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ABSTRACT

This paper provides the first empirical evidence of how the unique properties of crypto-asset
returns impact event-study test performance. Employing a simulation approach with actual price
data from 1877 unique crypto-assets over the period of January 1st, 2015 to June 30th, 2018 reveals
that both parametric procedures and non-parametric procedures often result in significant statistical
errors. In the presence of event-day clustering, only the Generalized Rank T-Test is both powerful
and well specified. To estimate abnormal returns, the market-model with a value-weighted index
produces test statistics with distributions closest to expectation. The empirical evidence provided
by the simulation then used in the first ever crypto-asset based event-study. Specifically, the event
study investigated allegations of insider trading by the worlds largest crypto-asset exchange
Binance.com. A total of 44 unique listing announcements during the period of September 2017 to
June 2018. produce a statistically significant two day return of 13.6% (CAR(0,1)). However, the
GRANK-T test fails to reject the null hypothesis of no insider trading during the three days
preceding the announcements. Guidance and future applications of event-studies with crypto-asset

returns are discussed.
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1. Introduction

Miss-specification in event-studies primarily occurs when there is either, a bias in the
abnormal return estimation model or a violation of the test statistic assumptions (or both).
Literature has addressed these concerns for a wide variety of financial assets returns (Corrado,
2011). However, the magnitude of the departures from normality previously investigated pail in
comparison to the extremely skewed, highly leptokurtic, return characteristics of crypto-assets.
Therefore, the applicability of previous evidence is an unexplored empirical question. While, the
argument can be made that non-parametric tests are appropriate, without empirical evidence they

cannot be assumed to be well-specified (Campbell et al, 2010).

Crypto-Assets, which broadly includes all types of tokens and crypto-currencies were
invented in 2009 with the bitcoin blockchain outlined by Nakamoto (a pseudonym, 2008) in a
whitepaper distributed on a cryptography email-list. Within 10 years, at the end of 2017,
accelerating growth has resulted in over 1500 different crypto-assets with a combined market
capitalization exceeding $800bn USD (Coinmarketcap.com). This rapid growth could be seen as
reflective of how transformational of an impact blockchain technology is expected to have in
society (Gartner level 5 classification). However, there is also a widespread belief, supported with
empirical evidence (Griffen and Shams, 2018), that a substantial part of the growth stems from the
non-policed' and mostly anonymous nature of crypto-assets. These contrasting beliefs highlight
the main contribution of this work. This papers simulation based empirical evidence qualifies the
use of crypto-asset returns in event-studies, enabling future research to make inferences vital to

exploring both explanations.

As the first study to explore the use of crypto-asset returns in event-studies, considerable
guidance was drawn from the earliest literature in this area. Using the simulation approach
pioneered by Brown and Warner (1985) the performance of five parametric test statistics and four
non-parametric test statistics are assessed for daily crypto-asset returns. These are examined under
three different approaches to calculating abnormal returns and compared with value-weighted and

equal-weighted market indices.

It is a common misconception that the crypto-asset market is unregulated. Existing regulations
including those relating to security offerings, fraud, money laundering, market manipulation,
misrepresentation and others in most cases directly apply to crypto-assets.



The results of the simulations indicate that the non-normality of crypto-asset returns impact
the performance of most specifications. Due to the contrasting skewness of the market index and
crypto-asset returns, the market-adjusted abnormal return model should be avoided. The market-
model with a value weighted index, was found to have tests statistics with distributions that most
closely resembled expectations. When there is no-event day clustering the recommended
parametric test is the BMP test and the recommend non-parametric test are the GRANK-T and G-
SIGN statistics. However, with event-day clustering the GRANK-T is the only suitable test with

sufficient power to detect abnormal returns.

The remainder of the paper is as follows, the motivation and supporting literature is
discussed in the section below. The experimental design is presented in section three. Section four
presents the results, followed by the discussion and limitations. Section six applies the findings to
investigate insider trading by the exchange Binance. The paper concludes by summarizing the

findings and presenting guidance for future researchers.

2. Motivation and Literature Review

2.1 Motivation

Event-study methodology has a storied history with impacts extending beyond literature
and into criminal trials. In some circumstances it has become the preferred or even required
methodology to determine wrong-doing in the eyes of the court (Fisch et al, 2017). This highlights
the necessity to develop robust event-study methodologies. In western society is commonly argued
that it is better that 1000 guilty men go free than one innocent man be wrongly convicted. 1f the
underlying data or event-study methodology used as evidence in court results in miss-
specifications that cause an increase in type one errors, then it is of considerable value to society

to insure against this.

Ginni Rometty, CEO and Chair of IBM believes once widely adopted, Blockchain will
transform the world (2016). A robust event-study methodology for crypto-assets will enable
considerable insights as the transformation process unfolds. While many research questions cannot
yet be defined, I identify several fruitful avenues for researchers in the near future. It is likely
public corporations will continue to follow Kodaks lead in developing their own crypto-assets.
Insights can be gained examining when these crypto-assets become listed on an exchange or

included in a crypto-index. Initial Coin Offerings (ICO), Blockchain Crowdsales (Amsden and
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Schweizer, 2018) and Security Token Offerings represent a new mechanism for corporations or
ventures to raise capital and have similarities to event-studies in IPO literature. The subsequent
treasury spending of the proceeds raised can be examined from a signaling perspective and
departures of founders or hiring of new members is pertinent to investigating management
questions. Token burning events have similarities to conventional literature examining share
repurchases. Outside of the corporate finance domain, the framework provided by this study will
be vital to examine blockchain forks (when a network splits into two such as Bitcoin and Bitcoin
cash), blockchain security (such as a 51% attack), airdrops (providing the crypto-asset for free to

spur adoption), the value of switching consensus mechanisms and broadly in the domain of law.

2.1 Conventional Literature

The history of event-studies dates back to the early 1930s, (MacKinlay, 1997) with the first
known study by Dolley (1933) examining the impact of stock splits. The event study methodology
that was employed was what we now call the random walk hypothesis in that the best prediction
of tomorrows price is todays price. Therefore, the predicted return is equal to zero and the event
study calculated how often the price increased or decreased following the event. The literature that
followed would soon point out this methodology was flawed because it did not consider underlying
movements in the general stock market, therefore erroneously producing statistically significant
findings. In principle accounting for general market movements appears straightforward, in
practice it remains the core research question addressed in recent literature. Although crypto-assets
are categorically different, the underlying research question this paper address's is exactly this.

How to account for changes in prices that are unrelated to the event itself.

Conventional literature can be broadly separated by which of the event-study stages it
addresses. The first stream concerns the estimation of expected returns had the event not occurred
so that abnormal returns can be calculated. This stream has a rich history, with the more recent
developments being the introduction of SMB, HML pricing factors (Fama and French, 1993) and
momentum factors (Carhart, 1997). However, these are statistical models derived from the
historical returns of securities with unknown applicability to crypto-assets. For a detailed
discussion on the issues of these in event-studies see Ahern (2009). Fortunately, the event-study

literature preceding the discovery of pricing factors provides insights for crypto-assets. The mean



adjusted model, market adjusted model and market model examined in Brown and Warner (1985)

seminal study can be applied in a variety of situations including crypto-assets.

The second stream of literature concerns determining statistical significance of the
abnormal returns. Theoretically under perfect conditions a simple t-test can be used, in practice
the unique characteristics of each study must be considered when formulating a statistical test
(MacKinlay, 1997). Departures from normality do not always cause concerns. For example, while
daily returns are generally non-normal, the impact has been shown under certain circumstance to
be minimal in random samples (Brown and Warner, 1985). However, when there is event induced
variance an adjustment is required (Boehmer, Musumeci and Poulsen, 1991). Similarly, failure to
control for cross-correlation when it is present can result in over rejection of the null hypothesis
of no abnormal returns (Kolari and Pynndnen, 2010). Ahern (2009) further demonstrates that
omitted variable bias can occur depending on sample selection. The proposed mechanisms to
overcome these concerns are summarized in table 1 and discussed in detail in the experimental

design section.
[Insert table 1 about here]

2.1 Crypto-Asset Literature.

A critical assumption of event-studies are that event-studies rely on some form of market
efficiency. That is, that prices change as a result of traders making rational decisions based on the
arrival of new material information. A review of theoretical models and quantitative tests literature
support that market efficiency in the context of crypto-assets is similar to that of traditional

markets.

Theoretical Models.

Numerous researchers are developing theoretical models which may have an impact on
crypto-asset prices and returns. In Cong, Li and Wang (2018), the issue of user-base externalities
1s modeled into asset-pricing theory. The model suggests that crypto-assets accelerate adoption of
a platform and that price depends on the amount of users, platform productivity, the agents
transaction needs and similar to traditional securities expectation of price appreciation. Li and
Mann (2018) propose a similar model that shows that ICOs leverage the network effect and thus

prices should be expected to also reflect this externality.



Quantitative Tests

Wei (2018) in a brief analysis, test for market efficiency of 456 cryptocurrencies found a
positive relationship between market efficiency and crypto-asset liquidity. In the lowest 20% of
liquid crypto-assets, they document a Hurst exponent value of 0.41, below the cutoff of 0.45
indicating presence of time-series mean reversion. However, as the Hurst tests for long memory
of returns its impact on short-term event studies is minimal. Encouragingly, for the 60% most
liquid crypto-assets the Hurst scores range from 0.46 to 0.53 indicating the returns are essentially
a random walk (0.50=RW). In comparison with the earlier results that found market inefficiencies

(Urquhart, 2016), this can be taken as evidence of the crypto-asset market maturing over time.

Ciain et al (2018), take a different approach and investigate the interdependencies between
bitcoin and 16 alt-coins. They provide evidence that in the short-term the majority of altcoins
(15/16) are cointegrated with bitcoin prices. However, in the long-term the relationship disappears
with evidence of only 25% being cointergrated. The relevance of this is questionable, as the study
used returns priced in USD?. The results they found are expected because industry participants do
not view prices in terms of USD but rather in terms of BTC. Therefore, the cointegration in altcoin
prices is likely a manifestation of the trading environment rather than evidence of market

inefficiency.

3. Experimental Design

This paper employs the standard approach to investigate the theoretical performance
among event-study specifications by conducting simulations utilizing the actual pricing data. This
approach is flexible enough to address the different research questions of this paper while ensuring
the results are transferable to actual event-studies. Brown and Warner (1985) used this approach
in concluding that the non-normality of the daily stock returns does not always result in loss of
accuracy or miss-specifications of tests when used in event-studies. Similar to Brown and Warner,
the overall purpose of the simulation is to determine under what situations the simpler and less

computational heavy statistical tests can be used by researchers despite crypto-assets returns

2 The data source they use is Coinmarketcap.com which reports prices in USD by converting the
price feeds they receive by the prevailing BTC/USD market rate resulting in considerable
translation bias.



exhibiting substantial deviations from normality. In addition, establish the limitations so that future

researchers can account for them.

Results of the simulations are judged on the basis of Type 1 and Type 2 errors. A testing
procedure is only considered well-specified if the non-normality, autocorrelation, cross-correlation
inherent in crypto-asset data does not materially impact the type 1 error. Among the properly
specified tests, the robustness is judged on its power in minimizing type 2 errors. The same
approach is used to judge among different methodologies in calculating the excess return or
benchmark selection. Returns are determined by LN(P; / Pr.1), note that when the specification
introduces abnormal return it presented as the nominal number but computed as above. The
simulations are conducted in the software program R with the package event studies (Schimmer,

Levchenko, and Miiller, 2015).

3.1 General Notation

Unless otherwise defined, the following notation applies throughout the specifications. The
return of crypto-asset i on day ¢ is noted as R;.. The crypto-asset market return on day ¢ is noted as
Ry Abnormal returns for crypto-asset i on day ¢ is noted as AR;,. The average abnormal returns
across the sample for day ¢ is found by dividing the sum of AR;; by the number of crypto-assets in
the sample and is noted as 44R ;. The cumulative abnormal return for crypto-asset i is found by
summing the AR;; the event period and is noted by CAR;. The averaged cumulative abnormal
return across the sample is found by dividing the sum of CAR;, by the number of crypto-assets in
the sample and is noted as CAAR. The first day of the estimation period is noted by 70, the last
day of the estimation window is 7'/ and the last day of the event window is 72. The total number
of days in the event window is noted as Evtl and in the estimation window is EstW. M; is the

number of non-missing observations for crypto-asset i.

