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ABSTRACT Denoising images subjected to Gaussian and Poisson noise has attracted attention inmany areas
of image processing. This paper introduces an image denoising framework using higher order fractional
overlapping group sparsity prior to sparser image representation constraint. The proposed prior has a
capability of avoiding staircase effects in both edges and oscillatory patterns (textures). We adopt the
alternating direction method of multipliers for optimizing the proposed objective function by converting it
into a constrained optimization problem using variable splitting approach. Finally, we conduct experiments
on various degraded images and compare our results with those of several state-of-the-art methods. The
numerical results show that the proposed fractional order image denoising framework improves the peak
signal to noise ratio of an image by preserving the textures and eliminating the staircases effects. This leads to
visually pleasant restored images which exhibit a higher value of Structural SIMilarity score when compared
to that of other methods.

INDEX TERMS Image denoising, fractional-order, Gaussian and Poisson noise, overlapping group sparsity,
alternating direction method of multipliers.

I. INTRODUCTION
Digital images play an important role in our lives as they are
used in a variety of applications such as television, astronomy
and traffic monitoring systems. The techniques involved in
acquiring these images introduce various types of noise and
artifacts. Preserving the details of an image and removing
unwanted random noise as much as possible is the goal
of image denoising. Moreover, the noisy image produces
undesirable visual quality and reduces the visibility of low
contrast images. Hence the task of image denoising in digital
applications is to enhance and recover finer details that are
present in the data.

Images are often degraded due to Gaussian and Poisson
noise during the process of acquisition or transmission. As a
result, it is one of the most important issues which needs to
be resolved for its proper use in the field of computer vision
and graphics community. The degradation model in the case
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of Gaussian noise is defined by the following linear space
invariant system:

g = Hu+ n (1)

while in the case of Poisson noise, the model can be statisti-
cally modelled as

g = Poiss(Hu) (2)

where g is the obtained degraded image, H denotes the blur
kernel commonly known as the point spread function (PSF),
u is the desired original image, n is the zero mean Gaussian
white noise and Poiss(v) is an independent and identically
distributed (iid) Poisson random vector with the Poisson
parameter v.
The aim of image restoration is to recover u from g and
is often known to be a classic ill-posed inverse problem,
which is highly sensitive to noise degradation even if the blur
kernel H is known exactly. In order to solve this ill-posed
nature of the problem, one resorts to solving the following
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minimization objective

min
u
{E(u, g)+ λR(u)} (3)

where E is the data fidelity term that measures how close
the estimated u is to the observation g, while R is the reg-
ularization prior and λ is the regularization parameter that
balances the two terms. Various priors have been devel-
oped in the literature to regularize the ill-posed problem
in (3), such as the zero-mean mixture-of-Gaussian model [1],
sparse approximation [2], hyper-Laplacian [3] and normal-
ized sparisity measure [4]. There are several methods for
denoising the image, but our focus in this paper is on image
denoising framework that involves total variation (TV) and
its variants. The Rudin-Osher-Fatemi (ROF) model [5] is
one of the standard ways of denoising the images and pro-
vides a good trade-off between edge preservation and noise
removal. However, this method tends to produce staircase
effects at the sharp edges of an image. In order to alle-
viate this issue, several solutions have been proposed in
the literature. One of the solutions is to replace the tra-
ditional total variation (TV) by a higher-order TV norm
that results in a piecewise linear solution which better fits
the smooth intensity changes. Chan et al. [6] proposed an
improved higher-order TV model by adding a fourth order
term to Euler Lagrange (EL) equations for the TV model.
Lysaker and Tai [7] proposed a method of combining fourth
order partial differential equation (PDE) with TV filter. The
combination helps to preserve the edges and avoid stair-
case effects created in smooth regions. Papafitsoros and
Schönlieb [8] proposed a higher order extension of ROF func-
tional by adding a non-smooth second order regularizer, and
employed split Bregman method to solve the corresponding
denoising framework. Noise removal using a fourth order
partial differential equation with its application to magnetic
resonance images is proposed in [9]. The use of nonlocal TV
model proves to be an effective image prior for overcoming
the staircase effects in noisy images [10].

The methods proposed for additive Gaussian noise are
not directly applicable to Poisson noise due to its image
dependent nature as given in (2). Moreover, the problem of
denoising images degraded due to Poisson noise is gain-
ing attention in recent years. Liu et al. [11] proposed a
higher-order TV norm along with traditional TV to balance
the edge and smoothness regions of the image degraded
due to Poisson noise. Zhou and Li [12] proposed the use of
fourth order partial differential equations for Poisson noise
removal. A new regularizer prior known as the total gen-
eralized variation (TGV) is proposed by Bredies et al. [13].
The proposed functional regularizes on different regular-
ity levels and does not produce any staircasing effect.
An iterative reweighed TGV is proposed later for effec-
tive Poisson noise removal [14]. Shi et al. [15] proposed a
Poisson based image deblurring using non-local total vari-
ational term. Here, the concept of framelet regularizer is
proposed to enhance the sparsity of the images. The overall
optimization problem is solved using split Bregman method.

Landi and Piccolomini [16] proposed an iterative method
for non-negatively constrained TV denoising for medical
images corrupted by Poisson noise and the effectiveness of
the method is evaluated on real and synthetic datasets. A pri-
mal dual method for deblurring the images degraded due to
Poisson noise is formulated having demonstrated the robust
convergence properties [17].

Recently, fractional order total variation models have been
proposed in the area of image denoising [18]–[20], image
inpainting [21] and super-resolution [22]. Moreover, the use
of fractional order partial differential equations applied to
the problem of image denoising is also gaining popularity.
Bai and Feng [23] solved the problem of image denoising
framework using nonlinear anisotropic fractional diffusion
equation which is based on Euler-Lagrange formulation.
Although total variation (TV)-based methods are effective in
preserving edges and details in an image, they tend to pro-
duce staircase effects. To solve this problem, Ding et al. [24]
proposed a new convex model based on TV with overalpping
group sparisty for restoring images degraded due to blur but
Cauchy noise. A new convex model has been proposed by
Zhao et al. [25] for restoring blurred images degraded bymul-
tiplicative noise. The task of image denoising has widespread
application in the field of medical imaging also [26]–[30]

Another way of denoising is first to decompose an image
into structural (edges) and texture (oscillatory) parts and
then to denoise each part. The structural part is represented
by a piecewise smooth function, while the texture com-
ponents by an oscillatory function. Such a decomposition
has been adopted in various variational models and wavelet
analysis [31]–[33]. Chen and Cheng [34] proposed a novel
hybrid variational model for deconvolving Poissonian image
by representing images as a composition of a structural
part and a detailed part. The structural part is characterized
using total variation, while the detailed part is characterized
using sparse representation over the wavelet basis. A spa-
tially adapted fractional order TV has been introduced for
different texture regions in [35]. The results are promising,
but finding the texture map is not an easy task. Providing
regularization with different orders make use of many neigh-
borhood cells that can result in undesired artifacts, especially
near the boundaries. Fractional order derivatives are also
suitable for denoising texture present in an image [36], [37].
A linear fractional integro-differential equation to control
the diffusion effect in image enhancement is proposed by
Cuesta et al. [38]. A novel fractional-order differentiation
model for low dose medical images is proposed in [39]. This
model is basically a weighted combination of fractional-order
TV model and fractional-order Perona-Malik (PM) model.
This is done in order to take advantage of TV, PM and
fractional-order models.

