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ABSTRACT  

 

 

This paper provides the first empirical evidence of how the unique properties of crypto-asset 

returns impact event-study test performance. Employing a simulation approach with actual price 

data from 1877 unique crypto-assets over the period of January 1st, 2015 to June 30th, 2018 reveals 

that both parametric procedures and non-parametric procedures often result in significant statistical 

errors. In the presence of event-day clustering, only the Generalized Rank T-Test is both powerful 

and well specified. To estimate abnormal returns, the market-model with a value-weighted index 

produces test statistics with distributions closest to expectation. The empirical evidence provided 

by the simulation then used in the first ever crypto-asset based event-study. Specifically, the event 

study investigated allegations of insider trading by the worlds largest crypto-asset exchange 

Binance.com. A total of 44 unique listing announcements during the period of September 2017 to 

June 2018. produce a statistically significant two day return of 13.6% (CAR(0,1)). However, the 

GRANK-T test fails to reject the null hypothesis of no insider trading during the three days 

preceding the announcements. Guidance and future applications of event-studies with crypto-asset 

returns are discussed.    
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1. Introduction 

Miss-specification in event-studies primarily occurs when there is either, a bias in the 

abnormal return estimation model or a violation of the test statistic assumptions (or both). 

Literature has addressed these concerns for a wide variety of financial assets returns (Corrado, 

2011). However, the magnitude of the departures from normality previously investigated pail in 

comparison to the extremely skewed, highly leptokurtic, return characteristics of crypto-assets. 

Therefore, the applicability of previous evidence is an unexplored empirical question. While, the 

argument can be made that non-parametric tests are appropriate, without empirical evidence they 

cannot be assumed to be well-specified (Campbell et al, 2010).  

Crypto-Assets, which broadly includes all types of tokens and crypto-currencies were 

invented in 2009 with the bitcoin blockchain outlined by Nakamoto (a pseudonym, 2008) in a 

whitepaper distributed on a cryptography email-list. Within 10 years, at the end of 2017, 

accelerating growth has resulted in over 1500 different crypto-assets with a combined market 

capitalization exceeding $800bn USD (Coinmarketcap.com). This rapid growth could be seen as 

reflective of how transformational of an impact blockchain technology is expected to have in 

society (Gartner level 5 classification). However, there is also a widespread belief, supported with 

empirical evidence (Griffen and Shams, 2018), that a substantial part of the growth stems from the 

non-policed1 and mostly anonymous nature of crypto-assets. These contrasting beliefs highlight 

the main contribution of this work. This papers simulation based empirical evidence qualifies the 

use of crypto-asset returns in event-studies, enabling future research to make inferences vital to 

exploring both explanations.  

As the first study to explore the use of crypto-asset returns in event-studies, considerable 

guidance was drawn from the earliest literature in this area. Using the simulation approach 

pioneered by Brown and Warner (1985) the performance of five parametric test statistics and four 

non-parametric test statistics are assessed for daily crypto-asset returns. These are examined under 

three different approaches to calculating abnormal returns and compared with value-weighted and 

equal-weighted market indices.  

                                                
1 It is a common misconception that the crypto-asset market is unregulated. Existing regulations 

including those relating to security offerings, fraud, money laundering, market manipulation, 

misrepresentation and others in most cases directly apply to crypto-assets.  
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The results of the simulations indicate that the non-normality of crypto-asset returns impact 

the performance of most specifications. Due to the contrasting skewness of the market index and 

crypto-asset returns, the market-adjusted abnormal return model should be avoided. The market-

model with a value weighted index, was found to have tests statistics with distributions that most 

closely resembled expectations. When there is no-event day clustering the recommended 

parametric test is the BMP test and the recommend non-parametric test are the GRANK-T and G-

SIGN statistics. However, with event-day clustering the GRANK-T is the only suitable test with 

sufficient power to detect abnormal returns.  

The remainder of the paper is as follows, the motivation and supporting literature is 

discussed in the section below. The experimental design is presented in section three. Section four 

presents the results, followed by the discussion and limitations. Section six applies the findings to 

investigate insider trading by the exchange Binance. The paper concludes by summarizing the 

findings and presenting guidance for future researchers. 

2. Motivation and Literature Review 

2.1 Motivation 

Event-study methodology has a storied history with impacts extending beyond literature 

and into criminal trials. In some circumstances it has become the preferred or even required 

methodology to determine wrong-doing in the eyes of the court (Fisch et al, 2017). This highlights 

the necessity to develop robust event-study methodologies. In western society is commonly argued 

that it is better that 1000 guilty men go free than one innocent man be wrongly convicted. If the 

underlying data or event-study methodology used as evidence in court results in miss-

specifications that cause an increase in type one errors, then it is of considerable value to society 

to insure against this.  

Ginni Rometty, CEO and Chair of IBM believes once widely adopted, Blockchain will 

transform the world (2016).  A robust event-study methodology for crypto-assets will enable 

considerable insights as the transformation process unfolds. While many research questions cannot 

yet be defined, I identify several fruitful avenues for researchers in the near future. It is likely 

public corporations will continue to follow Kodaks lead in developing their own crypto-assets. 

Insights can be gained examining when these crypto-assets become listed on an exchange or 

included in a crypto-index. Initial Coin Offerings (ICO), Blockchain Crowdsales (Amsden and 
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Schweizer, 2018) and Security Token Offerings represent a new mechanism for corporations or 

ventures to raise capital and have similarities to event-studies in IPO literature. The subsequent 

treasury spending of the proceeds raised can be examined from a signaling perspective and 

departures of founders or hiring of new members is pertinent to investigating management 

questions. Token burning events have similarities to conventional literature examining share 

repurchases. Outside of the corporate finance domain, the framework provided by this study will 

be vital to examine blockchain forks (when a network splits into two such as Bitcoin and Bitcoin 

cash), blockchain security (such as a 51% attack), airdrops (providing the crypto-asset for free to 

spur adoption), the value of switching consensus mechanisms and broadly in the domain of law.  

2.1 Conventional Literature 

The history of event-studies dates back to the early 1930s, (MacKinlay, 1997) with the first 

known study by Dolley (1933) examining the impact of stock splits. The event study methodology 

that was employed was what we now call the random walk hypothesis in that the best prediction 

of tomorrows price is todays price. Therefore, the predicted return is equal to zero and the event 

study calculated how often the price increased or decreased following the event. The literature that 

followed would soon point out this methodology was flawed because it did not consider underlying 

movements in the general stock market, therefore erroneously producing statistically significant 

findings. In principle accounting for general market movements appears straightforward, in 

practice it remains the core research question addressed in recent literature. Although crypto-assets 

are categorically different, the underlying research question this paper address's is exactly this. 

How to account for changes in prices that are unrelated to the event itself.  

Conventional literature can be broadly separated by which of the event-study stages it 

addresses. The first stream concerns the estimation of expected returns had the event not occurred 

so that abnormal returns can be calculated. This stream has a rich history, with the more recent 

developments being the introduction of SMB, HML pricing factors (Fama and French, 1993) and 

momentum factors (Carhart, 1997). However, these are statistical models derived from the 

historical returns of securities with unknown applicability to crypto-assets. For a detailed 

discussion on the issues of these in event-studies see Ahern (2009). Fortunately, the event-study 

literature preceding the discovery of pricing factors provides insights for crypto-assets. The mean 



4 
  

adjusted model, market adjusted model and market model examined in Brown and Warner (1985) 

seminal study can be applied in a variety of situations including crypto-assets. 

The second stream of literature concerns determining statistical significance of the 

abnormal returns. Theoretically under perfect conditions a simple t-test can be used, in practice 

the unique characteristics of each study must be considered when formulating a statistical test 

(MacKinlay, 1997). Departures from normality do not always cause concerns. For example, while 

daily returns are generally non-normal, the impact has been shown under certain circumstance to 

be minimal in random samples (Brown and Warner, 1985). However, when there is event induced 

variance an adjustment is required (Boehmer, Musumeci and Poulsen, 1991). Similarly, failure to 

control for cross-correlation when it is present can result in over rejection of the null hypothesis 

of no abnormal returns  (Kolari and Pynnönen, 2010). Ahern (2009) further demonstrates that 

omitted variable bias can occur depending on sample selection. The proposed mechanisms to 

overcome these concerns are summarized in table 1 and discussed in detail in the experimental 

design section.   

 [Insert table 1 about here] 

2.1 Crypto-Asset Literature.  

A critical assumption of event-studies are that event-studies rely on some form of market 

efficiency. That is, that prices change as a result of traders making rational decisions based on the 

arrival of new material information. A review of theoretical models and quantitative tests literature 

support that market efficiency in the context of crypto-assets is similar to that of traditional 

markets. 

Theoretical Models.  

Numerous researchers are developing theoretical models which may have an impact on 

crypto-asset prices and returns. In Cong, Li and Wang (2018), the issue of user-base externalities 

is modeled into asset-pricing theory. The model suggests that crypto-assets accelerate adoption of 

a platform and that price depends on the amount of users, platform productivity, the agents 

transaction needs and similar to traditional securities expectation of price appreciation. Li and 

Mann (2018) propose a similar model that shows that ICOs leverage the network effect and thus 

prices should be expected to also reflect this externality.  
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Quantitative Tests 

Wei (2018) in a brief analysis, test for market efficiency of 456 cryptocurrencies found a 

positive relationship between market efficiency and crypto-asset liquidity. In the lowest 20% of 

liquid crypto-assets, they document a Hurst exponent value of 0.41, below the cutoff of 0.45 

indicating presence of time-series mean reversion. However, as the Hurst tests for long memory 

of returns its impact on short-term event studies is minimal.  Encouragingly, for the 60% most 

liquid crypto-assets the Hurst scores range from 0.46 to 0.53 indicating the returns are essentially 

a random walk (0.50=RW). In comparison with the earlier results that found market inefficiencies 

(Urquhart, 2016), this can be taken as evidence of the crypto-asset market maturing over time. 

Ciain et al (2018), take a different approach and investigate the interdependencies between 

bitcoin and 16 alt-coins. They provide evidence that in the short-term the majority of altcoins 

(15/16) are cointegrated with bitcoin prices. However, in the long-term the relationship disappears 

with evidence of only 25% being cointergrated. The relevance of this is questionable, as the study 

used returns priced in USD2. The results they found are expected because industry participants do 

not view prices in terms of USD but rather in terms of BTC. Therefore, the cointegration in altcoin 

prices is likely a manifestation of the trading environment rather than evidence of market 

inefficiency. 

3. Experimental Design 

This paper employs the standard approach to investigate the theoretical performance 

among event-study specifications by conducting simulations utilizing the actual pricing data. This 

approach is flexible enough to address the different research questions of this paper while ensuring 

the results are transferable to actual event-studies. Brown and Warner (1985) used this approach 

in concluding that the non-normality of the daily stock returns does not always result in loss of 

accuracy or miss-specifications of tests when used in event-studies. Similar to Brown and Warner, 

the overall purpose of the simulation is to determine under what situations the simpler and less 

computational heavy statistical tests can be used by researchers despite crypto-assets returns 

                                                
2 The data source they use is Coinmarketcap.com which reports prices in USD by converting the 

price feeds they receive by the prevailing BTC/USD market rate resulting in considerable 

translation bias. 
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exhibiting substantial deviations from normality. In addition, establish the limitations so that future 

researchers can account for them. 

