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ABSTRACT 

 

Analysis of the Performance of HOG and CNNs for Detecting Construction Equipment and 

Personal Protective Equipment 

  

Seyedeh Forough Karandish 

Concordia University, 2019 

The construction industry remains one of the most dangerous working environments in terms of 

fatalities and accidents. High numbers of accidents and loss-time injuries, leads to a decrease in 

productivity in this industry. Therefore, new technologies are being developed to improve the safety 

of construction sites. Object detection on construction sites has a huge impact on the construction 

industry. Many researchers studied productivity, safety and project progress. However, few efforts 

have been made to improve the robustness of the related datasets for detection purposes. In the 

meantime, it is noticed that the lack of a custom dataset leads to low accuracy and also an increase in 

the cost and time of training dataset preparation. 

In this research, we first investigated the generation of synthetic images using 3D models of 

construction equipment to use them as the datasets for training purposes, namely: excavators, loaders 

and trucks, and then sensitivity analysis is applied. We compared the performance of CNNs and other 

conventional methods for classifying construction equipment. In the second part, the detection of 

personal protective equipment for construction workers was studied. For this purpose, several object 

detection architectures from the TensorFlow object detection model zoo have been evaluated to find 

the best and most robust detection model. The dataset used in this study contains real images from 

construction sites. The performance evaluation of trained object detectors are measured in terms of 

mean average precision.  The test results from this study showed that (1) synthetic images have a 

significant effect on the final detection results; and (2) comparing various object detection 

architectures, Faster_rcnn_resnet101 was the most suitable model in terms of accuracy of detection. 
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CHAPTER 1  INTRODUCTION 

1.1 General Information 

The construction industry remains one of the most dangerous working environments in terms of 

fatalities and accidents. According to the United States department of labor, the fatal injury rate for 

the construction industry is significant and requires special considerations (Osha Statistics, 2006). The 

report highlights the fact that 252,000 construction sites across the country, with approximately 6.5 

million workers, have higher fatal accidents than the national average of all industries. The immediate 

tragic consequences of such accident on construction sites are the increase in costs and the decrease in 

progress in construction projects. The significance of the special considerations is thus evident. In 

order to tackle this crucial problem, it is important to identify the main causes of the problem in a 

sound and thorough investigation, and then use state-of-the-art technology to remedy the origin.  

A large number of studies have been conducted to identify the roots causes of construction accidents 

(Sawacha et al. 1999). The main focus of these construction accident investigations is to identify what 

type of accidents occur and how they occurred. The empirical factors influencing unsafe behaviors 

and accidents reported in the content of the research are listed as the absence of knowledge or training, 

the lack of supervision leading which leads to the lack of task safety, error of judgement, negligence 

and apathy are just some factors affecting construction safety performance. In addition, most accidents 

may be associated with some type of carelessness and may include unsafe working conditions, 

inappropriate use of tools and/or equipment and lack of personal protective equipment (Sawacha et al. 

1999). However, in order to have a more succinct classification of the original causes, they can be 

summarized in three main categories (Abdelhamid and Everett, 2000). Three root causes of accidents 

fail to identify an unsafe condition, decide to work after the worker identifies an existing unsafe 

condition, and decide to act unsafe regardless of the initial working conditions. Since decision - making 

on the site is outside the scope of this research, the main focus of this research is the first root cause, 

which is the identification of the potential existing unsafe condition. 

This research aims to detect the potential existing hazards on construction sites using state-of-the-art 

technology. In order to achieve this, we have used an automated detection mechanism based on 

Computer Vision (CV) technology to identify potential hazards on construction sites. To achieve this 

objective, the research is divided into the following steps:  
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(1) Collecting, preparing and cleaning the input data, this step also requires labeling to be fed into the 

model; (2) Developing Deep Learning-based models to implement object detection algorithms; (3) 

Checking the output of the implemented models and the accuracy of the results, followed by improvi

ng the model to increase the model's accuracy. 

1.2 Research Objectives 

This research aims to achieve the following objectives: (1) generating synthetic images as the input 

data; (2) Analyzing the performance of equipment detection on construction sites using synthetic and 

real images; (3) improving the safety of workers by detecting their PPEs on construction sites.  

1.3 Thesis Organization 

The thesis structured as follows: 

Chapter 1 Introduction: this chapter introduces the research topic and objectives and presents the 

structure of the thesis. 

Chapter 2 Literature Review: this chapter reviews the existing literature on the impact of CV-based 

methods on safety of construction sites and providing input data. 

Chapter 3 Proposed Methodology and implementation for comparing the performance of CNN and 

Other Conventional Methods for classifying equipment on construction sites using synthetic images: 

this chapter proposes the generation of synthetic images as input data. The factors involved in the 

sensitivity analysis are organized. In addition, different methods are used for the detection of various 

objects on construction sites. The evaluation and performance of object detection methods are tested 

to ensure that detectors are accurate on a real construction project.   

Chapter 4 Comparison of the performance of TensorFlow object detection models for the detection of 

personal protective equipment on construction sites: This chapter consists of the methodology and 

implementation of the proposed strategy, which is presented through case studies and the analysis of 

the collected data. 

Chapter 5 Conclusions and Future Work: this chapter summarizes the present work and concludes the 

findings. This chapter also includes the limitations and future work.  
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CHAPTER 2 Literature Review 

2.1 Introduction 

The present chapter focuses on reviewing the recent deep learning algorithms in the field of Computer 

Vision. First the problem statement is clarified and then the methodologies used in the literatures are 

investigated. We will review how Two Dimensional (2D) images can affect the visual detection 

through computers. Afterwards, the existing research related to object detection and classification on 

construction sites in terms of safety monitoring is comprehensively investigated. Lastly, the limitations 

and concerns of the existing methods are summarized at the end of this chapter.  

2.2 Safety Status and Monitoring in Construction Projects 

By analyzing statistical information of workplace injuries, diseases, and fatalities in the construction 

industry of Canada, it can be clearly seen that construction sites have the highest rate of fatality among 

all other industries. Statistics carried out by the Association Of Workers Compensation Boards Of 

Canada (AWCBC), shows that among all existing industries in Canada, the construction industry has 

the highest rate in total number of fatalities. Figure 2-1 shows the numbers of fatalities in all industries 

in 2016.  

 

Figure 2-1 2016 Lost time claims in Canada (AWCBC Statistics, 2016) 

In terms of the provincial and territorial classification of Canada, the province of Alberta had the 

highest rate of fatalities, whereas Ontario, British Columbia, and Quebec had the maximum number 

of fatalities in the construction industry after Alberta (AWCBC Statistics). Furthermore, the number 

of fatality claims admitted by Workers Compensation Board of Alberta (WCB) raised by 15.2% in 
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2016, from 125 in 2015 to 144 in 2016. More than one third of fatalities and injuries were reported by 

construction and construction trade services. 

2.3 Potential Construction Hazards 

There had been researches investigating a variety of hazards leading to fatalities and injuries in 

construction sites. Table 2-1 demonstrates all types of hazards that can occur on construction sites. 

Accordingly, three main causes of construction accidents at work sites are due to the dynamic nature 

of the work environment on construction sites, the presence of different contractors in the same field, 

as well as the presence of heavy machinery on construction sites. 

1) Construction sites are highly dynamic and changing constantly: by increasing the complexity of 

modern construction projects, there is a higher need of using computers in order to accomplish 

effective planning and management. The computing power of computers can be used to detect and 

automate the danger detection process. Since the environment is changing constantly due to dynamic 

work environment, there is a need for machine learning algorithms combined with Artificial 

Intelligence (AI) in order to detect the objects in the construction site. 

2) Several small contractors may be close to each other and execute different types of work. This 

implies that, there should be a central unit in the construction site to observe the movement of each 

group of workers and machinery at the same time. Otherwise, managing different groups of labors and 

machinery on the same construction environment, working on different projects may cause fatalities 

as well as serious injuries. 

3) The positions and poses of equipments and machineries are frequently changed on construction 

sites. It is important to monitor both the position and poses of the equipments and machineries at every 

point in time. The position and dynamic nature of construction sites were discussed in previous 

research, however the pose of the machinery is also important. Therefore, in order to reduce fatalities 

and injuries on construction sites, which in turn increases the trust and moral of the workers, priority 

should be given to the detection of the placement and positioning of machineries. Nevertheless, new 

hazards are constantly emerging on construction sites (Reese and Edison, 2006). 
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Table 2-1 Potential construction hazards (Reese and Edison, 2006) 

Premature explosions Rollover 

Hand/ arm vibration Gases 

Concrete handling Noise 

Compressed air equipment Cave-in 

Working with sharp objects Burns 

Working without guards Mist 

Carrying heavy materials Fumes 

Wet/ slippery surface Electrocution 

2.4 Existing Safety Practices and Involvement of Technology 

Several studies have been dedicated to developing consistent alert systems to use location information 

for safety improvement for construction work zones. Schiffbauer, (2002) Proposed alert systems using 

RFID or millimeter wave technologies in order to avoid contact between vehicles and workers. 