3.2 Abnormal Return Models

The proper approach to calculating crypto-asset returns is still an open research question.
Without adequate evidence for any specific crypto-currency factor pricing model, this study
implements the primary methodologies used in Brown and Warner (1985). The methods of
calculating abnormal returns of crypto-assets are the Market model (MM), Market-adjusted model
(MAM) and the mean adjusted model (CPMAM).



The mean adjusted model (CPMAM) calculates each securities abnormal return as:

ARy = Ry — R; (1)
Where

— 1
R; = z R
T, —Ty

The market adjusted model (MAM) is determined by :

AR;t = Rit — Ryt (2)

The market model (MM) is determined by :

ARit = Ryt — (a; + Bi * Ript) (3)

where f5; is a regression coefficient measuring the sensitivity of Rj; to the market returns

3.3 Parametric Tests.

3.3.1 Cross-Sectional test (Csect-T)

The cross-sectional test was one of the earliest and most basic methods of testing a null
hypothesis of zero average abnormal returns of a sample. This method expands the capabilities of
the T-test by enabling the simultaneous testing of a multiple events. The test statistic of the cross-

sectional test (Csect-t) for day t is:

taar, = VN i (4)

SAAR;

Where the variance is determined by:

N 5
2 ) 2 (5)
Star, = ) 1(ARy; — AAR))
i=1

To examine multi day events the null hypothesis of zero cumulative average abnormal

returns, the test statistic of the cross-sectional test is:

CAAR (6)

SCAAR

tcaar = VN



Where the variance is found by:

N
1
SZian = mz 1 (CAR; — CAAR)? (7)

=1

3.3.2 Patell Test (PATELL)

The Cross-Sectional test primary limitation is its proneness to security specific volatility
throughout the estimation period (Patell 1976). This is due to the test providing equal weights to
the abnormal returns of all observations. Patell (1976) devised a methodology to correct for such
by standardizing the AR of constituent in the sample. The unadjusted estimation period variance
of the residuals (in the sense of deviations from predictions, not the residuals of OLS regression)

of crypto-asset i is found by:

T
1 2
Shr, = M, —2 Z (ARy) (8)

t=TO
Since the above is out of sample, the standard error is then adjusted by the forecast error of the

event window. The adjustment to the variance is as follows:

1 Rim: — Rm)?
S“%Ri,t = S‘ERI: <1 + M. + T, e m)_ 2) (9)
i Zt:To 1 (R — Rm)
To account for the security specific volatility each abnormal return is standardized by:
AR;,
SAR;; = —= (10)
SAR;,
Where ASAR is the average scaled abnormal returns on day ¢, calculated as:
ASAR, = ¥ SAR;, (11)



Since the number of observations varies between crypto-assets in the sample, the test statistic will

have an expected value of zero with a variance close to one, calculated as:

M;—-2
SjSARt =it 1 M4 (12)
The Patell test statistic is then calculated by:
ASAR
Zpatell,t = SASARt (13)
t

To test the null hypothesis of zero cumulative average abnormal returns over the event window.

The cumulative scaled abnormal returns are the sum of Equation ( 10 ),as determined by:

CSAR; = %42 1 1SAR;, (14)

Since the number of observations varies between crypto-assets in the sample, the test statistic will

have an expected variance of

SgSARi = Eth% ( 15)

With the Patell’s test statistic as:

CSAR; ( 16 )

1 N
VA = — E V1
Patell /N &i=1 SCSARi

3.3.3 Adjusted Patell Test

Inherent in Patell test is the assumption of no correlation among the residuals of the
abnormal returns. Even the smallest levels of correlation in residuals across security-events will
lead to over rejecting the null hypothesis. Moreover, the misspecification magnifies as the number

of securities in the sample increases (Kolari and Pynnénen’s, 2010).

The test statistic for the adjusted Patell test is:

_ 1 (17)
Zadjusted Patell,t = Zpatell,t 1+(N-1DF



Where zpaels is the Patell test statistic and 7 is defined as the average of the sample cross-
correlation of the estimation period abnormal returns. The adjusted Patell test can be used to test
the null hypothesis of zero cumulative average abnormal returns "assuming the square-root rule

holds for the standard deviation of different return periods" (Kolari and Pynnonen’s, 2010). It is

_ 1 (18)
ZAdj Patell = Zpatell Tt(-17

3.3.4 Boehmer, Musumeci and Poulson Test (BMP)

calculated by;

The improvement in the Patell statistic implicitly requires the same variance for the scaled
abnormal returns. As a result, when event-induced variance inflation exists, the denominator in the
Patell statistics is artificially too low implying a greater likelihood of type one errors. In order to
account for the presence of type one errors, Boehmer, Musumeci and Poulson (1991) developed,

a more robust approach that estimated event-day volatility to standardize abnormal returns.

To test the null hypothesis of zero averaged abnormal returns on the test statistic for the BMP test

is calculated by:

ASAR; ( 19 )
Z ="
BMP,t \/NSASARL-

where ASAR; is determined in equation ( 11 )and the scaled variance is determined by

1

1 oN 2 20
SXSARt = N-1 i1 (SARi,t N lelsARl,t) (20)

To test the null hypothesis of zero cumulative average abnormal returns the BMP statistic is

calculated by:

SCAR (21)

ZAdjusted BMP = VNS
SCAR

10



Note the minor difference between Patell and BMPs scaling of cumulative abnormal
returns. In Patells, the returns are each scaled and then aggregated (denoted as CSAR). In BMP,
the CAR values are first determined and then scaled. The difference overcomes the sensitivity to
the day of the event within the event window resulting from event induced volatility that Patells
has. The scaled cumulative abnormal returns for crypto-asset i are calculated as shown in in Kolari

and Pynnonen’s, (2011) by

SCAR; = CAR; (22)

Seam)
( CAR; *(mm,mam or CPmam)

The scaling is done with Mikkelson and Partch (1998) correction (Sc4g, determined in

Appendix 1) for serial correlation in the returns. To account for event-induced volatility the SCAR;

in equation ( 22 ) is re-standardized (denoted with *) by the cross-sectional standard deviation as:

. SCAR;
SCAR; = (23)
Sscar
The averaged scaled cumulative abnormal returns is:
1 N
SCAR; = ;) SCAR;, (24)
i=1
With a variance of
= SCAR,) 25
Steam: = wo 2ie1 1 (SCAR; — SCAR,) (25)

3.3.5 Adjusted BMP Test

As the BMP is simply a variation of the Patell test, the BMP test is also exposed to cross-
sectional correlation of the scaled abnormal returns (Kolari and Pynnénen’s, 2010). Kolari and
Pynnonen’s (2010) propose an adjusted BMP test statistic. The adjusted BMP test statistics for the

null hypothesis of zero average abnormal returns is calculated as:

11



1-7 (26)
ZpMP,t = ZBMP,t Tt(-17

Similar to their previous modification to the Patell test, the adjusted BMP test adjusts
Zpmp ¢ calculated in equation ( 19 ) with the average of the sample cross-correlation of the scaled
abnormal returns 7. The adjustment process to test the null hypothesis of zero cumulative average

abnormal returns is the same as above. The adjusted BMP statistic adjusts zgyp in equation ( 21 )

1-7 (27)
ZAdj BMP — ZBMP TH(N-17

as calculated as:

3.4 Non- Parametric tests.

3.4.1 Rank Test (RANK)

One of the most popular nonparametric tests used in event-studies is Corrado’s (1989) rank
test which transforms the daily returns into ordered ranks. The rank statistic using rank Z for testing

the null hypothesis of zero abnormal returns on a single day is:

_ K—05 (28)

Where K; ; is a standardization of the ranks by the number of non-missing values Mi+1 shown in

equation (29) and the average standardized ranks is shown in (30) :

_ rank(AR;;) (29)

LU 1+ M+ NMEgyew

- 1 Ne rank(AR;;) (30)

t =N
N¢ i=1 1+M;+NMEyrw

Where the denominator of the test statistic is determined over the entire observation period as:
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T2 — 2 (31)
2 _ 1 E Ne (g, —
Sk = Gstwy+ (viw) t=1, ¥ (K. —0.5)

To test event windows of multiple days, Campbell and Wasley’s (1993) definition of the
test is required. The rank statistic for testing the null hypothesis of zero cumulative abnormal

returns over the multiday period is:

trank = / (EVEW) (%) (32)

Where the mean rank across firms and time in the event window is found by;

Krr =——Y10 1 K (33)

Evtw “t=T1+1
3.4.2 Generalized Rank Test (GRANK-T)
Despite findings by Corrado’s (1989) and Campbell and Wasley’s (1993) that the rank test

is well specified and powerful when tested on NYSE stocks and Nasdaq stocks, the test loses
power over longer event windows. The test also omits any adjustments for event induced variance.
Kolari and Pynnonen’s, (2011) develop the generalized rank T-test to account for cross-correlation
of returns and returns of serial correlation. It does so by condensing the event window into a single
observation known as a “cumulative event day”. To test the abnormality of the cumulative event
day, the demeaned standardized abnormal ranks of each crypto-asset i are calculated by

U, = rank(GSAR;t) 05 (34)
’ (EstW)+2

The generalized standardized abnormal returns (GSAR) are calculated in equation ( 23 ) and
equation ( 10 ) and utilized in the rank determination as :

SCAR;

GSAR;, = { SAR,,

for t in event window }

. . . ) 35
for t in estimation window ( )

The average rank of a particular time t, is done by
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- 1
Ut=N—tZIiV=t11Ui’t (36)

Defining the observation window as consisting of the estimation window and the cumulative event

day. The variance of the ranks used in the denominator of equation ( 39 ) is calculated by

52——1 &*ﬁ(z)
U~ (EstW) — 1 N (37)

teObsW

It should be noted, setting ¢ equal to zero indicates day zero when testing a single day and
the cumulative event day if testing an event window. This is one of the appealing factors as a single
test statistic can be used for both single and cumulative null hypothesis. The generalized rank test
(GRANK-T) is t-distributed the number of days in the estimation period minus one degrees of

freedom. The test statistic is given by Kolari and Pynnonen’s, (2011) and is calculated as:

1
(EstW) —1\2 38
tgrank = 2 ((EstW) - ZZ) (3%)
Where
7=0 (39)

3.4.3 Generalized Rank Z (GRANK-7)

Kolari and Pynnénen’s, (2011) demonstrated that for a sufficiently large sample size, a
simplified test statistic could be used. This test allows for the generalized rank to converge under
the null hypothesis of zero cumulative average abnormal returns to a standard normal distribution,
as the sample size increases. The primary drawback compared to the GRANK-T is the ability to

control for cross sectional correlations.

The generalized rank Z (GRANK-Z) stat:
T, _ [12n(Estw)+2) — (40)
Zgrank =5 o= [T @eowy Uo
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The manipulation is to obtain the standard error of U, is done by:

2 (EstwW)
Uo ~ 12N ((EstW) + 1)

3.4.4 Generalized Sign Test (G-SIGN)

(41)

With a high skewness inherent in several crypto-asset return distributions, the final testing
method examine in this study was the Cowan, A.R.’s (1992) generalized sign test (generalized
sign Z). The generalized sign Z expects that under the null hypothesis of zero abnormal returns,
the proportion of crypto-assets with positive abnormal returns is expected to be a similar

proportion (p) of positive abnormal returns from the estimation period,

T
~ 1 1 z (42)
P=N (Estw) Z Pt
t=T0
i=1
where ¢; ; 1s a binomial factor with a value of 1 representing if the sign is positive and a value of
0 otherwise for crypto-asset i at time ¢. If the positive CAR is significantly higher than expected
from the estimation window, the null hypothesis of zero cumulative abnormal returns is rejected,

as tested by the generalized sign test statistic of:

_ (w—Np)

Zsign = T —— (43)
1/Np(l —p)

where w is the number of crypto-assets demonstrating positive cumulative abnormal returns over
the event period. The test stat assumes a normal approximation of the binomial distribution with

parameters (p) and N.

3.5 Data Collection

Crypto-Asset data

Crypto-Assets, as a whole, represent a relatively new asset-class which presented numerous
problems during the data collection process. To date there does not exist any database similar to
CRSP or DataStream used in previous literature. In the absence of a database it was first attempted
to retrieve the pricing data from the exchanges that each crypto-asset trades on. Unfortunately, this

proved infeasible as many exchanges blocked access to non-registered users with terms excluding
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Canadians due to regulatory laws. To overcome these issues, previous literature investigating
cryptocurrencies have primarily used Coinmarketcap.com (Ciain et al, 2017). However,
Coinmarketcap.com contains two fatal flaws that would have induced bias into the analysis. First,
the data would have substantial survivorship bias as the website removes all evidence of a crypto-
asset once it makes the decision to delist them. Second, the website does not provide the prices in
terms of BTC resulting in considerable translation error® as most crypto-assets trade in terms of

BTC.