Results of the simulations are judged on the basis of Type 1 and Type 2 errors. A testing 

procedure is only considered well-specified if the non-normality, autocorrelation, cross-correlation 

inherent in crypto-asset data does not materially impact the type 1 error. Among the properly 

specified tests, the robustness is judged on its power in minimizing type 2 errors. The same 

approach is used to judge among different methodologies in calculating the excess return or 

benchmark selection. Returns are determined by LN(Pt / Pt-1), note that when the specification 

introduces abnormal return it presented as the nominal number but computed as above. The 

simulations are conducted in the software program R with the package event studies (Schimmer, 

Levchenko, and Müller, 2015). 

3.1 General Notation 

Unless otherwise defined, the following notation applies throughout the specifications. The 

return of crypto-asset i on day t is noted as Rit. The crypto-asset market return on day t is noted as 

Rmt. Abnormal returns for crypto-asset i on day t is noted as ARi,t. The average abnormal returns 

across the sample for day t is found by dividing the sum of ARi,t by the number of crypto-assets in 

the sample and is noted as AAR,t . The cumulative abnormal return for crypto-asset i is found by 

summing the ARi,t  the event period and is noted by CARi,. The averaged cumulative abnormal 

return across the sample is found by dividing the sum of CARi, by the number of crypto-assets in 

the sample and is noted as CAAR.  The first day of the estimation period is noted by T0, the last 

day of the estimation window is T1 and the last day of the event window is T2. The total number 

of days in the event window is noted as EvtW and in the estimation window is EstW. Mi is the 

number of non-missing observations for crypto-asset i. 

3.2 Abnormal Return Models  

The proper approach to calculating crypto-asset returns is still an open research question. 

Without adequate evidence for any specific crypto-currency factor pricing model, this study 

implements the primary methodologies used in Brown and Warner (1985). The methods of 

calculating abnormal returns of crypto-assets are the Market model (MM), Market-adjusted model 

(MAM) and the mean adjusted model (CPMAM).  
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The mean adjusted model (CPMAM) calculates each securities abnormal return as: 

 𝐴𝑅𝑖𝑡 = 𝑅𝑖𝑡 − 𝑅𝑖 ( 1 ) 

Where 

 
𝑅𝑖 =

1

𝑇1 − 𝑇0
∑ 𝑅𝑖𝑡

𝑡∈[𝑇0,𝑇1]

  

The market adjusted model (MAM) is determined by : 

 𝐴𝑅𝑖𝑡 = 𝑅𝑖𝑡 − 𝑅𝑚𝑡   ( 2 ) 

 

The market model (MM) is determined by : 

 𝐴𝑅𝑖𝑡 = 𝑅𝑖𝑡 − (𝛼𝑖 + 𝛽𝑖 ∗ 𝑅𝑚𝑡)  ( 3 ) 

where 𝛽𝑖 is a regression coefficient measuring the sensitivity of Rit to the market returns 

3.3 Parametric Tests.  

3.3.1 Cross-Sectional test (Csect-T) 

The cross-sectional test was one of the earliest and most basic methods of testing a null 

hypothesis of zero average abnormal returns of a sample. This method expands the capabilities of 

the T-test by enabling the simultaneous testing of a multiple events. The test statistic of the cross-

sectional test (Csect-t) for day t is:  

 𝑡𝐴𝐴𝑅𝑡
= √𝑁

𝐴𝐴𝑅𝑡

𝑆𝐴𝐴𝑅𝑡

  ( 4 ) 

Where the variance is determined by: 

 

𝑆𝐴𝐴𝑅𝑡

2 =
1

𝑁 − 1
∑ 1

𝑁

𝑖=1

(𝐴𝑅𝑖,𝑡 − 𝐴𝐴𝑅𝑡)2 

( 5 ) 

 

To examine multi day events the null hypothesis of zero cumulative average abnormal 

returns, the test statistic of the cross-sectional test is: 

 
𝑡𝐶𝐴𝐴𝑅 = √𝑁

𝐶𝐴𝐴𝑅

𝑆𝐶𝐴𝐴𝑅
 

( 6 ) 
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Where the variance is found by:  

 

𝑆𝐶𝐴𝐴𝑅
2 =

1

𝑁 − 1
∑ 1

𝑁

𝑖=1

(𝐶𝐴𝑅𝑖 − 𝐶𝐴𝐴𝑅)2 ( 7 ) 

 

3.3.2 Patell Test (PATELL) 

The Cross-Sectional test primary limitation is its proneness to security specific volatility 

throughout the estimation period (Patell 1976). This is due to the test providing equal weights to 

the abnormal returns of all observations.  Patell (1976) devised a methodology to correct for such 

by standardizing the AR of constituent in the sample. The unadjusted estimation period variance 

of the residuals (in the sense of deviations from predictions, not the residuals of OLS regression) 

of crypto-asset i is found by: 

 

𝑆𝐴𝑅𝑖

2 =
1

𝑀𝑖 − 2
∑ (𝐴𝑅𝑖,𝑡)

2

𝑇1

𝑡=𝑇0

 ( 8 ) 

Since the above is out of sample, the standard error is then adjusted by the forecast error of the 

event window. The adjustment to the variance is as follows: 

 
𝑆𝐴𝑅𝑖,𝑡

2 = 𝑆𝐴𝑅𝑖

2 (1 +
1

𝑀𝑖
+

(𝑅𝑚,𝑡 − 𝑅𝑚)2

∑ 1
𝑇1
𝑡=𝑇0

(𝑅𝑚,𝑡 − 𝑅𝑚)2
) ( 9 ) 

 

To account for the security specific volatility each abnormal return is standardized by: 

 
𝑆𝐴𝑅𝑖,𝑡 =

𝐴𝑅𝑖,𝑡

𝑆𝐴𝑅𝑖,𝑡

 ( 10 ) 

 

Where ASAR is the average scaled abnormal returns on day t, calculated as: 

 𝐴𝑆𝐴𝑅𝑡 = ∑ 𝑆𝐴𝑅𝑖,𝑡
𝑁

𝑖=1
   ( 11 ) 
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Since the number of observations varies between crypto-assets in the sample, the test statistic will 

have an expected value of zero with a variance close to one, calculated as: 

 𝑆𝐴𝑆𝐴𝑅𝑡

2 = ∑ 1𝑁
𝑖=1

𝑀𝑖−2

𝑀𝑖−4
    ( 12 ) 

 

The Patell test statistic is then calculated by: 

 𝑧𝑃𝑎𝑡𝑒𝑙𝑙,𝑡 =
𝐴𝑆𝐴𝑅𝑡

𝑆𝐴𝑆𝐴𝑅𝑡

  ( 13 ) 

To test the null hypothesis of zero cumulative average abnormal returns over the event window. 

The cumulative scaled abnormal returns are the sum of Equation ( 10 ),as determined by: 

 𝐶𝑆𝐴𝑅𝑖 = ∑ 1
𝑇2
𝑡=𝑇1+1 𝑆𝐴𝑅𝑖,𝑡  ( 14 ) 

 

Since the number of observations varies between crypto-assets in the sample, the test statistic will 

have an expected variance of 

 𝑆𝐶𝑆𝐴𝑅𝑖

2 = 𝐸𝑣𝑡𝑊.
𝑀𝑖−2

𝑀𝑖−4
   ( 15 ) 

 

With the Patell’s test statistic as: 

 𝑧𝑃𝑎𝑡𝑒𝑙𝑙 =
1

√𝑁
∑ 1𝑁

𝑖=1
𝐶𝑆𝐴𝑅𝑖

𝑆𝐶𝑆𝐴𝑅𝑖

    ( 16 ) 

 

3.3.3 Adjusted Patell Test 

Inherent in Patell test is the assumption of no correlation among the residuals of the 

abnormal returns. Even the smallest levels of correlation in residuals across security-events will 

lead to over rejecting the null hypothesis. Moreover, the misspecification magnifies as the number 

of securities in the sample increases (Kolari and Pynnönen’s, 2010).  

The test statistic for the adjusted Patell test is: 

 
𝑧𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃𝑎𝑡𝑒𝑙𝑙,𝑡 = 𝑧𝑃𝑎𝑡𝑒𝑙𝑙,𝑡√

1

1+(𝑁−1)𝑟
  

( 17 ) 
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Where zPatell,t is the Patell test statistic and 𝑟 is defined as the average of the sample cross-

correlation of the estimation period abnormal returns. The adjusted Patell test can be used to test 

the null hypothesis of zero cumulative average abnormal returns "assuming the square-root rule 

holds for the standard deviation of different return periods" (Kolari and Pynnönen’s, 2010). It is 

calculated by; 

 
𝑧𝐴𝑑𝑗 𝑃𝑎𝑡𝑒𝑙𝑙 = 𝑧𝑃𝑎𝑡𝑒𝑙𝑙√

1

1+(𝑁−1)𝑟
   

( 18 ) 

 

3.3.4 Boehmer, Musumeci and Poulson Test (BMP) 

The improvement in the Patell statistic implicitly requires the same variance for the scaled 

abnormal returns. As a result, when event-induced variance inflation exists, the denominator in the 

Patell statistics is artificially too low implying a greater likelihood of type one errors. In order to 

account for the presence of type one errors, Boehmer, Musumeci and Poulson (1991) developed, 

a more robust approach that estimated event-day volatility to standardize abnormal returns. 