Liu et al. [40] proposed an effective regularization prior
comprising of overlapping group sparsity for image restora-
tion. This method of imposing the prior proved to be an
effective way of reducing the staircase effects in the struc-
tural (edges) component of an image. However, it is not
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effective in restoring the texture components present in an
image due the presence of staircase effects. It has been
observed that fractional order derivatives are effective in
restoring the texture components of an image [20]. In our
present paper, we have considered an extension of Liu’s
work by introducing higher order fractional based overlap-
ping group sparsity regularizers (HF-OLGS) to overcome this
deficiency of Liu’s method. Here, the denoising framework is
solved using well known optimization framework, the alter-
nating direction method of multipliers (ADMM) [41].

To summarize, the main contributions of this work are as
follows: (1) Image denoising model dealing with Gaussian
and Poisson noise is proposed using higher order fractional
based overlapping group sparsity (HF-OLGS) prior (2) The
proposed framework is capable of simultaneously preserving
the sharpness of the image edges and reducing the undesirable
staircase effects in the oscillating patterns that correspond to
the texture area in an image.

The rest of this paper is organized as follows. In Section II,
a brief discussion of the preliminaries which includes over-
lapping group sparsity, fractional-order and ADMM is dis-
cussed. Sections III and IV discuss the proposed model and
the image denoising framework respectively. Experimental
results are given in Section V. Finally, conclusions are given
in Section VI.

II. PRELIMINARIES
This section discusses some of the mathematical prelim-
inaries needed to understand the motivation for the pro-
posed image denoising framework. It starts with a discussion
of overlapping group sparsity followed by the concepts of
fractional calculus and its applications in image processing.
Lastly, a brief summary of the famous optimization frame-
work known as alternating direction method of multipli-
ers (ADMM) is discussed which will be used in our proposed
work.

A. OVERLAPPING GROUP SPARSITY (OLGS)
For one dimensional signal processing, the concept of over-
lapping group sparsity (OLGS) was first introduced in [42]
for the case of signal denoising. The concept of overlapping
group structure as signal prior was introduced in alleviating
the staircase effects when compared to standard total varia-
tion (TV) denoising. In [40], a K -point group of the vector
l ∈ Rn has been defined as

li,K = [l(i), l(i+ 1), . . . , l(i+ K − 1)] ∈ RK (4)

It can be observed that li,K can be seen as a block of K
contiguous sample of l starting at index i. Group sparsity
regularizer [43], [44] in one dimensional case is defined as

η(l) =
n∑
i=1

∥∥li,K∥∥2 (5)

where the group size is denoted by K . For two-dimensional
case, a K × K point group of the image u of size N × M is

defined as

ũi,j,K =


ui−m1,j−m1 ui−m1,j−m1+1 . . . ui−m1,j+m2

ui−m1+1,j−m1 ui−m1+1,j−m1+1 . . . ui−m1+1,j+m2
...

...
. . .

...

ui+m2,j−m1 ui+m2,j−m1+1 . . . ui+m2,j+m2


(6)

with m1 =

⌊
K−1
2

⌋
and m2 =

⌊K
2

⌋
. Here, bxc denotes the

greatest integer not greater than x. The overlapping group
sparsity (OLGS) functional for a two-dimensional array is
defined as

φ(u) =
n∑

i,j=1

∥∥ui,j,K (:)∥∥2 (7)

where ui,K (:) is a vector obtained by stacking the columns
of matrix ũi,K (:). The regularization term φ(u) [40] based on
the image gradients in vertical and horizontal directions is
given as

φ(u) = φ(Dxu)+ φ(Dyu) (8)

where D is the discrete gradient operator defined as

(Dx(u))i,j =

{
ui+1,j − ui,j, if i < M
u1,j − uM ,j, if i = M

(Dy(u))i,j =

{
ui,j+1 − ui,j, if j < N
ui,1 − ui,N , if j = N

B. FRACTIONAL ORDER PROCESSING
As the generalization of the integer-order derivative, this
paper utilizes the concept of fractional order derivative for
the purpose of image denoising. The fractional order deriva-
tives to be used in the regularizer of the proposed denoising
framework ( Sec. IV ) are defined as

Dαx u(i, j) ≈
K∑
k=0

9α(k)u(i− k, j),

i = 1, . . . ,M j = 1, . . . ,N

Dαy u(i, j) ≈
K∑
k=0

9α(k)u(i, j− k),

i = 1, . . . ,M j = 1, . . . ,N (9)

where 9α(k) = (−1)k 0(α + 1)/[k! 0(α − k + 1)]. Further
details regarding the properties of the fractional-order total
variation can be found in [41] and [46]. Here, Dαx and Dαy
are the discrete fractional-order derivatives of an image u of
size M × N at (i, j) in the vertical and horizontal directions
respectively. The complex conjugate operation corresponding
to (9) is defined as

(Dαx )
∗u(i, j) ≈

K∑
k=0

9α(k)u(i+ k, j),

i = 1, . . . ,M j = 1, . . . ,N
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(Dαy )
∗u(i, j) ≈

K∑
k=0

9α(k)u(i, j+ k),

i = 1, . . . ,M j = 1, . . . ,N (10)

Here ∗ denotes the complex conjugate operation and
(Dαx )

∗,(Dαy )
∗ are the complex conjugate operators corre-

sponding to (Dαx ) and (Dαy ) respectively. The parameter K
given in (9)-(10) is a sufficiently large integer. Further,
the magnitude of φα(k) tends to become zero very fast as
k →∞. Hence, in this manuscript the value of K is taken
as 20 [19], [35], [45].