However, RFID range is limited to 10 to 20 meters. Moreover, RF-based methods, such as cellular-

based systems and sensor-based detection have been tested and used for exchanging the location of 

vehicles via wireless communication. These methods can be useful in small-scale mining sites, but it 

is unpractical to cover the large mining sites, which (Sun et al. 2009; Ni et al. 2014). 

Another research investigated by Teizer, (2008) determined that it is possible to improve construction 

safety through alerting workers on-foot and/or equipment operators in real-time when they are too-

close to an unidentified or other construction recourses by using of remote sensing and proactive 

technologies such as Radio Frequency (RF), Ultra-Wideband (UWB), and imaging technologies. The 

results of the research have shown very promising safety improvement in outdoor construction 

environment. Moreover, the real-time pro-active RF warning and the alert technology was used to be 

effective in aiding the safety needs in the construction environment. Accordingly, several blind spots 

of heavy equipment, such as trucks, excavators, graders were selected, and 3D laser scanner was used 

to measure and take their blind spots. Then, testing was done along with a warning system under ideal 

conditions. When the warning system was activated, the distances among the worker and the 

equipment would be measured by the Robotic Total Station (RTS). This shows the least distances 

expected to bring construction equipment to a fully safe stop condition before accidents occur with the 

workers, crew, or other objects. 
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Similarly, Zhang et al. (2009) suggested a multi-agent system to identify potential accidents or 

conflicts related to movements of equipment on construction sites. Yards (2008) has applied active 

RFID tags to monitor workers as they embark and disembark along the entry bridges to various ships. 

Also, RF-based tags kept significant data about the workers such as pictures and allowed to count 

workers or search and save their personnel life at the time of emergency.  

Another research done by Teizer et al. (2010) depicted two heavy construction equipment and a worker 

in between them. A commercial Three-Dimensional (3D) laser scanner was used to take a dense range 

point cloud with overlaid true color values. Blind spots to an articulated dump truck can then be 

measured using an automated blind spot measurement device. Figure 2-2 illustrates an example of a 

working crew placed in blind spot of a heavy machinery as an example of a possible hazardous 

situation. 

 

 

Figure 2-2 Hazardous situation of worker and equipment measured using a 3D laser scanner (Teizer et 

al. 2010) 

2.5 Productivity Monitoring on Construction Sites 

The construction industry has a substantial role in the economic development of a country. It is also 

illustrated that the construction industry produces about six to nine percent of the Gross Domestic 

Product (GDP) of industrialized countries. Similarly, this industry creates more than half of the fixed 

capital formation as infrastructure and public utilities capital works needed for economic 

development (Chitkara, 1998). Hence, the performance of the construction industry has an important 

influence on the economy. Therefore, research projects had been placed to measure the performance 

of this key factor on GDP. 
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Navon and Shpatnitsky (2005) investigated automated monitoring of road construction by GPS to 

measure the development of a real-time productivity and progress of construction project. The research 

proposed automated project performance control of construction projects. Based on the project 

management’s opinion, a project is a success when all the project performance indicators (PPI) are 

met. As an example, the lowest possible expense with the maximum quality, material consumption, 

and labor productivity without any accidents, can be achieved as quickly as possible. Consequently, a 

control system is vital for project managers. 

Automated Project Performance Control (APPC) and the traditional method of collecting data are two 

proposed methods to enhance the productivity of construction. In the first method, measuring devices 

are used indirectly to evaluate given data such as analog thermometers and the GPS. In the traditional 

approach, data is collected manually, which is inaccurate and time-consuming. These two methods 

were compared from the productivity point of view. A related method to estimate the productivity of 

construction sites, which applies GPS, was proposed by Li et al. (2005). Development of human pose 

analyzing algorithms for the determination of construction productivity in real-time was suggested 

by Peddi et al. (2009). The key point of this research is to classify construction worker poses into three 

categories, namely, effective work, ineffective work, and contributory work. This method was trained 

by neural network classifications to determine the worker’s status. Then, the results of this method are 

compared with incoming images to compare it with the manual method. The integration of 

construction-process simulation and vision-based methods has shown promising results for 

productivity analysis of the earthmoving process in a tunnel. Hence, convolutional neural networks 

(CNNs) used for detection purposes of construction equipment resulted in a mean average precision 

of 99.09% and a context error of 1.6% in the detection of an earthmoving equipment. The context of 

information was used as an input dataset for process simulation. Productivity estimation, cost analysis, 

resource allocation plan, and work schedules were the results of the study of Kim et al. (2018) as 

shown in Figure 2-3. 
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Figure 2-3 Graphical process of CV-based construction productivity (Kim et al. 2018) 

The importance of a visual understanding of productivity measurement is clear from the discussion. 

This research focuses more on this aspect of the on-going attempts toward the effective and optimized 

workplaces in construction fields; however, the focus of visual recognition in this thesis is on safety. 

To reach this goal, this research aims at understanding and utilizing computer vision methods. 

2.6 Computer Vision Techniques  

Researchers in computer vision use mathematical techniques to discover the 3D appearance and 

structure of the objects through images. The goal of computer vision is to establish methods that allow 

computers to see and understand images, analyze them, and finally reach machine vision just like the 

human vision. What differentiates computer vision from the current field of digital image processing is 

a need to extract three-dimensional structures from images with the objective of achieving full scene 

of understanding and analysis. Several attempts were done by researchers in the 1970s, such as, motion 

estimation, optical flow, non-polyhedral and polyhedral modeling, extraction of edges from images, 

and labeling of lines (Szeliski R., 2011). However, afterwards, researchers developed more 

sophisticated mathematical analysis and quantitative approach in the field of computer vision. These 

models include intensities and shading variations, texture and focus, the concept of scale-space 

processing and contour models known as snakes (Yin et al. 2012). Furthermore, the interaction with 

computer graphics increased dramatically in the image-based rendering, panoramic image stitching 

and light-field rendering (Szeliski (2010)). The final movement, which now leads a lot of visual 

recognition, is the application of machine learning to computer vision. Also, computer vision 

occasionally is seen as a part of artificial intelligence which shares other subjects such as pattern 

recognition and learning techniques. Artificial intelligence takes advantage of Neural Networks, which 

is implemented and modeled based on the human brain. The model simulates the brain and uses 

techniques such as deep learning. Deep learning is a process where the machine can learn, and the 

https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Three-dimensional
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process is based on a set of deep neural networks working in a sequence. Hence, the complexity of the 

models pays off with the high accuracy of the result. This makes computer vision a very applicable 

and sophisticated model. Basically, topics that can be covered in the application of Computer vision 

are scene reconstruction, event detection, video tracking, object recognition, object pose estimation, 

learning, indexing, motion estimation, and image restoration. In the following sections, the 

achievement of computer vision and related studies are explained. 

2.6.1 Image Processing  

Image improvement is basically processing images to increase their usefulness. The technologies of 

image processing could be divided into two categories: Image Enhancement and Image Restoration. 

These two technologies are closely related to each other. The procedure of image enhancement is the 

procedure of improving the content of information in the images for human viewers and prepare 

“superior” input for other automated image processing techniques. Hence, this method uses a certain 

performance index to measure the quality of images, and subsequently enhance the quality of the 

images. The principal goal of image enhancement is to change the characteristics of an image to make 

it more applicable for a given task (Maini, 2010). Digital image restoration is the process of taking 

noisy images and estimate the clean, and original image. The main concept of this method is to reduce 

noise and recover resolution loss to restore a better image based on known degeneration models and 

make it more comprehensible for computers (Katsaggelos, 2012). 

2.6.2 Object Recognition 

Object recognition is one of the substantial challenges in the field of computer vision. However, a 

drawback of this method is detecting and localizing objects from different classes such as people or 

cars in the static images. The enormous differences in the appearance of objects in the same category, 

cause difficulty in detection. Even in the same category the diversity in shape and other visual 

properties could have a huge impact on the detection, such as different poses of people or different 

types and colors of cars (Felzenszwalb et al. 2010). Furthermore, it is a challenge to find all the objects 

in the given image and assigning the right label to the object from a set of given labels. The labeling 

problem based on models of known objects can be discussed. Usually, an image containing one or 

several objects of interest based on a set of labels related to a set of models that are identified to the 

system. Each label should be assigned to zones, or a set of zones, in the image. Each zone contains the 

detected object. The challenge might seem trivial for a human being, however, to teach a computer to 
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overcome such a challenge is not as simple. Besides image recognition, there is the segmentation 

problem. Segmentation problem has a very close relation to the object recognition problem. The 

problem is to recognize at least a part of the object in order to complete the segmentation, and without 

segmentation, object recognition is impossible. Since image recognition requires to achieve the 

complete picture after segmentation problem is done. 

Many advanced methods have been introduced for the object recognition problem. Schmid and Mohr 

(1997) used the Harris corner detector to find interest spot, and then generate a local image at each 

descriptor at each interest spot from an orientation-invariant vector of derivative-of-Gaussian image 

measurement. This method is used for robust object recognition by considering various matching 

descriptors that consists of object-based orientation and location constraints in order to detect the 

object. 

Another method proposed by Felzenszwalb and Huttenlocher (2005) discussed the pictorial structure 

models, which focuses on a matching problem, where each part has a separate match cost in a set of 

the neighborhood. In this model, the geometric arrangement was taken by “springs” that are linking 

pairs of parts together, which allows for qualitative definition of appearance and it is useful for generic 

recognition problems. 