To test the null hypothesis of zero averaged abnormal returns on the test statistic for the BMP test 

is calculated by: 

  𝑧𝐵𝑀𝑃,𝑡 =
𝐴𝑆𝐴𝑅𝑡

√𝑁𝑆𝐴𝑆𝐴𝑅𝑡

  ( 19 ) 

 

where ASARt is determined in equation ( 11 )and the scaled variance is determined by 

 
𝑆𝐴𝑆𝐴𝑅𝑡

2 =
1

𝑁−1
∑ 1𝑁

𝑖=1 (𝑆𝐴𝑅𝑖,𝑡 −
1

𝑁
∑ 𝑆𝐴𝑅𝑙,𝑡

𝑁

𝑙=1
)

2

  
( 20 ) 

 

To test the null hypothesis of zero cumulative average abnormal returns the BMP statistic is 

calculated by: 

 
𝑧𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐵𝑀𝑃 = √𝑁

𝑆𝐶𝐴𝑅

𝑆𝑆𝐶𝐴𝑅

 
( 21 ) 
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Note the minor difference between Patell and BMPs scaling of cumulative abnormal 

returns. In Patells, the returns are each scaled and then aggregated (denoted as CSAR). In BMP, 

the CAR values are first determined and then scaled. The difference overcomes the sensitivity to 

the day of the event within the event window resulting from event induced volatility that Patells 

has. The scaled cumulative abnormal returns for crypto-asset i are calculated as shown in in Kolari 

and Pynnönen’s, (2011) by    

 𝑆𝐶𝐴𝑅𝑖 =
𝐶𝐴𝑅𝑖

(𝑆𝐶𝐴𝑅𝑖
)

∗(𝑚𝑚,𝑚𝑎𝑚 𝑜𝑟 𝐶𝑃𝑚𝑎𝑚)

     ( 22 ) 

 

The scaling is done with Mikkelson and Partch (1998) correction (𝑆𝐶𝐴𝑅𝑖
 determined in 

Appendix 1) for serial correlation in the returns. To account for event-induced volatility the SCARi 

in equation ( 22 ) is re-standardized (denoted with *) by the cross-sectional standard deviation as: 

 
𝑆𝐶𝐴𝑅𝑖

∗ =
𝑆𝐶𝐴𝑅𝑖

𝑆𝑆𝐶𝐴𝑅
 ( 23 ) 

The averaged scaled cumulative abnormal returns is: 

 

𝑆𝐶𝐴𝑅𝑡 =
1

𝑁
∑ 𝑆𝐶𝐴𝑅𝑖

∗
0

𝑁

𝑖=1

 ( 24 ) 

 

With a variance of   

 𝑆
𝑆𝐶𝐴𝑅𝑡

2 =
1

𝑁−1
∑ 1𝑁

𝑖=1 (𝑆𝐶𝐴𝑅𝑖 − 𝑆𝐶𝐴𝑅𝑡)
2
   ( 25 ) 

 

 

3.3.5 Adjusted BMP Test 

As the BMP is simply a variation of the Patell test, the BMP test is also exposed to cross-

sectional correlation of the scaled abnormal returns (Kolari and Pynnönen’s, 2010). Kolari and 

Pynnönen’s (2010) propose an adjusted BMP test statistic. The adjusted BMP test statistics for the 

null hypothesis of zero average abnormal returns is calculated as: 
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𝑧𝐵𝑀𝑃,𝑡 = 𝑧𝐵𝑀𝑃,𝑡√

1−𝑟

1+(𝑁−1)𝑟
   

( 26 ) 

 

Similar to their previous modification to the Patell test, the adjusted BMP test adjusts 

𝑧𝐵𝑀𝑃,𝑡 calculated in equation ( 19 ) with the average of the sample cross-correlation of the scaled 

abnormal returns  𝑟. The adjustment process to test the null hypothesis of zero cumulative average 

abnormal returns is the same as above. The adjusted BMP statistic adjusts 𝑧𝐵𝑀𝑃 in equation ( 21 ) 

as calculated as: 

 
𝑧𝐴𝑑𝑗 𝐵𝑀𝑃 = 𝑧𝐵𝑀𝑃√

1−𝑟

1+(𝑁−1)𝑟
    

( 27 ) 

 

3.4 Non- Parametric tests.  

3.4.1 Rank Test (RANK) 

One of the most popular nonparametric tests used in event-studies is Corrado’s (1989) rank 

test which transforms the daily returns into ordered ranks. The rank statistic using rank Z for testing 

the null hypothesis of zero abnormal returns on a single day is: 

 𝑡𝑟𝑎𝑛𝑘,𝑡 =
𝐾𝑡−0.5

𝑆
𝐾

   
( 28 ) 

 

Where 𝐾𝑖,𝑡 is a standardization of the ranks by the number of non-missing values Mi+1 shown in 

equation (29) and the average standardized ranks is shown in (30) : 

 𝐾𝑖,𝑡 =
𝑟𝑎𝑛𝑘(𝐴𝑅𝑖,𝑡)

1+𝑀𝑖+𝑁𝑀𝐸𝑣𝑡𝑊
   

( 29 ) 

 

 
𝐾𝑡 =

1

𝑁𝑡
∑ (

𝑟𝑎𝑛𝑘(𝐴𝑅𝑖,𝑡)

1+𝑀𝑖+𝑁𝑀𝐸𝑣𝑡𝑊

𝑁𝑡

𝑖=1
)  

( 30 ) 

 

Where the denominator of the test statistic is determined over the entire observation period as: 
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𝑆

𝐾
2 =

1

(𝐸𝑠𝑡𝑊)+(EvtW)
∑

𝑁𝑡

𝑁
(𝐾𝑡 − 0.5)

2𝑇2

𝑡=𝑇0

   
( 31 ) 

 

To test event windows of multiple days, Campbell and Wasley’s (1993) definition of the 

test is required. The rank statistic for testing the null hypothesis of zero cumulative abnormal 

returns over the multiday period is: 

 
𝑡𝑟𝑎𝑛𝑘 = √(EvtW) (

𝐾𝑇1,𝑇2−0.5

𝑆
𝐾

)    
( 32 ) 

 

Where the mean rank across firms and time in the event window is found by; 

 𝐾𝑇1,𝑇2
=

1

𝐸𝑣𝑡𝑊
∑  

𝑇2
𝑡=𝑇1+1 𝐾𝑡   ( 33 ) 

3.4.2 Generalized Rank Test (GRANK-T) 

Despite findings by Corrado’s (1989) and Campbell and Wasley’s (1993) that the rank test 

is well specified and powerful when tested on NYSE stocks and Nasdaq stocks, the test loses 

power over longer event windows. The test also omits any adjustments for event induced variance. 

Kolari and Pynnönen’s, (2011) develop the generalized rank T-test to account for cross-correlation 

of returns and returns of serial correlation. It does so by condensing the event window into a single 

observation known as a “cumulative event day”. To test the abnormality of the cumulative event 

day, the demeaned standardized abnormal ranks of each crypto-asset i are calculated by 

 𝑈𝑖,𝑡 =
𝑟𝑎𝑛𝑘(𝐺𝑆𝐴𝑅𝑖,𝑡)

(EstW)+2
− 0.5    

( 34 ) 

 

The generalized standardized abnormal returns (GSAR) are calculated in equation ( 23 ) and 

equation  ( 10 ) and utilized in the rank determination as : 

 
𝐺𝑆𝐴𝑅𝑖,𝑡 = {

𝑆𝐶𝐴𝑅𝑖
∗

𝑆𝐴𝑅𝑖,𝑡
|

for t in event window

 for t in estimation window
} ( 35 ) 

 

The average rank of a particular time t, is done by 
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 𝑈𝑡 =
1

𝑁𝑡
∑ 1

𝑁𝑡
𝑖=1 𝑈𝑖,𝑡   ( 36 ) 

 

Defining the observation window as consisting of the estimation window and the cumulative event 

day. The variance of the ranks used in the denominator of equation ( 39 ) is calculated by 

 
𝑆

𝑈
2 =

1

(EstW) − 1
∑

𝑁𝑡

𝑁
∗ 𝑈𝑡

(2)

𝑡∈𝑂𝑏𝑠𝑊

 ( 37 ) 

 

It should be noted, setting t equal to zero indicates day zero when testing a single day and 

the cumulative event day if testing an event window. This is one of the appealing factors as a single 

test statistic can be used for both single and cumulative null hypothesis. The generalized rank test 

(GRANK-T) is t-distributed the number of days in the estimation period minus one degrees of 

freedom. The test statistic is given by Kolari and Pynnönen’s, (2011) and is calculated as: 

 

𝑡𝑔𝑟𝑎𝑛𝑘 = 𝑍 (
(EstW) − 1

(EstW) − 𝑍2
)

1
2

 ( 38 ) 

Where 

 𝑍 =
𝑈0

𝑆
𝑈

   
( 39 ) 

 

3.4.3 Generalized Rank Z (GRANK-Z) 

Kolari and Pynnönen’s, (2011) demonstrated that for a sufficiently large sample size, a 

simplified test statistic could be used. This test allows for the generalized rank to converge under 

the null hypothesis of zero cumulative average abnormal returns to a standard normal distribution, 

as the sample size increases. The primary drawback compared to the GRANK-T is the ability to 

control for cross sectional correlations.  

The generalized rank Z (GRANK-Z) stat: 

 
𝑧𝑔𝑟𝑎𝑛𝑘 =

𝑈0

𝑆
𝑈0

= √
12𝑁((EstW)+2)

(EstW)
𝑈0  

( 40 ) 
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The manipulation is to obtain the standard error of  𝑈0 is done by: 

 
𝑆

𝑈0

2 =
(EstW)

12𝑁((EstW) + 1)
 ( 41 ) 

3.4.4 Generalized Sign Test (G-SIGN) 

With a high skewness inherent in several crypto-asset return distributions, the final testing 

method examine in this study was the Cowan, A.R.’s (1992) generalized sign test (generalized 

sign Z). The generalized sign Z expects that under the null hypothesis of zero abnormal returns, 

the proportion of crypto-assets with positive abnormal returns is expected to be a similar 

proportion (p̂) of positive abnormal returns from the estimation period,  

 

𝑝
^

=
1

𝑁
∑

1

(EstW)
∑ 𝜑𝑖,𝑡

𝑇1

𝑡=𝑇0

𝑁

𝑖=1

 ( 42 ) 

where 𝜑𝑖,𝑡 is a binomial factor with a value of 1 representing if the sign is positive and a value of 

0 otherwise for crypto-asset i at time t. If the positive CAR is significantly higher than expected 

from the estimation window, the null hypothesis of zero cumulative abnormal returns is rejected, 

as tested by the generalized sign test statistic of: 

 

𝑧𝑠𝑖𝑔𝑛 =
(𝑤 − 𝑁𝑝

^
)

√𝑁𝑝
^

(1 − 𝑝
^

)

 ( 43 ) 

where w is the number of crypto-assets demonstrating positive cumulative abnormal returns over 

the event period. The test stat assumes a normal approximation of the binomial distribution with 

parameters (p̂) and N. 

3.5 Data Collection 

Crypto-Asset data 

Crypto-Assets, as a whole, represent a relatively new asset-class which presented numerous 

problems during the data collection process. To date there does not exist any database similar to 

CRSP or DataStream used in previous literature. In the absence of a database it was first attempted 

to retrieve the pricing data from the exchanges that each crypto-asset trades on. Unfortunately, this 

proved infeasible as many exchanges blocked access to non-registered users with terms excluding 
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Canadians due to regulatory laws. To overcome these issues, previous literature investigating 

cryptocurrencies have primarily used Coinmarketcap.com (Ciain et al, 2017).  However, 

Coinmarketcap.com contains two fatal flaws that would have induced bias into the analysis. First, 

the data would have substantial survivorship bias as the website removes all evidence of a crypto-

asset once it makes the decision to delist them. Second, the website does not provide the prices in 

terms of BTC resulting in considerable translation error3 as most crypto-assets trade in terms of 

BTC. 

Following an analysis of similar aggregation sites, Coingecko.com was selected due to the 

following reasons. I) among the largest coverage of the crypto-asset universe with 1887 crypto-

assets as of June 30th, 2018 ii) free from survivorship bias and translation error and iii) matches 

the data source used by the benchmark index. Coingecko calculates each crypto-assets price based 

on a volume weighted average among all trading pairs at all supported exchanges. 

