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ABSTRACT

Sequoia RAIDb-3: a new model for data distribution and replication

using commodity systems

Rostislav Axamitnyy

Unprecedented growth in the amount of data generated and used in the modern

world has made distributed databases an important target for contemporary research.

Today, advances in distributed databases embrace a wide range of concepts and ideas

including, but not limited to, fragmentation, replication, distributed transactions and

distributed concurrency control.

One novel idea in this area was the introduction of the Redundant Array of

Inexpensive Databases (RAIDb) initially proposed by the authors of Sequoia, a Java-

based clustering middle-ware framework. On a conceptual level, RAIDb is similar

to RAID arrays of disks; however, in contrast to traditional RAID, RAIDb utilizes

an array of individual databases. The objective of RAIDb is to provide improved

performance and fault tolerance relative to a single database while preserving the

abstraction of a standard SQL DBMS.

This thesis extends the functionality of Sequoia and proposes a distribution model

based upon full horizontal fragmentation. We refer to this new design as RAIDb-3.

We discuss details of the implementation and support its validity with an extensive

suite of test cases.
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Chapter 1

Introduction

1.1 Distributed databases

Today, distributed databases play an ever increasing role in information technology

and form the basis for many large data management systems. This trend will defini-

tively continue due to the enormous growth of stored and processed data, coupled

with the demand for data management system scalability, high availability and fault

tolerance. Distributed databases address these challenges through replication and

fragmentation - two concepts forming the foundation of its data model. In short,

replication ensures a certain level of data redundancy within the database, thereby

eliminating the single point of failure. Fragmentation, or partitioning, is the process

of splitting data among nodes of the distributed database. It provides for increased

performance and high availability of distributed data.

Despite its obvious benefits, the concept of a distributed database is associated

with a certain degree of inherent complexity. In contrast to conventional database

management systems, distributed databases need to address such challenges as es-

tablishing concurrency control, handling distributed queries and transactions, main-

taining data integrity, etc. All these issues, as well as fragmentation and replication,

1
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have been important topics for research. Many theoretical approaches, along with

concrete implementations, have been proposed in recent years. Some of these new

solutions devise completely new models which are not directly related to any exist-

ing technology or product. This group is represented by such novel technologies as

NoSQL data engines, XML databases and NewSQL databases. Deployment of these

solutions typically implies complete redesign and replacement of existing data man-

agement environments. However, there is also another direction for research that

focuses on integrating the core principles of distributed databases into existing data

management infrastructures. This can be achieved by abstracting away the complex-

ity of a clustered database to produce the appearance of a conventional relational

database.

One such system is the Sequoia RAIDb clustering middleware. Sequoia builds

upon the concept of a Redundant Array of Inexpensive Databases (RAIDb). This

approach addresses a number of the challenges of storing and processing distributed

data, such as fault-tolerance and high performance, while at the same time providing

for easy integration into existing SQL-based data analytics solutions. In fact, Sequoia

offers full distribution transparency, providing applications that utilize Sequoia with a

complete abstraction of conventional SQL database management systems. Moreover,

Sequoia is an open-source project and, as such, is fully extensible at the source code

level.

In this thesis we examine the existing Sequoia’s RAIDb solution. More impor-

tantly, we extend its current functionality in order to achieve more effective data

distribution and parallelism among independent database nodes.
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1.2 RAIDb-3 - full horizontal fragmentation in Se-

quoia

Sequoia introduces the concept of a Redundant Array of Inexpensive Databases

(RAIDb), which closely resembles the existing concept of RAID (Redundant Array of

Inexpensive Disks) that achieves scalability and high availability of disk subsystems

at a low cost. While RAID aggregates multiple inexpensive disk drives into an array

of disks to obtain performance, capacity and reliability properties that exceed that

of a single large drive [21] - RAIDb combines multiple database instances into an

array of databases aiming for a low cost system providing better performance and

fault tolerance than a single database [7]. The primary target for RAIDb deployment

is low-cost commodity hardware and software such as clusters of workstations using

open-source databases.

The RAIDb model is implemented in JDBC-compatible, Java mddleware called

the Sequoia RAIDb controller. The RAIDb controller hides all details of the RAIDb

implementation and provides applications with a pure abstraction of conventional

SQL database management systems (DBMS). This abstraction permits easy deploy-

ment of Sequoia in existing SQL-based environments. At the same time, the RAIDb

controller utilizes conventional JDBC-compatible SQL DBMSes as building blocks

of the RAIDb array. We will use the terms database back-end and node to denote

these individual databases. Ultimately, this means that a RAIDb array can be con-

structed from widely available open-source databases such as HSQLDB. Furthermore,

the standard JDBC API allows nodes to be spread across the network.

In fact, the authors of the original Sequoia implementation proposed three distinct

RAIDb levels.
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• RAIDb-0: provides for partitioning of database tables among database back-

ends. Partitioning applies to complete tables only, meaning that a table itself

may not be partitioned across nodes but different tables can be distributed on

distinct nodes.

• RAIDb-1: offers full replication, meaning that every database back-end holds

the complete database.

• RAIDb-2: provides partial replication of tables combined with partitioning.

It is important to note, however, that the data distribution model implemented in

Sequoia only supports table level partitioning. This fact significantly undermines one

of the fundamental goals of data partitioning, namely performance, as transaction

processing strongly depends on both the properties of the transaction and the layout

of the table data amongst nodes. In fact, in certain scenarios no table partitioning

might occur at all and, as a result, only a single node might be involved in execution

of the transaction. We address this challenge in our work, as we aim to devise a more

sophisticated model for data distribution within the Sequoia RAIDb framework.

In this work we propose a model for full horizontal partitioning in the RAIDb

controller which we call RAIDb-3. Our model allows for partitioning a table along

its rows so that these rows are evenly spread across all database back-ends. In order

to achieve this level of partitioning we introduce a new layer of data management

into Sequoia, which we refer to as the Key Manager. Furthermore, almost every core

component of the Sequoia DBMS is modified in order to support the requirements

of the new model. Below, we list the most critical functionality affected by the

implementation of RAIDb-3.
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• Virtual database. We transform the structure of the virtual database represen-

tation in Sequoia for the purpose of delivering a more fine-grained view of the

virtual meta-data.

• SQL parsing. An extended form of syntax parsing has been implemented so as

to provide proper handling of table constraints.

• Query processing. We implement distribution-aware logic for processing core

SQL queries, such as CREATE TABLE, INSERT and SELECT.

• Load balancing. We introduce a round-robin mechanism so as to allow even

distribution of records among nodes. In addition, we modify the form of node

interaction to permit query execution concurrency among nodes.

• Result handling. We extend result handling structures so as to provide for the

processing of partial results and for communication with the Key Manager.

• JDBC driver. We adapt Sequoia’s JDBC driver interface to permit interaction

with our internal result handling structures.

Moreover, we introduce several additional architectural components that are nec-

essary for operation of the RAIDb-3 model. These elements include:

• Key Manager. A component that manages the processing of table constraints

and generates internal service queries.

• RaControllerResultSet. This is an internal structure developed to store and

aggregate partial results received concurrently from back-end nodes.
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1.3 Experimental results

Experimental results have shown that our RAIDb-3 model represents a viable option

for storing and manipulating large data populations using conventional hardware

and software platforms as database back-ends. We also demonstrate that for certain

types of workloads, RAIDb-3 exhibits better performance than standalone databases.

Perhaps more importantly, we note that the performance of the RAIDb-3 controller

increases relative to standalone databases with growth in the data set. That said,

we also discovered that due to implementation constraints, performance of RAIDb-3

remains below that of standalone databases for certain queries. In these cases, we

suggest possible options for future work.

1.4 Thesis structure

The thesis is organized as follows. Chapter 2 provides an overview of some of the

most important concepts in the field of distributed databases. It also briefly outlines

notable research in this area. Chapter 3 presents an overview of Sequoia’s RAIDb

clustering middle-ware. It then proposes a new approach for implementing full hor-

izontal fragmentation, a model we call RAIDb-3. Chapter 4 presents experimental

results from various perspectives. Chapter 5 offers final conclusions and suggests

directions for future work.



Chapter 2

Background Material

2.1 Introduction

The trend toward distributing data and computation began decades ago, but has

received significant attention in recent years. The principles of distributing computa-

tion are almost omnipresent in the modern applications of computer science, ranging

from the distribution of complex mathematical computations on multi-core GPUs

to the evolution of cryptocurrencies that simply do not exist in the non-distributed

context.

This same trend also changed the data storage and data management landscape

previously dominated by stand-alone, high-end database management systems. Dis-

tributed databases became an answer to two challenges – the ever-increasing amount

of data and the increasing degree of distribution of business processes. Moreover,

the latter also includes geographical distributions when several inter-connected busi-

ness units are spread across various physically distinct areas, as well as technological

distribution whereby various services reside on heterogeneous computational units

7



8

connected through a network (e.g. web-hosting, computational clouds and container-

ized processes). Besides addressing technological and organizational challenges, dis-

tributed databases are meant to deal with such longstanding issues as reliability,

high-availability and database system responsiveness.

2.2 Relational databases and SQL

In this work we primarily elaborate on the topic of distributed databases. Most exist-

ing databases today are based on the relational model [22], which was first described

by Codd in [6]. In the relational context, all data is organized in relations, or tables.

In turn, relations are composed of attributes, or columns, and tuples, also referred to

as rows. Hence, a relation represents a distinct entity (e.g., invoice) characterized by

attributes (e.g., date and price). Instances of a given entity are stored in the relation’s

tuples (e.g., invoices for books).

The relational model allows rows of distinct tables to be related to each other.

In order to facilitate this process each table can have a special attribute called the

primary key that allows each row to be assigned a unique value (e.g., it might be

order identification number in the case of the invoice example). A primary key from

one table can correspond to a matching foreign key in a second table.

The relational model is directly associated with relational database management

systems (RDBMS) which are responsible for the implementation of the concepts of the

relation model, as well as for establishing the efficient and accurate operation of the

database system. The primary means of interacting with RDBMSes is the Structured

Query Language (SQL), the de facto standard specially designed for querying and

maintaining RDBMSes. SQL defines a variety of syntactical constructs to express or
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support the concepts of the relational model and to mimic the operators defined in the

relational algebra, the formal mathematical foundation at the heart of the relational

model.

Below, we provide a very brief introduction to the relational algebra as it pertains

to data handling in RDBMSes. A more extensive overview of the SQL related elements

is provided in Chapter 3.

Relational algebra is associated with the operators defined in basic set theory,

such as set union, set difference, and Cartesian product. It also adds a few additional

operators which we list below.

• Selection: A selection is a unary operation that identifies tuples from a relation

whose attributes meet the selection criteria. The selection criteria is usually

expressed as a predicate. The selection operator is written as σφ(R), where

R is the relation and φ is a propositional formula. A propositional formula is

composed of predicates applied on attributes of R, and may be concatenated

by logical operators, such as AND, OR or NOT.

As an example, we may consider the relation R depicted in Table 2.1.

Moreover, we can define a propositional formula in the following way

φ = AGE > 30 ∧ PROV INCE = QC

This selection operator would then produce the result depicted in Table 2.2

• Projection: A projection is a unary operation that extracts a subset of the

columns in a relation. The projection operator is written as Πa1,...,an(R) where

a1, . . . , an is a set of attribute names.
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Table 2.1: Relation CUSTOMER

NAME AGE SEX PROVINCE LOCATION

Jen Nemhauser 38 M QC Dorval
Sydel Jephthah 56 M MN Dauphin
Chrystal Norvall 30 F NU Iqaluit
Binni Noonberg 35 M NL Corner Brook
Garland Eatton 38 M NS Halifax
Berrie Fougere 36 F QC Blainville
Wenda Brubaker 71 F ON Stratford
Nan Cornell 52 M BC Kimberley

Table 2.2: Result of selection operator applied to relation CUSTOMER

NAME AGE SEX PROVINCE LOCATION

Jen Nemhauser 38 M QC Dorval
Berrie Fougere 36 F QC Blainville

As an example, we may again consider relation R presented in Table 2.1. If we

define a set of attributes as:

{a1, . . . , an} = {AGE,SEX}

The projection operator would then produce the result depicted in Table 2.3

• Joins: The relational algebra defines a number of join operators. The most

generic type of join operator is a natural join which we will describe here (other

join operators extend the basic concept of natural join in various ways). A

natural join is a binary operator that combines attributes of two relations into

one. The natural join is written as R ⋈ S where R and S are relations.

As an example we will again consider relation R presented in Table 2.1. Fur-

thermore, we define a second relation S, presented in Table 2.4.
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Table 2.3: Result of projection operator applied to relation CUSTOMER

AGE SEX

38 M
56 M
30 F
35 M
38 M
36 F
71 F
52 M

Table 2.4: Relation INVOICE

NAME TOTAL DATE

Chrystal Norvall 91.89 2016-02-04
Jen Nemhause 24.81 2017-07-20
Sydel Jephthah 122.63 2008-07-19
Binni Noonberg 128.8 2016-02-07
Garland Eatton 56.25 2015-07-20
Wenda Brubaker 100.00 2014-08-18
Jen Nemhause 25.50 2017-10-13
Nan Cornell 63.40 2017-02-03
Nan Cornell 89.66 2016-01-06
Berrie Fougere 68.70 2016-05-22
Sydel Jephthah 15.30 2010-12-07
Binni Noonberg 93.00 2012-10-23
Sydel Jephthah 80.00 2013-11-25



12

A natural join operation on R and S would then produce the result depicted in

Table 2.5

Table 2.5: Result of natural join operator applied to relations CUSTOMER and INVOICE

AGE SEX PROVINCE LOCATION NAME TOTAL DATE

30 F NU Iqaluit Chrystal Norvall 91.89 2016-02-04
38 M QC Dorval Jen Nemhause 24.81 2017-07-20
56 M MN Dauphin Sydel Jephthah 122.63 2008-07-19
35 M NL Corner Brook Binni Noonberg 128.8 2016-02-07
38 M NS Halifax Garland Eatton 56.25 2015-07-20
71 F ON Stratford Wenda Brubaker 100.00 2014-08-18
38 M QC Dorval Jen Nemhause 25.50 2017-10-13
52 M BC Kimberley Nan Cornell 63.40 2017-02-03
52 M BC Kimberley Nan Cornell 89.66 2016-01-06
36 F QC Blainville Berrie Fougere 68.70 2016-05-22
56 M MN Dauphin Sydel Jephthah 15.30 2010-12-07
35 M NL Corner Brook Binni Noonberg 93.00 2012-10-23
56 M MN Dauphin Sydel Jephthah 80.00 2013-11-25

2.3 Distributed database design overview

Özsu et al [33] define a distributed database as follows: “...a collection of multiple,

logically interrelated databases distributed over a computer network. A distributed

database management system (distributed DBMS) is then defined as the software

system that permits the management of the distributed database and makes the

distribution transparent to the users.”
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2.3.1 Architecture

From an architectural perspective, the design of a distributed DBMS may be char-

acterized as the exploitation and integration of the autonomy of local systems, their

distribution, and their heterogeneity.

• Autonomy: implies distribution of control over data or, alternatively, reflects the

degree of independence of the DBMS. Autonomy may vary from total isolation,

when each DBMS comprising a distributed system is deprived of any informa-

tion regarding other participating DBMSes or the topology of the distributed

system, to cases in which DBMSes are logically integrated.

• Distribution: determines the level of distribution of data. Two notable data

distribution classes are (1) client/server distribution, as shown in Figure 2.1,

where data is stored within server nodes and accessed by clients; (2) peer-to-

peer distribution, in which there is no functional distinction among nodes and

each peer mimics the functionality of the full DBMS while interacting with

other peers.

• Heterogeneity: heterogeneity may assume various forms such as variances in

hardware platforms, operating systems, communication protocols, data repre-

sentation formats, etc.

2.3.2 Design objectives

Distributed database systems are designed to comply with the following objectives:

• Transparency of distribution and replication;

• Reliability of execution of distributed transactions;
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Figure 2.1: Distributed client/server system.

Below, we elaborate in more detail on these two themes.

Transparency of distribution and replication implies a level of abstraction in which

all details of the implementation are hidden from the user of the distributed DBMS.

The following forms of transparency are included [33]:

• Data independence: this form of transparency assures that neither modifications

to the logical nature (i.e. the schema) nor the psychical nature (i.e. the structure

of physical data storage) should be visible to the user of the distributed system.

• Network transparency: encapsulates the topology of the network organization of

distributed system so that neither the existing specificity of network structure

nor its possible modifications affect the user of the distributed DBMS.

• Replication transparency: this form of transparency assures that the methodol-

ogy of replication, as well as the management of replicas, remains hidden from
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the user. We will cover the topic of replication later in this chapter.

• Fragmentation transparency: provides the user of the distributed database with

an abstraction of an integrated data view, while hiding possible data fragmen-

tation. The topic of fragmentation will also be examined in detail later.

The reliability of execution of distributed transactions ensures the atomicity of

transactions on distributed databases. Specifically, while executing transactions on

a distributed DBMS, the original transaction might be decomposed into several sub-

transactions which are then executed on various nodes of the distributed system, with

the results combined at a later point. However, any of these sub-transactions may fail;

therefore, reliability of execution guarantees that either the complete transaction is

executed successfully, including all of its sub-transactions, or if any single step of the

transaction should fail, the database remains intact so that consistency is preserved.

2.3.3 Data placement and fragmentation

One of the crucial questions in the design of distributed databases is how data is

placed across nodes. At present, two main approaches to placement of data are

distinguished:

• Replication

• Fragmentation or partitioning

Replication is a process of creating “local” copies of data that otherwise are stored

remotely – or more generally a process of storing full or partial copies of data on all

or some distributed nodes. The motivation behind applying replication includes:
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• Increased data availability: replication eliminates the existence of a single point

of failure.

• Increased performance: replication can minimize response time by identifying

the optimal path to the requested data and/or through increased parallelism

among replicated nodes.

• Scalability/Flexibility: replication supports system growth (or reduction) by

modifying the number of replicas.

