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Abstract

Performance Analysis of Secondary Users in Cognitive Radio Networks

Sepehr Khodadadi, Ph.D.

Concordia University, 2019

Cognitive radio technology is to improve the inefficient usage of limited spectrum resources

when wireless networks coexist. Using this technology, the unlicensed users (secondary users) can

opportunistically access the frequency band of licensed users (primary users). There are different

kinds of cognitive radio networks. This thesis focuses on the interweave cognitive radio network,

where the secondary users are only allowed to access the spectrum holes, i.e., the idle parts of the

licensed spectrum band. The main task is to analyze the opportunistic dynamic spectrum alloca-

tion method based on selecting the largest available spectrum hole, where the goal is to have the

maximum possible transmission rate for secondary users. The objective of this work is to give the

service provider an estimation about the load of secondary users in different numbers of channels

and various kinds of traffics in primary networks.

The work starts with the investigation on the spectrum allocation for secondary users in a net-

work of single-channel primary users. In our analysis, we propose a theoretical model to calculate

the probability distribution of the length of the largest available spectrum hole. The contribution

of this part is the modeling and performance analysis of the existing conventional method, which
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selects the largest available spectrum hole. The main contribution is the calculation of the con-

ditional probability of having maximum consecutive idle channels under the condition of a given

number of total channels and various number of busy channels. For any given number of channels,

this conditional probability gives us the number of consecutive idle channels the secondary user

can have, if we know the probability distribution of busy channels taken by primary users. The

theoretical model works for any given number of total channels in the licensed frequency band,

with numerical and simulation results confirming the precision of the proposed model.

Later, we continue our study on the spectrum allocation in a cognitive radio network of multi-

channel primary users, where the secondary user temporarily takes the largest available spectrum

hole. For the performance analysis, we basically need to solve two problems. First, we need to

find the probability distribution of busy channels taken by primary users. Second, we need to

determine the length of the largest available spectrum hole under the condition of primary users

taking different channels. In the case of primary users taking multiple channels, the calculation

of the conditional probability of having maximum consecutive idle channels under the condition

of a given number of total channels and various number of busy channels, is approximately valid,

especially in low-traffic networks. As such, the main contribution in this part is finding the prob-

ability distribution of busy channels taken by primary users. The solution scenario is based on a

multidimensional Markov chain, with numerical and simulation results verifying the accuracy of

the proposed model.

Finally, an approximate one-dimensional Markov chain is also proposed to simplify the com-

plicated multidimensional solution. We provide an approximate estimation for the load of the sec-

ondary user to avoid the calculation of the complex multidimensional Markov chain. The procedure

significantly decreases the complexity, although we lose some information. The main concern in

the one-dimensional approximation is to find the departure rates from each state of busy channels.

It is actually the main challenge of this part and by approximation we provide the solution. At the

end, the performance of the proposed model was validated by numerical and simulation results.
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1 Introduction

Wireless communications is a very challenging field nowadays. Providing extra spectrum resources

to meet the excessive demand comes with great costs, while even today some of available resources

are underutilized. The scarcity and the inefficient usage of resources provide motivation to look for

some opportunistic spectrum allocation. To deal with these challenges, cognitive radio (CR), as an

emerging solution, has been proposed by Mitola [1].

With CR technology, the unlicensed users, also known as secondary users (SUs), can oppor-

tunistically access the spectrum resources of licensed users, also known as primary users (PUs).

Moreover, CR technology manages the efficient spectrum allocation to fulfill the user demands. It

also helps to maintain the required quality of service and provides a fair spectrum sharing among

all coexisting users [2–8].

In the next section, the CR technology and its spectrum allocation procedure, as the main sce-

nario of this thesis, will be briefly explored through some published papers.

1.1 Literature Survey

As mentioned earlier, the term “cognitive radio”, relates the technology that improves the utiliza-

tion of the spectrum by sharing the resources in a smart way. Explanation of CR technology and

how it may enhance the spectrum utilization are provided in the landmark paper of Haykin [2]:

“Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural
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resource: the radio electromagnetic spectrum.

The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless com-

munication system that is aware of its environment and uses the methodology of understanding-

by-building to learn from the environment and adapt to statistical variations in the input stimuli,

with two primary objectives in mind:

• highly reliable communication whenever and wherever needed;

• efficient utilization of the radio spectrum.”

As mentioned before, the CR technology provides the efficient ability for sharing the spectrum

resources with PUs. As such, the SUs are authorized to temporarily and opportunistically use the

spectrum holes. Besides, the performance of CR networks is highly dependent on the activity of

primary users. Hence, study on PUs behavior and modeling the PUs activity in CR networks is

very important [9, 10].

In CR technology, SUs are allowed to sense the spectrum resources and share the unused ones

without making significant interference to other users. This is called Spectrum Sensing [5]. CR

technology also manages the best spectrum allocation to fulfill the user demands. This part is called

Spectrum Management [6]. The CR techniques help to maintain the required quality of service

(QoS) during spectrum switching. This is called Spectrum Mobility [7]. Finally, CR technology

provides a fair spectrum sharing among all coexisting users which is called Spectrum Sharing [8].

There are different kinds of CR networks: in interweave CR networks, which is the focus of

the thesis, SUs can access the idle channels of PUs. Accordingly, PUs and SUs in interweave CR

networks do not have access to the same channels simultaneously. In this scenario, the consecutive

idle channels, which can be temporarily allocated to SUs, are called spectrum holes. In other kinds

of CR networks, the coexistence of PUs and SUs is allowed but with some predefined conditions

[11–26].

In addition, the spectrum allocation procedure in interweave CR technology consists of four

2



major parts: spectrum sensing and monitoring, spectrum analysis, spectrum decision, and spectrum

mobility. In spectrum sensing and monitoring, the secondary users sense the spectrum to detect the

spectrum holes. Also, on a primary user appearance, this part can detect the activity to avoid making

interference to the primary user. The duty of the spectrum analysis is to estimate the characteristics

of the spectrum holes that are detected through spectrum sensing. In fact, it is important to define

some parameters that can represent the quality of a particular spectrum band. Spectrum decision

is responsible to select the most appropriate spectrum hole among the available ones. Finally, the

spectrum mobility part takes care of any secondary user to vacate its spectrum hole when a primary

user appears on that spectrum band [6, 27, 28]. The focus of this thesis is on the spectrum decision,

with its duty being the selection of the best spectrum hole based on the given criterion.

Furthermore, lots of interesting researches have been done in the field of CR networks. For in-

stance, a survey on spectrum sensing provided in [29] and a comprehensive survey for spectrum

assignment delivered in [30]. Also, an effective channel assignment is given in [31] and a channel

selection algorithm (CSA) for multichannel CR networks is provided in [32], which allows sec-

ondary users to find a vacant channel with minimal number of channel switches. The proposed

method in [33] selects the spectrum hole with the maximum idle time and the presented method

in [34] chooses the spectrum hole which has the minimum expected transmission time with less

spectrum mobility. Further, The cooperative technique used in CR networks for spectrum sens-

ing/sharing has been deeply studied in [35, 36].

Moreover, an overview on CR networking and communications is provided in [37] by investigat-

ing the functions of the physical, medium access control (MAC), and network layers involved in a

CR design and how these layers are crossly related. Spectrum sensing is the essential component in

the physical layer. The MAC layer manages the spectrum access to the identified spectrum holes,

and the network layer is responsible for maintaining the required quality of service during spectrum

mobility.

In addition, some researches have been done on the security of CR networks [38]. While the

3



CR technology performs spectrum sensing to know whether a PU is present or not, there could

be some adverse SUs that can mimic the PU’s signal and make some vulnerabilities to prevent

proper spectrum sensing. This kind of threat is called primary user emulation attack (PUEA). The

PUEA can lead to severe reduction in the availability of spectrum resources for legitimate SUs by

making them vacate the spectrum bands [39]. Obviously, these threats can significantly degrade

the performance of the CR networks. In order to face the PUEA, a proper model is essential to

evaluate the attacks and adopt adequate mitigation strategies. As a result, many efforts have been

done to analyze and combat PUEAs [40–45].

We should also mention that there are recent researches to meet the critical requirements of

the fifth generation (5G) mobile networks using CR technology. A comprehensive survey of CR

technology is provided in [46] which focuses on the current significant research progress in 5G.

The survey is expected to help researchers develop practical applications of CR technology in the

field of 5G.

Finally, based on the literature review, the lack of research for determination of the load of

secondary users with different number of channels in CR networks is noticeable. To the best of

our knowledge, no work has been undertaken before or is not available in the open literature. We

find this topic practically significant which provides an estimation of the load of secondary users

by analyzing its performance in any given number of channels. Based on that, the motivation and

objectives of the thesis are explained.

1.2 Motivation and Objectives

The spectrum allocation method for SUs is a topic that directly affects the CR network capacity.

Though, more specifically, how this method works with the density of the PUs and demands of the

SUs, will impact the network overall performance. In addition, to understand the behavior of CR

networks and for the purpose of analysis, many efforts have been done to emulate what is most
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likely occurring in real situation using stochastic models. Hence, such topic should be interesting

for network designers in the field of wireless networks.

This motivates us to analyze and improve the performance of CR networks as our main goal.

Therefore, in this thesis, we focus on one of the major aspects of CR networks, i.e., their spectrum

allocation method and the related mathematical models.

Selecting the most appropriate spectrum hole (SH), the idle parts of the licensed spectrum band,

with simultaneous consideration of multiple goals, is a significant challenge. In a CR network

where the spectrum holes change dynamically and their sizes are not necessarily the same, if the

highest possible transmission rate is the goal, taking the largest available spectrum hole is an effec-

tive choice.

Focusing on this single-goal problem, we investigate the performance of the SU in a network of

multichannel PUs. For the performance analysis, we first start with the single-channel PUs, then

we continue to multichannel PUs, where we basically need to solve two problems. First, we need to

find the probability distribution of busy channels taken by PUs. Second, we need to determine the

length of the largest available spectrum hole under the condition of PUs taking different channels.

In summary, the objective of the thesis is the load calculation for secondary users in any given

number of channels. For this purpose, development of a mathematical model for performance

analysis of secondary users in primary networks is required. Based on this objective, there are

three contributions in the thesis which are elaborated next.

1.3 Thesis Contributions

This thesis aims to make the utilization of wireless communication resources more efficient by

proposing theoretical models for spectrum allocation. The contributions of this thesis can be sum-

marized as follows.

The first contribution of this work is the proposal of a mathematical model to calculate the proba-
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bility distribution of the length of the largest available spectrum hole in a network of single-channel

primary users. The contribution is the modeling and performance analysis of the existing conven-

tional method, which selects the largest available spectrum hole [47]. The practical significance

of this work is to give the service provider an estimation of the performance of SUs in different

numbers of channels and various kinds of traffics in primary networks. This important theoretical

modeling and analysis has not been undertaken before and/or is not available in the open litera-

ture. We believe that the results presented here significantly advances the state-of-the-art in the CR

network field.

To address the challenges, first we analyze the performance of secondary users in a network of

single-channel primary users. The main contribution is to calculate the P(x | n, m), as the condi-

tional probability of having maximum x consecutive idle channels under the condition of n total

and m busy channels. For any given number of channels, this conditional probability gives us the

number of consecutive idle channels a secondary user can have if we know the probability distribu-

tion of busy channels taken by primary users. This probability distribution can be simply achieved

by using the traditional M/G/k/k queue system if each primary user takes only one channel by

assumption.

Later, in the case of primary user taking multiple channels, the calculation of P(x | n, m) is

approximately valid, especially in low-traffic networks. As such, the main challenge is to find the

probability distribution of busy channels taken by primary users. This is what we will solve as the

second contribution of our work.

The mentioned challenge, as far as we know, is an open problem. In the literature, the closest

case we can find is the queue with batch arrivals. However, the conventional batch arrivals in

queueing theory cannot be applied here due to two reasons. First, the departures of batch arrivals

are independent in queueing theory. It means that the arrivals in one batch leave independently.

In our case, each arriving user occupies multiple channels simultaneously and leaves all of them

later on simultaneously as well. We call this case as batch-arrival-batch-departure. Second, the
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number of busy channels is important in queueing theory, but the locations of busy ones are not.

In our case when primary users take consecutive channels, the locations of busy channels are also

important. We need this information to find out whether a primary user will be accepted or blocked

if it requests y consecutive channels when w channels are available (w � y).

With our second contribution, we will be able to find the probability distribution of busy channels

taken by primary users and hence the performance of the SU in a network of multichannel PUs.

However, if the maximum number of channels that a PU can take increases, the complexity of

the solution increases accordingly. To simplify the case, we propose an approximation to find the

probability distribution of busy channels taken by primary users. This approximate solution which

helps us to estimate the load of SU is the third contribution of our work.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 presents the concept of queueing theory in CR

technology. It starts by an introduction to a queue system. Then it briefly outlines the required

background of queueing theory needed for the subject of this work. Next, in Chapter 3 we analyze

the performance of secondary users in a network of single-channel primary users. Chapter 4 targets

the challenges where primary user takes a random number of channels. In the case of consecutive

channels for primary users, the location tracking of busy channels is practically unfeasible. As

such, as a substitute for the location tracking, we find the probability of acceptance for any primary

user requesting a random number of channels. However, if the maximum number of channels that

a primary user can take increases, the complexity of the solution increases accordingly. To simplify

the case, in Chapter 5 we propose an approximation for the precise but complicated solution, which

is followed by the conclusion and future work in Chapter 6.
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2 Queueing Theory in CR Technology

Cognitive radio is the technology that provides a platform to share the spectrum between primary

and secondary users. The spectrum sharing can be effectively modeled and solved by means of

queueing theory. As such, queueing model is an important tool to evaluate the performance of such

a system [48–50].

Therefore, we start this chapter by briefly studying the concept of a queueing system. Then we

continue by providing the required background of queueing models which are required for the work

of this thesis.

2.1 Queueing System

A queueing system can be described as customers arriving for service, departing the system as dis-

couraged customers or waiting for service and leaving the system after being served [51]. Queueing

theory was developed in order to provide models to predict the behavior of queueing systems espe-

cially for the ones that have randomly arriving customers. The telephone traffic congestion was one

of the earliest problems studied in queueing theory, and Danish mathematician A. K. Erlang was

the pioneer investigator. He observed that a telephone system was generally characterized by either

[51]: “(1) Poisson input, exponential holding (service) times, and multiple channels (servers), or

(2) Poisson input, constant holding times, and a single channel.”