In addition, we can categorize the object recognition challenges into 2D and 3D sub-challenges. If the 

object can be seen always in one stable position, then it can be two-dimensional. There are two possible 

scenarios in this case which are: 1) The object will not be occluded, like in remote sensing and 

industrial applications, 2) Objects may be occluded by other objects of interest or be partially visible, 

as in bin of part problems. If the images of objects can be obtained from arbitrary viewpoints, then an 

object may appear very different in its 2D views. 

The perspective effect and viewpoint of the image are two important factors in object recognition 

which have to be considered very carefully. Additionally, another option that can affect object 

recognition is that the models are 3D and the images have only 2D information. Similarly, it is very 

important to consider that objects may be separated from other objects (Jain et al. 1995). 

Based on research of Kanade (2000), multiple detectors can be used for object detection. Therefore, to 

deal with variation in a pose in any category or class, view-based approach can be used with multiple 
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detectors, suggesting that each detector has a specialized angle of the object. This model is commonly 

accepted for various shapes and positions of cars and faces.  

In order to decrease the errors in the object recognition, model parameters have to be selected for 

training. This strategy has a huge improvement on the boundary of negative and positive images (Dalal 

and Triggs, 2005). 

2.7 Model-Based Synthetic Images 

The demand of having a large imagery dataset for developing and testing an algorithm leads to the 

idea of synthetic images as a complementarity of real images. The idea behind synthetic images is to 

generate new images from the current set of images. Since, the more the data, the more accurate the 

result is. In machine learning and AI, it is clear that synthetic images play a key role in data set 

generation.  

The background of Synthetic Image Generation (SIG) modeling was several studies, such as sensor 

design, analyst training, mission rehearsal, algorithm development, and evaluation. One of the most 

important outcomes of SIG modeling tools has been the need for various sets of imagery for training 

of Automatic Target Recognition (ARTs) algorithms (Schott, 1999). 

Shotton et al. (2013) asserted an algorithm for developing body part recognition as an average 

representation of human pose estimation from a single depth image. Therefore, very large amount of 

realistic synthetic images of humans of different shapes and sizes in highly varied poses form the 

datasets used as training dataset. By using computer graphics to synthesize a very large dataset of 

training image pairs, one can train a classifier that estimates body part labels from test images invariant 

to pose, body shape, clothing, and other irrelevances.   

Soltani et al. (2016) suggested a synthetic image technique to track the pose of the equipment for the 

safety and productivity evaluation purposes. Hence, by creating a 3D model of equipment and using 

CV-Based object recognition algorithms, similar equipments in the construction site could be found. 

Additionally, this method has a huge impact on improving the accuracy of object recognition and 

reducing the training time. 

The importance of color in the field of image processing has been always considered as a challenging 

task. Several researchers (Ruderman et al. 1998; Reinhard et al. 2001) investigated on Red Green Blue 

(RGB) channel to create synthetic images by taking one image with another that looks similar. 
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Another main problem in the field of image recognition stems from the measurement of optical flow. 

Hence, using synthetic and real images sequences suggested to evaluate different optical flow 

techniques. The core of this method is to calculate the 2-D motion field projection of the 3-D velocities 

of surface points onto the imaging surface from spatiotemporal pattern of image intensity (Barron et 

al. 1994).  

Colored images and optical flow are not the only challenges researchers have encountered in the field 

of image recognition. The variance between diffuse and specular reflection causes a problem in many 

computervisiontasksThereisa necessity on segmentation to deliver limitation on the diffuse component 

of specular reflections. Hence, to overcome this limitations, color analysis and multi-baseline stereo 

suggest to evaluate the separation and the true depth of specular reflection simultaneously. Therefore, 

to have accurate separation and depth, this algorithm was implemented on synthetic and real image 

sequences, where synthetic images are used to evaluate the ground truth data (Li et al. 2002).  

Image segmentation and grouping remains a challenging problems in the field of CV since the 

perceptual grouping has a significant role in human visual perception. Thus, Felzenszwalb and 

Huttenlocher, (2004) proposed a graph-based segmentation method with the use of local 

neighborhoods in constructing the graph and then implemented the results on both synthetic and real 

images. 

2.8 Application of Computer Vision in Construction Projects 

By reviewing several studies based on the CV methods in construction projects, three categories 

emerged as follows: (1) determining activity and productivity of project; (2) tracking resources in the 

construction site; and (3) monitoring the safety and health of workers in the construction area. The 

highlights and limitations of each category will be discussed in the following. 

1) Application of CV for Monitoring the Productivity of Construction Sites 

New automated methods for productivity estimation aims to detect the types, locations, and activities 

of construction equipment based on sensory data. CV is one of the most promising automated methods 

that provides an affordable opportunity for estimating the productivity of construction sites since it 

only requires regular surveillance cameras for data collection, which are available on many 

construction sites. 
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The availability of the surveillance cameras on construction sites opens the opportunity for applying 

CV-based methods to monitor the productivity of the equipment in addition to monitoring the safety 

and security of the sites (Soltani et al. 2017). 

Zhang et al. (2009) explored CV methods in helping project management to qualify and measure 

progress in their construction projects. Accordingly, an integrated information system was developed 

to control the productivity and improvement of construction through digital images (using a 3D model 

of the building). These images were captured on site for the purpose of semi-automated work progress 

and computing of interim payments along with a warning function system for the potential delays. 

However, the limitation of this method is that it cannot provide a complete picture of work progress.  

Several other approaches have been presented for measuring construction productivity. Choy and 

Ruwanpura (2006) investigated their research on situation-based simulation modeling for construction 

productivity. Other methods using neural network were developed (Chao and Skibniewski, 

1994; Dissanayake et al. 2005). 

2) Object Recognition Methods for Monitoring the Construction Resources 

Productivity improvement is considered as the most important part of construction management. 

Hence, in order to develop the productivity and analyze construction operation, it is important to gather 

information and data about resources in construction sites. Grau et al. (2009) proposed a video 

interpretation method that can automatically extract information about resources in construction sites. 

In essence, video interpretation model was merged with the CV-based hierarchy for analyzing and data 

collection about resources and productivity of construction project. 

Gong and Caldas, (2011) developed a method for object recognition and tracking on the construction 

sites by combining CV with operating process modeling algorithms. According to this research, the 

three main algorithms for object recognition are Background subtraction, Haar features, and color-

based recognition method. 

Background subtraction methods are extensively used for the purpose of object detection from 

cameras (Piccardi, 2004). Several methods for performing background subtraction have been 

proposed, which include mixtures of Gaussian for outdoor scene where light intensity changes 

rapidly (Stauffer and Grimson, 1999), Codebook-based method for scenes with complex moving 
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objects by using filter concepts (Kim et al. 2005), and Bayesian model-based method for foreground 

object recognition from videos which contains complex background (Li et al. 2003). 

Another method that can be suggested for object recognition is Cascade of simple Haar Features (Viola 

and Jones. 2001). The main goal of this method is to divide video images into a set of overlapping 

windows at a different scale and then make a decision whether a window contains a target object or 

not. Moreover, the result of this decision is based on edge features and line features. 

Combination of Haar–Histogram of Oriented Gradients (HOG) and Blob-HOG method together, 

derived a new method for estimating the ability for recognizing heavy equipment such as dump trucks 

in construction sites. Hence, Haar-HoG method contains Haar detectors to speed up classification for 

eliminating most true negative and decrease the number of search windows, then HoG detector is used 

to reject the false alarm and keep true positives. 

In a second approach, a Bayesian-based model was used for foreground and background filter to detect 

both gradual and abrupt movements in captured videos. However, this method creates some noises 

which are eliminated using a predetermined threshold to create unified shape called a Blob. The results 

of this study shows that the two cascade approaches can be beneficial for the application of 

construction management from the productivity point of view, as well as locating resources in the sites, 

and safety. Moreover, Haar-HOG method shows better performance due to higher detection rates and 

lower false positives (Rezazadeh and McCabe., 2011). 

To develop a realistic color-based object recognition, it is vital to understand that light condition, view 

angles, and glare, have a significant impact on object recognition. Gong and Caldas (2011) proposed 

a Gaussian model to represent the color distribution for the safety vests and background scenes by 

using sample pixel for probabilistic estimation and recognition of safety vests and background. Also, 

there are many other color spaces for sample pixels such as Lab, Luv, HSV and the most common of 

them is RGB.   

Another method proposed by Zou and Kim (2007) for accurate analysis of equipment in construction 

sites is using Hue, Saturation, and Value (HSV) color space. Accordingly, the image color space is 

used as the base for image segmentation and tracking algorithm. Moreover, HSV brings huge impact 

over the RGB color space in order to recognize and detect excavators on construction sites. Hue is 

used to distinguish excavators with different colors whereas saturation is used to distinguish an 
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excavator from its background differentiating between light and dark colors. Furthermore, both above 

characteristics are used in simple thresholding and calculating object centroid methods to achieve more 

accurate results when images are colored.  