At the same time, replication poses considerable challenges for the design of data

management systems in terms of data updates among replicas. Presently, there are

two approaches to address the issue of update propagation: eager and lazy replication

[30]. In the case of eager replication, all replicas are updated within the scope of the

distributed update transaction. Here, the execution of the update is synchronous. For

lazy replication, the update transaction is executed asynchronously among replicas

(i.e., the transaction is committed on a local node and then the process of notifying

all other replicas is initiated). Both approaches have their pros and cons. Eager

replication, for example, can handle conflicts naturally by aborting the global trans-

action; however, responsiveness might deteriorate considerably as a result of network

issues or node hardware/software failure. Lazy replication, on the other hand, does

not provide explicit conflict resolution mechanisms and requires conflict resolution to

be perfromed by resynchronization [14].

Fragmentation is another fundamental process underlying the concept of dis-

tributed databases. During this process, the original relation stored in the database

is divided into a number of sub-relations, or fragments, which can then be stored on
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different nodes. Traditionally, the motivation for fragmentation can be summarized

by the following points:

• Performance: due to the fact that data is spread among various fragments or

partitions, it is possible to execute transactions in a concurrent, parallel fashion.

• Alleviate negative effects of replication: replication considerably increases stor-

age utilization because of its inherent redundancy; however, fragmentation al-

lows for a reduction in the footprint, as each replica will store only a fragment

of the original relation, rather than the full relation;

• Address needs of business processes: usually DBMS applications make use of

only a subset of a relation. Hence the full relation is not necessarily the most

appropriate unit of distribution. Instead, subsets of the relation tend to be a

more natural unit of distribution.

In the world of relational databases, a relation is in essence a table. Therefore, two

alternatives are available to divide a table into sub-tables: horizontal and vertical.

These two approaches form basic fragmentation strategies. Furthermore, there is an

option to nest fragments, thereby providing for hybrid fragmentation. In fact, there

are number of different approaches and algorithms used to accomplish fragmentation

– we will provide an overview of existing methods later in this chapter.

In terms of horizontal fragmentation, we note that it is performed on the tuples

of the original relation so that the resulting fragments contain subsets of the tuples

of the original relation. Fragmentation is performed by applying a specific predicate

Pi on the original relation. In the case where a predicate is defined on the same

relation on which it is applied, horizontal fragmentation is characterized as primary
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horizontal fragmentation, and fragments are derived according to the formula:

Ri = Pi(R), 1 ≤ i ≤ ω

where:

R – original relation

Ri – subset of original relational

Pi – predicate

ω – degree of fragmentation

For example, we may consider the original relation CUSTOMER, as depicted in Table

2.6

Table 2.6: Relation CUSTOMER

NAME ID AGE SEX PROVINCE LOCATION

Jen Nemhauser 0 38 M QC Dorval
Sydel Jephthah 1 56 M MN Dauphin
Chrystal Norvall 2 30 F NU Iqaluit
Binni Noonberg 3 35 M NL Corner Brook
Garland Eatton 4 38 M NS Halifax
Berrie Fougere 5 36 F QC Blainville
Wenda Brubaker 6 71 F ON Stratford
Nan Cornell 7 52 M BC Kimberley

In the relation CUSTOMER, the attribute ID is the primary key. For this relation we

might define fragments based on age (i.e., the attribute AGE). Furthermore, we could

define predicates as follows:
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CUSTOMER1: P1 = AGE < 38

CUSTOMER2: P2 = 38 ≤ AGE < 49

CUSTOMER3: P3 = AGE ≥ 49

This configuration results in three fragments – CUSTOMER1, CUSTOMER2, CUSTOMER3.

Table 2.7: Fragment CUSTOMER1

NAME ID AGE SEX PROVINCE LOCATION

Chrystal Norvall 2 30 F NU Iqaluit
Binni Noonberg 3 35 M NL Corner Brook
Berrie Fougere 5 36 F QC Blainville

Table 2.8: Fragment CUSTOMER2

NAME ID AGE SEX PROVINCE LOCATION

Jen Nemhauser 0 38 M QC Dorval
Garland Eatton 4 38 M NS Halifax

Table 2.9: Fragment CUSTOMER3

NAME ID AGE SEX PROVINCE LOCATION

Sydel Jephthah 1 56 M MN Dauphin
Wenda Brubaker 6 71 F ON Stratford
Nan Cornell 7 52 M BC Kimberley

Additionally, a predicate can be associated with a relation without the predicate
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being directly applied to the original relation itself – this type of horizontal fragmen-

tation is classified as derived horizontal fragmentation. Hence, the resulting fragment

is defined through a semi-join:

Ri = R⋉ Si, 1 ≤ i ≤ ω

where:

R – original relation

Si – a subset of another relation, obtained by applying the predicate Pi to the relation

S , i.e. Si = Pi(S)

Ri – resulting fragment of relation R

For example, we can consider the example listed above and further extend it with

the additional relation DISCOUNT, depicted in Table 2.10.

Table 2.10: Fragment DISCOUNT

PROVINCE DISCOUNT P

QC 15
MN 10
NU 8
NL 5
NS 15
ON 5
BC 0

For relation DISCOUNT, we may define a predicate on the attribute DISCOUNT P as

follows:



21

DISCOUNT1: P1 = DISCOUNT P < 5

DISCOUNT2: P2 = 5 ≤ DISCOUNT P < 10

DISCOUNT3: P3 = DISCOUNT P ≥ 10

Applying these predicates on the relation DISCOUNT produces three sub-relations:

DISCOUNT1, DISCOUNT2 and DISCOUNT3. The resulting fragments of relation CUSTOMER

are consequently defined as follows:

CUSTOMER1 = CUSTOMER⋉DISCOUNT1

CUSTOMER2 = CUSTOMER⋉DISCOUNT2

CUSTOMER3 = CUSTOMER⋉DISCOUNT3

The results of the derived horizontal fragmentation are depicted in tables 2.11

through 2.13.

Table 2.11: Fragment CUSTOMER1

NAME ID AGE SEX PROVINCE LOCATION

Nan Cornell 7 52 M BC Kimberley

Table 2.12: Fragment CUSTOMER2

NAME ID AGE SEX PROVINCE LOCATION

Chrystal Norvall 2 30 F NU Iqaluit
Binni Noonberg 3 35 M NL Corner Brook
Wenda Brubaker 6 71 F ON Stratford
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Table 2.13: Fragment CUSTOMER3

NAME ID AGE SEX PROVINCE LOCATION

Jen Nemhauser 0 38 M QC Dorval
Sydel Jephthah 1 56 M MN Dauphin
Garland Eatton 4 38 M NS Halifax
Berrie Fougere 5 36 F QC Blainville

Selection of predicates for fragmentation is complex and depends heavily on the

context in which the distributed database operates (e.g., devising a fragmentation

approach in which certain join characteristics are observed or in which a higher level

of parralelization can be achieved). At present, the issue of fragmentation is a field

of extensive research and several algorithms have been proposed to produce optimal

fragmentation - some of the most notable algorithms can be found in [33].

As noted, a second approach is vertical fragmentation. In contrast to horizontal

fragmentation, vertical fragmentation is performed along attributes. The result of

vertical fragmentation of a relation R is the fragment set R1, R2, ..., Rn, each of which

contains a subset of attributes of the original relation R, as well as the primary key

of R. If we consider the previously defined relation CUSTOMER, depicted in Table 2.6,

one possible vertical fragmentation into two sub-relations CUSTOMER1 and CUSTOMER2

might assume the form depicted in 2.14 and 2.15. Here, the Attribute ID in relation

CUSTOMER is the primary key.

When devising fragmentation techniques, execution time of the user application

that runs on the fragments is considered an optimization criteria. Therefore, the

objective of vertical fragmentation is to define a scheme that minimizes execution

time. Often, it is desirable that many application will run on only one fragment.
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Table 2.14: Fragment CUSTOMER1

NAME ID AGE SEX

Jen Nemhauser 0 38 M
Sydel Jephthah 1 56 M
Chrystal Norvall 2 30 F
Binni Noonberg 3 35 M
Garland Eatton 4 38 M
Berrie Fougere 5 36 F
Wenda Brubaker 6 71 F
Nan Cornell 7 52 M

Table 2.15: Fragment CUSTOMER2

ID PROVINCE LOCATION

0 QC Dorval
1 MN Dauphin
2 NU Iqaluit
3 NL Corner Brook
4 NS Halifax
5 QC Blainville
6 ON Stratford
7 BC Kimberley

Vertical fragmentation is considered more complex than horizontal fragmenta-

tion. Thus, heuristics are a primary tool to address the problem of optimal vertical

fragmentation. Two general heuristic approaches exist: grouping and splitting. In

grouping, initial smaller fragments are combined until certain criteria are reached. In

splitting, the process is the reverse – initial larger fragments are split and the relevant

criteria is assessed. A more complete overview of the vertical fragmentation can be

found in [33].

Finally we note that besides the issue of replication and fragmentation, other

important topics of research in the area of distributed databases include distributed
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concurrency control and distributed queries. The objective of research in the area

of distributed concurrency control focuses on defining policies and methodologies for

establishing concurrent utilization of distributed databases by multiple users while

preserving the integrity of data and providing for acceptable performance [33]. Work

in the area of distributed queries addresses questions about devising rules, as well as

approaches for generating queries that can be efficiently executed on the distributed

database [33]. An overview of current developments and achievements in the field of

distributed databases is presented in the next section.

2.4 Related work

In previous sections we defined the main directions relevant to the development of

distributed databases. These can be summarized in the following list:

• Fragmentation

• Replication

• Distributed queries

• Distributed concurrency control

In this section, we elaborate on recent advances in these areas.

2.4.1 Fragmentation

Besides the term fragmentation, the concept of dividing relations into sub-relations

is also commonly referred to as partitioning. These two terms are interchangeable;

thus, we use both terms below, depending on the source.
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The topic of distributed database fragmentation draws considerable attention from

researchers. Presently, a number of approaches to the problem of fragmentation have

been developed. A thorough overview of advanced partitioning strategies and their

implementation is provided in [16]. This work lists, briefly describes, and attempts to

evaluate modern advanced approaches to data partitioning, including hash partition-

ing, range partitioning, non-deterministic strategies and indexed-based partitioning.

One of the novel approaches to data fragmentation is the usage of workload as a

determining factor in the fragmentation procedure. In this approach, the workload is

analyzed and a fragmentation scheme is proposed so as to minimize cross-partition

transactions. This technique is studied in [5], which proposes an approach called

Schism, a novel workload-driven, graph-based replication/partitioning strategy. The

problem is also examined in [29] and [9]. Both papers define the objective of offering

partitioning that minimizes expensive cross-partition transactions, while utilizing in-

formation about query workload. The algorithm proposed in [29] relies on the query

history in order to optimize partitioning. In contrast, the work in [9] proposes a novel

partitioning scheme that allows a set of tables to be to co-partitioned based on given

join predicates.

Work in [24] introduces an economic model to automatically balance the supply

and demand of data fragments, replicas, and cluster nodes in an adaptive data dis-

tribution framework called NashDB. The authors also define the notions of tuple and

fragment value, which is used for obtaining optimal fragmentation.

Research performed in [2] postulates that traditional partitioning schemes may

not effectively address certain types of applications, such as social networks, that

ultimately require what the authors call fine-grained partitioning. In their work, the
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authors elaborate on lookup tables that play an essential role in maintaining fine-

grained partitioning.

Finally, the authors in [25] present a partitioning advisor that recommends the

best partitioning design for an expected workload.

2.4.2 Replication

Various works that were mentioned in the section dedicated to fragmentation also

elaborate on the topic of replication. This research, including [5], [29] and [24], con-

siders replication and fragmentation as two integral processes underlying distributed

database design and thus offers approaches that strive for optimal fragmentation and

replication depending on selected factors (e.g. workload).

However, there is a relatively small cluster of work purely focused on replication.

The authors of [19] elaborate on two scalable replication techniques that exploit lazy

update propagation and workload information. The objective of their work is to

guarantee strong consistency in distributed databases while at the same time pro-

viding viable performance. Another novel approach to data replication is offered in

[15], in which the authors propose an architecture called Asynchronous Parallel Ta-

ble Replication. This replication architecture distinguishes between non-replicated

OLTP workloads and utilizes replication for OLAP workloads.

2.4.3 Distributed queries/transactions

An overview of the current problems related to distributed transactions in mod-

ern heterogeneous environments is given in [1]. Additionally, this paper proposes a

client-coordinated transaction commitment protocol that does not rely on a central

coordinating infrastructure. In [11], the authors target the area of query optimization
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for distributed databases. In their work they develope new techniques to generate

efficient plans for SQL queries involving multiway joins over partitioned tables. A

scalable transaction scheduling and data replication layer called Calvin is presented

in [3]. The objective of this work is to manage distributed transactions so as to

minimize contention costs associated with distributed transactions and to expose no

single point of failure.

2.4.4 Distributed concurrency control

An exhaustive overview and evaluation of six classic and modern protocols for con-

currency control in distributed databases is given in [23]. The authors in [8] elaborate

upon and compare two low overhead concurrency control schemes that provide for

effective handling of network stalls. In addition, the work described in [32] pro-

poses an in-memory distributed optimistic concurrency control protocol called Sun-

dial. According to the authors this protocol addresses two major issues in distributed

databases – high latency and the high rate of transaction aborts. In order to achieve

these goals, the proposed protocol utilizes caching and a methodology for dynamically

establishing logical order among transactions at runtime.

2.5 Conclusion

In this chapter, we have emphasized the significance of distributed data in the world of

modern databases. We also provided an overview of the primary concepts underlying

distributed databases, such as fragmentation, replication, distributed transactions

and distributed concurrency control. Finally, we described the most notable advances

in research in the area of of distributed databases. In the following chapters, we will
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discuss the application of various principles of distributed databases, using the open

source Sequoia DB as our implementation target.



Chapter 3

RAIDb-3: a flexible, commodity
based distributed database

3.1 Introduction

The current research examines and develops opportunities for database clustering and

distribution by building upon the foundation of the Sequoia DB. Sequoia is database

cluster middleware [27] written in Java and provided via an open source license. It

uses JDBC for transparent access to the database cluster, as well as for communicating

with database nodes within the cluster. As such, it can be utilized with any existing

JDBC-compatible DBMS and client software. Figure 3.1 illustrates the core model.

3.2 HSQLDB - a robust, high-performance DBMS

In previous chapters we mentioned that distributed systems utilize database nodes as

building blocks in creating distinct data distribution models in which each individ-

ual node holds full or partial views of the database. The individual database nodes

can be implemented within the distributed database framework as a vendor specific

solution. However, it can be more practical and cost-effective to utilize traditional,

29



30

Figure 3.1: Sequoia framework overview

well-evaluated, and well-tested stand-alone DBMSes as the back-end database nodes.

The selection of the specific DBMS implementation greatly depends on the communi-

cation interfaces to be used between the distributed system core and database nodes.

In our case, Sequoia utilizes JDBC as the primary communication interface.

Presently, there is a variety of DBMS implementations offering a JDBC interface,

including MySQL, Oracle, PostgreSQL and HSQLDB. We analyzed available com-

modity of DBMSes and, for this research, we have chosen HSQLDB [13].

HSQLDB (Hyper SQL Database) is a relational database management system

written in Java and available under a BSD license, meaning that its source code is

open. There are a number of reasons why we selected HSQLDB:
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• HSQLDB is written in Java: as such, there is no intermediate layer of transla-

tion between native code and the Java API.

• HSQLDB offers high performance: as per evaluation results available on the

HSQLDB website [13], HSQLDB consistently shows superior performance rela-

tive to JDBC/MySQL, JDBC/Apache Derby.

• HSQLDB supports in-memory databases: placing databases wholly in mem-

ory is a novel solution that often produces increased performance and avoids

drawbacks associated with the utilization of physical disks.

3.3 Sequoia’s original design

Sequoia consists of two principal components – a JDBC driver and the Sequoia con-

troller. The JDBC driver is loaded by JDBC-compatible client software and supports

the transfer of SQL requests and the subsequent distribution of data. The controller,

in turn, processes requests received from clients, performs load balancing in accor-

dance with a user-defined clustering scheme, and executes queries on the DBMS.

In principle, the Sequoia controller can be used with any JDBC-compatible DBMS,

thereby supporting heterogeneous DBMS clusters. However, in the current research

we do not explore this feature, nor the option of combining several distinct Sequoia

controllers into a network of distributed Sequoia clusters.

In any case, the main purpose of the Sequoia controller is to host a virtual database.

In short, a virtual database is a software abstraction of the underlying cluster of

DBMSes. An external client connecting to Sequoia sees the virtual database as a

“regular” DBMS – this point is in fact crucial for deploying Sequoia within an ex-

isting SQL-based infrastructure. Note that one Sequoia controller may host multiple
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virtual databases. Figure 3.2 illustrates the structure of the controller and its various

supporting elements [27].

Figure 3.2: Components of a virtual database within the Sequoia controller

Core components include:

• Configuration and administration: provides for configuration of the Sequoia
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controller and virtual database by means of editable XML files and allows re-

mote administration through a physical console.

• Authentication manager: performs verification of virtual database login/pass-

word sessions.

• Request manager: processes SQL queries received by the JDBC driver from

external SQL clients. It, in turn, consists of the following components:

– Scheduler: this component performs scheduling of incoming requests in

accordance with the selected clustering RAIDb level.

– Request caches: optional components that perform caching of parsed SQL

queries, query metadata and query results. In the current research we do

not use this facility.

– Load balancer: this component distributes the query load to the underlying

back-ends in accordance with the selected RAIDb level.

– Recover log: an optional component that allows back-ends to dynamically

recover from failure. This component is not utilized in the current work.

• Database back-end: handles connectivity with the physical back-end DBMS. It

loads the JDBC driver and processes requests and data exchange through the

Connection Manager.
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3.4 Sequoia RAIDb

3.4.1 Overview

As mentioned earlier, RAIDb stands for a Redundant Array of Inexpensive Databases.