An adequate representation of a queueing system needs a detailed characterization of its pro-
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cesses. Some of the basic characteristics of queueing processes are arrival pattern of customers,

service pattern of servers, queue discipline, and system capacity.

For describing the queueing processes a notation has been developed which is standard through-

out the queueing literature. The notation for describing the queueing process is a series of symbols

and slashes like A/B/X/Y/Z. In this case, A indicates the interarrival time distribution, B shows

the service pattern which is described by the probability distribution for service time, X indicates

the number of parallel service channels, Y is for the restriction on system capacity, and Z indicates

the queue discipline [51].

2.2 Markovian Queueing Models

The queueing models in this thesis use the theory of birth-death processes. A birth-death process

is a specific type of Markov chain which can help to have steady-state probabilities with a straight-

forward solution. The states in queueing theory denotes the number of customers in the system.

Birth-death process consists of a set of states, for example {0, 1, 2, ...}. If the system is in state

n ≥ 0, the time until the next arrival/birth is an exponential random variable with rate λn. By having

an arrival, the system goes to state n+ 1. On the other hand, if the system is in state n ≥ 1, the

time until the next departure/death is an exponential random variable with rate μn. By having a

departure, the system goes from state n to state n−1 [51].

One of the examples of queue that can be modeled as birth-death process is M/M/k/k, which is

the scenario of the CR network presented in this thesis. Considering the M/M/k/k queueing model

in the CR networks, the servers are the channels and the arriving costumers are primary users. This

model assumes that interarrival times obey the exponential distribution (the average time between

arriving customers is 1
λ ) or equivalently the arrival rate follows a Poisson distribution with param-

eter λ . There are k servers, where no line is allowed to form because maximum k customers are

allowed to be in the system. Each server has an independently and identically distributed exponen-
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tial service time distribution with mean 1
μ [51]. In the following we provide more details about the

M/M/k/k queueing model.

2.2.1 Multi-Server, No Queue M/M/k/k

The M/M/k/k is a multi-server, no queue system with exponential interarrival and service times. In

this system, each arriving customer has its private server, unless when all the servers are occupied

[51]. In that case, the customer will be lost. The following notations are important in this system.

λ : Average number of arrivals per unit of time (Arrival rate)

1
λ : Average time between arrivals (τa)

μ: Service rate

1
μ : Average service time for each user (τs)

ρ = τs
τa
= λ

μ : Utilization ratio

k: Number of servers

n: Number of users in the system 0 � n � k

Fig. 2.2.1 shows the Markov chain presentation of the M/M/k/k system.

Figure 2.2.1: Queueing M/M/k/k system.

Following are the corresponding equations [51, 52]
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n = 0 ↔ λP0 = μP1

1 � n < k ↔ (λ +nμ)Pn = λPn−1 +(n+1)μPn+1

n = k ↔ λPk−1 = kμPk

(2.2.1)

where the reduced equation is

λPn−1 = nμPn 1 � n � k (2.2.2)

Therefore, the steady-state probabilities can be achieved, where the probability of having m

customers is [51, 52]

Pm =
ρm

m!
k
∑

n=0

ρn

n!

0 ≤ m ≤ k (2.2.3)

In this system, Pk describes the probability when all k servers are busy. This probability expres-

sion is called Erlang’s loss formula or Erlang’s-B formula.

B(k,ρ)≡ Pk =
ρk

k!
k
∑

n=0

ρn

n!

(2.2.4)

The Pk is the steady-state probability of a full system, which is for the arriving customers who

find the system full and cannot have service [51, 52].

2.2.2 Multi-Server, No Queue M/G/k/k

The M/G/k/k is a multi-server, no queue system with exponential interarrival and general service

times. It is the surprising fact that the steady-state distribution given by (2.2.3) is valid for any

M/G/k/k system [51]. As such, if the average service time for each user is 1
μ , the steady-state

probabilities for M/G/k/k queue system is known as
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Pm =
ρm

m!
k
∑

n=0

ρn

n!

0 ≤ m ≤ k (2.2.5)

where Pm is the probability of having m customers.

2.3 Summary

Queueing models are essential tools for evaluating the performance of CR networks. Hence, in this

chapter we briefly studied the concept of a queueing system. We also reviewed the theory of birth-

death processes and the queueing models that we need for developing the mathematical model for

performance analysis of secondary users.
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3 Performance Analysis of Secondary

Users in a Network of Single-Channel

Primary Users

In this chapter, we propose a mathematical model to investigate the performance of SUs in a CR

network of single-channel PUs. This chapter starts with Section 3.1 presenting the system model.

The proposed mathematical model to calculate the load of SUs is defined in Section 3.2. Finally,

some numerical and simulation results regarding the proposed model are presented in Section 3.3.

3.1 System Model

As mentioned earlier, there are two kinds of users in CR networks. Primary users are higher-priority

users and their normal operation should not be harmed. Secondary users are lower-priority users,

who are equipped with CR capability to opportunistically access the spectrum holes. Secondary

user must vacate the spectrum hole whenever a primary user appears on any of its constituent

channels. Hence, the activity of primary users is not affected by secondary users.

In this chapter, it is assumed that each primary user takes only one channel. The channel for

primary user is a random and independent selection out of available idle channels. In addition,

we consider the highest possible transmission rate for secondary user as its criterion for spectrum
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hole selection. It means that secondary user always gets the largest available spectrum hole. Fur-

thermore, for simplicity of analysis, we assume that secondary user has infinite data to sent and it

always looks for spectrum resources.

The spectrum hole in CR networks consists of consecutive idle channels in the licensed band

of primary users. An example of five available spectrum holes in a spectrum of thirty channels is

shown in Fig. 3.1.1. For instance, the first spectrum hole has three channels, channel number four

to six.

Figure 3.1.1: Example of five available spectrum holes in a frequency band of thirty channels

In this scenario, the location tracking of idle channels is practically unfeasible. Because of

that, as a substitute for the location tracking, we find the probability distribution of the maximum

consecutive idle channels. This important theoretical modeling, to the best of our knowledge, has

not been done before in the literature.

The maximum number of consecutive idle channels, which forms the largest available spectrum

hole, is a random variable, Max, from 0 to n, where n is the total number of channels in the

licensed band. If r is the data transmission rate for each channel, the expected transmission rate for

secondary user, which will be referred to as throughput, is

E [R] = r×E [Max] (3.1.1)

where the expected value of Max is

E [Max] =
n

∑
x=0

x×P(Max = x) (3.1.2)

and P(Max = x) is the probability distribution of the random variable Max. Hence, to know the

throughput of secondary user, we need to calculate E[Max]. In addition, there is another approach
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to calculate E[Max]. If the secondary user takes in average Xm number of channels at each state of

m busy channels, the expected value for its number of channels in average can be calculated as:

X̄ = ∑
m

PmXm (3.1.3)

The result of (3.1.3) is exactly the same as the result of (3.1.2).

The challenge of calculating the probability distribution is addressed in Section 3.2 where we

propose a mathematical model to find the probability distribution P(Max= x) for any given number

of channels. Before that, we provide two examples for better understanding the content.

If we are looking for the probability of P(Max = x) in a total of N = 5 channels, x can have the

values of x = 0, 1, 2, ..., 5. In this case, state of busy channels is S = m and the probability of each

state is Pm, where m = 0, 1, 2, ..., 5. To calculate the probability of each possible maximum length,

we have:

P(Max = x) =
5

∑
m=0

P(Max = x | S = m)Pm

where

P(Max = 0) = P(Max = 0 | S = 5)P5 = P5

P(Max = 1)=P(Max = 1 | S = 2)P2+P(Max = 1 | S = 3)P3+P(Max = 1 | S = 4)P4 =
( 1

10

)
P2+(3

5

)
P3 +P4

P(Max = 2)=P(Max = 2 | S = 1)P1+P(Max = 2 | S = 2)P2+P(Max = 2 | S = 3)P3 =
(1

5

)
P1+(3

5

)
P2 +

(2
5

)
P3

P(Max = 3) = P(Max = 3 | S = 1)P1 +P(Max = 3 | S = 2)P2 =
(2

5

)
P1 +

( 3
10

)
P2

P(Max = 4) = P(Max = 4 | S = 1)P1 =
(2

5

)
P1

P(Max = 5) = P(Max = 5 | S = 0)P0 = P0

Of course, sum of all the possible options for P(Max = x) is one:

5

∑
x=0

P(Max = x) = P0 +P1 +P2 +P3 +P4 +P5 = 1
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Now we can calculate the load of secondary user with (3.1.2):

E [Max] = 5P0 +3.2P1 +2.2P2 +1.4P3 +P4

In another way, by looking at each specific state of busy channels:

m = 0:

x = 5 =⇒ P(Max = 5 | N = 5, S = 0) = 1 =⇒ Xm=0 = 5×1 = 5

m = 1:

x = 2 =⇒ P(Max = 2 | N = 5, S = 1) = 1
5

x = 3 =⇒ P(Max = 3 | N = 5, S = 1) = 2
5

x = 4 =⇒ P(Max = 4 | N = 5, S = 1) = 2
5

=⇒ Xm=1 = 2× 1
5 +3× 2

5 +4× 2
5 = 3.2

m = 2:

x = 1 =⇒ P(Max = 1 | N = 5, S = 2) = 1
10

x = 2 =⇒ P(Max = 2 | N = 5, S = 2) = 3
5

x = 3 =⇒ P(Max = 3 | N = 5, S = 2) = 3
10

=⇒ Xm=2 = 1× 1
10 +2× 3

5 +3× 3
10 = 2.2

m = 3:

x = 1 =⇒ P(Max = 1 | N = 5, S = 3) = 3
5

x = 2 =⇒ P(Max = 2 | N = 5, S = 3) = 2
5

=⇒ Xm=3 = 1× 3
5 +2× 2

5 = 1.4

m = 4:
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x = 1 =⇒ P(Max = 1 | N = 5, S = 4) = 1 =⇒ Xm=4 = 1×1 = 1

m = 5:

x = 0 =⇒ P(Max = 0 | N = 5, S = 5) = 1 =⇒ Xm=5 = 0×1 = 0

Then by having all the Xm, the expected value for maximum number of channels can be calculated

from (3.1.3):

X̄ = 5P0 +3.2P1 +2.2P2 +1.4P3 +P4

It is clear that the results of (3.1.2) and (3.1.3) are the same as expected.

Now, in our system model we want to know the idle time of available spectrum hole, or in other

words, what is the period of time when the secondary user can stably get access to the spectrum

hole. If there are some available idle channels, the chances of arrivals to each of the idle channels

are the same and these events are independent of each other.

Suppose there are x consecutive idle channels as a spectrum hole. The idle time for spectrum

hole is the minimum of all the idle times of its constituent channels. So, in average, the spectrum

hole with x channels will be claimed x times sooner than one idle channel which is the period of

time when the secondary user can stably get access to the spectrum hole.

In addition, more number of channels together have higher data rate compared to a single chan-

nel, however, one channel lasts for a longer time. We assume in our model that whenever the

secondary user has to leave the channels, it will immediately come back to take the new available

channels. Hence, the secondary user does not lose any time and it always gets the largest available

spectrum hole to have the highest throughput.
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3.2 Proposed Mathematical Model in Cognitive

Spectrum Selection

For simplicity, first we consider that only one secondary user is present in the network. Later in

this section, we will extend the results to the case of multiple secondary users.

3.2.1 One Secondary User in the CR Network

If there is only one secondary user in the CR network, the question is how to calculate P(Max = x)

where x = 0, 1, 2, ... ,n for any given number of n. To solve this problem, first we define

P(Max = x | N = n, S = m) = P(x | n, m) (3.2.1)

as the conditional probability of having maximum x consecutive idle channels under the condi-

tion of n total and m busy channels. Now, for any given number of channels, n, if we know the

conditional probability distribution in (3.2.1), P(Max = x) is

P(Max = x) =
n

∑
m=0

P(Max = x | S = m)Pm (3.2.2)

where {Pm} are the steady-state probabilities of the number of busy channels used by primary users.

It is hard to find P(x | n, m), especially when n is large. To solve this problem, we propose

a theoretical model where P(x | n, m) can be calculated in an iterative process. We start to find

P(x | n, m) for a small value of n, for example n = 1, in which the solution is straightforward. Once

we have the solution for up to n, we use it to find the solution for n+1. Therefore, the approach is

able to calculate all the possibilities of P(x | n+1, m) by knowing all the pre-calculated values of

P(x | n, m).

To introduce the model, two definitions are needed:

• P
′
(Max = x | N = n, S = m): Conditional probability of having maximum x consecutive idle

channels under the condition of n total and m busy channels, and the last x channels being all
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idle.

• P
′′
(Max = x | N = n, S = m): Conditional probability of having maximum x consecutive idle

channels under the condition of n total and m busy channels, and the last x channels not being

all idle.

Obviously,

P(x | n, m) = P
′
(x | n, m)+P

′′
(x | n, m) (3.2.3)

Table 3.1: Definitions of the parameters
Parameters Definitions

Pn+1,m
lcb The probability that the last channel is busy, while having n+1 total and m busy channels

Pn+1,m
lci The probability that the last channel is idle, while having n+1 total and m busy channels

Pn+1,m
bc−lxci

The probability of having a busy channel just before the last x consecutive idle channels, while
having n+1 total and m busy channels

The calculation of the mathematical model for P(x | n, m) starts when n ≥ m+ x, otherwise the

result is zero. In addition, for any value of n ≥ 0 if x and m are either 0 or n, the only possible

probabilities are as follows.

P(Max = 0 | N = n, S = n) = 1

P(Max = n | N = n, S = 0) = 1

P
′
(Max = 0 | N = n, S = n) = 1

P
′
(Max = n | N = n, S = 0) = 1

(3.2.4)

Now, for the other values of x and m, and with the help of the parameters defined in Table 3.1,

P(x | n+1, m) can be calculated as follows.
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P(x | n+1, m) =

Pn+1,m
lcb × P(x | n, m−1)

+

Pn+1,m
lci × [P

′
(x−1 | n, m)+P

′′
(x | n, m)]

(3.2.5)

To calculate P(x | n+1, m), it should be noted that to make n+ 1 the number of total channels,

the extra added channel to the previous n channels is either busy or idle. Therefore, the calculation

of P(x | n+1, m) consists of two parts. First is the probability of the last channel being busy,

i.e., channel number n+ 1, and having maximum x consecutive idle channels in the remaining n

channels, m−1 of which being busy. The probability of this event is P(x | n, m−1). Second is the

probability of the last channel being idle and having maximum x−1 or x consecutive idle channels

in the remaining n channels, m of which being busy.

