewness 

can be used to improve the out-of-sample performance of portfolios in terms of Sharpe ratio and 

certainty-equivalent return. On a related note, Conrad et al. (2009) and Rehman and Vilkov (2010) 

report conflicting results on the relationship between implied skewness (computed using the BKM 

2003 methodology) and stock returns. Rehman and Vilkov (2010) find that higher skewness values 

are associated with higher stock returns whereas Conrad et al. (2009) findings suggest an inverse 

relationship. In theory, the popularity of lotteries (high chance of small loss, low chance of large 

gain) suggest that many individuals prefer a positively skewed return distribution to a negatively 

skewed one. Nevertheless, the two research papers do not use the same data sample/filters and 

identical methodologies. This suggest that the above relationship is unstable and affected by 

(minor) changes in data and/or methodology. Finally, another research made by Kostakis, 

Panigirtzoglou & Skiadopoulos (2011) find that portfolio strategies that use risk-adjusted (using 

either negative exponential or power utility functions) option-implied distributions for asset 

allocation have greater Sharpe ratios compared to portfolios that use historical distributions. 

Risk-neutral vs. real world probability distributions: 

After computing the implied distribution, the impact that risk-aversion have on risk-neutral 

distributions remains. When interpreting risk-neutral probabilities, we must keep in mind that the 

actual and risk-neutral distributions will be identical only if the economy wide utility function is 

risk neutral. An economy wide utility function can be interpreted as a weighted average of all 

individual investor’s utility functions. If an economy was risk neutral, investors would be 
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indifferent between receiving a sure payment or receiving a gamble with identical expected value. 

However, this does not accurately depict the world we live in. Utility theory typically assumes that 

individuals are risk-averse. Thus, their utility functions are concave and exhibit diminishing 

marginal utility. Building upon this, Kahneman & Tversky (1979) developed the prospect theory 

which states that in addition to being risk-averse in gains, individuals are also loss averse, resulting 

in a convex (risk-seeking) function in losses and thus an S-shaped utility function. Shefrin and 

Statman (1985) related the disposition effect (holding an investment that have experienced losses 

for too long and selling a winning investment too quickly) to the prospect theory.  

As previously mentioned, an important limitation of RNDs is the fact that these do not reflect the 

true distributions and there is a distinct gap between the two (both in location and shape of the 

distributions). Nevertheless, it is plausible that although option-implied distributions or moments 

are biased predictors of physical ones, this bias may be small. It is therefore possible that (risk-

neutral) option-based forecasts contain information not captured in historical forecasts alone. 

However, adjusting those risk-neutral distributions may provide information that is more reliable 

and can be interpreted differently.  

There are two main methodologies used by research papers to convert risk-neutral implied 

moments and distributions to their physical equivalent. The first transforms the Q-distribution 

using a utility function which is assumed to represent the overall behavior of options market 

participants. One issue is that market participants may not all have the same utility functions 

(different wealth level and personal characteristics). Consequently, since trading volume for 

options is limited, an individual or institution might be responsible for a large portion of that 

contract’s volume (potentially more than 50%). Thus, adjusting the distribution using an economy-
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wide utility function in a similar fashion for every strike price could be affected by differences in 

utility functions across options market participants. Although its accuracy is also limited, the 

second method is simpler as it adjusts the Q-distribution using historical estimates of the risk-

premium between the risk-neutral and physical moments. DeMiguel et al. (2012) is an example of 

paper which assumes the variance risk-premium can be approximated by the proportion of MFIV 

and realized volatility. Thus, this methodology inherently assumes that risk-premiums are subject 

to autocorrelation and that the next period volatility risk premium can be well approximated by 

the previous period (historical) volatility risk premium. In contrast, Carr & Wu (2009) research on 

variance risk premiums show (in Table 3 of their paper) that nonoverlapping 30-day variance risk-

premiums have low autocorrelation estimates and they vary by asset class and through time. This 

suggests that this month’s variance risk-premium can not be used to approximate next month risk 

premium. To correct for this issue, DeMiguel et al. (2012) opt for using a rolling window instead 

of a nonoverlapping window. The obtained results closely track realised volatility.  Nevertheless, 

Jackwerth (2004) concludes that the information drawn from the center of risk-neutral distributions 

with sufficient option prices observed (minimum 5) is quite reliable and can particularly be useful 

for relative comparison of either one security through time or multiple securities with similar risk-

aversion profiles. 

Finally, some papers suggest that risk-premiums (which indirectly reflect risk aversion and 

investor sentiment) are useful for forecasting returns. For example, DeMiguel et al. (2012) find 

that stocks with a high volatility risk premium tend to outperform those with low volatility risk 

premium. Recent research investigates topics such as high-order option-implied moments risk-

premiums for individual securities and market indexes.
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3. DATA 

To compute moments of the option-implied distributions, we need to have as many options for a 

given expiration as we can get. The Volatility Surface file provided by OptionMetrics contains the 

standardized option prices and interpolated volatility surface for each security. Those are 

calculated using a kernel smoothing technique as described in Appendix D. 

The result is a dataset that provides a smoothed implied-volatility surface for a range of 

standardized expirations of 30, 60, 91, 122, 152, 182, 273, 365, 547 and 730 calendar days, at 

deltas ranging from 0.20 to 0.80 for calls and -0.20 to -0.80 for puts. This give a total of 13 implied 

volatilities which, are then used to calculate the moments of the risk-neutral distribution. The fact 

that there is data for a constant and reasonable large amount of option contracts for all chosen 

securities is a major advantage. Thus, the calculations in this analysis are made using the volatility 

surface file rather than using raw option prices data. Consequently, the implied volatility surface 

data spanning from January 2nd, 1996 until April 30th, 2016 for each security tested is retrieved 

from WRDS Ivy DB US OptionMetrics2. The securities tested are S&P 100 index constituents as 

of April 29, 2016 for which data was available for the entire period. S&P 100 index constituent’s 

tickers were obtained from iShares S&P 100 ETF holdings historical data3. The choice of S&P 

100 as a sample appeared to be appropriate since, to be included in the index, firms must have 

                                                           
2The OptionsMetrics Ivy DB US File and Data Reference Manual Version 3.1 Rev.1/17/2017 provides detailed 

information regarding the files and methodology used by OptionMetrics. 

OptionMetrics is one of the most used source of option information for empirical analysis. This database can be used 

for a wide variety of topics which require historical options data. Some examples include Ordu & Schweizer (2015) 

which use this data in the context of event studies around M&A activity while a second paper published by the same 

authors compute put-call parity deviations for a sample of US and Chinese companies with the ultimate objective of 

determining whether informed traders prefer trading under less restrictive regulatory regimes. Similarly, Cumming, 

Johanning, Ordu and Schweizer (2017) use standardized options data to compare realized and option-implied volatility 

around seasoned equity offerings and use observed results to test the performance of straddles around those events.  

3 S&P 100 constituents as of April 29, 2016 were obtained in the “holdings” section of the following website: 

https://www.ishares.com/us/products/239723/ishares-sp-100-etf 
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listed options and are among the larger and more stable companies in the S&P 500. In addition, 

sector balance is considered in the selection of companies for the S&P 100. Using OptionMetrics 

– Volatility Surface Code Lookup tool, SECID numbers were retrieved for each ticker. Only 

companies which had data spanning the entire period were kept. This resulted in an ending sample 

of 64 different companies, a sample size that is large enough, yet still manageable in terms of 

computational requirements. A list of these companies can be found in Table 1 of the Appendix. 

When working with data on option prices and the volatility surface, for several calculations we 

also need historical close prices for the stocks, dividend distributions and the riskfree rate for the 

expiration of each option. Those are all retrieved from the OptionMetrics IvyDB US 

Security_Price, Distribution and Zero_Curve files, respectively. The Security_Price file provides 

the historical closing prices, holding period daily return and cumulative total return factor. The 

Distribution file provides information such as historical ex-distribution dates and dollar amounts. 

Finally, the Zero_Curve file contains historical zero-coupon interest rate curves. The Zero_Curve 

file is the same for every security. A file named “Rinterp.mat” is created from the Zero_Curve file. 

The Rinterp.mat file uses a linear interpolation with clamped ends to interpolate the zero-curve 

data in such a way that it increases granularity of continuously-compounded zero-coupon interest 

rates. As a result, zero-coupon interest rates with maturities ranging from 1 to 3659 days are 

generated. A second interpolation is performed using the last known value (closest previous day 

available) to generate interest rates values for days which were not already in the original data. 

This allows to fill gaps which would have caused problems when searching for interest rates values 

on specific days for which no data was originally available. Consequently, we now have interest 

rate values for any day of the year (including weekends and holidays) between January 2nd, 1996 

and April 29th, 2016. The Rinterp.mat file takes the form of a 3659 x 7424 matrix (expiration date 
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x date). A file named “groupsR.mat” which contain the 7424 respective dates is also created for 

logical indexing purpose. Next, a variety of financial ratios are obtained from “Financial Ratios 

Firm Level by WRDS”. The variable “Public_Date” is used as logical indexing to make sure only 

information that is publicly available is used. This effectively puts a two months delay between 

market information and financial ratios. In addition, various market data factors are obtained from 

the OptionMetrics Security_Price files. Those factors include dollar volume, market capitalization 

and momentum. 

Finally, for illustration purposes, Table 1 below provides an overview of sample sizes for each 

option days to expiration and time window groups. 

Table 1: Sample sizes 

The table above shows the sample size for both time samples in the study and further divided by days to expiration 

groups.

Days to expiration Sample size 

[Jan. 2nd, 1996 to June 23rd, 2003] 

Sample size 

[June 24th, 2003 to April 30th, 2016] 

30 days 1725 3023 

60 days 1718 2950 

91 days 1718 2926 

122days 1715 2906 

152days 1715 2906 

182days 1713 2894 

273days 1703 2873 

365days 1700 2830 

547days 1672 2780 

730days 1584 2734 
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4. RESEARCH METHODOLOGY 

First, the volatility surface data is organized by removing rows with missing values. For example, 

if a firm has no implied volatility value (impl_volatility was set to -99.99 in the database), this data 

along with data of the same date and time to expiration for other firms is removed. The same 

methodology is used to remove other missing values such as impl_volatility = NaN or 

impl_premium = -99.99. Two additional columns that provide the option’s stock prices and risk-

free rates are also added to the volatility surface data file. Volatility surface, stock prices and 

dividends data files for each individual firm are then saved separately and organized by SECID 

number. After loading data files, for each distinct security, we perform the following steps given 

that there is a limited amount of data points (strike prices) for each group. First, the Implied 

Volatility variable is transformed via natural logarithm using the log(X) function in MATLAB. 

The log transformation allows to avoid an issue with cubic splines which are known for 

overshooting at times and being unstable in certain conditions. This further ensures that no 

interpolated values are negative.  Next, the transformed volatility smile (Strike vs BSIV space) is 

interpolated using quartic splines and extrapolated using the respective boundary value at the end 

of the interval over a total of either 100, 300 or 1000 ((502-2) *2) implied volatility values for 

evenly spaced strike prices points from moneyness range of 1 to 3 for calls and 1/3 to 0.999 for 

puts. These moneyness ranges thus exclude ITM options.  

The following figures show the differences between different methodologies tested and the 

retained methodology (Quartic interpolation with outlier points removal using Hampel). 
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Figure 1: 

 

Although barely visible, using a Cubic spline interpolation creates a “plateau” between the strike 

values of 41.37 and 42.10. This plateau later causes issues when computing the RND since first 

and second derivative of option prices using those IV values cannot be computed. 

Figure 2: 
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As can be seen in figure 2, the plateau mentioned earlier creates a spike at the second data point 

following the beginning of the plateau. (spike at 41.43, which is the data point immediately 

following 41.37.) The quartic spline interpolation does not appear to have this issue. Additionally, 

at the point K = 42.48, the cubic spline creates a negative interpolation value (which is then 

changed to 0). This does not occur with the quartic interpolation. An issue remains with both types 

of interpolation that is at the points K = 35.10 and 35.16, the interpolated values are negative for 

both types of interpolation used. This is caused by the extrapolation technique used that simply 

put constant IV values beyond minimum and maximum observable strike prices. This issue may 

be solved by appending a minimum of N-1 (2+ for cubic, 3+ for quartic) artificial data points 

beyond boundaries before performing the interpolation, thus allowing for a smoother transition 

between interpolated and extrapolated values. Figure 3 show the interpolated IV and derived RND 

with artificial data points beyond boundaries included in the data prior to performing the quartic 

spline interpolation. Unfortunately, as can be seen in figure 4, although the interpolated IV appears 

to have smoother transition between interpolated and extrapolated values on the left side, this 

change worsens the resulting RND by creating further negative values and a spike. Thus, it appears 

that although imperfect, it is preferable only to include observable data when performing the 

quartic spline interpolation and to append IV values beyond the minimum and maximum 

observable values after.  
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Figure 3: 

 

Using the interpolated implied volatility data along with strike price, security prices, time to expiry, 

interest rate and dividends/distributions values, theoretical call and put option prices for each 

interpolated value are computed using the Black-Scholes model. This generates series of European 

option prices based on the original American option price parameters. Using those option prices, 

option-implied moments are computed for each security using two different methods.  