C. ADMM
A very powerful algorithm that is very well suited for con-
vex optimization and finds extensive role in the area of
applied statistics and machine learning is known as alternat-
ing direction method of multipliers (ADMM) [41]. It is an
efficient and effective technique for solving multi-parameter
constrained optimization problems, hence it will be used
for solving the proposed optimization framework discussed
in Sec. IV. The algorithm solves problems in the form as
follows:

min
x,y

f (x)+ e(y),

s.t. Ax + By = b (11)

where f and e are convex functions. Further, A and B are the
two operators. With the Lagrangian multiplier λ to the linear
constraint stated in problem (11), the augmented Lagrangian
function [46] for the problem (11) is defined as L(x, y, λ) =
f (x)+ e(y)+λT (Ax+By−b)+ σ

2 ‖Ax + By− b‖
2
2, where σ

is the penalty parameter for the linear constraint. According
to the concept of ADMM, the optimal solution is obtained
by finding the saddle point of L(x, y, λ) using the alternating
minimization scheme, such as keeping x and λ constant when
minimizing L with respect to y. We obtain the following
ADMM iterative minimization algorithm

x i+1 = argmin
x

L(x, yi, λi)

yi+1 = argmin
y

L(x i+1, y, λi)

λi+1 = λi − σ (Ax i+1 + Byi+1 − b)
i = i+ 1;

(12)

III. PROPOSED HIGHER ORDER FRACTIONAL
OVERLAPPING GROUP SPARISTY (HF-OLGS)
REGULARIZER
In this paper, the proposed regularizer R termed as (HF-
OLGS) used for the image denoising framework is chosen
to be the sum of the fractional based overlapping group
sparsity (F-OLGS) and the second order version of the F-
OLGS, weighted using two positive parameters β1 and β2
respectively, i.e.,

Rβ1,β2,α(u) = β1
[
φ(Dαx u)+ φ(D

α
y u)
]

+β2

[
φ(Dαxxu)+φ(D

α
yyu)+2φ(D

α
xyu)

]
(13)

Here, Dαx , Dαy , Dαxx , Dαyy and Dαxy the fractional operators
discussed in Section II-B and φ(.) is the OLGS operator
discussed in Section II-A.

To evaluate the performance of the regularizer proposed
in (13), we consider its 1D version as

Rβ1,β2,α(u) = β1
[
φ(Dαx u)

]
+ β2

[
φ(Dαxxu)

]
(14)

The motivation of incorporating the second order term in
the F-OLGS regularizer in (14) is to simultaneously preserve
the sharpness of the image edges and further reduce the
undesirable staircase effects in the oscillating patterns which
correspond to the texture area in the image. We now consider
two test signals to prove the effectiveness of the regularizer
in (14). The first signal u(n) is selected in such a way that it
represents a combination of the edge and texture (Edges +
Texture) profiles, as shown in Fig.1(a). The corresponding
noisy observation g(n) is plotted in Fig.1(b). The restored
signals û(n) obtained using TV, OLGS, first and second order
derivatives (H-OLGS) and the proposed HF-OLGS regu-
larizers, are shown in Figs.1(c),(d),(e) and (f), respectively.
It can be observed from Fig.1(c) that the conventional TV
regularizer creates staircase artifacts in both the edge and
texture profiles. However, the OLGS regularizer effectively
reduces the staircase effects in the edge profile region, but
its performance in the corresponding texture profile region
still contains staircase effects as seen from Fig.1(d). This
staircase phenomenon found in texture region is reduced
using H-OLGS regularizer as seen from Fig.1(e), but it results
in tapering off of the peaks of the signal in the texture part.
It can be observed from Fig. 1(f) that by using the proposed
regularizer, both the edge and texture profiles are restored
effectively with less staircase effects compared to that using
other regularizers. Also, we do not observe any tapering phe-
nomenon using our proposed regularizer. The RMSE values
for the corresponding restored signals shown in Figs.1(c)-(f)
are 0.2868, 0.2644, 0.2412 and 0.2354, respectively, indi-
cating the lowest RMSE value for the proposed HF-OLGS
regularizer. Next, a second test signal, a combination of two
different texture profiles (Texture 1 + Texture 2), shown
in Fig. 2(a) is now considered. It can be observed that for these
two different texture profiles, both TV and OLGS exhibit
staircase effects, as seen from Fig. 2(c) and (d). But, the stair-
case effects in OLGS are slightly less than that from using TV,
resulting in RMSE values of 0.4223 and 0.3567, respectively.
With the use of H-OLGS regularizer, the staircase effect is
reduced in the two texture profiles, as seen from Fig. 2(e).
However, the reconstruction at the lower part of Texture 2
signal suffers from some noisy component being present.
But, with the use of the proposed HF-OLGS regularizer,
the staircase effects are very minimal compared to that using
TV, OLGS or H-OLGS regularizer, as seen from Fig. 2(f).
Further, the reconstruction quality of the restored signal is
good, as seen from the corresponding RMSE value for the
restored signal, which is 0.2725. Thus, the effectiveness of
the proposed regularizer in terms of its ability in reducing
the staircase effects for both the edge and texture regions is
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FIGURE 1. Restoration of test signal (Edge + Texture) using TV, OLGS, H-OLGS and HF-OLGS regularizers.
(a) Original signal. (b) Noisy signal. (c) TV. (d) OLGS. (e) H-OLGS. (f) HF-OLGS.

demonstrated in this section using one dimensional signals.
In the next section, we discuss the proposed image denoising
framework using the 2D version of the regularizer given
in (14).

IV. PROPOSED IMAGE DENOISING FRAMEWORK
Total variation is one of the standard techniques for removing
the noise effectively from an image by suppressing the ringing
effects and preserving the sharp edges. However, it still has

a shortcoming of creating staircase effects which are not
desirable. In order to take advantage of TV regularization
and relieve from staircase effects, we propose a higher order
fractional overlapping group sparsity (Sec. III)-based image
denoising framework defined as

min
u

{
Z = E(u, g)+ β1

[
φ(Dαx u)+ φ(Dαy u)

]
+β2

[
φ(Dαxxu)+ φ(Dαyyu)+ 2φ(Dαxyu)

]}
(15)
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FIGURE 2. Restoration of test signal (Texture1 + Texture2) using TV, OLGS, H-OLGS and HF-OLGS regularizers.
(a) Original signal. (b) Noisy signal. (c) TV. (d) OLGS. (e) H-OLGS. (f) HF-OLGS.

where the data fidelity term is given as

E(u, g) =

{
||Hu− g||22, Gaussian.
Hu− g log(Hu), Poisson.