The primary objective is the achievement of scalability, high availability, superior

performance and improved fault tolerance relative to individual databases. At the

same time, the RAIDb concept implies that the implementation hides all distribution-

related complexity and provides the database client with an abstraction of a single

traditional database.

Similar to the more familiar Redundant Array of Inexpensive Disks (RAID),

RAIDb distinguishes between several distinct levels of functionality. Below, we pro-

vide a brief overview of Sequoia’s original RAIDb levels.

3.4.2 RAIDb-0

RAIDb-0, as depicted in Figure 3.3, offers distribution of complete tables among

back-end nodes. In other words, the same table may not be distributed among sev-

eral nodes. This level requires at least two back-end nodes and offers moderate

performance scalability. That being said, RAIDb-0 does not provide fault tolerance,

as tables are not replicated in any way.

3.4.3 RAIDb-1

In contrast, RAIDb-1, depicted in Figure 3.4, offers full database replication among

back-ends. This level offers increased fault-tolerance, though it can not provide

any performance gain since queries are still executed against a full copy of a sin-

gle database.
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Figure 3.3: RAIDb-0 structure

Figure 3.4: RAIDb-1 structure
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3.4.4 RAIDb-2

RAIDb-2, illustrated in Figure 3.5, offers partial replication and is an intermediate

solution between RAIDb-0 and RAIDb-1. In RAIDb-2, complete tables of the same

database can reside on various back-ends. Moreover, each database table must be

replicated at least once. In doing so, RAIDb-2 combines the improved performance

of RAIDb-0 with the improved fault-tolerance of RAIDb-1.

Figure 3.5: RAIDb-2 structure

3.4.5 Other RAIDb schemes

Besides the RAIDb levels mentioned above, Sequoia provides for nested RAIDb

schemes in which one RAIDb cluster can be embedded as a node in another RAIDb

cluster. We do not consider such models in the current research, as it is not relevant

to our target research program.
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3.5 Research objective

In this work, we investigate new distribution schemes (within Sequoia), with the aim

to provide enhanced performance and scalability. To limit the scope of the research we

will not consider fault-tolerance in this thesis. We note, however, that fault-tolerance

can be achieved through the usage of local back-end RAID constructs. The general

application and options for RAID are examined in more detail in [21].

In the previous section, we briefly examined RAIDb levels available in Sequoia.

These levels offer either partial distribution of a virtual database among database

back-ends or no distribution at all. In the case of partial distribution, such as

RAIDb-0 and RAIDb-2, distribution is only possible using table granularity (i.e., any

database back-end containing a given table must hold the complete table). Further-

more, RAIDb-2 requires the existence of at least one back-end holding the complete

database.

The limitations of the original Sequoia design became a starting point for the

current research in that we were interested in designing a data model in which dis-

tribution is accomplished at the granularity of table rows. For simplicity, we call

this distribution model RAIDb-3 (note that there is no conceptual correlation with

RAID3). Its base structure is depicted in Figure 3.6.

As the illustration suggests, we can expect that a RAIDb-3 model should offer

increased performance and scalability due to the higher degree of distribution. How

well this assumption correlates with experimental data we will examine later.
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Figure 3.6: RAIDb-3 structure

3.6 RAIDb-3 design considerations

3.6.1 Introduction

In the current context, we may divide the data operations performed on conventional

DBMSes into two groups:

1. Data population

2. Data retrieval or querying

Of course, the standard SQL language offers a considerably broader set of op-

erations on relational databases (e.g., manipulating schemas [13]). However, such

functionality is not relevant to this research program.

Data retrieval can be further divided into two basic forms:

1. Non-join query

2. Join-based query
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Typically, join queries are performed by exploiting both primary and foreign keys [13],

though this is not a mandatory requirement. In our research, we will only consider join

queries that do in fact utilize primary and foreign keys. As such, we may primarily

focus on RAIDb-3 data model principles that can then be extrapolated to all possible

types of joins, and not on the implementation complexity that is associated with

non-primary/foreign key joins. Here, by implementation complexity we imply not

only the complexity of the architectural and/or data model but the complexity of the

supporting subsystems, such as the query parser. We note that we will come back to

the case of the more complex queries in the Future Work section.

Below, we fully describe the concept of the RAIDb-3 cluster developed in the

course of this research. We will build on the data manipulation patterns presented in

this section.

3.6.2 Data population

Data population in SQL DBMSes essentially includes two phases:

1. Table creation

2. Filling tables with rows containing data

As we mentioned earlier, full horizontal partitioning - on which our RAIDb-3 is

based - splits tables so that its rows are distributed among nodes. Hence, in order

to accommodate this principle, there should be a number of database back-ends that

contain tables with a structure compatible with that of the original table. Here, by

“compatible structure”, we are referring to the number and type of columns (database

back-end tables may also contain additional internal data values). In order to simplify

the implementation of our RAIDb-3 model, a compatible instance of the original table



40

is created in every database back-end. Instances created in the back-ends are not

an exact copy of the original table due to the presence of internal auxiliary data.

However, the representation of the table in the RAIDb-3 virtual database completely

reflects the structure of the original table.

For example, let’s assume that an SQL client connects to Sequoia and creates the

table CUSTOMER by issuing the statement shown in Listing 3.1.

Listing 3.1: Creating table CUSTOMER

CREATE TABLE Customer ( CustomerId INTEGER GENERATED ALWAYS AS

IDENTITY PRIMARY KEY, CustomerName VARCHAR(64) ,

CustomerAge INTEGER, CustomerSex CHAR(1 ) ,

CustomerProvince CHAR(2 ) , CustomerLocation VARCHAR(64) ) ;

In this case, the RAIDb-3 cluster processes the statement and creates a compatible

CUSTOMER table in every active database back-end.

In order to handle join queries, the RAIDb-3 model must perform additional

processing on the original CREATE TABLE statement. Specifically, it verifies whether

the statement references primary and foreign keys. If primary and/or foreign key(s)

are found in the client request, the RAIDb-3 controller creates a one-column table(s) –

a primary key table if the primary key is referenced in the statement and a foreign key

table if a foreign key is identified. In practice, there can be multiple columns within

a primary or foreign key. However, for the sake of simplicity, we do not consider

such situations. In any case, these one-column tables are created in an internal

database that is physically separate from the data nodes. We discuss the structure

and motivation for this Key Database in Section 3.6.3.

After the table is successfully created, an SQL client may start appending data

to the table by inserting rows. For our RAIDb-3 model the crucial issue at this
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step is whether the table contains primary or foreign keys. If a table has neither

primary nor foreign keys, rows are inserted into the database back-end using a simple

round-robin algorithm. No further operations need to be performed. We chose a

round-robin algorithm because it offers even distribution of data among database

beck-ends. However, in theory, this algorithm might be extended or modified; for

example, by assigning variable weights to database back-ends.

We demonstrate this logic in the following example. We consider the CUSTOMER

table represented in Table 3.1.

Table 3.1: View of virtual database for table CUSTOMER

CUST.
ID

CUSTOMER
NAME

CUST.
AGE

CUST.
SEX

CUST.
PROVINCE

CUSTOMER
LOCATION

0
Jen
Nemhauser

38 M QC Dorval

1
Sydel Jeph-
thah

56 M MN Dauphin

2
Chrystal Nor-
vall

30 F NU Iqaluit

3
Binni Noon-
berg

35 M NL Corner Brook

4
Garland Eat-
ton

38 M NS Halifax

5
Berrie
Fougere

36 F QC Blainville

6
Wenda
Brubaker

71 F ON Stratford

7 Nan Cornell 52 M BC Kimberley

In addition, we extend the example with a RAIDb-3 cluster containing three

database back-ends. Table CUSTOMER is created using a CREATE TABLE SQL statement
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with the form depicted in Listing 3.2.

Listing 3.2: Creating table CUSTOMER in back-end

CREATE TABLE Customer ( CustomerId INTEGER, CustomerName

VARCHAR(64) , CustomerAge INTEGER, CustomerSex CHAR(1 ) ,

CustomerProvince CHAR(2 ) , CustomerLocation VARCHAR(64) ) ;

In the course of processing this statement, our RAIDb-3 implementation creates a

CUSTOMER table in every active database back-end. The table is then populated using

a series of INSERT statements, which have the general pattern shown in Listing 3.3:

Listing 3.3: Generic INSERT statement

INSERT INTO Customer VALUES(0 , ’ Jen Nemhauser ’ , 38 , ’M’ ,

’QC’ , ’ Dorval ’ ) ;

On completion of all the INSERT operations, the individual database back-ends

have the data fragments listed in Table 3.2 - Table 3.4.

Table 3.2: View of database back-end #1 for table CUSTOMER

CUST.
ID

CUSTOMER
NAME

CUST.
AGE

CUST.
SEX

CUST.
PROVINCE

CUSTOMER
LOCATION

0
Jen
Nemhauser

38 M QC Dorval

3
Binni Noon-
berg

35 M NL Corner Brook

6
Wenda
Brubaker

71 F ON Stratford

However, if the original table contains primary and/or foreign key(s), an additional

step is dynamically appended to the procedure described above. Specifically, the

values of primary and/or foreign key(s) are saved in supporting tables in the dedicated



43

Table 3.3: View of database back-end #2 for table CUSTOMER

CUST.
ID

CUSTOMER
NAME

CUST.
AGE

CUST.
SEX

CUST.
PROVINCE

CUSTOMER
LOCATION

1
Sydel Jeph-
thah

56 M MN Dauphin

4
Garland Eat-
ton

38 M NS Halifax

7 Nan Cornell 52 M BC Kimberley

Table 3.4: View of database back-end #3 for table CUSTOMER

CUST.
ID

CUSTOMER
NAME

CUST.
AGE

CUST.
SEX

CUST.
PROVINCE

CUSTOMER
LOCATION

2
Chrystal Nor-
vall

30 F NU Iqaluit

5
Berrie
Fougere

36 F QC Blainville

RAIDb-3 database. We illustrate this step below.

As in the previous example, we consider a RAIDb-3 cluster consisting of three

database back-ends. In addition to the CUSTOMER table illustrated in Table 3.1, we

also include the INVOICE table listed in Table 3.5.

The statement provided in Listing 3.4 is used to create the INVOICE table.

Listing 3.4: Generic INSERT statement

CREATE TABLE Invo i c e ( Invo i c e Id INTEGER GENERATED ALWAYS AS

IDENTITY PRIMARY KEY, InvoiceCustomerId INTEGER FOREIGN

KEY REFERENCES Customer ( CustomerId ) , Invo i c eTota l DOUBLE,

InvoiceTimeStamp TIMESTAMP) ;

To populate the INVOICE table in the virtual database we employ a set of SQL

INSERT statements that use the pattern depicted in Listing 3.5.
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Table 3.5: View of virtual database for the INVOICE table

INVOICEID
INVOICE
CUSTOMERID INVOICETOTAL INVOICETIMESTAMP

0 4 91.89 2016-02-04 09:32:58

1 6 24.81 2017-07-20 20:34:20

2 0 122.63 2008-07-19 23:02:56

3 1 128.8 2016-02-07 14:55:54

4 3 56.25 2015-07-20 09:34:30

5 5 100.00 2014-08-18 08:40:40

6 1 25.50 2017-10-13 12:35:50

7 6 63.40 2017-02-03 15:10:10

8 4 89.66 2016-01-06 14:24:20

Listing 3.5: Generic statement to populate INVOICE

INSERT INTO Invo i c e VALUES(DEFAULT, 0 , 91 .89 , ’ 2016−02−04
09 : 32 : 58 ’ ) ;
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Here, the placeholder DEFAULT is used to allow Sequoia to automatically generate

the values of the primary key. We will return to the topic of primary key genera-

tion and usage in the next section, which is dedicated to a presentation of the Key

Database.

Similar to the case of the the CUSTOMER table, the INVOICE table is horizontally

partitioned among database back-ends as shown in Table 3.6 - Table 3.8.

Table 3.6: View of database back-end #1 for table INVOICE

INVOICEID
INVOICE
CUSTOMERID INVOICETOTAL INVOICETIMESTAMP

0 4 91.89 2016-02-04 09:32:58

3 1 128.8 2016-02-07 14:55:54

6 1 25.50 2017-10-13 12:35:50

Table 3.7: View of database back-end #2 for table INVOICE

INVOICEID
INVOICE
CUSTOMERID INVOICETOTAL INVOICETIMESTAMP

1 6 24.81 2017-07-20 20:34:20

4 3 56.25 2015-07-20 09:34:30

7 6 63.40 2017-02-03 15:10:10

We note the existence of specific columns in CUSTOMER and INVOICE (we prepend

the corresponding table name to the name of the column and use ‘.’ as a delimiter):

• Customer.CustomerID: assigned a primary key constraint, as per Listing 3.1
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Table 3.8: View of database back-end #3 for table INVOICE

INVOICEID
INVOICE
CUSTOMERID INVOICETOTAL INVOICETIMESTAMP

2 0 122.63 2008-07-19 23:02:56

5 5 100.00 2014-08-18 08:40:40

8 4 89.66 2016-01-06 14:24:20

(note that additional syntax is HSQLDB-specific [13]).

• Invoice.InvoiceId: assigned a primary key constraint, as per Listing 3.4

(again, additional syntax is HSQLDB-specific).

• Invoice.InvoiceCustomerId: designated as a foreign key that references the

primary key CustomerId in the CUSTOMER table, as per Listing 3.4.

Considering that both tables contain primary or foreign (or both) key constraint(s),

additional tables are created in the dedicated internal Key Database as follows:

• CustomerPRM: for holding primary key values from the CUSTOMER table - shown

in Table 3.9.

Table 3.9: View of the Key Database for CustomerPRM

PRIMARY KEY

0
1
2
3
4
5
6
7



47

• InvoicePRM: for holding primary key values from table INVOICE - shown in

Table 3.10

Table 3.10: View of the Key Database for InvoicePRM

PRIMARY KEY

0
1
2
3
4
5
6
7
8

• InvoiceFRG: for holding foreign key values from INVOICE - shown in Table 3.11.

Table 3.11: View of the Key Database for table InvoiceFRG

FOREIGN KEY

4
6
0
1
3
5
1
6
4
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3.6.3 Role of the Key Database

In the previous section, we briefly mentioned the Key Database that is used for cases

in which the primary and/or foreign key(s) are defined within the associated tables.

In this section we elaborate on the topic of the Key Database.

Our RAIDb-3 implementation offers row-level distribution granularity among database

back-ends. We showed how data is populated among back-ends in the previous sec-

tion. However, the process of retrieving data from the database back-ends, when row

granularity is required, is not trivial. For the simpler case of non-join queries the

original query can be propagated down to every database back-end and the partial

result data can then be aggregated into a final result.

Such an approach will not work for join queries - which we describe in the next

section - as a retrieval query of this form issued against tables in which rows are

distributed among different database back-end would emit an incorrect result. For

example, we can consider a join operation between tables CUSTOMER (Table 3.1) and

INVOICE (Table 3.5) with a join predicate establishing a relationship between primary

and foreign key as follows: CUSTOMER ID=INVOICE CUSTOMER ID. The result of this

JOIN is depicted in 3.12.

Table 3.12: Result of properly joining INVOICE and CUSTOMER

INV.
ID

INV.
CUS.
ID

INV.
TOTAL

INV. TIMESTAMP
CUST.
ID

CUST. NAME
CUST.
AGE

CUST.
SEX

CUST.
PROV.

CUST. LO-
CATION

0 4 91.89 2016-02-04 09:32:58 4 Garland Eatton 38 M NS Halifax

3 1 128.8 2016-02-07 14:55:54 1 Sydel Jephthah 56 M MN Dauphin

6 1 25.50 2017-10-13 12:35:50 1 Sydel Jephthah 56 M MN Dauphin

1 6 24.81 2017-07-20 20:34:20 6 Wenda Brubaker 71 F ON Stratford

4 3 56.25 2015-07-20 09:34:30 3 Binni Noonberg 35 M NL Corner Brook

7 6 63.40 2017-02-03 15:10:10 6 Wenda Brubaker 71 F ON Stratford

2 0 122.63 2008-07-19 23:02:56 0 Jen Nemhauser 38 M QC Dorval

5 5 100.00 2014-08-18 08:40:40 5 Berrie Fougere 36 F QC Blainville

8 4 89.66 2016-01-06 14:24:20 4 Garland Eatton 38 M NS Halifax
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If, on the other hand we execute this join between fragments of the CUSTOMER

and INVOICE tables, for instance with the fragments stored in database back-end #2

(Table 3.3 and Table 3.7), the result will be represented by the empty set, as there

are no values in column CUSTOMER ID of the CUSTOMER table that match any values

of the column INVOICE CUSTOMER ID in the INVOICE table. This is not the case of

course when the full tables are utilized. However in the distributed database, this

empty set represents one individual partial result which is subsequently aggregated by

the RAIDb-3 controller with partial results obtained from the other database back-

ends, to produce a final complete result (the topic of data retrieval is discussed in the

next section). This final result will be invalid, as the partial result described above

excludes a number of records from the final aggregated result, which otherwise would

be present in the result of the join executed on the original CUSTOMER and INVOICE

tables. To illustrate this outcome, the aggregated result of joining all fragments of

the CUSTOMER and INVOICE tables is shown in Table 3.13. It should be self-evident

that this result is completely inconsistent with the correct result shown in Table 3.12.

In fact, in the absence of explicit support, a join query may only be issued against

tables that contain a complete set of rows in one place (i.e., the tables must completely

reside within one back-end).

Table 3.13: Aggregated result when joining fragmented INVOICE and CUSTOMER

INV.
ID

INV.
CUS.
ID

INV.
TOTAL

INV. TIMESTAMP
CUST.
ID

CUST. NAME
CUST.
AGE

CUST.
SEX

CUST.
PROV.

CUST. LO-
CATION

5 5 100.00 2014-08-18 08:40:40 5 Berrie Fougere 36 F QC Blainville

Here we arrive at a central feature of the current research – the use of an internal
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dedicated database to store tables that contain information on columns participating

in join queries. As noted previously, we specifically limit these columns to primary

and foreign keys. In doing so, we are able to support row granularity while at the

same time maintaining one of the primary features of any DBMS system (i.e., basic

join operations).