For the first method (B-L), implied moments are estimated by deriving the RND and transforming 

the stock strike prices to log-returns. Estimating the RND is done using the Breeden-Litzenberger 

(1978) implied density formula: 

𝛿2𝐶(𝐹𝑡, 𝐾, 𝜏)

(𝛿𝐾)2
= 𝑒−𝑟𝜏𝑓(𝐹𝑡)
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After computing, distributions and log-returns call/put data are concatenated horizontally as follow 

[Call Put]. The computed distributions are then normalized the so that the sum of the values sum 

to 1. As seen in figure 4, these values provide probability estimations for a range of strike prices 

(strike can also be translated into log-return %). 

Figure 4:

 
 

 

Finally, outliers are removed using the “Hampel” function in MATLAB. The input arguments used 

determine outliers by finding valued that are more than one standard deviation away from a 10 

data points rolling window. Although still imperfect, the output of this procedure seen in Figure 5 

is considerably smoother. 
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Figure 5: 

 

In the reminder of this paper, I chose to input market-observable data when performing the Quartic 

spline interpolation, append flat IV tails and smooth the output data by removing outliers. Using 

this output, I then compute descriptive statistics for each of the implied risk-neutral distributions 

obtained. Among others, I compute the mean, variance, skewness and kurtosis of the distributions. 

The following probability distribution descriptive statistics formulas are used: 

𝜇 = ∑ 𝑥𝑖 ∙ 𝑝𝑖
n
𝑖=1   

𝜎 = √∑ 𝑝𝑖 ∙ (𝑥𝑖 − 𝜇)2n
𝑖=1   

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = ∑ 𝑝𝑖 ∙ (
𝑥𝑖−𝜇

𝜎
)

3
n
𝑖=1   

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = ∑ 𝑝𝑖 ∙ (
𝑥𝑖−𝜇

𝜎
)

4
n
𝑖=1   

Where 𝑥𝑖 represents the strike price, 𝑝𝑖 is the estimated probability and n is the number of data 

points.  
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For the second method, the model-free moments are computed using the technique proposed by 

Bakshi, Kapadia, and Madan (2003) which formulas are shown in Appendix B. 

Realized daily log-return moments are also computed in addition to the realized total returns. 

Equipped with the above probability density descriptive statistics, realized daily return descriptive 

statistics and realized total return, simple regressions are then performed to look at the predictive 

performance of option-implied moments. Adjusted r-squared, coefficient estimates and p-values 

for these regressions are organized so that summary statistics (of the 64 firms) for these 3 variables 

can be computed at each different time to expiration and time windows. Each of the two methods 

and two-time periods computed first four moments are then regressed linearly against the 

equivalent realized daily log-return moment and the realized total return. 

Finally, multiple linear regressions and quartile portfolios are computed with the inclusion of 

various fundamental and market factors including: Dollar volume, market capitalization, Price to 

book (equal to 1/market-to-book), Price to cash flow, ROE, Total debt to EBITDA, Total debt to 

equity, Momentum (Trailing Twelve Months returns). Quartile portfolios returns effectively divide 

the 64 sample stocks in 4 equal groups of 16 ranked from the lowest (Q1) to the highest (Q4) factor 

values. Every day from 1996 to 2016, quartile portfolios are created for each different factor and 

mean returns for those factor portfolios are computed for that day. The first and fourth quartile 20 

year mean returns are then compared and tested for equal (unequal) means using a two-sample t-

test. 
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5. EMPIRICAL RESULTS 

The following tables compare the results across two-time periods [January 2nd, 1996 to June 23rd, 2003] 

and [June 24th, 2003 to April 30th, 2016]. In addition, non-reported tests have been performed to divide 

by interpolation granularity. Those compare the results across four levels of interpolation granularity 

[No interpolation, Quartic 52, Quartic 152 and Quartic 502]. In general, the results explained below 

are observed across all 4 levels of granularity. It also appears that the BKM methodology does not 

really benefits from interpolating the data whereas the B-L methodology benefits from interpolation. 

Option Implied moments vs Realized Daily Log Return % moments: 

First, statistical coefficients can vary considerably, sometimes shifting from positive to negative or 

vice-versa. For example, in table 2 p.31, coefficient values for columns mean, skewness and kurtosis 

are unstable across time periods whereas coefficients for standard deviation columns are always 

positive. In general, only implied standard deviation appears to be an accurate predictor (of realized σ) 

due to a combination of relatively high adj. R2 values, stable coefficients and statistically significant 

p-values. Notably, the “post” time window appears to have higher standard deviation adjusted R-

squared values for short-term maturity option (<182 days to maturity) whereas adj. R2 has decreased 

for long-term maturity options. This result, which is valid for both the B-L (table 2, p.31) and BKM 

(table 3, p.33) methodologies, suggest that, through time, option implied standard deviation may have 

become a better predictor of short-term realized standard deviation whereas the long-term options 

implied standard deviation prediction ability has worsened relative to the previous period. However, 

there are numerous possible reasons for such a result including the fact that both periods are of unequal 

length, number and stage of economic cycles, just to name a few. As for other option-implied moments, 

although p-values are mostly significant, r-squared values are very small. Consequently, option-

implied mean, skewness and kurtosis are all relatively poor predictors of their respective moments 

(realized daily log return % mean, skewness and kurtosis). 
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Table 2: Option Implied (B-L) vs Realized Daily Log Return % - Quartic 502 

Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis 

Adj. R2             30 0.0043 0.5813 0.0024 0.0022 

Coef. -0.0020 0.2324 0.0620 0.0808 

P-value 0.1257 0.0000 0.1405 0.2366 

Adj. R2             60 0.0067 0.5702 0.0044 0.0052 

Coef. -0.0004 0.1638 0.0627 0.3057 

P-value 0.1218 0.0000 0.1145 0.1534 

Adj. R2             91 0.0079 0.5408 0.0085 0.0076 

Coef. 0.0008 0.1354 0.0656 0.6582 

P-value 0.1409 0.0000 0.0670 0.1599 

Adj. R2           122 0.0090 0.5139 0.0127 0.0116 

Coef. -0.0002 0.1186 0.0533 1.1075 

P-value 0.1504 0.0000 0.0821 0.1079 

Adj. R2           152 0.0100 0.4920 0.0167 0.0138 

Coef. -0.0007 0.1079 0.0346 1.2583 

P-value 0.1054 0.0000 0.0593 0.0824 

Adj. R2           182 0.0119 0.4662 0.0198 0.0176 

Coef. -0.0013 0.0994 0.0074 1.4322 

P-value 0.0627 0.0000 0.0548 0.1205 

Adj. R2           273 0.0155 0.4305 0.0275 0.0187 

Coef. -0.0008 0.0852 -0.0288 1.1070 

P-value 0.0738 0.0000 0.0326 0.0714 

Adj. R2           365 0.0192 0.4016 0.0367 0.0218 

Coef. -0.0003 0.0811 -0.0612 0.4930 

P-value 0.0607 0.0000 0.0379 0.0738 

Adj. R2           547 0.0333 0.3469 0.0547 0.0317 

Coef. -0.0012 0.0743 -0.1365 0.9581 

P-value 0.0708 0.0000 0.0606 0.0601 

Adj. R2           730 0.0486 0.2966 0.0658 0.0316 

Coef. -0.0015 0.0680 -0.2060 0.7317 

P-value 0.0538 0.0000 0.0258 0.1164 
The table above shows average Adjusted R-Squared, Coefficient and P-values of all 64 firms regressions done using 

data for the entire period of January 1996-April 2016 and separated by time to maturity groups. For example, when 

looking at the column Mean (µ) and row of 30 days to maturity, the values presented is the average of 64 firms linear 

regressions, with data filtered to keep only options with 30 days to maturity. Each regression looks at the linear relation 

between y = 30 days Realized daily log return % mean and x = 30 days Option-Implied daily log return % mean (using 

the Breeden-Litzenberger (1978) methodology). Similarly, for the column Standard deviation (σ), the numbers 

represent average values for linear regressions between y = 30 days Realized daily log return % standard deviation 

and x = 30 days Option-Implied daily log return % standard deviation. 
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The tables above are identical to Table 2 with two differences. They divide the time sample in two and use a 52-interpolation granularity instead of 502. The “Pre” 

window ranges from January 2nd, 1996 to June 23rd, 2003 while the “Post” time window is from June 24th, 2003 until April 30th, 2016. 

Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis

Adj. R2             30 0.0008 0.4907 0.0001 0.0002 Adj. R2             30 0.0034 0.6333 0.0001 0.0003

Coef. -0.0058 0.2429 -0.0325 0.0406 Coef. 0.0091 0.2937 -0.0338 -0.0519

P-value 0.0000 0.0000 0.0039 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2             60 0.0013 0.5227 0.0000 0.0000 Adj. R2             60 0.0060 0.6148 0.0010 0.0000

Coef. -0.0038 0.1662 0.0059 0.0224 Coef. 0.0069 0.1952 -0.1007 -0.0180

P-value 0.0000 0.0000 0.6733 0.2827 P-value 0.0000 0.0000 0.0000 0.0997

Adj. R2             91 0.0013 0.5200 0.0002 0.0000 Adj. R2             91 0.0057 0.5725 0.0004 0.0000

Coef. -0.0027 0.1376 0.0655 0.0074 Coef. 0.0048 0.1584 -0.0641 0.0242

P-value 0.0000 0.0000 0.0001 0.8478 P-value 0.0000 0.0000 0.0000 0.1498

Adj. R2           122 0.0011 0.5042 0.0002 0.0002 Adj. R2           122 0.0007 0.5320 0.0000 0.0003

Coef. -0.0019 0.1206 0.0751 0.2427 Coef. 0.0014 0.1372 -0.0243 0.1745

P-value 0.0000 0.0000 0.0001 0.0000 P-value 0.0000 0.0000 0.0068 0.0000

Adj. R2           152 0.0015 0.4955 0.0000 0.0007 Adj. R2           152 0.0000 0.4961 0.0002 0.0005

Coef. -0.0018 0.1108 0.0486 0.5799 Coef. -0.0001 0.1234 0.0518 0.3024

P-value 0.0000 0.0000 0.0212 0.0000 P-value 0.1858 0.0000 0.0000 0.0000

Adj. R2           182 0.0024 0.4864 0.0000 0.0007 Adj. R2           182 0.0010 0.4565 0.0010 0.0004

Coef. -0.0020 0.1041 0.0444 0.6925 Coef. -0.0012 0.1119 0.1424 0.3085

P-value 0.0000 0.0000 0.0464 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           273 0.0033 0.4653 0.0001 0.0000 Adj. R2           273 0.0054 0.3948 0.0056 0.0007

Coef. -0.0017 0.0945 0.0853 0.2481 Coef. -0.0019 0.0921 0.3449 0.5549

P-value 0.0000 0.0000 0.0002 0.0344 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           365 0.0032 0.4434 0.0002 0.0000 Adj. R2           365 0.0075 0.3382 0.0084 0.0001

Coef. -0.0015 0.0924 0.1079 -0.0741 Coef. -0.0018 0.0850 0.4152 0.2104

P-value 0.0000 0.0000 0.0000 0.5208 P-value 0.0000 0.0000 0.0000 0.0002

Adj. R2           547 0.0038 0.3743 0.0005 0.0000 Adj. R2           547 0.0458 0.2570 0.0063 0.0001

Coef. -0.0012 0.0896 0.1603 -0.2711 Coef. -0.0034 0.0740 0.3174 0.0670

P-value 0.0000 0.0000 0.0000 0.0751 P-value 0.0000 0.0000 0.0000 0.0001

Adj. R2           730 0.0053 0.3078 0.0008 0.0003 Adj. R2           730 0.0902 0.2058 0.0024 0.0008

Coef. -0.0013 0.0886 0.2181 -1.1358 Coef. -0.0037 0.0677 0.1667 0.4557

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Option Implied (B-L) vs Realized Daily Log Return % - Pre/Quartic 52 Option Implied (B-L) vs Realized Daily Log Return % - Post/Quartic 52
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Table 3: Option Implied (BKM) vs Realized Daily Log Return % - Quartic 502 

Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis 

Adj. R2             30 0.0039 0.5340 0.0027 0.0037 

Coef. -0.0095 0.8597 0.0687 0.1553 

P-value 0.1452 0.0000 0.1545 0.1610 

Adj. R2             60 0.0060 0.5262 0.0051 0.0107 

Coef. -0.0012 0.4335 0.0645 0.5237 

P-value 0.1561 0.0000 0.1180 0.1400 

Adj. R2             91 0.0087 0.5024 0.0095 0.0194 

Coef. 0.0021 0.2931 0.0520 0.9352 

P-value 0.1259 0.0000 0.0905 0.0670 

Adj. R2           122 0.0106 0.4784 0.0128 0.0245 

Coef. -0.0008 0.2190 0.0250 1.0783 

P-value 0.1294 0.0000 0.0601 0.0353 

Adj. R2           152 0.0133 0.4556 0.0159 0.0289 

Coef. -0.0018 0.1752 0.0058 1.1085 

P-value 0.0561 0.0000 0.0336 0.0406 

Adj. R2           182 0.0167 0.4286 0.0193 0.0332 

Coef. -0.0031 0.1468 -0.0105 1.1618 

P-value 0.0452 0.0000 0.0465 0.0376 

Adj. R2           273 0.0229 0.3786 0.0266 0.0392 

Coef. -0.0018 0.0950 -0.0359 0.9365 

P-value 0.0336 0.0000 0.0236 0.0251 

Adj. R2           365 0.0264 0.3373 0.0347 0.0492 

Coef. -0.0009 0.0728 -0.0600 0.8485 

P-value 0.0646 0.0000 0.0479 0.0288 

Adj. R2           547 0.0431 0.2681 0.0537 0.0644 

Coef. -0.0013 0.0447 -0.0903 0.7797 

P-value 0.0512 0.0000 0.0356 0.0561 

Adj. R2           730 0.0577 0.2122 0.0713 0.0653 

Coef. -0.0013 0.0288 -0.1345 0.4414 

P-value 0.0456 0.0000 0.0713 0.0234 
The table above shows average Adjusted R-Squared, Coefficient and P-values of all 64 firms regressions 

done using data for the entire period of January 1996-April 2016 and separated by time to maturity 

groups. For example, when looking at the column Mean (µ) and row of 30 days to maturity, the values 

presented is the average of 64 firms linear regressions, with data filtered to keep only options with 30 

days to maturity. Each regression looks at the linear relation between y = 30 days Realized daily log 

return % mean and x = 30 days Option-Implied daily log return % mean (using the Bakshi, Kapadia and 

Madan (2003) methodology). Similarly, for the column Standard deviation (σ), the numbers represent 

average values for linear regressions between y = 30 days Realized daily log return % standard deviation 

and x = 30 days Option-Implied daily log return % standard deviation. 
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The tables above are identical to Table 3 with two differences. They divide the time sample in two and use a 52-interpolation granularity instead of 502. The “Pre” 

window ranges from January 2nd, 1996 to June 23rd, 2003 while the “Post” time window is from June 24th, 2003 until April 30th, 2016. 

 

 

Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis

Adj. R2             30 0.0023 0.4680 0.0011 0.0006 Adj. R2             30 0.0048 0.5424 0.0005 0.0000

Coef. -0.0415 0.6547 0.0720 -0.0850 Coef. 0.0383 0.5642 0.0515 0.0119

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0924

Adj. R2             60 0.0021 0.4885 0.0003 0.0016 Adj. R2             60 0.0039 0.5271 0.0008 0.0002

Coef. -0.0145 0.3258 0.0515 -0.2938 Coef. 0.0134 0.2942 0.0783 0.0785

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2             91 0.0011 0.4902 0.0000 0.0015 Adj. R2             91 0.0043 0.5119 0.0011 0.0005

Coef. -0.0060 0.2215 0.0243 -0.4707 Coef. 0.0081 0.2118 0.1054 0.1809

P-value 0.0000 0.0000 0.0193 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           122 0.0006 0.4818 0.0000 0.0010 Adj. R2           122 0.0001 0.4980 0.0014 0.0008

Coef. -0.0031 0.1666 -0.0048 -0.5041 Coef. 0.0010 0.1658 0.1151 0.2645

P-value 0.0000 0.0000 0.6598 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           152 0.0009 0.4761 0.0000 0.0004 Adj. R2           152 0.0010 0.4814 0.0016 0.0010

Coef. -0.0027 0.1348 -0.0223 -0.3786 Coef. -0.0021 0.1377 0.1227 0.3181

P-value 0.0000 0.0000 0.0532 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           182 0.0016 0.4709 0.0001 0.0002 Adj. R2           182 0.0061 0.4548 0.0017 0.0012

Coef. -0.0028 0.1129 -0.0329 -0.2638 Coef. -0.0043 0.1206 0.1264 0.3503

P-value 0.0000 0.0000 0.0064 0.0001 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           273 0.0027 0.4577 0.0004 0.0001 Adj. R2           273 0.0157 0.3945 0.0024 0.0006

Coef. -0.0021 0.0759 -0.0787 -0.2139 Coef. -0.0042 0.0841 0.1347 0.2476

P-value 0.0000 0.0000 0.0000 0.0048 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           365 0.0052 0.4403 0.0004 0.0000 Adj. R2           365 0.0187 0.3156 0.0016 0.0004

Coef. -0.0020 0.0585 -0.0773 0.0283 Coef. -0.0034 0.0695 0.1044 0.2110

P-value 0.0000 0.0000 0.0000 0.7148 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           547 0.0120 0.3937 0.0000 0.0000 Adj. R2           547 0.0515 0.2106 0.0007 0.0021

Coef. -0.0018 0.0397 -0.0160 0.0335 Coef. -0.0039 0.0461 0.0568 0.4547

P-value 0.0000 0.0000 0.1679 0.6565 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           730 0.0212 0.3380 0.0000 0.0001 Adj. R2           730 0.0787 0.1451 0.0000 0.0053

Coef. -0.0016 0.0299 -0.0045 -0.2277 Coef. -0.0031 0.0307 0.0087 0.6090

P-value 0.0000 0.0000 0.6822 0.0014 P-value 0.0000 0.0000 0.0718 0.0000

Option Implied (BKM) vs Realized Daily Log Return % - Pre/Quartic 52 Option Implied (BKM) vs Realized Daily Log Return % - Post/Quartic 52
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Option Implied moments vs Realized Total Return %: 

As can be seen in tables 4 p.35-36 and 5 p.37-38, regardless of the time window and methodology 

used, option-implied mean coefficients tend to be negatively related to realized total return while 

option-implied standard deviation columns are mostly positively related to returns. As for option-

implied skewness, coefficient signs appear to be unstable. When looking at the entire time window 

starting in 1996 and ending in 2016, coefficients are positive for both methodologies. However, 

dividing time periods shows that coefficients for higher moments (skewness & kurtosis) tend to 

be less stable than mean and standard deviation coefficients through time. This can be observed 

for both the B-L and BKM methodologies. Option-implied kurtosis coefficient sign is particularly 

unstable as it goes from negative to positive depending on both the period, methodology used and 

time to maturity of the options. Overall, the outputs suggest that option-implied mean is negatively 

related to return and option-implied standard deviation is positively related to realized returns. It 

would suggest that, on average, companies that are expected to perform poorly and have high 

expected volatility (as determined by options implied mean and volatility) tend to produce higher 

long-term returns (potentially due to risk premia). In theory, investors should prefer a return 

distribution that exhibit higher mean, lower standard deviation, higher skewness and lower 

kurtosis. These results suggest that adopting a contrarian outlook for the first two moments of the 

distribution could potentially yield higher returns. In other words, the best time to buy stocks is 

when implied volatility is high, and expected returns are low which generally happens when 

pessimism prevails, and the markets are potentially closer to the bottom than to the top. 

Nonetheless, those relations are quite weak as measured by adj. R2 and thus, if used alone, would 

be unlikely to produce positive abnormal returns within a relatively high level of confidence.
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Table 4: Option Implied (B-L) vs Realized Total Return % - Quartic 502 

Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis 

Adj. R2             30 0.0058 0.0059 0.0024 0.0013 

Coef. -0.2377 0.1342 0.0106 0.0005 

P-value 0.1047 0.1025 0.1819 0.2877 

Adj. R2             60 0.0077 0.0077 0.0048 0.0031 

Coef. -0.2210 0.1325 0.0215 0.0049 

P-value 0.1042 0.0777 0.1203 0.1679 

Adj. R2             91 0.0084 0.0087 0.0075 0.0065 

Coef. -0.1795 0.1193 0.0293 0.0200 

P-value 0.1005 0.0742 0.1073 0.1042 

Adj. R2           122 0.0128 0.0124 0.0111 0.0084 

Coef. -0.2781 0.1839 0.0460 0.0148 

P-value 0.1206 0.0892 0.0800 0.1029 

Adj. R2           152 0.0160 0.0153 0.0153 0.0114 

Coef. -0.3430 0.2351 0.0772 0.0137 

P-value 0.1221 0.0552 0.0499 0.1143 

Adj. R2           182 0.0194 0.0194 0.0192 0.0149 

Coef. -0.4461 0.3114 0.1066 0.0137 

P-value 0.0907 0.0675 0.0415 0.1029 

Adj. R2           273 0.0245 0.0229 0.0275 0.0169 

Coef. -0.5013 0.3687 0.1726 -0.0085 

P-value 0.0949 0.0579 0.0459 0.0872 

Adj. R2           365 0.0280 0.0255 0.0289 0.0186 

Coef. -0.4432 0.3587 0.1973 0.0415 

P-value 0.0359 0.1236 0.0588 0.0874 

Adj. R2           547 0.0470 0.0351 0.0358 0.0191 

Coef. -0.8117 0.7123 0.2896 0.0568 

P-value 0.0406 0.0631 0.0828 0.0443 

Adj. R2           730 0.0634 0.0430 0.0370 0.0220 

Coef. -1.0830 1.1358 0.3365 -0.0048 

P-value 0.0516 0.0971 0.0425 0.0807 
The table above shows average Adjusted R-Squared, Coefficient and P-values of all 64 firms 

regressions done using data for the entire period of January 1996-April 2016 and separated by time 

to maturity groups. For example, when looking at the column Mean (µ) and row of 30 days to 

maturity, the values presented is the average of 64 firms linear regressions, with data filtered to keep 

only options with 30 days to maturity. Each regression looks at the linear relation between y = 30 

days Realized Total Return % and x = 30 days Option-Implied daily log return % mean (using the 

Breeden-Litzenberger (1978) methodology). Similarly, for the column Standard deviation (σ), the 

numbers represent average values for linear regressions between y = 30 days Realized Total Return 

% and x = 30 days Option-Implied daily log return % standard deviation.



36 

 

 
The tables above are identical to Table 4 with two differences. They divide the time sample in two and use a 52-interpolation granularity instead of 502. The “Pre” 

window ranges from January 2nd, 1996 to June 23rd, 2003 while the “Post” time window is from June 24th, 2003 until April 30th, 2016. 

 

 

 

Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis

Adj. R2             30 0.0037 0.0130 0.0038 0.0000 Adj. R2             30 0.0000 0.0000 0.0000 0.0001

Coef. -0.2652 0.3822 -0.0344 -0.0009 Coef. 0.0067 -0.0175 0.0002 0.0014

P-value 0.0000 0.0000 0.0000 0.1433 P-value 0.3671 0.0040 0.7834 0.0000

Adj. R2             60 0.0064 0.0142 0.0018 0.0001 Adj. R2             60 0.0000 0.0000 0.0008 0.0001

Coef. -0.3644 0.4029 -0.0382 0.0044 Coef. -0.0033 -0.0006 -0.0118 0.0016

P-value 0.0000 0.0000 0.0000 0.0004 P-value 0.6864 0.9136 0.0000 0.0001

Adj. R2             91 0.0082 0.0144 0.0001 0.0016 Adj. R2             91 0.0002 0.0001 0.0010 0.0003

Coef. -0.4526 0.4475 -0.0145 0.0255 Coef. -0.0578 0.0197 -0.0166 0.0044

P-value 0.0000 0.0000 0.0009 0.0000 P-value 0.0000 0.0011 0.0000 0.0000

Adj. R2           122 0.0089 0.0147 0.0015 0.0034 Adj. R2           122 0.0061 0.0037 0.0019 0.0000

Coef. -0.4957 0.4896 0.0656 0.0536 Coef. -0.3108 0.1622 -0.0296 0.0015

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.1041

Adj. R2           152 0.0106 0.0173 0.0061 0.0050 Adj. R2           152 0.0122 0.0077 0.0013 0.0001

Coef. -0.5861 0.5868 0.1644 0.0810 Coef. -0.4498 0.2459 -0.0304 -0.0041

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0008

Adj. R2           182 0.0138 0.0213 0.0115 0.0044 Adj. R2           182 0.0197 0.0136 0.0009 0.0003

Coef. -0.7245 0.7219 0.2625 0.0899 Coef. -0.6092 0.3553 -0.0300 -0.0123

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           273 0.0166 0.0217 0.0218 0.0011 Adj. R2           273 0.0292 0.0183 0.0001 0.0013

Coef. -1.0606 1.0363 0.5002 0.0667 Coef. -0.7926 0.4760 0.0165 -0.0357

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           365 0.0147 0.0196 0.0247 0.0000 Adj. R2           365 0.0252 0.0099 0.0000 0.0000

Coef. -1.5058 1.5679 0.7888 -0.0042 Coef. -0.8131 0.4170 0.0121 0.0000

P-value 0.0000 0.0000 0.0000 0.6238 P-value 0.0000 0.0000 0.0033 0.9932

Adj. R2           547 0.0150 0.0233 0.0381 0.0000 Adj. R2           547 0.0674 0.0189 0.0000 0.0002

Coef. -2.1578 2.6981 1.4421 -0.0222 Coef. -1.6225 0.7991 -0.0100 -0.0064

P-value 0.0000 0.0000 0.0000 0.0960 P-value 0.0000 0.0000 0.0690 0.0000

Adj. R2           730 0.0145 0.0231 0.0365 0.0000 Adj. R2           730 0.0910 0.0200 0.0000 0.0043