(16)

This framework is formulated to evaluate the restoration
quality of the images degraded due to Gaussian and Pois-
son noise using the proposed regularizer. The alternating
direction method of multipliers (ADMM) method having
the capability of rapidly obtaining the stable convergence
is used in the proposed optimization framework. With the

introduction of new auxiliary variables v1 = [v1:x v1:y]T

and v2 = [v2:xx v2:yy v2:xy]T , the minimization problem
stated in (15) can be formulated as an equivalent constrained
minimization problem as

min
u,v1,v2

{
Z = E(u, g)+ β1

[
φ(v1:x)+ φ(v1:y)

]
+β2

[
φ(v2:xx)+ φ(v2:yy)+ 2φ(v2:xy)

]}
(17)

such that v1:x = Dαx u, v1:y = Dαy u, v2:xx = Dαxxu, v2:yy = Dαyyu
and v2:xy = Dαxyu. The augmented Lagrangian function cor-
responding to the minimization problem (17) can be written
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as

Lγ1,γ2 (u, v1, v2)

=

{
E(u, g)+ β1

[
φ(v1:x)+ φ(v1:y)

]
+β2

[
φ(v2:xx)+ φ(v2:yy)+ 2φ(v2:xy)

]
+
γ1

2

[∥∥∥∥Dαx u− v1:x + p1:x
γ1

∥∥∥∥2
2
+

∥∥∥∥Dαy u− v1:y + p1:y
γ1

∥∥∥∥2
2

]

+
γ2

2

[ ∥∥∥∥Dαxxu−v2:xx+ p2:xxγ2
∥∥∥∥2
2
+

∥∥∥∥Dαyyu− v2:yy+ p2:yyγ2
∥∥∥∥2
2

+2

∥∥∥∥Dαxyu− v2:xy + p2:xy
γ2

∥∥∥∥2
2

]}
(18)

where β1, β2 > 0 and p1 = [p1:x p1:y]T and p2 =
[p2:xx p2:yy p2:xy]T are the Lagrangian multipliers.

According to ADMM (Sec. II-C), we need to solve the
subproblems involved with variables u, v1 and v2 present
in the Lagrangian defined in (18) one by one. We now
investigate the first sub-problem involving the variable u.
This sub-problem corresponds to the following optimization
problem:

min
u

{
E(u, g)+

γ1

2

[ ∥∥∥∥Dαx u− v1:x + p1:x
γ1

∥∥∥∥2
2

+

∥∥∥∥Dαy u− v1:y + p1:y
γ1

∥∥∥∥2
2

]
+
γ2

2

[ ∥∥∥∥Dαxxu− v2:xx + p2:xx
γ2

∥∥∥∥2
2

+

∥∥∥∥Dαyyu− v2:yy + p2:yy
γ2

∥∥∥∥2
2

+2

∥∥∥∥Dαxyu− v2:xy + p2:xy
γ2

∥∥∥∥2
2

]}
(19)

With the image degraded due to Gaussian noise, the data
fidelity term in (19) is given asE(u, g) = ||Hu−g||22, resulting
in the following optimization problem:

min
u

{
‖Hu− g‖22 +

γ1

2

[ ∥∥∥∥Dαx u− v1:x + p1:x
γ1

∥∥∥∥2
2

+

∥∥∥∥Dαy u−v1:y+ p1:yγ1
∥∥∥∥2
2

]
+
γ2

2

[ ∥∥∥∥Dαxxu− v2:xx+ p2:xxγ2
∥∥∥∥2
2

+

∥∥∥∥Dαyyu−v2:yy+ p2:yyγ2
∥∥∥∥2
2
+2

∥∥∥∥Dαxyu−v2:xy+ p2:xyγ2
∥∥∥∥2
2

]}
(20)

The minimization of sub-problem stated in (20) with respect
to u is the standard least square problem which is equivalent
to the (21), as shown at the bottom of this page.

Here, i is the iteration variable and the fast Fourier trans-
form and its inverse is denoted by F and F−1 respec-
tively. It should be noted that the operators in (21) i.e. H ,
Dαx ,D

α
y ,D

α
xx,,D

α
yy and Dαxy are highly structured matrices.

However, their exact structure depends on the boundary con-
ditions imposed on the image under consideration. In this
work, we have adopted the periodic boundary conditions that
enable these operators to have block circulant with circu-
lant blocks (BCCB) structure. This helps in computing these
BCCB matrices using fast Fourier transforms.

Next, if the image is degraded due to Poisson noise, the data
fidelity term in (19) is given as E(u, g) = (Hu− g log(Hu))
resulting in the following optimization problem:

min
u

{
(Hu− g log(Hu))+

γ1

2

[ ∥∥∥∥Dαx u− v1:x + p1:x
γ1

∥∥∥∥2
2

+

∥∥∥∥Dαy u−v1:y+ p1:yγ1
∥∥∥∥2
2

]
+
γ2

2

[ ∥∥∥∥Dαxxu−v2:xx+ p2:xxγ2
∥∥∥∥2
2

+

∥∥∥∥Dαyyu−v2:yy+ p2:yyγ2
∥∥∥∥2
2
+2

∥∥∥∥Dαxyu−v2:xy+ p2:xyγ2
∥∥∥∥2
2

]}
(22)

With the introduction of the auxiliary variable w = Hu,
the optimization problem stated in (22) can be reformulated
as

min
u,w

{
(w−f logw)+σ ‖Hu−w+b1‖22

+
γ1

2

[ ∥∥∥∥Dαx u−v1:x+ p1:xγ1
∥∥∥∥2
2
+

∥∥∥∥Dαy u−v1:y+ p1:yγ1
∥∥∥∥2
2

]
+
γ2

2

[ ∥∥∥∥Dαxxu−v2:xx+ p2:xxγ2
∥∥∥∥2
2
+

∥∥∥∥Dαyyu−v2:yy+ p2:yyγ2
∥∥∥∥2
2

+2

∥∥∥∥Dαxyu−v2:xy+ p2:xyγ2
∥∥∥∥2
2

]}
(23)

The minimization of (23) with respect to u is given as

min
u

{
σ ‖Hu−w+b1‖22+

γ1

2

[ ∥∥∥∥Dαx u−v1:x+ p1:xγ1
∥∥∥∥2
2

+

∥∥∥∥Dαy u−v1:y+ p1:yγ1
∥∥∥∥2
2

]
+
γ2

2

[ ∥∥∥∥Dαxxu−v2:xx+ p2:xxγ2
∥∥∥∥2
2

+

∥∥∥∥Dαyyu−v2:yy+ p2:yyγ2
∥∥∥∥2
2
+2

∥∥∥∥Dαxyu−v2:xy+ p2:xyγ2
∥∥∥∥2
2

]}
(24)

The solution of (24) is similar to that of (20) i.e. the stan-
dard least square problem whose solution is obtained using
the (25), as shown at the bottom of the next page.