3) Application of CV for Health and Safety Monitoring in Construction Projects 

To eliminate potential hazard on construction sites, continuous monitoring of unsafe conditions and 

actions is essential. Hence, CV methods have been used for the extraction of safety-related information 

of site from images and videos as a robust and automated field of observation (Seo et al. 

2015).  Generally, unsafe conditions and unsafe acts are two main reasons for accidents. Thus, 

monitoring unsafe conditions and acts plays a key role to prevent resulting safety and health concerns 

by removing them in the process (Hinze and Godfrey, 2003).  

The most important element in construction sites is human’s safety. Thus, one of the fundamental 

equipment for workers in construction sites is a hard hat to protect their life. Detecting hard hats based 

on the real-time surveillance cameras is one of the new topics in CV to address this issue. Figure 2-4 

shows the three main parts of this new method. The first step is to detect the person’s face based on 

the Haar-like face features. The second, shows the skin color detection and motion detection which is 

used to decreasing the false alarm of faces. The third step is using the color information above the face 

regions to detect the hard hat (Du et al. 2011).  
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Figure 2-4 The process of hard hat detection (Du et al. 2011) 

Park and Brilakis (2012) developed a new method for construction worker detection, which localizes 

construction workers in the video frame. Accordingly, they used motion, shape, and color cues to limit 

the detection areas to moving objects, people, and construction workers. The three cues are known as 

background subtraction, HOG and HSV color histogram, which are used in this on-site tracking. This 

method is used for safety management purposes to have onsite tracking of workers on construction 

sites. Figure 2-5 shows the process of this method. Firstly, this method detects foreground blobs where 

objects in motion are expected to be. Given the stable camera views, the variance of pixel values 

among a background model and the incoming frames is the major sign to recognize motion. Secondly, 

it identifies the regions matching to human bodies from the foreground blobs based on their patterns 

of HOG features. Thirdly, the detection regions that effect from the second step are classified into 

construction workers and non-workers. It uses color histograms and a K-Nearest Neighbors (KNN) 

classifier to characterize fluorescent colors of safety gear.  
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Figure 2-5 Automation in construction (Park and Brilakis, 2012) 

 

Han et al. (2011) suggested dimension reduction and kernel Principal Component Analysis (PCA) 

techniques to analyze the behavior and motion of workers during an activity in construction sites. Li 

and Lee (2011) proposed a method on how 3D skeleton video image can be reconstructed within 2D 

skeleton images recorded from two network surveillance cameras. The results of this method shows 

that obtaining 3D skeleton video with coordinates of joints has enough information to be used for 

motion analysis, motion recognition of non-ergonomic issues, such as musculoskeletal disorders, 

motion visualization, postures and movements of workers on construction sites. Han et al. 

(2010) proposed behavioral observation with CV technology to detect unsafe acts. Therefore, CV 

methods for motion detection used to constantly monitor workers’ behavior and automatically analyze 

their level of unsafe acts. 

Teizer and Vela (2009) discussed four tracking techniques, namely density mean-shift, Bayesian 

segmentation, active contours, and graph cuts to determine the most appropriate tracking method for 

automatically tracking workers within construction site by the video camera. Hence, mean-shift 

tracking is a statistical template-based tracking algorithm and is only able to track the overall position 

of the workers. The remaining methods are segmentation-based tracker methods, which is able to track 

the shape of the worker under the appropriate imaging condition. According to Teizer and Vela (2009), 
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Bayesian segmentation has the most promising approach since the boundary of the target region can 

be found more precisely and can achieving more accurate results in image-plane tracking. According 

to Soe et al. (2015), CV-based safety and health monitoring can be divided into three categories based 

on the types of information achieved from collected images or videos: object detection, object tracking, 

and action recognition. Figure 2-6 shows how data can be collected in 2D and 3D images by 

surveillance cameras, portable cameras, flash LADAR, RGB-D Sensors, and stereo vision camera.  

 

Figure 2-6 General framework for CV-based safety and health monitoring (Seo et al. 2015) 

2.9 Deep Learning 

Deep learning is an advanced technology which plays a key role in AI, machine learning, and big data 

and, has shown excellent and robust performance. The idea of deep learning came from the study of 

Artificial Neural Network (ANN). The biological nervous system of an animal brain, formation, and 

function leads to the idea of the NN computing systems. The structure of deep learning, contains 

various layers of simple modules, and a great part of them are applied for learning and several of these 

are used to process non-linear input-output mapping. The architecture of multi-layer learns through 

training data. 

Researchers believed that for the low dimensionality data, it is better to use machine learning and for 

unstructured and high dimensional data, deep learning is recommended (Challet, 2017). Complex deep 

learning models arise from the limitation of the linear model in terms of explaining high dimensional 

complicated representation models. One of the other differences between machine learning and deep 

learning is that machine learning uses single-level representation learning, whereas deep learning uses 

various processing layers to learn the finest features required to signify the data. For more complex 

models with high dimensional data, such as image recognition, text processing, and speech 

recognition, deep learning is a great choice due to the high level of learning (Goodfellow et al. 2016). 

Computation process and big dataset for training models were two main challenges for deep learning 
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in the past. Available open sources dataset, faster processing computing devices, and superior 

performance of GPU plays an important role in deep learning. 

2.10 Neural Networks 

A Neural Network (NN) behaves by acquiring experimental knowledge, through a learning process 

which makes it easy to use due to its parallel distributed processor. A NNs knowledge is stored within 

inter-neuron connection strengths known as weights (Haykin, 2009). Neurons or nodes work together 

to produce an output. The neurons are the basic building blocks of the brain and artificial 

NN.  Identified layers are a mixture of neurons. Each neuron gets their inputs (x) from the sources 

connected with them and multiples it by the weight (w) of its connection and then sums it up as 

illustrated in Figure 2-7. Then, bias is added to this value. The activation function processes this sum 

of weighted connection and the bias. It normalizes the result and outputs it as y. In Deep Neural 

Networks (DNN) there are usually many hidden layers.  
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Figure 2-7 A simple model of artificial neuron (Haykin, 2009) 

2.10.1 Activation Function  

In convolutional neural layers, the activation function is utilized to bring non-linearity to a linear 

output. There are different activation functions in CNNs with different uses, cases and functionality. 

In this research, we focus on the three mostly used activation functions, namely ReLU, tanh, and 

sigmoid. A rectified linear unit (ReLU) is mostly used in CNN architectures and maps only positive 

values, while negative values are mapped to zero. Hyperbolic tangent (tanh) and sigmoid functions are 

correlated activation functions, which usually play a central role in classification problems. The main 

difference between these two is that the sigmoid function maps the values between zero and one, 
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whereas tanh has a range between -1 and 1. Figure 2-8 compares these three activation functions 

(Gomez, 2015). 

 

Figure 2-8 Comparison of sigmoid, tanh and ReLU (Gomez, 2015) 

2.10.2 Fully Connected Layer 

The fully connected layer is one of the topologies in NN connections between layers. As the name indicates, a 

fully connected layer is a layer where each pair of node in this layer is connected. It is common to call a fully 

connected layer a dense layer. In order to extract more complicated features in the learning process, fully 

connected layers will be added to the network. Since in fully connected layers, every two nodes in the layer are 

connected, it helps to find the correlation between every two possible features, and as a result extract more 

complex results. However, this complexity comes at a higher computational cost. Consequently, it is common 

to have only one or two fully connected layers in a neural network structure.  

2.10.3 Backpropagation 

The error in neural networks is the difference between the actual output and the output generated by 

the network. The goal is to reduce the error to the minimum possible value. In order to reduce the 

error, the network updates the weights of the neurons. The backpropagation algorithm is used to solve 

this issue by making the training error as small as possible. This is done by iteratively passing batches 

of data through the network and updating the weights. This mechanism is also known as stochastic 

gradient descent (Goodfellow et al. 2016). 

 2.11 Convolutional Neural Network 

CNNs are an ANN that involves multiple layers of neurons. A typical topology of the CNN consists 

of convolution, nonlinearity, subsampling repeatedly connected with fully connected layers. Modern 
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CNN framework contains many numbers of layers (deep layers) with convolutional and subsampling 

layers followed by one or more fully connected layers. Figure 2-9 shows an input image passing 

through convolutional layers followed by maxpooling layers, fully connected layers, and output layer.  

 

Figure 2-9 A multi-layer convolutional neural network (Krizhevsky et al. 2012) 

The input image is put through the series of convolution and pooling operations followed by the fully 

connected layer to generate the output. To prevent overlaps in CNN, the convolution filter of fixed 

size window is utilized at every point of the image, preventing overlap. Feature maps are the outcomes 

gotten from these filters. Max pooling is used on all positions of these feature maps to decrease the 

dimensionality. Then, the convolution filter is used once again followed by the maxpooling. These 

procedures can be done continuously. Convolutional layers are usually linear; therefore, they may not 

be able to represent feasible nonlinearity. The output layer obtains the data from the fully connected 

layer about the output class related with the score of each class category (Kim, 2017).  

2.11.1 Modern Convolutional Object Detectors Architectures 

A lot of progress has been made in recent years on object detection due to the use of CNNs. In the 

following sections, we are going to introduce the structure of modern object detectors based on three 

networks, namely Faster R-CNN, R-FCN, and Multibox SSD.   