With this model, the actual join query is executed on the Key Database tables

only. Results obtained during execution of this supplemental query are then used

to form non-join queries executed against all active database back-ends. Ultimately,

intermediate results are combined and delivered to the SQL client. Note that data

retrieval is examined in detail in the next section.

The proposed RAIDb-3 model has an important implication on data arrangement

within the database back-ends. Specifically, the primary key for each table must be

unique across all active database back-ends. In other words, the primary key must be

assigned globally by Sequoia. This functionality is realized via the direct exploitation

of the Key Database.

As a concrete example, let us assume that the RAIDb-3 controller receives an

INSERT statement for a table containing a primary key, such as the query shown in

Listing 3.6.

Listing 3.6: Example of INSERT statement with primary key

INSERT INTO Invo i c e VALUES(DEFAULT, 0 , 91 .89 , ’ 2016−02−04

09 : 32 : 58 ’ ) ;

Sequoia expects the value of the primary key to be filled with the placeholder

DEFAULT (otherwise an error is returned). The controller then generates an INSERT

statement addressed to the Key Database table – in our case InvoicePRM. The specific
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syntax of this statement forces the DBMS to generate a unique table-wide value for the

primary key in the inserted row. As soon as the row is inserted into the InvoicePRM

table in the Key Database, the value of the auto-generated primary key is fetched and

then used as an explicitly specified primary key value in the INSERT statement that

is generated for the currently selected database back-end (as per the round-robin

distribution). The details of this procedure will be covered in the implementation

section.

In summary, the Key Database plays a crucial role in the realization of the RAIDb-

3 model. It handles two essential tasks:

1. Storage of primary and foreign keys in the related column tables

2. Generation of unique primary keys

With the introduction of the concept of the Key Database, the updated design

structure of Sequoia assumes the form shown in Figure 3.7. Here, the Key Database

is embedded within the Key Manager. Besides managing the Key Database, this

component also handles several miscellaneous functions that will be covered in the

implementation section.

3.6.4 Data retrieval

The standard approach to retrieve data from a relational database is to use a SELECT

statement [13]. Furthermore, as mentioned earlier, SELECT queries can be divided into

two basic forms: Join and Non-join. Join operations are in fact the most difficult part

of query processing within the RAIDb-3 model. This is due to the fact that if join

queries are executed locally on database back-ends and intermediate results are then
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Figure 3.7: Components of virtual database within the Sequoia controller, with
RAIDb-3 extension.
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directly combined into a final result, this final set is likely to be invalid, as records

to be joined may be located on different database back-ends. This shortcoming was

discussed in Section 3.6.3.

3.6.4.1 Non-join operations

Since a non-join query implies the absence of any dependency between columns in

different tables, records can be retrieved directly from the database back-ends and

then combined into a final result. In our RAIDb-3 model, we utilize an approach in

which we first identify the query logic in the WHERE clause of the SELECT statement and

then use it to fetch records. Note that the WHERE clause is associated with the selection

operation in relational algebra. In general, DBMS systems attempt to perform the

selection operation first because, by doing so, the query engine immediately creates

a smaller intermediate set for the subsequent relational operations.

Hence, in order to process a data retrieval query we extract the logic from the

WHERE clause of the original SELECT statement and use it to generate back-end spe-

cific SELECT statements in which the column list is replaced with a ‘*’ wild-card

placeholder. For example, if we consider the Customer table created in Listing 3.2,

the original non-join query might assume the form shown in Listing 3.7.

Listing 3.7: Example of SELECT statemnt

SELECT CustomerProvince , CustomerLocation FROM Customer

WHERE Customer . CustomerAge>=30 AND

Customer . CustomerAge<40 AND Customer . CustomerSex=’M’ ;

Then, the DBMS-generated query issued on all active database back-ends would

become the the query depicted in Listing 3.8.
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Listing 3.8: SELECT statemnt issued on databse back-end

SELECT ∗ FROM Customer WHERE Customer . CustomerAge>=30 AND
Customer . CustomerAge<40 AND Customer . CustomerSex=’M’ ;

Internal queries for database back-ends are executed in concurrent fashion. In-

termediate results are combined in a Sequoia-managed data structure and the final

result is pushed to the JDBC driver in accordance with the original query syntax (i.e,

as shown in Listing 3.7). An illustration of how intermediate results are combined is

given in the next section.

3.6.4.2 Join operations

Processing of join queries involves a number of additional steps. On arrival of the join

query, the RAIDb-3 controller identifies join columns in the query. It then constructs

an appropriate join query for execution on the Key Database. In order to illustrate

the processing logic of the join query mechanism, we will use the previously defined

tables CUSTOMER (Table 3.1) and INVOICE (Table 3.5). For convenience, we illustrate

their creation procedures in Listing 3.9 and 3.10 respectively.

Listing 3.9: Creation of table of CUSTOMER

CREATE TABLE Customer ( CustomerId INTEGER GENERATED ALWAYS AS

IDENTITY PRIMARY KEY, CustomerName VARCHAR(64) ,

CustomerAge INTEGER, CustomerSex CHAR(1 ) ,

CustomerProvince CHAR(2 ) , CustomerLocation VARCHAR(64) ) ;

As per the discussion of the data population process in Section 3.6.2, the following

additional column tables are created inside the Key Database for each of the original

tables - Table 3.9, Table 3.10 and Table 3.11 (note that the square brackets indicate
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Listing 3.10: Creation of table of INVOICE

CREATE TABLE Invo i c e ( Invo i c e Id INTEGER GENERATED ALWAYS AS
IDENTITY PRIMARY KEY, InvoiceCustomerId INTEGER FOREIGN
KEY REFERENCES Customer ( CustomerId ) , Invo i c eTota l DOUBLE,
InvoiceTimeStamp TIMESTAMP) ;

the sole column attribute within the table).

• CUSTOMER: CustomerPRM[PRIMARY KEY]

• INVOICE: InvoicePRM[PRIMARY KEY], InvoiceFRG[FOREIGN KEY]

A join query issued by the client might look like the one in Listing 3.11. (the

details of the join predicate are not important):

Listing 3.11: Join query

SELECT ∗ FROM Invo ice , Customer WHERE

Invo i c e . InvoiceCustomerId=Customer . CustomerId AND

Invo i c e . Invo iceTota l>=50 AND

Invo i c e . InvoiceTimeStamp>=’2016−02−01 00 : 00 : 00 ’ AND

Invo i c e . InvoiceTimeStamp<=’2016−02−28 23 : 59 : 59 ’ AND

Customer . CustomerAge>=30 AND Customer . CustomerAge<40 AND

Customer . CustomerSex=’M’ AND

Customer . CustomerProvince=’QC’ ;

To answer this query, a join operation initiated by the RAIDb-3 controller is

performed between the primary key CustomerId of the table CUSTOMER and the for-

eign key InvoiceCustomerId of the table INVOICE. The controller identifies the key

columns CustomerId and InvoiceCustomerId and generates the Key Database join

query as shown in Listing 3.12.
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Listing 3.12: Join query in RAIDb-3 cluster

SELECT ∗ FROM InvoiceFRG , CustomerPRM WHERE

InvoiceFRG .FOREIGN KEY=CustomerPRM .PRIMARYKEY;

After completing the query on the Key Database, we obtain a complete set of

primary and foreign keys to be included in the final result. If we again consider our

example, then the execution of Statement 3.12 on Table 3.9 and Table 3.11 produces

the result illustrated in Table 3.14.

Table 3.14: Result of executing join on tables CustomerPRM and InvoiceFRG

InvoiceFRG.FOREIGN KEY CustomerPRM.PRIMARY KEY

4 4
6 6
0 0
1 1
3 3
5 5
1 1
6 6
4 4

In the subsequent step, the RAIDb-3 controller retrieves records from the database

back-ends. The controller generates SELECTION queries that fetch only those

records from database back-end tables whose primary/foreign key values exist in

the result set obtained during the previous step.

In terms of our running example, on completion of Statement 3.12, Sequoia re-

ceives the table illustrated in Table 3.14 containing two columns – InvoiceFRG.FOREIGN -

KEY and CustomerPRM.PRIMARY KEY. With this data, the controller then generates two
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non-join queries to be executed on all active database back-ends:

Listing 3.13: Database back-end query for table CUSTOMER

SELECT ∗ FROM Customer WHERE CustomerId IN

(CustomerPRM .PRIMARYKEY) ;

Listing 3.14: Database back-end query for table INVOICE

SELECT ∗FROM Invo i c e WHERE InvoiceCustomerId IN

( InvoiceFRG .FOREIGN KEY) ;

Here, it is important to note that the statements given in Listing 3.13 and Listing

3.14 are not valid SQL statements but symbolic expressions used to better illustrate

the processing logic. In practice, CustomerPRM.PRIMARY KEY and InvoiceFRG.FOREIGN -

KEY are arrays of values and not a simple expression or clause.

To further illustrate this technique we again consider our running example. As

mentioned earlier, Statement 3.13 is executed on fragments of table CUSTOMER. In

practice, this means that it is executed on the following tables: Table 3.2, Table 3.3

and Table 3.4. The results of execution are given in Table 3.15 - Table 3.17.

Table 3.15: Partial results from database back-end #1 for table CUSTOMER

CUST.
ID

CUSTOMER
NAME

CUST.
AGE

CUST.
SEX

CUST.
PROVINCE

CUSTOMER
LOCATION

0
Jen
Nemhauser

38 M QC Dorval

3
Binni Noon-
berg

35 M NL Corner Brook

6
Wenda
Brubaker

71 F ON Stratford
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Table 3.16: Partial results from database back-end #2 for table CUSTOMER

CUST.
ID

CUSTOMER
NAME

CUST.
AGE

CUST.
SEX

CUST.
PROVINCE

CUSTOMER
LOCATION

1
Sydel Jeph-
thah

56 M MN Dauphin

4
Garland Eat-
ton

38 M NS Halifax

Table 3.17: Partial results from database back-end #3 for table CUSTOMER

CUST.
ID

CUSTOMER
NAME

CUST.
AGE

CUST.
SEX

CUST.
PROVINCE

CUSTOMER
LOCATION

5
Berrie
Fougere

36 F QC Blainville

Similarly, Statement 3.14 is executed on fragments of the table INVOICE. Again,

in practice, this means that it is executed on the following tables: Table 3.6, Table

3.7 and Table 3.8. The results of execution are given in Table 3.18 - Table 3.20.

Table 3.18: Partial results from database back-end #1 for table INVOICE

INVOICEID
INVOICE
CUSTOMERID INVOICETOTAL INVOICETIMESTAMP

0 4 91.89 2016-02-04 09:32:58

3 1 128.8 2016-02-07 14:55:54

6 1 25.50 2017-10-13 12:35:50

As was the case with the non-join query, the statements in Listing 3.13 and Listing

3.14 are executed concurrently on the database back-ends. Partial results are returned

and stored within an internal data structure. Once all partial sets have been collected,
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Table 3.19: Partial results from database back-end #2 for table INVOICE

INVOICEID
INVOICE
CUSTOMERID INVOICETOTAL INVOICETIMESTAMP

1 6 24.81 2017-07-20 20:34:20

4 3 56.25 2015-07-20 09:34:30

7 6 63.40 2017-02-03 15:10:10

Table 3.20: Partial results from database back-end #3 for table INVOICE

INVOICEID
INVOICE
CUSTOMERID INVOICETOTAL INVOICETIMESTAMP

2 0 122.63 2008-07-19 23:02:56

5 5 100.00 2014-08-18 08:40:40

8 4 89.66 2016-01-06 14:24:20

results for the root table are aggregated so that a single intermediate table is formed.

The aggregation of Table 3.15 - Table 3.17 therefore produces the CUSTOMER table

depicted in Table 3.21. For the INVOICE table, the intermediate result is obtained by

aggregating Table 3.18 - Table 3.20, as illustrated in 3.22.

Ultimately, these intermediate tables are joined together and the final results are

produced and pushed by the JDBC driver to the client. This final join process is

illustrated in Table 3.23, which represents the result of merging Table 3.21 and Table

3.22. While this running example is somewhat involved, and produces a number of

intermediate tables, the key point is that Table 3.23 contains the same set of rows

as Table 3.12. In other words, the fully distributed RAIDb-3 result on a join query

exactly matches the result produced by a single standalone DBMS.
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Table 3.21: Intermediate aggregation result for table CUSTOMER

CUST.
ID

CUSTOMER
NAME

CUST.
AGE

CUST.
SEX

CUST.
PROVINCE

CUSTOMER
LOCATION

0
Jen
Nemhauser

38 M QC Dorval

3
Binni Noon-
berg

35 M NL Corner Brook

6
Wenda
Brubaker

71 F ON Stratford

1
Sydel Jeph-
thah

56 M MN Dauphin

4
Garland Eat-
ton

38 M NS Halifax

5
Berrie
Fougere

36 F QC Blainville

Table 3.22: Intermediate aggregation result for table INVOICE

INVOICEID
INVOICE
CUSTOMERID INVOICETOTAL INVOICETIMESTAMP

0 4 91.89 2016-02-04 09:32:58

3 1 128.8 2016-02-07 14:55:54

6 1 25.50 2017-10-13 12:35:50

1 6 24.81 2017-07-20 20:34:20

4 3 56.25 2015-07-20 09:34:30

7 6 63.40 2017-02-03 15:10:10

2 0 122.63 2008-07-19 23:02:56

5 5 100.00 2014-08-18 08:40:40

8 4 89.66 2016-01-06 14:24:20
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Table 3.23: Final result after joining intermediate results of INVOICE and CUSTOMER

INV.
ID

INV.
CUS.
ID

INV.
TOTAL

INV. TIMESTAMP
CUST.
ID

CUST. NAME
CUST.
AGE

CUST.
SEX

CUST.
PROV.

CUST. LO-
CATION

0 4 91.89 2016-02-04 09:32:58 4 Garland Eatton 38 M NS Halifax

3 1 128.8 2016-02-07 14:55:54 1 Sydel Jephthah 56 M MN Dauphin

6 1 25.50 2017-10-13 12:35:50 1 Sydel Jephthah 56 M MN Dauphin

1 6 24.81 2017-07-20 20:34:20 6 Wenda Brubaker 71 F ON Stratford

4 3 56.25 2015-07-20 09:34:30 3 Binni Noonberg 35 M NL Corner Brook

7 6 63.40 2017-02-03 15:10:10 6 Wenda Brubaker 71 F ON Stratford

2 0 122.63 2008-07-19 23:02:56 0 Jen Nemhauser 38 M QC Dorval

5 5 100.00 2014-08-18 08:40:40 5 Berrie Fougere 36 F QC Blainville

8 4 89.66 2016-01-06 14:24:20 4 Garland Eatton 38 M NS Halifax

3.7 RAIDb-3 implementation

3.7.1 Introduction

In this section, we cover the implementation specifics of the RAIDb-3 model that has

been integrated into Sequoia. As noted, Sequoia is an open source DBMS with a

license permitting unlimited modification. Furthermore, Sequoia is written in Java

[17] – a mature, well supported high-level object-oriented language that provides for

ease of development and debugging. In fact, the Java SDK already contains a variety

of data structures and a complete stack of tools for working with JDBC connected

databases, including fundamental JDBC driver operations, as well as classes for build-

ing and executing SQL statements.

The original Sequoia implementation was designed for JDK 1.6 (Java SE 6). How-

ever, in the course of this research project we modified Sequoia so that it could utilize

the benefits of JDK 1.8 (Java SE 8). Additionally, the initial Sequoia distribution

used a scripted build procedure that we upgraded to a more robust NetBeans [20]

project. This allowed simpler project management, convenient code manipulation

and efficient debugging and profiling.
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Finally, we note that the implementation of RAIDb-3 affected almost every com-

ponent of the original Sequoia framework depicted in Figure 3.2. Moreover, new

components, including the Key Manager, were created in order to extend the core

functionality of the original system. A source-code of the Sequoia RAIDb-3 project

can be found on https://sequoiara.sourceforge.io/.

3.7.2 Key Manager

The Key Manager is a new component introduced into Sequoia as part of the RAIDb-

3 implementation. The manager’s main responsibility is the manipulation of the Key

Database. Additionally, the Key Manager maintains an internal data structure that

holds the primary and foreign key column indexes for each table that contains such

keys. This information is essential during the processing of the INSERT statement.

On Sequoia launch, the Key Manager establishes a connection to the internal

Key Database, which is hosted on a dedicated HSDLDB node. It uses the Sequoia

infrastructure to accomplish this, obtaining a handle to a JDBC connection of type

java.sql.Connection [18]. The Key Manager utilizes this handle to execute SQL

statements on the Key Database.

3.7.3 Handling CREATE TABLE statements

The original statement must first be pre-processed and then modified as necessary.

The main purpose of statement pre-processing is to strip out all HSQLDB syntax

specifics (e.g., GENERATED ALWAYS AS IDENTITY, which is incompatible with the Se-

quoia statement parser). We perform this step to avoid modifying the Sequoia state-

ment parser itself while, at the same time, preserving the original HSQLDB syntax in

the SQL client. This makes it possible to use the same set of test cases for HSQLDB
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and for Sequoia.

Upon arrival of the CREATE TABLE SQL statement, we first check whether the

table to be created contains primary and/or foreign keys. In order to do so, we add

a supplemental statement parser that ultimately performs statement string analysis

and returns indexes of primary and foreign keys.

This functionality is provided by two methods within Sequoia’s AbstractWriteRequest

class:

• public int GetPkPos(): parses the statement and fetches the index of the

primary key column, if it exists.

• public int GetFkPos(): parses the statement and fetches the index of the

foreign key column, if it exists (in this research we only consider the case of

a single foreign key; however our prototype can also be extended to support

multiple foreign keys without changing the architecture).

For example, assume we have the statement shown in Listing 3.15.