Note that, if channel number n+1 is idle, the maximum x consecutive idle channels can be either

the last x channels or elsewhere. The former happens when the last x−1 of the first n channels are

idle. The probability of this event is P
′
(x−1 | n, m). The latter occurs by having the maximum

x consecutive idle channels in the first n channels, the last x of which not being all idle. The

probability of this event is P
′′
(x | n, m). It is obvious that the last x channels cannot be all idle in

n total channels, otherwise there will be maximum x+ 1 consecutive idle channels in n+ 1 total

channels. In other words, these two cases are explained as follows.

1. If channel number n+1 is idle: The last x−1 of n channels are idle and it means that the last

x channels of the total n+1 channels are idle. The probability of this event is P
′
(x−1 | n, m).

2. If channel number n+1 is idle: The Max = x is anywhere in the n+1 channels, except in the

last x channels. The probability of this event is P
′′
(x | n, m). Note that if the last x channels

are idle in the total n, we will have Max = x+ 1 in the total of n+ 1 channels, which is not

the one that we are looking for.
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That is why we need P
′′
(x | n, m) and P

′
(x−1 | n, m). For the event related to the probability of

P
′
(x−1 | n, m), the random variable Max = x− 1 is located at the last x− 1 channels, but for the

event related to the probability of P
′′
(x | n, m), the random variable Max = x is located anywhere

except in the last x channels. Hence, for the event related to the probability of P
′′
(x | n, m), even

if the last x− 1 channels are idle, the random variable Max = x is somewhere else, therefore, the

event related to the probability of P
′
(x−1 | n, m) does not exist in that case. Note that even if the

last x−1 channels are idle, they do not make the Max. Hence, the event related to the probability

of P
′
(x−1 | n, m) does not exist.

In (3.2.5), we have

Pn+1,m
lcb =

(
n

m−1

)
(

n+1
m

) =
m

n+1
(3.2.6)

Pn+1,m
lci =

(
n
m

)
(

n+1
m

) =
n+1−m

n+1
(3.2.7)

Clearly, the addition of (3.2.6) and (3.2.7) is equal to one. To continue, P
′
(x | n+1, m) can be

calculated as follows.

P
′
(x | n+1, m) =

Pn+1,m
bc−lxci ×

(
x
∑

y=0
P(y | n− x, m−1)

)
(3.2.8)

To calculate P
′
(x | n+1, m), it is implicit that there is a busy channel just before the last x con-

secutive idle channels, otherwise there will be maximum x + 1 consecutive idle channels. So,

P
′
(x | n+1, m) is the probability of being a busy channel just before the last x consecutive idle

channels and having 0 up to x consecutive idle channels in the remaining n− x channels, m−1 of

which being busy.

In (3.2.8),
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Pn+1,m
bc−lxci =

(
n− x
m−1

)
(

n+1
m

) (3.2.9)

Therefore, P(x | n+1, m) and P
′
(x | n+1, m) can be calculated by (3.2.5) and (3.2.8), respec-

tively. It should be noted that P(x | n+1, m) and P
′
(x | n+1, m) are separately calculated. Fi-

nally, P
′′
(x | n+1, m) can be computed by (3.2.3), after P(x | n+1, m) and P

′
(x | n+1, m) are

calculated.

This ends the calculation of P(x | n+1, m). Now, to calculate (3.2.2) for any given number of

channels, n, the steady-state probabilities are needed. One of the models for primary usage in CR

networks is the call-based model. This model utilizes two random variables. One is to identify

the interarrival time between two customers and the other one is to describe the service time. As

an example, the primary usage can be well modeled by M/G/k/k queue system. This system has

Poisson customer arrivals and a general service time distribution, where k is the number of channels

[51].

The steady-state probabilities of the number of customers in the M/G/k/k queue system have

already been obtained [51]. If λ is the arrival rate and μ is the service rate, by defining ρ = λ
μ , the

probability of having m customers is:

Pm =
ρm

m!
k
∑

n=0

ρn

n!

0 ≤ m ≤ k (3.2.10)

Now, by having all the steady-state probabilities in the M/G/k/k queue system, the probability

distribution in (3.2.2) can be calculated. Having that, the load of secondary user and its throughput

can be calculated by (3.1.2) and (3.1.1), respectively.
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Numerical Evaluation

In this part we provide some examples to show the accuracy of the proposed mathematical method.

We calculate all the available probabilities for P(Max = x | N = n, S = m) based on the given val-

ues for n:

N = 1:

P(Max = 0 | N = 1, S = 1) = 1

P
′
(Max = 0 | N = 1, S = 1) = 1 , P

′′
(Max = 0 | N = 1, S = 1) = 0

P(Max = 1 | N = 1, S = 0) = 1

P
′
(Max = 1 | N = 1, S = 0) = 1 , P

′′
(Max = 1 | N = 1, S = 0) = 0

N = 2:

P(Max = 0 | N = 2, S = 2) = 1

P
′
(Max = 0 | N = 2, S = 2) = 1 , P

′′
(Max = 0 | N = 2, S = 2) = 0

P(Max = 1 | N = 2, S = 1) = 1

P
′
(Max = 1 | N = 2, S = 1) = 1 , P

′′
(Max = 1 | N = 2, S = 1) = 0

P(Max = 2 | N = 2, S = 0) = 1

P
′
(Max = 2 | N = 2, S = 0) = 1 , P

′′
(Max = 2 | N = 2, S = 0) = 0

N = 3:

P(Max = 0 | N = 3, S = 3) = 1

P
′
(Max = 0 | N = 3, S = 3) = 1 , P

′′
(Max = 0 | N = 3, S = 3) = 0

P(Max = 1 | N = 3, S = 1) = 1
3

P
′
(Max = 1 | N = 3, S = 1) = 1

3 , P
′′
(Max = 1 | N = 3, S = 1) = 0

P(Max = 1 | N = 3, S = 2) = 1

P
′
(Max = 1 | N = 3, S = 2) = 1

3 , P
′′
(Max = 1 | N = 3, S = 2) = 2

3
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P(Max = 2 | N = 3, S = 1) = 2
3

P
′
(Max = 2 | N = 3, S = 1) = 1

3 , P
′′
(Max = 2 | N = 3, S = 1) = 1

3

P(Max = 3 | N = 3, S = 0) = 1

P
′
(Max = 3 | N = 3, S = 0) = 1 , P

′′
(Max = 3 | N = 3, S = 0) = 0

N = 4:

P(Max = 0 | N = 4, S = 4) = 1

P
′
(Max = 0 | N = 4, S = 4) = 1 , P

′′
(Max = 0 | N = 4, S = 4) = 0

P(Max = 1 | N = 4, S = 2) = 1
2

P
′
(Max = 1 | N = 4, S = 2) = 1

3 , P
′′
(Max = 1 | N = 4, S = 2) = 1

6

P(Max = 1 | N = 4, S = 3) = 1

P
′
(Max = 1 | N = 4, S = 3) = 1

4 , P
′′
(Max = 1 | N = 4, S = 3) = 3

4

P(Max = 2 | N = 4, S = 1) = 1
2

P
′
(Max = 2 | N = 4, S = 1) = 1

4 , P
′′
(Max = 2 | N = 4, S = 1) = 1

4

P(Max = 2 | N = 4, S = 2) = 1
2

P
′
(Max = 2 | N = 4, S = 2) = 1

6 , P
′′
(Max = 2 | N = 4, S = 2) = 1

3

P(Max = 3 | N = 4, S = 1) = 1
2

P
′
(Max = 3 | N = 4, S = 1) = 1

4 , P
′′
(Max = 3 | N = 4, S = 1) = 1

4

P(Max = 4 | N = 4, S = 0) = 1

P
′
(Max = 4 | N = 4, S = 0) = 1 , P

′′
(Max = 4 | N = 4, S = 0) = 0

N = 5:

P(Max = 0 | N = 5, S = 5) = 1

P
′
(Max = 0 | N = 5, S = 5) = 1 , P

′′
(Max = 0 | N = 5, S = 5) = 0

P(Max = 1 | N = 5, S = 2) = 1
10

P
′
(Max = 1 | N = 5, S = 2) = 1

10 , P
′′
(Max = 1 | N = 5, S = 2) = 0

24



P(Max = 1 | N = 5, S = 3) = 3
5

P
′
(Max = 1 | N = 5, S = 3) = 3

10 , P
′′
(Max = 1 | N = 5, S = 3) = 3

10

P(Max = 1 | N = 5, S = 4) = 1

P
′
(Max = 1 | N = 5, S = 4) = 1

5 , P
′′
(Max = 1 | N = 5, S = 4) = 4

5

P(Max = 2 | N = 5, S = 1) = 1
5

P
′
(Max = 2 | N = 5, S = 1) = 1

5 , P
′′
(Max = 2 | N = 5, S = 1) = 0

P(Max = 2 | N = 5, S = 2) = 3
5

P
′
(Max = 2 | N = 5, S = 2) = 1

5 , P
′′
(Max = 2 | N = 5, S = 2) = 2

5

P(Max = 2 | N = 5, S = 3) = 2
5

P
′
(Max = 2 | N = 5, S = 3) = 1

10 , P
′′
(Max = 2 | N = 5, S = 3) = 3

10

P(Max = 3 | N = 5, S = 1) = 2
5

P
′
(Max = 3 | N = 5, S = 1) = 1

5 , P
′′
(Max = 3 | N = 5, S = 1) = 1

5

P(Max = 3 | N = 5, S = 2) = 3
10

P
′
(Max = 3 | N = 5, S = 2) = 1

10 , P
′′
(Max = 3 | N = 5, S = 2) = 2

10

P(Max = 4 | N = 5, S = 1) = 2
5

P
′
(Max = 4 | N = 5, S = 1) = 1

5 , P
′′
(Max = 4 | N = 5, S = 1) = 1

5

P(Max = 5 | N = 5, S = 0) = 1

P
′
(Max = 5 | N = 5, S = 0) = 1 , P

′′
(Max = 5 | N = 5, S = 0) = 0

Now we want to compare the results of the proposed approach with the provided examples. For

instance, P(Max = 1 | N = 4, S = 2) =?

Based on the proposed method,

PN=4,S=2
lcb = PN=4,S=2

lci = 1
2

P(Max = 1 | N = 3, S = 1) = 1
3

P
′
(Max = 0 | N = 3, S = 2) = 0

P
′′
(Max = 1 | N = 3, S = 2) = 2

3
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Therefore,

P(Max = 1 | N = 4, S = 2) = 1
2 × 1

3 +
1
2

(
0+ 2

3

)
= 1

2

which is accurate.

Now, P
′
(Max = 1 | N = 4, S = 2) =?

Based on (3.2.8), P
′
(Max = 1 | N = 4, S = 2) can be calculated as:

(P(Max = 0 | N = 2, S = 1)+P(Max = 1 | N = 2, S = 1))×

(
2
1

)
(

4
2

) = (0+1)× 1
3 = 1

3

Another example, P(Max = 2 | N = 4, S = 2) =?

With the proposed method,

PN=4,S=2
lcb = PN=4,S=2

lci = 1
2

P(Max = 2 | N = 3, S = 1) = 2
3

P
′
(Max = 1 | N = 3, S = 2) = 1

3

P
′′
(Max = 2 | N = 3, S = 2) = 0

Hence,

P(Max = 2 | N = 4, S = 2) = 1
2 × 2

3 +
1
2

(1
3 +0

)
= 1

2

which is true. And based on the proposed method, the probability of P
′
(Max = 2 | N = 4, S = 2)

is equal to 1
6 which is expected.

We continue with another example: P(Max = 2 | N = 5, S = 3) =?

Based on the proposed method,

PN=5,S=3
lcb = 3

5

PN=5,S=3
lci = 2

5

P(Max = 2 | N = 4, S = 2) = 1
2

P
′
(Max = 1 | N = 4, S = 3) = 1

4

P
′′
(Max = 2 | N = 4, S = 3) = 0

As such,

P(Max = 2 | N = 5, S = 3) = 3
5 × 1

2 +
2
5

(1
4 +0

)
= 2

5
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which is correct. Based on the proposed method, the probability of P
′
(Max = 2 | N = 5, S = 3) is

equal to 1
10 which is the same as provided examples.

Now we want to calculate P(Max = 2 | N = 6, S = 3). Using the traditional way, we have 12

states which are:

(1,2,4), (1,2,5), (1,3,4), (1,3,6), (1,4,5), (1,4,6), (2,3,4), (2,3,6), (2,5,6), (3,4,5), (3,4,6),

(3,5,6).

Therefore, P(Max = 2 | N = 6, S = 3) = 12
(6

3)
= 3

5 .

Now, we want to calculate P(Max = 2 | N = 6, S = 3) using the proposed method. Here we have:

P(x | n+1, m) = P(Max = x | N = n+1, S = m) = P(Max = 2 | N = 6, S = 3)

Therefore, we have the following:

Pn+1,m
lcb =

(
n

m−1

)
(

n+1
m

) =
(5

2)
(6

3)
= 1

2

Pn+1,m
lci =

(
n
m

)
(

n+1
m

) =
(5

3)
(6

3)
= 1

2

And,

P(x | n, m−1) = P(Max = 2 | N = 5, S = 2) = 3
5

This probability has been calculated before with the proposed method when N was 5, before it

increased to 6. Therefore,

P
′
(x−1 | n, m) = P

′
(Max = 1 | N = 5, S = 3) = 3

10

P
′′
(x | n, m) = P

′′
(Max = 2 | N = 5, S = 3) = 3

10

Similarly, these probabilities have been calculated before with the proposed method when N was

5, before it increased to 6.

And now, with (3.2.5):

P(Max = 2 | N = 6, S = 3) = 1
2 × 3

5 +
1
2 ×

( 3
10 +

3
10

)
= 3

5

which is the same as the result of the traditional way.

In addition, it can be seen here that the event related to P
′′
(x | n, m) does not contain the event
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related to P
′
(x−1 | n, m). For the event of P

′′
(x | n, m) = P

′′
(Max = 2 | N = 5, S = 3), there are

three states, which are (1,2,5), (1,4,5), and (3,4,5). And for the event related to P
′
(x−1 | n, m) =

P
′
(Max = 1 | N = 5, S = 3), there are three states, which are (1,2,4), (1,3,4), and (2,3,4). It is

clear that there is no overlap between the event related to P
′′
(x | n, m) and the event related to

P
′
(x−1 | n, m).