ui+1 = F−1
{
F−1

{H∗g+γ1[(Dαx )∗(vi1:x− pi1:x
γ1

)
+

(
Dαy

)∗(
vi1:y−

pi1:y
γ1

)]
+γ1

[(
Dαxx

)∗(
vi2:xx−

pi2:xx
γ2

)
+

(
Dαyy

)∗(
vi2:yy−

pi2:yy
γ2

)
+2
(
Dαxy

)∗(
vi2:xy−

pi2:xy
γ2

)]
H∗H+γ1

[(
Dαx

)∗(
Dαx

)
+

(
Dαy

)∗(
Dαy

)]
+

[
γ2

(
Dαxx

)∗(
Dαxx

)
+

(
Dαyy

)∗(
Dαyy

)
+2
(
Dαxy

)∗(
Dαxy

)] }}
(21)
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The minimization of (23) with respect to the auxiliary
variable w is given as

min
w

{
(w− f logw)+ σ

2 ‖Hu− w+ b1‖2

}
(26)

The solution to (26) is obtained as

wi+1 =
1
2

(Hui+1+bi1− 1
σ

)
+

√(
Hui+1+bi1−

1
σ

)2

+
4g
σ


(27)

The variable b1 is updated as

bi+11 = bi1 + (Hui+1 − wi+1) (28)

The restored image u degraded due to Gaussian or Poisson
noise is obtained via the solutions stated in (21) and (25)
corresponding to the optimization problems (20) and (24),
respectively. Once the variable u is optimized, the compo-
nents of the auxiliary variable v1 which is common to both
types of noise is minimized using (18) as the following sub-
problems

vi+11:x = argmin
v1:x

β1φ(v1:x)+ γ12
∥∥∥∥∥Dαx ui+1 − v1:x + pi1:x

γ1

∥∥∥∥∥
2

2


(29)

vi+11:y = argmin
v1:x

β1φ(v1:y)+ γ12
∥∥∥∥∥Dαy ui+1 − v1:y + pi1:y

γ1

∥∥∥∥∥
2

2


(30)

Similarly the components of the vector v2 are minimized as

vi+12:xx = argmin
v2:xx

β2φ(v2:xx)+ γ22
∥∥∥∥∥Dαxxui+1−v2:xx+ pi2:xxγ2

∥∥∥∥∥
2

2


(31)

vi+12:yy = argmin
v2:yy

β2φ(v2:yy)+ γ22
∥∥∥∥∥Dαyyui+1−v2:yy+ p

i
2:yy

γ2

∥∥∥∥∥
2

2


(32)

vi+12:xy = argmin
v2:xy

β2φ(v2:xy)+ γ22
∥∥∥∥∥Dαxyui+1−v2:xy+ p

i
2:xy

γ2

∥∥∥∥∥
2

2


(33)

The solution to the above minimization problem stated
in (29)-(33) can be solved effectively using the method of
majorization and minimization for which the details can be

Algorithm 1 Solving the Optimization Framework (15) for
Gaussian Noise
Initialization:

Starting point: (v1, v2 = g); (p1, p2 = 0);
(β1, β2, γ1, γ2 > 0) , K

Iterations:
For i = 1 to MaxIter

1) Compute ui+1 according to (21)
2) Compute vi+11 according to ( 29)-(30)
3) Compute vi+12 according to (31)-(33)
4) Compute pi+11 according to ( 34)-(35)
5) Compute pi+12 according to ( 36)-(38)
6) until a stopping criterion is satisfied stated in (39)

Algorithm 2 Solving the Optimization Framework (15) for
Poisson Noise
Initialization:

Starting point: (v1, v2, w = g); (p1, p2, b1 = 0);
(β1, β2, γ1, γ2, σ > 0) , K

Iterations:
For i = 1 to MaxIter

1) Compute ui+1 according to (25)
2) Compute vi+11 according to ( 29)-(30)
3) Compute vi+12 according to (31)-(33)
4) Compute wi+1 according to (27)
5) Compute bi+11 according to (28)
6) Compute pi+11 according to ( 34)-(35)
7) Compute pi+12 according to ( 36)-(38)
8) until a stopping criterion is satisfied stated in (39)

found in [40], [50], and [51]. Finally, the Lagrangian multi-
pliers. p1 and p2 are updated as

pi+11:x = pi1:x + γ1(D
α
x u

i+1
− vi+11:x ) (34)

pi+11:y = pi1:y + γ1(D
α
y u

i+1
− vi+11:y ) (35)

pi+12:xx = pi2:xx + γ2(D
α
xxu

i+1
− vi+11:xx) (36)

pi+12:yy = pi2:yy + γ2(D
α
yyu

i+1
− vi+11:yy) (37)

pi+12:xy = pi2:xy + γ2(D
α
xyu

i+1
− vi+12:xy) (38)

Based on the above discussion, the proposed optimization
framework for Gaussian and Poisson noise is presented as
Algorithms 1 and 2, respectively.

ui+1 = F−1
{
F
{
σH∗(wi−bi1)+γ1

[(
Dαx

)∗(
vi1:x−

pi1:x
γ1

)
+

(
Dαy

)∗(
vi1:y−

pi1:y
γ1

)]
+γ1

[(
Dαxx

)∗(
vi2:xx−

pi2:xx
γ2

)
+

(
Dαyy

)∗(
vi2:yy−

pi2:yy
γ2

)
+2
(
Dαxy

)∗(
vi2:xy−

pi2:xy
γ2

)]
σHTH+γ1

[(
Dαx

)∗(
Dαx

)
+

(
Dαy

)∗(
Dαy

)]
+γ2

[(
Dαxx

)∗(
Dαxx

)
+

(
Dαyy

)∗(
Dαyy

)
+2
(
Dαxy

)∗(
Dαxy

)] }}
(25)
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A. CONVERGENCE ANALYSIS
The convexity of the energy function defined in (15) is
convex for both the Gaussian and Poisson cases. Please see
Appendix A for proof. In view of this convexity, the conver-
gence of algorithms 1 and 2 is guaranteed via the ADMM
theory [41]. The system governing variables involved in the
algorithms, namely, u, v1, v2 and w is decoupled into their
own sub-problems and these sub-problems have closed form
solutions. For instance, the sub-problem involving variable
u is solved using conjugate gradient method [49], which
is convergent with structured matrices (Dαx )

∗Dαx , (D
α
y )
∗Dαy ,

(Dαxx)
∗Dαxx , (D

α
yy)
∗Dαyy and (Dαxy)

∗Dαxy being positive definite
and invertible. Here, we assume periodic boundary conditions
that enable these matrices to be block circulant with circulant
blocks (BCCB) structure. The variables v1 and v2 are solved
using majorization-minimization algorithm which is proved
to be convergent in [40]. The sub-problem involving variable
w is a differential function which can be easily minimized.
The stopping criterion used in the two algorithms is

RelErr =

∥∥ui+1 − ui∥∥2∥∥ui+1∥∥2 < 10−3 or i = MaxIter (39)

we set MaxIter = 100 in this paper. Here, ui is the com-
putationally accepted approximation of the original image
when the relative difference between the consecutive approx-
imations satisfies the stopping criterion. Fig. 3 shows the
evolution of RelErr as a function of the number of iterations
for the two algorithms. It can be observed from this figure that
the error decreases monotonically with iterations, confirming
the convergence behaviour of the two algorithms.