Listing 3.15: Arbitrary CREATE TABLE statement

CREATE TABLE Invo i c e ( Invo i c e Id INTEGER GENERATED ALWAYS AS

IDENTITY PRIMARY KEY, InvoiceCustomerId INTEGER FOREIGN

KEY REFERENCES Customer ( CustomerId ) , Invo i c eTota l DOUBLE,

InvoiceTimeStamp TIMESTAMP) ;

In this case, we receive the following results after calling GetPkPos() and GetFkPos():

GetPkPos() --> 1;

GetFkPos() --> 2;
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These operations are encapsulated within the Key Manager method CreatePkFk:

public void CreatePkFk(AbstractWriteRequest aRequest) throws SQLException

In cases where the original statement contains either a primary or foreign key,

(i.e. either call to GetPkPos() and GetFkPos() returns a positive non-zero integer),

the Key Manager performs additional operations to store these indexes and to create

appropriate tables in the Key Database. Below we consider both scenarios.

1. Statement contains primary key - GetPkPos()>0.

Here, the Key Manager prepares the SQL statement to be executed on the Key

Database, as shown in Listing 3.16.

Listing 3.16: Key Manager CREATE TABLE statement for primary key

CREATE TABLE name of the tablePRM ( primary key INTEGER

GENERATED ALWAYS AS IDENTITY PRIMARYKEY) ;

In this case, name of the table is the name of the table extracted from the

original CREATE TABLE statement and suffix PRM – standing for “primary” - is

appended to this name. Special syntax specific to HSQLDB [13] is used in order

to automatically generate the value of the primary key during the INSERT oper-

ation. The statement is then executed on the Key Database or, to be more pre-

cise, on the Connection handle to the Key Database (with the help of the Java

JDBC classes [18]). This is simply executed as: Statement.executeUpdate()

2. Statement contains foreign key – GetFkPos()>0.

In this second case, the Key Manager prepares the SQL statement depicted in

Listing 3.17 to be executed on the Key Database:
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Listing 3.17: Key Manager CREATE TABLE statement for foreign key

CREATE TABLE name of the tableFRG ( f o r e i gn k ey INTEGER) ;

Similar to the case of the primary key, the name of the table is extracted from

the original CREATE TABLE statement and the suffix FRG – standing for “foreign”

- is appended to the name string. Ultimately, the statement is executed on the

Key Database in the same manner as that of the primary key.

Thus, for the sample statement listed in Listing 3.15, the Key Manager would

prepare and execute the statements shown in Listing 3.18 and Listing 3.19.

Listing 3.18: Key Manager CREATE TABLE statement for primary key

CREATE TABLE InvoicePRM( primary key INTEGER GENERATED ALWAYS

AS IDENTITY PRIMARYKEY) ;

Listing 3.19: Key Manager CREATE TABLE statement for foreign key

CREATE TABLE InvoiceFRG ( f o r e i g n k ey INTEGER) ;

In terms of primary and/or foreign key indexes, they are stored within the Key

Manager class using a hashmap-based data structure [18]. In this case, the table

name is used as a key and the primary/foreign key column indexes are stored in the

value structure. The usage of a HashMap container is ideal in this context as we can

guarantee that identical table names do not exist. Lookup time complexity for the

standard HashMap is O(1) in the average case.

After setting up the Key Manager, the RAIDb-3 controller initializes the database

back-ends. In order to do so, the Request Manager deletes any constraints (such as

primary or foreign keys) from the original CREATE TABLE. This is consistent with the

general RAIDb-3 design in that values for primary keys are globally assigned by the
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Key Manager. This approach prevents unnecessary database consistency checks, as

well as allowing the DBMS to use different database back-ends to store tables with

foreign keys, as well as the table containing the primary key that the foreign key

references. Ultimately, the modified statement is propagated to the SQL driver by

the Load Balancer and executed on each data back-end.

Therefore, if we consider the original CREATE TABLE statement given in 3.15,

the modified statement produced by the Request Manager and propagated to each

database back-end by the Load Balancer assumes the following form:

Listing 3.20: Processed statement

CREATE TABLE Invo i c e ( Invo i c e Id INTEGER, InvoiceCustomerId

INTEGER, Invo i c eTota l DOUBLE, InvoiceTimeStamp TIMESTAMP) ;

To summarize the basic logic of the CREATE TABLEmechanism, the workflow of the

CREATE TABLE statement is depicted in Figure 3.8. From an architectural perspective,

we can graphically illustrate the process of handling the RAIDb-3 CREATE TABLE

statement in Figure 3.9.

3.7.4 Handling the INSERT statement

As was the case with CREATE TABLE, processing of INSERT statements is heavily de-

pendent upon whether the underlying table contains primary and/or foreign keys. In

the case where the table from the INSERT statement contains neither a primary nor

a foreign key, there is no modification of the original statement, and it is passed di-

rectly to the Load Balancer component of the RAIDb3 engine, which then propagates

the statement to the JDBC driver where it is executed on the appropriate database

back-end.

In the design section, we pointed out that records for each table are inserted as
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Figure 3.8: The CREATE TABLE statement workflow.
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Figure 3.9: The CREATE TABLE statement processing overview.
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per a round-robin distribution algorithm. This logic is implemented in the RAIDb-3

Load Balancer. The Load Balancer monitors all active back-ends and, more impor-

tantly, tracks the back-end that was used last for an INSERT operation on a given

table. For this purpose the Load Balancer utilizes a data structure based on Java’s

ConcurrentHashMap [18]. In this case, the table name is used as a key and an iterator

pointing to the last database back-end involved in the INSERT operation is stored in

the value structure. Every time the INSERT is received, the iterator obtained from

ConcurrentHashMap is incremented in a circular manner. In this way, the round-robin

distribution of records among database back-ends is achieved.

The ConcurrentHashMap is a subclass of HashMap and in our context provides in-

sert and lookup time complexity of O(1) in the average case. In addition to the com-

mon benefits of the ConcurrentHashMap, we note that it also provides for improved

concurrency performance. Specifically, retrieval operations on this data structure do

not entail locking [18]. This is quite important considering that INSERT statements

are executed in concurrent fashion on the database back-ends. Figure 3.10 provides

a simple illustration of the ConcurrentHashMap used by the Load Balancer.

Figure 3.10: Data structures of the round-robin distribution implementation in the
Sequoia controller
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In the subsequent step, the controller performs additional processing of any con-

straints defined on the respective tables. Information about constraints is obtained

from the Key Manager through calls to GetPkPos() and GetFkPos(). For each con-

straint type, there is unique logic that we describe below.

1. Table contains primary key: Before propagating the INSERT statement to the

RAIDb-3 Load Balancer and to the appropriate database back-ends, the DBMS

must update the Key Database in the Key Manager. As pointed out in the pre-

vious section, primary keys are generated internally by Sequoia and are unique

among database back-ends. This is achieved via auto-generated primary key

values in the Key Database.

Consequently, when an INSERT statement for a table containing a primary key

arrives, the Key Manager prepares the following statement for execution - List-

ing 3.21.

Listing 3.21: Key Manager INSERT statement for primary key

INSERT INTO name of the tablePRM VALUES (DEFAULT) ;

Here, name of the table refers to the name of the table extracted from the

original INSERT statement. The suffix PRM is appended to this name so that

the statement can be executed on the previously created primary key table. In

place of actual values, we are using the placeholder DEFAULT. Again, this is the

HSQLDB specific syntax [13] which, when coupled with appropriate syntax in

the CREATE TABLE statement, forces the DBMS to produce unique column-wide

values for this record.

In order to execute Statement 3.21 we use the JDBC function executeUpdate()
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[18], with the additional argument Statement.RETURN GENERATED KEYS:

SqlStatement . executeUpdate ( ”INSERT INTO ”+aRequest .

getTableName ( )+gPrmSuffix+” VALUES (DEFAULT) ; ” ,

Statement .RETURNGENERATEDKEYS) ;

This particular argument permits fetching auto-generated values on successful

completion of statement execution. In this way, we obtain a primary key value

that is unique across database back-ends. However, this value needs to be

embedded into the original INSERT request which will then be propagated to

the RAIDB-3 Load Balancer and eventually to the appropriate database back-

end. We accomplish this by post-processing of the original INSERT statement

string.

It is important to note that in order to allow the Key Manager to successfully

process the INSERT statement for tables containing the primary key, the value

of the primary key in the original statement must not be fixed but instead rep-

resented by the placeholder DEFAULT. If this rule is not followed, the transaction

fails. Of course, this DEFAULT placeholder is replaced by the generated value

before being passed to the RAIDb-3 Load Balancer.

2. Table contains foreign key: In contrast to primary keys, foreign keys are not

generated by Sequoia’s RAIDb-3 system but are instead extracted from the

original INSERT statement and subsequently inserted into the foreign key table

of the Key Database. In order to extract the value of the foreign key from the

original INSERT statement, we utilize information about the foreign key column

index in the Key Manager, as well as additional string processing on the original

INSERT statement.
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On successful foreign key value extraction, the Key Manager prepares the state-

ment shown in Listing 3.22 to be executed on the Key Database:

Listing 3.22: Key Manager INSERT statement for foreign key

INSERT INTO name of the tableFRG VALUES (value ) ;

Here, name of the table is the name of the table extracted from the original

INSERT statement. The suffix FRG is appended to this name so that the state-

ment can be executed on the previously created foreign key table. Furthermore,

“value” in the clause VALUE is only shown to better illustrate the basic principle.

In practice, a prepared statement is used instead. No return value is collected

for this statement. Note that the foreign key in the original statement is not

modified in any way.

In order to demonstrate the core idea we will use the same table INVOICE from

the previous example. We append a record to this table in the SQL client as shown

in Listing 3.23.

Listing 3.23: Inserting record into table INVOICE

INSERT INTO Invo i c e VALUES(DEFAULT, 8 , 91 .89 , ’ 2016−02−04

09 : 32 : 58 ’ ) ;

The INSERT statement forces the Key Manager to execute two statements on the

Key Database. Examples of the these statements are depicted in Listing 3.24 and

Listing 3.25.

For the primary key:

Listing 3.24: Inserting primary key in Key Manager

INSERT INTO InvoicePRM VALUES (DEFAULT) ;
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and for the foreign key:

Listing 3.25: Inserting foreign key in Key Manager

INSERT INTO InvoiceFRG VALUES (8 ) ;

Furthermore, the Key Manager modifies the original statement so as to explicitly

indicate the value of the primary key - Listing 3.26.

Listing 3.26: Modified original INSERT statement

INSERT INTO Invo i c e VALUES(10 , 0 , 91 . 89 , ’ 2016−02−04

09 : 32 : 58 ’ ) ;

Here the value “10” implies that the primary key was obtained in the course of

execution of Statement 3.24 and that the DBMS hosting the Key Database generated

this value.

The basic workflow for the INSERT statement is depicted in Figure 3.11. From

an architectural perspective, the (simplified) process of handling the INSERT query

in RAIDb-3 is illustrated by Figure 3.12. In Figure 3.12, numbers in ‘()’ denote the

process sequence number.
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Figure 3.11: INSERT statement workflow.
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Figure 3.12: INSERT statement processing overview.
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3.7.5 Handling the SELECT statement

Implementing SELECT functionality is the most complex part of RAIDb-3. Besides

adding new features to Sequoia, it was necessary to modify several fundamental com-

ponents of the system. Considering the RAIDb-3 objectives, the operation of retriev-

ing data from database back-ends can and should be implemented in a concurrent

manner. We therefore implemented the respective functionality within the RAIDb-3

Load Balancer component.

We note that the original Sequoia DBMS contains basic data management prim-

itives such as task structures and a task queue that are based on a thread pool

construct. These primitives allow us to build a concurrent RAIDb-3 data fetching

mechanism in which queries are executed asynchronously by placing the respective

query task into a task queue, thereby allowing the partial results to be joined together

within a thread-safe result container.

3.7.5.1 RAIDb-3 Load Balancer

The RAIDb-3 Load Balancer implementation utilizes a task class that extends the

original Sequoia structure. This class houses the query to be executed on the database

back-ends. The Load Balancer uses a round-robin algorithm to ensure that data is

distributed evenly among database back-end nodes. In order to retrieve data from all

database back-ends, the concurrent RAIDb-3 Load Balancer issues common queries

to all relevant back-ends. In short, the Load Balancer generates as many query tasks

as there are active database beck-ends.

During this process, a query task object is added to the task queue immediately
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after its creation. The function that adds a task to the task queue returns imme-

diately, without waiting until execution of the embedded query completes. As soon

as the task object is placed into the task queue, the supporting thread-pool begins

execution of the task. Therefore, if we have a RAIDb-3 cluster consisting of three

database back-ends, and the master node that receives and processes the user query

runs on appropriate hardware and operating system (e.g., a computer with three cores

or three CPUs), retrieval from all database back-ends can be accomplished in parallel.

Note that the task object contains an internal data member that maintains inter-

mediate results obtained during execution of a query on a given database back-end.

However, once execution completes this intermediate result needs to be merged into

the data structure representing the full result from all database back-ends. Tasks

executing on distinct back-ends may of course complete their execution at differ-

ent times. That said, there is a possibility that at least two tasks might complete

execution at the same time. Therefore, while designing the result data structure

we include locking mechanisms to preventing data corruption due to simultaneous

writing. Finally, besides aggregating partial results, our aggregation structure –

RaControllerResultSet - supports the joining of results for two tables. We elaborate

on the functionality of the result data structure later in this chapter.

Prior to its propagation to the RAIDb-3 Load Balancer, the original query un-

dergoes significant processing. In fact, the functionality involved in this processing

greatly depends on the type of query – whether this is a non-join or join query.

3.7.5.2 Non-join SELECT statement

Handling of non-join SELECT statements is relatively straightforward. The Request

Manager receives the original SELECT query from the SQL client and then passes
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it to the Key Manager. In addition, the Request Manager processes the statement

string and evaluates the length of the table list. For non-join statements, the table

list should not be larger than one. If the Key Manager determines that the query is a

non-join, it performs no further processing but appends it to the empty result array

and returns it back to the Request Manager.

The Request Manager iterates through the received array of SELECT queries –

which is of size one for a non-join query – and propagates each query down to the

RAIDb-3 Load Balancer. This latter component concurrently executes the queries on

data back-ends. The final result is sent to the JDBC driver which, in turn, returns it

to the SQL client.

3.7.5.3 Join SELECT statement

Similar to the previous case, the Request Manager passes the SELECT statement to

the Key Manager, which examines the table list of this statement. A join SELECT

statement is performed on two tables. Consequently, the Key Manager begins the

additional processing associated with handling join queries.

Specifically, it initializes a lookup table in which it binds the name of that table

with the constraint type. As we mentioned earlier, we only consider joins between

primary and foreign keys. As such, the Key Manager determines what type of con-

straint – primary key or foreign key - corresponds to each table in the table list. To

do this, the Key Manager analyses the original statement string. We consider, for

example, two tables created as per Listing 3.27 and Listing 3.28.:
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Listing 3.27: Creation of table CUSTOMER

CREATE TABLE Customer ( CustomerId INTEGER GENERATED ALWAYS AS
IDENTITY PRIMARY KEY, CustomerName VARCHAR(64) ,
CustomerAge INTEGER, CustomerSex CHAR(1 ) ,
CustomerProvince CHAR(2 ) , CustomerLocation VARCHAR(64) ) ;

Listing 3.28: Creation of table INVOICE

CREATE TABLE Invo i c e ( Invo i c e Id INTEGER GENERATED ALWAYS AS
IDENTITY PRIMARY KEY, InvoiceCustomerId INTEGER FOREIGN
KEY REFERENCES Customer ( CustomerId ) , Invo i c eTota l DOUBLE,
InvoiceTimeStamp TIMESTAMP) ;

Then, we issue the JOIN SELECT query as in Listing 3.29.

Given this scenario, the Key Manager would create the lookup table shown in

Table 3.24.

On the subsequent step, the Key Manager generates the JOIN statement to be

executed on the Key Database. The Key Manager does this is the following manner.

1. It extracts the names of the tables involved in the JOIN operation from the

original query.

Listing 3.29: Arbitrary join SELECT query

SELECT ∗ FROM Invo ice , Customer WHERE
Invo i c e . InvoiceCustomerId=Customer . CustomerId AND
Invo i c e . Invo iceTota l>=50 AND
Invo i c e . InvoiceTimeStamp>=’2016−02−01 00 : 00 : 00 ’ AND
Invo i c e . InvoiceTimeStamp<=’2016−02−28 23 : 59 : 59 ’ AND
Customer . CustomerAge>=30 AND Customer . CustomerAge<40 AND
Customer . CustomerSex=’M’ AND
Customer . CustomerProvince=’QC’ ;
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Table 3.24: Key Manager constraint map

Table Constraint used in join

Invoice Foreign key
Customer Primary key

Thus, if our running example is considered, the results for Listing 3.29 are:

Invoice and Customer.

2. It consults the lookup table in order to determine the constraint type that

corresponds to the relevant table and appends the appropriate suffix to the

table name. A suffixed table name corresponds to one of the tables in the Key

Manager database.

For our example the information about constraint type is acquired from the

lookup table depicted in Table 3.24. The following table name transformations

are performed:

Customer → CustomerPRM

Invoice → InvoiceFRG

3. Using information about the constraint types, the Key Manager builds a JOIN

predicate by equating the relevant primary key column with a foreign key col-

umn.

For our example the Key Manager determines primary/foreign key columns as

follows:

Customer → CustomerPRM → PRIMARY KEY

Invoice → InvoiceFRG → FOREIGN KEY
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Finally, the query predicate assumes the following form:

InvoiceFRG.FOREIGN KEY=CustomerPRM.PRIMARY KEY

Thus, the general query form produced by the Key Manager can be expressed as

per Listing 3.30.

Listing 3.30: Key Manager join query on key tables

SELECT ∗ FROM table 1PRM INNER JOIN table 2FRG ON

table 1PRM .PRIMARYKEY=table 2FRG .FOREIGN KEY;

We use an INNER JOIN so that the results of the query contain only records

that have matching values in both tables. The results obtained on execution of this

statement include only those primary keys of table 1 and only those foreign keys

of table 2 that correspond to the result expected on execution of the original join

SELECT query on Sequoia’s virtual database.