As a result, for any given number of N = n, the proposed method starts with N = 1 to calculate all

the possible options for the event of P(x | n, m). Then it continues with N = 2 and keeps up to reach

the given number of N = n. This is the way we numerically solved the problem and as explained

earlier, there is no straightforward or closed-form solution for the calculation of P(x | n, m).

As shown above in the provided example given for N = 6, the algorithm calculates all the possible

options for P(Max = x | N = n, S = m) with N = 1, N = 2, N = 3, N = 4, and N = 5 until it can be

able to calculate P(Max = x | N = n, S = m) for N = 6.

This concludes the performance analysis of the case where there is only one secondary user. For

the case of multiple secondary users two different approaches are provided as follows.

3.2.2 Multiple Secondary Users in the CR Network

For the case of multiple secondary users, finding the absolute, generally-applicable solution is an

intractable problem. However, by approximation we can leverage the results obtained for the single

secondary user case. We propose two approaches for this scenario.

3.2.2.1 Load Estimator for Multiple Secondary Users - First Approach

If there are K secondary users in the CR network, each of them in average takes X̄ number of

channels which certainly depends on the number of secondary users in the network. If one channel

is claimed by a primary user, the affected secondary user leaves the network and immediately

rejoins the network by taking the largest available spectrum hole. In this case, if a secondary user

comes to the network at a certain time instant, (K −1)× X̄ of the channels have already been
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occupied by other secondary users. So, if N is the total number of channels, (K −1)× X̄ of them

are being used by other secondary users. Therefore, from one secondary user’s point of view, the

total number of channels in the network is N − (K −1)× X̄ . It basically means that the effect of

other secondary users is the decrease in the total number of channels potentially available for the

secondary user.

Now we can approximate this scenario with the proposed theoretical model, by having one sec-

ondary user in a network of N − (K −1)× X̄ total channels. The steps are described by Algorithm

3.1.

Algorithm 3.1 Load Estimator for Multiple Secondary Users - First Approach

1. Assume an initial value for X̄ . It should be at most the E [Max] for N channels from the
proposed model.

2. Calculate N
′
= N − (K −1)×E [Max]. (Floor to the lower integer value)

3. Calculate E [Max] for N
′
channels from the proposed model.

4. Repeat steps 2 and 3 until the value of E [Max] converges to a number with a certain tolerance.

5. The final E [Max] is the average number of channels that any of K secondary users can have.

The approximation in Algorithm 3.1 is valid for a limited number of secondary users. Note that,

for a fixed λ and μ in the primary network, the number of secondary users, K, should be selected

in a way to support them all (λ < N
′ ×μ should be valid to support K secondary users). Hence, the

parameter K should be limited by a certain admission control system to ensure the performance of

the network.

Here is an example in case of N = 50, λ = 50, and μ = 2.5, and K = 3:

1. Initial value, E [Max] = 6.6420

2. N
′
= 36

3. For N
′
, we have E [Max] = 4.0455
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4. N
′
= 41

5. For N
′
, we have E [Max] = 4.9840

6. N
′
= 40

7. For N
′
, we have E [Max] = 4.7976

8. N
′
= 40

9. For N
′
, we have E [Max] = 4.7976

Therefore, for any of three secondary users, the average number of channels from numerical result

is 4.7976. As a result, in case of multiple secondary users in the system, now we can calculate the

expected value of the resources for secondary users.

3.2.2.2 Load Estimator for Multiple Secondary Users - Second Approach

This algorithm works based on (3.1.3), where we look at each state of m busy channels to find X̄ as

the average number of channels that any of K secondary users can have.

If there are K secondary users in the system, at the state of m busy channels, each of them in

average takes Xm number of channels. Obviously, Xm is a function of K. In this scenario, the

last SU is Kth SU which comes to the system when there are already K − 1 other SUs inside. As

mentioned before, each SU takes the largest available spectrum hole. Therefore, if K = 1, the SU

takes in average Xm number of channels at each state of m busy channels. The expected value for its

number of channels in average can be calculated from (3.1.3). Now if K = 2, we already know that

at K = 1 the first SU got the largest spectrum hole. As such, at each state of m busy channels, the

second SU sees the system as having m
′
= m+(K −1)×Xm busy channels and gets Xm′ number of

channels. Hence, in average each of secondary users gets
(K−1)×Xm+X

m′
K number of channels at each

state of m busy channels. Therefore, in this algorithm, when we have the knowledge for the state of
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K −1, we can continue for the state of K. By having all the Xm, the expected value for maximum

number of channels can be calculated from (3.1.3). The steps are described by Algorithm 3.2.

Algorithm 3.2 Load Estimator for Multiple Secondary Users - Second Approach

1. At K = 1, calculate Xm for each state of m busy channels. It can be calculated from the
proposed model.

2. Increase the value of K by one and calculate m
′
= m+(K −1)×Xm. (Round to the higher

integer value)

3. Calculate Xm′ from the proposed model for each state of m
′
busy channels.

4. In average each of secondary users can have
(K−1)×Xm+X

m′
K channels at state of m busy chan-

nels.

5. Set the output of step 4 as new Xm. Go to step 2 unless the desired value of K is reached.

6. The final Xm is the average number of channels that each of K secondary users can have at
state of m busy channels.

7. Apply Xm in (3.1.3) to have the average number of channels that any of K secondary users
can have.

Here, we do not decrease the number of available channels for the primary users. In the previous

algorithm, by increasing the value of K, the number of available channels for primary users is

decreasing, which is not practically correct, because secondary users should not have any influence

on the performance of primary users. The second algorithm has no change on the primary network,

because it considers each state of busy channels separately.

3.3 Numerical and Simulation Results

The described network is simulated using MATLAB. The arrival of primary users is a Poisson pro-

cess and service time of primary users is defined based on exponential distribution. The simulation

has been done for several times and the average of all the outcomes represents the simulation result.

As mentioned before, if the single goal is having the highest transmission rate, taking the largest
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spectrum hole is an effective choice. The maximum length algorithm is a well known greedy

method which goes for the largest spectrum hole. This chapter proposed the modeling and perfor-

mance analysis of the maximum length algorithm. Numerical and simulation results are shown to

evaluate the performance of the proposed theoretical model. For the case of one secondary user,

we set N = 50, λ = 50 and μ = 2.5 per second. First, we start with the results of steady-state

probabilities for the number of busy channels as shown in Fig. 3.3.1.

Figure 3.3.1: Steady-state probabilities for the number of busy channels

The numerical and simulation results for the probability distribution of random variable Max

are shown in Fig. 3.3.2. The simulation result is almost identical to the numerical result which

confirms the accuracy of the proposed mathematical model.

Finally, to have the load of secondary user, the numerical result for the expected value of Max is

6.6418 and the simulation result is 6.6384. As expected, the results are almost the same.

Now we consider the case where the service times for the PUs are uniformly distributed. For

the case of one secondary user, we set N = 50, λ = 75 and μ = 2.5 per second. In the simulation

we set the minimum and maximum service time as 0.1 and 0.7 seconds, respectively. Therefore,
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Figure 3.3.2: Probability distribution for maximum number of consecutive idle channels

the mean for the service time is 0.4 which is equal to 1
μ . We start with the results of steady-state

probabilities for the number of busy channels as shown in Fig. 3.3.3.

Figure 3.3.3: Steady-state probabilities for the number of busy channels

The numerical and simulation results for the probability distribution of random variable Max
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are shown in Fig. 3.3.4. As can be seen, the simulation result is almost identical to the numerical

result which confirms the accuracy of the proposed mathematical model in case of M/G/k/k queue

system.

Figure 3.3.4: Probability distribution for maximum number of consecutive idle channels

At the end, the numerical result for the expected value of Max is 3.9442 and the simulation result

is 3.9384. As expected, the results are almost identical.

Next, for the case of multiple secondary users, we set K from 1 to 4 and Fig. 3.3.5 shows the

load of each secondary user based on numerical and simulation results from Algorithm 3.1.

At K = 1 the results are exactly the same, as expected from the proposed mathematical model,

while the small differences between the other results are due to the approximation for calculating

N
′
in Algorithm 3.1.

Finally, for different number of secondary users in CR network, Fig. 3.3.6 shows the load of

each secondary user based on the results from Algorithm 3.2.
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Figure 3.3.5: Expected number of available channels for each secondary user with Algorithm 3.1

Figure 3.3.6: Expected number of available channels for each secondary user with Algorithm 3.2
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3.4 Summary

This chapter proposed a theoretical model for conventional method in CR networks, which selects

the maximum consecutive idle channels for the load of secondary users. The objective of the

proposed model is to get an insight about the load of secondary users for the service providers.

In the considered CR network, each primary user takes only one channel and secondary user gets

the largest available spectrum hole. The proposed mathematical model calculates the probability

distribution for the number of channels in the largest available spectrum hole, which can be used

for the load calculation of secondary users. The performance of the proposed model was validated

by numerical and simulation results.
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4 Queueing Analysis of Multichannel

Primary Users in Cognitive Radio

Networks

The mathematical model for the performance of SUs in a CR network of single-channel PUs was

proposed, developed, and analyzed in the previous chapter. In this chapter, we extend the proposed

model for the case of PUs taking multiple channels. The main contribution in Chapter 3 was the

calculation of P(x | n, m) as the conditional probability of having maximum x consecutive idle

channels under the condition of n total and m busy channels. For any given number of channels,

this conditional probability gives us the number of consecutive idle channels the SU can have, if

we know Pm, i.e., the probability distribution of busy channels taken by PUs. As mentioned before,

Pm has been obtained in the literature using the traditional M/G/k/k queue system [51].

Now, in the case of PUs taking multiple channels we basically need to solve two problems:

1. Finding the probability distribution of busy channels taken by PUs.

2. Determining the length of the largest available spectrum hole.

The first challenge, to the best of our knowledge, is an open problem in the queueing theory lit-

erature when PUs take consecutive channels. There are many works in the literature covering the

theory of queues, including batch arrivals and Markov chain analysis for multichannel CR networks
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[53–60]. The closest case is the queue with batch arrivals, but the conventional batch arrivals cannot

be applied here due to two reasons:

1. The departures of users in the batch-arrival scenario are considered independent in queueing

theory. It means that the arrivals in one batch leave independently.

2. The number of busy channels is important in queueing theory, but the locations of busy ones

are not.

In our scenario:

1. Each arriving user occupies multiple channels simultaneously and leaves all of them later on

simultaneously as well. We call this case the batch-arrival-batch-departure scenario.

2. The locations of busy channels are also important when PUs take consecutive channels. We

need this information to find out whether a PU will be accepted or blocked if it requests y

consecutive channels when w channels are available (w � y). For example, assume there are

totally five idle channels in the network and a PU asks for five consecutive channels. In this

scenario, if the idle channels are not consecutive, the PU will be rejected.

For finding the length of the largest available spectrum hole, the calculation of P(x | n, m) in Chap-

ter 3 is still approximately valid, especially in low-traffic networks. As such, the main challenge is

finding the probability distribution of busy channels taken by PUs. The solution to this challenge

is the main contribution of this chapter.

The content of this chapter is organized as follows. Section 4.1 deals with the case of batch-

arrival-batch-departure when each PU takes a random number of non-consecutive channels. Section

4.2 targets the challenge in which PUs take consecutive channels. In this case, the location tracking

of busy channels is practically unfeasible. As such, as a substitute for the location tracking, by

approximation we calculate the probability of acceptance for any PU requesting a random number

of channels. With the solutions in Section 4.1 and 4.2, we will be able to find Pm and hence the

performance of the SU.
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4.1 Primary Users with Non-Consecutive Channels

In this section, we study the case when each PU takes a random number of non-consecutive chan-

nels. In this scenario, we assume that the selection of the channels for each PU is random and

independent of each other. To start the investigation, the arrivals and departures are modeled by a

multidimensional Markov chain, and the number of dimensions is the maximum number of chan-

nels that each PU can have.

Fig. 4.1.1 shows a fraction of general case for the two-dimensional Markov chain where PUs

take either one or two channels with equal probabilities. In this figure, a is the number of Type1-

users, each of which takes only one channel. And b is the number of Type2-users, each of which

takes two channels. The Markov chain shows the combination of different available (b,a) where

Pba shows the probability of state (b,a).

Figure 4.1.1: Fraction of two-dimensional Markov chain in case of non-consecutive channels.

Fig. 4.1.2 shows an example of two-dimensional Markov chain when the total number of chan-

nels is N = 7. If the probability of arrivals for both types of users are equal, then the arrival rate of

each type is λ/2, where λ is the arrival rate of all incoming users. On the other hand, μ is the ser-

vice rate for all types of users. In this figure, for example, (2,3) shows the state of two Type2-users

and three Type1-users.

The equations for Markov chain of Fig. 4.1.2 are:

λP00 = μP01 +μP10
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Figure 4.1.2: Example of two-dimensional Markov chain for users with non-consecutive channels.