Following an analysis of similar aggregation sites, Coingecko.com was selected due to the
following reasons. I) among the largest coverage of the crypto-asset universe with 1887 crypto-
assets as of June 30™, 2018 ii) free from survivorship bias and translation error and iii) matches
the data source used by the benchmark index. Coingecko calculates each crypto-assets price based

on a volume weighted average among all trading pairs at all supported exchanges.

Benchmark Data

Index calculation methodologies for traditional assets have a rich history in literature.
However, none of which can be directly applied to cryptocurrencies. To the best of my knowledge,
the CRIX index (Trimborn and Hardle, 2018) is the only cryptocurrency index created based on a
methodology that has undergone a peer-review. The CRIX index is value weighted with a dynamic
number of constituents to account for the fast-changing nature of cryptocurrencies. Data for the
CRIX index (Trimborn and Hardle, 2018) was requested and graciously provided for the analysis.
To test the performance of using an equal-weighted benchmark the analysis used the equal
weighted top 100 index from cryptoz.ai. It was selected as it was the only equal weighted index

that covered the entire sample period.

4. Results

Table 2 Panel A reports the descriptive statistics of the daily price returns of the entire
sample. Among all crypto-assets there are a total of 637,497 unique crypto-asset daily prices. The
returns are grouped in rows by the amount of daily price points in the dataset. As expected, the

returns exhibit substantial deviations from normality, with substantial excess kurtosis and positive

3 During much of the time period examined the largest exchanges (such as Bittrex.com) did not have USD or any
FIAT currency based trading pairs. All prices from the exchanges such as this are recorded in BTC. The USD prices
listed on sites like Coinmarketcap.com translate it to USD based on prevailing BTC/USD rates from other
exchanges.
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skewness. Several of the outrageous returns were verified for accuracy and found to be the result
of two issues. The first is the presence of "pump and dump" market manipulation (Hamrik et al,
2018). The second is due to exchanges altering the tickers used for a particular crypto-asset or
altering the trading pair currencies without notifying Coingecko. As a result, the recorded in prices
in the dataset often jump significantly. Given that one issue represents true price changes, while
the other was a data issue to be conservative the extreme points could not be removed from the

analysis. The trimmed means highlight how outlier driven the daily returns are.

[insert Table 2 about here]

Table 2 Panel B reports the descriptive statistics of the daily returns of the index. Compared
to the crypto-asset returns, the index has positive average returns and negative skewness. The
extreme volatility of the crypto-asset market as a whole highlight the challenges of conducting
event-studies. The most obvious implication that must be considered throughout the specifications

is the contrasting skewness of crypto-assets and index returns.

4.1 Impact of Data Skewness

Prior to examining test specifications, it is beneficial to understand how the contrasting
skewness impacts each abnormal return model. The most severely impacted model is the market-
adjusted model. On any given day we would expect to subtract the median of the market return
from the median of the crypto-assets return to determine the abnormal return. Where the median
of the market is expected to be larger than its assumption of the mean return and the median of the
crypto-assets return is expected to be lower than its mean. The result compounds and produces a
negative bias in the abnormal return estimates. Moreover, the issue worsens rather than improves
by using a greater the number of days in the event-window as the mean returns are also contrasting.
This conclusion is evident in table 4 (VW) and table 7 (EW) models. As the number of days in the
event window increase the CAAR becomes increasingly negative. This biases the test statistics,

resulting in over rejection of the null

The comparison period mean adjusted model is similarly biased in that on any given day
we would expect to subtract the mean of the crypto-assets estimation period return, from the
median of the crypto-assets return to determine the abnormal return. As a result of the positive

skewness the estimation period mean return is expected to be greater than the median and on a
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single day will result in a negative bias in the abnormal return. However, unlike the MAM this

bias naturally corrects itself as the number of days in the event-window increases.

Finally, the market model is expected to be the least impacted as the intercept term of the
regression should adjust, so that given the mean index return the fitted line predicts the mean
crypto-asset return. This is evident in table 3 (VW) and table 6 (EW) as none of the CARs are
statistical different from zero. An important caveat to this, is the assumption that the market model

does not have any omitted variable bias.

4.2 Simulated Test Statistics

In this section the results are based on 250 simulations, each with 50 randomly selected
crypto-assets with replacement. Prior to randomization, crypto-assets which have been forked or
ICOd within the previous 70 days are removed. Second, following previous literature (Campbell
et al, 2010) the universe is further restricted to only select securities that have at least 5 days of
available post event-day-price data. Samples are then drawn from the resulting subset of 431 995

crypto-asset daily price pairs. The results are shown in tables 3-7.

[insert table 3-7 about here]

Under the null hypothesis of no abnormal returns, the distribution of the simulated test
statistics of the parametric tests and that of GRANK-Z should be approximately distributed N(0,1).
The non-parametric distributions of GRANK-T and RANK should be as discussed in the
methodology section, however with a 100-day estimation period they should approach normality
and for brevity are assumed do so for the purpose of this discussion. Regardless of the abnormal
return model or the benchmark calculation the simulations show that the statistics are significantly

impacted from the data characteristics of crypto-assets.

Using the value-weighted market model (table 3) for discussion, several conclusions can
be made. Comparing the kurtosis of the Patell and the BMP test statistics it is evident that the event
day volatility adjustment is vital in crypto-asset event-studies. The Cross-sectional test appears to
be well specified, although the excess Kurtosis is negative across all panels likely indicating that
the test will have low power. Surprisingly, the ten day event windows seems to cause issues for
the Patell, adj-PATELL, GRANK-T and GRANK-Z statistics that would be expected to also be
present in the twenty day window but are not. The most likely explanation of this is the relatively

small simulation size (250 simulations) combined with the previously mentioned extreme data
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issues. Comparing to the other specifications it appears that contrary to traditional stocks (Corrado
and Truong, 2008) a value-weighted index results in better test statistics than an equal-weighted

market model.

4.3 Rejection frequencies

The rejection frequencies with zero abnormal return are shown in tables 8 through 11.
Table 8, Table 10 panel A and Table 11 panel A simulations are done with the previously described
randomization. In Table 9 (Table 10 panel B), the randomization adds the additional steps of
randomly selecting a day and selecting one of the largest 100 crypto-assets on that day. This is
repeated with replacement to select 50 (10,25,50 or 100) crypto-assets. Panel B of table 11
conducts a simulation for which there are clustered event days. The randomization once again first
selects a single day. In the next step it randomly selects (10, 25, 50 or 100) crypto-assets from that
day. With the exception of the Patell and adj-Patell statistics the majority are relatively robust to
miss-specification for the single day and three-day event windows. Additional implications are

presented in the discussion section.

[insert Table 8 to 11 about here]
The power of the tests to detect introduced abnormal returns are shown in tables 12 through
15. Each seeded return used is simulated 250 times with 50 sample crypto-assets. The seeded
returns of -10%, -3%, -1%, 1%, 3% and 10% are given at the top of each column for the preferred
market model specifications. The CPMAM and MAM specifications test only -10%, -3%, 3% and

10% introduced abnormal returns.

[insert Table 12 to 15 about here]

5.0 Discussion

The contribution of this study is best understood from the context of a researcher
conducting an event-study. The normal process selects the methodology that both accounts for the
underlying data characteristics and enables the most precise estimation of the variance used to
determine the test statistic. Given the non-normality of crypto-asset returns, without any empirical
evidence the proper approach is to implement adjustments for cross-sectional dependence and
event-induced volatility. These adjustments reduce the ability to detect abnormal returns. As

shown in the simulated results of the Csect test, the adjustments are so severe detecting abnormal
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returns of -10% and +10% results in type ii errors in the range of 90% seen in tables 12-15.
Moreover, absent empirical evidence the researcher is unaware of the power of the test to detect

abnormal returns. Each of these are discussed below.

5.1 Estimation precision

Understanding the relationship between each of the test-statistics provides a guideline for
which situations allow more precise estimations. When the residuals of the cumulative scaled
abnormal returns are uncorrelated, then the adj-PATELL will be equivalent to the PATELL.
Similarly. if the residuals of the scaled cumulative abnormal returns are uncorrelated, then adj-
BMP reduces to the BMP. Correlated residuals can result from event-day clustering and omitted
variable bias in the selected abnormal return model. Table 11 Panel B, shows that in the presence
of event-day clustering it is highly recommend to use the adjusted versions defined by Kolari and
Pynnonen (2010). However, if there is no event day clustering as in Panel A the standard BMP
approach can be used with caution.

The BMP will be approximately the same as the PATELL, when there is no event-induced
variance inflation. Under this condition forgoing the variance adjustment can provide a more
precise estimation. However, as seen in both table 10 and table 11 the PATELL test is prone to
type 1 errors. As a result researchers should strongly consider against using the PATELL under
any circumstance.

Kolari and Pynndnen (2011) for ease of estimation, define the GRANK-Z as an
approximation that can be used for the GRANK-T under the assumption that returns are not cross-
correlated. Similar to the parametric tests the simulations results of table 11 reveal that in the case
of crypto-assets it is advised against using the GRANK-Z when the event days are clustered. The
type 1 error increases as the sample size increases. Unfortunately, event-day clustering has an even
greater impact on the generalized sign test. With rejection rates reaching 17.6%-21.2% in a sample
size of 100.

5.2 Power of test statistics

As expected from the discussion on the issues of skewness in the market adjusted model,
the result is an greater ability to detect negative abnormal returns than positive ones. As shown in
table 14 (-3% and +3%) for both the parametric tests and non-parametric tests the type ii error is

significantly larger (lower rejections of Null hypothesis) in the right tail. In table 14, the tests for
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the CPMAM model have significantly greater power to detect 3% abnormal returns when
considering the event day. This power decreases significantly when testing for cumulative
abnormal returns. Moreover, for all tests the power to detect cumulative abnormal returns in the
right tail is significantly greater. This can be explained by the positive skewness and excess
kurtosis of the crypto-assets returns, as the number of days within the event-window increases the

likelihood that at least one of those returns is from the fat-right tail increases.

The results of the preferred market model specification are shown in table 12 and table 13.
The PATELL and adj-PATELL statistics should not be used due to the type 1 error seen in the
middle columns with zero abnormal return. Moving outwards to the 1% seeded returns we quickly
see that the best performing tests are the G-Sign and GRANK-T. However, as discussed in the
previous section the G-Sign test is prone to type 1 errors when event days are clustered. Therefore,

the final recommendation is to use the GRANK-T test when possible.

5.3 Limitations

There are two primary limitations that should be addressed in future research. The first is
that the methodology only considers exchange-based volume of crypto-assets trades. Incorporating
the volume (transactions) that occur through the blockchain network itself will be required to make
complete and accurate inferences. The other primary limitations of this study relate to the market
indexes. As previously highlighted the study employed the CRIX and EW100 indexes as the
market returns, both of which are maintained by third parties. In addition to concerns of accuracy
in the methodologies of the indexes themselves, the use of third party indexes increases the
potential for calculation errors. For instance, this may explain the relatively poorer performance
of the equal weighted index. The value-weighted CRIX index is calculated using the same source
of data as the crypto-asset returns. However, the EW100 index uses a different source of data
which it is possible that "closing" of each day due to time zone differences do not match that of
the individual crypto-assets. Moreover, the index returns do not fully represent the market as the
CRIX only includes 30 constituents and the EW100 only includes 100 crypto-assets. A lack of

data limits this studies ability to purse the obvious solution to these concerns of creating a new
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market index. Specifically, the dataset was unable to consistently determine the weightings* of

constituents for value-weighted and unable to account for "forks>"

for equal weighted index
calculations. Nonetheless, the viability of commercial indexes as examined in this paper is an

important contribution as it enables their use in event-studies of future researchers.

The secondary limitations include the number of simulations and underlying data accuracy.
The number of simulations while consistent with early literature (Brown and Warner, 1985) is
about one fourth (250) the amount used in recent literature (Kolari and Pynnoénen, 2010). Given
the presence of a substantial number of extreme data points in the sample its possible that results
could change with an increased simulation size. The extreme data points were the result of both
true market movements (pump and dump) and data transcription errors by the exchanges. Although
this study was unable to distinguish between the two, recent literature suggests that it may be
possible to use machine learning to predict pump and dump schemes (Xu and Livshits, 2018)

which may overcome this limitation.