For our previous example the join statement on the Key Database takes the form

as depicted in Listing 3.31.

Listing 3.31: Key Manager JOIN query on tables InvoiceFRG and CustomerPRM

SELECT ∗ FROM InvoiceFRG INNER JOIN CustomerPRM ON

InvoiceFRG .FOREIGN KEY=CustomerPRM .PRIMARYKEY;

Execution of Statement 3.30 produces a table of two integer columns. Specifically,

one column corresponds to the primary key of one source table joined on its primary

key – we call it the primary key set. The second column corresponds to the foreign

key of the second source table joined on its foreign key – we call it the foreign key

set.

As soon as the result from the Key Database arrives, the Key Manager prepares
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two non-join SELECT queries, which include an IN predicate on the values correspond-

ing to the primary or foreign key set, one for each table from the original SELECT

query. A generic query format can be specified as in Listing 3.32 and Listing 3.33.

Listing 3.32: Querying primary keys

SELECT ∗ FROM t ab l e 1 WHERE t ab l e 1 . primary key IN (

(UNNEST(? ) ) ;

Here, the IN predicate contains the values of the primary key set.

Listing 3.33: Querying foreign keys

SELECT ∗ FROM t ab l e 2 WHERE t ab l e 2 . f o r e i g n k ey IN (

(UNNEST(? ) ) ;

In this case, the IN predicate contains the values of the foreign key set.

When generating these queries we use HSQLDB-specific syntax for the predicate

IN [13] - UNNEST allows us to use an array for the IN predicate value. This syntax is

intended to be used with prepared statements where a variable length array of values

of type java.sql.Array [18] can be used as the parameter. Additionally, the Key

Manager performs filtering of the original SELECT query in order to remove primary

and foreign key predicates from the WHERE component, as well as keeping only those

predicates that are relevant to the respective table. Thus, if we consider the original

join SELECT example in 3.29, the two corresponding non-join queries generated by the

Key Manager take the form given in Listing 3.34 and Listing 3.35.

Listing 3.34: Database back-end query for table INVOICE

SELECT ∗ FROM i n v o i c e WHERE i n v o i c e . i nvo i c e cus tomer id IN (

(UNNEST(? ) ) ) AND Invo i c e . Invo iceTota l>=50 AND

Invo i c e . InvoiceTimeStamp>=’2016−02−01 00 : 00 : 00 ’ AND

Invo i c e . InvoiceTimeStamp<=’2016−02−28 23 : 59 : 59 ’ ;
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Listing 3.35: Database back-end query for table CUSTOMER

SELECT ∗ FROM customer WHERE customer . customerid IN (

(UNNEST(? ) ) ) AND Customer . CustomerAge>=30 AND

Customer . CustomerAge<40 AND Customer . CustomerSex=’M’ AND

Customer . CustomerProvince=’QC’ ’ ;

We note that in order to support our approach, we had to modify the original

Sequoia SelectRequest class that represents the SELECT query so as to allow for the

capture of the array associated with the IN predicate. Ultimately, each generated

non-join query represented by the SelectRequest class is saved in a result array

alongside the respective array of primary or foreign keys from the corresponding

primary or foreign sets.

The Request Manager receives the array of SELECT queries for the individual

tables, iterates through this array – which is of size two for a join query – and delivers

each query to the RAIDb-3 Load Balancer that concurrently executes them on the

data back-ends. Intermediate results for each query from the array are saved in a

RaControllerResultSet construct. The final result is produced by joining together

all intermediary results in a manner similar to join SELECT. The final query result is

sent to the JDBC driver which then relays it to the SQL client.

The workflow logic for the SELECT statement is depicted in Figure 3.13.

We can generalize the architectural approach discussed in this section with the

illustration in Figure 3.14
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Figure 3.13: The SELECT statement algorithm.
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Figure 3.14: The SELECT statement processing overview.



86

3.7.5.4 RaControllerResultSet – RAIDb-3 result data structure

In the course of the discussion above, we have mentioned a specially designed data

structure called a RaControllerResultSet that is used to store, aggregate, and join

intermediate results, as well as generating the final query result. Below, we describe

the features of this data structure in detail.

The RaControllerResultSet class stores a representation of the result obtained

during execution of the SELECT statement. This includes result metadata such as the

data type of the result columns, as well as the actual data. Metadata is saved within

an array of fields [18]: ArrayList<Field>.

while the actual data is saved in a HashMap [18]:

HashMap<Integer , ArrayList<ArrayList<Object>>>

Here, the key is represented by the value of the constraint – a primary or foreign

key depending on the structure of the join query. We introduce a new term - “match

column” - which denotes the column containing the constraint on which the original

SELECT query is performed .

For example, if we consider query 3.34, we know that the constraint used in the

original SELECT statement 3.29 for the INVOICE table is Invoice.Invoicecustomerid.

Therefore, values of column Invoice.Invoicecustomerid are used as keys in the

HashMap and the column Invoice.Invoicecustomerid is a match column.

The value in the HashMap is represented by an array of rows which, in turn, is also

an array of Objects [18]. This is the case because of the fact that for a given key in

the HashMap, its value may contain more than one row.
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In addition, the RaControllerResultSet contains several additional data mem-

bers that are responsible for synchronizing access to RaControllerResultSet inter-

nals, as well as storing internal states and data.

We designed the RaControllerResultSet with the intent to accomplish a number

of tasks, including:

1. Aggregating intermediate result data from the database back-ends. As we stated

above, we designed the Load Balancer so that SELECT queries are issued on all

active database back-ends and execution is performed concurrently. Intermedi-

ate results are then aggregated into one result set. The last step is performed

by the RaControllerResultSet Append() method.

The operation itself is rather straightforward. Simply put, metadata is initial-

ized with data contained in the argument of the Append() on the first invocation

of this method. This is the case because aggregation is performed on the results

of a query issued for the same table metadata. The array housing the actual

result data is also extended with rows obtained from the argument passed to

this method. In order to avoid data corruption, both operations are protected

by Java synchronization mechanisms.

The functionality of the Append() method of the RaControllerResultSet is

illustrated in Figure 3.15. Note that CustomerId is a match column.

2. Joining result data of two tables. When the Request Manager processes a

JOIN SELECT query, it creates two non-join queries to be executed on all active

database back-ends. In the course of execution of these queries, intermediate

results of execution for each respective table are aggregated (as described above)
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Figure 3.15: The Append() method.
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into two set of results. These two sets need to be joined into a final single result.

This function is carried out by the RaControllerResultSet Join() method.

Joining is implemented as follows. In its initial state, the RaControllerResultSet

contains a fully aggregated result for one of the tables from the original SELECT query

(i.e., the result obtained by execution of Query 3.32). Just before calling Join(),

the Request Manager receives the fully aggregated result for another table from the

original SELECT query (i.e., the result of execution of Query 3.33). The Key Manager

uses the latter as an argument in the call to Join(). The RaControllerResultSet

first merges the metadata of the two result sets. To do so, it simply extends the

existing ArrayList [18] with fields from the argument metadata. The process of joining

the metadata is illustrated in Figure 3.16.

Figure 3.16: Application of the method Join() to metadata.

Finally, in order to join the result data, the RaControllerResultSet iterates

through the values of the existing data members in the HashMap. On each iteration,

the key value is extracted and used to fetch its matching value from the argument
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data member. Fetching is performed with O(1) time complexity. If the argument

data member exists for a given key, the RaControllerResultSet performs a merge

of two arrays of rows – one array is from the existing RaControllerResultSet and the

second is from the argument passed to Join(). Time complexity of this operation is

O(n×k), where n and k are the sizes of the arrays. When the RaControllerResultSet

finishes iterating through the internal data member, it will contain the final result of

joining the two tables. Figure 3.17 illustrates this concept.

In the initial version of the RaControllerResultSet, we experimented with two

constructs provided within Java and intended for executing off-line join SELECT queries

– the CachedRowSet and JoinRowSet [18]. However, our tests showed unacceptable

performance by these constructs, even for moderate sizes of input data (1000-10000

records). Unfortunately, we were unable to further investigate these two classes as

their source code is not provided within the Java API. Furthermore, according to

the Java API documentation [18], they are subject to possible deprecation in future

versions of the JDK. Consequently, we chose to implement our own mechanism to

join the result sets.
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Figure 3.17: Illustration of the RaControllerResultSet Join()
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3.7.6 Additional extensions

In the previous sections, we have covered the principle implementation steps relevant

to the RAIDb-3 design. However, we note that the complete implementation was

considerably broader and includes modifications or new developments in many other

components of Sequoia. This include (but is not limited to):

• Modifying the management of virtual database schemas.

• Adapting the Sequoia driver interface so as to provide for

integration of the RaControllerResultSet.

• Modifying classes responsible for representing SQL statements: CREATE TABLE,

INSERT, SELECT.

• Extending the Task Manager with the ability to process SELECT queries con-

currently.

3.8 Conclusion

In this chapter we have provided a detailed overview of the existing Sequoia infras-

tructure, as well as an in-depth description of the implementation of the RAIDb-3

model in Sequoia. Specifically, we elaborated on the following topics:

• Motivation and concept of the RAIDb-3 model.

• Design considerations for RAIDb-3.

• Details of the implementation of the key components of the model.

In the next chapter we will present a series of experimental results that illustrate

the capability of the core design, as well as limitations in the current prototype.



Chapter 4

Evaluation

4.1 Introduction

In this research we set an objective to design a distributed DBMS built on the prin-

ciples of table-row granularity among the supporting database back-ends. We called

this model RAIDb-3. In previous chapters, we thoroughly examined the core design

principles as well as the implementation specifics of RAIDb-3. However, to properly

ground the research we need to answer questions about how well the model performs

in comparison to standard DBMSes in terms of common factors that affect perfor-

mance.

In our evaluation, we in fact distinguish between two performance aspects: quali-

tative and quantitative. Below, we elaborate on both of these issues.

4.2 Preliminaries and test environment

Given the focus on distributed databases, our performance evaluation requires reason-

ably large data set populations. In order to generate such sets we developed a C++

application (SqlGen) that generates script files containing both SQL statements and

random data (we will cover the structure of this data in later sections). The size and

93
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the structure of the generated data can be adjusted through parameters described in

Table 4.1.

Table 4.1: SqlGen command line parameters

Parameter Meaning

–customernum Number of rows in table CUSTOMER

–invoicenum

Number of rows in table INVOICE. This table is created
to support joins with the CUSTOMER table. The parame-
ter can have a zero value; in this case, no INVOICE table
is generated by the script.

–ratio

Number in interval (0; 1] that defines the maxi-
mum size of a subset of uniformly-distributed primary
keys from the CUSTOMER table (i.e. subset size =
number of primery keys × ratio) which can be refer-
enced in table INVOICE.

In addition, we use SQLTool, a JDBC compatible console client to connect to

Sequoia and to execute statements from the script file. SQLTool provides several

convenient features such as measuring the time of execution and saving query results

into external files. SQLTool is shipped alongside HSQLDB [13].

Tests were performed on conventional hardware. In this case, we used a machine

equipped with an AMD Ryzen CPU [4] with eight physical cores (architecturally al-

lowing us to run two simultaneous threads on each core) and 32 Gb RAM running

under the Fedora 29 [10] Linux operating system. We acknowledge that this en-

vironment does not necessarily represent enterprise level data management systems

equipped with considerably more powerful hardware and, as such, might not precisely

reflect results for extremely large data populations of 10-s and 100-s of millions of
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records. That said, it is quite capable of adequately evaluating data sets and query

forms relevant to the objectives of this research.

As a final point, we note that in this work we did not evaluate more complex

use cases such as: (1) running a whole system or its parts on virtual machine(s),

or (2) exploiting distribution across a network (i.e., where one or several database

back-ends are located on remote network nodes). In terms of the later, we note that

this does negatively impact the current test results as communication costs can not

be amortized across the network fabric.

4.3 Qualitative and quantitative performance eval-

uation

Because the model proposed in this research is novel in its design, there is no existing

test set that can be directly used to assure the validity of the RAIDb-3 cluster. As

such, it is imperative that we be able to assess the quality and correctness of the

results returned by the Sequoia RAIDb-3 cluster.

Fortunately, ensuring the validity of the data, in the current context, at least,

is rather straightforward and can be accomplished by simply comparing the results

returned by the RAIDb-3 cluster with the results returned by a reference standalone

DBMS (e.g., HSQLDB) for the same data set. We verify correctness for all queries

used in our evaluation.

For the case of quantitative evaluation, we examine how well the RAIDb-3 model

performs when compared with a conventional DBMS such as HSQLDB. Presently,

there are a few well-established techniques designed to evaluate DBMS performance.

A brief review of these techniques is listed in [28]. In most cases, each evaluation
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mechanism proposes certain performance metrics and establishes benchmarks that

are then used to evaluate various aspects of the DBMS.

One of the most universal evaluation solutions is offered by TPC – Transaction

Processing Performance Council [30]. TPC has developed a suite of benchmarks for

transaction processing and database performance analysis. Each individual bench-

mark targets specific application-dependant areas such as virtualisation, big data,

decision support, etc. From the wide range of benchmarks, TPC-H [31] can be con-

sidered as the most relevant to our research.

TPC-H is a decision support benchmark that consists of a suite of business oriented

ad-hoc queries. Data and queries were selected so as to have broad industry-wide

relevance. The TPC-H benchmark operates on large volumes of data (millions of

records) and executes queries with a high degree of complexity. TPC-H uses the

TPC-H Composite Query-per-Hour Performance Metric (QphH@Size) to evaluate

performance.

As we mentioned above, TPC-H is a suite of queries. Unfortunately, some of the

queries comprising TPC-H may not be used with the current RAIDb-3 model due

to the limitations in the prototype implementation. For example, many of the TPC-

H queries are join SELECT queries that involve more than two tables and/or have

WHERE clauses containing numerous conditions that are not necessarily established

between primary and foreign keys. These factors prevent us from using the full

TPC-H benchmark directly. However, we developed a reduced version of the TPC-H

benchmark that allows us to evaluate the core elements of the RAIDb-3 model.

Below are the two primary features of our evaluation technique, as derived from

the TPC-H framework:



97

• Usage of a single SELECT query in two scenarios – non-join and join queries.

• Measure of time consumed by execution of query (Te) as a metric of performance

(instead of the more complex QphH@Size).

In our evaluation we strive to follow the general TPC-H approach of designing

relatively complex queries. We evaluate performance for various data population sizes.

Additionally, we examine performance for different RAIDb-3 cluster configurations

(i.e., for different database back-end counts – 3, 6 and 13).

Ultimately, in order to measure query time we follow the approach proposed in

[12]. To be precise, we run every query ten times and measure elapsed time. Final

results are averaged. We do not need to use external methods of measuring query

time, as HSQLDB’s SqlTool offers this functionality. A more advanced technique is

proposed in [26], and takes into consideration a wide range of factors such as I/O and

network time. However, due to the complexity of this measurement technique, we do

not employ that approach at the current time.

In terms of the RAIDb-3 model, there are two key test cases - non-JOIN and

JOIN query; therefore, we will consider a number of scenarios that include:

• Non-JOIN SELECT queries on arbitrary data sets for cases of 3, 6 and 13 database

back-ends in a RAIDb-3 cluster;

• JOIN SELECT queries on arbitrary data sets for cases of 3, 6 and 13 database

back-ends in a RAIDb-3 cluster.

4.3.1 Non-JOIN queries

For non-JOIN SELECT queries we use a table with the structure described in Table

4.2 (in general, a table can have arbitrary structure).
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Table 4.2: Structure of table CUSTOMER

Column name Column type Constraint type

CustomerId INTEGER Primary key
CustomerName VARCHAR(64)
CustomerAge INTEGER
CustomerSex CHAR(1)
CustomerProvince CHAR(2)
CustomerLocation VARCHAR(64)

Listing 4.1: Statement for creating table CUSTOMER

CREATE TABLE Customer ( CustomerId INTEGER GENERATED ALWAYS AS
IDENTITY PRIMARY KEY, CustomerName VARCHAR(64) ,
CustomerAge INTEGER, CustomerSex CHAR(1 ) ,
CustomerProvince CHAR(2 ) , CustomerLocation VARCHAR(64) ) ;

The table is created by issuing the SQL statement shown in Listing 4.1.

This table is populated with random data generated by SqlGen. The script es-

sentially contains a series of INSERT statements. Below, an example of one such

statements is provided.

Listing 4.2: Sample of statement used for populating table CUSTOMER

INSERT INTO Customer VALUES(DEFAULT, ’ Jami Byrne ’ , 57 , ’M’ ,

’QC’ , ’Grande−Riv i e r e ’ ) ;

We examine three cases with data populations of 100,000 (we will refer tho this

as Population 1 ), 1,000,000 (Population 2 ) and 10,000,000 (Population 3 ) records.

Additionally, we devise three distinct SELECT queries so as to produce results of

different sizes and, hence, to better substantiate validity of our findings. We refer to

these queries as Query X, Query Y, and Query Z. The queries are shown in Listings

4.3, 4.4, and 4.5.
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Listing 4.3: Query X

SELECT ∗ FROM Customer WHERE CustomerProvince=’NL ’ AND

CustomerAge>37 AND CustomerAge<=39 AND CustomerSex=’M’

AND CustomerLocation=’Mount Pear l ’ ;

Listing 4.4: Query Y

SELECT ∗ FROM Customer WHERE CustomerAge<25 AND

CustomerSex=’M’ AND CustomerLocation=’Nanaimo ’ ;

Listing 4.5: Query Z

SELECT ∗ FROM Customer WHERE CustomerProvince=’QC’ ;

In accordance with our methodology, we evaluate the validity of the results re-

turned by the RAIDb-3 cluster for each query and population. Therefore, we compare

results produced by all tested RAIDb-3 configurations (3, 6 and 13 database back-

ends) with results returned by a standalone HSQLDB. Generalized validity check

results are listed in Table 4.3.