(λ +μ)P01 =
λ
2

P00 +2μP02 +μP11

(λ +2μ)P02 =
λ
2

P01 +3μP03 +μP12

(λ +3μ)P03 =
λ
2

P02 +4μP04 +μP13

(λ +4μ)P04 =
λ
2

P03 +5μP05 +μP14

(λ +5μ)P05 =
λ
2

P04 +6μP06 +μP15

(
λ
2
+6μ)P06 =

λ
2

P05 +7μP07
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7μP07 =
λ
2

P06

(λ +μ)P10 =
λ
2

P00 +μP11 +2μP20

(λ +2μ)P11 =
λ
2

P01 +
λ
2

P10 +2μP12 +2μP21

(λ +3μ)P12 =
λ
2

P02 +
λ
2

P11 +3μP13 +2μP22

(λ +4μ)P13 =
λ
2

P03 +
λ
2

P12 +4μP14 +2μP23

(
λ
2
+5μ)P14 =

λ
2

P04 +
λ
2

P13 +5μP15

6μP15 =
λ
2

P05 +
λ
2

P14

(λ +2μ)P20 =
λ
2

P10 +μP21 +3μP30

(λ +3μ)P21 =
λ
2

P11 +
λ
2

P20 +2μP22 +3μP31

(
λ
2
+4μ)P22 =

λ
2

P12 +
λ
2

P21 +3μP23
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5μP23 =
λ
2

P13 +
λ
2

P22

(
λ
2
+3μ)P30 =

λ
2

P20 +μP31

4μP31 =
λ
2

P21 +
λ
2

P30

3

∑
i=0

7

∑
j=0

Pi j = 1

and by using the general probabilities for different kinds of users, the equations are as follows:

(Pu1λ +Pu2λ )P00 = μP01 +μP10

(Pu1λ +Pu2λ +μ)P01 = Pu1λP00 +2μP02 +μP11

(Pu1λ +Pu2λ +2μ)P02 = Pu1λP01 +3μP03 +μP12

(Pu1λ +Pu2λ +3μ)P03 = Pu1λP02 +4μP04 +μP13

(Pu1λ +Pu2λ +4μ)P04 = Pu1λP03 +5μP05 +μP14

(Pu1λ +Pu2λ +5μ)P05 = Pu1λP04 +6μP06 +μP15
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(Pu1λ +6μ)P06 = Pu1λP05 +7μP07

7μP07 = Pu1λP06

(Pu1λ +Pu2λ +μ)P10 = Pu2λP00 +μP11 +2μP20

(Pu1λ +Pu2λ +2μ)P11 = Pu2λP01 +Pu1λP10 +2μP12 +2μP21

(Pu1λ +Pu2λ +3μ)P12 = Pu2λP02 +Pu1λP11 +3μP13 +2μP22

(Pu1λ +Pu2λ +4μ)P13 = Pu2λP03 +Pu1λP12 +4μP14 +2μP23

(Pu1λ +5μ)P14 = Pu2λP04 +Pu1λP13 +5μP15

6μP15 = Pu2λP05 +Pu1λP14

(Pu1λ +Pu2λ +2μ)P20 = Pu2λP10 +μP21 +3μP30

(Pu1λ +Pu2λ +3μ)P21 = Pu2λP11 +Pu1λP20 +2μP22 +3μP31

(Pu1λ +4μ)P22 = Pu2λP12 +Pu1λP21 +3μP23
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5μP23 = Pu2λP13 +Pu1λP22

(Pu1λ +3μ)P30 = Pu2λP20 +μP31

4μP31 = Pu2λP21 +Pu1λP30

3

∑
i=0

7

∑
j=0

Pi j = 1

By solving all the Markov chain equations of Fig. 4.1.2, the steady-state probabilities for the

number of busy channels can be calculated. If Pn indicates the steady-state probabilities for any

value of n from 0 to 7, the probabilities can be calculated as follows.

P0 = P00

P1 = P01

P2 = P02 +P10

P3 = P03 +P11

P4 = P04 +P12 +P20

P5 = P05 +P13 +P21

P6 = P06 +P14 +P22 +P30

P7 = P07 +P15 +P23 +P31

Now, we provide numerical and simulation results for some examples to confirm the accuracy of

the analysis. The described network is simulated using event-driven programming with MATLAB.

The simulation has been done several times and the average of all the outcomes represents the

simulation result.

As an example for a low-traffic network, in the case of N = 7, λ = 2, and μ = 2.5, the steady-state
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probabilities for the number of busy channels are shown in Table 4.1 and Fig. 4.1.3. The simulation

results are also provided to confirm the accuracy of the numerical results for the two-dimensional

Markov chain.

Table 4.1: Steady-state probabilities for two-dimensional Markov chain: Nonconsecutive channels
for users, N = 7, λ = 2, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.4499 0.1800 0.2159 0.0768 0.0509 0.0163 0.0079 0.0023

Simulation 0.4493 0.1801 0.2159 0.0771 0.0509 0.0165 0.0079 0.0023

Figure 4.1.3: Steady-state probabilities for two-dimensional Markov chain: Non-consecutive chan-
nels for users, N = 7, λ = 2, μ = 2.5.

By having all the steady-state probabilities, the distribution of Max can be achieved with the

proposed mathematical model in Chapter 3. The results are shown in Table 4.2 and Fig. 4.1.4.

From Table 4.2, the numerical result for the expected value of Max is 5.0568 and the simulation

result is 5.0542. It is clear that the results are almost the same.

Now, for a higher traffic network, in the case of N = 7, λ = 3, and μ = 2.5, the results of

steady-state probabilities for the number of busy channels are shown in Table 4.3 and Fig. 4.1.5.
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Table 4.2: Probability distribution of Max for two-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 2, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0023 0.0363 0.1041 0.1518 0.1219 0.0823 0.0514 0.4499

Simulation 0.0023 0.0365 0.1041 0.1520 0.1220 0.0823 0.0515 0.4493

Figure 4.1.4: Probability distribution of Max for two-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 2, μ = 2.5.

Table 4.3: Steady-state probabilities for two-dimensional Markov chain: Nonconsecutive channels
for users, N = 7, λ = 3, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.3030 0.1818 0.2364 0.1200 0.0889 0.0395 0.0217 0.0086

Simulation 0.3022 0.1819 0.2366 0.1202 0.0890 0.0396 0.0218 0.0087

In the same way as before, the distribution of Max are provided with the help of the proposed

mathematical model presented in Chapter 3. The results are shown in Table 4.4 and Fig. 4.1.6.

From Table 4.4, the numerical result for the expected value of Max is 4.3317 and the simulation

result is 4.3275. We can see even for the higher traffic the results are almost the same.

Another example for two-dimensional Markov chain is for a high-traffic network, where N = 7,
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Figure 4.1.5: Steady-state probabilities for two-dimensional Markov chain: Non-consecutive chan-
nels for users, N = 7, λ = 3, μ = 2.5.

Table 4.4: Probability distribution of Max for two-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 3, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0086 0.0788 0.1576 0.1811 0.1332 0.0857 0.0520 0.3030

Simulation 0.0087 0.0790 0.1578 0.1813 0.1333 0.0858 0.0519 0.3022

λ = 5, and μ = 2.5. The steady-state probabilities for the number of busy channels are provided in

Table 4.5 and Fig. 4.1.7.

Table 4.5: Steady-state probabilities for two-dimensional Markov chain: Nonconsecutive channels
for users, N = 7, λ = 5, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.1408 0.1408 0.2112 0.1643 0.1467 0.0950 0.0647 0.0364

Simulation 0.1401 0.1407 0.2108 0.1643 0.1469 0.0954 0.0651 0.0367

The numerical and simulation results for the distribution of Max are depicted in Table 4.6 and

Fig. 4.1.8.
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Figure 4.1.6: Probability distribution of Max for two-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 3, μ = 2.5.

Figure 4.1.7: Steady-state probabilities for two-dimensional Markov chain: Non-consecutive chan-
nels for users, N = 7, λ = 5, μ = 2.5.

From Table 4.6, the numerical result for the expected value of Max is 3.2508 and the simulation

result is 3.2454. Therefore, the results completely show that for the two-dimensional Markov chain

48



Table 4.6: Probability distribution of Max for two-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 5, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0364 0.1792 0.2256 0.1879 0.1194 0.0704 0.0402 0.1408

Simulation 0.0367 0.1800 0.2256 0.1878 0.1192 0.0704 0.0402 0.1401

Figure 4.1.8: Probability distribution of Max for two-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 5, μ = 2.5.

the numerical and simulation results are almost the same.

We now continue by considering another scenario which is more complicated. Fig. 4.1.9 shows

the three-dimensional Markov chain when the total number of channels is N = 7 and users take

either one, two, or three non-consecutive channels with equal probabilities. In this figure, (c,b,a)

indicates a number of Type1-users, b number of Type2-users, and c number of Type3-users. Also,

Pcba shows the probability for the state of (c,b,a).

The equations for Markov chain of Fig. 4.1.9 are:

λP000 = μ(P001 +P010 +P100)
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Figure 4.1.9: Example of three-dimensional Markov chain for users with non-consecutive channels.

(λ +μ)P001 =
λ
3

P000 +2μP002 +μP011 +μP101

(λ +2μ)P002 =
λ
3

P001 +3μP003 +μP012 +μP102
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(λ +3μ)P003 =
λ
3

P002 +4μP004 +μP013 +μP103

(λ +4μ)P004 =
λ
3

P003 +5μP005 +μP014 +μP104

(
2λ
3

+5μ)P005 =
λ
3

P004 +6μP006 +μP015

(
λ
3
+6μ)P006 =

λ
3

P005 +7μP007

7μP007 =
λ
3

P006

(λ +μ)P010 =
λ
3

P000 +μP011 +2μP020 +μP110

(λ +2μ)P011 =
λ
3

P001 +
λ
3

P010 +2μP012 +2μP021 +μP111

(λ +3μ)P012 =
λ
3

P002 +
λ
3

P011 +3μP013 +2μP022 +μP112

(
2λ
3

+4μ)P013 =
λ
3

P003 +
λ
3

P012 +4μP014 +2μP023

(
λ
3
+5μ)P014 =

λ
3

P004 +
λ
3

P013 +5μP015
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6μP015 =
λ
3

P005 +
λ
3

P014

(λ +2μ)P020 =
λ
3

P010 +μP021 +3μP030 +μP120

(
2λ
3

+3μ)P021 =
λ
3

P011 +
λ
3

P020 +2μP022 +3μP031

(
λ
3
+4μ)P022 =

λ
3

P012 +
λ
3

P021 +3μP023

5μP023 =
λ
3

P013 +
λ
3

P022

(
λ
3
+3μ)P030 =

λ
3

P020 +μP031

4μP031 =
λ
3

P021 +
λ
3

P030

(λ +μ)P100 =
λ
3

P000 +μP101 +μP110 +2μP200

(λ +2μ)P101 =
λ
3

P001 +
λ
3

P100 +2μP102 +μP111 +2μP201

(
2λ
3

+3μ)P102 =
λ
3

P002 +
λ
3

P101 +3μP103 +μP112
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(
λ
3
+4μ)P103 =

λ
3

P003 +
λ
3

P102 +4μP104

5μP104 =
λ
3

P004 +
λ
3

P103

(
2λ
3

+2μ)P110 =
λ
3

P010 +
λ
3

P100 +μP111 +2μP120

(
λ
3
+3μ)P111 =

λ
3

P011 +
λ
3

P101 +
λ
3

P110 +2μP112

4μP112 =
λ
3

P012 +
λ
3

P102 +
λ
3

P111

3μP120 =
λ
3

P020 +
λ
3

P110

(
λ
3
+2μ)P200 =

λ
3

P100 +μP201

3μP201 =
λ
3

P101 +
λ
3

P200

2

∑
i=0

3

∑
j=0

7

∑
k=0

Pi jk = 1

Again, by solving all the Markov chain equations, the steady-state probabilities for the number

of busy channels can be achieved. The probabilities can be calculated as follows:

P0 = P000

P1 = P001
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P2 = P002 +P010

P3 = P003 +P011 +P100

P4 = P004 +P012 +P020 +P101

P5 = P005 +P013 +P021 +P102 +P110

P6 = P006 +P014 +P022 +P030 +P103 +P111 +P200

P7 = P007 +P015 +P023 +P031 +P104 +P112 +P120 +P201

Again, we provide some examples to show the accuracy of the analysis. In a network of N = 7,

λ = 2, and μ = 2.5, the steady-state probabilities for the number of busy channels are shown in

Table 4.7 and Fig. 4.1.10. The simulation results are also provided to confirm the accuracy of the

three-dimensional Markov chain.

Table 4.7: Steady-state probabilities for three-dimensional Markov chain: Nonconsecutive chan-
nels for users, N = 7, λ = 2, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.4547 0.1212 0.1374 0.1550 0.0529 0.0413 0.0272 0.0102

Simulation 0.4542 0.1213 0.1375 0.1552 0.0530 0.0413 0.0272 0.0103

In addition, the results for the distribution of Max can be achieved with the proposed mathemat-

ical model presented in Chapter 3, as shown in Table 4.8 and Fig. 4.1.11.

Table 4.8: Probability distribution of Max for three-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 2, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0102 0.0763 0.1414 0.1369 0.0916 0.0543 0.0346 0.4547

Simulation 0.0103 0.0763 0.1415 0.1370 0.0917 0.0544 0.0346 0.4542

The numerical result for the expected value of Max is 4.7981 and the simulation result is 4.7964.

As can be seen, the results are the same as expected.

As another example, for a higher traffic network, in the case of N = 7, λ = 3, and μ = 2.5,

the steady-state probabilities for the number of busy channels are shown in Table 4.9 and in Fig.
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Figure 4.1.10: Steady-state probabilities for three-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 2, μ = 2.5.

Figure 4.1.11: Probability distribution of Max for three-dimensional Markov chain: Non-
consecutive channels for users, N = 7, λ = 2, μ = 2.5.

4.1.12. It can be seen that the simulation result is almost identical to the numerical result which

confirms the accuracy of the analysis.
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Table 4.9: Steady-state probabilities for three-dimensional Markov chain: Nonconsecutive chan-
nels for users, N = 7, λ = 3, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.3125 0.1250 0.1500 0.1783 0.0853 0.0714 0.0518 0.0257

Simulation 0.3120 0.1250 0.1501 0.1783 0.0854 0.0715 0.0520 0.0258

Figure 4.1.12: Steady-state probabilities for three-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 3, μ = 2.5.

As mentioned before, the final goal is the load calculation for the SU. As such, by having all

the steady-state probabilities, the probability distribution for maximum number of consecutive idle

channels can be achieved by our proposed method in Chapter 3. The results are shown in Table

4.10 and in Fig. 4.1.12.

Table 4.10: Probability distribution of Max for three-dimensional Markov chain: Non-consecutive
channels for users, N = 7, λ = 3, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0257 0.1322 0.1823 0.1555 0.0989 0.0571 0.0357 0.3125

Simulation 0.0258 0.1326 0.1824 0.1554 0.0990 0.0572 0.0356 0.3120
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Figure 4.1.13: Probability distribution of Max for three-dimensional Markov chain: Non-
consecutive channels for users, N = 7, λ = 3, μ = 2.5.

Based on the results in Table 4.10, the expected value of Max, which is the load of the SU,

can be achieved. The numerical result for the expected value of Max is 4.0463 and the simulation

result is 4.0432. As can be seen, the results are exactly the same, which proves the accuracy of

the analysis for the case of primary users with non-consecutive channels. As such, this section

concludes the investigation for the case of PUs with non-consecutive channels. The challenge of

PUs taking consecutive channels is addressed in the next section.