Benchmark Data 

Index calculation methodologies for traditional assets have a rich history in literature. 

However, none of which can be directly applied to cryptocurrencies. To the best of my knowledge, 

the CRIX index (Trimborn and Hardle, 2018) is the only cryptocurrency index created based on a 

methodology that has undergone a peer-review. The CRIX index is value weighted with a dynamic 

number of constituents to account for the fast-changing nature of cryptocurrencies. Data for the 

CRIX index (Trimborn and Hardle, 2018) was requested and graciously provided for the analysis.  

To test the performance of using an equal-weighted benchmark the analysis used the equal 

weighted top 100 index from cryptoz.ai. It was selected as it was the only equal weighted index 

that covered the entire sample period. 

4. Results 

Table 2 Panel A reports the descriptive statistics of the daily price returns of the entire 

sample. Among all crypto-assets there are a total of 637,497 unique crypto-asset daily prices. The 

returns are grouped in rows by the amount of daily price points in the dataset. As expected, the 

returns exhibit substantial deviations from normality, with substantial excess kurtosis and positive 

                                                
3 During much of the time period examined the largest exchanges (such as Bittrex.com) did not have USD or any 

FIAT currency based trading pairs. All prices from the exchanges such as this are recorded in BTC. The USD prices 

listed on sites like Coinmarketcap.com translate it to USD based on prevailing BTC/USD rates from other 

exchanges.  
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skewness. Several of the outrageous returns were verified for accuracy and found to be the result 

of two issues. The first is the presence of "pump and dump" market manipulation (Hamrik et al, 

2018). The second is due to exchanges altering the tickers used for a particular crypto-asset or 

altering the trading pair currencies without notifying Coingecko. As a result, the recorded in prices 

in the dataset often jump significantly. Given that one issue represents true price changes, while 

the other was a data issue to be conservative the extreme points could not be removed from the 

analysis. The trimmed means highlight how outlier driven the daily returns are. 

[insert Table 2 about here] 

 

Table 2 Panel B reports the descriptive statistics of the daily returns of the index. Compared 

to the crypto-asset returns, the index has positive average returns and negative skewness. The 

extreme volatility of the crypto-asset market as a whole highlight the challenges of conducting 

event-studies. The most obvious implication that must be considered throughout the specifications 

is the contrasting skewness of crypto-assets and index returns.  

4.1 Impact of Data Skewness  

Prior to examining test specifications, it is beneficial to understand how the contrasting 

skewness impacts each abnormal return model. The most severely impacted model is the market-

adjusted model. On any given day we would expect to subtract the median of the market return 

from the median of the crypto-assets return to determine the abnormal return. Where the median 

of the market is expected to be larger than its assumption of the mean return and the median of the 

crypto-assets return is expected to be lower than its mean. The result compounds and produces a 

negative bias in the abnormal return estimates. Moreover, the issue worsens rather than improves 

by using a greater the number of days in the event-window as the mean returns are also contrasting. 

This conclusion is evident in table 4 (VW) and table 7 (EW) models. As the number of days in the 

event window increase the CAAR becomes increasingly negative. This biases the test statistics, 

resulting in over rejection of the null 

The comparison period mean adjusted model is similarly biased in that on any given day 

we would expect to subtract the mean of the crypto-assets estimation period return, from the 

median of the crypto-assets return to determine the abnormal return. As a result of the positive 

skewness the estimation period mean return is expected to be greater than the median and on a 
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single day will result in a negative bias in the abnormal return. However, unlike the MAM this 

bias naturally corrects itself as the number of days in the event-window increases. 

Finally, the market model is expected to be the least impacted as the intercept term of the 

regression should adjust, so that given the mean index return the fitted line predicts the mean 

crypto-asset return. This is evident in table 3 (VW) and table 6 (EW) as none of the CARs are 

statistical different from zero. An important caveat to this, is the assumption that the market model 

does not have any omitted variable bias. 

4.2 Simulated Test Statistics  

In this section the results are based on 250 simulations, each with 50 randomly selected 

crypto-assets with replacement. Prior to randomization, crypto-assets which have been forked or 

ICOd within the previous 70 days are removed. Second, following previous literature (Campbell 

et al, 2010) the universe is further restricted to only select securities that have at least 5 days of 

available post event-day-price data. Samples are then drawn from the resulting subset of 431 995 

crypto-asset daily price pairs. The results are shown in tables 3-7. 

[insert table 3-7 about here] 

Under the null hypothesis of no abnormal returns, the distribution of the simulated test 

statistics of the parametric tests and that of GRANK-Z should be approximately distributed N(0,1). 

The non-parametric distributions of GRANK-T and RANK should be as discussed in the 

methodology section, however with a 100-day estimation period they should approach normality 

and for brevity are assumed do so for the purpose of this discussion. Regardless of the abnormal 

return model or the benchmark calculation the simulations show that the statistics are significantly 

impacted from the data characteristics of crypto-assets.  

Using the value-weighted market model (table 3) for discussion, several conclusions can 

be made. Comparing the kurtosis of the Patell and the BMP test statistics it is evident that the event 

day volatility adjustment is vital in crypto-asset event-studies. The Cross-sectional test appears to 

be well specified, although the excess Kurtosis is negative across all panels likely indicating that 

the test will have low power. Surprisingly, the ten day event windows seems to cause issues for 

the Patell, adj-PATELL, GRANK-T and GRANK-Z statistics that would be expected to also be 

present in the twenty day window but are not. The most likely explanation of this is the relatively 

small simulation size (250 simulations) combined with the previously mentioned extreme data 
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issues. Comparing to the other specifications it appears that contrary to traditional stocks (Corrado 

and Truong, 2008) a value-weighted index results in better test statistics than an equal-weighted 

market model. 

4.3 Rejection frequencies 

The rejection frequencies with zero abnormal return are shown in tables 8 through 11. 

Table 8, Table 10 panel A and Table 11 panel A simulations are done with the previously described 

randomization. In Table 9 (Table 10 panel B), the randomization adds the additional steps of 

randomly selecting a day and selecting one of the largest 100 crypto-assets on that day. This is 

repeated with replacement to select 50 (10,25,50 or 100) crypto-assets. Panel B of table 11 

conducts a simulation for which there are clustered event days. The randomization once again first 

selects a single day. In the next step it randomly selects (10, 25, 50 or 100) crypto-assets from that 

day. With the exception of the Patell and adj-Patell statistics the majority are relatively robust to 

miss-specification for the single day and three-day event windows. Additional implications are 

presented in the discussion section. 

[insert Table 8 to 11 about here] 

The power of the tests to detect introduced abnormal returns are shown in tables 12 through 

15. Each seeded return used is simulated 250 times with 50 sample crypto-assets. The seeded 

returns of -10%, -3%, -1%, 1%, 3% and 10% are given at the top of each column for the preferred 

market model specifications. The CPMAM and MAM specifications test only -10%, -3%, 3% and 

10% introduced abnormal returns. 

[insert Table 12 to 15 about here]  

5.0 Discussion 

The contribution of this study is best understood from the context of a researcher 

conducting an event-study. The normal process selects the methodology that both accounts for the 

underlying data characteristics and enables the most precise estimation of the variance used to 

determine the test statistic. Given the non-normality of crypto-asset returns, without any empirical 

evidence the proper approach is to implement adjustments for cross-sectional dependence and 

event-induced volatility. These adjustments reduce the ability to detect abnormal returns. As 

shown in the simulated results of the Csect test, the adjustments are so severe detecting abnormal 
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returns of -10% and +10% results in type ii errors in the range of 90% seen in tables 12-15. 

Moreover, absent empirical evidence the researcher is unaware of the power of the test to detect 

abnormal returns. Each of these are discussed below. 

 

5.1 Estimation precision 

Understanding the relationship between each of the test-statistics provides a guideline for 

which situations allow more precise estimations. When the residuals of the cumulative scaled 

abnormal returns are uncorrelated, then the adj-PATELL will be equivalent to the PATELL. 

Similarly. if the residuals of the scaled cumulative abnormal returns are uncorrelated, then adj-

BMP reduces to the BMP. Correlated residuals can result from event-day clustering and omitted 

variable bias in the selected abnormal return model. Table 11 Panel B, shows that in the presence 

of event-day clustering it is highly recommend to use the adjusted versions defined by Kolari and 

Pynnönen (2010). However, if there is no event day clustering as in Panel A the standard BMP 

approach can be used with caution. 

The BMP will be approximately the same as the PATELL, when there is no event-induced 

variance inflation. Under this condition forgoing the variance adjustment can provide a more 

precise estimation. However, as seen in both table 10 and table 11 the PATELL test is prone to 

type 1 errors. As a result researchers should strongly consider against using the PATELL under 

any circumstance. 

Kolari and Pynnönen (2011) for ease of estimation, define the GRANK-Z as an 

approximation that can be used for the GRANK-T under the assumption that returns are not cross-

correlated. Similar to the parametric tests the simulations results of table 11 reveal that in the case 

of crypto-assets it is advised against using the GRANK-Z when the event days are clustered. The 

type 1 error increases as the sample size increases. Unfortunately, event-day clustering has an even 

greater impact on the generalized sign test. With rejection rates reaching 17.6%-21.2% in a sample 

size of 100. 

5.2 Power of test statistics 

As expected from the discussion on the issues of skewness in the market adjusted model, 

the result is an greater ability to detect negative abnormal returns than positive ones. As shown in 

table 14 (-3% and +3%) for both the parametric tests and non-parametric tests the type ii error is 

significantly larger (lower rejections of Null hypothesis) in the right tail. In table 14, the tests for 
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the CPMAM model have significantly greater power to detect 3% abnormal returns when 

considering the event day. This power decreases significantly when testing for cumulative 

abnormal returns. Moreover, for all tests the power to detect cumulative abnormal returns in the 

right tail is significantly greater. This can be explained by the positive skewness and excess 

kurtosis of the crypto-assets returns, as the number of days within the event-window increases the 

likelihood that at least one of those returns is from the fat-right tail increases. 

 

The results of the preferred market model specification are shown in table 12 and table 13. 

The PATELL and adj-PATELL statistics should not be used due to the type 1 error seen in the 

middle columns with zero abnormal return. Moving outwards to the 1% seeded returns we quickly 

see that the best performing tests are the G-Sign and GRANK-T. However, as discussed in the 

previous section the G-Sign test is prone to type 1 errors when event days are clustered. Therefore, 

the final recommendation is to use the GRANK-T test when possible. 