2.11.1.1 Faster Regional-based Convolutional Neural Network 

Two classes of RCNN are Fast RCNN (Girshick, 2015) and Faster RCNN. As the names indicate they 

are aimed at improving the running time of the algorithm, while preserving the accuracy of the model. 

Among all these models, Faster RCNN is becoming the most dominant and popular architecture in 

object detection (Ren et al. 2015). RCNN is built up based on a three-step process. In the first step, the 

algorithm looks for the object in the input image, known as region proposal. In the second step, the 
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CNN starts to perform on top of these detected regions. In the last step, the algorithm runs SVM on 

the CNN output in order to apply classification. In Faster RCNN, the algorithm is applied by only two 

steps. The first step is running over the image to detect and extract the feature maps. Then, the Region 

Proposal Network (RPN), using these featured maps, finds the set of object proposal boxes along with 

their scores. In the second step, the area of the image is extracted and a bounding box with probability 

of accuracy in prediction is added to the image. This is done using the extracted features fed to all 

layers of the network. Finally, it classifies the object and outputs the results. In Figure 2-10, the whole 

process develops on the unique single network that lets the system apply convolutional filters with the 

detection network. It is believed that the Faster RCNN architecture has very promising results on 

difficult object recognition and classification (Geiger et al. 2012). 

 

Figure 2-10 Unified network for object detection applied in faster RCNN (Ren et al. 2015) 

2.11.1.2 Region-Based Fully Convolutional Network 

The Region-based Fully Convolutional Network (RFCN), which includes region proposal and region 

classification, is almost the same as the Faster RCNN, but with a very slight difference. RFCN uses 

features that are taken from the last layer of features preceding region proposals. By using this method, 

it is easier to reduce the amount of memory applied in region computation. Also, other researches 

showed that RFCN combined with Resnet101 feature extractor has better performance compared to 

Faster RCNN (Geiger et al. 2012; Dai et al. 2016). Figure 2-11 illustrates the architecture of RFCN. It 

starts by applying the convolutional filter over the image. Then the feature map is applied to create a 

score of positive-sensitive score maps. After that, the fully convolutional regional proposal network 

(RPN) generates the Regions of Interest (RoI) from the previous layer output (feature maps). Each 
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generated RoI is divided into subregions (bins) as scored maps. In this step, the score of each bin is 

evaluated with the corresponding position of the object. This procedure is repeated to all the bins and 

for all the classes showed in the image.  

When the bins could be modeled accurately enough with the sub-region of the object, the average 

score can be calculated for each class. At the last stage, max pooling is applied. The reason which 

makes RFCN model faster than the Faster RCNN is that RFCN uses fully convolutional network and 

distributes the computation over the networks (Dai et al. 2016).  

 

Figure 2-11 The architecture of RFCN (Dai et al. 2016) 

2.11.1.3 Single Shot MultiBox Detector 

The problem of object detection is solved by a Single Shot multi-box Detector (SSD) architecture 

through a single pass of a feedforward convolutional network. SSD does not produce region proposals 

and resampling of image segments. These two factors make SSD very fast model and help to reduce 

computational time (Fuentes et al. 2017). Also, this model can use feature maps from different 

convolutional layers, which leads to ease of use. 

Moreover, this network generates a huge number of bounding boxes that show the scores of the object 

class in those boxes. Non-maximum suppression is applied to remove boxes under a specific number 

of thresholds. The higher the threshold, the more uncertain detections will be removed without a trial. 

Thus, only the boxes with superior confidence values are used for classification. Compared to the other 

architectures, SSD is faster due to the fact that it does all the steps in one shot. However, the accuracy 

of detection is less than other architectures. The SSD has fixed-size bounding box because its 

architecture is based on the feedforward CNN. Figure 2-12 shows an input image to the SSD 

architecture that passed through a series of the convolutional layers and then down sampled. The output 
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of the last convolutional layer is linked to the SSD layer. Several collections of feature maps at various 

scales are gained from the convolutional layers with the prediction of object classes and a set of 

bounding boxes. The comparison between the predicted box and the ground truth of the object leads 

to find the best one between them and the one with the higher Intersection over Union (IOU).   

 

Figure 2-12 SSD Layers consist of small convolutional layer which is attached on top of base layer 

(Gluon, 2017) 

Gevers and Stokman, (2004) suggested kernel density histogram to contrast high color invariant 

histogram for object recognition by focusing on normalized color RGB against contrast colors which 

is extensively used in computer vision.  

2.12 Feature Extractors 

The object detection model is organized by the combination of meta-architecture including a feature 

extractor and a classifier as shown in Figure 2-13. The main structure of the object detection model is 

based on applying feature extractor to extract the information of the object from the data. In the first 

step, the input image is given to the feature extractor, then in the second step, the extracted features 

from the first step are given to the classifier that categorizes the class and the location of the object 

within the image. 

 

Figure 2-13 Object detection model architecture (Fuentes et al. 2017) 
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The main advantage of feature extractor is that it has a very deep architecture that helps to improve 

the accuracy while simplifying the computational time. There are various feature extractors available 

for object detection namely, VGGNet, ResNet, MobileNet, and Inception, which are considered as the 

most popular feature extractors. However, in this study, we used MobileNet and ResNet feature 

extractors from the above-mentioned meta-architecture.  

2.12.1 Mobile Network 

Mobile network (MobileNet) known for its light network, which is very useful for mobile devices 

embedded systems used in real-time computation. The theory of mobile network architecture relies on 

dividing the typical convolutional filter into two parts. The first part is depthwise convolution, and the 

second part is pointwise convolution. Comparing the computation complexity, the normal 

convolutional filter has more computation complexity than depthwise and pointwise convolutions. The 

computation cost of the convolution depends on various parameters such as the input network (M), 

size of the output network (N), feature map size and the kernel size (D). The computation complexity 

of the normal convolutional filter illustrated in Figure 2-14. The standard convolutional filters in (a) 

are replaced by two layers: depthwise convolution in (b) and pointwise convolution in (c). This 

classification improved the computation speed (Howard et al. 2017). MobileNet uses 3 × 3 depthwise 

separable convolutions which use between 8 to 9 times less computation than standard convolutions 

at the cost of only a small reduction in accuracy. 

 

(a) Standard Convolutional Filters 

 

(b) Depthwise Convolutional Filters 

 

(c) Pointwise Convolutional Filters 

Figure 2-14 MobileNet feature extractor (Howard et al. 2017) 
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2.12.2 Residual Network 

Residual Network (ResNet) is based on residual learning theory. The ResNet is basically a 150-deep 

CNN made by equal "residual" blocks. Network depth is of crucial importance in NN architectures, 

but deeper networks are more difficult to train. The residual learning framework eases the training of 

these networks and enables them to be substantially deeper - leading to improved performance in both 

visual and non-visual tasks. ResNet is considered as record breaker architecture for image 

classification, object detection, and semantic segmentation. With the network depth increasing, the 

augmentation in depth of the deep NN improves the accuracies till some point and after that, it starts 

degradation. Residual learning attempts to simplify this matter of accuracy degradation in NN. The 

structure of the residual network is to use blocks that re-route the input, and add to the concept learned 

from the previous layer. The idea is that during learning, the next layer will learn the concepts of the 

previous layer plus the input of that previous layer. This would work better than just learning a concept 

without a reference that was used to learn that concept. In Figure 2-15, F(X) shows the residual 

function of non-linear CNN layers. In the plain block (a), it is difficult to get identity mapping by 

pushing the residual function to zero. It is easier to get identity mapping in the residual block (b) than 

in the plain block (a) (He et al. 2016). 

 

                                      (a) Plain block                    (b) A Residual block 

Figure 2-15 A residual block, the fundamental building block of residual networks (He et al. 2016) 

2.13 Assessment Criteria 

Various assessment matrices exist in order to measure the performance of machine learning 

algorithms. The object detection model can be used to find the accurate location of the object in 
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addition to recognizing the object itself. The IoU measure, also known as bounding box overlap, is 

popular among other assessment approaches (Everingham et al. 2015). The performance measure of 

the object detection model is quantitative and explains how many objects are detected correctly or 

wrongly (False alarm). The overall quality of the object detection model is calculated in terms of IoU 

and precision. For a large scale multi-class dataset, the mean Average Precision (mAP) is used to 

measure the performance of the method in the whole dataset (Everingham et al. 2010). Apart from the 

accuracy measure, the computation complexity of the model is of main concern. The performance of 

the trained detector on unseen data, training time of the model and processing speed are major issues 

that should to check while selecting the object detection model. 

2.13.1 Accuracy Metrics 

In machine learning, precision and recall are important factors to evaluate the performance of a 

classifier. Precision is the ratio of retrieved items over all the presented items. In the object detection 

case, precision is the sum of the correctly detected objects divided by the total population of the objects 

that are detected by the detector as shown in Equation 2-1. 

  

   Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                          Equation 2-1 

 

Recall is actually calculates how many of positive or relevant items that are captured through labeling 

it as positive (True positive). 

     Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
              Equation 2-2 

 

Another two indices which shows the total performance are F1-score and Accuracy as follow: 

 

F1-score = 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
∗ 2                Equation 2-3 

To understand the terms used in performance measurement, it is important to consider the binary 

classification problem. The output of the classifier is positive or negative based on whether it is 
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classified correctly or not. The detection of the single object can be considered as a classification task. 

The clear and concise way to understand the idea behind the binary classification accuracy measure is 

using the confusion matrix. Table 2-2 shows the confusion matrix, also known as contingency table. 

The true class conditions are the ground truth of the data while predicted class conditions are the 

prediction made by the classifier. The model prediction result will be one of four outcomes, true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). Each instance holds 

two parts, the first part is whether the prediction is true or false, and the second part is the predicted 

class (positive or negative). If the true class conditions and predicted class conditions are matched, it 

is considered as TP. If both the real class and prediction class are negative than the result is considered 

as TN. If the ground truth of the class is positive but the prediction is negative, than this instance is 

called FP. If the prediction is positive but the ground truth is negative than that instance is called FN. 

Table 2-2 The table of confusion matrix 

 

The diagonal from the upper left to lower right is the correct classification. While the other diagonal 

is the false classification. 

The population of positive class (P) is the sum of all positive instances in data, calculated as, P = 

TP+FN. The population of negative class (N) is the amount of real negative instances in data, N = TN 

+ FP. Total population is sum of positive and negative classes, Total (T) = P +N = TP +FN +FP 

+TN. The amount of false prediction is, F = FN + FP. 

Many performance measurement can be calculated based on this contingency table. Table 2-3 contains 

the list of most commonly used metrices and their calculations. The calculation of TPR, sensitivity, 

and recall are same. Also, PPV and precision calculation are same. The accuracy (ACC) is the measure 

of the fraction of correctly predicted instances over total population of instances. The high ACC value 

is always good for the classification model but is not sufficient to prove that the model is performing 

well (Tikkainen, 2014; Adhikari, 2018). 
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Table 2-3 Calculation of various performance metrics based on the confusion matrix 

Term Calculation 

True Positive Rate (TPR), Sensitivity, 

Recall 

TPR = 
𝑇𝑃

𝑃
 = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

True Negative Rate (TNR) TNR = 
𝑇𝑁

𝑁
 = 

𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Positive Predictive Value (PPV), Precision PPV = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Negative Predictive Value (NPV) NPV = 
𝑇𝑁

𝑇𝑁+𝐹𝑁
 

Accuracy (ACC) ACC = 
𝑇𝑃+𝑇𝑁

𝑃+𝑁
 

 

Mean Average Precision (mAP) 

The mAP is an evaluation protocol used by the TensorFlow Object Detection API for the measurement 

and comparison of object detection model accuracy. According to the PASCAL metrics, mAP is 

calculated as the mean of all object classes for the average precision (AP). For each object class, 

average precision is the area under the Precision-Recall curve. The precision-recall curve shows the 

tradeoff between precision and recall for different thresholds. 

Calculating Average Precision (AP) 

In object detection, first the predicted bounding boxes (for all the images) are sorted according to their 

confidence score, and the precision and recall values are calculated for each confidence score. 

Afterwards, a Precision-Recall curve is plotted for each of these precision recall values at different 

scores. As pointed out above, AP summarizes the area under the Precision-Recall curve in one number. 

AP is the averaged precision across all recall values between 0 and 1. However, the PASCAL VOC 

metric is based on interpolated average precision. Interpolated average precision is defined as “the 

mean precision at a set of eleven equally spaced recall levels (Everingham et al. 2010).” AP is 

calculated based on the formula given below: 
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In interpolated AP, precision at each recall level corresponds to the maximum precision across all the 

recall values higher than recall level. Precision at recall is calculated as follows: 

                             

  

2.13.2 Detection Speed 

Computers integrated with high-end GPUs process graphical contents faster than basic computers that 

only have CPUs or less powered graphics card (Murray, 2017). Frames per second (FPS) is the 

frequency of consecutive images, also known as frames, appearing on the display. FPS is the widely 

used metric in broadcasting, films, image and video processing, games, and computer graphics. 

Computation complexity of the model is one of the main concerns in real-time object detection. There 

is no clear answer to how much inference speed is considered real-time detection. However, a model 

is said to be real-time if, its output is faster than or as fast as to the input (Murray, 2017). The inference 

speed of 1 FPS means every second a single frame is displayed and video of 1 minute contains 60 

consecutive frames. The processing time calculation gives the general information about the 

computation complexity of the algorithm. Deep learning frameworks are complex in nature and 

computationally heavy. Hence, it is hard to achieve real-time inference on less powerful devices. We 

considered the FPS as the measure of the computational complexity of the model. As we are running 

all models in the same working environment, the FPS results give a better understanding of 

computation cost of experimented models. We compare the computation complexity of experimented 

object detection detectors during training and evaluation on the test dataset.  

2.14 Overfitting  

The main challenge for the machine learning algorithm is to perform well on unseen data. The ability 

to perform well on previously unseen data or data other than training set is called generalization. The 

generalization error or test error is the expected value of the error measure on new data. For the good 

performance of an algorithm, the generalization error must be as low as possible. The training error 

can be calculated from the training set. The determining factor of the machine learning algorithm is its 

ability to reduce the training error and its generalization gap. Generalization gap is the distance 
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between the training error and test error. Under fitting and Overfitting terms are used to describe the 

machine learning challenges. Underfitting occurs when the model has high training error. Underfitting 

refers to a model that cannot model or generalize training data to new data. Overfitting happens when 

the generalization gap is high. Overfitting is the case when the model performs well on the input (train) 

data but poorly generalize on unseen data. Regularization is a technique used to make modification on 

the learning algorithm to mitigate the test error but not the training error. Regularization attempts to 

construct the model structure as simple as possible to avoid the overfitting effect. The behavior of 

training and test (generalization) error is different at the different levels of model capacity. Capacity 

is the ability of the model to fit the wide range of functions. In the beginning, both the training and 

generalization errors are high. This area is known as the underfitting zone. When the capacity 

increases, the training error decreases but the generalization error starts increasing. At the overfitting 

zone, the training error is lower but the generalization error is higher, making the generalization gap 

bigger. The optimal capacity is the boundary line to distinguish the underfitting zone and overfitting 

zone (Goodfellow et al. 2016). 

2.15 TensorFlow Object Detection API  

The TensorFlow object detection API is an open-source software library released from Google Brain 

team (Huang et al. 2017), which gives access to an open source framework for constructing, training 

and deploying of various object detection models. This library provides numerical computation to be 

used on different devices and servers.  

TensorFlow model zoo provides a collection of detection models pre-trained on the COCO dataset, 

the Kitti dataset, the Open Images dataset, the AVA v2.1 dataset, and the iNaturalist Species Detection 

Dataset. The COCO dataset contains photos of 91 different class of objects with a total 2.5 million 

labeled instances and 328,000 images Lin et al. (2014), Kitti captures locations in Germany in rural 

areas and on highways, consisting of different classes on road environment (Geiger et al. 2012). 

TensorFlow Object Detection API aims to make it easy to construct, train and deploy object detection 

models. 

2.16 Object Classification Descriptors 

The bag of words (BoWs) model is one of the most popular methods for object categorization. The 

ultimate point consists of quantizing each key point extracted into one visual word and then 

representing each image by a visual word histogram. This process of vector quantification enables the 

http://mscoco.org/
http://www.cvlibs.net/datasets/kitti/
https://github.com/openimages/dataset
https://research.google.com/ava/
https://github.com/visipedia/inat_comp/blob/master/2017/README.md#bounding-boxes
https://github.com/visipedia/inat_comp/blob/master/2017/README.md#bounding-boxes
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image to be represented by a histogram of the visual words that is often called bag of words and 

converts the problem of object classification to text classifying problem (Zhang et al. 2010a).  

The idea behind using the Local Binary Pattern (LBP) features is that a face can be considered a micro 

pattern composition. LBP is the first order circular derivative pattern in nature of images, a micro 

pattern generated by the binary gradient direction concatenation. However, the pattern of the first order 

cannot extract more detailed information from the input object. In fact, the operator can capture more 

detailed information about discrimination (Zhang et al. 2010b).  

The Histogram of Oriented Gradients (HOG) is used for the purposes of object detection in computer 

vision and image processing. The technique counts gradient orientation occurrences in localized parts 

of an image. This method is similar to that of edge orientation histograms, scale - invariant 

transformers and shape contexts, but differs because it is calculated on a dense grid of evenly separated 

cells and uses local contrast standardization for higher accuracy (Dalal & Triggs, 2005).  

The VGG-F network is an eight layer deep neural network designed and trained for classification of 

images. The network was trained with gradient descent with momentum on ILSVRC data (Wozniak 

et al. 2018). 