Coef. -2.9713 4.1826 2.0525 0.0170 Coef. -2.2191 1.0847 0.0079 -0.0764

P-value 0.0000 0.0000 0.0000 0.4579 P-value 0.0000 0.0000 0.2281 0.0000

Option Implied (B-L) vs Realized Total Return % - Pre/Quartic 52 Option Implied (B-L) vs Realized Total Return % - Post/Quartic 52
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Table 5: Option Implied (BKM) vs Realized Total Return % - Quartic 502 

Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis 

Adj. R2             30 0.0055 0.0071 0.0029 0.0030 

Coef. -1.0179 0.6166 0.0100 -0.0113 

P-value 0.1225 0.0645 0.1662 0.1431 

Adj. R2             60 0.0070 0.0083 0.0057 0.0054 

Coef. -0.5717 0.3658 0.0161 -0.0190 

P-value 0.1088 0.0936 0.0911 0.0763 

Adj. R2             91 0.0097 0.0096 0.0093 0.0080 

Coef. -0.3001 0.1990 0.0243 -0.0194 

P-value 0.1134 0.0994 0.0718 0.1171 

Adj. R2           122 0.0158 0.0144 0.0111 0.0116 

Coef. -0.4633 0.2734 0.0312 -0.0337 

P-value 0.0946 0.1195 0.0466 0.0806 

Adj. R2           152 0.0216 0.0195 0.0153 0.0151 

Coef. -0.5342 0.3487 0.0487 -0.0454 

P-value 0.0244 0.0908 0.0400 0.0752 

Adj. R2           182 0.0284 0.0272 0.0207 0.0199 

Coef. -0.7299 0.4983 0.0711 -0.0608 

P-value 0.0498 0.0850 0.0454 0.0898 

Adj. R2           273 0.0367 0.0332 0.0306 0.0284 

Coef. -0.6124 0.4999 0.1076 -0.0911 

P-value 0.0622 0.0580 0.0210 0.0829 

Adj. R2           365 0.0396 0.0311 0.0375 0.0267 

Coef. -0.3801 0.3736 0.1300 -0.0828 

P-value 0.0927 0.0504 0.0243 0.0185 

Adj. R2           547 0.0589 0.0413 0.0515 0.0391 

Coef. -0.4664 0.3830 0.1690 -0.1188 

P-value 0.0365 0.0741 0.0176 0.0338 

Adj. R2           730 0.0727 0.0494 0.0520 0.0501 

Coef. -0.5608 0.4141 0.1713 -0.1632 

P-value 0.0475 0.0215 0.0531 0.0359 
The table above shows average Adjusted R-Squared, Coefficient and P-values of all 64 firms 

regressions done using data for the entire period of January 1996-April 2016 and separated by time 

to maturity groups. For example, when looking at the column Mean (µ) and row of 30 days to 

maturity, the values presented is the average of 64 firms linear regressions, with data filtered to keep 

only options with 30 days to maturity. Each regression looks at the linear relation between y = 30 

days Realized Total Return % and x = 30 days Option-Implied daily log return % mean (using the 

Bakshi, Kapadia and Madan (2003) methodology). Similarly, for the column Standard deviation (σ), 

the numbers represent average values for linear regressions between y = 30 days Realized Total 

Return % and x = 30 days Option-Implied daily log return % standard deviation. 
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The tables above are identical to Table 5 with two differences. They divide the time sample in two and use a 52-interpolation granularity instead of 502. The “Pre” 

window ranges from January 2nd, 1996 to June 23rd, 2003 while the “Post” time window is from June 24th, 2003 until April 30th, 2016. 

 

 

Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis Days to maturity Mean (µ) Standard deviation (σ) Skewness Kurtosis

Adj. R2             30 0.0095 0.0128 0.0030 0.0051 Adj. R2             30 0.0003 0.0000 0.0000 0.0002

Coef. -1.7946 1.0484 0.0196 -0.0172 Coef. -0.1831 0.0214 -0.0005 -0.0017

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0902 0.3782 0.0000

Adj. R2             60 0.0097 0.0139 0.0057 0.0085 Adj. R2             60 0.0012 0.0002 0.0002 0.0002

Coef. -1.3438 0.8095 0.0434 -0.0399 Coef. -0.2924 0.0624 -0.0048 -0.0036

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2             91 0.0084 0.0133 0.0083 0.0084 Adj. R2             91 0.0018 0.0002 0.0001 0.0003

Coef. -1.1240 0.7140 0.0732 -0.0611 Coef. -0.3143 0.0533 -0.0050 -0.0053

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           122 0.0080 0.0130 0.0118 0.0079 Adj. R2           122 0.0121 0.0064 0.0000 0.0028

Coef. -1.0070 0.6526 0.1054 -0.0759 Coef. -0.7447 0.2680 -0.0023 -0.0186

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0794 0.0000

Adj. R2           152 0.0092 0.0152 0.0171 0.0077 Adj. R2           152 0.0257 0.0172 0.0000 0.0054

Coef. -1.0466 0.6845 0.1498 -0.0867 Coef. -1.0134 0.4158 0.0046 -0.0287

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0018 0.0000

Adj. R2           182 0.0119 0.0188 0.0217 0.0095 Adj. R2           182 0.0425 0.0305 0.0006 0.0094

Coef. -1.1635 0.7482 0.1951 -0.1054 Coef. -1.3287 0.5754 0.0165 -0.0416

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           273 0.0158 0.0225 0.0194 0.0096 Adj. R2           273 0.0590 0.0426 0.0037 0.0170

Coef. -1.3778 0.8545 0.2580 -0.1285 Coef. -1.4772 0.6642 0.0495 -0.0633

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           365 0.0207 0.0270 0.0187 0.0110 Adj. R2           365 0.0501 0.0266 0.0033 0.0138

Coef. -1.9411 1.1684 0.3693 -0.1829 Coef. -1.4189 0.5794 0.0538 -0.0629

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           547 0.0365 0.0416 0.0359 0.0131 Adj. R2           547 0.0794 0.0325 0.0045 0.0357

Coef. -2.6840 1.5591 0.6555 -0.2232 Coef. -1.8665 0.7206 0.0784 -0.1139

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Adj. R2           730 0.0444 0.0501 0.0395 0.0128 Adj. R2           730 0.0969 0.0350 0.0101 0.0573

Coef. -3.3516 1.9833 0.8534 -0.2511 Coef. -2.0425 0.7728 0.1316 -0.1472

P-value 0.0000 0.0000 0.0000 0.0000 P-value 0.0000 0.0000 0.0000 0.0000

Option Implied (BKM) vs Realized Total Return % - Pre/Quartic 52 Option Implied (BKM) vs Realized Total Return % - Post/Quartic 52
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Table 6: Multiple Regression B-L

 
This table shows the relationship between realized N days total returns % (where N represents the number of days to maturity for each respective columns) and different factors 

using a multiple linear regression. Option-implied moments (first four factors) are computed using the B-L methodology while the X3*X4 interaction is an interaction factor 

representing the multiplication of option-implied Skewness (B-L) and Option-Implied Kurtosis (B-L). The time sample used is from 1996 to 2016 and includes all 64 firms 

sample. Sample sizes per time to maturity group are indicated at the bottom. The first row shows coefficients while the second gives the t-values in parentheses. 

Significance codes: ’***’, ’**’ and ’*’ respectively denote that the coefficient sign is significant at the 1, 5 and 10% level. 

Days to maturity 30 60 91 122 152 182 273 365 547 730

Intercept -0.0472*** -0.0765*** -0.1348*** -0.1980*** -0.2421*** -0.2495*** -0.3591*** -0.2944*** -0.6318*** -0.9025***

(-14.42) (-18.40) (-27.07) (-31.05) (-31.97) (-34.15) (-28.26) (-17.58) (-23.42) (-20.41)

Option-Implied Mean (B-L) 0.1555*** 0.2413*** 0.2866*** 0.1522*** 0.1186*** 0.0928*** -0.1011*** -0.1380*** -0.2915*** 0.0101

(10.92) (15.02) (16.00) (7.79) (5.63) (4.11) (-3.91) (-4.05) (-7.52) (0.24)

Option-Implied Standard Deviation (B-L) 0.3061*** 0.4135*** 0.5029*** 0.5020*** 0.5543*** 0.6064*** 0.6434*** 0.8683*** 1.2998*** 2.3550***

(30.27) (37.76) (41.95) (38.21) (38.20) (37.78) (30.57) (26.46) (26.04) (32.32)

Option-Implied Skewness (B-L) 0.0360*** 0.0681*** 0.1273*** 0.2561*** 0.3108*** 0.2657*** 0.5619*** 0.2104*** 0.3255*** 0.2457***

(10.65) (14.02) (19.46) (24.89) (23.48) (22.00) (20.05) (14.87) (28.39) (12.47)

Option-Implied Kurtosis (B-L) 0.0086*** 0.0160*** 0.0326*** 0.0501*** 0.0616*** 0.0617*** 0.0913*** 0.0572*** 0.1234*** 0.1958***

(9.13) (13.25) (22.12) (26.08) (26.86) (28.42) (24.59) (13.27) (19.09) (19.38)

X3*X4 Interaction -0.0081*** -0.0148*** -0.0302*** -0.0644*** -0.0772*** -0.0590*** -0.1333*** -0.0055* -0.0203*** -0.0599***

(-8.28) (-10.60) (-15.77) (-20.93) (-19.31) (-16.58) (-15.51) (-1.67) (-19.03) (-14.45)

Dollar Volume <0** <0 <0 <0 <0 <0 <0 -0.0001*** -0.0001*** <0

(-2.17) (-0.90) (-0.10) (-0.36) (-0.69) (0.25) (-1.15) (-4.22) (-5.58) (-1.38)

Market Capitalization <0*** <0*** <0*** <0*** <0*** <0*** <0*** <0*** <0*** <0***

(-15.59) (-21.52) (-27.07) (-30.48) (-32.56) (-35.18) (-35.93) (-30.44) (-35.46) (-34.76)

Price to Book >0*** >0 <0** -0.0001*** -0.0002*** -0.0002*** -0.0002*** -0.0001*** <0 -0.0011***

(3.88) (1.59) (-2.06) (-7.55) (-9.07) (-9.74) (-6.41) (-3.20) (-0.03) (-17.56)

Price to Cash Flow <0** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0002*** -0.0008*** -0.0015*** -0.0005*** 0.0019***

(-2.30) (-7.16) (-5.27) (-6.08) (-10.08) (-14.77) (-34.71) (-43.49) (-9.60) (26.00)

ROE 0.0014*** 0.0008** 0.0012** 0.0010* 0.0012* 0.0023*** 0.0021** -0.0201*** -0.0932*** -0.9128***

(5.22) (2.13) (2.50) (1.78) (1.82) (3.10) (2.00) (-12.58) (-39.78) (-131.99)

Total Debt to EBITDA -0.0003*** -0.0006*** -0.0009*** -0.0012*** -0.0016*** -0.0021*** -0.0038*** -0.0055*** -0.0083*** -0.0231***

(-9.10) (-13.20) (-14.63) (-15.88) (-18.86) (-21.92) (-27.66) (-25.85) (-26.51) (-52.84)

Total Debt to Equity <0 >0*** 0.0002*** 0.0003*** 0.0004*** 0.0005*** 0.0007*** 0.0007*** 0.0008*** 0.0059***

(-0.50) (2.70) (7.19) (11.85) (14.31) (15.74) (14.39) (9.91) (7.41) (43.21)

RM-RF (SP100-Rf) 0.9726*** 0.9694*** 0.9647*** 0.9601*** 0.9685*** 0.9695*** 0.9601*** 0.9914*** 1.0768*** 1.1716***

(310.21) (290.82) (290.19) (285.13) (281.14) (276.45) (230.57) (184.25) (176.07) (165.07)

Momentum (TTM) 0.0052*** 0.0093*** 0.0107*** 0.0116*** 0.0144*** 0.0169*** 0.0352*** 0.0572*** 0.0528*** -0.0016

(16.08) (20.28) (18.67) (17.10) (18.47) (19.13) (27.72) (29.61) (18.50) (-0.41)

Adj. R-Squared 0.2633 0.2482 0.2535 0.2551 0.2563 0.2580 0.2180 0.1686 0.1742 0.2390

Sample Size 278372 272121 269413 266647 265324 263249 257289 250439 237980 222652
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This table is a continuation of table 6 and shows coefficient confidence intervals using an alpha parameter of 0.01. Numbers are rounded to the second decimal. 