6. Application: Insider Trading at Binance.com

The original inspiration of this study was the desire to investigate market manipulation,
insider trading and fraud in the unpoliced crypto-asset world. Following the empirical evidence
provided by the simulations these research questions can now be addressed. Although not the direct
purpose of the study it is beneficial to conduct an actual event-study to illustrate the
aforementioned findings. The chosen event-study is to determine if there is evidence of insider
trading preceding the announcement of a crypto-assets listing on what is now the worlds largest

crypto-asset exchange Binance.

The date of the announcements that Binance intends to list a crypto-asset was collected
from binance.com for the period of September 2017 and June 2018. This resulted in a total of 67

different crypto-assets. However, several of the assets had less than 40 trading days prior to the

4 A key differentiator of crypto-assets is the concept of mining rewards increasing the
outstanding supply. Although these can be approximated by an inflation rate, the inflation rates
do not remain constant instead often varying dynamically as a function of network hash rates.

> A blockchain fork is when a crypto-currency splits into two distinct crypto-assets. In such cases
investors now own 1 of each crypto-asset. Therefor to accurately calculate the assets return on
the day it forks, knowledge of all forks must be known.
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announcement and were dropped from the analysis. The remaining sample consisted of a total for

44 announcements which is similar to the sample size in the simulation.

The first stage of the event-study determined the average abnormal returns for the 5 days
preceding and following the announcement. As shown in figure 1, the event appears to have caused
significant price movements with the averaged abnormal returns exceeding 8% on the day

following the announcement

[insert figure 1 about here]

The CAR(-5,5) results shown in panel (A) of table 16 highlight the difficulty of performing
event studies on cryptocurrencies. Despite seemingly clear evidence from both the returns in figure
1 and a market perception that gaining a listing on Binance is considered to be a positive event,
many of the statistical measures fail to reject the null at a 5% level of significance. Moreover, the
only one that does (PATELL) as found in the simulation results likely did so because of the event-
induced volatility. It should be noted that there was several occurrences where the announcements
included more than one crypto-asset. This likely resulted in cross-correlation in abnormal return
residuals. As suggested by the simulation analysis, in such a case of event-day clustering the
preferred test-statistic is the GRANK-T. Examining the AARs of day -3,-2,-1 in table 17 and the
CAR(-3,-1) in table 16 we fail to reject the null hypothesis of zero abnormal return for any of the
days leading up to the announcement. At 95% significance the GRANK-T test does not indicate
evidence of insider trading prior to announcements. Despite the briefness, this example highlights

the significant contribution of the simulation results for regulators pursuing market manipulation.

[insert table 16 and 17 about here]
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Conclusion

This study was the first to explore the suitability of utilizing crypto-asset returns to conduct
event studies. Using the simulation approach pioneered by Brown and Warner (1985) the
performance of five parametric and four non-parametric test statistics were examined under three
different abnormal return models and two index specifications. The results of the simulations
indicate that the non-normality of crypto-asset returns impacts the performance of most
specifications. Due to the contrasting skewness of the market index and crypto-asset returns the
market-adjusted model should be avoided. The market-model with a value weighted index, was
found to have tests statistics with distributions that most closely resembled expectations. When
there is no-event day clustering the recommended parametric test is the BMP test and the
recommend non-parametric test are the GRANK-T and G-SIGN statistics. However, with event-
day clustering the GRANK-T is the only suitable test that maintains significant power. The results
of the simulation proved vital at avoiding type one error in an exploratory event-study of insider
trading prior to announcements made by the exchange Binance. Overall, the findings should give

confidence to future researchers that crypto-asset returns can be used in event-studies.
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Appendix
Appendix A: Mikkelson and Partch (1988) equations
Mikkelson and Partch (1988) correction of (Scag,) for equation ( 23 ). Note that NMEevw

indicates the number non-missing days in the Event Window.

Market Model:

T; — 2
Moy (Bt 1 (Rme = Rin))
M; ZgTo 1 (Rm,t - Em)z

2 _ C2
SCARl' - SARL'

Comparison Period Mean Adjusted Model:
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Market Adjusted Model:
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Tables and Figures

Table 1: Summary of Test Statistics

Test Prone to Improvement Drawback
CSect-T Low power
Patell Over rejection of | Standardized The PATELL
null when cross- | abnormal returns | test assumes that
correlation in to account for scaled abnormal
residuals security specific | returns have the
volatility same variance.
Adj-Patell Accounts for
Parametric cross-correlation
in abnormal
return residuals
BMP Over rejection of | Removes Same as Patell
null when cross- | dependency of
correlation in the order of days
residuals in Patell
Adj-BMP Same as Adj-
Patell
Prone to Improvement Drawback
Non- Sign Low Power Accounts for
Parametric Skewness
Rank Low power Accounts for Poor
non-normality performance

over longer
event windows

Generalized Rank
T-test. (GRANK-
T)

Uses the idea of
BMP to create a
single
cumulative event
day, which is
then ranked.
Overcomes the
loss of power as
days in the event
window

Computationally
difficult

increase.
Generalized Rank Over rejection of | Reduced
Z-test (GRANK-Z) | null when cross- | computational
correlation in requirements

residuals
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Table 2: Descriptive Statistics

Panel A: Daily Crypto-Asset Returns
Descriptive Statistics for Equally Weighted Average Daily Returns by Individual Crypto Assets

Number of Average Average Awverage Average Average  Awverage Average % Min < - “oMax
price points ~ Total EReturn 5% Trim Median Return  Min Max Return Kurtsosis Skewness  1.00 =>1.00
Entire sample 1887 -0.66%  -0.88% -0.73% -1.399 1.496 22971 0469 39.7% 44.6%
=50 1785 -0.61%  -0.84% -0.69% -1.448 1.552 23.744 0.492 41.3% 46.4%
=100 1593 -049%  -0.73% -0.63% -1.483 1.608 24 842 0.535 42.4% 48.5%
=500 359 -0.12%  -042% -0.35% -1931 2124 47 548 0.643 63.8% T47%
=1000 203 -003% -033% -0.30% -1911 2104 50.559 0.743 596% 729%

Panel A presents the average descriptive statistics among the crypto-asset daily price returns in the
entire sample. The rows are separated by the number of price points in the dataset an individual
crypto-asset has. With the exception of the final two columns the averages presented are the
unweighted averages of each individual Crypto-Assets descriptive statistics. The final two
columns indicate the percentage of the Crypto-Assets included in that row which had at least one

day where LN(P¢/Pi.1) was less than and greater than one.

Panel B: Daily Index Returns

Average Standard

Index Return Median Deviation ~ Mmnimum Maximum Kurtosis = Skewness
Panel A Index

CRIX 0.0028 0.0032 0.0399 -0.2533  0.1985 6.5559  -0.7908
EW100 0.0033 0.0033 0.0513 -0.4583  0.4478  12.4100  -0.4505
Panel B Comparable References

VW10 0.0022 0.0023 0.0390 -0.2373  0.1832 6.0219  -0.8466
VW20 0.0023 0.0024 0.0392 -0.2383  0.1837 6.0587  -0.8942
VW50 0.0023 0.0023 0.0393 -0.2371  0.1817 6.0332  -0.9065
VW100 0.0023 0.0024 0.0393 -0.2383  0.1811 6.0333  -0.9159
EW 10 0.0025 0.0015 0.0472 -0.2950  0.2122 5.7770  -0.5740
EW20 0.0029 0.0012 0.0469 -0.2933  0.1847  4.0765  -0.6015
EWS50 0.0029 0.0017 0.0475 -0.2935  0.2715 5.3839  -0.4470

Source: Cryptoz.ai for all except CRIX. Crix is as described in Trimborn, S., & Hardle, W. K. (2018).
Panel B presents the average daily returns of indexes during sample period beginning on January

1t 2015 and ending on June 30™ 2018. The CRIX index is value weighted with dynamic

constituents that adjust for thinly traded tokens. The EW100, is an equally weighted index of the
top 100 cryptocurrency based by estimated market capitalization. Similarly EW(10,20,50)
represented equally weighted returns based on the top 10, 20 and 50 crypto-assets.
VW(10,20,50,100) represent the value-weighted returns for the same constituents as the equally

weighted indexes. Rebalancing is done at the beginning of each month, retrieved from Cryptoz.ai.
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Table 3: Simulated test statistics for Market Model-Value Weighted Entire Sample

Market Model

Panel A Mean Median 5td  Kurtoziz Skewness
AAR (D 0.006 0.008 0.087 4602 0187
FANEK 0.019 20.012 1.030 2874 0.170
PATELL 0.006 0.019 6.628 123.067 -3.783
ad)-PATELL 0.003 0.019 6.628 122947 -8.778
Caect T 0.069 0.127 0.972 231 0.183
ad)-BMP 0.020 0.018 0.947 2443 0,005
GRANE-T 0.088 * 0130 (0.848 3.103 0.268
G-5IGM -0.004 0,013 1.030 2970 0.1%6
GERANE-Z 0008 = 0.139 0.988 3.083 0190
Panel B Mean Median Std  Kurtosiz Skewnessz
CAR(-1.+1) 0.008 20.004 0.121 441 0.213
PATELL 0.183 0.041 2971 20709 1.921
adj-PATELL 0.181 0.043 2,850 21547 1.112
Caect T 0.003 0072 0.970 2181 0.022
EBMLEP 0.030 0.060 0.947 2384 0.012
ad)-BMP 0.032 0.031 1.036 233 0.112
FANEK 0.024 0.026 0.820 2.83% 0.161
GERANE-T 0.013 0,023 0953 3373 0.147
G-5IGM 20001 * 0.060 0.857 3118 0.014
GRANE-Z 0.013 0,022 (.838 3228 0.091
Panel C Mean Median Std  Kurtosiz Skewnessz
CAR(—3+5) 0.000 0.000 0164 3208 0.066
PATELL (.70 **= 0.363 2733 20352 4337
ad)-PATELL 0772 **= 0.343 2712 33235 4537
Caect T 0.031 0,003 0.973 2.530 0.027
EBMLEP 0226 **= 0432 0.970 2.833 0.174
adj-BME 020G === 0.463 0.069 2387 0226
FANEK 20.006 0,007 0.738 2.560 0.033
GRANE-T 0157 *= 0,047 1.110 3.163 0318
G-5IGM 0204 == 0129 (0.642 3147 0179
GRANE-Z 0.156 *= 0,051 1.08% 17 0321
Panel D Mean Median Std  Kurtosiz Skewnessz
CAR(—10.+100 20.002 0.002 0.204 4113 0230
PATELL 0.206 0439 1.656 205.860 -13.481
ad)-PATELL 0.173 0462 8384 212573 -13.837
Coact T 0,034 0,000 0839 2388 0,066
EBMLEP 0301 *=*= 0304 1.037 3.3%6 0269
ad)-BMP (0345 #*= 0.520 1.051 2622 0272
FANEK 0.081 *= 0.126 0.773 2836 0.197
GRANE-T 0.073 0.024 1.08% 4136 20200
G-5IGM 0103 *= 0.079 0.947 R Y 20.004
GRANE-Z 0.073 0.026 1.081 3731 0125

* ok xE* indicate significance at the 10%, 5% and 1%.

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation

methodology described following table 7.