4.2 Primary Users with Consecutive Channels

In this section, we investigate the case when each PU, if possible, take a random number of consec-

utive channels. For the selection of the channels in this scenario, the locations of busy channels are

important. Clearly, as explained earlier, based on the location of busy channels we can determine

whether a request can be accepted or not. But the location tracking of busy channels is practically

unfeasible. Instead of the location tracking, by approximation, our solution is to find the probability
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of acceptance for each PU which requests a random number of consecutive channels. As before,

to start the investigation, the arrivals and the departures of PUs are modeled by a multidimensional

Markov chain. The number of dimensions is at most the maximum number of channels that each

PU can have.

Now, as a similar example presented in the previous section, Fig. 4.2.1 shows a two-dimensional

Markov chain, for users with consecutive channels, when the total number of channels is N = 7.

With the same probability of arrivals for both types of users, the arrival rate of each type is λ/2,

where λ is the arrival rate of all incoming users. Besides, μ is the service rate for all types of users.

Figure 4.2.1: Example of two-dimensional Markov chain for users with consecutive channels.

In this case, for example if three channels are busy, it is not guaranteed for an arriving Type2-user

to get the service. It may get the channels by approximation with probability of Pa as shown in the

figure, where Pa = P(Max ≥ 2 | S3). This shows the acceptance probability for Type2-user when

there are three busy channels in the network. Moreover, when there are four or five busy channels,

Type2-user may still be accepted. The acceptance possibilities are shown in the figure as Pb and

Pc, where Pb = P(Max ≥ 2 | S4) and Pc = P(Max ≥ 2 | S5). All of the acceptance probabilities
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can be calculated from our proposed method in Chapter 3. For example, if we have three busy

channels in a total of seven, the length of maximum possible consecutive idle channels is four.

Therefore, P(Max ≥ 2 | S3) can be calculated as the sum of P(Max = 2 | S3), P(Max = 3 | S3),

and P(Max = 4 | S3), where all the conditional probabilities can be calculated by our proposed

mathematical model. Accordingly, the values for acceptance probabilities are Pa = 0.9714, Pb =

0.7143, and Pc = 0.2857. Note that, the acceptance probability for Type2-user in state of less

than three busy channels is one. On the other hand, for more than five busy channels there is no

possibility for Type2-user to have service.

Now, the same as before, the steady-state probabilities for the number of busy channels can be

calculated by solving the Markov chain equations. The equations for Markov chain of Fig. 4.2.1

are as follows:

λP00 = μP01 +μP10

(λ +μ)P01 =
λ
2

P00 +2μP02 +μP11

(λ +2μ)P02 =
λ
2

P01 +3μP03 +μP12

(
λ
2
+

λ
2

Pa +3μ)P03 =
λ
2

P02 +4μP04 +μP13

(
λ
2
+

λ
2

Pb +4μ)P04 =
λ
2

P03 +5μP05 +μP14

(
λ
2
+

λ
2

Pc +5μ)P05 =
λ
2

P04 +6μP06 +μP15
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(
λ
2
+6μ)P06 =

λ
2

P05 +7μP07

7μP07 =
λ
2

P06

(λ +μ)P10 =
λ
2

P00 +μP11 +2μP20

(
λ
2
+

λ
2

Pa +2μ)P11 =
λ
2

P01 +
λ
2

P10 +2μP12 +2μP21

(
λ
2
+

λ
2

Pb +3μ)P12 =
λ
2

P02 +
λ
2

P11 +3μP13 +2μP22

(
λ
2
+

λ
2

Pc +4μ)P13 =
λ
2

PaP03 +
λ
2

P12 +4μP14 +2μP23

(
λ
2
+5μ)P14 =

λ
2

PbP04 +
λ
2

P13 +5μP15

6μP15 =
λ
2

PcP05 +
λ
2

P14

(
λ
2
+

λ
2

Pb +2μ)P20 =
λ
2

P10 +μP21 +3μP30

(
λ
2
+

λ
2

Pc +3μ)P21 =
λ
2

PaP11 +
λ
2

P20 +2μP22 +3μP31
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(
λ
2
+4μ)P22 =

λ
2

PbP12 +
λ
2

P21 +3μP23

5μP23 =
λ
2

PcP13 +
λ
2

P22

(
λ
2
+3μ)P30 =

λ
2

PbP20 +μP31

4μP31 =
λ
2

PcP21 +
λ
2

P30

and by using the general probabilities of different kinds of users, the equations are like:

(Pu1λ +Pu2λ )P00 = μP01 +μP10

(Pu1λ +Pu2λ +μ)P01 = Pu1λP00 +2μP02 +μP11

(Pu1λ +Pu2λ +2μ)P02 = Pu1λP01 +3μP03 +μP12

(Pu1λ +PaPu2λ +3μ)P03 = Pu1λP02 +4μP04 +μP13

(Pu1λ +PbPu2λ +4μ)P04 = Pu1λP03 +5μP05 +μP14

(Pu1λ +PcPu2λ +5μ)P05 = Pu1λP04 +6μP06 +μP15
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(Pu1λ +6μ)P06 = Pu1λP05 +7μP07

7μP07 = Pu1λP06

(Pu1λ +Pu2λ +μ)P10 = Pu2λP00 +μP11 +2μP20

(Pu1λ +PaPu2λ +2μ)P11 = Pu2λP01 +Pu1λP10 +2μP12 +2μP21

(Pu1λ +PbPu2λ +3μ)P12 = Pu2λP02 +Pu1λP11 +3μP13 +2μP22

(Pu1λ +PcPu2λ +4μ)P13 = PaPu2λP03 +Pu1λP12 +4μP14 +2μP23

(Pu1λ +5μ)P14 = PbPu2λP04 +Pu1λP13 +5μP15

6μP15 = PcPu2λP05 +Pu1λP14

(Pu1λ +PbPu2λ +2μ)P20 = Pu2λP10 +μP21 +3μP30

(Pu1λ +PcPu2λ +3μ)P21 = PaPu2λP11 +Pu1λP20 +2μP22 +3μP31

(Pu1λ +4μ)P22 = PbPu2λP12 +Pu1λP21 +3μP23
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5μP23 = PcPu2λP13 +Pu1λP22

(Pu1λ +3μ)P30 = PbPu2λP20 +μP31

4μP31 = PcPu2λP21 +Pu1λP30

Solving the above equations leads to steady-state probabilities for the number of busy channels,

as follows:

P0 = P00

P1 = P01

P2 = P02 +P10

P3 = P03 +P11

P4 = P04 +P12 +P20

P5 = P05 +P13 +P21

P6 = P06 +P14 +P22 +P30

P7 = P07 +P15 +P23 +P31

Now, as an example for a low-traffic network of N = 7, λ = 2, and μ = 2.5, the steady-state prob-

abilities for the number of busy channels are shown in Table 4.11 and Fig. 4.2.2. The simulation

results are also provided to confirm the accuracy of the numerical result.

Table 4.11: Steady-state probabilities for two-dimensional Markov chain: Consecutive channels for
users, N = 7, λ = 2, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.4514 0.1810 0.2165 0.0773 0.0509 0.0161 0.0058 0.0010

Simulation 0.4499 0.1806 0.2165 0.0774 0.0510 0.0165 0.0068 0.0012

As explained earlier, by having all the steady-state probabilities, the distribution of Max can be
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Figure 4.2.2: Steady-state probabilities for two-dimensional Markov chain: Consecutive channels
for users, N = 7, λ = 2, μ = 2.5.

achieved with the proposed mathematical model presented in Chapter 3. The results are shown in

Table 4.12 and Fig. 4.2.3.

Table 4.12: Probability distribution of Max for two-dimensional Markov chain: Consecutive chan-
nels for users, N = 7, λ = 2, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0010 0.0341 0.1044 0.1524 0.1224 0.0826 0.0517 0.4514

Simulation 0.0012 0.0243 0.0717 0.1444 0.1358 0.1195 0.0532 0.4499

Finally, from Table 4.12, the numerical result for the expected value of Max is 5.0730 and the

simulation result is 5.2100. Although, we see almost similar results for the load of the SU, the small

difference is due to the results of the probability distribution for maximum number of consecutive

idle channels, which are not very much the same. As expressed before, our proposed method for

the calculation of P(x | n, m) in Chapter 3 is for fair scheduling policy, which is not valid in the case

of PUs with consecutive channels. However, for the low-traffic case of PUs, which is the case in
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Figure 4.2.3: Probability distribution of Max for two-dimensional Markov chain: Consecutive
channels for users, N = 7, λ = 2, μ = 2.5.

interweave CR networks, the scheduling could be considered as almost fair. As such, the calculation

of P(x | n, m), e.g., Pa, in Fig. 4.2.1, where we used the probabilities of acceptance in the case of

consecutive channels, is a valid approximation. Therefore, the numerical and simulation results in

Fig. 4.2.4 are slightly different, but the small differences are not discernible. Now, after having

Pm from Fig. 4.2.4, we apply the result to (3.2.2) to calculate P(Max = x). But the calculation

of P(Max = x | S = m) in (3.2.2) is again based on fair scheduling policy, which is not valid here.

This is the reason for the differences between the results in Fig. 4.2.5 and accordingly for the

small difference in the results of the E[Max]. To be more clear, if we apply the simulation results

for steady-state probabilities in the proposed method in Chapter 3, we will have E[Max] = 5.0625

which is very similar to the numerical results, as expected. But the scheduling is not fair, as such,

the results for probability distribution of Max are not exactly the same, but they are good enough

to have the load estimation.

As another numerical example, in case of N = 7, λ = 3, and μ = 2.5, the steady-state probabil-

ities are shown in Table 4.13 and in Fig. 4.2.4. It can be seen that the numerical and simulation
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results are almost the same, as expected.

Table 4.13: Steady-state probabilities for two-dimensional Markov chain: Consecutive channels for
users, N = 7, λ = 3, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.3060 0.1847 0.2386 0.1221 0.0896 0.0391 0.0162 0.0037

Simulation 0.3042 0.1839 0.2378 0.1216 0.0894 0.0399 0.0186 0.0046

Figure 4.2.4: Steady-state probabilities for two-dimensional Markov chain: Consecutive channels
for users, N = 7, λ = 3, μ = 2.5.

To continue, with our proposed method in Chapter 3, the probability distribution for maximum

number of consecutive idle channels can be achieved when we have all the steady-state probabili-

ties. The results are shown in both Table 4.14 and Fig. 4.2.5.

Finally, the numerical result for the expected value of Max is 4.3741 and the simulation result is

4.5333. The same as previous example, we see almost similar results which shows that the analysis
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Table 4.14: Probability distribution of Max for two-dimensional Markov chain: Consecutive chan-
nels for users, N = 7, λ = 3, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0037 0.0732 0.1592 0.1833 0.1349 0.0868 0.0528 0.3060

Simulation 0.0046 0.0567 0.1224 0.1806 0.1516 0.1248 0.0550 0.3042

Figure 4.2.5: Probability distribution of Max for two-dimensional Markov chain: Consecutive
channels for users, N = 7, λ = 3, μ = 2.5.

works fine and the results can be used by the service provider to have a good insight for the load of

the secondary user.

To continue, we consider a more complicated scenario. Fig. 4.2.6 shows the three-dimensional

system when the total number of channels is N = 7 and users can take either one, two, or three

consecutive channels with equal probabilities.

In this case, the probabilities of acceptance are shown in Fig. 4.2.6 as Pa = P(Max ≥ 2 | S3),

Pb = P(Max ≥ 2 | S4), Pc = P(Max ≥ 2 | S5), Pd = P(Max ≥ 3 | S2), Pe = P(Max ≥ 3 | S3), and

Pf = P(Max ≥ 3 | S4). Again, these probabilities can be achieved by our proposed method. The

results are Pa = 0.9714, Pb = 0.7143, Pc = 0.2857, Pd = 0.8571, Pe = 0.4571, and Pf = 0.1429.

Here are the equations,
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Figure 4.2.6: Example of three-dimensional Markov chain for users with consecutive channels.

λP000 = μP001 +μP010 +μP100

(λ +μ)P001 =
λ
3

P000 +2μP002 +μP011 +μP101
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2λ
3

+
λ
3

Pd +2μ)P002 =
λ
3

P001 +3μP003 +μP012 +μP102

(
λ
3
+

λ
3

Pa +
λ
3

Pe +3μ)P003 =
λ
3

P002 +4μP004 +μP013 +μP103

(
λ
3
+

λ
3

Pb +
λ
3

Pf +4μ)P004 =
λ
3

P003 +5μP005 +μP014 +μP104

(
λ
3
+

λ
3

Pc +5μ)P005 =
λ
3

P004 +6μP006 +μP015

(
λ
3
+6μ)P006 =

λ
3

P005 +7μP007

7μP007 =
λ
3

P006

(
2λ
3

+
λ
3

Pd +μ)P010 =
λ
3

P000 +μP011 +2μP020 +μP110

(
λ
3
+

λ
3

Pa +
λ
3

Pe +2μ)P011 =
λ
3

P001 +
λ
3

P010 +2μP012 +2μP021 +μP111

(
λ
3
+

λ
3

Pb +
λ
3

Pf +3μ)P012 =
λ
3

P002 +
λ
3

P011 +3μP013 +2μP022 +μP112

(
λ
3
+

λ
3

Pc +4μ)P013 =
λ
3

PaP003 +
λ
3

P012 +4μP014 +2μP023
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(
λ
3
+5μ)P014 =

λ
3

PbP004 +
λ
3

P013 +5μP015

6μP015 =
λ
3

PcP005 +
λ
3

P014

(
λ
3
+

λ
3

Pb +
λ
3

Pf +2μ)P020 =
λ
3

P010 +μP021 +3μP030 +μP120

(
λ
3
+

λ
3

Pc +3μ)P021 =
λ
3

PaP011 +
λ
3

P020 +2μP022 +3μP031

(
λ
3
+4μ)P022 =

λ
3

PbP012 +
λ
3

P021 +3μP023

5μP023 =
λ
3

PcP013 +
λ
3

P022

(
λ
3
+3μ)P030 =

λ
3

PbP020 +μP031

4μP031 =
λ
3

PcP021 +
λ
3

P030

(
λ
3
+

λ
3

Pa +
λ
3

Pe +μ)P100 =
λ
3

P000 +μP101 +μP110 +2μP200

(
λ
3
+

λ
3

Pb +
λ
3

Pf +2μ)P101 =
λ
3

P001 +
λ
3

P100 +2μP102 +μP111 +2μP201
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(
λ
3
+

λ
3

Pc +3μ)P102 =
λ
3

PdP002 +
λ
3

P101 +3μP103 +μP112

(
λ
3
+4μ)P103 =

λ
3

PeP003 +
λ
3

P102 +4μP104

5μP104 =
λ
3

Pf P004 +
λ
3

P103

(
λ
3
+

λ
3

Pc +2μ)P110 =
λ
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PdP010 +
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3

PaP100 +μP111 +2μP120

(
λ
3
+3μ)P111 =

λ
3

PeP011 +
λ
3

PbP101 +
λ
3

P110 +2μP112

4μP112 =
λ
3

Pf P012 +
λ
3

PcP102 +
λ
3

P111

3μP120 =
λ
3

Pf P020 +
λ
3

PcP110

(
λ
3
+2μ)P200 =

λ
3

PeP100 +μP201

3μP201 =
λ
3

Pf P101 +
λ
3

P200

2

∑
i=0

3

∑
j=0

7

∑
k=0

Pi jk = 1

Solving the above equations leads to steady-state probabilities for the number of busy channels:

P0 = P000

71



P1 = P001

P2 = P002 +P010

P3 = P003 +P011 +P100

P4 = P004 +P012 +P020 +P101

P5 = P005 +P013 +P021 +P102 +P110

P6 = P006 +P014 +P022 +P030 +P103 +P111 +P200

P7 = P007 +P015 +P023 +P031 +P104 +P112 +P120 +P201

Now, in the case of N = 7, λ = 2, and μ = 2.5, the steady-state probabilities for the number of

busy channels are shown in Table 4.15 and Fig. 4.2.7.