A confidence interval of [0.28, 0.33] for 30 days option-implied standard deviation (B-L) can be interpreted as follows: for a 1 unit increase in option-implied 

standard deviation (B-L), total realized return would be expected to increase (in average) by an amount ranging between 0.28% and 0.33%. Several variables 

confidence intervals are [0, 0]. Consequently, although some of these coefficients may be statistically significant, their effect is marginal. (less than 1/100th of 

a percent.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Multiple Regression B-L Coefficient Confidence Intervals (α = 0.01)

Days to maturity 30 60 91 122 152 182 273 365 547 730

Intercept [-0.06, -0.04] [-0.09, -0.07] [-0.15, -0.12] [-0.21, -0.18] [-0.26, -0.22] [-0.27, -0.23] [-0.39, -0.33] [-0.34, -0.25] [-0.7, -0.56] [-1.02, -0.79]

Option-Implied Mean (B-L) [0.12, 0.19] [0.2, 0.28] [0.24, 0.33] [0.1, 0.2] [0.06, 0.17] [0.03, 0.15] [-0.17, -0.03] [-0.23, -0.05] [-0.39, -0.19] [-0.1, 0.12]

Option-Implied Standard Deviation (B-L) [0.28, 0.33] [0.39, 0.44] [0.47, 0.53] [0.47, 0.54] [0.52, 0.59] [0.57, 0.65] [0.59, 0.7] [0.78, 0.95] [1.17, 1.43] [2.17, 2.54]

Option-Implied Skewness (B-L) [0.03, 0.04] [0.06, 0.08] [0.11, 0.14] [0.23, 0.28] [0.28, 0.34] [0.23, 0.3] [0.49, 0.63] [0.17, 0.25] [0.3, 0.36] [0.19, 0.3]

Option-Implied Kurtosis (B-L) [0.01, 0.01] [0.01, 0.02] [0.03, 0.04] [0.05, 0.06] [0.06, 0.07] [0.06, 0.07] [0.08, 0.1] [0.05, 0.07] [0.11, 0.14] [0.17, 0.22]

X3*X4 Interaction [-0.01, -0.01] [-0.02, -0.01] [-0.04, -0.03] [-0.07, -0.06] [-0.09, -0.07] [-0.07, -0.05] [-0.16, -0.11] [-0.01, 0] [-0.02, -0.02] [-0.07, -0.05]

Dollar Volume [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Market Capitalization [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Price to Book [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Price to Cash Flow [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

ROE [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [-0.02, -0.02] [-0.1, -0.09] [-0.93, -0.9]

Total Debt to EBITDA [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [-0.01, 0] [-0.01, -0.01] [-0.02, -0.02]

Total Debt to Equity [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0.01, 0.01]

RM-RF (SP100-Rf) [0.96, 0.98] [0.96, 0.98] [0.96, 0.97] [0.95, 0.97] [0.96, 0.98] [0.96, 0.98] [0.95, 0.97] [0.98, 1.01] [1.06, 1.09] [1.15, 1.19]

Momentum (TTM) [0, 0.01] [0.01, 0.01] [0.01, 0.01] [0.01, 0.01] [0.01, 0.02] [0.01, 0.02] [0.03, 0.04] [0.05, 0.06] [0.05, 0.06] [-0.01, 0.01]



41 

Table 7: Multiple Regression BKM 

 
This table shows the relationship between realized N days total returns (where N represents the number of days to maturity for each respective columns) and different factors 

using a multiple linear regression. Option-implied moments (first four factors) are computed using the BKM methodology while the X3*X4 interaction is an interaction factor 

representing the multiplication of option-implied Skewness (BKM) and Option-Implied Kurtosis (BKM). The time sample used is from 1996 to 2016 and includes all 64 firms 

sample. Sample sizes per time to maturity group are indicated at the bottom. The first row shows coefficients while the second gives the t-values in parentheses. 

Significance codes: ’***’, ’**’ and ’*’ respectively denote that the coefficient sign is significant at the 1, 5 and 10% level. 

Days to maturity 30 60 91 122 152 182 273 365 547 730

Intercept 0.0211*** 0.0435*** 0.0557*** 0.0816*** 0.0667*** 0.0491*** 0.0743 0.0807*** -0.4264*** -0.2933***

(13.94) (15.57) (13.22) (13.44) (9.54) (6.10) (5.91) (3.63) (-11.46) (-7.00)

Option-Implied Mean (BKM) 0.3796*** 0.4358*** 0.5694*** 0.5906*** 0.4364*** 0.1977*** 0.3179*** 0.4861*** 0.1228*** 1.7899***

(4.19) (6.37) (9.48) (11.08) (8.80) (4.07) (6.49) (8.16) (1.91) (25.39)

Option-Implied Standard Deviation (BKM) 0.5359*** 0.5522*** 0.6133*** 0.7042*** 0.7497*** 0.7438*** 0.8850*** 1.1663*** 1.6777*** 2.3550***

(12.38) (16.85) (21.28) (27.12) (30.59) (30.76) (34.99) (35.78) (42.25) (52.33)

Option-Implied Skewness (BKM) 0.0134*** 0.0289*** 0.0400* 0.0908*** 0.1316*** 0.1805*** 0.2485*** 0.3026*** 0.1233*** -0.1263***

(7.87) (9.13) (9.85) (16.66) (21.79) (26.56) (25.83) (19.08) (5.21) (-5.35)

Option-Implied Kurtosis (BKM) -0.0023*** -0.0054*** -0.0054*** -0.0098*** -0.0016 0.0091*** 0.0133*** 0.0180*** 0.1686*** 0.1340***

(-7.16) (-7.85) (-4.73) (-5.79) (-0.82) (3.97) (3.70) (2.85) (16.24) (11.60)

X3*X4 Interaction -0.0020*** -0.0048*** -0.0061*** -0.0179*** -0.0249*** -0.0328*** -0.0464*** -0.0590*** 0.0029*** 0.0463***

(-5.95) (-7.20) (-6.91) (-13.68) (-16.94) (-19.71) (-18.78) (-13.82) (0.44) (7.25)

Dollar Volume <0* <0 >0 <0 <0 <0 <0 <0** -0.0001*** 0.0001***

(-2.29) (-1.58) (0.04) (-0.21) (-0.77) (-0.24) (0.37) (-2.19) (-4.66) (2.79)

Market Capitalization <0*** <0*** <0*** <0*** <0*** <0*** <0*** <0*** <0*** <0***

(-15.72) (-21.97) (-28.50) (-32.14) (-34.50) (-37.43) (-40.98) (-35.59) (-38.47) (-36.50)

Price to Book >0*** >0** <0 -0.0001*** -0.0001*** -0.0002*** -0.0002*** -0.0002*** -0.0003*** -0.0012***

(4.56) (2.57) (-0.73) (-6.08) (-7.50) (-8.78) (-6.40) (-5.35) (-4.87) (-19.23)

Price to Cash Flow <0* -0.0001*** <0*** -0.0001*** -0.0001*** -0.0002*** -0.0008*** -0.0015*** -0.0003*** 0.0019***

(-2.34) (-6.82) (-4.79) (-5.62) (-9.24) (-13.42) (-33.90) (-42.08) (-6.58) (26.81)

ROE 0.0013*** 0.0009*** 0.0015*** 0.0022*** 0.0043*** 0.0076*** 0.0115*** -0.0040*** -0.0572*** -0.8352***

(4.63) (2.43) (3.17) (3.95) (6.59) (10.27) (10.84) (-2.47) (-23.91) (-116.60)

Total Debt to EBITDA -0.0003*** -0.0007*** -0.0009*** -0.0012*** -0.0015*** -0.0020*** -0.0036*** -0.0050*** -0.0077*** -0.0225***

(-9.35) (-13.80) (-14.93) (-15.93) (-18.42) (-20.90) (-25.94) (-23.71) (-24.48) (-51.40)

Total Debt to Equity <0 <0 0.0001*** 0.0002*** 0.0003*** 0.0004*** 0.0005*** 0.0006*** 0.0008*** 0.0054***

(-1.26) (1.27) (5.41) (9.69) (11.02) (12.00) (11.06) (8.46) (7.62) (39.96)

RM-RF (SP100-Rf) 0.9733*** 0.9697*** 0.9662*** 0.9605*** 0.9656*** 0.9612*** 0.9504*** 0.9932*** 1.1044*** 1.2744***

(310.08) (290.62) (289.30) (283.70) (279.03) (272.96) (226.66) (182.00) (174.14) (168.69)

Momentum (TTM) 0.0053*** 0.0099*** 0.0119*** 0.0128*** 0.0152*** 0.0165*** 0.0322*** 0.0496*** 0.0339*** -0.0165***

(16.48) (21.80) (20.84) (18.80) (19.58) (18.57) (25.22) (25.62) (11.86) (-4.19)

Adj. R-Squared 0.2630 0.2478 0.2515 0.2534 0.2569 0.2605 0.2217 0.1750 0.1881 0.2484

Sample Size 278372 272121 269413 266647 265324 263249 257289 250439 237980 222652
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This table is a continuation of table 7 and shows coefficient confidence intervals using an alpha parameter of 0.01. Numbers are rounded to the second decimal. A confidence 

interval of [0.42, 0.61] for 30 days option-implied standard deviation (BKM) can be interpreted as follows: for a 1 unit increase in option-implied standard 

deviation (BKM), total realized return would be expected to increase (in average) by an amount ranging between 0.42% and 0.61%. Several variables 

confidence intervals are [0, 0]. Consequently, although some of these coefficients may be statistically significant, their effect is marginal. (less than 1/100th of 

a percent.) 
 

 

 

 

 

 

 

 

Multiple Regression BKM Coefficient Confidence Intervals (α = 0.01)

Days to maturity 30 60 91 122 152 182 273 365 547 730

Intercept [0.02, 0.02] [0.04, 0.05] [0.04, 0.07] [0.05, 0.08] [0.05, 0.08] [0.03, 0.07] [0.04, 0.11] [0.02, 0.14] [-0.52, -0.33] [-0.4, -0.19]

Option-Implied Mean (BKM) [0.15, 0.61] [0.26, 0.61] [0.41, 0.72] [0.31, 0.56] [0.31, 0.56] [0.07, 0.32] [0.19, 0.44] [0.33, 0.64] [-0.04, 0.29] [1.61, 1.97]

Option-Implied Standard Deviation (BKM)[0.42, 0.65] [0.47, 0.64] [0.54, 0.69] [0.69, 0.81] [0.69, 0.81] [0.68, 0.81] [0.82, 0.95] [1.08, 1.25] [1.58, 1.78] [2.24, 2.47]

Option-Implied Skewness (BKM) [0.01, 0.02] [0.02, 0.04] [0.03, 0.05] [0.12, 0.15] [0.12, 0.15] [0.16, 0.2] [0.22, 0.27] [0.26, 0.34] [0.06, 0.18] [-0.19, -0.07]

Option-Implied Kurtosis (BKM) [0, 0] [-0.01, 0] [-0.01, 0] [-0.01, 0] [-0.01, 0] [0, 0.02] [0, 0.02] [0, 0.03] [0.14, 0.2] [0.1, 0.16]

X3*X4 Interaction [0, 0] [-0.01, 0] [-0.01, 0] [-0.03, -0.02] [-0.03, -0.02] [-0.04, -0.03] [-0.05, -0.04] [-0.07, -0.05] [-0.01, 0.02] [0.03, 0.06]

Dollar Volume [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Market Capitalization [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Price to Book [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Price to Cash Flow [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

ROE [0, 0] [0, 0] [0, 0] [0, 0.01] [0, 0.01] [0.01, 0.01] [0.01, 0.01] [-0.01, 0] [-0.06, -0.05] [-0.85, -0.82]

Total Debt to EBITDA [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [-0.01, 0] [-0.01, -0.01] [-0.02, -0.02]

Total Debt to Equity [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0.01, 0.01]

RM-RF (SP100-Rf) [0.97, 0.98] [0.96, 0.98] [0.96, 0.97] [0.96, 0.97] [0.96, 0.97] [0.95, 0.97] [0.94, 0.96] [0.98, 1.01] [1.09, 1.12] [1.25, 1.29]

Momentum (TTM) [0, 0.01] [0.01, 0.01] [0.01, 0.01] [0.01, 0.02] [0.01, 0.02] [0.01, 0.02] [0.03, 0.04] [0.04, 0.05] [0.03, 0.04] [-0.03, -0.01]
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Table 8: Quartile portfolios mean return differences (Q4 High factor values – Q1 Low factor values) 

 

Days to maturity 30days 60days 91days 122days 152days 182days 273days 365days 547days 730days 

Option-Implied Mean (B-L) -0.0059 -0.0151 -0.0275 -0.0405 -0.0534 -0.0682 -0.1106 -0.1617 -0.2557 -0.3524 

Option-Implied Standard Deviation (B-L) 0.0110 0.0203 0.0287 0.0404 0.0529 0.0661 0.1047 0.1543 0.2513 0.3457 

Option-Implied Skewness (B-L) -0.0054 -0.0088 -0.0068 0 0.0146 0.0266 0.0729 0.1302 0.2462 0.3434 

Option-Implied Kurtosis (B-L) 0.0024 0.0047 0.0111 0.0121 0.0136 0.0132 0 -0.0319 -0.0869 -0.1171 

Skewness * Kurtosis Interaction (B-L) -0.0041 -0.0071 0 0.0070 0.0177 0.0290 0.0705 0.1174 0.2318 0.3186 

Option-Implied Mean (BKM) -0.0116 -0.0204 -0.0292 -0.0405 -0.0539 -0.0674 -0.1089 -0.1601 -0.2611 -0.3653 