2.17 Summary and Conclusions 

This chapter reviewed the concepts, methods, techniques, algorithms, and technologies involved in 

object detection as a keystone in improving the safety and efficiency of construction sites. While Most 

of the researches only studied the productivity and monitoring resources in the construction sites, the 

safety with its undeniable importance is still suffering from a lack of studies. Furthermore, the 

technologies to reduce potential risks and hazards were discussed in detail as well as safety research 

using computer vision methods. Finally, different object detection technologies were also reviewed 

and evaluated to select the most suitable methods to gain the required information. 
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CHAPTER 3     Comparing the performance of CNN and other Conventional 

methods for classifying equipment on construction sites using synthetic images  

3.1 Introduction 

In the previous chapters we discussed the problem statement and past research approaches. The main 

problem was the high rate of fatalities and injuries on construction sites. Researches and current 

approaches in discussion were going toward automated systems. The objectives are to analyze the real-

time videos of construction sites and detect objects, in order to predict the ongoing hazards or near-

miss events. In this chapter, we will discuss the methodology of this research to achieve the goal which 

is comparing the performance of CNN and HOG for classifying equipment on construction sites using 

synthetic images. 

3.2 Proposed Method 

The result obtained from researches conducted about construction sites showed the significance of 

real-time analytics and detection of the potential hazards. In order to reduce the collisions between 

construction equipment, machinery, workers, and crews, computer vision is one of the promising 

methods to detect potential accidents beforehand. Soltani, (2017) proposed excavator pose estimation 

for safety monitoring using computer vision.  

This chapter aims to achieve the following objectives: (1) automatically generating synthetic images 

of three different types of construction equipment using the 3D models; (2) adding background to the 

generated images; (3) automatically annotating the generated images; and (4) evaluating and 

comparing the performance of object detection with training and testing images. In the following, the 

methodology will be discussed in detail. 

3.3 Synthetic Data Generation 

Synthetic images can be useful when providing a large and accurate dataset are not applicable. 

Also, they can be generated from different orientations or points of view. To create synthetic 

images, in the first place, a 3D model of the object is chosen, and a dataset of synthetic images is 

created and used as a large and reliable dataset to training and testing purposes. The construction 

equipments selected for this study include the three most used equipments in construction sites, 

namely, excavators, loaders, and trucks. Figure 3-1 shows samples of real images used for training 
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equipment. Images are taken from different construction sites where different types of equipment 

with different poses and angels are used.  

 

(a) Excavators               (b) Loaders             (c) Trucks 

Figure 3-1 Sample of real images used for training 

3.3.1 Equipment Conditions and Camera Views 

It is assumed that the 3D models of equipment are available and can be imported to a 3D modeling 

tools (e.g. 3Ds Max (Autodesk, 2014)). The first important factor that should be considered in the 

sensitivity analysis is the desired equipment on construction site. The object itself, has the most 

important role on object detection. The more accurate and more realistic the targets are, the higher 

accuracy in detection at the end. Here, we consider the four most effective factors for the desired 

equipment namely: (1) camera views, (2) poses (3) shape, and (4) color of equipments.  

(1) Camera View: Usually, equipment would be seen from the street level views. However, it is far 

different for the cameras which are installed at a high elevation to have a wide range of views of the 

environment. Hence, if it assumed that if we know the location of cameras on top of the equipments 

we can generate synthetic images of all possible view angels for each equipment. In this study, eight 

viewing angles from 5 to 75 degree were considered for each equipment and poses as shown in Figure 

3-2.  

Where: 
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Number of images for each pose * Angle = Total number of generated synthetic images 

360 * 8 = 2,880  

 

Figure 3-2 Camera positions and 3D model in virtual environment 

Figure 3-3 shows the various viewing angles for each equipment. 

Figure 3-3 Generated viewing angles for each equipment 

 

(2) Poses of equipment: The poses of equipment working on construction sites can change constantly. 

For example, the arm and the bucket of the loader and excavators change their angels during 

operations. Therefore, different poses of equipment are considered to improve the detection.  

The first equipment is excavator with 27 different poses under various poses of the boom, arm, and 

bucket considered for it. However, only the most seven common poses which mostly show the digging 

process were generated. Table 3-1 shows all possible poses and the highlighted boxes show the 
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selected poses for generating synthetic images. Figure 3-4 shows all generated poses for the excavator 

from a sample of camera views. 

Table 3-1 All possible and selected poses for generating synthetic images for the excavator 
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1 up up up 10 Middle up up 19 down up up 

2 up up Middle 11 Middle up Middle 20 down up Middle 

3 up up down 12 Middle up down 21 down up down 

4 up Middle up 13 Middle Middle up 22 down Middle up 

5 up Middle Middle 14 Middle Middle Middle 23 down Middle Middle 

6 up Middle down 15 Middle Middle down 24 down Middle down 

7 up down up 16 Middle down up 25 down down up 

8 up down Middle 17 Middle down Middle 26 down down Middle 

9 up down down 18 Middle down down 27 down down down 

 

 

Figure 3-4 Different poses of excavator 
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The second equipment is loader, which has nine different poses under various conditions of the arm 

and bucket. However, only the three most common poses were generated for it. Table 3-2 shows all 

possible poses and the highlighted boxes show the selected poses for generating synthetic images. 

Figure 3-5 shows all generated poses for the loader from a sample of camera views. 

Table 3-2 All possible and selected poses for generating synthetic images for the loader 
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1 up up 4 Middle up 7 down up 

2 up Middle 5 Middle Middle 8 down Middle 

3 up down 6 Middle down 9 down down 

 

 

Figure 3-5 Different poses of Loader 

The last equipment is the truck for which only one pose is considered. Figure 3-6 shows examples of the 

generated views for the truck. 

 

Figure 3-6 Different poses of truck 

In total, seven different poses were considered for the excavator, three for the loader, and one for truck. 

Each equipment and poses were generated from 0-360 degrees. Therefore, 360 images generated for 

each pose and angle. Table 3-3 shows the numbers of generated images through 3Ds Max for each 

pose and equipment. 
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Table 3_3 Total number of generated synthetic images 

Equipment type Poses Number 

of  images 

Total number of 

generated images 

 

 

 

Excavator 

Boom up, Arm up, Bucket up 2,880  

 

 

20,160 

Boom up, Arm up, Bucket middle 2,880 

Boom up, Arm middle, Bucket down 2,880 

Boom middle, Arm middle, Bucket up 2,880 

Boom middle, Arm middle, Bucket middle 2,880 

Boom down, Arm middle, Bucket middle 2,880 

Boom down, Arm down, Bucket middle 2,880 

` 

Loader 

Arm up, Bucket up 2,880  

8,640 Arm middle, Bucket middle 2,880 

Arm down, bucket down 2,880 

Truck                      --------- 2,880 2,880 

Total                                     ---------  31,680 

 

 

(3) Shape of equipment: The shape and size of equipment are considered as important factors for object 

detection. It could be any brand of equipment (Volvo, Caterpillar, Komatsu, Hitachi, etc.) and they 

have different shapes and appearances. As it can be seen in Figure 3-7, four excavators of different 

brands have different colors, shapes, and appearances. Hence, for detection, it is important to consider 

which equipment brand is working on the site.  

             

(a) Excavator brand Caterpillar    (b) Excavator brand Hitachi       (c) Excavator brand Komatsu    (d) Excavator brand Volvo 

Figure 3-7 Samples of excavators from different brands 

(4) Color of equipment: Beside the shape and appearance of equipment, the color of equipment can be 

different. Therefore, the color of equipment can be customized based on the equipment on construction 
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sites. Moreover, to create more realistic images that match with their background, equipments are 

generated under two different weather conditions: snowy and dry weathers. Hence, synthetic snow 

was created to cover the surface and body of the equipment. In this method, first the different poses of 

equipment were created, then they were colored based on the desired colors. After that, synthetic snow 

was used to cover the surface of the equipment. Therefore, the system is trained based on all varieties 

of colors that the equipment has on site. As depicted in Figure 3-8, three different colors of loaders are 

considered to improve the quality of dataset for training.   

 

Figure 3-8 Sample of the synthetic image with different colors 

3.3.2 Adding background 

In the construction sites, equipment never appears in isolation. They are surrounded with other objects 

and environment, providing a strong contextual information to be used by visual systems. There is a 

consensus that objects appearing in a consistent or familiar background are detected more accurately 

and processed more quickly than objects appearing in an inconsistent scene (Aude & Torralba, 2007). 

Studies have shown that the background of the image has impacts at various levels, such as semantic, 

spatial configuration, and poses. Biederman, (2017) studied that sematic (object presence, position, 

and size) and physical (consistent support and interposition with other objects) object-scene 

relationships have an impact on the detection of a target object within the image. After generating 

images in 3Ds Max, different images, which are similar to the real construction sites, were used as the 

background of the equipments. This process can generate more synthetic images from the same input 

similar to the actual images from construction sites and increase the accuracy of the computer vision 

training. If the training is done with white background images, in the implementation it causes 

inaccurate results. Figure 3-9 shows sample background images used in generation phase.  
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Figure 3-9 Sample images of construction background used in synthetic images 

3.3.2.1 Environmental Conditions 

In large scale image processing, sensitivity analysis is important to study the effect of the artificially 

generated images. Assuming that we have specific knowledge and information about equipment in 

construction sites. The customization can be considered to get more accurate results and make the 

synthetic images as close as possible to the real images. Since the process of generating synthetic 

images happens in the virtual environment, it is possible to apply sensitivity analysis. Two main factors 

are considered for synthetic image generation. The first factor is generating desired equipment in 3Ds 

Max, which is discussed in section 3.3.1, and the second factor is adding environmental condition to 

the images. Following our discussion on the effect of background images toward boosting the accuracy 

of model, weather and illumination conditions are considered to integrate as a background of image.  