Table 4. Simulated test statistics for Market Adjusted Model- Value Weighted Entire Sample

Mlarket Adjusted Model

Panel & Mean Median Std Kurtoziz Skewness
AAR D 0001 0.003 0.084 ERES 011
FANEK 0.003 0.024 0842 2750 0.062
PATELL 0.027 0124 44381 30627 -3.704
adj-PATELL 0.027 0124 4484 30518 -3.780
Czect T 0100 * 0132 1.000 2300 0.038
adj-BMP 0157 #=# 20102 1.003 2197 0.143
GRANE-T 0.131 ** 0.281 0988 2882 0.516
G-8IGH 0.046 0.030 0971 2833 0.034
GRANE-Z 0.132 == 0278 0954 2876 0483
Panel B Mean Median Std Kurtoziz Skewness
CAR(-1.+1) 0.002 0.003 0.115 4750 0270
PATELL 0.184 0.246 2443 27.688 -2.300
adj-PATELL 20207 0245 2.638 35.468 3223
Cazect T 0.067 0.037 1.010 2424 0.134
EMLP 0210 ==+ 0202 0.993 2693 0.061
adj-BMP 0277 #EE 0333 0.9%0 2778 0.105
FANEK 0.000 0.034 0.772 3437 0.016
GEANE-T 0.142 == 0.002 1.017 3.830 0277
G-51GM 233 #=# 20260 0975 3424 0.153
GEANE-Z 0.136 == 0,093 1.006 3673 0223
Panel C Mean Median Std  Kurtoziz Skewness
CAR(-3.+3) 0020 *= 0.028 0.151 3.430 0.116
PATELL 0079 0204 1.893 18.692 287
adj-PATELL 0098 0.280 1.831 17234 2637
Caect T 0260 #=¥ 0223 1.060 2.629 0178
BEMP 0413 #=# 0373 1.044 2344 0234
adj-BMP 0462 ==+ 0511 1.061 2279 20.093
FANEK 0147 #=# 0139 0727 2.857 0122
GRANE-T 0606 *=* 0,390 1.137 2834 0441
G-SIGH 0324 ==+ 0514 1.026 2753 0072
GRANE-Z A5G0 #=# 0417 1.122 2634 A0.302
Panel D Mean Median Std Kurtoziz Skewness
CAR(—10+10) 0.020 *= 0.038 0.163 3.054 0.104
PATELL 0.33] ==+ 0.377 1.436 4761 0219
adj-PATELL A).338 #=# 0330 1.461 4 489 0.031
Cazect T 0247 == 0.326 1.038 2486 0.067
BEMP 0410 #=# 0. 466 1.057 2.638 0137
adj-BMP 0464 #=# 40,498 1.048 2333 A0.093
FEANEK 0.052 0.103 0.754 3419 0.104
GRANE-T 0572 #=# 0.4%6 1.066 3.086 0181
G-51GM A0 404 #=¥ 05333 0937 2.698 0.167
GRANE-Z A0.560 #=% 0,500 1.05% 2976 0109

* R k% indicate significance at the 10%, 5% and 1%.

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation

methodology described following table 7.



Table 5: Simulated test statistics Comparison Period Mean Adjusted Model Entire Sample

Comparizon Period Mean Adjusted Model

Panel A Mean Median Std Kurtosiz Skewnessz
AAR (D 20.003 0.008 0.036 4681 0.146
FANE 0.010 0.031 1.032 2873 0.126
PATELL 20.003 0.021 6.197 118.732 -8.584
adj-PATELL 20.003 0.021 6.1%6 118.591 -3.383
Caect T 0.064 20008 0.884 2.140 0.070
adj-BMP 0.001 0.018 0.9635 2447 0.023
GRANE-T 0.124 *= 0.195 1.032 2064 0284
G-5IGM 0.038 -0.08% 1.078 3.035 0.058
GRANE-Z 0.128 *= 0104 1.021 2024 0283
Panel B Mean Median Std Kurtosiz Skewnessz
CAR(-1.+1) 0.010 * 0.000 0.119 4746 0.300
PATELL 0.144 0.040 2.606 16.246 20,009
adj-PATELL 0.145 0.041 2.625 15280 0318
Caect T 0.024 -0.004 0.962 2.386 0.056
EMP 0.044 0.041 0.977 2635 0.086
adj-BMP 0.003 0.063 1.040 2427 0.165
FANE 0.034 -0.004 0.774 2.868 0.077
GRANE-T 0.032 20.001 1.005 3470 03235
G-5IGM 0,190 =¥+ 0.144 0.923 3.480 0.157
GRANE-Z 0030 0.000 0.8405 3270 0269
Panel C Mean Median Std Kurtosiz Skewnessz
CAR(-5+3) 20,002 20,006 0.163 3.005 0.059
PATELL 0.613 **= 0.363 2200 17.823 3.0498
adj-PATELL 0.586 **= 0.346 2122 16.87% 2001
Caect T 0088 = 0.047 1.047 2.618 0.152
EMP (0.104 *=*= 0324 0.604 2,598 0227
adj-BMP (228 **= 0.338 0.883 2.5 0.144
FANE 0.057 0.063 0.747 2.662 0.024
GRANE-T 0306 =+ 0231 1.189 2883 0349
G-5IGM 0327 =¥% 0412 (0.848 2832 0.132
GRANE-Z 0310 =++ 0241 1.171 2,836 0352
Panel D Mean Median Std Kurtosiz Skewnessz
CAR(—10.+10) 0.013 20.001 0.1M 3397 0119
PATELL 0.013 0384 7418 220346 1471
adj-PATELL -0.004 0382 7.961 232563 -14924
Caect T 0.006 20,006 0.883 2381 0.071
EMP 0.303 *=*= 0384 1.045 3.025 0284
adj-BMP (0,208 === 0.400 1.035 2.601 0311
FANE 0.068 * 0.101 0.736 2.83% 0.034
GRANE-T 0201 *+* 0138 1.125 3.866 0331
G-5IGM 0.168 *+* 0.163 0.043 3124 0.114
GRANE-Z 0193 =¥# 0.132 1.102 3336 0256

* k%% indicate significance at the 10%, 5% and 1%.

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation

methodology described following table 7.



Table 6. Simulated test statistics Market Model Equally Weighted Entire Sample

Equal weighted market model

Panel A Mean Median Std  Kurtosziz Skewness
AAR (D 0.002 20.0035 DORS FRES 0.7l
RANK 0077 # -0.018 0.894 3.033 0.033
PATELL 0.376 *= 0.027 4448 26.250 2648
adj-PATELL 0.376 ** 0.027 4445 26.201 2,636
Csect T -0.049 -0.084 0982 2073 0.022
adj-BMEP -0.001 0.027 0.956 2.648 0.126
GEANK-T 0.13]1 *=*= 0.188 0.842 3.848 0135
G-3IGN -0.0335 -0.043 (0.908 2743 0.080
GRANEK-Z 0.133 #=+= 0.194 0.828 EXI 0190
Panel B Mean Median Std  Kurtosziz Skewness
CAR(-1.+1) -0.002 0.004 0.123 3113 0.087
PATELL 0.708 #=== 0.130 3.603 12.962 2177
adj-PATELL 0.734 == 0.123 3.742 13.012 2192
Ceect T 0.029 0.067 1.030 2133 0.039
BMP 0.013 0.163 1.033 2385 0331
adj-BMEP 0.012 0.198 1.020 2357 02711
FANK 0.100 *= 0.033 0.369 3.031 0,045
GERANK-T -0.008 0111 1.003 25N 0342
G-8IGN 0,188 === 0217 0.935 2.666 20.020
GRANK-Z 0.014 0.117 0979 2496 10342
Pamel C Mean Median Std  Kurtosis Skewness
CAR(-3.+3) -0.006 -0.013 0.120 23.036 0.193
PATELL 0223 2 0.187 1.030 2288 0.107
adj-PATELL 0311 *=*= 0317 1.097 2.101 0189
Csect T 0283 =¥ -0.290 1.003 2.829 0.133
EMP -0.063 20.0M1 0.846 2712 0.077
adj-BMP 0.200 === 0.206 1.020 2741 0.283
RANK 0202 =** 0.196 1.032 2.866 0303
GRANE-T 0173 -0.297 2831 22154 20.004
G-8IGN 0315 === 0201 1.051 2267 0.172
GRANEK-Z 0266 *** 0175 1.334 2.580 0201
Panel D Mean Median Std  EKurtosiz Skewnessz
CAR(-10+10° 20.007 0.019 0.148 3.5338 0316
PATELL 0.176 0.144 10,121 215.681 -14.182
adj-PATELL 0221 0.145 10.624 217.637 -14 278
Czect T 0.133 #= £01M 1.007 2.660 0.113
EMP 0.077 0.108 1.023 2312 0.162
adj-BMP 0.064 0139 1.03% 2639 0.1%90
RANK -0.136 == -0.128 0,738 26235 0127
GRANE-T 0215 === 0.169 1.114 3.140 20.240
G-5IGN 0244 #+% 0189 0a3% 2854 0.056
GRANK-Z 0203 === 0.163 1.094 3152 0224

* R k%% indicate significance at the 10%, 5% and 1%.

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation

methodology described following table 7.
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Table 7: Simulated test statistics Market Adjusted Model Equally Weighted Entire Sample

Equally Weighted Market Adjusted Model

Panel A Mean Median Std  EKurtosiz Skewness
AAR (D 0.003 0.004 0.093 EXIE] 0.108
RANK 0.046 -0.089 0987 3019 0.142
PATELL 0.056 0216 4040 33.047 -2.360
adj-PATELL 0.056 0217 4044 33.005 -1.337
Ceect T 20.030 20.050 0.967 2.024 -0.001
adj-BEMP 0141 #= 0187 0975 2336 0.138
GEANK-T 0226 ¥¥* 0.304 0928 2.960 0.031
G-8IGN 20.007 0.002 1.000 3.117 0.000
GRANK-Z 0218 #*= 0.300 0.902 24670 20.073
Pancl B Mean Median Std  EKurtosiz Skewness
CAR(-1.+1) 0012 == 20.012 0.104 4685 0221
PATELL 0170 0299 2789 22422 0230
ad-PATELL 0.173 0297 2.831 22154 0.004
Ceect T 0223 #=*= 0.187 1.030 2289 0.107
EMP 0315 *=== 0291 1.051 2.267 0172
adj-BEMP 0311 #== 0317 1.097 2101 0.189
BANK 0.063 0.071 0.846 2722 0.077
GRANK-T 0202 === 0.196 1.032 2.366 0.303
G-8IGN 20283 === 0290 1.003 2,829 0.133
GRANK-Z 0200 == 0206 1.020 2741 0283
Panel C Mean Median Std Kurtoziz Shkewness
CAR(—3 +3) 0.020 #== 0.020 0.153 3.707 0256
PATELL 0304 #== -0.420 1.851 3159 0.073
ad-PATELL 0334 *== 0404 1.369 1.727 0.398
Ceect T 0306 === 0.134 1.102 2.660 0.362
EMP 0470 #== 0471 1.052 2490 0183
ad-BMP 0490 === 0.606 1.033 2.346 0.044
BANK 0.065 * 0.031 0.752 3.227 0.138
GRANK-T 0.43] *=== 0378 1.193 4.030 0472
G-51GN 0.42] #== 0.426 1.025 24831 0.023
GRANK-Z 0470 === 0397 1.152 3.666 04357
Panel D Mean Median Std Kurtoziz Shkewness
CAR(—10.+10) 0034 #== 0.043 0.193 5432 0144
PATELL 0316 #=*= 0.464 1.516 3.512 0.736
adj-PATELL 0315 *=== 0504 1.537 5.200 0.637
Czect T 0313 #== 0201 1.063 24683 0.093
EMP 03510 === 0.5035 1.176 2910 0.290
ad-BMP 03512 *#== 03556 1.157 2611 0.138
BANK 0272 ¥*= 0.330 0.684 3.065 20.040
GRANK-T 0302 #== 0281 1.237 3.018 0343
G-8IGN 0.34] #=== 0319 1.073 2323 0.047
GRANK-Z 0309 #== 0268 1.224 3.041 0379

* R k%% indicate significance at the 10%, 5% and 1%.

Descriptive statistics of the simulated test statistics values (tables 3 to 7). Calculation

methodology described following table 7.
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Description statistics of the observed test values shown in Tables 3 to 7.