Option-Implied Standard Deviation (BKM) 0.0116 0.0203 0.0289 0.0402 0.0536 0.0671 0.1088 0.1600 0.2637 0.3654 

Option-Implied Skewness (BKM) 0.0071 0.0143 0.0215 0.0298 0.0409 0.0515 0.0821 0.1193 0.2147 0.3197 

Option-Implied Kurtosis (BKM) -0.0100 -0.0205 -0.0312 -0.0437 -0.0581 -0.0724 -0.1113 -0.1581 -0.2543 -0.3501 

Skewness * Kurtosis Interaction (BKM) 0.0084 0.0162 0.0236 0.0323 0.0431 0.0538 0.0886 0.1297 0.2266 0.3329 

Dollar Volume -0.0073 -0.0133 -0.0185 -0.0250 -0.0297 -0.0348 -0.0519 -0.0810 -0.1440 -0.2064 

Market Capitalization -0.0132 -0.0258 -0.0392 -0.0536 -0.0681 -0.0829 -0.1301 -0.1873 -0.3015 -0.4312 

Price to Book 0 0 0.0045 0.0052 0.0060 0.0082 0.0139 0.0337 0.0696 0.1329 

Price to Cash Flow 0 0 0 -0.0069 -0.0099 -0.0126 -0.0255 -0.0326 0 0 

ROE 0 0 -0.0041 -0.0073 -0.0111 -0.0157 -0.0303 -0.0473 -0.0973 -0.1520 

Total Debt to EBITDA -0.0041 -0.0076 -0.0096 -0.0106 -0.0128 -0.0168 -0.0347 -0.0529 -0.0974 -0.1748 

Total Debt to Equity -0.0034 -0.0065 -0.0092 -0.0110 -0.0129 -0.0166 -0.0330 -0.0547 -0.1173 -0.2220 

Momentum (TTM) 0 0 0 0 0.0075 0.0121 0.0225 0.0342 0.0261 0 

This table shows the difference between the quartile 4 and the quartile 1 (Q4-Q1) mean realized returns for each time to maturity group. For example, the Option-

Implied Mean (B-L) 730days value of -0.3524 represents the 20 years mean return difference between a portfolio composed of the companies with the highest 

(quartile 4) option-implied mean values and those with the lowest option-implied mean. Every day from 1996 to 2016, quartile portfolios are created for each 

different factor and mean returns for those factor portfolios are computed for that day. The first and fourth quartile 20 year mean returns are then compared and 

tested for equal (unequal) mean using a two-sample t-test. In the case of Option-Implied Mean (B-L), the alternative hypothesis was chosen, meaning that the 20-

year return distribution mean of the two quartile factor portfolios were statistically different at the 5% level. When the outcome was that Q4 mean and Q1 mean 

are not statistically different from one-another, the value was replaced by 0, in other words, there was no difference in returns between quartile (Q4-Q1) portfolios. 

 

A potential pitfall when performing regressions using large samples is the fact that larger sample sizes have smaller standard error and 

smaller p-values. Thus, relying solely on coefficient sizes and p-values when performing regressions using large samples could 

potentially be misleading. As an alternative, the quartiles portfolio methodology is used to compare results. 
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Table 9: Summary 

Factors\Methodology 

Table 6  

Regression B-L 

Table 7  

Regression BKM 

Table 8  

Quartiles (Q4High-Q1Low) Summary: 

Option-Implied Mean (B-L) Unclear  Negative Unclear 

Option-Implied Standard Deviation (B-L) Positive  Positive Higher factor value higher realized returns. 

Option-Implied Skewness (B-L) Positive  Unclear Unclear. 

Option-Implied Kurtosis (B-L) Positive  Unclear Unclear 

Skewness * Kurtosis Interaction (B-L) Negative  Positive Unclear 

Option-Implied Mean (BKM)  Positive Negative Unclear 

Option-Implied Standard Deviation (BKM)  Positive Positive Higher factor value higher realized returns. 

Option-Implied Skewness (BKM)  Positive Positive Higher factor value higher realized returns. 

Option-Implied Kurtosis (BKM)  Unclear Negative Unclear 

Skewness * Kurtosis Interaction (BKM)  Negative Positive Unclear 

Dollar Volume Negative Negative Negative Lower factor value higher realized returns. 

Market Capitalization Negative Negative Negative Lower factor value higher realized returns. 

Price to Book Unclear Unclear Positive Unclear 

Price to Cash Flow Negative Negative Negative Lower factor value higher realized returns. 

ROE Unclear Unclear Negative Unclear 

Total Debt to EBITDA Negative Negative Negative Lower factor value higher realized returns. 

Total Debt to Equity Positive Positive Negative Unclear 

Momentum (TTM) Positive Positive Positive Higher factor value higher realized returns. 

The table above shows the obtained relationship sign between realized total return and factors using different methodologies. The quartiles methodology 

compares returns between high and low quartile portfolios. A two-sample t-test is used to see if quartile portfolio returns are significantly different from one-

another. The regression B-L and BKM methodologies use multiple regressions to find which factors are statistically significant and determine their 

coefficients. 

 

It is important to state that the largest contributor to R-squared values shown in table 6 and 7 is by far the RM-Rf (SP100-Rf) factor 

which represents the S&P 100 market premium over risk-free rates. Thus, while other factors appear significant, their effect is relatively 

small in absolute term. Table 8 does not include market premium and provides a different methodology which helps determining whether 

an observed relationship can be confirmed or should rather be contested.
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Comparing the multiple regressions (both methodologies) and quartile portfolios results found in 

table 6, 7 and 8 above, we can observe that option-implied standard deviation is positive and 

statistically significant for all. This means that, in average, stocks which have higher expected 

volatility tend to outperform those with lower expected volatility. Similarly, option-implied 

skewness and momentum (computed as trailing last twelve month returns) are positively related 

to realized returns most of the time. 

On the other hand, dollar volume, market capitalization, price to cash flow and total debt to 

EBITDA ratios are significantly negatively related to realized returns, suggesting that smaller size 

companies with high cash flow per share and low debt burden likely outperform large companies 

that have higher debt to EBITDA ratios and lower cash flow per share. The above-mentioned 

relations appear to be logical and conform with results obtained from past studies.  

However, note that the multiple regressions and quartile portfolio tests are done using the entire 

time window. Consequently, it is possible that some of these results (particularly option-implied 

skewness) might not hold within specific sub-periods. We also note that the option-implied 

skewness * option-implied kurtosis interaction term is positive for both methodologies when using 

the quartiles portfolio test whereas it is negative when performing the multiple regression. Thus, 

we cannot conclude with certainty the sign of this interaction term. In theory, risk-averse investors 

should require a higher expected return for investments that exhibit negative skewness and high 

kurtosis. As a result, when the interaction value of skewness*kurtosis is large and negative, 

investors should require higher expected returns. Finally, it is important to mention that some of 

the above-mentioned coefficient sizes may not only differ in size but also in realizability. For 

example, looking at table 6 p.40, coefficient intervals for option-implied σ with time to maturity 

of 182 days values of [0.57, 0.65] can be interpreted as follows: for a 0.1 unit increase in option-
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implied standard deviation (B-L 182 days), total realized return would be expected to increase (in 

average) by an amount ranging between 0.057% and 0.065%. The quartile portfolios value 

0.0661% for this same variable presents an accurate overview of the size that can realistically be 

realized in 182 days. On an annual basis (0.0661*(365/182)), alpha generated would be 

approximately equal to 0.1326%, which is relatively close to the obtained value of 0.1543% when 

looking at 365 days to expiration groups. 
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6. CONCLUSIONS 

This paper analyzes the information content of option-implied moments. We find that realized 

daily return moments are not well predicted by their respective option-implied moment except for 

standard deviation which is relatively accurate. Thus, option-implied standard deviation is a 

reasonably accurate predictor of future realized daily return standard deviation. In addition, in 

terms of methodology used, the BKM approach does not appear to be positively impacted by data 

interpolation whereas the B-L approach benefits from such interpolation. However, the 

interpolation benefits quickly decay, meaning that balancing the number of interpolated data points 

(to 52 instead of 152 or 502 for example), can provide a close to optimal prediction ability while 

greatly reducing the computing requirements. Next, when regressing option-implied moments in 

addition to various fundamental and market data with realized total returns, we find that firms that 

have higher option-implied volatility and option-implied skewness, lower market capitalization, 

dollar volume, price to cash flows and total debt to EBITDA tend to outperform their opposites. 

Except for option-implied skewness which is found to be unstable across time windows, other 

results observed are mostly conform with previous literature and have stable coefficient signs. As 

mentioned earlier, the best time to buy stocks generally is when implied volatility has reached high 

levels and is starting to decrease due to positive momentum. At that moment, quality mid-cap firms 

that are financially healthy (Low debt to EBITDA, high cash flow per share) can provide good 

risk-reward return potential. 
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7. LIMITATIONS AND FUTURE RESEARCH 

One potential pitfall from the research is the fact during sample construction, keeping only firms 

that remained in the S&P 100 index could have created a survivorship bias. Only firms that 

maintained the index criterions during the entire time window remain. Consequently, it is possible 

that some firms stock price declined significantly for some reason, hence generally leading to an 

increase of that firm’s perceived risk. Since only firms which remained in the index are retained, 

as a by-product, it might also have removed some firms which stock prices never recovered and 

kept firms that survived through those more difficult times, hence potentially explaining a portion 

of the excess return obtained from those stocks with higher expected volatility and skewness.  

 

First, future research could be done to address this issue whilst also including smaller capitalization 

companies that have liquid options market. Similarly, companies from other countries or 

exchanges could be analyzed. 

Finally, other interesting areas for future research could be for instance to test strategies which 

increases a portfolio allocation towards equity when implied volatility previously reached high 

levels and began decreasing. In contrast, it would decrease equity allocation and increase fixed 

income or alternative investments allocation when VIX is increasing while SKEW is at or near 

high levels.
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9. APPENDICES 

Table 10: Company List 

Company name Ticker SECID(s) Industry Group # Main industry (Sector) 

Abbott Laboratories ABT 100972 521 Healthcare 

Allstate Corp ALL 101273 432 Financial 

Time Warner Inc. TWX 101328 722 Services 

American Express Co AXP 101375 424 Financial 

American International Group Inc. AIG 101397 432 Financial 

Amgen Inc. AMGN 101508 515 Healthcare 

Apple Inc. AAPL 101594 314 Consumer Goods 

Bank of America  BAC 101966 410 Financial 

Boeing Co BA 102265 611 Industrial 

Bristol-Myers Squibb Co BMY 102349 510 Healthcare 

Capital One Financial Corp COF 102702 424 Financial 

Caterpillar Inc. CAT 102796 620 Industrial 

Celgene Corp CELG 102822 515 Healthcare 

J P Morgan Chase & Co JPM 102936 410 Financial 

Cisco Systems Inc. CSCO 103042 814 Technology 

Coca-Cola Co KO 103125 348 Consumer Goods 

Colgate Palmolive Co CL 103157 323 Consumer Goods 

Comcast Corp CMCSA 103198 722 Services 

Danaher Corp DHR 103676 622 Industrial 

Walt Disney Co DIS 103879 722 Services 

Dow Chemical Co DOW 103936 110 Basic Materials 

E. I du Pont de Nemours & Co DD 103969 112 Basic Materials 

Duke Energy Corp DUK 103979 913 Utilities 

EMC Corp EMC 104049 813 Technology 

Emerson Electric Co EMR 104286 627 Industrial 

Fedex Corp FDX 104635 773 Services 

Ford Motor Co F 104939 330 Consumer Goods 

General Dynamics Corp GD 105168 611 Industrial 

General Electric Co GE 105169 622 Industrial 

Gilead Sciences Inc. GILD 105243 515 Healthcare 

Halliburton Co HAL 105512 124 Basic Materials 

Home Depot Inc. HD 105759 736 Services 

Honeywell Inc. HON 105785 622 Industrial 

Intel Corp INTC 106203 830 Technology 

International Business Machines Corp IBM 106276 824 Technology 

Johnson & Johnson JNJ 106566 510 Healthcare 

Lilly Eli & Co LLY 106967 510 Healthcare 

Lockheed Martin Corp LMT 107010 611 Industrial 

Lowe's Companies Inc. LOW 107045 736 Services 

Mc Donalds Corp MCD 107318 712 Services 

Bank of New York Mellon BK 107407 422 Financial 

Merck & Co Inc. MRK 107430 510 Healthcare 

Microsoft Corp. MSFT 107525 826 Technology 

3M Co MMM 107616 622 Industrial 

Morgan Stanley MS 107704 420 Financial 

Nike Inc. NKE 108161 321 Consumer Goods 

Occidental Petroleum Corp OXY 108385 121 Basic Materials 

Oracle Corp ORCL 108505 821 Technology 

Pepsico Inc. PEP 108893 348 Consumer Goods 

Altria Group Inc. MO 108965 350 Consumer Goods 
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Company name Ticker SECID(s) Industry Group # Main industry (Sector) 

Procter & Gamble Co PG 109224 323 Consumer Goods 

Pfizer Inc. PFE 108948 510 Healthcare 

Qualcomm Inc. QCOM 109348 841 Technology 

Raytheon Co RTN 109497 611 Industrial 

AT&T Corp. T 109775 844 Technology 

Schlumberger Ltd SLB 109956 124 Basic Materials 

Southern Co SO 110337 911 Utilities 

Starbucks Corp SBUX 110472 713 Services 

Texas Instruments Inc. TXN 110972 830 Technology 

Union Pacific Corp UNP 111394 776 Services 

United Technologies Corp UTX 111459 611 Industrial 

UnitedHealth Group Inc. UNH 111469 522 Healthcare 

Wal-Mart Stores Inc. WMT 111860 732 Services 

Allergan Inc. AGN 111907 511 Healthcare 

This table presents the list of S&P 100 constituent stocks which were included in the sample studied in this paper. 
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Figure 6. Sample firm sector proportions 
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APPENDIX A – Formula to compute the strike price of a continuous dividend yield European 

option contract given the delta value, stock price, dividends, time to expiration, volatility and risk-

free interest rates. 