5.3 Limitations 

There are two primary limitations that should be addressed in future research. The first is 

that the methodology only considers exchange-based volume of crypto-assets trades. Incorporating 

the volume (transactions) that occur through the blockchain network itself will be required to make 

complete and accurate inferences. The other primary limitations of this study relate to the market 

indexes. As previously highlighted the study employed the CRIX and EW100 indexes as the 

market returns, both of which are maintained by third parties. In addition to concerns of accuracy 

in the methodologies of the indexes themselves, the use of third party indexes increases the 

potential for calculation errors. For instance, this may explain the relatively poorer performance 

of the equal weighted index. The value-weighted CRIX index is calculated using the same source 

of data as the crypto-asset returns. However, the EW100 index uses a different source of data 

which it is possible that "closing" of each day due to time zone differences do not match that of 

the individual crypto-assets. Moreover, the index returns do not fully represent the market as the 

CRIX only includes 30 constituents and the EW100 only includes 100 crypto-assets. A lack of 

data limits this studies ability to purse the obvious solution to these concerns of creating a new 
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market index. Specifically, the dataset was unable to consistently determine the weightings4 of 

constituents for value-weighted and unable to account for "forks5" for equal weighted index 

calculations. Nonetheless, the viability of commercial indexes as examined in this paper is an 

important contribution as it enables their use in event-studies of future researchers.  

 

The secondary limitations include the number of simulations and underlying data accuracy. 

The number of simulations while consistent with early literature (Brown and Warner, 1985) is 

about one fourth (250) the amount used in recent literature (Kolari and Pynnönen, 2010). Given 

the presence of a substantial number of extreme data points in the sample its possible that results 

could change with an increased simulation size. The extreme data points were the result of both 

true market movements (pump and dump) and data transcription errors by the exchanges. Although 

this study was unable to distinguish between the two, recent literature suggests that it may be 

possible to use machine learning to predict pump and dump schemes (Xu and Livshits, 2018) 

which may overcome this limitation.  

6. Application: Insider Trading at Binance.com 

The original inspiration of this study was the desire to investigate market manipulation, 

insider trading and fraud in the unpoliced crypto-asset world. Following the empirical evidence 

provided by the simulations these research questions can now be addressed. Although not the direct 

purpose of the study it is beneficial to conduct an actual event-study to illustrate the 

aforementioned findings. The chosen event-study is to determine if there is evidence of insider 

trading preceding the announcement of a crypto-assets listing on what is now the worlds largest 

crypto-asset exchange Binance. 

 

The date of the announcements that Binance intends to list a crypto-asset was collected 

from binance.com for the period of September 2017 and June 2018. This resulted in a total of 67 

different crypto-assets. However, several of the assets had less than 40 trading days prior to the 

                                                
4 A key differentiator of crypto-assets is the concept of mining rewards increasing the 

outstanding supply. Although these can be approximated by an inflation rate, the inflation rates 

do not remain constant instead often varying dynamically as a function of network hash rates.  
5 A blockchain fork is when a crypto-currency splits into two distinct crypto-assets. In such cases 

investors now own 1 of each crypto-asset. Therefor to accurately calculate the assets return on 

the day it forks, knowledge of all forks must be known. 
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announcement and were dropped from the analysis. The remaining sample consisted of a total for 

44 announcements which is similar to the sample size in the simulation. 

 

The first stage of the event-study determined the average abnormal returns for the 5 days 

preceding and following the announcement. As shown in figure 1, the event appears to have caused 

significant price movements with the averaged abnormal returns exceeding 8% on the day 

following the announcement 

 

[insert figure 1 about here] 

 

The CAR(-5,5) results shown in panel (A) of table 16 highlight the difficulty of performing 

event studies on cryptocurrencies. Despite seemingly clear evidence from both the returns in figure 

1 and a market perception that gaining a listing on Binance is considered to be a positive event, 

many of the statistical measures fail to reject the null at a 5% level of significance. Moreover, the 

only one that does (PATELL) as found in the simulation results likely did so because of the event-

induced volatility. It should be noted that there was several occurrences where the announcements 

included more than one crypto-asset. This likely resulted in cross-correlation in abnormal return 

residuals. As suggested by the simulation analysis, in such a case of event-day clustering the 

preferred test-statistic is the GRANK-T.  Examining the AARs of day -3,-2,-1 in table 17 and the 

CAR(-3,-1) in table 16 we fail to reject the null hypothesis of zero abnormal return for any of the 

days leading up to the announcement. At 95% significance the GRANK-T test does not indicate 

evidence of insider trading prior to announcements. Despite the briefness, this example highlights 

the significant contribution of the simulation results for regulators pursuing market manipulation. 

 

[insert table 16 and 17 about here] 
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Conclusion 

This study was the first to explore the suitability of utilizing crypto-asset returns to conduct 

event studies. Using the simulation approach pioneered by Brown and Warner (1985) the 

performance of five parametric and four non-parametric test statistics were examined under three 

different abnormal return models and two index specifications. The results of the simulations 

indicate that the non-normality of crypto-asset returns impacts the performance of most 

specifications. Due to the contrasting skewness of the market index and crypto-asset returns the 

market-adjusted model should be avoided. The market-model with a value weighted index, was 

found to have tests statistics with distributions that most closely resembled expectations. When 

there is no-event day clustering the recommended parametric test is the BMP test and the 

recommend non-parametric test are the GRANK-T and G-SIGN statistics. However, with event-

day clustering the GRANK-T is the only suitable test that maintains significant power. The results 

of the simulation proved vital at avoiding type one error in an exploratory event-study of insider 

trading prior to announcements made by the exchange Binance. Overall, the findings should give 

confidence to future researchers that crypto-asset returns can be used in event-studies.  
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Appendix 

Appendix A: Mikkelson and Partch (1988) equations 

Mikkelson and Partch (1988) correction of (𝑆𝐶𝐴𝑅𝑖
) for equation ( 23 ). Note that NMEvtW 

indicates the number non-missing days in the Event Window. 

Market Model: 

𝑆𝐶𝐴𝑅𝑖

2 = 𝑆𝐴𝑅𝑖

2 (+
𝑁𝑀𝐸𝑣𝑡𝑊

2

𝑀𝑖
+

(∑ 1
𝑇2
𝑡=𝑇1+1 (𝑅𝑚,𝑡 − 𝑅𝑚))

2

∑ 1
𝑇1
𝑡=𝑇0

(𝑅𝑚,𝑡 − 𝑅𝑚)2
) 

Comparison Period Mean Adjusted Model:  

𝑆𝐶𝐴𝑅𝑖

2 = 𝑆𝐴𝑅𝑖

2 (𝑁𝑀𝐸𝑣𝑡𝑊 +
𝑁𝑀𝐸𝑣𝑡𝑊

2

𝑀𝑖
) 

Market Adjusted Model: 

𝑆𝐶𝐴𝑅𝑖

2 = 𝑆𝐴𝑅𝑖

2 ∗ 𝑁𝑀𝐸𝑣𝑡𝑊 
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Tables and Figures 

Table 1: Summary of Test Statistics 

Parametric 

Test  Prone to Improvement Drawback 

CSect-T Low power   

Patell Over rejection of 

null when cross-

correlation in 

residuals 

Standardized 

abnormal returns 

to account for 

security specific 

volatility 

The PATELL 

test assumes that 

scaled abnormal 

returns have the 

same variance. 

Adj-Patell  Accounts for 

cross-correlation 

in abnormal 

return residuals 

 

BMP Over rejection of 

null when cross-

correlation in 

residuals 

Removes 

dependency of 

the order of days 

in Patell 

Same as Patell 

Adj-BMP  Same as Adj-

Patell 

 

  Prone to Improvement Drawback 

Non-

Parametric 

Sign Low Power Accounts for 

Skewness 

 

Rank Low power  Accounts for 

non-normality 

Poor 

performance 

over longer 

event windows 

Generalized Rank 

T-test.  (GRANK-

T) 

 Uses the idea of 

BMP to create a 

single 

cumulative event 

day, which is 

then ranked. 

Overcomes the 

loss of power as 

days in the event 

window 

increase. 

Computationally 

difficult 

Generalized Rank 

Z-test (GRANK-Z) 

Over rejection of 

null when cross-

correlation in 

residuals 

Reduced 

computational 

requirements  
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Table 2: Descriptive Statistics 

Panel A: Daily Crypto-Asset Returns  

Panel A presents the average descriptive statistics among the crypto-asset daily price returns in the 

entire sample. The rows are separated by the number of price points in the dataset an individual 

crypto-asset has. With the exception of the final two columns the averages presented are the 

unweighted averages of each individual Crypto-Assets descriptive statistics. The final two 

columns indicate the percentage of the Crypto-Assets included in that row which had at least one 

day where LN(Pt/Pt-1) was less than and greater than one. 

Panel B: Daily Index Returns 

Panel B presents the average daily returns of indexes during sample period beginning on January 

1st 2015 and ending on June 30th 2018. The CRIX index is value weighted with dynamic 

constituents that adjust for thinly traded tokens. The EW100, is an equally weighted index of the 

top 100 cryptocurrency based by estimated market capitalization. Similarly EW(10,20,50) 

represented equally weighted returns based on the top 10, 20 and 50 crypto-assets. 

VW(10,20,50,100) represent the value-weighted returns for the same constituents as the equally 

weighted indexes. Rebalancing is done at the beginning of each month, retrieved from Cryptoz.ai.  

Index

Average 

Return Median

Standard 

Deviation Minimum Maximum Kurtosis Skewness

Panel A Index

CRIX 0.0028 0.0032 0.0399 -0.2533 0.1985 6.5559 -0.7908

EW100 0.0033 0.0033 0.0513 -0.4583 0.4478 12.4100 -0.4505

Panel B Comparable References

VW10 0.0022 0.0023 0.0390 -0.2373 0.1832 6.0219 -0.8466

VW20 0.0023 0.0024 0.0392 -0.2383 0.1837 6.0587 -0.8942

VW50 0.0023 0.0023 0.0393 -0.2371 0.1817 6.0332 -0.9065

VW100 0.0023 0.0024 0.0393 -0.2383 0.1811 6.0333 -0.9159

EW 10 0.0025 0.0015 0.0472 -0.2950 0.2122 5.7770 -0.5740

EW20 0.0029 0.0012 0.0469 -0.2933 0.1847 4.0765 -0.6015

EW50 0.0029 0.0017 0.0475 -0.2935 0.2715 5.3839 -0.4470

Source: Cryptoz.ai for all except CRIX. Crix is as described in Trimborn, S., & Härdle, W. K. (2018).
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Table 3: Simulated test statistics for Market Model-Value Weighted Entire Sample 

 

*,**,*** indicate significance at the 10%, 5% and 1%. 

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation 

methodology described following table 7.  
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Table 4: Simulated test statistics for Market Adjusted Model- Value Weighted Entire Sample 

 

*,**,*** indicate significance at the 10%, 5% and 1%. 

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation 

methodology described following table 7.  
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Table 5: Simulated test statistics Comparison Period Mean Adjusted Model Entire Sample 

 

*,**,*** indicate significance at the 10%, 5% and 1%. 

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation 

methodology described following table 7.  
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Table 6: Simulated test statistics Market Model Equally Weighted Entire Sample 

 

*,**,*** indicate significance at the 10%, 5% and 1%. 

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation 

methodology described following table 7.  
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     Table 7: Simulated test statistics Market Adjusted Model Equally Weighted Entire Sample 

 

*,**,*** indicate significance at the 10%, 5% and 1%. 