FIGURE 3. Evolution of RelErr as a functions of the number of iterations
for the two algorithms.

V. EXPERIMENTAL RESULTS AND ANALYSIS
The aim of this section is to demonstrate the performance of
the proposed HF-OLGS based image denoising framework.
For this purpose, simulations are carried on using six different
gray-scale images of varying texture content shown in Fig 4.
To prove the effectiveness of the proposed algorithm on real
databases, we have selected LIVE [50] database for evalua-
tion. To quantify the quality of the restored image, widely

used image metrics peak-signal-to-noise ration (PSNR) and
Structural SIMilarity (SSIM) [51] index are adopted. These
metrics are evaluated as follows: PSNR is defined as

PSNR = 10 log10

 2552MN
M−1∑
i=0

N−1∑
i=0

(u(i, j)− û(i, j))2

 (40)

where u is the original image and û is the denoised image.
Higher the PSNR value, better is the image quality. The
Structural SIMilarity (SSIM) index is a method for measuring
the similarity between two images. SSIM index can be viewed
as a quality measure of one of the images being compared,
provided the other image is regarded as of perfect quality.
SSIM for the two images x and y is defined as

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

(41)

where µx and µy are the averages of x and y respectively,
σ 2
x and σ 2

y are the variances of x and y, σ 2
xy is the covariance

of x and y while c1, c2 are the two variables to stabilize the
division with weak denominator. SSIM is less than or equal
to 1 and it is maximal when the two images are coincide.
All the experiments are carried out on Mac OS 10.12 and
MATLAB v15 running on a desktop equipped with an Intel
Core i7 CPU 2.2 GHz and 16 GB of RAM.

A. STUDY ON GROUP SIZE (K) AND FRACTIONAL
ORDER (α)
With the use of fractional order derivatives in the proposed
regularizer presented in (13), it has been observed that the
performance of the regularizer depends on the optimal selec-
tion of group size (K ) and fractional order (α). Hence,
it becomes important to understand the role played by these
parameters in order to achieve an effective state of the art
denoising results. Furthermore, as discussed in Sec.III regard-
ing the performance of the proposed regularizer in case of
one-dimensional signal, a similar analysis needs to be car-
ried out for two dimensional signals in order to justify the
applicability of the proposed regularizer. In order to do this,
six standard test images of baboon, barbara, cameraman,
parrot , lena and house are selected for evaluation as shown
in Figs.4(a)-(f). The first 3 test images, namely, (a) Baboon,
(b) Barbara and (c) Cameraman are of size 512× 512, while
the last three images; (d) Parrot, (e) Lena and (f) House
are of size 256 × 256. These images are selected based on
their varying texture content as shown in Figs.4(g)-(l). Here,
the black region corresponds to plain patches, grey region
corresponds to edge patches and white region corresponds to
texture patches. The reason for arranging them in terms of the
texture content is to show the effectiveness of the proposed
regularizer in restoring the texture content as was done in the
case of one-dimensional signals shown in Figs. 1-2. There are
several methods proposed in the literature for carrying out
image decomposition into plain (P), edge (E) and texture (T)
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FIGURE 4. (a)-(f) Standard test images of baboon, barbara, cameraman, parrot , lena and house. (g)-(l) Plain, Edge and Texture
classification map of test images. Here, black corresponds to plain patch, grey corresponds to edge patch and white corresponds to
texture patch. Images are arranged from left to right in descending order of the texture contribution.

FIGURE 5. Effect of group size (K ) and fractional order (α) on PSNR of the restored images degraded by (a)-(c) Gaussian noise
(d)-(f) Poisson noise. (a) baboon. (b) barbara. (c) cameraman. (d) parrot . (e) lena. (f) house.

blocks [52]–[56]. In this paper, we have adopted the method
proposed by Zhang et al. [53] that utilizes discrete cosine
transform (DCT) coefficients for carrying out the image
decomposition task.

The values of (K , α) are selected based on experimental
work as follows. Figs. 5 and 6 show the PSNR and SSIM vari-
ations as a function of parameters K and α for the test images
shown in Figs. 4(a)-(f). The first three images are subjected to
Gaussian noise of standard deviation 20, while the last three
are subjected to Poisson noise. It can be observed that the
maximum value of PSNR as well as that of SSIM is achieved
for K = 3 and α = (1.2, 1.3, 1.4). This shows that the selec-
tion of the parameter K is independent of the texture content
in an image. However, the value of the fractional coefficient α

depends on the texture content. Further, the selected value of
α confirms the findings in [20] regarding the optimal values
of α for effective texture restoration. Other parameters used
in the algorithms are taken as follows: Algorithm 1: β1 =
1e − 6, β2 = 0.8, γ1 = 0.33e − 6 and γ2 = 0.26. For
Algorithm 2: β1 = 1e − 3, β2 = 0.1, γ1 = 0.25e − 3,
γ2 = 0.04 and σ = 1e4.

B. TEXTURE ANALYSIS
The discussion carried out in Figs. 5 and 6 is a kind of
quantitative evaluation of the proposed algorithm. In order
to see the impact of the parameters (K , α) on the quality of
the image restored, visual comparisons are performed using
various values of (K , α) on the images of parrot and barbara
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FIGURE 6. Effect of group size (K ) and fractional order (α) on SSIM of the restored images degraded by (a)-(c) Gaussian noise
(d)-(f) Poisson noise. (a) baboon. (b) barbara. (c) cameraman. (d) parrot . (e) lena. (f) house.

FIGURE 7. Noisy images of (a) parrot (b) barbara subjected to Gaussian
and Poisson noise respectively.

degraded due to Gaussian of standard deviation 20 and Pois-
son noise, respectively. Fig. 7 shows the degraded images of
parrot and barbara, whereas Figs.8-9 show their respective
restored versions. The results in Fig 8 show that for (K = 3,
α = 1.2), the proposed fractional model preserve the fine
textures in an image. However, for other values of (K , α),
the fine textures of the restored images are degraded due to
the presence of small Gaussian noise appearing in the texture
images as shown in Figs. 8(e)-(g). Similarly for the case of
restored versions of barbara image shown in Fig 7, it can
be observed that effective texture restoration is obtained for
(K = 3, α = 1.4) while for other cases some Poisson noise
penetrates into the texture component of the restored images
as shown in Figs. 9(e)-(g).