Descriptive statistics of the simulated test statistics values. All panels are based on 250 simulations
each with 50 randomly selected crypto-assets, with replacement, from during the period of January
Ist 2015 to June 30th 2018. Event-day abnormal returns are determined by as described in the
title of the tables. The market index is the value weighted CRIX or equal weighed EW100 index.
Panel (A) shows the descriptive statistics of the test statistics when the specification is testing the
abnormal returns of a single day (0), Panel (B) the descriptive statistics of the test statistics when
the specification is testing for cumulative abnormal returns over a three day event period (-1,+1).
Panel (C) the descriptive statistics of the test statistics when the specification is testing for
cumulative abnormal returns over a ten day event period (-5,+5). Panel (D) the descriptive statistics
of the test statistics when the specification is testing for cumulative abnormal returns over a ten
day event period (-10,+10). An estimation windows from -100 to -11 days is used for calibrating
the parameters of the market model and the standard deviations and signs necessary for
determining test statistics. The rank test calculates ranks across the entire observation period (Panel
A:-100,+0), (Panel B: -100,+1), (Panel C: -100,+5), (Panel D: -100,+10). Randomization for Panel
A, B and C, first excludes crypto-assets which have been forked or ICOd within the previous 70
days. Second, the universe is further subsetted to only select securities that have at least 5 days of
available post event-day-price data. Randomization for Panel D, extends the requirement to
observe at least 90 previous days since initial fork/ico. The parametric test statistics of Csect-T,
PATELL, BMP, Adj-PATELL, adj-BMP are calculated based on the specifications described in
section Parametric Tests and defined in Brown and Warner(1985), Patell (1976), Boehmer et al
(1991) and Kolari and Pynnonen (2010,2010). When the null hypothesis is no abnormal returns,
the test statistics across all parametric tests should be normally distributed N(0,1). The non-
parametric tests of RANK, GRANK-T and GRANK-Z are calculated by the specifications shown
on page 12 and defined in Corrado and Zivney(1992), Kolari and Pynnénen (2011, 2011). The G-
SIGN is defined for a single day event as in Cowan(1992) and as defined in Kolari and Pynnénen
(2011) for multiday events. When the null hypothesis is no abnormal returns, the test statistic of
GRANK-Z should be ~N(0,1). The RANK test according the Corrado (2011) also has a mean of
zero and a variance of one. The GRANK-T test is expected to be Student # distributed.
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Table 8: Rejection frequencies with zero abnormal performance (entire sample)

Rejection rates with zero abnormal performance
AAR(H0) CAR(-1, 1) CAR(-5, 5) CAR(-10,10)

HO: Left Right 2-Tail Left Right  2-Tail Left Right 2-Tail Left Right 2-Tail
Panel (A) VW Market Model Abnormal Returns

PATELL 0.104 0.144 0.248| 0.108 0.144  0.252 0.028 0.171  0.199 0.080 0.228 0.308
CsectT 0.052 0.040 0.092| 0.036 0.028 0.064 0.044 0.036 0.080 0.044 0.028 0.072
G-SIGN 0.052 0.068 0.120| 0.052 0.024 0.076 0.092 0.032 0.124 0.048 0.024 0.072
BMP 0.044 0.044 0.088| 0.036 0.040 0.076 0.016 0.032 0.048 0.036 0.068 0.104
RANK 0.048 0.056 0.104| 0.020 0.028  0.048 0.012 0.012 0.024 0.012 0.020 0.032
GRANK-T 0.048 0.052 0.100| 0.044 0.048 0.092 0.120  0.040 0.159 0.064 0.040 0.104
adj-PATELL 0.104 0.144 0.248| 0.108 0.148  0.256 0.028 0.167 0.195 0.084 0.220 0.304
adj-BMP 0.044 0.044 0.088| 0.036 0.044 0.080 0.016 0.056 0.072 0.032 0.080 0.112
GRANK-Z 0.052 0.052 0.104| 0.040 0.044 0.084 0.108 0.036 0.143 0.072 0.048 0.120
Panel (B) VW Market Adjusted Abnormal Returns

PATELL 0.120 0.132 0.252| 0.116  0.124  0.240 0.068 0.104 0.171 0.128 0.076 0.204
Csect T 0.060 0.020 0.080| 0.052  0.040 0.092 0.088 0.016 0.104 0.076 0.024 0.100
G-SIGN 0.028 0.048 0.076| 0.068 0.052  0.120 0.139 0.004 0.143 0.084 0.020 0.104
BMP 0.084 0.020 0.104| 0.068 0.032 0.100 0.096 0.024 0.120 0.128 0.020 0.148
RANK 0.044 0.048 0.092| 0.016 0.016 0.032 0.016 0.008 0.024 0.016 0.012 0.028
GRANK-T 0.060 0.028 0.088| 0.060 0.036 0.096 0.183 0.016 0.199 0.136 0.016 0.152
adj-PATELL 0.120 0.132 0.252| 0.116  0.124  0.240 0.060 0.104 0.163 0.128 0.080 0.208
adj-BMP 0.084 0.020 0.104| 0.068 0.024 0.092 0.108 0.024 0.131 0.128 0.016 0.144
GRANK-Z 0.056 0.040 0.096| 0.056 0.040 0.096 0.191 0.016 0.207 0.136 0.012 0.148
Panel (C) Comparison period abnormal returns

PATELL 0.100 0.156 0.256| 0.092 0.140 0.232 0.032 0.151 0.183 0.076 0.212 0.288
CsectT 0.036 0.036 0.072| 0.028 0.044 0.072 0.048 0.032 0.080 0.040 0.032 0.072
G-SIGN 0.064 0.056 0.120| 0.052  0.020 0.072 0.064 0.020 0.084 0.072  0.020 0.092
BMP 0.044 0.040 0.084| 0.032 0.036 0.068 0.028 0.052 0.080 0.040 0.084 0.124
RANK 0.052 0.064 0.116| 0.012 0.020 0.032 0.008 0.008 0.016 0.012 0.004 0.016
GRANK-T 0.060 0.044 0.104| 0.048 0.044 0.092 0.135 0.032 0.167 0.092 0.032 0.124
adj-PATELL 0.100 0.156 0.256| 0.096 0.140 0.236 0.032 0.155 0.187 0.076 0.208 0.284
adj-BMP 0.044 0.040 0.084| 0.044 0.032 0.076 0.028 0.048 0.076 0.028 0.080 0.108
GRANK-Z 0.064 0.048 0.112] 0.060 0.036 0.096 0.135 0.032 0.167 0.092 0.032 0.124
Panel (D) EW Market Model Abnormal Returns

PATELL 0.139 0.190 0.329] 0.139  0.190 0.329 0.072  0.172 0.244 0.132 0.164 0.296
CsectT 0.036 0.020 0.056| 0.036  0.020 0.056 0.048 0.040 0.088 0.044 0.024 0.068
G-SIGN 0.032 0.036 0.067| 0.032  0.036 0.067 0.080 0.020 0.100 0.060 0.044 0.104
BMP 0.028 0.024 0.052| 0.028 0.024  0.052 0.036  0.040 0.076 0.048 0.040 0.088
RANK 0.036 0.020 0.056| 0.036  0.020 0.056 0.028 0.004 0.032 0.072 0.060 0.132
GRANK-T 0.024 0.024 0.048| 0.024 0.024  0.048 0.084 0.032 0.116 0.056 0.044 0.100
adj-PATELL 0.139 0.190 0.329] 0.139  0.190 0.329 0.080 0.168 0.248 0.132 0.164 0.296
adj-BMP 0.028 0.024 0.052| 0.028 0.024  0.052 0.040 0.036 0.076 0.048 0.040 0.088
GRANK-Z 0.020 0.024 0.044| 0.020 0.024  0.044 0.084 0.024 0.108 0.064 0.060 0.124
Panel (E) EW Market Adjusted Abnormal Returns

PATELL 0.172 0.168 0.340| 0.120 0.103  0.223 0.148 0.076 0.224 0.148 0.084 0.232
CsectT 0.032 0.020 0.052| 0.073  0.027  0.100 0.116  0.008 0.124 0.088 0.024 0.112
G-SIGN 0.052 0.036 0.088| 0.087 0.023 0.110 0.124 0.012 0.136 0.124 0.036 0.160
BMP 0.044 0.016 0.060| 0.087 0.003 0.090 0.140  0.008 0.148 0.176  0.024 0.200
RANK 0.048 0.056 0.104| 0.023 0.010 0.033 0.016 0.012 0.028 0.004 0.024 0.028
GRANK-T 0.020 0.044 0.064| 0.067 0.013 0.080 0.148 0.016 0.164 0.132  0.032 0.164
adj-PATELL 0.172 0.168 0.340| 0.127  0.100  0.227 0.144 0.076  0.220 0.140 0.096 0.236
adj-BMP 0.044 0.016 0.060| 0.100 0.007 0.107 0.136  0.008 0.144 0.160 0.012 0.172
GRANK-Z 0.020 0.044 0.064| 0.063 0.010 0.073 0.140 0.012 0.152 0.140 0.032 0.172

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Calculation

methodology described following table 11.
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Table 9: Rejection frequencies with zero abnormal performance (TOP 100)

AAR(+0) CAR(-1, 1) CAR(-5, 5) CAR(-10,10)

HO: AAR<0 AAR>0  AAR#0 CAAR< CAAR> CAAR#0 CAAR< CAAR> CAAR#0 CAAR < CAAR> CAAR#0
Panel (A) VW Market Model Abnormal Returns
PATELL 0.128 0.172  0.300 0.139 0.198 0.337 0.167 0.315 0.482 0.104 0.296 0.400
Csect T 0.024  0.016  0.040 0.040 0.044 0.083 0.052 0.020 0.072 0.108 0.028 0.136
G-SIGN 0.044  0.048 0.092 0.044 0.032 0.075 0.040 0.052 0.092 0.068 0.048 0.116
BMP 0.028  0.040 0.068 0.028 0.052 0.079 0.016 0.084 0.100 0.032 0.108 0.140
RANK 0.024  0.036  0.060 0.032 0.040 0.071 0.016 0.016 0.032 0.048 0.020 0.068
GRANK-T 0.016  0.024  0.040 0.048 0.044 0.091 0.028 0.040 0.068 0.080 0.080 0.160
adj-PATELL 0.128 0.172  0.300 0.139 0.210 0.349 0.163 0.319 0.482 0.112 0.300 0.412
adj-BMP 0.028  0.040 0.068 0.032 0.071 0.103 0.020 0.092 0.112 0.024 0.136 0.160
GRANK-Z 0.016 0.028 0.044 0.056 0.048 0.103 0.028 0.040 0.068 0.080 0.076 0.156
Panel (B) VW Market Adjusted Abnormal Returns
PATELL 0.192  0.148  0.340 0.180 0.113 0.293 0.068 0.104 0.171 0.219 0.131 0.351
Csect T 0.016 0.012 0.028 0.047 0.013 0.060 0.088 0.016 0.104 0.135 0.000 0.135
G-SIGN 0.048  0.048 0.096 0.033 0.030 0.063 0.139 0.004 0.143 0.100 0.028 0.127
BMP 0.060  0.044 0.104 0.047 0.023 0.070 0.096 0.024 0.120 0.179 0.024 0.203
RANK 0.048  0.060 0.108 0.013 0.027 0.040 0.016 0.008 0.024 0.024 0.052 0.076
GRANK-T 0.048  0.044 0.092 0.030 0.027 0.057 0.183 0.016 0.199 0.100 0.024 0.124
adj-PATELL 0.192  0.148  0.340 0.180 0.117 0.297 0.060 0.104 0.163 0.239 0.108 0.347
adj-BMP 0.060 0.044 0.104 0.050 0.027 0.077 0.108 0.024 0.131 0.167 0.024 0.191
GRANK-Z 0.052  0.056 0.108 0.033 0.030 0.063 0.191 0.016 0.207 0.175 0.024 0.199
Panel (C) Comparison period abnormalreturns
PATELL 0.132  0.176  0.308 0.156 0.200 0.356 0.303 0.127 0.430 0.120 0.276 0.396
Csect T 0.036  0.012 0.048 0.028 0.008 0.036 0.092 0.024 0.116 0.068 0.048 0.116
G-SIGN 0.048  0.048 0.096 0.032 0.020 0.052 0.096 0.016 0.112 0.044 0.016 0.060
BMP 0.052  0.048 0.100 0.044 0.024 0.068 0.159 0.020 0.179 0.028 0.072 0.100
RANK 0.064  0.048 0.112 0.036 0.028 0.064 0.048 0.020 0.068 0.016 0.036 0.052
GRANK-T 0.064  0.044 0.108 0.052 0.052 0.104 0.104 0.020 0.124 0.080 0.068 0.148
adj-PATELL 0.132  0.176  0.308 0.168 0.208 0.376 0.307 0.131 0.438 0.124 0.260 0.384
adj-BMP 0.052  0.048 0.100 0.044 0.048 0.092 0.171 0.024 0.195 0.032 0.080 0.112
GRANK-Z 0.072  0.040 0.112 0.052 0.036 0.088 0.100 0.012 0.112 0.072 0.060 0.132

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Calculation

methodology described following table 11.