Table 4.3: HSQLDB and Sequoia RAIDb-3 cluster result match

RAIDb-3, 3
back-ends

RAIDb-3, 6
back-ends

RAIDb-3, 13
back-ends

Match with
results from
HSQLDB

✓ ✓ ✓

4.3.1.1 Population 1

For each query type we receive final result sets of the sizes listed in Table 4.4.
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Table 4.4: Size of result sets for test queries

Query type Result set size

X 35
Y 5
Z 7754

After performing a sequence of query executions we obtain quantitative results

listed in the Appendix, in Table A.1 - Table A.3. Table 4.5 summarizes these results.

Table 4.5: Average non-JOIN query execution time for table CUSTOMER containing
Population 1

Database system
Query X
time, ms

Query Y
time, ms

Query Z
time, ms

HSQLDB 35 25 48

RAIDb-3, 3 back-ends 36 24 78

RAIDb-3, 6 back-ends 32 20 77

RAIDb-3, 13 back-ends 29 18 78

4.3.1.2 Population 2

Sizes of the result sets for all respective queries are listed in Table 4.6.

Table 4.6: Size of result sets for test queries

Query type Result set size

X 304
Y 57
Z 76894
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On performing a sequence of query executions we obtain quantitative results listed

in the Appendix, in Table A.4 - Table A.6. Table 4.7 summarizes these results.

Table 4.7: Average non-JOIN query execution time for table CUSTOMER containing
Population 2

Database system
Query X
time, ms

Query Y
time, ms

Query Z
time, ms

HSQLDB 208 152 266

RAIDb-3, 3 back-ends 118 86 430

RAIDb-3, 6 back-ends 91 61 435

RAIDb-3, 13 back-ends 70 46 473

4.3.1.3 Population 3

Table 4.8 lists sizes of result sets for all respective queries.

Table 4.8: Size of result sets for test queries

Query type Result set size

X 3150
Y 611
Z 769776

After performing a sequence of query executions we obtain quantitative results

listed in the Appendix, in Table A.7 - Table A.9. Table 4.9 summarizes these results.
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Table 4.9: Average non-JOIN query execution time for table CUSTOMER containing
Population 3

Database system
Query X
time, ms

Query Y
time, ms

Query Z
time, ms

HSQLDB 1823 1647 2108

RAIDb-3, 3 back-ends 851 693 5929

RAIDb-3, 6 back-ends 535 441 5828

RAIDb-3, 13 back-ends 391 309 6366

4.3.1.4 Discussion

The results obtained in terms of data correctness are perfectly consistent across all

three query tests. Furthermore, we note that this type of analysis was repeated

multiple times throughout the research program.

In the course of the quantitative evaluation we discovered that query execution

performance of the RAIDb-3 controller is significantly affected by the structure of the

query. Below, in Figures 4.1 - 4.3, we provide diagrams that summarize our findings.

The results clearly indicate the performance advantage of the RAIDb-3 controller

over a standalone HSQLDB for Query X and Query Y (i.e., the queries that return

relatively small result sets). In particular, we can observe a trend that relative RAIDb-

3 query execution performance increases with population size growth (e.g. a RAIDb-3

configuration with 13 back-ends on execution of Query Y gives a 3.3 times advantage

over HSQLDB for Population 2 while the same query delivers a 5.33 times advantage

for larger Population 3). In fact, this effect was expected as the horizontal partitioning

design implemented in the RAIDb-3 controller provides for increased parallelism and,

thus, allows the system to deliver better query execution times relative to a standalone

DBMS.
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Figure 4.1: Summarized results for non-JOIN Query X

Figure 4.2: Summarized results for non-JOIN Query Y
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Figure 4.3: Summarized results for non-JOIN Query Z

However, Query Z, which returns a large result set exhibits consistently weaker

results than those for the standalone HSQLDB. In order to study this phenomena, we

introduced extensive instrumentation to Sequoia’s logging subsystem. We extensively

analyzed debug logs and, ultimately, we ran several profiler sessions. Our hypothesis

on results for non-JOIN queries is the following. The RAIDb-3 controller introduces

several overheads when compared to a standalone DBMS, including:

1. Load-balancer overhead associated with the process of selecting the appropriate

database back-end.

2. RaControllerResultSet overhead due to synchronization and aggregation (in-

cluding dynamic memory allocation).

3. Additional query parsing and processing.
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However, results of our analysis consistently showed that total overhead of the

RAIDb-3 implementation does not exceed 20% of total non-JOIN query execution

time. Ultimately, we conclude that the most probable source of performance deteri-

oration for queries returning large result sets is Sequoia’s proprietary JDBC driver.

The driver that is responsible for serialization/de-serialization of the requests, as well

as for communicating with other JDBC entities, does not deem to scale effectively,

leading to a performance bottleneck.

Unfortunately, due to the complexity of the JDBC driver, and the fact that driver

design is not in itself a primary focus of this research, we did not investigate the issue

of improving scalability of the Sequoia’s JDBC driver. However, this might be worth

exploring in a future project.

4.3.2 JOIN queries

In Chapter 3.6, we explained that handling JOIN queries is considerably different

than handling non-JOIN queries. Therefore, we examine this sort of query in detail

in this section.

As we stated earlier, RAIDb-3 currently only supports JOINs between two tables.

Furthermore, a JOIN-predicate may only be defined between the primary key of the

first table and the foreign key of the second table. Hence, in our evaluation we

consider two tables - the CUSTOMER table defined in Table 4.2 and the INVOICE table

shown in Table 4.10.
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Table 4.10: Structure of table INVOICE

Column name Column type Constraint type

InvoiceId INTEGER Primary key

InvoiceCustomerId INTEGER
Foreign key, references column
CustomerId from table Customer

InvoiceTotal DOUBLE

InvoiceTimeStamp TIMESTAMP

The table is created by issuing the SQL statement shown in Listing 4.6.

Listing 4.6: Statement for creating table INVOICE

CREATE TABLE Invo i c e ( Invo i c e Id INTEGER GENERATED ALWAYS AS

IDENTITY PRIMARY KEY, InvoiceCustomerId INTEGER FOREIGN

KEY REFERENCES Customer ( CustomerId ) , Invo i c eTota l DOUBLE,

InvoiceTimeStamp TIMESTAMP) ;

Both tables are populated with random data from the script generated by SqlGen.

An example of the INSERT statement for the CUSTOMER table is listed in Listing 4.2.

An example of the INSERT statement for the INVOICE table is shown in Listing 4.7.

Listing 4.7: Sample of statement used for populating the INVOICE table

INSERT INTO Invo i c e VALUES(DEFAULT, 27 , 16 .39 , ’ 2012−01−23

09 : 17 : 38 ’ ) ;

As with non-join query evaluation, we examine three data population sizes:

1. Population 1 : 10k records in the table CUSTOMER and 100k records in the table

INVOICE.

2. Population 2 : 100k records in the table CUSTOMER and 1M records in the table

INVOICE.
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3. Population 3 : 1M records in the table CUSTOMER and 10M records in the table

INVOICE.

Additionally, by varying the ratio parameter in SqlGen, we further split each

population into three sub-groups for which the ratio R can assume the values: 1.0,

0.5 and 0.01. The parameter R defines the size of the sub-set which is randomly (as

per uniform distribution) filled with primary keys from the CUSTOMER table. This

sub-set is then used to randomly (as per uniform distribution) pick values for the

foreign key in the INVOICE table. In essence, ratio allows us to vary the size of the

JOIN result based on source data, and not only selection predicates.

Ultimately, we devised three distinct JOIN SELECT queries. The queries vary in

the degree of data discrimination and, as such, produce results of different sizes for

the same input. We refer to these queries as Query L, Query M and Query N. The

queries are shown in Listings 4.8, 4.9, and 4.10.

Listing 4.8: Query L

SELECT ∗ FROM Invo ice , Customer WHERE

Invo i c e . InvoiceCustomerId=Customer . CustomerId AND

Invo i c e . Invo iceTota l >120 AND

Invo i c e . InvoiceTimeStamp>=’2016−06−01 00 : 00 : 00 ’ AND

Invo i c e . InvoiceTimeStamp<=’2017−06−30 23 : 59 : 59 ’ AND

Customer . CustomerAge>=30 AND

Customer . CustomerLocation=’ Saskatoon ’ AND

Customer . CustomerSex=’M’ ;
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Listing 4.9: Query M

SELECT ∗ FROM Invo ice , Customer WHERE

Invo i c e . InvoiceCustomerId=Customer . CustomerId AND

Invo i c e . Invo iceTota l >105 AND Customer . CustomerAge>30 AND

Customer . CustomerAge<=39 AND Customer . CustomerSex=’M’ AND

Customer . CustomerProvince=’ON’ ;

Listing 4.10: Query N

SELECT ∗ FROM Invo ice , Customer WHERE

Invo i c e . InvoiceCustomerId=Customer . CustomerId AND

Invo i c e . Invo iceTota l <80 AND

Customer . CustomerProvince=’QC’ ;

Similar to the non-JOIN case, we first verify the validity of the results returned by

the RAIDb-3 cluster for each query and population. Therefore, we compare results

produced by all tested RAIDb-3 configurations (3, 6 and 13 database back-ends)

with results returned by a standalone HSQLDB. Generalized validity check results

are listed in Table 4.11.

Table 4.11: HSQLDB and Sequoia RAIDb-3 cluster result match

RAIDb-3, 3
back-ends

RAIDb-3, 6
back-ends

RAIDb-3, 13
back-ends

Match with
results from
HSQLDB

✓ ✓ ✓
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4.3.2.1 Population 1

Table 4.12 lists result sizes for the tested query types and ratio values. A full set of

test results is provided in the Appendix, in Tables A.10 - A.18. Table 4.13 summarizes

these results.

4.3.2.2 Population 2

Sizes of the result sets for all respective queries and ratio values are listed in Table

4.14. After performing a sequence of query executions we obtain the quantitative

results listed in the appendix, in Tables A.19 - A.27. Table 4.15 summarizes these

results.

4.3.2.3 Population 3

Table 4.16 exhibits sizes of the result sets returned for each query type and ratio

value. On performing a sequence of query executions we obtain quantitative results

listed in the Appendix, in Tables A.28 - A.36. Table 4.17 summarizes these results.
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Table 4.12: Size of result sets for test queries

Query type
Result set size

R=1.0 R=0.50 R=0.01

L 1 1 23
M 143 133 290
N 4130 4143 2176

Table 4.13: Average JOIN query execution time for tables CUSTOMER and INVOICE

containing Population 1

Database system Ratio
Query L
time, ms

Query M
time, ms

Query N
time, ms

HSQLDB
R=1.00 33 55 99

R=0.50 36 53 96

R=0.01 30 48 73

RAIDb-3, 3 back-ends
R=1.00 684 682 749

R=0.50 662 651 723

R=0.01 613 598 661

RAIDb-3, 6 back-ends
R=1.00 811 733 792

R=0.50 759 715 777

R=0.01 760 678 742

RAIDb-3, 13 back-ends
R=1.00 1171 1061 1085

R=0.50 1097 946 983

R=0.01 1029 860 898

Table 4.14: Size of result sets for test queries

Query type
Result set size

R=1.0 R=0.50 R=0.01

L 31 31 35
M 1090 1096 1378
N 41588 41282 44532
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Table 4.15: Average JOIN query execution time for tables CUSTOMER and INVOICE

containing Population 2

Database system Ratio
Query L
time, ms

Query M
time, ms

Query N
time, ms

HSQLDB
R=1.00 246 554 1060

R=0.50 232 557 1046

R=0.01 222 448 814

RAIDb-3, 3 back-ends
R=1.00 8990 8143 8888

R=0.50 8596 7684 8350

R=0.01 6949 6269 6775

RAIDb-3, 6 back-ends
R=1.00 10633 8781 11450

R=0.50 9883 9994 11047

R=0.01 7974 8135 8975

RAIDb-3, 13 back-ends
R=1.00 14554 14785 14736

R=0.50 14434 14170 14585

R=0.01 10065 10357 11779

Table 4.16: Size of result sets for test queries

Query type
Result set size

R=1.0 R=0.50 R=0.01

L 296 322 323
M 11193 10767 10338
N 414306 412478 402778
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Table 4.17: Average JOIN query execution time for tables CUSTOMER and INVOICE

containing Population 3

Database system Ratio
Query L
time, ms

Query M
time, ms

Query N
time, ms

HSQLDB
R=1.00 2697 8038 14037

R=0.50 2674 7622 13992

R=0.01 2547 7274 13252

RAIDb-3, 3 back-ends
R=1.00 128809 102374 108431

R=0.50 124315 97916 106668

R=0.01 96925 76915 83890

RAIDb-3, 6 back-ends
R=1.00 167586 135781 139280

R=0.50 165607 134503 133308

R=0.01 149590 123409 124248

RAIDb-3, 13 back-ends
R=1.00 204385 181030 177768

R=0.50 198552 173287 168177

R=0.01 184024 146489 153044

4.3.2.4 Discussion

Similar to the case of non-JOIN queries, the validity of results is perfectly consistent

among all performed tests. Furthermore, we note that this analysis was repeated

multiple times throughout the research program.

In the course of quantitative evaluation we discovered that the JOIN query execu-

tion performance of the RAIDb-3 controller is inferior to the results demonstrated by

standalone HSQLDB. Furthermore, this observation applies to all tested query struc-

tures, populations sizes and RAIDb-3 controller configurations. Below, in Figures 4.4

- Figure 4.6, we provide diagrams that summarize our findings. We note that in these

diagrams we only depict results obtained for populations with ratio R=0.50; however,

the same patterns are observed for all tested ratios, as per Tables 4.13 - Table 4.17.
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Figure 4.4: Summarized results for JOIN queries for Population 1, R=0.50

Figure 4.5: Summarized results for JOIN queries for Population 2, R=0.50
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Figure 4.6: Summarized results for JOIN queries for Population 3, R=0.50

Similar to the non-JOIN case, we conducted a full analysis of the results, as well

as factors that might affect these results. In order to do so, we again added instru-

mentation logging to Sequoia and then performed analysis of these logs alongside an

examination of profiler sessions. Our findings suggest the following.

1. The Sequoia’s JDBC driver. Our findings for the JOIN case are consistent

with the conclusions we proposed for non-JOINs in which we determined that

Sequoia’s JDBC driver has limited scalability in terms of data throughput.

However, in the JOIN case, the impact of this issue is aggravated by the fact

that the RAIDb-3 model has two stages of data retrieval for JOIN queries. The

first stage occurs within the Key Manager and is executed on the Key Tables,

while the second stage is performed on the data back-ends. Both stages can

involve the transfer of a considerable amount of data and thus performance
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deterioration caused by the JDBC driver may have more severe consequences.

2. The WHERE IN predicate. As per our findings, the JDBC driver has certain

negative impact on overall performance. However, it is not the primary source

of performance deterioration in the RAIDb-3 controller. Our analysis clearly

indicates that the WHERE IN construct utilized in the statement issued by the

RAIDb-3 controller to the data back-ends for JOIN queries - such as in Listing

3.35 - is the major source of performance degradation. An argument of the

WHERE IN clause is an array of integers returned by the Key Manager after

executing a JOIN query on the primary and foreign key tables. This array is

only limited by the composition of the data population and thus can be rather

large (millions of values).

However, processing of a query with such a large and complex predicate seems

to have severe performance implications. To verify this theory, we considered

the case of a simple standalone DBMS and prepared a data population and two

SELECT statements resembling the statement shown in Listing 3.35. The only

difference between the two statements is that one does not include a WHERE

IN predicate, while the second statement includes 1,000,000 element array as

an argument of the WHERE IN. The difference in execution time was by an

order of magnitude - 8444 ms for the statement with the WHERE IN, versus

222 ms for the statement without the predicate.

Indirectly, results of our testing obtained for populations with various ratios sup-

port this theory, as data populations with smaller ratios systematically demon-

strate better performance, as shown in Figure 4.7. We hypothesize that this is

due to the fact that populations with a smaller ratio value produce a smaller
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Key Manager JOIN result set. Consequently, the array in the WHERE IN pred-

icate is smaller as well and, as such, execution of statements similar to Listing

3.35 consume less time.

Figure 4.7: Average query execution time for various ratio rates for RAIDb-3 with 3
back-ends and for Population 2

In order to improve overall RAIDb-3 performance for JOIN queries we would

suggest the following solutions that might become a foundation for future work.

1. Perform optimization of Sequoia’s JDBC driver. This is a rather complex topic

and requires extensive research.

2. Develop an approach, possibly with the support of heuristics, that would allow

optimal generation of data back-end queries. Here, we suggest the following. For
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the cases when a WHERE IN predicate argument array is small (it is still necessary

to determine the exact size), the RAIDb-3 controller utilizes the existing logic.

However, when both the size of the population and the form of the SELECT

query suggests possible performance loss, the Key Manager should generate

data back-end query differently. Specifically, this query should not include

WHERE IN predicate on the array returned by the Key Manager. Instead a

WHERE IN logic should be applied to results returned by data back-ends, as a

final post-processing stage.

4.4 Conclusion

In this chapter we provided an overview of the existing approaches to the evaluation

of DBMSes, as well as, we proposing our methodology to evaluate performance of

the RAIDb-3 model. Then, in accordance with the methodology, we prepared a test

environment and conducted a series of performance experiments.

Based on the results, we demonstrated that correctness of the results returned

by the RAIDb-3 was consistent across all the test cases. Furthermore, we noted

that the RAIDb-3 controller exhibits systematically superior performance relative to

standalone DBMS for non-JOIN queries, particularly for the case of large populations

and a higher degree of distribution (number of data back-ends). However, at the same

time, we observed consistently inferior performance demonstrated by the RAIDb-3

controller relative to standard the DBMS for JOIN queries.

Ultimately, we identified a number of factors that might affect performance of the

RAIDb-3 controller and suggested possible options for future improvement.



Chapter 5

Conclusions

5.1 Summary

In this work, we presented the design and the implementation of the RAIDb-3 model

for full horizontal fragmentation in the Sequoia middle-ware. To that end, we sys-

tematized and summarized present advances and developments, as well as new and

emerging concepts and solutions in the area of distributed databases. We then ap-

plied one specific performance-oriented approach - namely horizontal fragmentation -

to the existing Sequoia middle-ware and developed a data distribution model that we

called RAIDb-3. Our implementation entirely encapsulates the details of the RAIDb-

3 model, thereby allowing transparent integration of horizontal fragmentation into

existing data management systems.