C. COMPARATIVE ANALYSIS
The proposed denoising framework is developed for restor-
ing the images degraded due to Gaussian and Pois-
son noise. Hence, it becomes essential to compare the

quality of the restored image with the other state-of-the-
art algorithms. For this purpose, in the case of Gaus-
sian noise we have selected the methods proposed by
Cuesta et al. [38], fractional-order total variation using prox-
imity algorithm (FTV-PA) [57], R-NL [58], Adaptive Regu-
larization with the Structure Tensor [59]., the full fractional
anisotropic diffusion (FFAD) [60] and overlapping group
sparsity (OLGS) [40] for comparative analysis. For the case
of Poisson noise, comparison is performed with the meth-
ods such as fourth-order partial differential equation fil-
ter (FOPDEF) [12], TV-Poi [61], OGS-ADM [62], Framelet
based (BPID-FR) [63], spatially adaptive (RLSATV) [64]
and sparse based (TV-L0) [65]. The work of TV-Poi and
OGS-ADM is based on the TV and overlapping group
sparsity based prior for Poisson noise image deblurring.
The FOPDEF algorithm uses higher order partial differ-
ential equations for removing Poisson noise with staircase
reduction.

In this work, we consider blurring operator H to be
Gauss (G) blur kernel [66]. It has two parameters to its def-
inition, namely, bandwidth (s) and standard deviation (η).
In our set of experiments, we set these parameters as s = 11
and η = 2.3. In order to simulate noisy operations after
blurring the original images with G, two sets of experiments
are created. In the first set, we add Poisson noise to the
image using poissrnd function from the MATLAB toolbox to
generate blurred and noisy images shown in Figs 10(a) and
11(a). The magnitude of the noise directly depends on the
absolute image intensities. In the second set, an additive white
Gaussian noise (AWGN) with standard deviation of 20 and
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FIGURE 8. (a)-(d) Visual comparison of the restored image of parrot shown in Fig. 7(a) for various values of the parameters K
and α. (e)-(h) Corresponding texture details. (a) K = 3, α = 0.8. (b) K = 3, α = 1.0. (c) K = 3, α = 1.4. (d) K = 3, α = 1.2.
(e) K = 3, α = 0.8. (f) K = 3, α = 1.0. (g) K = 3, α = 1.4. (h) K = 3, α = 1.2.

FIGURE 9. (a)-(d) Visual comparison of the restored image of barbara shown in Fig. 7(b) for various values of the parameters K
and α. (e)-(h) Corresponding texture details. (a) K = 3, α = 0.8. (b) K = 3, α = 1.0. (c) K = 3, α = 1.3. (d) K = 3, α = 1.4.
(e) K = 3, α = 0.8. (f) K = 3, α = 1.0. (g) K = 3, α = 1.3. (h) K = 3, α = 1.4.

30 is added to the test images blurred using G as shown
in Figs 12(a) and 13(a) respectively.

For the first set of experiments dealing with Poisson noise,
we have taken images of cameraman and house for our
study. Both of these images are blurred using Gauss blur
and additionally contaminated using Poisson noise as shown
in Figs 10(a) and 11(a). For the case of cameraman image,
Figs. 10(b)-(h) show the restoration results using seven dif-
ferent methods. It is not difficult to observe that the pro-
posed method (HF-OLGS) is better than the other methods
in restoring the textures of an image. The face and nose
of the cameraman and the texture of the building in the
background are restored well using TV-L0 and our method

when compared to other methods. Furthermore, undesirable
staircase effects are minimized using the proposed method,
thus providing better image visual quality. Similarly, for
the house image, Figs. 11(b)-(h) shows the restored quality
obtained using different methods. It can be observed that the
roof texture and the edges around the windows as well as
around the boundary of the house are preserved to a greater
extent when compared to that in the other methods.

For the second set of experiments dealing with Gaus-
sian noise, images of lena and barbara are taken for test-
ing the effectiveness of the proposed algorithm. Both of
these images are blurred using Gauss blur of size s = 11
and additionally degraded using additive white Gaussian
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FIGURE 10. Denoising results for the image cameraman under the Gauss blur (G) and Poisson noise (a) Noisy image
(b) FOPDEF, PSNR (SSIM) = 27.82(0.751); (c) BPID-FR, PSNR (SSIM) = 28.04(0.781); (d) OGS-ADM, PSNR (SSIM) = 28.18(0.802);
(e) RLSATV, PSNR (SSIM) = 28.78(0.821); (f) TV-Poi, PSNR(SSIM) = 29.06(0.841); (g) TV-L0, PSNR(SSIM) = 29.52(0.883)
(h) HF-OLGS, PSNR(SSIM) = 30.37(0.912). (a) Noisy image.

FIGURE 11. Denoising results for the image house under the Gauss blur (G) and Poisson noise (a) Noisy image (b) FOPDEF,
PSNR (SSIM) = 26.12(0.724); (c) BPID-FR, PSNR (SSIM) = 27.04(0.732); (d) OGS-ADM, PSNR (SSIM) = 27.78(0.747); (e) RLSATV,
PSNR (SSIM) = 28.18(0.809); (f) TV-Poi, PSNR(SSIM) = 28.87(0.863); (g) TV-L0, PSNR(SSIM) = 29.12(0.873) (h) HF-OLGS,
PSNR(SSIM) = 30.12(0.903). (a) Noisy image.

noise with standard deviation of 20 and 30, respectively,
as shown in Figs. 12(a) and 13(a). Their corresponding
restored versions using seven different methods are shown
in Figs. 12(b)-(h) and Figs. 13(b)-(h), respectively. It can be
observed clearly that the proposedmethod restores the texture
components present in the hat and hair of lena effectively. The
texture components present in the table-mat and the clothes
of barbara are also effectively restored. This is not visible in
other cases where the texture profiles are smeared out and
are not sharply visible. Further, the proposed algorithm is
successful in restoring the sharp edges of the images of lena
and barbara thereby improving to the total image quality.

In order to further justify the claims about the effectiveness
of the proposed algorithm in restoring the textures and edges
of an image simultaneously, an extensive study is carried out
using the LIVE database [50] images as shown in Table 1.
Here, the images are arranged in descending order of the
texture (T) contributions. The corresponding image decom-
position into texture (T), edge (E) and plain (P) of each
individual image is given in percentage. Further the best
value of group size K and fractional order α is also reported.
All the images in LIVE database are subjected to Gauss
blur of size s = 11 with varying additive white Gaussian
noise of standard deviation (SD) 20 and 40. These images
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FIGURE 12. Denoising results for the image Lena degraded due to Gauss blur (G) and Gaussian noise having standard
deviation of 20 (a) Noisy image (b) R-NL, PSNR (SSIM) = 29.34(0.831); (c) Cuesta, PSNR (SSIM) = 27.04(0.753); (d) Ada-Reg,
PSNR (SSIM) = 30.12(0.813); (e) FTV-PA, PSNR (SSIM) = 27.69(0.752); (f) OLGS, PSNR(SSIM) = 30.27(0.832); (g) FFAD,
PSNR(SSIM) = 29.43(0.831) (h) HF-OLGS, PSNR(SSIM) = 31.12(0.874). (a) Noisy image.