Table 4.15: Steady-state probabilities for three-dimensional Markov chain: Consecutive channels
for users, N = 7, λ = 2, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.4649 0.1252 0.1425 0.1573 0.0546 0.0381 0.0148 0.0027

Simulation 0.4590 0.1236 0.1395 0.1564 0.0541 0.0408 0.0218 0.0049

Figure 4.2.7: Steady-state probabilities for three-dimensional Markov chain: Consecutive channels
for users, N = 7, λ = 2, μ = 2.5.
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Again, with our proposed method in Chapter 3, the probability distribution for maximum number

of consecutive idle channels can be achieved. The results are shown in both Table 4.15 and Fig.

4.15.

Table 4.16: Probability distribution of Max for three-dimensional Markov chain: Consecutive chan-
nels for users, N = 7, λ = 2, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0027 0.0621 0.1433 0.1407 0.0945 0.0561 0.0358 0.4649

Simulation 0.0049 0.0484 0.0901 0.1378 0.1398 0.0822 0.0378 0.4590

Figure 4.2.8: Probability distribution of Max for three-dimensional Markov chain: Consecutive
channels for users, N = 7, λ = 2, μ = 2.5.

From Table 4.16, the expected value of maximum for numerical result is 4.8981 and for sim-

ulation result is 5.0520. Again, in this case, we see almost the same results for the steady-state

probabilities, but the results for the load of the SU are not exactly the same. Again, for this exam-

ple, if we apply the steady-state probabilities from the simulation results in our proposed method

in Chapter 3, we will have E[Max] = 4.8464 which is very similar to the numerical results.
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The last example is for the case of N = 7, λ = 3, and μ = 2.5, where the steady-state probabilities

for the number of busy channels are shown in Table 4.17 and Fig. 4.2.9.

Table 4.17: Steady-state probabilities for three-dimensional Markov chain: Consecutive channels
for users, N = 7, λ = 3, μ = 2.5.

Pn P0 P1 P2 P3 P4 P5 P6 P7

Numerical 0.3265 0.1332 0.1601 0.1853 0.0906 0.0672 0.0299 0.0073

Simulation 0.3184 0.1298 0.1551 0.1822 0.0889 0.0710 0.0418 0.0127

Table 4.18: Steady-state probabilities for three-dimensional Markov chain: Consecutive channels
for users, N = 7, λ = 3, μ = 2.5.

The results for the probability distribution of Max are shown in both Table 4.19 and Fig. 4.2.9.

From Table 4.19, the expected value of Max for numerical result is 4.2180 and for simulation

result is 4.3780. Again, in this case, we see almost similar results for the load of the SU.
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Table 4.19: Probability distribution of Max for three-dimensional Markov chain: Consecutive chan-
nels for users, N = 7, λ = 3, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Numerical 0.0073 0.1090 0.1891 0.1641 0.1050 0.0609 0.0381 0.3265

Simulation 0.0127 0.0884 0.1336 0.1640 0.1535 0.0887 0.0407 0.3184

Figure 4.2.9: Probability distribution of Max for three-dimensional Markov chain: Consecutive
channels for users, N = 7, λ = 3, μ = 2.5.

At the end, if the variety of users are more, we face multidimensional cases which are very com-

plicated and difficult to solve. As such, we propose a one-dimensional Markov chain approximation

to deal with the excessive complexity. Next section covers this approximation.

4.3 Summary

This chapter proposed a mathematical model for conventional method in CR networks, which se-

lects the largest spectrum hole for the load of the secondary user. In the considered CR network,

each primary user takes a random number of channels and the secondary user gets the largest avail-

able spectrum hole. The objective of the proposed model is giving the service providers an insight

75



about the load of the secondary user. The proposed mathematical model calculates the load of the

secondary user, where the main contribution is the calculation of the probability distribution of busy

channels taken by primary users. The solution is based on the multidimensional Markov chain. At

the end, the performance of the proposed model was validated by numerical and simulation results.
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5 One-Dimensional Markov Chain

Approximation

As explained in the previous chapter, if the maximum number of channels that a PU can take

increases, the complexity of the multidimensional Markov chain solution increases accordingly.

For this scenario, in this chapter, we provide an approximate estimation for the load of the SU.

We propose a one-dimensional approximation to avoid the calculation of the complicated multi-

dimensional Markov chain. The procedure significantly decreases the complexity of the solution,

however, we lose some information.

This chapter is organized as follows. Section 5.1 presents the proposed one-dimensional approx-

imation, which is followed by the numerical and simulation results in Section 5.2.

5.1 Proposed One-Dimensional Approximation

The main concern in the one-dimensional approximation is to find the departure rates from each

state. In multidimensional scenario in any state of busy channels we know exactly how many of

each type of users are available. But in one-dimensional approximation we do not know the number

of users, all we now is the number of busy channels. Therefore, we need to find out the probability

for each type of users in a given m busy channels. With this information, we can find out the

departure rates from each state, which is actually the main challenge of this section.
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To solve the problem, it is clear that by assuming the steady-state in the network, the probability

of type i users which are the users with i number of channels, can be achieved with dividing the

average number of type i users by the average number of total users. Therefore, we need to find out

the average number for each type of users in the network. The following explains the steps.

We first find the average number for each type of users in the system. To reach that, we can use

the Little’s formula, where the average number of users L = E [N] in the system is:

L = λLW (5.1.1)

and λL is the average rate of users entering the queueing system and W = E [T ] is the average

waiting time in the system [51]. Therefore, we first need the effective arrival rate (arrival rate of

users entering the system) for each type of users. In general, if λ is the arrival rate of all incoming

users and Pi shows the probability of type i users, then the arrival rate for type i users is:

λi = Pi ×λ (5.1.2)

Now, if m is the number of busy channels in a total of n channels where there are l types of users

available, the effective arrival rate for type i user, i = 1, 2, ... , l, can be calculated as follow.

λ
′
i =

n−i

∑
m=0

Pm ×P(Max ≥ i | Sm)×λi (5.1.3)

where Pm is the probability of state m, and P(Max ≥ i | Sm) is the acceptance probability for type i

user at the state of m busy channels, which can be calculated from our proposed method in Chapter

3.

When we have the effective arrival rate, with Little’s formula we can calculate the average num-

ber of users for each type of users in the system. The Little’s formula states that the average number

of customers in a steady-state system is equal to the average effective arrival rate multiplied by the

average time that a customer spends in the system [51]. Therefore, the average number for each
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type of users is:

E[Ni] = λ
′
i ×E[T ] (5.1.4)

consequently, the percentage qi for each type of users is:

qi =
E[Ni]

l
∑
j=1

E
[
Nj

] (5.1.5)

Now to calculate the departure rates from each state of busy channels, we should calculate the

average number for each type of users at each state. A random user in the system takes M channels,

where

M =
l

∑
i=1

i×qi (5.1.6)

and at each state of m busy channels, the number of users on average is m
M . Therefore, the number

of type i users at state of m busy channels is

Nm
i = qi × m

M
(5.1.7)

Now, we can calculate the departure rates from state m to state m
′
= m− i as

Dmm′ = Nm
i × 1

E [T ]
(5.1.8)

For a better understanding, we will explain the concept of the process in another way through an

example. To have the one-dimensional approximation, we need to merge all the states that have the

total of m busy channels in a single state of m busy channels. If we randomly pick up an admitted

user from the system, its type is i with the probability of qi. However, the exact number of type i

users is not clear at state of m busy channels. This number is an integer random variable which is

shown by Xm
i as follows.

We provide an example to make it clear. Assume, the users take either one, two, or three chan-
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nels, then at state of m busy channels we have,

q1 +q2 +q3 = 1

Xm
1 +2Xm

2 +3Xm
3 = m

And the joint probability mass function is,

P(Xm
1 = x1, Xm

2 = x2, Xm
3 = x3)

Now, if we want to merge all the states that have m = 5 busy channels in a single state, these are all

the possible options:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X5
1 = 5, X5

2 = 0, X5
3 = 0

X5
1 = 3, X5

2 = 1, X5
3 = 0

X5
1 = 1, X5

2 = 2, X5
3 = 0

X5
1 = 2, X5

2 = 0, X5
3 = 1

X5
1 = 0, X5

2 = 1, X5
3 = 1

The probability for each of the above possibilities can be calculated as presented in Chapter 4,

where basically, each of them is one of the states in the original multidimensional Markov chain.

For the one-dimensional approximation we need to know the departure rates. For example, for

departure from m = 5 to m = 4, only Type1-users are included and we need to know the number

of them. As shown above, all the possibilities for X5
1 are {0, 1, 2, 3, 5}. Hence, the departure rates

could be μ , 2μ , 3μ , or 5μ . Therefore, the departure rate from m = 5 to m = 4, which is shown by

D54, is:
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D54 = μP(X5
1 = 1, X5

2 = 2, X5
3 = 0)+2μP(X5

1 = 2, X5
2 = 0, X5

3 = 1)

+3μP(X5
1 = 3, X5

2 = 1, X5
3 = 0)+5μP(X5

1 = 5, X5
2 = 0, X5

3 = 0)

more specifically,

D54 = ∑x1μP(X5
1 = x1, X5

2 = x2, X5
3 = x3) = μE[X5

1 ]

In general, if m is the number of busy channels in a total of n channels where there are l types of

users available, the departure rate for type i user, i = 1, 2, ... , l, from state m to state m
′
= m− i is

Dmm′ = ∑xiμP(Xm
1 = x1, Xm

2 = x2, ... , Xm
l = xl) = μE[Xm

i ]

As a result, we do not need to find the joint probability mass function to calculate the departure rate

of type i user at state of m busy channels. We just need the expected value for the number of type i

user, which is E[Xm
i ]. To reach that, at state of m busy channels we have

E[Xm
1 ]+2E[Xm

2 ]+ ... + lE[Xm
l ] = m

If Xm is the total number of users at state of m busy channels,

Xm = Xm
1 +Xm

2 + ... +Xm
l

therefore,

E[Xm] = E[Xm
1 ]+E[Xm

2 ] ... +E[Xm
l ]

and by knowing the probability for each type of users,
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E[Xm
i ] = qi ×E[Xm]

then,

(q1 +2q2 + ... + lql)E[Xm] = m

So, if we define M = q1 +2q2 + ... + lql = ∑l
i=1 i×qi, therefore,

E[Xm] =
m
M

which means any admitted user in the system takes M channels in average. The expected number

of type i users at state of m busy channels is

E[Xm
i ] = qi ×E[Xm] = qi × m

M

We actually use the expected value instead of each random variable to make our approximation.

We basically merged all the states that have m busy channels into a single state of m busy channels.

5.2 Numerical and Simulation Results

To clarify the procedure, we provide an example where there are only two kinds of users available.

Fig. 5.2.1 is the one-dimensional approximation of the two-dimensional Markov chain presented

in Fig. 4.2.1, where users either need one or two channels.

In Fig. 5.2.1, for each type of users λ1 = λ2 = λ/2. To calculate the effective arrival rates,

it is clear that except the last state where all the channels are busy, any arriving Type1-user gets

the service in any other states. Therefore, the effective arrival rate for Type1-users, λ ′
1, can be

calculated by (5.1.3) as below.
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Figure 5.2.1: Approximation of the two-dimensional case: one-dimensional Markov chain for users
with consecutive channels.

λ
′
1 = (P0 +P1 +P2 +P3 +P4 +P5 +P6)×λ1 (5.2.1)

For Type2-users, the acceptance probability is one until the state of three busy channels, but it is

different for the other states as shown in Fig. 5.2.1. So, the effective arrival rate for Type2-users,

λ ′
2, is calculated by (5.1.3) as follow.

λ
′
2 = (P0 +P1 +P2 +P3 ×Pa +P4 ×Pb +P5 ×Pc)×λ2 (5.2.2)

If μ is the service rate for all types of users, from (5.1.4) we have:

E[N1] = λ
′
1 ×E[T ] = λ

′
1 ×

1
μ

(5.2.3)

E[N2] = λ
′
2 ×E[T ] = λ

′
2 ×

1
μ

(5.2.4)

Now, when we know the average number for each type of users, we can achieve their percentages

with (5.1.5) as follows:

q1 =
E[N1]

E[N1]+E[N2]
(5.2.5)
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q2 =
E[N2]

E[N1]+E[N2]
(5.2.6)

Hence, based on (5.1.6), a random user takes M = q1 +2q2 channels. And as an example, at state

of m = 5, the number of Type1-users and Type2-users can be calculated by (5.1.7). And finally

with (5.1.8), the departure rates from state m = 5 are:

D53 =
5q2
M μ

D54 =
5q1
M μ

(5.2.7)

where D53 is the departure rate from state m = 5 for Type2-users, which clearly goes to state m = 3.

In the same way, D54 is the departure rate from state m = 5 for Type1-users, which goes to state

m = 4.