This thesis provides an in-depth description of the proposed RAIDb-3 model, as

well as outlining limitations of the current prototype. Furthermore, it also demon-

strates the viability of the model, using a TPC-H inspired evaluation. Ultimately, we

believe that our work may be extended further, particularly in terms of performance

optimization, and eventually be adapted for in-production usage.

118
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5.2 Future Work

The research described in this thesis exposes considerable possibilities for future work.

As noted earlier, our current implementation is handicapped by certain implementa-

tion constraints. Moreover, its performance is not optimal for some workloads and

query patterns. Thus, we suggest the following possible directions for future exten-

sions and improvements.

1. Support for queries on more than two tables. In order to achieve this, con-

siderable extension of the logic of the Key Manager will be necessary. To be

more specific, for this case the Key Manager should maintain Key Tables for

all involved data tables. A more sophisticated query parser will be required as

well.

2. Permit JOIN queries to be executed on non primary-foreign key attributes. This

functionality, again, will require considerable enhancement of the Key Manager

component. Specifically, the Key Manager will need to maintain Key Tables for

all columns participating in the JOIN. Here, it is important to note that non

primary-foreign key columns are not necessarily of type INTEGER; therefore,

in order to adhere to the principles of the RAIDb-3 model, hashing of non-

integer values will be necessary. Similar to the previous topic, considerable

enhancement of the query parser will be required.

3. Optimization of Sequoia’s JDBC driver. As we mentioned earlier, Sequoia’s

JDBC driver does not scale well for large amounts of data. Thus, improving

performance and scalability of the JDBC driver might be one of the possible

directions for further work.
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4. Optimization of JOIN query processing. We provided one of the possible solu-

tions to improve the performance of JOIN queries in Chapter 4.3.2.4.

5. Parallelization of merge and aggregation. Ultimately, to fully exploit distributed

computing resources, it is necessary to harness the full power of all nodes

throughout the query execution cycle. In particular, we should avoid merg-

ing and aggregating partial results on the front-end node, as this represents a

potential performance bottleneck. Instead, Sequoia could be extended to allow

distributed merging of intermediate results. Such an approach would likely rely

on sorting or hashing algorithms.

This is not an exhaustive list; however, we have outlined what we feel to be the

most important topics.

5.3 Final Thoughts

This thesis represents considerable research and development effort. We began by

reviewing the most significant principles and developments in the area of distributed

databases. We then defined the directions and objectives of the work. In the course

of completion of the thesis we implemented a robust horizontal partitioning model

within Sequoia’s RAIDb controller. Given the significance of distributed databases in

the modern era, we are convinced that our research represents a meaningful addition

to the literature in this area.
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Appendix A

Data tables

Table A.1: Non-JOIN Query X execution times for table CUSTOMER with Population
1 (100k records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 61 34 38 34 32 34 28 33 27 30
RAIDb-3, 3 back-ends 101 30 30 28 31 30 31 29 30 28
RAIDb-3, 6 back-ends 89 25 26 27 27 24 25 26 24 26
RAIDb-3, 13 back-ends 77 22 28 23 24 22 20 27 26 22

Table A.2: Non-JOIN Query Y execution times for table CUSTOMER with Population
1 (100k records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 26 30 28 28 21 21 25 24 22 25
RAIDb-3, 3 back-ends 26 25 24 24 25 24 24 20 22 25
RAIDb-3, 6 back-ends 20 18 18 17 21 19 22 22 21 19
RAIDb-3, 13 back-ends 18 18 16 19 17 17 19 16 19 19
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Table A.3: Non-JOIN Query Z execution times for table CUSTOMER with Population
1 (100k records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 52 42 55 51 53 46 45 47 49 38
RAIDb-3, 3 back-ends 117 68 89 80 71 72 70 75 67 74
RAIDb-3, 6 back-ends 116 70 93 90 71 74 70 63 66 65
RAIDb-3, 13 back-ends 107 78 88 101 76 68 67 67 66 69

Table A.4: Non-JOIN Query X execution times for table CUSTOMER with Population
2 (1M records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 237 200 211 204 208 207 200 206 202 205
RAIDb-3, 3 back-ends 191 116 119 107 101 105 118 118 103 102
RAIDb-3, 6 back-ends 177 83 84 79 75 85 79 83 82 84
RAIDb-3, 13 back-ends 156 58 66 58 65 62 57 64 59 57

Table A.5: Non-JOIN Query Y execution times for table CUSTOMER with Population
2 (1M records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 158 146 153 157 151 158 159 150 145 148
RAIDb-3, 3 back-ends 85 85 82 82 79 96 82 86 81 97
RAIDb-3, 6 back-ends 57 65 65 57 54 61 55 64 67 62
RAIDb-3, 13 back-ends 51 51 44 47 48 43 44 43 45 45

Table A.6: Non-JOIN Query Z execution times for table CUSTOMER with Population
2 (1M records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 272 267 305 244 256 254 292 250 259 256
RAIDb-3, 3 back-ends 538 400 444 434 439 404 416 411 408 415
RAIDb-3, 6 back-ends 500 398 435 415 449 434 447 422 398 455
RAIDb-3, 13 back-ends 495 452 453 494 486 509 461 485 464 440

Table A.7: Non-JOIN Query X execution times for table CUSTOMER with Population
3 (10M records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 1803 1831 1839 1846 1835 1815 1838 1819 1807 1798
RAIDb-3, 3 back-ends 906 847 843 832 845 832 839 850 842 877
RAIDb-3, 6 back-ends 649 497 539 529 542 558 495 499 505 537
RAIDb-3, 13 back-ends 609 360 367 386 363 362 368 365 379 354
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Table A.8: Non-JOIN Query Y execution times for table CUSTOMER with Population
3 (10M records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 1651 1602 1599 1830 1638 1643 1614 1598 1645 1652
RAIDb-3, 3 back-ends 884 692 635 639 660 698 640 649 702 728
RAIDb-3, 6 back-ends 436 516 416 445 464 416 428 424 423 439
RAIDb-3, 13 back-ends 335 285 336 309 293 319 296 309 302 304

Table A.9: Non-JOIN Query Z execution times for table CUSTOMER with Population
3 (10M records)

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 2214 1975 2219 2149 2150 2189 2049 1959 2135 2036
RAIDb-3, 3 back-ends 6050 5456 5990 6059 6395 6005 5807 6035 5657 5837
RAIDb-3, 6 back-ends 6006 5295 6464 6068 5865 6008 5576 5639 5963 5395
RAIDb-3, 13 back-ends 6783 6308 6525 6220 6402 6472 6208 6335 6368 6040

Table A.10: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 1 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 51 31 29 34 27 37 28 33 29 34
RAIDb-3, 3 back-ends 996 678 676 640 686 632 632 649 621 633
RAIDb-3, 6 back-ends 1227 845 821 853 790 789 709 684 678 716
RAIDb-3, 13 back-ends 2156 1190 1109 1055 1042 1068 1020 1024 1008 1039

Table A.11: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 1 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 63 58 58 51 53 63 56 46 56 47
RAIDb-3, 3 back-ends 686 678 671 687 663 678 674 702 696 687
RAIDb-3, 6 back-ends 802 700 723 808 720 765 705 688 717 705
RAIDb-3, 13 back-ends 1212 1040 1024 1014 1017 1013 1063 1126 1081 1022

Table A.12: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 1 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 100 98 113 100 100 94 97 106 87 101
RAIDb-3, 3 back-ends 763 761 753 757 757 752 732 757 728 732
RAIDb-3, 6 back-ends 787 801 802 783 761 825 809 793 777 789
RAIDb-3, 13 back-ends 1064 1093 1063 1105 1055 1110 1075 1096 1081 1109
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Table A.13: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 1 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 57 41 37 41 34 29 37 32 30 30
RAIDb-3, 3 back-ends 971 664 650 639 663 609 615 612 606 597
RAIDb-3, 6 back-ends 1286 830 735 691 701 722 699 660 641 634
RAIDb-3, 13 back-ends 2057 1130 1032 1001 949 1033 922 910 924 1015

Table A.14: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 1 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 62 60 51 47 59 54 50 50 49 52
RAIDb-3, 3 back-ends 665 646 652 636 640 653 656 667 655 647
RAIDb-3, 6 back-ends 771 684 720 704 696 708 761 685 700 723
RAIDb-3, 13 back-ends 1016 957 931 960 923 936 934 951 927 933

Table A.15: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 1 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 100 95 88 101 94 90 95 102 102 100
RAIDb-3, 3 back-ends 768 742 729 710 708 720 725 711 734 690
RAIDb-3, 6 back-ends 851 758 760 779 791 745 801 764 743 780
RAIDb-3, 13 back-ends 989 1003 982 991 972 971 982 987 981 979

Table A.16: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 1 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 38 31 33 25 27 31 37 23 30 31
RAIDb-3, 3 back-ends 922 620 627 597 605 552 550 557 551 550
RAIDb-3, 6 back-ends 1255 750 695 773 676 729 643 673 710 696
RAIDb-3, 13 back-ends 2140 1027 951 879 889 928 843 859 849 929

Table A.17: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 1 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 53 52 55 45 50 40 52 47 46 46
RAIDb-3, 3 back-ends 626 586 590 600 594 593 593 610 598 599
RAIDb-3, 6 back-ends 749 668 667 645 766 650 696 655 663 626
RAIDb-3, 13 back-ends 880 862 859 857 868 854 869 845 853 860
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Table A.18: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 1 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 80 72 71 80 69 75 72 69 70 72
RAIDb-3, 3 back-ends 696 662 657 666 650 652 661 653 662 653
RAIDb-3, 6 back-ends 736 783 703 818 727 761 720 721 700 756
RAIDb-3, 13 back-ends 875 899 902 898 869 893 929 902 913 900

Table A.19: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 2 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 255 255 240 255 242 241 251 233 242 247
RAIDb-3, 3 back-ends 11408 11545 8945 9610 8595 7813 9132 7608 7518 7730
RAIDb-3, 6 back-ends 14022 14194 11574 10225 10883 10666 8786 8600 8569 8817
RAIDb-3, 13 back-ends 19876 16611 15467 14952 14704 12634 14218 12260 12539 12282

Table A.20: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 2 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 544 549 540 547 558 542 578 560 561 566
RAIDb-3, 3 back-ends 8876 7940 8165 8025 7818 7900 8153 8132 8205 8216
RAIDb-3, 6 back-ends 8841 8687 8831 8875 8646 8877 8732 8661 8824 8838
RAIDb-3, 13 back-ends 20246 17003 15575 15856 13401 12784 15051 12702 12279 12959

Table A.21: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 2 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 1059 1090 1046 1063 1077 1046 1082 1028 1067 1046
RAIDb-3, 3 back-ends 9042 8948 8979 8772 8894 8834 9018 8703 8946 8753
RAIDb-3, 6 back-ends 14604 14621 13356 11919 10418 11138 9363 10297 9444 9344
RAIDb-3, 13 back-ends 20596 17413 16195 15715 12786 13476 12549 12893 12715 13026

Table A.22: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 2 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 263 242 235 228 226 231 226 220 222 228
RAIDb-3, 3 back-ends 10967 11365 8271 8887 8307 7738 7380 8226 7403 7424
RAIDb-3, 6 back-ends 13233 13597 11292 9346 9523 8499 8689 8356 8119 8182
RAIDb-3, 13 back-ends 19830 16855 15084 14441 14057 13931 11961 11798 14676 11713
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Table A.23: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 2 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 551 565 552 566 548 553 569 554 561 553
RAIDb-3, 3 back-ends 7630 7677 7594 7911 7463 7467 7668 7923 7798 7715
RAIDb-3, 6 back-ends 13129 12599 11412 10815 8655 9087 9177 8180 8558 8336
RAIDb-3, 13 back-ends 19080 16207 15230 15097 14099 13959 12082 12228 11631 12088

Table A.24: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 2 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 1082 1092 1021 1024 1055 1052 1029 1036 1043 1034
RAIDb-3, 3 back-ends 8451 8616 8193 8386 7981 8405 8302 8478 8308 8387
RAIDb-3, 6 back-ends 14883 14153 12794 10808 10440 10184 9346 10042 8979 8843
RAIDb-3, 13 back-ends 19541 16898 14938 16235 14452 13451 12357 13370 12346 12262

Table A.25: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 2 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 252 234 220 225 205 221 214 208 225 218
RAIDb-3, 3 back-ends 8784 8297 7266 7374 6047 6843 6787 6017 5969 6109
RAIDb-3, 6 back-ends 10596 9913 8184 7924 7829 8164 6722 7235 6315 6861
RAIDb-3, 13 back-ends 14402 13339 11308 8877 8325 8732 8452 10201 8698 8324

Table A.26: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 2 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 449 431 461 457 445 464 453 458 439 429
RAIDb-3, 3 back-ends 6508 6252 6340 6391 6105 6273 6149 6249 6296 6129
RAIDb-3, 6 back-ends 11005 9710 7968 7963 8278 7676 6910 7814 7585 6445
RAIDb-3, 13 back-ends 14385 13029 10941 10308 10720 8704 10347 8419 8487 8234

Table A.27: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 2 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 812 810 805 827 788 796 873 807 822 803
RAIDb-3, 3 back-ends 6772 6799 6834 6762 6730 6846 6735 6778 6738 6757
RAIDb-3, 6 back-ends 11535 11613 9029 8545 8666 8563 7397 8576 7510 8323
RAIDb-3, 13 back-ends 17561 14433 12225 13486 11321 11226 9015 11107 8676 8743
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Table A.28: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 3 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 2762 2673 2685 2662 2703 2727 2691 2660 2687 2721
RAIDb-3, 3 back-ends 202005 155051 152090 130049 115052 115233 110376 98184 105092 104964
RAIDb-3, 6 back-ends 225361 176946 178369 161852 162789 158124 150458 153852 160127 147985
RAIDb-3, 13 back-ends 264852 228046 198524 200451 195658 192698 201200 181685 185369 195368

Table A.29: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 3 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 8022 7668 7650 7777 7722 7712 7779 7664 10599 7791
RAIDb-3, 3 back-ends 101193 99490 108550 100055 99555 100919 100520 110839 101789 100832
RAIDb-3, 6 back-ends 146662 140533 141989 135875 130874 134984 129785 133256 134856 128997
RAIDb-3, 13 back-ends 198698 194689 190784 178780 175693 177698 185365 169557 171788 167248

Table A.30: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 3 and R=1.00

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 14018 14219 14034 14005 14098 13940 14045 14013 14008 13998
RAIDb-3, 3 back-ends 106028 114089 106107 104539 107028 112924 107349 105855 115293 105105
RAIDb-3, 6 back-ends 157690 140478 144652 132145 144985 139138 135887 130997 134256 132569
RAIDb-3, 13 back-ends 199789 187586 184567 175478 174985 170124 179412 168698 167256 169780

Table A.31: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 3 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 2842 2657 2655 2641 2658 2784 2630 2636 2618 2625
RAIDb-3, 3 back-ends 192492 153630 136361 131432 124048 105758 102573 100704 93709 102443
RAIDb-3, 6 back-ends 218145 190589 169698 177658 178987 162586 135890 148480 141152 132892
RAIDb-3, 13 back-ends 237698 222489 210278 199587 195085 185468 193781 184697 180987 175457

Table A.32: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 3 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 8090 7496 7568 7575 7496 7757 7576 7620 7547 7496
RAIDb-3, 3 back-ends 98144 96555 95722 96999 101535 96752 96280 97474 101461 98240
RAIDb-3, 6 back-ends 148745 135732 135138 137892 129478 137698 121585 132745 136098 129987
RAIDb-3, 13 back-ends 195878 192364 184360 169458 174258 176325 161874 159368 155998 162987
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Table A.33: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 3 and R=0.50

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 14243 13877 13902 13815 14001 14263 13861 14160 13780 14021
RAIDb-3, 3 back-ends 110163 103550 112870 103639 102206 111973 102956 103416 112629 103282
RAIDb-3, 6 back-ends 157895 142987 140685 133138 135895 111586 138168 121586 136254 114890
RAIDb-3, 13 back-ends 191485 185125 174586 161256 168157 167589 165555 159874 155158 152987

Table A.34: JOIN Query L execution times for table CUSTOMER and table INVOICE

with Population 3 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 2712 2527 2498 2569 2559 2512 2496 2493 2539 2565
RAIDb-3, 3 back-ends 141851 117882 106761 98748 93954 83786 83716 86085 81821 74648
RAIDb-3, 6 back-ends 168950 175068 159369 149526 157698 161256 135125 124630 136587 127698
RAIDb-3, 13 back-ends 198256 201125 184368 178258 186789 189785 180214 175451 180001 165998

Table A.35: JOIN Query M execution times for table CUSTOMER and table INVOICE

with Population 3 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 7323 7216 7203 7230 7441 7291 7270 7219 7299 7257
RAIDb-3, 3 back-ends 82343 75381 75864 76455 75412 75636 82263 75742 75350 74710
RAIDb-3, 6 back-ends 135856 129878 125698 121854 110699 125864 119789 121698 125974 116785
RAIDb-3, 13 back-ends 185985 175985 161874 157895 161458 155989 152478 153666 14978 144587

Table A.36: JOIN Query N execution times for table CUSTOMER and table INVOICE

with Population 3 and R=0.01

Database system Query execution time, ms
1 2 3 4 5 6 7 8 9 10

HSQLDB 13180 13442 13340 13233 13146 13348 13163 13147 13403 13123
RAIDb-3, 3 back-ends 81804 80623 82254 90352 81229 82082 88984 81727 80502 89351
RAIDb-3, 6 back-ends 138138 125684 121778 129365 119458 128706 121902 117125 120450 119874
RAIDb-3, 13 back-ends 181210 175478 165245 159780 140458 141152 144789 138635 146548 137148
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