This formula starts from the B-S delta formula and isolates the strike (K) value. Formulas for call 

and puts are applicable to European options with continuous dividend yield. (Thus, it applies to 

European option on indexes.) In the case of American option with discrete cash dividends, the 

formula would need proper adjustments. 

Call option delta calculation steps:     Put option delta: 

∆ = 𝑒−𝑞𝑡𝑁(𝑑1)       ∆ = −𝑒−𝑞𝑡𝑁(−𝑑1)   

∆

𝑒−𝑞𝑡
= 𝑁(𝑑1)                

𝑛𝑜𝑟𝑚𝑠𝑖𝑛𝑣 (
∆

𝑒−𝑞𝑡) = 𝑑1           𝑑1 =  
𝑙𝑛(𝑆 𝐾⁄ )+(𝑟−𝑞+𝜎2 2⁄ )𝑡

𝜎√𝑡
 

𝑛𝑜𝑟𝑚𝑠𝑖𝑛𝑣 (
∆

𝑒−𝑞𝑡) =
𝑙𝑛(𝑆 𝐾⁄ )+(𝑟−𝑞+𝜎2 2⁄ )𝑡

𝜎√𝑡
  

𝑛𝑜𝑟𝑚𝑠𝑖𝑛𝑣 (
∆

𝑒−𝑞𝑡) × (𝜎√𝑡) = 𝑙𝑛(𝑆 𝐾⁄ ) + (𝑟 − 𝑞 + 𝜎2 2⁄ )𝑡  

𝑛𝑜𝑟𝑚𝑠𝑖𝑛𝑣 (
∆

𝑒−𝑞𝑡) × (𝜎√𝑡) − (𝑟 − 𝑞 + 𝜎2 2⁄ )𝑡 = 𝑙𝑛(𝑆 𝐾⁄ )  

𝑒𝑥𝑝 (𝑛𝑜𝑟𝑚𝑠𝑖𝑛𝑣 (
∆

𝑒−𝑞𝑡) × (𝜎√𝑡) − (𝑟 − 𝑞 + 𝜎2 2⁄ )𝑡) = 𝑆 𝐾⁄   

 

Formula for European call option: 

𝐾 =  
𝑆

𝑒𝑥𝑝(𝑛𝑜𝑟𝑚𝑠𝑖𝑛𝑣(
∆

𝑒−𝑞𝑡)×(𝜎√𝑡)−(𝑟−𝑞+𝜎2 2⁄ )𝑡)
  

Formula for European put option: 

𝐾 =  
𝑆

𝑒𝑥𝑝(−𝑛𝑜𝑟𝑚𝑠𝑖𝑛𝑣(
∆

−𝑒−𝑞𝑡)×(𝜎√𝑡)−(𝑟−𝑞+𝜎2 2⁄ )𝑡)
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APPENDIX B – Computing Risk-Neutral Implied Moments Using the Bakshi, Kapadia and 

Madan (2003) Methodology 

This appendix shows the formulas used by Bakshi, Kapadia and Madan (2003) and the 

corresponding MATLAB code used to compute the Risk-Neutral option-implied moments using 

the BKM methodology. For additional details, please refer to the original paper and/or code. The 

MATLAB Option Implied Moments toolbox shared on the MATLAB File Exchange by Matthias 

Held (Updated 30 July 2014). 

First, the BKM theorem 1 states that under all martingale pricing measures, the prices of volatility, 

cubic and quartic contracts can be recovered from the market prices of OTM European calls and 

puts. Using those contracts, the mean, volatility, skewness and kurtosis of the risk-neutral return 

density can be extracted. The authors also assert that their theorem also generalizes to American 

options. They support this by stating that OTM options have negligible early exercise premiums 

and that even when early exercise premiums are substantial (for example for OTM options that are 

close to being ATM), the weight assigned to those options is small.  

The notation used for computing these contracts are as follows: S(t) represents the stock price at 

time t, r is the interest rate, C(t,τ;K) and P(t,τ;K) are prices of call and put options written on the 

stock with current price S(t), τ is the time to expiration and K is the strike price. 

𝑉𝑜𝑙𝐵𝐾𝑀(𝑡, 𝜏) = √𝑒𝑟𝜏𝑉(𝑡, 𝜏) − 𝜇(𝑡, 𝜏)2  

𝑆𝐾𝐸𝑊𝐵𝐾𝑀(𝑡, 𝜏) =
𝑒𝑟𝜏𝑊(𝑡,𝜏)−3𝜇(𝑡,𝜏)𝑒𝑟𝜏𝑉(𝑡,𝜏)+2𝜇(𝑡,𝜏)3

[𝑒𝑟𝜏𝑉(𝑡,𝜏)−𝜇(𝑡,𝜏)2]3 2⁄   

𝐾𝑈𝑅𝑇𝐵𝐾𝑀(𝑡, 𝜏) =
𝑒𝑟𝜏𝑋(𝑡,𝜏)−4𝜇(𝑡,𝜏)𝑒𝑟𝜏𝑊(𝑡,𝜏)+6𝑒𝑟𝜏𝜇(𝑡,𝜏)2 𝑉(𝑡,𝜏)−3𝜇(𝑡,𝜏)4

[𝑒𝑟𝜏𝑉(𝑡,𝜏)−𝜇(𝑡,𝜏)2]2   
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Where the mean stock return 𝜇(𝑡, 𝜏) is: 

𝜇(𝑡, 𝜏) = 𝑒𝑟𝜏 − 1 −
𝑒𝑟𝜏

2
𝑉(𝑡, 𝜏) −

𝑒𝑟𝜏

6
𝑊(𝑡, 𝜏) −

𝑒𝑟𝜏

24
𝑋(𝑡, 𝜏), 

the price of the volatility contract 𝑉(𝑡, 𝜏) is: 

𝑉(𝑡, 𝜏) = ∫
2(1−𝑙𝑛[

𝐾

𝑆(𝑡)
])

𝐾2 𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾 +
∞

𝑆(𝑡) ∫
2(1+𝑙𝑛[

𝑆(𝑡)

𝐾
])

𝐾2 𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾
𝑆(𝑡)

0
, 

the price of the cubic contract 𝑊(𝑡, 𝜏) is: 

𝑊(𝑡, 𝜏) = ∫
6 𝑙𝑛[

𝐾

𝑆(𝑡)
]−3 (𝑙𝑛[

𝐾

𝑆(𝑡)
])

2

𝐾2 𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾 −
∞

𝑆(𝑡) ∫
6 𝑙𝑛[

𝑆(𝑡)

𝐾
]+3 (𝑙𝑛[

𝑆(𝑡)

𝐾
])

2

𝐾2 𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾
𝑆(𝑡)

0
, 

and the price of the quartic contract 𝑋(𝑡, 𝜏) is: 

𝑋(𝑡, 𝜏) = ∫
12 (𝑙𝑛[

𝐾

𝑆(𝑡)
])

2
−4 (𝑙𝑛[

𝐾

𝑆(𝑡)
])

3

𝐾2 𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾 +
∞

𝑆(𝑡) ∫
12 (𝑙𝑛[

𝑆(𝑡)

𝐾
])

2
+4 (𝑙𝑛[

𝑆(𝑡)

𝐾
])

3

𝐾2 𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾
𝑆(𝑡)

0
. 

The MATLAB function takes the form of: 

Output moments = mOption2stat(XC,C,XP,P,S0,DF,N) 

Where XC and XP are column vectors of strike prices, C and P are column vectors of Call and Put 

prices. XC and C must me of the same size and with matching rows. Likewise, for XP and P. S0 

is the underlying asset price, DF is the risk-free discount factor (both are scalar values). N is a 

vector holding the required moments. (i.e. if equal 4, it computes the first four moments) 

Using the above formula calls the mOption2stat.m file code and returns the first N standardized 

moments of an asset's risk neutral log return distribution from traded put and call options traded 

on that asset, with equal time to expiration. 
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Appendix C: CBOE SKEW – Comparing Estimated to Realized Risk-Adjusted Probabilities 

of S&P 500 Log returns Two and Three Standard Deviations below the Mean 

In its white paper published in 2010, the CBOE indicates that the SKEW index can be interpreted 

as a risk-adjusted probability that the one-month S&P 500 log-return falls two or three standard 

deviations below the mean and that the VIX can be used as an indicator of the magnitude of the 

standard deviation. Table 2 of their paper shows probabilities which are based on overlaying risk-

neutral skewness over a normal distribution, as done in a Gram-Charlier expansion of the normal 

distribution. Thus, when SKEW = 100, the distribution of the S&P500 log-returns is normal, 

meaning that the probability of returns +-2σ is 4.6% (2.3% on each side) and +-3σ is 0.3% (0.15% 

on each side). As skew increases to levels beyond 100, a skewness term is added to the normal 

distribution, leading to probabilities shown in the replicated table 1 below: 

Table A1: Estimated Risk-Adjusted Probabilities of S&P 500 Log Returns Two and Three 

Standard Deviations below the Mean 

Estimated Risk-Adjusted Probabilities of S&P 500 Log Returns 

 S&P 500 30-Day Log Return 

SKEW 2 Std. Dev 3 Std. Dev 

100 2.30% 0.15% 

105 3.65% 0.45% 

110 5.00% 0.74% 

115 6.35% 1.04% 

120 7.70% 1.33% 

125 9.05% 1.63% 

130 10.40% 1.92% 

135 11.75% 2.22% 

140 13.10% 2.51% 

145 14.45% 2.81% 

Source: CBOE, 2010. “The CBOE Skew Index - SKEW”, SKEW White Paper. 
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Intrigued by this theory proposition, I performed a quick statistical analysis of historical S&P 500 

30-day log returns at various SKEW index level for the period ranging from the 2nd January 1990 

to the 31st of July 2017. It was done as follows: First, data for the VIX, SKEW and S&P 500 Total 

Return was gathered from the CBOE website. Next, daily VIX values were adjusted as follows so 

that instead of representing annualized implied volatility, it represents monthly implied volatility: 

𝑉𝐼𝑋𝑀𝑜𝑛𝑡ℎ𝑙𝑦 = 𝑉𝐼𝑋 √12⁄  

Then 30-day realized log returns were divided by 𝑉𝐼𝑋𝑀𝑜𝑛𝑡ℎ𝑙𝑦 to finally obtain the realized returns 

in terms of standard deviations (𝑉𝐼𝑋𝑀𝑜𝑛𝑡ℎ𝑙𝑦). This information was then divided in skew-value 

categories such as in Table 1 above. Results obtained are as follow: 

Table A2: Realized Risk-Adjusted Probabilities of S&P 500 Log Returns Two and Three 

Standard Deviations below the Mean 

Realized Risk-Adjusted Probabilities of S&P 500 Log Returns 

  S&P 500 30-Day Log Return 

SKEW Sample size % <= -2 Std. Dev % <= -3 Std. Dev 

[100-105] 21 0.00% 0.00% 

]105-110] 449 1.11% 0.67% 

]110-115] 1854 1.24% 0.32% 

]115-120] 2094 0.76% 0.05% 

]120-125] 1391 0.72% 0.22% 

]125-130] 638 0.94% 0.00% 

]130-135] 272 1.10% 0.00% 

]135-140]  180 0.00% 0.00% 

]140-145] 35 0.00% 0.00% 

]145+ 17 0.00% 0.00% 
 

Finally, the results suggest that the relationship between SKEW index value and realized returns 

in terms of 𝑉𝐼𝑋𝑀𝑜𝑛𝑡ℎ𝑙𝑦 is far from values previously estimated by the CBOE in the SKEW white 

paper. Furthermore, as shown by table 3 and 4 on the following page, small sample sizes for skew 

values below 105 or above 140 makes it trivial to make any conclusion for those groups. As for 

groups ranging from 105 to 140, they do not appear to have significant differences. However, 

testing different time frames (more than 30 days) could provide interesting results. 
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Table A3: 
Frequency (sample size) for different skew values and realized 30 days return in number of STDEV (VIX) 

σ\SKEW [100-105] ]105-110] ]110-115] ]115-120] ]120-125] ]125-130] ]130-135] ]135-140] ]140-145] >145 