The whole departure rates at Fig. 5.2.1 are as follows. D10 =
q1
q1

μ = μ , D21 =
2q1

q1+2q2
μ , D32 =

3q1
q1+2q2

μ , D43 = 4q1
q1+2q2

μ , D54 = 5q1
q1+2q2

μ , D65 = 6q1
q1+2q2

μ , D76 = 7q1
q1+2q2

μ . Also, D20 = 2q2
q1+2q2

μ ,

D31 =
3q2

q1+2q2
μ , D42 =

4q2
q1+2q2

μ , D53 =
5q2

q1+2q2
μ , D64 =

6q2
q1+2q2

μ , and D75 =
7q2

q1+2q2
μ .

To have the numerical results for the steady-state probabilities, we do an iterative process to

reach the convergence to have the final result. We assume uniform distribution to start the process.

The results are shown in Table 5.1 for a network of N = 7, λ = 2, and μ = 2.5. Moreover, Fig.

5.2.2 compares the results of the steady-state probabilities between two-dimensional Markov chain

and its one-dimensional approximation.

In addition, the results for the probability distribution of Max with the approximate approach in

the case of N = 7, λ = 2, and μ = 2.5 are shown in Table 5.2, which are compared with the results

of two-dimensional Markov chain in Fig. 5.2.3.

From Table 5.2, the expected value of maximum is 5.0487 which is very similar to the numerical

result of the related two-dimensional Markov chain presented in Chapter 4, which was 5.0730.

As an another example, for a network of N = 7, λ = 3, μ = 2.5, the results for the approxi-
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Table 5.1: Approximate steady-state probabilities for two-dimensional Markov chain: Consecutive
channels for users, N = 7, λ = 2, μ = 2.5.

Iteration P0 P1 P2 P3 P4 P5 P6 P7

1 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

2 0.4245 0.2269 0.1920 0.0909 0.0441 0.0163 0.0046 0.0007

3 0.4315 0.2183 0.1923 0.0905 0.0450 0.0168 0.0049 0.0008

4 0.4314 0.2184 0.1923 0.0905 0.0450 0.0168 0.0049 0.0008

5 0.4314 0.2184 0.1923 0.0905 0.0450 0.0168 0.0049 0.0008

Figure 5.2.2: Comparison between steady-state probabilities: N = 7, λ = 2, μ = 2.5.

Table 5.2: Approximate probability distribution of Max for two-dimensional Markov chain: Con-
secutive channels for users, N = 7, λ = 2, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Approximation 0.0008 0.0323 0.1045 0.1510 0.1277 0.0899 0.0624 0.4314

mate steady-state probabilities are shown in Table 5.3. Also, Fig. 5.2.4 compares the results of the

steady-state probabilities between two-dimensional Markov chain and its one-dimensional approx-

imation.

As explained before, by knowing the steady-state probabilities, we can calculate the probability

distribution for maximum number of consecutive idle channels. The results for the probability
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Figure 5.2.3: Comparison between probability distributions of Max: N = 7, λ = 2, μ = 2.5.

Table 5.3: Approximate steady-state probabilities for two-dimensional Markov chain: Consecutive
channels for users, N = 7, λ = 3, μ = 2.5.

Iteration P0 P1 P2 P3 P4 P5 P6 P7

1 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

2 0.2865 0.2156 0.2185 0.1385 0.0835 0.0401 0.0142 0.0031

3 0.2927 0.2098 0.2175 0.1372 0.0839 0.0407 0.0148 0.0034

4 0.2927 0.2098 0.2175 0.1372 0.0839 0.0407 0.0148 0.0034

distribution of P(Max = x) are shown in Table 5.4 and are compared with the results of the related

two-dimensional Markov chain in Fig. 5.2.5.

Table 5.4: Approximate probability distribution of Max for two-dimensional Markov chain: Con-
secutive channels for users, N = 7, λ = 3, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Approximation 0.0034 0.0718 0.1612 0.1822 0.1378 0.0910 0.0600 0.2927

At the end, the load of the SU or the expected value of Max for one-dimensional approximation

is 4.3556. Again, it can be seen that this result is very similar to the numerical result of the related

two-dimensional Markov chain presented in Chapter 4, which was 4.3741.
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Figure 5.2.4: Comparison between steady-state probabilities: N = 7, λ = 3, μ = 2.5.

Figure 5.2.5: Comparison between probability distributions of Max: N = 7, λ = 3, μ = 2.5.

Moreover, to show more complicated results, Fig. 5.2.6 depicts the approximation process for

three-dimensional case, as previously discussed in Fig. 4.2.6.

As explained earlier, M = q1 +2q2 +3q3 and for example, the departure rates from state m = 5
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Figure 5.2.6: Approximation of the three-dimensional case: one-dimensional Markov chain for
users with consecutive channels.

busy channels can be calculated as:

D52 =
5q3
M μ

D53 =
5q2
M μ

D54 =
5q1
M μ

(5.2.8)

where D52 is for Type3-users, D53 is for Type2-users, and D54 is for Type1-users. The whole de-

parture rates at Fig. 5.2.6 are as follows: D10 = q1
q1

μ = μ , D21 = 2q1
q1+2q2

μ , D32 = 3q1
q1+2q2+3q3

μ ,

D43 = 4q1
q1+2q2+3q3

μ , D54 = 5q1
q1+2q2+3q3

μ , D65 = 6q1
q1+2q2+3q3

μ , D76 = 7q1
q1+2q2+3q3

μ . Also, D20 =

2q2
q1+2q2

μ , D31 =
3q2

q1+2q2+3q3
μ , D42 =

4q2
q1+2q2+3q3

μ , D53 =
5q2

q1+2q2+3q3
μ , D64 =

6q2
q1+2q2+3q3

μ , D75 =

7q2
q1+2q2+3q3

μ . Finally, D30 =
3q3

q1+2q2+3q3
μ , D41 =

4q3
q1+2q2+3q3

μ , D52 =
5q3

q1+2q2+3q3
μ , D63 =

6q3
q1+2q2+3q3

μ ,

and D74 =
7q3

q1+2q2+3q3
μ .

To have the numerical results for the steady-state probabilities, as explained earlier, we do an

iterative process to reach the final result. We start by assuming uniform distribution as the initial

probability distribution. The results are shown in Table 5.5 for a network of N = 7, λ = 2, and

μ = 2.5.
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Table 5.5: Approximate steady-state probabilities for three-dimensional Markov chain: Consecu-
tive channels for users, N = 7, λ = 2, μ = 2.5.

Iteration P0 P1 P2 P3 P4 P5 P6 P7

1 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

2 0.4118 0.1898 0.1526 0.1319 0.0668 0.0338 0.0113 0.0021

3 0.4224 0.1812 0.1472 0.1329 0.0668 0.0350 0.0122 0.0023

4 0.4223 0.1813 0.1472 0.1329 0.0668 0.0350 0.0122 0.0023

5 0.4223 0.1813 0.1472 0.1329 0.0668 0.0350 0.0122 0.0023

Fig. 5.2.7 compares the results of the steady-state probabilities between three-dimensional

Markov chain and its one-dimensional approximation.

Figure 5.2.7: Comparison between steady-state probabilities: N = 7, λ = 2, μ = 2.5.

Moreover, the results for the probability distribution of Max with the approximate approach in

the case of N = 7, λ = 2, and μ = 2.5 are shown in Table 5.6, which are compared with the results

of the related three-dimensional Markov chain in Fig. 5.2.8.

From Table 5.6, the expected value of maximum is 4.8345. It can be seen that this result is very

similar to the numerical result of the related three-dimensional Markov chain presented in Chapter

4, which was 4.8981.
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Table 5.6: Approximate probability distribution of Max for two-dimensional Markov chain: Con-
secutive channels for users, N = 7, λ = 2, μ = 2.5.

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Approximation 0.0023 0.0601 0.1375 0.1441 0.1090 0.0728 0.0518 0.4223

Figure 5.2.8: Comparison between probability distributions of Max: N = 7, λ = 2, μ = 2.5.

Now, for a higher traffic situation, the results for the steady-state probabilities with the approxi-

mation approach in the case of N = 7, λ = 3, and μ = 2.5 are shown in Table 5.7. In addition, Fig.

5.2.9 compares the results of the steady-state probabilities between one-dimensional approximation

and its related three-dimensional Markov chain.

Table 5.7: Approximate steady-state probabilities for three-dimensional Markov chain: Consecu-
tive channels for users, N = 7, λ = 3, μ = 2.5.

Iteration P0 P1 P2 P3 P4 P5 P6 P7

1 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

2 0.2850 0.1805 0.1684 0.1649 0.1065 0.0633 0.0255 0.0059

3 0.2930 0.1754 0.1644 0.1643 0.1057 0.0642 0.0266 0.0065

4 0.2930 0.1754 0.1644 0.1643 0.1057 0.0642 0.0266 0.0065

Moreover, the results for the probability distribution of Max with the approximate approach in
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Figure 5.2.9: Comparison between steady-state probabilities: N = 7, λ = 3, μ = 2.5.

the case of N = 7, λ = 3, and μ = 2.5 are shown in Table 5.8, which are compared with the results

of the related three-dimensional Markov chain.

Table 5.8: Approximate maximum-size probabilities, N = 7, λ = 3, μ = 2.5, Maximum batch-size
= 3

P(Max = x) P(Max = 0) P(Max = 1) P(Max = 2) P(Max = 3) P(Max = 4) P(Max = 5) P(Max = 6) P(Max = 7)

Approximation 0.0065 0.1073 0.1867 0.1669 0.1158 0.0736 0.0501 0.2930

From Table 5.8, the expected value of maximum is 4.1645. It can be seen that this result is very

similar to the numerical result of the related three-dimensional Markov chain presented in Chapter

4, which was 4.2180.

At the end, it is very complicated to have the results from the multidimensional Markov chain in

higher number of channels and multiple types of users. But we still can use the one-dimensional

approximation to estimate the load of the SU.
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Figure 5.2.10: Comparison between probability distributions of Max: N = 7, λ = 2, μ = 2.5.

5.3 Summary

This chapter proposed an approximate one-dimensional Markov chain to facilitate the load estima-

tion of the secondary user in a CR network of multichannel PUs. In one-dimensional approxima-

tion, we do not know exactly how many of each type of users are available in any state of busy

channels, all we now is the number of busy channels. Although we lost some information, the pro-

posed procedure avoids the precise calculation of the complicated multidimensional Markov chain.

The performance of the proposed model was validated by numerical and simulation results.
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6 Conclusions and Future Work

6.1 Conclusions

Providing extra spectrum resources to meet the endless demand in wireless communications is a

very challenging problem nowadays, specially while some of the available resources are underuti-

lized. The bandwidth scarcity and the inefficient usage of spectrum resources provide motivation

to look for some opportunistic spectrum allocation, which leads to proposing the cognitive radio

(CR) technology, as an emerging solution. Allowing unlicensed users to cognitively operate in a

licensed spectrum is a promising approach to improve the utilization of the spectrum resources in

wireless networks.

In this thesis, we have done a major analysis in the CR networks with dynamic spectrum alloca-

tion, that has not been undertaken before or is not available in the open literature. We believe that

the results presented here significantly advances the state-of-the-art in the CR network field.

In Chapter 3, we investigated the spectrum allocation for secondary users in a network of single-

channel primary users. In the considered network, each primary user takes only one channel and

secondary user gets the largest available spectrum hole. The contribution was the modeling and

performance analysis of the existing conventional method, which selects the maximum consecutive

idle channels for spectrum allocation. The objective of this part was to give the service provider

an insight about the performance of secondary users for different numbers of total channels in

primary networks. The main contribution was the calculation of the conditional probability of
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having maximum x consecutive idle channels under the condition of n total and m busy channels.

If we know the probability distribution of busy channels taken by primary users, this conditional

probability provides the number of consecutive idle channels the secondary user can have. In other

words, the proposed mathematical model calculates the probability distribution for the number of

channels in the largest available spectrum hole. The theoretical model works for any given number

of total channels in the licensed frequency band. Finally, at the end of Chapter 3, the performance

of the proposed model was validated by numerical and simulation results.

In Chapter 4, we studied the spectrum allocation for a secondary user in the network of multi-

channel primary users. Each primary user in the considered network takes a random number of

channels, while the secondary user gets the largest available spectrum hole. For the performance

analysis, we needed to find the probability distribution of busy channels taken by primary users,

before determination of the length of the largest available spectrum hole under the condition of

primary users taking different channels. The calculation of the conditional probability of having

maximum x consecutive idle channels under the condition of n total and m busy channels in Chapter

3, is still approximately valid for the scenario of Chapter 4, especially in low-traffic networks. As

such, the proposed mathematical model calculated the load of the secondary user, where the main

contribution was the derivation of the probability distribution of busy channels taken by primary

users. The solution scenario was based on the multidimensional Markov chain, with numerical and

simulation results verifying the accuracy of the proposed model.

In Chapter 5, an approximate one-dimensional Markov chain was proposed to avoid the precise

calculation of the complicated multidimensional Markov chain, which is to facilitate the perfor-

mance estimation of the secondary user in cognitive radio networks. Although we lost some infor-

mation, the procedure has absolutely decreased the complexity of the solution. The main concern

in Chapter 5 was to find the departure rates from each state of busy channels, because in multidi-

mensional scenario, we know exactly how many of each type of users are available in any state of

busy channels. But in one-dimensional approximation, all we now is the number of busy channels,
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and we do not know the number of users. Therefore, we calculated the probability for each type of

users in a given m busy channels as the main challenge, which helped us to find the departure rates

from each state. At the end, the performance of the proposed model was validated by numerical

and simulation results.

6.2 Future Work

In this thesis, we have provided two algorithms for the case of multiple secondary users in the CR

network of single-channel primary users. It is possible to have another algorithm which is more

accurate but complicated. The total number of channels can be divided in three parts, busy with

PUs, busy with SUs, and idle ones. The main challenge is to find the probability distribution of

SUs, where the probability distribution of PUs is known.

We can also extend our investigation to the case of multiple secondary users in a CR network

of multichannel primary users. The procedure might be similar to the algorithms that we have

provided for the case of multiple secondary users in a CR network of single-channel primary users.

In the case of multichannel primary users, we have studied two separate cases, consecutive and

non-consecutive channels. As another work we can investigate the case when primary users are

allowed to have both options together. A practical assumption is that primary users always get

the consecutive channels unless they have to take non-consecutive channels to avoid having no

services.

Furthermore, in the proposed one-dimensional Markov chain approximation, we have calculated

the percentage for each type of users in the whole system. To make the one-dimensional approxi-

mation more accurate, the percentage for each type of users can be calculated for each specific state

of busy channels.
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