Rejection frequencies are based on 250 simulations, each with N randomly selected crypto-assets
with replacement from the largest 100 crypto-assets based upon size during the period of January

1512015 to June 30™ 2018.
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Table 10: Simulated rejection frequencies as a function of Sample Size

Sample size = 10 Sample size =25 Sample size = 50 Sample size = 100
CAAR(-1,1) CAAR(-1,1) CAAR(-1,1) CAAR(-1,1)
PR< PR> 2- PR< PR> 2- PR< PR> 2- PR< PR> 2-

HO:] 0.05 0.95 Tail 0.05 0.95 Tail 0.05 0.95 Tail 0.05 0.95 Tail

Panel (A) Entire Sampl¢

PATELL 0.075 0.111 0.187]  0.120 0.135 0.255| 0.124 0.204 0.328] 0.160 0.248 0.408
Csect T 0.044 0.016 0.060] 0.068 0.020 0.088] 0.044 0.048 0.092] 0.060 0.024 0.084
G-SIGN 0.060 0.067 0.127]  0.068 0.040 0.108] 0.068 0.028 0.096| 0.088 0.032 0.120
BMP 0.052 0.024 0.075] 0.076 0.024 0.100] 0.068 0.032 0.100] 0.056 0.060 0.116
RANK 0.028 0.008 0.036] 0.024 0.024 0.048] 0.028 0.016 0.044] 0.056 0.020 0.076
GRANK-T 0.063 0.036 0.099] 0.092 0.032 0.124] 0.084 0.024 0.108] 0.036 0.028 0.064
adi-PATELL 0.079 0.111 0.190] 0.116 0.135 0.251] 0.124 0.208 0.332| 0.172 0.248 0.420
adi-BMP 0.052 0.036 0.087] 0.080 0.024 0.104] 0.068 0.036 0.104| 0.044 0.044 0.088
GRANK-Z 0.056 0.024 0.079]  0.084 0.036 0.120] 0.060 0.028 0.088] 0.024 0.032 0.056
Panel (B) TOP 100

PATELL 0.046 0.040 0.086] 0.080 0.066 0.146] 0.180 0.224 0.404] 0.220 0.288 0.508
Csect T 0.022 0.008 0.030] 0.028 0.004 0.032] 0.032 0.020 0.052] 0.028 0.028 0.056
G-SIGN 0.032 0.016 0.048] 0.040 0.022 0.062] 0.084 0.048 0.132] 0.056 0.068 0.124
BMP 0.042 0.022 0.064] 0.036 0.022 0.058] 0.032 0.040 0.072|  0.020 0.060 0.080
RANK 0.016 0.020 0.036] 0.026 0.016 0.042] 0.048 0.048 0.096| 0.020 0.056 0.076
GRANK-T 0.036 0.016 0.052] 0.048 0.018 0.066] 0.036 0.064 0.100] 0.020 0.064 0.084
adi-PATELL 0.046 0.044 0.090] 0.084 0.068 0.152] 0.188 0.228 0.416| 0.216 0.288 0.504
adi-BMP 0.030 0.026 0.056] 0.040 0.026 0.066] 0.036 0.048 0.084] 0.020 0.052 0.072
GRANK-Z 0.038 0.018 0.056] 0.048 0.016 0.064] 0.032 0.056 0.088] 0.020 0.072 0.092

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Calculation

methodology described following table 11.

Rejection frequencies are based on 250 simulations, each with N randomly selected crypto-assets
with replacement from either the entire sample (Panel A) or from the largest 100 crypto-assets

(Panel B) based upon size during the period of January 1% 2015 to June 30™ 2018.
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Table 11: Clustered simulated rejection frequencies as a function of sample size

Sample size = 10 Sample size =25 Sample size = 50 Sample size = 100
CAAR(-1,1) CAAR(-1,1) CAAR(-1,1) CAAR(-1,1)
PR< PR> 2- PR< PR> 2- PR< PR> PR< PR> 2-

HO:| 0.05 0.95 Tail 0.05 0.95 Tail 0.05 0.95 2-Tail 0.05 0.95 Tail

Panel (A) Non-Clustured

PATELL 0.075 0.111 0.187] 0.120 0.135 0.255| 0.124 0.204 0.328] 0.160 0.248 0.408
Csect T 0.044 0.016 0.060] 0.068 0.020 0.088] 0.044 0.048 0.092] 0.060 0.024 0.084
G-SIGN 0.060 0.067 0.127]  0.068 0.040 0.108] 0.068 0.028 0.096] 0.088 0.032 0.120
BMP 0.052 0.024 0.075] 0.076 0.024 0.100] 0.068 0.032 0.100] 0.056 0.060 0.116
RANK 0.028 0.008 0.036] 0.024 0.024 0.048] 0.028 0.016 0.044] 0.056 0.020 0.076
GRANK-T 0.063 0.036 0.099] 0.092 0.032 0.124] 0.084 0.024 0.108] 0.036 0.028 0.064
ad-PATELL 0.079 0.111 0.190] 0.116 0.135 0.251] 0.124 0.208 0.332] 0.172 0.248 0.420
adj-BMP 0.052 0.036 0.087] 0.080 0.024 0.104] 0.068 0.036 0.104] 0.044 0.044 0.088
GRANK-Z 0.056 0.024 0.079]  0.084 0.036 0.120] 0.060 0.028 0.088] 0.024 0.032 0.056

Panel (B) Clustered

PATELL 0.083 0.119 0.202] 0.096 0.159 0.255] 0.164 0.176 0.340] 0.192 0.232 0.424
Csect T 0.052 0.060 0.111 0.032 0.048 0.080] 0.072 0.032 0.104] 0.052 0.040 0.092
G-SIGN 0.079 0.091 0.171} 0.072 0.120 0.191 0.128 0.124 0.252 0.176 0.212 0.388
BMP 0.083 0.095 0.179] 0.056 0.076 0.131] 0.100 0.088 0.188 0.108 0.112 0.220
RANK 0.052 0.075 0.127] 0.028 0.084 0.112] 0.040 0.052 0.092 0.064 0.092 0.156
GRANK-T 0.071 0.083 0.155] 0.064 0.064 0.127] 0.044 0.040 0.084] 0.036 0.064 0.100
adj-PATELL 0.083 0.115 0.198] 0.080 0.124 0.203] 0.128 0.152 0.280] 0.140 0.172 0.312
adj-BMP 0.071 0.103 0.175] 0.036 0.088 0.124] 0.052 0.068 0.120] 0.064 0.052 0.116
GRANK-Z 0.067 0.099 0.167] 0.080 0.116 0.195] 0.128 0.112 0.240] 0.104 0.208 0.312

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Calculation

methodology described following table 11.

Samples of panel (A) as described in common methodology, samples of panel (B), are
determined by first choosing a random day and second randomly selecting N crypto-assets

without replacement.



Rejection frequencies of various specification with zero abnormal returns (tables 8 to 11)

Simulated rejection frequencies with zero abnormal returns (tables 8 to 11). Rejection frequencies
are based on 250 simulations, each with N randomly selected crypto-assets with replacement
during the period of January 1% 2015 to June 30" 2018. Randomization for both the entire sample
and clustered samples is first done by excluding crypto-assets which have been forked or ICOd
within the previous 70 days. Second, the universe is further divided to only select securities that
have at least 5 days of available post event day-price data. Samples of panel (A) are than drawn
from the resulting subset of 431 995 crypto-asset daily price pairs. The market index is the value
weighted CRIX index. Event-day abnormal returns are determined by the one factor market model

approach. The event window includes 1 day prior and 1 day after (-1,1).

An estimation windows from -100 to -11 days is used for calibrating the parameters of the market
model and the necessary standard deviations and signs necessary for determining test statistics.
The rank test calculates ranks across the entire observation period (-100,+1). The parametric test
statistics of Csect-T, PATELL, BMP, Adj-PATELL, adj-BMP are calculated based on the
specifications described in section Test Statistics and defined in Brown and Warner(1985), Patell
(1976), Boehmer et al (1991) and Kolari and Pynnonen (2010,2010) respectively. The null
hypothesis across all parametric tests is that the mean CAR is zero. The non-parametric tests of
RANK, GRANK-T and GRANK-Z are calculated by the specifications shown in Test Statistics
and defined in Corrado and Zivney(1992), Kolari and Pynnonen (2011, 2011). The G-SIGN is
defined for a single day event as in Cowan(1992) and as defined in Kolari and Pynnonen (2011)
for multiday events. The null hypothesis of the G-SIGN test is that the proportion of event day
abnormal returns having a particular sign is equal to the proportion of estimation-period abnormal
returns with that sign. The null hypothesis of the RANK test is that the mean ranking of the
abnormal returns in the event period is equal to that of the entire observation period. The null of
the GRANK-T and GRANK-Z is that the demeaned standardized abnormal rank of the event

period is equal to zero.
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Table 12: Seeded abnormal return rejection frequencies Market Model -Value Weighted

Market Model Value Weighted Abnormal Returns

Panel A: AAR({D) HO: AAR <0 HO: AAR =0

Seeded Returns -0.1 -0.03 -0.01 0 0 +0.01 +0.03 +0.1
PATELL 0.608 025 0176 0.104 | 0.144 0200 0368 0328
Csect T 0.072 0.048 0048 0.052 0.040 0068 0052 0.100
G-SIGN 0992 059 0176 0.052 0.068 0200 0460 0.664
BMP 0392 0152 0072 0.044 | 0.044 0092 0244 039
RANK 1.000 0620 0.176 0.048 0.056 0204 0352 0.692
GRANK-T 0.692 0336 0084 0.048 0.052 0136 03500 0576
adi- PATELL 0612 0260 0176 0.104 | 0.144 0200 0368 0332
adji-BMP 0392 0152 0072 0.044 | 0.044 0092 0244 039
GRANK-Z 0.700 0332 00% 0.052 0.052 0.160 0470 0.560
Panel B: 3-Day CAR HO:CAR <0 HO:CAR =0

PATELL 0464 0139 0076 0.108 0.144 0163 0200 0424
Csect T 0.052 0.060 0.040 0.036 | 0028 0.052 0036 0076
G-SIGN 0928 0347 0116 0.052 0.024 0108 0224 0.548
BMP 0316 0.104 0.040 0.036 | 0.040 0.064 0160 0328
RANK 0208 0255 0084 0.020 | 0.028 0.064 0232 0548
GRANK-T 0.580 0263 0100 0.044 | 0.048 0.116 0228 03516
adj-PATELL 0468 0.147 0.084 0.108 0.148 0163 0208 0420
adj-BMP 0440 0163 0076 0.036 | 0.044 009 0208 0376
GRANK-Z 0.700 0332 0082 0.052 0.052  0.084 0336 0.560

Table 13: Seeded abnormal return rejection frequencies Market Model Equally weighted

Market Model Equally Weighted Abnormal Returns

Panel A: AAR(0) HO: AAR <0 HO: AAR >0

Seeded Returns 0.1 003 0.01 0 07  +0.01"7  +003" 401
PATELL 0.592 0.292 0.168 0.139 0.1%0 0.196 0.340 0.728
Csect T 0.100 0.100 0.044 0.036 0.020 0.044 0.092 0.132
G-SIGN 0.996 0.632 0.144 0.032 0.036 0.164 0.620 1.000
BMP 0.408 0212 0.064 0.028 0.024 0.080 0.260 0,572
RANK 1.000 0.6%96 0.136 0.036 0.020 0.168 0.636 1.000
GRANK-T 0.688 0.396 0.104 0.024 0.024 0.152 0.512 0912
adi-PATELL 0.592 0.288 0.168 0.139 0.190 0.196 0.340 0.724
adi-BMP 0408 0212 0.064 0.028 0.024 0.080 0.264 0.572
GRANK-Z 0.692 0.392 0.096 0.020 0.024 0.152 0.524 0.920
Panel B: 3-Day CAR HO: CAR <0 HO: CAR =0

PATELL 0.388 0.148 0.132 0.124 0.204 0.176 0.196 0.536
Csect T 0088 0.048 0.064 0.044 0048 0.064 0.032 0.108
G-SIGN 0800 0.268 0.084 0.068 0.028 0112 0.276 0.904
BMP 0.296 0.152 0.072 0.068 0.032 0.096 0.136 0460
RANK 0.904 0.284 0.072 0.028 0.016 0.076 0.248 0876
GRANK-T 0.568 0.228 0.100 0.084 0.024 0.088 0.224 0.808
adi-PATELL 0.400 0.140 0.132 0.124 0.208 0.180 0.188 0.532
adi-BMP 0444 0.196 0.088 0.068 0.036 0112 0.256 0.632
GRANK-Z 0.352 0.228 0.100 0.060 0.028 0.088 0.220 0.820