]-∞, -4] 0 2 2 0 0 0 0 0 0 0 

]-4, -3] 0 1 4 1 3 0 0 0 0 0 

]-3, -2] 0 2 17 15 7 6 3 0 0 0 

]-2, -1] 0 18 121 113 94 32 15 5 4 1 

]-1, 0] 0 134 568 587 381 176 81 80 8 9 

]0, 1] 14 247 968 1209 806 377 154 85 21 5 

]1, 2] 7 43 174 168 100 47 19 10 2 2 

]2, 3] 0 2 0 1 0 0 0 0 0 0 

]3, 4] 0 0 0 0 0 0 0 0 0 0 

Total 21 449 1854 2094 1391 638 272 180 35 17 

 

Table A4: 

Frequency (%) for different skew values and realized 30 days return in number of STDEV (VIX) 

σ\SKEW [100-105] ]105-110] ]110-115] ]115-120] ]120-125] ]125-130] ]130-135] ]135-140] ]140-145] >145 

]-∞, -4] 
0.00% 0.45% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

]-4, -3] 
0.00% 0.22% 0.22% 0.05% 0.22% 0.00% 0.00% 0.00% 0.00% 0.00% 

]-3, -2] 
0.00% 0.45% 0.92% 0.72% 0.50% 0.94% 1.10% 0.00% 0.00% 0.00% 

]-2, -1] 
0.00% 4.01% 6.53% 5.40% 6.76% 5.02% 5.51% 2.78% 11.43% 5.88% 

]-1, 0] 
0.00% 29.84% 30.64% 28.03% 27.39% 27.59% 29.78% 44.44% 22.86% 52.94% 

]0, 1] 
66.67% 55.01% 52.21% 57.74% 57.94% 59.09% 56.62% 47.22% 60.00% 29.41% 

]1, 2] 
33.33% 9.58% 9.39% 8.02% 7.19% 7.37% 6.99% 5.56% 5.71% 11.76% 

]2, 3] 
0.00% 0.45% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

]3, 4] 
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Finally, in the tables presented on the following pages, it is worth noting that the 30 and 365 days return 

frequency for various VIX and SKEW levels appear to follow some pattern. Notably, the worst forward 

365 days returns have often occurred when the VIX reached levels between 20 and 30. Furthermore, when 

the VIX is either below 15 or above 35, it is followed by positive returns close to 90% of the time. Regarding 

the SKEW, the worst 365 days returns occurred with greater frequency when the indicator reached levels 

between 110 and 115. In terms of positive returns, one-year realized total returns tend to be highest when 

reaching points of maximum pessimism (VIX reaching above 35). In overall, it is best to wait for the VIX 

to reach high levels and wait for it to start declining (which should happen if prices stabilize or increase.) 

After reaching such levels, seeing both VIX and SKEW declining simultaneously could suggest a potential 

(365 days time frame) buying opportunity. Naturally, this is complementary to fundamental and technical 

analysis. 
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Return\VIX [0,10] ]10,15] ]15,20] ]20,25] ]25,30] ]30,35] ]35,40] ]40,45] ]45,50] >50

]-100%, -90%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-90%, -80%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-80%, -70%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-70%, -60%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-60%, -50%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-50%, -40%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-40%, -30%] 0.00% 0.00% 0.00% 0.14% 0.15% 0.70% 0.81% 0.00% 0.00% 0.00%

]-30%, -20%] 0.00% 0.00% 0.05% 0.07% 0.15% 1.74% 1.61% 3.80% 0.00% 1.79%

]-20%, -10%] 0.00% 0.00% 1.45% 2.97% 3.20% 1.05% 7.26% 6.33% 15.15% 10.71%

]-10%, 0%] 46.15% 32.66% 35.15% 37.39% 33.69% 23.34% 17.74% 17.72% 42.42% 44.64%

]+0%, +10%] 53.85% 67.34% 62.99% 58.50% 60.37% 67.60% 65.32% 41.77% 18.18% 32.14%

]+10%, +20%] 0.00% 0.00% 0.35% 0.92% 2.44% 5.57% 7.26% 30.38% 18.18% 8.93%

]+20%, +30%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.06% 1.79%

]+30%, +40%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+40%, +50%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+50%, +60%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+60%, +70%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+70%, +80%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+80%, +90%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+90%, +100%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sample size 26 2281 1997 1412 656 287 124 79 33 56

Frequency for different vix values and realized next 30 days total return

Return\VIX [0,10] ]10,15] ]15,20] ]20,25] ]25,30] ]30,35] ]35,40] ]40,45] ]45,50] >50

]-100%, -90%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-90%, -80%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-80%, -70%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-70%, -60%] 0.00% 0.00% 0.00% 0.07% 0.61% 0.00% 0.00% 0.00% 0.00% 0.00%

]-60%, -50%] 0.00% 0.00% 0.30% 1.49% 1.52% 0.35% 0.00% 0.00% 0.00% 0.00%

]-50%, -40%] 0.00% 0.00% 1.37% 3.33% 5.49% 1.05% 0.00% 0.00% 0.00% 0.00%

]-40%, -30%] 0.00% 0.00% 1.12% 3.26% 0.91% 0.00% 0.00% 0.00% 0.00% 0.00%

]-30%, -20%] 0.00% 0.00% 3.55% 10.00% 5.49% 3.14% 1.61% 0.00% 0.00% 0.00%

]-20%, -10%] 0.00% 0.29% 2.48% 11.70% 12.04% 7.32% 4.84% 5.06% 0.00% 0.00%

]-10%, 0%] 11.11% 6.78% 3.09% 6.74% 6.25% 2.79% 4.03% 0.00% 9.09% 0.00%

]+0%, +10%] 88.89% 34.84% 26.47% 14.18% 13.11% 5.92% 2.42% 0.00% 3.03% 7.14%

]+10%, +20%] 0.00% 40.38% 38.84% 31.99% 29.27% 31.71% 23.39% 3.80% 3.03% 28.57%

]+20%, +30%] 0.00% 14.84% 16.78% 14.61% 24.54% 34.84% 45.97% 55.70% 30.30% 46.43%

]+30%, +40%] 0.00% 2.86% 5.53% 1.91% 0.76% 12.89% 17.74% 22.78% 36.36% 10.71%

]+40%, +50%] 0.00% 0.00% 0.46% 0.71% 0.00% 0.00% 0.00% 12.66% 12.12% 5.36%

]+50%, +60%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.06% 1.79%

]+60%, +70%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+70%, +80%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+80%, +90%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+90%, +100%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sample size 9 2095 1972 1410 656 287 124 79 33 56

Frequency for different vix values and realized next 365 days total return
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Return%\SKEW [100-105] ]105-110] ]110-115] ]115-120] ]120-125] ]125-130] ]130-135] ]135-140] ]140-145] >145

]-100%, -90%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-90%, -80%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-80%, -70%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-70%, -60%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-60%, -50%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-50%, -40%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-40%, -30%] 0.00% 0.22% 0.27% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-30%, -20%] 0.00% 0.45% 0.32% 0.10% 0.22% 0.16% 0.00% 0.00% 0.00% 0.00%

]-20%, -10%] 0.00% 0.45% 2.42% 1.57% 1.65% 1.72% 1.83% 0.56% 0.00% 0.00%

]-10%, 0%] 0.00% 33.85% 35.41% 32.49% 32.93% 31.67% 34.80% 46.67% 36.11% 58.82%

]+0%, +10%] 100.00% 61.69% 59.31% 64.46% 64.78% 66.15% 61.90% 52.22% 63.89% 41.18%

]+10%, +20%] 0.00% 3.34% 2.15% 1.34% 0.43% 0.31% 1.47% 0.56% 0.00% 0.00%

]+20%, +30%] 0.00% 0.00% 0.11% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+30%, +40%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+40%, +50%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+50%, +60%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+60%, +70%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+70%, +80%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+80%, +90%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+90%, +100%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sample size 21 449 1858 2096 1394 641 273 180 36 17

Frequency for different skew values and realized next 30 days total return

Return\SKEW [100-105] ]105-110] ]110-115] ]115-120] ]120-125] ]125-130] ]130-135] ]135-140] ]140-145] >145

]-100%, -90%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-90%, -80%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-80%, -70%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-70%, -60%] 0.00% 0.00% 0.27% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]-60%, -50%] 0.00% 0.22% 1.45% 0.43% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%

]-50%, -40%] 0.00% 2.67% 3.61% 1.63% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%

]-40%, -30%] 0.00% 0.45% 2.64% 1.01% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00%

]-30%, -20%] 0.00% 2.45% 6.35% 4.45% 2.74% 0.00% 0.00% 0.00% 0.00% 0.00%

]-20%, -10%] 0.00% 6.68% 9.36% 5.03% 1.48% 0.17% 0.00% 0.00% 0.00% 0.00%

]-10%, 0%] 0.00% 2.23% 4.25% 3.59% 7.42% 10.34% 9.55% 7.19% 4.17% 14.29%

]+0%, +10%] 19.05% 16.48% 18.03% 23.65% 27.74% 24.31% 34.09% 48.20% 41.67% 0.00%

]+10%, +20%] 52.38% 29.62% 26.32% 33.03% 43.92% 52.24% 50.45% 39.57% 50.00% 42.86%

]+20%, +30%] 28.57% 23.83% 18.57% 23.31% 15.58% 12.24% 5.91% 5.04% 4.17% 42.86%

]+30%, +40%] 0.00% 13.59% 8.02% 3.40% 0.82% 0.69% 0.00% 0.00% 0.00% 0.00%

]+40%, +50%] 0.00% 1.78% 1.02% 0.43% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+50%, +60%] 0.00% 0.00% 0.11% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+60%, +70%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+70%, +80%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+80%, +90%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

]+90%, +100%] 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sample size 21 449 1858 2089 1348 580 220 139 24 7

Frequency for different skew values and realized next 365 days total return
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Appendix D: OptionMetrics Volatility Surface Methodology 

Below is part of the methodology as explained in the OptionMetrics File and Data Reference 

Manual. For further details, please refer to the .pdf manual itself. 

First, in the case of American options, OptionMetrics uses a proprietary pricing algorithm based 

on the Cox-Ross-Rubinstein (CRR) binomial tree model. Typically, a large number of tree periods 

(i.e. 1000) are required to obtain good results. The proprietary pricing algorithm has the advantage 

of achieving convergence towards those results, therefore requiring much lower computational 

requirement. The implied volatility of an option given its price is found by running the model 

iteratively with new values until the model price of the option converges to its market price, which 

is defined as the midpoint between the best closing bid and offer prices. 

The Volatility_Surface file contains the interpolated volatility surface for each security on each 

day, using a methodology based on a kernel smoothing algorithm. This file contains information 

on standardized options, both calls and puts, with expirations of 30, 60, 91, 122, 152, 182, 273, 

365, 547, and 730 calendar days, at deltas of 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 

0.65, 0.70, 0.75, and 0.80 (negative deltas for puts). A standardized option is only included if there 

exists enough option price data on that date to accurately interpolate the required values. 

The standardized option implied volatilities in the Volatility Surface file are calculated using a 

kernel smoothing technique. The data is first organized by the log of days to expiration and by 

“call-equivalent delta” (delta for a call, one plus delta for a put). A kernel smoother is then used to 

generate a smoothed volatility value at each of the specified interpolation grid points.  
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At each grid point j on the volatility surface, the smoothed volatility �̂�𝑗 is calculated as a weighted 

sum of option implied volatilities:  

�̂�𝑗 =
∑ 𝑉𝑖𝜎𝑖Φ(𝑥𝑖𝑗, 𝑦𝑖𝑗 , 𝑧𝑖𝑗)𝑖

∑ 𝑉𝑖𝑖 Φ(𝑥𝑖𝑗, 𝑦𝑖𝑗 , 𝑧𝑖𝑗)
 

where i is indexed over all the options for that day, 𝑉𝑖 is the vega of the option, 𝜎𝑖 is the implied 

volatility, and Φ(. ) is the kernel function: 

Φ(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑧𝑖𝑗) =  
1

√2𝜋
𝑒

−[(𝑥2

2ℎ1
⁄ )+(

𝑦2

2ℎ2
⁄ )+(𝑧2

2ℎ3
⁄ )]

 

The parameters to the kernel function, 𝑥𝑖𝑗, 𝑦𝑖𝑗, and 𝑧𝑖𝑗 are measures of the “distance” between the 

option and the target grid point: 

𝑥𝑖𝑗 = log (𝑇𝑖 𝑇𝑗⁄ ) 

𝑦𝑖𝑗 = ∆𝑖 − ∆𝑗 

𝑧𝑖𝑗 = 𝐼{𝐶𝑃𝑖=𝐶𝑃𝑗} 

where 𝑇𝑖 (𝑇𝑗) is the number of days to expiration of the option (grid point); ∆𝑖 (∆𝑗) is the “call-

equivalent delta” of the option (grid point); 𝐶𝑃𝑖 (𝐶𝑃𝑗) is the call/put identifier of the option (grid 

point); and I{.} is an indicator function (=0 if the call/put identifiers are equal, or 1 if they are 

different). 

The kernel “bandwidth” parameters were chosen empirically, and are set as h1=0.05, h2=0.005, 

and h3=0.001. 