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation 

methodology described following table 7.  
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Description statistics of the observed test values shown in Tables 3 to 7.  

Descriptive statistics of the simulated test statistics values. All panels are based on 250 simulations 

each with 50 randomly selected crypto-assets, with replacement, from during the period of January 

1st 2015 to June 30th 2018.  Event-day abnormal returns are determined by as described in the 

title of the tables. The market index is the value weighted CRIX or equal weighed EW100 index. 

Panel (A) shows the descriptive statistics of the test statistics when the specification is testing the 

abnormal returns of a single day (0), Panel (B) the descriptive statistics of the test statistics when 

the specification is testing for cumulative abnormal returns over a three day event period (-1,+1).  

Panel (C) the descriptive statistics of the test statistics when the specification is testing for 

cumulative abnormal returns over a ten day event period (-5,+5). Panel (D) the descriptive statistics 

of the test statistics when the specification is testing for cumulative abnormal returns over a ten 

day event period (-10,+10). An estimation windows from -100 to -11 days is used for calibrating 

the parameters of the market model and the standard deviations and signs necessary for 

determining test statistics. The rank test calculates ranks across the entire observation period (Panel 

A: -100,+0), (Panel B: -100,+1), (Panel C: -100,+5), (Panel D: -100,+10). Randomization for Panel 

A, B and C, first excludes crypto-assets which have been forked or ICOd within the previous 70 

days. Second, the universe is further subsetted to only select securities that have at least 5 days of 

available post event-day-price data. Randomization for Panel D, extends the requirement to 

observe at least 90 previous days since initial fork/ico.  The parametric test statistics of Csect-T, 

PATELL, BMP, Adj-PATELL, adj-BMP are calculated based on the specifications described in 

section Parametric Tests and defined in Brown and Warner(1985), Patell (1976), Boehmer et al 

(1991) and Kolari and Pynnönen (2010,2010). When the null hypothesis is no abnormal returns, 

the test statistics across all parametric tests should be normally distributed N(0,1). The non-

parametric tests of RANK, GRANK-T and GRANK-Z are calculated by the specifications shown 

on page 12 and defined in Corrado and Zivney(1992), Kolari and Pynnönen (2011, 2011). The G-

SIGN is defined for a single day event as in Cowan(1992) and as defined in Kolari and Pynnönen 

(2011) for multiday events. When the null hypothesis is no abnormal returns, the test statistic of 

GRANK-Z should be ~N(0,1). The RANK test according the Corrado (2011) also has a mean of 

zero and a variance of one. The GRANK-T test is expected to be Student t distributed. 



37 
  

Table 8: Rejection frequencies with zero abnormal performance (entire sample) 

 

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Calculation 

methodology described following table 11.  

  

Rejection rates with zero abnormal performance

AAR(+0) CAR(-1, 1) CAR(-5, 5) CAR(-10,10)

HO: Left Right 2-Tail Left Right 2-Tail Left Right 2-Tail Left Right 2-Tail

Panel (A) VW Market Model Abnormal Returns
PATELL 0.104 0.144 0.248 0.108 0.144 0.252 0.028 0.171 0.199 0.080 0.228 0.308

Csect T 0.052 0.040 0.092 0.036 0.028 0.064 0.044 0.036 0.080 0.044 0.028 0.072

G-SIGN 0.052 0.068 0.120 0.052 0.024 0.076 0.092 0.032 0.124 0.048 0.024 0.072

BMP 0.044 0.044 0.088 0.036 0.040 0.076 0.016 0.032 0.048 0.036 0.068 0.104

RANK 0.048 0.056 0.104 0.020 0.028 0.048 0.012 0.012 0.024 0.012 0.020 0.032

GRANK-T 0.048 0.052 0.100 0.044 0.048 0.092 0.120 0.040 0.159 0.064 0.040 0.104

adj-PATELL 0.104 0.144 0.248 0.108 0.148 0.256 0.028 0.167 0.195 0.084 0.220 0.304

adj-BMP 0.044 0.044 0.088 0.036 0.044 0.080 0.016 0.056 0.072 0.032 0.080 0.112

GRANK-Z 0.052 0.052 0.104 0.040 0.044 0.084 0.108 0.036 0.143 0.072 0.048 0.120

Panel (B) VW Market Adjusted Abnormal Returns
PATELL 0.120 0.132 0.252 0.116 0.124 0.240 0.068 0.104 0.171 0.128 0.076 0.204

Csect T 0.060 0.020 0.080 0.052 0.040 0.092 0.088 0.016 0.104 0.076 0.024 0.100

G-SIGN 0.028 0.048 0.076 0.068 0.052 0.120 0.139 0.004 0.143 0.084 0.020 0.104

BMP 0.084 0.020 0.104 0.068 0.032 0.100 0.096 0.024 0.120 0.128 0.020 0.148

RANK 0.044 0.048 0.092 0.016 0.016 0.032 0.016 0.008 0.024 0.016 0.012 0.028

GRANK-T 0.060 0.028 0.088 0.060 0.036 0.096 0.183 0.016 0.199 0.136 0.016 0.152

adj-PATELL 0.120 0.132 0.252 0.116 0.124 0.240 0.060 0.104 0.163 0.128 0.080 0.208

adj-BMP 0.084 0.020 0.104 0.068 0.024 0.092 0.108 0.024 0.131 0.128 0.016 0.144

GRANK-Z 0.056 0.040 0.096 0.056 0.040 0.096 0.191 0.016 0.207 0.136 0.012 0.148

Panel (C) Comparison period abnormal returns
PATELL 0.100 0.156 0.256 0.092 0.140 0.232 0.032 0.151 0.183 0.076 0.212 0.288

Csect T 0.036 0.036 0.072 0.028 0.044 0.072 0.048 0.032 0.080 0.040 0.032 0.072

G-SIGN 0.064 0.056 0.120 0.052 0.020 0.072 0.064 0.020 0.084 0.072 0.020 0.092

BMP 0.044 0.040 0.084 0.032 0.036 0.068 0.028 0.052 0.080 0.040 0.084 0.124

RANK 0.052 0.064 0.116 0.012 0.020 0.032 0.008 0.008 0.016 0.012 0.004 0.016

GRANK-T 0.060 0.044 0.104 0.048 0.044 0.092 0.135 0.032 0.167 0.092 0.032 0.124

adj-PATELL 0.100 0.156 0.256 0.096 0.140 0.236 0.032 0.155 0.187 0.076 0.208 0.284

adj-BMP 0.044 0.040 0.084 0.044 0.032 0.076 0.028 0.048 0.076 0.028 0.080 0.108

GRANK-Z 0.064 0.048 0.112 0.060 0.036 0.096 0.135 0.032 0.167 0.092 0.032 0.124

 Panel (D) EW Market Model Abnormal Returns

PATELL 0.139 0.190 0.329 0.139 0.190 0.329 0.072 0.172 0.244 0.132 0.164 0.296

Csect T 0.036 0.020 0.056 0.036 0.020 0.056 0.048 0.040 0.088 0.044 0.024 0.068

G-SIGN 0.032 0.036 0.067 0.032 0.036 0.067 0.080 0.020 0.100 0.060 0.044 0.104

BMP 0.028 0.024 0.052 0.028 0.024 0.052 0.036 0.040 0.076 0.048 0.040 0.088

RANK 0.036 0.020 0.056 0.036 0.020 0.056 0.028 0.004 0.032 0.072 0.060 0.132

GRANK-T 0.024 0.024 0.048 0.024 0.024 0.048 0.084 0.032 0.116 0.056 0.044 0.100

adj-PATELL 0.139 0.190 0.329 0.139 0.190 0.329 0.080 0.168 0.248 0.132 0.164 0.296

adj-BMP 0.028 0.024 0.052 0.028 0.024 0.052 0.040 0.036 0.076 0.048 0.040 0.088

GRANK-Z 0.020 0.024 0.044 0.020 0.024 0.044 0.084 0.024 0.108 0.064 0.060 0.124

Panel (E) EW Market Adjusted Abnormal Returns

PATELL 0.172 0.168 0.340 0.120 0.103 0.223 0.148 0.076 0.224 0.148 0.084 0.232

Csect T 0.032 0.020 0.052 0.073 0.027 0.100 0.116 0.008 0.124 0.088 0.024 0.112

G-SIGN 0.052 0.036 0.088 0.087 0.023 0.110 0.124 0.012 0.136 0.124 0.036 0.160

BMP 0.044 0.016 0.060 0.087 0.003 0.090 0.140 0.008 0.148 0.176 0.024 0.200

RANK 0.048 0.056 0.104 0.023 0.010 0.033 0.016 0.012 0.028 0.004 0.024 0.028

GRANK-T 0.020 0.044 0.064 0.067 0.013 0.080 0.148 0.016 0.164 0.132 0.032 0.164

adj-PATELL 0.172 0.168 0.340 0.127 0.100 0.227 0.144 0.076 0.220 0.140 0.096 0.236

adj-BMP 0.044 0.016 0.060 0.100 0.007 0.107 0.136 0.008 0.144 0.160 0.012 0.172

GRANK-Z 0.020 0.044 0.064 0.063 0.010 0.073 0.140 0.012 0.152 0.140 0.032 0.172
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Table 9: Rejection frequencies with zero abnormal performance (TOP 100) 

 

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Calculation 

methodology described following table 11.  

Rejection frequencies are based on 250 simulations, each with N randomly selected crypto-assets 

with replacement from the largest 100 crypto-assets based upon size during the period of January 

1st 2015 to June 30th 2018.  