Simulated rejection frequencies of seeded abnormal returns (tables 12 to 15). Calculation

methodology described following table 15
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Table 14: Seeded abnormal return rejection frequencies - Market Adjusted Model

Market Adjusted Model Value Weighted Abnormal Returns

Panel A: AAR(0) HO: AAR <D HO: AAR=0

Seeded Returns 0.1 -0.03 0 o' +0.03" +0.1
PATELL 0.560 0.252 0.120 0.132 0.124 0.672
Csect T 0.072 0.048 0.060 0.020 0.012 0.124
G-SIGN 0.996 0.392 0.028 0.048 0.060 1.000
BMP 0.376 0.212 0.084 0.020 0.016 0.524
FANK 1.000 0.632 0.044 0.048 0.040 1.000
GRANK-T 0.660 0.388 0.060 0.028 0.024 0.932
adj-PATELL 0.360 0.256 0.120 0.132 0.124 0.672
adj-BMP 0.376 0.212 0.084 0.020 0.016 0.524
GFANK-Z 0.668 0.388 0.056 0.040 0.028 0.928
Panel B: 3-Day CAR HO: CAR <0 HO: CAR=0

PATELL 0.408 0.136 0.116 0.124 0.088 0.372
CsectT 0.060 0.064 0.052 0.040 0.032 0.084
G-8IGN 0.908 0.372 0.068 0.052 0.244 0.932
BMP 0.328 0.172 0.068 0.032 0.088 0.372
RANK 0.916 0.300 0.016 0.016 0.236 0.868
GFANK-T 0.640 0.268 0.060 0.036 0.168 0.812
adj-PATELL 0.420 0.164 0.116 0.124 0.100 0.356
adj-BMP 0.560 0.292 0.068 0.024 0.084 0.564
GEANK-Z 0.644 0.280 0.056 0.040 0.148 0.812

Table 15: Seeded abnormal return rejection frequencies (Comparison Period Mean Adjusted

Model)

Comparison Period Mean Adusted Model Abnormal Returns

Panel A: AAR(0) HO: AAR <0 HO: AAR>0

Seeded Returns 01 0.03 0 0" +0.03"7 +01
PATELL 0.548 0296 0.100 0.156 0360 0.744
Csect T 0.052 0120 0.036 0.036 0124 0.168
G-SIGN 0996 0728 0.064 0.056 0.800 1.000
BMP 0396 0216 0.044 0.040 0260 0.600
RANK 1.000 0.736 0.052 0.064 0756 1.000
GRANK-T 0.648 0464 0.060 0.044 0668 0928
adj-PATELL 0.548 0300 0.100 0.156 0.360 0.744
adj-BMP 0396 0216 0.044 0.040 0260 0.600
GRANK-Z 0.656 0460 0.064 0.048 0656 0928
Panel B: 3-Day CAR HO: CAR <0 HO: CAR =0

PATELL 0372 0155 0.092 0.140 0204 0.368
Csect T 0.052 0028 0.028 0.044 0044 0.108
G-SIGN 0.948 0064 0.052 0.020 0284 0.960
BMP 0296 0028 0.032 0.036 0.156 0.508
RANK 0.968 0052 0.012 0.020 0300 0948
GRANK-T 0.608 0044 0.048 0.044 0300 0848
adj-PATELL 0.384 0092 0.096 0.140 0208 0.564
adj-BMP 0428 0036 0.044 0.032 0212 0.648
GRANK-Z 0.604 0044 0.060 0.036 0284 0.840

Simulated rejection frequencies of seeded abnormal returns (tables 12 to 15). Calculation

methodology described following table 15
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Rejection frequencies of various specification with seeded abnormal returns (tables 12 to 15)

Rejection frequencies are based on 250 simulations, each with 50 randomly selected crypto-assets
with replacement from during the period of January 1st 2015 to June 30th 2018. Randomization
first excludes crypto-assets which have been forked or ICOd within the previous 70 days. Second,
the universe is further subsetted to only select securities that have at least 5 days of available post
eventday-price data. Samples are than drawn from the resulting subset of 431 995 crypto-asset
daily price pairs. The market index is the value weighted CRIX index. Seeded returns are added

to the day zero returns for each crypto-asset in each simulation.

Event-day abnormal returns are determined by the one factor market model approach. An
estimation windows from -100 to -11 days is used for calibrating the parameters of the market
model, the standard deviations and signs necessary for determining test statistics. The rank test
calculates ranks across the entire observation period (-100,+1). The parametric test statistics of
Csect-T, PATELL, BMP, Adj-PATELL, adj-BMP are calculated based on the specifications
described in section Test Statistics and defined in Brown and Warner(1985), Patell (1976),
Boehmer et al (1991) and Kolari and Pynnénen (2010,2010) respectively. The null hypothesis
across all parametric tests is that the mean AAR and CAR is zero. The non-parametric tests of
RANK, GRANK-T and GRANK-Z are calculated by the specifications shown in Test Statistics
and defined in Corrado and Zivney(1992), Kolari and Pynnonen (2011, 2011). The G-SIGN is
defined for a single day event as in Cowan(1992) and as defined in Kolari and Pynnénen (2011)
for multiday events. The null hypothesis of the G-SIGN test is that the proportion of event day
abnormal returns having a particular sign is equal to the proportion of estimation-period abnormal
returns with that sign. The null hypothesis of the RANK test is that the mean ranking of the
abnormal returns in the event period is equal to that of the entire observation period. The null of
the GRANK-T and GRANK-Z is that the demeaned standardized abnormal rank of the event

period is equal to zero.
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Table 16: Binance listing announcement (CAR) analysis

CAR| PATELL Csect T G-SIGN BMP RANK  GRANK-T adj-PATELL adi-BMP  GRANK-Z
Panel (a) CAR (-5,5)
Value weighted 9.3% 1.694 ** 1.501 * 1.436 * 1.528 * -1.033 0.846 1.625 * 1.545 * 1.243
Equal weighted 9.1% 1.612 * 1.470 * 1.142 1.478 * -1.157 0.763 1.588 * 1.510 * 1.096
Panel (B) CAR(-3,-1)
Value weighted 4.3% 1.927 ** 1.520 * 1.708 ** 1.834 ** 0.371 0.981 1.850 ** 1.447 * 1.411 *
Equal weighted 5.0% 1.979 ** 1.819 ** 2.320 ** 1.957 ** 0.529 1.318 * 1.965 ** 1.690 ** 1.800 **
Panel (C) CAR(0,1)
Value weighted 13.6% 6.564 *** 2.433 ok 3,522 ok 1.927 ** 0.494 1.453 * 6.302 *** 1.511 * 2.093 **
Equal weighted 14.1% 6.820 *** 2.526 *** 3.227 *H* 2.048 ** 0.548 1.647 * 6.769 *** 1.699 ** 2.253 **
Panel (D) CAR (2,4)
Value weighted  -10.9% -4.592 ik -2.287 ** -1.921 ** -2.002 ** -2.909 *** -1.539 * -4.409 *** -1.478 * -2.219 **
Equal weighted  -11.6% -5.119 *x* -2.530 *k -2.518 *k -2.345 ** -3.126 *** -1.772 ** -5.08] *** -1.913 ** -2.426 *xk

* ok xE* indicate significance at the 10%, 5% and 1%.

Test statistic values for a sample of 44 announcements of Crypto-Assets listings by Binance.com
for the period of September 2017 and June 2018. Panels A-D show the resulting test statistic values
for the days indicate in brackets. In all Panels, value weighted refers to calculations using a market
model approach with the value weighted CRIX index. The equal weighted refers to to calculations

using a market model approach with the equal weighted EW100 index.

An estimation windows from -120 to -11 days is used for calibrating the parameters of the market
model, the standard deviations and signs necessary for determining test statistics. The rank test
calculates ranks across the entire observation period (-100,+11). The parametric test statistics of
Csect-T, PATELL, BMP, Adj-PATELL, adj-BMP are calculated based on the specifications
described in section Test Statistics and defined in Brown and Warner(1985), Patell (1976),
Boehmer et al (1991) and Kolari and Pynnénen (2010,2010) respectively. The null hypothesis
across all parametric tests is that the mean CAR is zero. The non-parametric tests of RANK,
GRANK-T and GRANK-Z are calculated by the specifications shown in 7est Statistics and defined
in Corrado and Zivney(1992), Kolari and Pynnénen (2011, 2011). The G-SIGN is defined in Kolari
and Pynnonen (2011) for multiday events. The null hypothesis of the G-SIGN test is that the
proportion of event day abnormal returns having a particular sign is equal to the proportion of
estimation-period abnormal returns with that sign. The null hypothesis of the RANK test is that
the mean ranking of the abnormal returns in the event period is equal to that of the entire
observation period. The null of the GRANK-T and GRANK-Z is that the demeaned standardized

abnormal rank of the event period is equal to zero.
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Table 17: Daily average abnormal return of Binance.com listing announcements

Panel (a) Value-Weighted Index
CAR| PATELL Csect T G-SIGN BMP RANK  GRANK-T adj-PATELL adiBMP  GRANK-Z
AAR(-3) 0.8% 1.344 * -0.409 0.562 1.184 -0.178 -0.123 1.340 * 1.179 -0.177
AAR(-2) 0.9% 0.548 -0.409 0.762 0.672 0.262 0.207 0.546 0.670 0.298
AAR(-1) 2.7% 1.954 ** 0.498 1.041 1.190 0.662 0.680 1.948 ** 1.185 0.980
AAR(0) 5.2% 1.970 ** 0.196 1.972 ** 1.484 * 0.570 0.588 1.964 ** 1.478 * 0.846
AAR(1) 8.4% 7.308 *** 0.498 1.514 * 1.494 * 0.233 0.662 7.285 *H* 1.488 * 0.954
AAR(2) -5.8% -5.005 *** -1.618 * -1.532 * -1.553 * -2.091 ** -1.008 -4.989 *** -1.547 * -1.455 *
Panel (b) Equal-Weighted Index
CAR|PATELL Csect T G-SIGN BMP RANK  GRANK-T adj-PATELL adi-BMP  GRANK-Z
AAR(-3) 0.2% 0.569 -0.401 0.169 0.552 -0.434 -0.461 0.567 0.550 -0.630
AAR(-2) 2.1% 1.853 ** 1.715 ** 1.694 ** 1.937 ** 1.136 1.095 1.846 ** 1.928 ** 1.493 *
AAR(-1) 2.7% 1.528 * 0.203 1.038 0.879 0.264 0.471 1.523 * 0.875 0.643
AAR(0) 5.5% 2.104 ** 0.506 2.219 ** 1611 * 0.778 0.736 2.096 ** 1.603 * 1.006
AAR(1) 8.5% 7.538 *** 0.506 1.519 * 1.558 * 0.109 0.748 7.509 *** 1.550 * 1.023
AAR(2) -6.0% -5.405 *** -2.518 *** -1.710 ** -1.823 ** -2.069 ** -1.063 -5.384 ** -1.814 ** -1.455 *

* ok w3k indicate significance at the 10%, 5% and 1%.

Test statistic values for a sample of 44 announcements of Crypto-Assets listings by Binance.com
for the period of September 2017 and June 2018. An estimation windows from -120 to -11 days is
used for calibrating the parameters of the market model, the standard deviations and signs
necessary for determining test statistics. The rank test calculates ranks across the entire observation
period (-100,+11). The parametric test statistics of Csect-T, PATELL, BMP, Adj-PATELL, adj-
BMP are calculated based on the specifications described in section Test Statistics and defined in
Brown and Warner(1985), Patell (1976), Boehmer et al (1991) and Kolari and Pynnonen (2010,
2010) respectively. The null hypothesis across all parametric tests is that the mean AAR is zero.
The non-parametric tests of RANK, GRANK-T and GRANK-Z are calculated by the
specifications shown in Test Statistics and defined in Corrado and Zivney(1992), Kolari and
Pynnénen (2011, 2011). The G-SIGN is defined for a single day event as in Cowan(1992). The
null hypothesis of the G-SIGN test is that the proportion of event day abnormal returns having a
particular sign is equal to the proportion of estimation-period abnormal returns with that sign. The
null hypothesis of the RANK test is that the mean ranking of the abnormal returns in the event
period is equal to that of the entire observation period. The null of the GRANK-T and GRANK-Z

is that the demeaned standardized abnormal rank of the event period is equal to zero.
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Figure 1: Binance Listings average daily abnormal returns
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Average Abnormal returns calculated as described in table 17.
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