FIGURE 13. Denoising results for the image Barbara degraded due to Gauss blur (G) and Gaussian noise having standard
deviation of 30 (a) Noisy image (b) R-NL, PSNR (SSIM) = 28.96(0.761); (c) Cuesta, PSNR (SSIM) = 26.80(0.749); (d) Ada-Reg,
PSNR (SSIM) = 28.78(0.731); (e) FTV-PA, PSNR (SSIM) = 25.31(0.753); (f) OLGS, PSNR(SSIM) = 29.31(0.841); (g) FFAD,
PSNR(SSIM) = 27.92(0.776) (h) HF-OLGS, PSNR(SSIM) = 29.37(0.852). (a) Noisy image.

are restored using the seven different methods and the qual-
ity of the restored images is evaluated using image quality
metrics such as PSNR and SSIM. It can be observed from
the table that with images having varying texture and edge
contributions, the proposed algorithm restores the image well
in most of the cases. This observation is made based on the
values reported in terms of PSNR(SSIM) scores in the table.
In some case GMM produces good quality scores compared
to our method. But when compared with other methods our
method produces more pleasing and artifacts-free restored
images.

Another important factor to measure the effectiveness of
the denoising methods is run time. Table 2 shows the run time
for various methods in case of Gaussian noise of standard
deviation 40. It can be observed from the table that our pro-
posed method is considerably faster than the other methods.

D. COMPARISON WITH DEEP LEARNING METHODS
Recently, deep learning based methods are gaining atten-
tion due to their remarkable denoising performance. There-
fore, it is of interest to compare the performance of the
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TABLE 1. Images are selected from LIVE database and categorized into Texture (T), Edge (E) and Plain (P) blocks. Arranged in decreasing order of their
Texture (T) contribution. Denoising performance of the images subjected to Gaussian (G) blur with s = 11 and η = 3.3 for different noise levels (SD) is
evaluated in terms of PSNR in dB (SSIM). The best group size K and fractional order α for each image is also reported.

TABLE 2. Run time (in seconds) results of different denoising algorithms on LIVE dataset images degraded due to Gaussian noise with standard deviation
(SD) of 40.

proposed method with that of the recently introduced deep
learning methods, namely DnCNN [67] and FFDNet [68].
These two denoising schemes are tested on LIVE dataset. The
average PSNR(SSIM) values for Gaussian noise level (SD)
of 40 are 29.16(0.833) for DnCNN and 29.32(0.837) for
FFDNet. The corresponding values for our proposed work are
29.03(0.820). One can observe that the average PSNR(SSIM)
of the proposed method are slightly lower than that of deep
learning methods. But, the main advantage of using the pro-
posed method is to preserve the texture present in an image.
It is true that deep learning frameworks have provided good
results, but in order to implement the deep nets, we need a
huge database for their training. It should be noted that when
we are dealing with two different kinds of noise, Gaussian
and Poisson as done in this paper, the only modification that
is required mathematically is the change in the data fidelity
term whereas the regularizer term remains the same ((16)
and (17)). However, if we have to carry out the same task via
deep learning, we need twice the amount of data for training,
i.e., one for each type of noise. Hence, in terms of time
and computational resources needed to achieve denoising
results, it is clear that the proposedmathematical optimization
technique has advantages over deep learning technique

VI. CONCLUSION
A higher order fractional-based overlapping group spar-
sity (HF-OLGS) prior is introduced in this paper. It has
been shown that the proposed HF-OLGS prior is capable
of not only reducing the staircase effects present in the
edges but also preserving the texture. The use of frac-
tional derivatives in the optimization framework are solved
using an efficient numerical scheme. In order to solve the
image denoising framework formulated as a minimization
problem, the energy function has been optimized using
ADMM scheme. A detailed discussion about the parame-
ter selection criteria needed to run the algorithm properly
has been carried out. Restoration of images degraded by
Gaussian or Poisson noise is considered in this paper. The
restoration performance of the proposed denoising frame-
work has been analysed on LIVE dataset which consists of
images having varying texture, plain and edge contributions.
Further, the optimal fractional order α and group size K
for which the solution is feasible has also been provided
for each image. The experimental results presented in this
work show that with proper parameter settings, the algo-
rithm yields good PSNR and SSIM scores comparable with
that of the other methods. Moreover, the visual effects,
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especially in high oscillatory regions (textures), are greatly
improved.

Appendix A PROOF OF CONVEXITY OF THE ENERGY
FUNCTION
We prove first the convexity for the case of Gaussian noise.
Using (15) and (16), the energy function Z can be re-written
for the Gaussian case as

Z (u) = (Hu− g)2 + β1[φ(Dαu)]+ β2[φ(Dα2u)] (42)

where

Dα2 =


Dαxx
Dαyy
Dαxy
Dαyx

 and Dα =
[
Dαx
Dαy

]

Therefore, the convexity of Z in this case is assured if we
establish

Z (tu+ (1− t)v) ≤ tZ (u)+ (1− t)Z (v), ∀ 0 ≤ t ≤ 1

for any u and v. Letting u to tu+ (1− t)v in (42) , we get

Z (tu+ (1− t)v) =
{
t2(Hu− g)2 + (1− t)2(Hv− g)2

+2t(1− t)(Hu− g)(Hv− f )

β1[φ(Dα(tu+ (1− t)v))]

β2[φ(Dα2 (tu+ (1− t)v))]
}

(43)

Using the fact that φ(A+ B) ≤ φ(A)+ φ(B) results in

Z (tu+ (1− t)v) ≤
{
t2(Hu− g)2 + (1− t)2(Hv− g)2

+ t(1− t)
(
(Hu− g)2 + (Hv− g)2

)
tβ1[φ(Dαu)]+ (1− t)β1[φ(Dαv)]

tβ2[φ(Dα2u)]+ (1− t)β2[φ(Dα2 v)]
}
(44)

A re-arrangement of the right side expression gives

Z (tu+ (1− t)v)

≤

{
t(Hu− g)2 + tβ1[φ(Dαu)]

+tβ2[φ(Dα2u)]+ (1− t)(Hv− g)2

+(1− t)β1[φ(Dαv)]+ (1− t)β2[φ(Dα2 v)]
}

≤ tZ (u)+ (1− t)Z (v) (45)

This completes the proof for the Gaussian case.
Similarly, it can be shown that the energy function Z

corresponding to the Poisson case is also convex.
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