  

A A R ( +0 ) C A R ( - 1,  1) C A R ( - 5 ,  5 ) C A R ( - 10 ,10 )

HO: AAR < 0  AAR > 0 AAR≠0 CAAR < CAAR > CAAR≠0 CAAR < CAAR > CAAR≠0 CAAR < CAAR > CAAR≠0

Panel (A) VW Market Model Abnormal Returns
PATELL 0.128 0.172 0.300 0.139 0.198 0.337 0.167 0.315 0.482 0.104 0.296 0.400

Csect T 0.024 0.016 0.040 0.040 0.044 0.083 0.052 0.020 0.072 0.108 0.028 0.136

G-SIGN 0.044 0.048 0.092 0.044 0.032 0.075 0.040 0.052 0.092 0.068 0.048 0.116

BMP 0.028 0.040 0.068 0.028 0.052 0.079 0.016 0.084 0.100 0.032 0.108 0.140

RANK 0.024 0.036 0.060 0.032 0.040 0.071 0.016 0.016 0.032 0.048 0.020 0.068

GRANK-T 0.016 0.024 0.040 0.048 0.044 0.091 0.028 0.040 0.068 0.080 0.080 0.160

adj-PATELL 0.128 0.172 0.300 0.139 0.210 0.349 0.163 0.319 0.482 0.112 0.300 0.412

adj-BMP 0.028 0.040 0.068 0.032 0.071 0.103 0.020 0.092 0.112 0.024 0.136 0.160

GRANK-Z 0.016 0.028 0.044 0.056 0.048 0.103 0.028 0.040 0.068 0.080 0.076 0.156

Panel (B) VW Market Adjusted Abnormal Returns
PATELL 0.192 0.148 0.340 0.180 0.113 0.293 0.068 0.104 0.171 0.219 0.131 0.351

Csect T 0.016 0.012 0.028 0.047 0.013 0.060 0.088 0.016 0.104 0.135 0.000 0.135

G-SIGN 0.048 0.048 0.096 0.033 0.030 0.063 0.139 0.004 0.143 0.100 0.028 0.127

BMP 0.060 0.044 0.104 0.047 0.023 0.070 0.096 0.024 0.120 0.179 0.024 0.203

RANK 0.048 0.060 0.108 0.013 0.027 0.040 0.016 0.008 0.024 0.024 0.052 0.076

GRANK-T 0.048 0.044 0.092 0.030 0.027 0.057 0.183 0.016 0.199 0.100 0.024 0.124

adj-PATELL 0.192 0.148 0.340 0.180 0.117 0.297 0.060 0.104 0.163 0.239 0.108 0.347

adj-BMP 0.060 0.044 0.104 0.050 0.027 0.077 0.108 0.024 0.131 0.167 0.024 0.191

GRANK-Z 0.052 0.056 0.108 0.033 0.030 0.063 0.191 0.016 0.207 0.175 0.024 0.199

Panel (C) Comparison period abnormal returns
PATELL 0.132 0.176 0.308 0.156 0.200 0.356 0.303 0.127 0.430 0.120 0.276 0.396

Csect T 0.036 0.012 0.048 0.028 0.008 0.036 0.092 0.024 0.116 0.068 0.048 0.116

G-SIGN 0.048 0.048 0.096 0.032 0.020 0.052 0.096 0.016 0.112 0.044 0.016 0.060

BMP 0.052 0.048 0.100 0.044 0.024 0.068 0.159 0.020 0.179 0.028 0.072 0.100

RANK 0.064 0.048 0.112 0.036 0.028 0.064 0.048 0.020 0.068 0.016 0.036 0.052

GRANK-T 0.064 0.044 0.108 0.052 0.052 0.104 0.104 0.020 0.124 0.080 0.068 0.148

adj-PATELL 0.132 0.176 0.308 0.168 0.208 0.376 0.307 0.131 0.438 0.124 0.260 0.384

adj-BMP 0.052 0.048 0.100 0.044 0.048 0.092 0.171 0.024 0.195 0.032 0.080 0.112

GRANK-Z 0.072 0.040 0.112 0.052 0.036 0.088 0.100 0.012 0.112 0.072 0.060 0.132

 Panel (D) EW Market Model Abnormal Returns

PATELL 0.188 0.148 0.336 0.179 0.222 0.401 0.171 0.303 0.474 0.148 0.260 0.408

Csect T 0.036 0.032 0.068 0.032 0.020 0.052 0.040 0.052 0.092 0.084 0.028 0.112

G-SIGN 0.056 0.040 0.096 0.083 0.048 0.131 0.044 0.040 0.084 0.012 0.024 0.036

BMP 0.056 0.032 0.088 0.032 0.040 0.071 0.040 0.048 0.088 0.024 0.052 0.076

RANK 0.068 0.048 0.116 0.048 0.048 0.095 0.020 0.020 0.040 0.052 0.028 0.080

GRANK-T 0.056 0.032 0.088 0.036 0.063 0.099 0.080 0.052 0.131 0.044 0.072 0.116

adj-PATELL 0.184 0.148 0.332 0.187 0.226 0.413 0.179 0.295 0.474 0.160 0.268 0.428

adj-BMP 0.056 0.032 0.088 0.036 0.048 0.083 0.040 0.068 0.108 0.036 0.056 0.092

GRANK-Z 0.060 0.052 0.112 0.032 0.056 0.087 0.084 0.048 0.131 0.052 0.076 0.128
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Table 10: Simulated rejection frequencies as a function of Sample Size 

 

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Calculation 

methodology described following table 11.  

Rejection frequencies are based on 250 simulations, each with N randomly selected crypto-assets 

with replacement from either the entire sample (Panel A) or from the largest 100 crypto-assets 

(Panel B) based upon size during the period of January 1st 2015 to June 30th 2018.  

Sample size = 10 Sample size = 25 Sample size = 50 Sample size = 100

CAAR(-1,1) CAAR(-1,1) CAAR(-1,1) CAAR(-1,1)

HO: 

PR < 

0.05

PR > 

0.95

2-

Tail

PR < 

0.05

PR > 

0.95

2-

Tail

PR < 

0.05

PR > 

0.95

2-

Tail

PR < 

0.05

PR > 

0.95

2-

Tail

Panel (A) Entire Sample

PATELL 0.075 0.111 0.187 0.120 0.135 0.255 0.124 0.204 0.328 0.160 0.248 0.408

Csect T 0.044 0.016 0.060 0.068 0.020 0.088 0.044 0.048 0.092 0.060 0.024 0.084

G-SIGN 0.060 0.067 0.127 0.068 0.040 0.108 0.068 0.028 0.096 0.088 0.032 0.120

BMP 0.052 0.024 0.075 0.076 0.024 0.100 0.068 0.032 0.100 0.056 0.060 0.116

RANK 0.028 0.008 0.036 0.024 0.024 0.048 0.028 0.016 0.044 0.056 0.020 0.076

GRANK-T 0.063 0.036 0.099 0.092 0.032 0.124 0.084 0.024 0.108 0.036 0.028 0.064

adj-PATELL 0.079 0.111 0.190 0.116 0.135 0.251 0.124 0.208 0.332 0.172 0.248 0.420

adj-BMP 0.052 0.036 0.087 0.080 0.024 0.104 0.068 0.036 0.104 0.044 0.044 0.088

GRANK-Z 0.056 0.024 0.079 0.084 0.036 0.120 0.060 0.028 0.088 0.024 0.032 0.056

Panel (B) TOP 100

PATELL 0.046 0.040 0.086 0.080 0.066 0.146 0.180 0.224 0.404 0.220 0.288 0.508

Csect T 0.022 0.008 0.030 0.028 0.004 0.032 0.032 0.020 0.052 0.028 0.028 0.056

G-SIGN 0.032 0.016 0.048 0.040 0.022 0.062 0.084 0.048 0.132 0.056 0.068 0.124

BMP 0.042 0.022 0.064 0.036 0.022 0.058 0.032 0.040 0.072 0.020 0.060 0.080

RANK 0.016 0.020 0.036 0.026 0.016 0.042 0.048 0.048 0.096 0.020 0.056 0.076

GRANK-T 0.036 0.016 0.052 0.048 0.018 0.066 0.036 0.064 0.100 0.020 0.064 0.084

adj-PATELL 0.046 0.044 0.090 0.084 0.068 0.152 0.188 0.228 0.416 0.216 0.288 0.504

adj-BMP 0.030 0.026 0.056 0.040 0.026 0.066 0.036 0.048 0.084 0.020 0.052 0.072

GRANK-Z 0.038 0.018 0.056 0.048 0.016 0.064 0.032 0.056 0.088 0.020 0.072 0.092
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Table 11: Clustered simulated rejection frequencies as a function of sample size 

 

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Calculation 

methodology described following table 11.  

Samples of panel (A) as described in common methodology, samples of panel (B), are 

determined by first choosing a random day and second randomly selecting N crypto-assets 

without replacement.   

Sample size = 10 Sample size = 25 Sample size = 50 Sample size = 100

CAAR(-1,1) CAAR(-1,1) CAAR(-1,1) CAAR(-1,1)

HO: 

PR < 

0.05

PR > 

0.95

2-

Tail

PR < 

0.05

PR > 

0.95

2-

Tail

PR < 

0.05

PR > 

0.95 2-Tail

PR < 

0.05

PR > 

0.95

2-

Tail

Panel (A) Non-Clustured

PATELL 0.075 0.111 0.187 0.120 0.135 0.255 0.124 0.204 0.328 0.160 0.248 0.408

Csect T 0.044 0.016 0.060 0.068 0.020 0.088 0.044 0.048 0.092 0.060 0.024 0.084

G-SIGN 0.060 0.067 0.127 0.068 0.040 0.108 0.068 0.028 0.096 0.088 0.032 0.120

BMP 0.052 0.024 0.075 0.076 0.024 0.100 0.068 0.032 0.100 0.056 0.060 0.116

RANK 0.028 0.008 0.036 0.024 0.024 0.048 0.028 0.016 0.044 0.056 0.020 0.076

GRANK-T 0.063 0.036 0.099 0.092 0.032 0.124 0.084 0.024 0.108 0.036 0.028 0.064

adj-PATELL 0.079 0.111 0.190 0.116 0.135 0.251 0.124 0.208 0.332 0.172 0.248 0.420

adj-BMP 0.052 0.036 0.087 0.080 0.024 0.104 0.068 0.036 0.104 0.044 0.044 0.088

GRANK-Z 0.056 0.024 0.079 0.084 0.036 0.120 0.060 0.028 0.088 0.024 0.032 0.056

Panel (B) Clustered

PATELL 0.083 0.119 0.202 0.096 0.159 0.255 0.164 0.176 0.340 0.192 0.232 0.424

Csect T 0.052 0.060 0.111 0.032 0.048 0.080 0.072 0.032 0.104 0.052 0.040 0.092

G-SIGN 0.079 0.091 0.171 0.072 0.120 0.191 0.128 0.124 0.252 0.176 0.212 0.388

BMP 0.083 0.095 0.179 0.056 0.076 0.131 0.100 0.088 0.188 0.108 0.112 0.220

RANK 0.052 0.075 0.127 0.028 0.084 0.112 0.040 0.052 0.092 0.064 0.092 0.156

GRANK-T 0.071 0.083 0.155 0.064 0.064 0.127 0.044 0.040 0.084 0.036 0.064 0.100

adj-PATELL 0.083 0.115 0.198 0.080 0.124 0.203 0.128 0.152 0.280 0.140 0.172 0.312

adj-BMP 0.071 0.103 0.175 0.036 0.088 0.124 0.052 0.068 0.120 0.064 0.052 0.116

GRANK-Z 0.067 0.099 0.167 0.080 0.116 0.195 0.128 0.112 0.240 0.104 0.208 0.312
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Rejection frequencies of various specification with zero abnormal returns (tables 8 to 11)  

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Rejection frequencies 

are based on 250 simulations, each with N randomly selected crypto-assets with replacement 

during the period of January 1st 2015 to June 30th 2018. Randomization for both the entire sample 

and clustered samples is first done by excluding crypto-assets which have been forked or ICOd 

within the previous 70 days. Second, the universe is further divided to only select securities that 

have at least 5 days of available post event day-price data. Samples of panel (A) are than drawn 

from the resulting subset of 431 995 crypto-asset daily price pairs. The market index is the value 

weighted CRIX index. Event-day abnormal returns are determined by the one factor market model 

approach. The event window includes 1 day prior and 1 day after (-1,1).  

An estimation windows from -100 to -11 days is used for calibrating the parameters of the market 

model and the necessary standard deviations and signs necessary for determining test statistics. 

The rank test calculates ranks across the entire observation period (-100,+1). The parametric test 

statistics of Csect-T, PATELL, BMP, Adj-PATELL, adj-BMP are calculated based on the 

specifications described in section Test Statistics and defined in Brown and Warner(1985), Patell 

(1976), Boehmer et al (1991) and Kolari and Pynnönen (2010,2010) respectively. The null 

hypothesis across all parametric tests is that the mean CAR is zero. The non-parametric tests of 

RANK, GRANK-T and GRANK-Z are calculated by the specifications shown in Test Statistics 

and defined in Corrado and Zivney(1992), Kolari and Pynnönen (2011, 2011). The G-SIGN is 

defined for a single day event as in Cowan(1992) and as defined in Kolari and Pynnönen (2011) 

for multiday events. The null hypothesis of the G-SIGN test is that the proportion of event day 

abnormal returns having a particular sign is equal to the proportion of estimation-period abnormal 

returns with that sign. The null hypothesis of the RANK test is that the mean ranking of the 

abnormal returns in the event period is equal to that of the entire observation period. The null of 

the GRANK-T and GRANK-Z is that the demeaned standardized abnormal rank of the event 

period is equal to zero.  
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Table 12: Seeded abnormal return rejection frequencies Market Model -Value Weighted 

 

Table 13: Seeded abnormal return rejection frequencies Market Model Equally weighted 

 

Simulated rejection frequencies of seeded abnormal returns (tables 12 to 15). Calculation 

methodology described following table 15 
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Table 14: Seeded abnormal return rejection frequencies - Market Adjusted Model 

 

Table 15: Seeded abnormal return rejection frequencies (Comparison Period Mean Adjusted 

Model) 

 

Simulated rejection frequencies of seeded abnormal returns (tables 12 to 15). Calculation 

methodology described following table 15 
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Rejection frequencies of various specification with seeded abnormal returns (tables 12 to 15)  

Rejection frequencies are based on 250 simulations, each with 50 randomly selected crypto-assets 

with replacement from during the period of January 1st 2015 to June 30th 2018. Randomization 

first excludes crypto-assets which have been forked or ICOd within the previous 70 days. Second, 

the universe is further subsetted to only select securities that have at least 5 days of available post 

eventday-price data. Samples are than drawn from the resulting subset of 431 995 crypto-asset 

daily price pairs. The market index is the value weighted CRIX index. Seeded returns are added 

to the day zero returns for each crypto-asset in each simulation. 

Event-day abnormal returns are determined by the one factor market model approach. An 

estimation windows from -100 to -11 days is used for calibrating the parameters of the market 

model, the standard deviations and signs necessary for determining test statistics. The rank test 

calculates ranks across the entire observation period (-100,+1). The parametric test statistics of 

Csect-T, PATELL, BMP, Adj-PATELL, adj-BMP are calculated based on the specifications 

described in section Test Statistics and defined in Brown and Warner(1985), Patell (1976), 

Boehmer et al (1991) and Kolari and Pynnönen (2010,2010) respectively. The null hypothesis 

across all parametric tests is that the mean AAR and CAR is zero. The non-parametric tests of 

RANK, GRANK-T and GRANK-Z are calculated by the specifications shown in Test Statistics 

and defined in Corrado and Zivney(1992), Kolari and Pynnönen (2011, 2011). The G-SIGN is 

defined for a single day event as in Cowan(1992) and as defined in Kolari and Pynnönen (2011) 

for multiday events. The null hypothesis of the G-SIGN test is that the proportion of event day 

abnormal returns having a particular sign is equal to the proportion of estimation-period abnormal 

returns with that sign. The null hypothesis of the RANK test is that the mean ranking of the 

abnormal returns in the event period is equal to that of the entire observation period. The null of 

the GRANK-T and GRANK-Z is that the demeaned standardized abnormal rank of the event 

period is equal to zero. 
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Table 16: Binance listing announcement (CAR) analysis 

 

*,**,*** indicate significance at the 10%, 5% and 1%. 

Test statistic values for a sample of 44 announcements of Crypto-Assets listings by Binance.com 

for the period of September 2017 and June 2018. Panels A-D show the resulting test statistic values 

for the days indicate in brackets. In all Panels, value weighted refers to calculations using a market 

model approach with the value weighted CRIX index. The equal weighted refers to to calculations 

using a market model approach with the equal weighted EW100 index. 

An estimation windows from -120 to -11 days is used for calibrating the parameters of the market 

model, the standard deviations and signs necessary for determining test statistics. The rank test 

calculates ranks across the entire observation period (-100,+11). The parametric test statistics of 

Csect-T, PATELL, BMP, Adj-PATELL, adj-BMP are calculated based on the specifications 

described in section Test Statistics and defined in Brown and Warner(1985), Patell (1976), 

Boehmer et al (1991) and Kolari and Pynnönen (2010,2010) respectively. The null hypothesis 

across all parametric tests is that the mean CAR is zero. The non-parametric tests of RANK, 

GRANK-T and GRANK-Z are calculated by the specifications shown in Test Statistics and defined 

in Corrado and Zivney(1992), Kolari and Pynnönen (2011, 2011). The G-SIGN is defined in Kolari 

and Pynnönen (2011) for multiday events. The null hypothesis of the G-SIGN test is that the 

proportion of event day abnormal returns having a particular sign is equal to the proportion of 

estimation-period abnormal returns with that sign. The null hypothesis of the RANK test is that 

the mean ranking of the abnormal returns in the event period is equal to that of the entire 

observation period. The null of the GRANK-T and GRANK-Z is that the demeaned standardized 

abnormal rank of the event period is equal to zero.  

CAR PATELL Csect T G-SIGN BMP RANK GRANK-T adj-PATELL adj-BMP GRANK-Z

Panel (a) CAR (-5,5)

Value weighted 9.3% 1.694 ** 1.501 * 1.436 * 1.528 * -1.033 0.846 1.625 * 1.545 * 1.243

Equal weighted 9.1% 1.612 * 1.470 * 1.142 1.478 * -1.157 0.763 1.588 * 1.510 * 1.096

Panel (B) CAR (-3,-1)

Value weighted 4.3% 1.927 ** 1.520 * 1.708 ** 1.834 ** 0.371 0.981 1.850 ** 1.447 * 1.411 *

Equal weighted 5.0% 1.979 ** 1.819 ** 2.320 ** 1.957 ** 0.529 1.318 * 1.965 ** 1.690 ** 1.800 **

Panel (C) CAR (0,1)

Value weighted 13.6% 6.564 *** 2.433 *** 3.522 *** 1.927 ** 0.494 1.453 * 6.302 *** 1.511 * 2.093 **

Equal weighted 14.1% 6.820 *** 2.526 *** 3.227 *** 2.048 ** 0.548 1.647 * 6.769 *** 1.699 ** 2.253 **

Panel (D) CAR (2,4)

Value weighted -10.9% -4.592 *** -2.287 ** -1.921 ** -2.002 ** -2.909 *** -1.539 * -4.409 *** -1.478 * -2.219 **

Equal weighted -11.6% -5.119 *** -2.530 *** -2.518 *** -2.345 ** -3.126 *** -1.772 ** -5.081 *** -1.913 ** -2.426 ***
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Table 17: Daily average abnormal return of Binance.com listing announcements 

 

*,**,*** indicate significance at the 10%, 5% and 1%. 

Test statistic values for a sample of 44 announcements of Crypto-Assets listings by Binance.com 

for the period of September 2017 and June 2018. An estimation windows from -120 to -11 days is 

used for calibrating the parameters of the market model, the standard deviations and signs 

necessary for determining test statistics. The rank test calculates ranks across the entire observation 

period (-100,+11). The parametric test statistics of Csect-T, PATELL, BMP, Adj-PATELL, adj-

BMP are calculated based on the specifications described in section Test Statistics and defined in 

Brown and Warner(1985), Patell (1976), Boehmer et al (1991) and Kolari and Pynnönen (2010, 

2010) respectively. The null hypothesis across all parametric tests is that the mean AAR is zero. 

The non-parametric tests of RANK, GRANK-T and GRANK-Z are calculated by the 

specifications shown in Test Statistics and defined in Corrado and Zivney(1992), Kolari and 

Pynnönen (2011, 2011). The G-SIGN is defined for a single day event as in Cowan(1992). The 

null hypothesis of the G-SIGN test is that the proportion of event day abnormal returns having a 

particular sign is equal to the proportion of estimation-period abnormal returns with that sign. The 

null hypothesis of the RANK test is that the mean ranking of the abnormal returns in the event 

period is equal to that of the entire observation period. The null of the GRANK-T and GRANK-Z 

is that the demeaned standardized abnormal rank of the event period is equal to zero. 

Panel (a) Value-Weighted Index

CAR PATELL Csect T G-SIGN BMP RANK GRANK-T adj-PATELL adj-BMP GRANK-Z

AAR(-3) 0.8% 1.344 * -0.409 0.562 1.184 -0.178 -0.123 1.340 * 1.179 -0.177

AAR(-2) 0.9% 0.548 -0.409 0.762 0.672 0.262 0.207 0.546 0.670 0.298

AAR(-1) 2.7% 1.954 ** 0.498 1.041 1.190 0.662 0.680 1.948 ** 1.185 0.980

AAR(0) 5.2% 1.970 ** 0.196 1.972 ** 1.484 * 0.570 0.588 1.964 ** 1.478 * 0.846

AAR(1) 8.4% 7.308 *** 0.498 1.514 * 1.494 * 0.233 0.662 7.285 *** 1.488 * 0.954

AAR(2) -5.8% -5.005 *** -1.618 * -1.532 * -1.553 * -2.091 ** -1.008 -4.989 *** -1.547 * -1.455 *

Panel (b) Equal-Weighted Index

CAR PATELL Csect T G-SIGN BMP RANK GRANK-T adj-PATELL adj-BMP GRANK-Z

AAR(-3) 0.2% 0.569 -0.401 0.169 0.552 -0.434 -0.461 0.567 0.550 -0.630

AAR(-2) 2.1% 1.853 ** 1.715 ** 1.694 ** 1.937 ** 1.136 1.095 1.846 ** 1.928 ** 1.493 *

AAR(-1) 2.7% 1.528 * 0.203 1.038 0.879 0.264 0.471 1.523 * 0.875 0.643

AAR(0) 5.5% 2.104 ** 0.506 2.219 ** 1.611 * 0.778 0.736 2.096 ** 1.603 * 1.006

AAR(1) 8.5% 7.538 *** 0.506 1.519 * 1.558 * 0.109 0.748 7.509 *** 1.550 * 1.023

AAR(2) -6.0% -5.405 *** -2.518 *** -1.710 ** -1.823 ** -2.069 ** -1.063 -5.384 *** -1.814 ** -1.455 *
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Average Abnormal returns calculated as described in table 17.  

 

 

Figure 1: Binance Listings average daily abnormal returns  