Weather Conditions: Usually, in a country like Canada, we experience different weather conditions 

during the year. Low visibility weather condition is an important factor on construction sites because 

it increases the risk of accidents. Low visibility, such as fog, mist, dust, freezing drizzle or snowy 

weather conditions can be considered as an influential reason that can affect the accuracy of the model. 

Therefore, based on different seasons of the year, different weather conditions can be added to the 

background of synthetic images to make them as real as possible. However, in this research we just 

considered snowy and dry weather. Figure 3-10 shows dry and snowy weather condition with an 

excavator working on the construction site. 
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                  (a) Dry weather condition                                      (b) Snowy weather condition 

Figure 3-10 Synthetic images of dry weather conditions of construction sites 

 

Illumination Conditions: Depending on the construction schedule, equipment may work in the day 

or night shifts. Usually, heavy equipments start working in the morning and finish their job in the 

evening. The cameras monitor different objects at different time intervals, which might affect 

equipment detection. Therefore, considering time scheduling can help to adjust specific illumination 

and light in the synthetic images for the day shift and night shift. Figure 3-11 shows similar background 

images used for creating day and night time conditions.  

 

Figure 3-11 Day time and night time construction background sample images 
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The light condition and the position of sun over equipment may change constantly during the day. So, 

different light conditions are considered for equipment and their background. Having shadow on some 

parts of equipment can influence the accuracy of the model significantly if the model is just trained 

with images under perfect sunlight condition. Therefore, it is of a great importance to consider images 

with various light conditions. Figure 3-12 shows a sample of generated images with less light and more 

light over the equipment respectively.  

 

                                                      (a) Less light                       (b) More light 

Figure 3-12 Sample of generated synthetic images under different light condition 

3.3.3 Annotation of Images  

After generating images using 3D max, the raw images with single white color background are 

considered for the annotation process. The Sobel-filter is applied to the images to calculate the edge 

of the object and then change the RGB images to the gray image. Next, Dilate-filter is applied to reduce 

the black gaps. Soille (1999) applied an algorithm to fill out the empty parts in the surrounding edge, 

and connect the image boarder to pixels which are lighter than their surroundings. As mentioned in the 

Section 3.3.2, based on the information from construction sites, related background images can be 

added to the synthetic images. Figure 3-13 shows three generated synthetic images which is annotated 

and added to their backgrounds. 

 

Figure 3-13 Generated synthetic images using various equipment types and backgrounds 
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3.4 Implementation and Case Study 

3.4.1 Conventional Versus CNN-based Methods 

The proposed framework was implemented in Matlab 9.1 (Mathworks, 2016) on a mobile station with 

Intel i7 Quad-Core processor, 32 gigabytes Random-Access Memory (RAM), and NVIDIA Quadro 

K2000M graphics card.  As explained in Section 2.16, in this test, five main types of classifiers were 

investigated: Bag of Words (BoW), Local Binary Pattern (LBP), and HOG integrated with Support 

Vector Machine (SVM) as the conventional methods and AlexNet integrated with SVM, independent 

AlexNet, and independent Visual Geometry Group-face (VGG-f) as CNN-based methods. As shown 

in Table 3-4, one configuration with 500 clusters was used for extracting BoW features while four cell 

sizes for LBP features and six cell sizes for HOG features were tested. Three layers were selected from 

AlexNet considering the available computation resources in this research. Two layers were close to 

the end of the network and one layer was near the starting border of the network. Selecting the features 

from both end of the network helps to compare the effectiveness of the feature at different level of the 

CNN architecture. The features obtained from three different layers of the original AlexNet network 

were used separately for training the SVM classifiers. Due to the limitation of the computation 

capacity, only the first convolutional layer was tested while the other two layers were from the fully 

connected layers at the end of the network structure. The last two classifiers had similar structure to 

AlexNet and VGG-f, respectively, except the last layer (classification layer), which has three classes 

instead of 1000 classes in the original model. Also, in another scenario, AlexNet and VGG-f were fed 

and tested by gray scale images. For training each of the aforementioned classifier, the datasets of 

synthetic images with 6,000 images (first row) shown in Table 3-5 were used while for testing the 

dataset of real images with 1,169 images was used (second row). However, from the 7 generated poses 

for the excavator, only one pose (arm middle, boom middle, and bucket up) has been selected for 

testing and training. 

The accuracies of correct detections for each class from the confusion matrix are shown in Table 3-4 

in addition to the average accuracy of the all classes. The averages accuracy of BoW was 38%, while 

the best achieved average accuracies for LBP and HOG were 41% and 47%, respectively. The results 

show that all the conventional classifiers had more difficulties for classifying the loaders. Investigating 

the poor accuracies for the loader shows that the 3D model of the loader used for creating the synthetic 

images looks similar to a brand new loader which has usually a yellow bucket. However, the bucket 

of the real loaders looks very dark (close to black or dark brown color). Opposite to HOG-based 
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method, it is highly possible that CNN can be sensitive to the color of the object during training phase. 

On the other hand, the best average accuracies of AlexNet-SVM, AlexNet, and VGG-f were 83%, 

78%, and 68%, respectively. It can be concluded from this analysis that CNN-based methods 

outperformed the conventional methods.  

Table 3-4 Results of comparative analysis between conventional and CNN-based classifiers (Soltani et 

al. 2017) 

 

 

Table 3-5 Image datasets specifications (Soltani et al. 2017) 
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3.4.2 Performance Evaluation of CNN-based Method on Different Datasets 

At this stage, the best two groups of classifiers (trained for three classes of equipment) resulting from 

the previous test in Section 3.4.1 were used for a more detailed analysis and testing. The two groups 

are the AlexNet-SVM classifiers with ‘fc7’ layer and the independent AlexNet classifiers.  

The purpose of this test is to find how the accuracy of each classifier can be affected using the five 

datasets shown in Table 3-5. There are two different datasets of real images, one with 1,169 images 

and the other with a small number of images (300 in total) to find the impact of the number of the 

training images. Also, two more datasets are prepared by adding the synthetic images with the same 

number of the real images in each of two previous datasets. The advantage of the synthetic images is 

that they are taken from all views around the equipment while the real images are mostly captured 

from low heights and views. A sample of real and synthetic images are shown in Figure 3-14. One the 

other hand, the synthetic images may look artificial and that may have negative effects on the CNN-

based classifiers compared to conventional methods that did not show such effects on the accuracy 

(Soltani et al. 2016). Therefore, using the mixed datasets can evaluate the generality of the classifiers 

on different brands, colors, and views of the equipment.  

Twenty scenarios are created and tested, which are shown in Table 3-6. Starting with AlexNet-SVM 

classifiers, the results of the classifiers trained by synthetic images and tested on real images are 83% 

and 86%. The accuracy achieved by classifying the dataset with smaller number of images shows 

better performance as expected. In the next scenarios, the larger dataset of the real images was used 

for training and the smaller datasets of real and mixed images were classified. The results show that 

adding synthetic images from various views reduces the accuracy. By using the two larger datasets of 

mixed images for the training, the accuracies were improved for both previously tested datasets. In the 

next comparison, the smaller dataset of real images was used to mimic the situations where there is a 

very limited number of available training images. This classifier is applied on two larger datasets of 

real and mixed images and the accuracies dropped significantly. In the last two scenarios, the smaller 

dataset of the mixed images was used for training and applied on the larger datasets of real and mixed 

images. It is clear from this test that we can improve the quality of training (and the resulting accuracy) 

by adding synthetic images to the training dataset when the number of real images is small.  

In the next test, similar comparisons were repeated for evaluating the independent AlexNet CNN. The 

trend of the results is close to the previous test except in the scenario where the larger dataset of real 

images is used for training and applied on the smaller datasets of real and mixed images. Opposite to 
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the AlexNet-SVM classifier, the independent AlexNet outperformed on the smaller dataset of the 

mixed images compared to the smaller dataset of the real images. Additionally, using the larger dataset 

of mixed images shows its maximum performance on the smaller datasets of the real and mixed 

images. However, achieving the accuracy of 100% does not mean that this classifier is able to reach 

the same accuracy on the larger datasets and it simply proves that adding synthetic images to real 

images during the training can improve the performance of the AlexNet classifier. 

 

Figure 3-14 Sample of real and synthetic images (Soltani et al. 2017) 
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Table 3-6 Results of analysis on AlexNet-SVM and AlexNet classifiers (Soltani et al. 2017) 

Method 

 

Training Images  

 

Testing Images  

 

  Accuracy (%)  

 

Type  Number  Type  Number  

E
x
ca

v
a
to

r 
 

 L
o
a
d

er
  

 T
ru

ck
  

 A
v

er
a

g
e 

 

 

AlexNet-SVM 

 

Synthetic  6,000  Real  1,169  76  78  93  83  

Synthetic  6,000  Real  300  95  83  79  86  

Real  1,169  Real  300  89  100  95  94  

Real  1,169  Mixed  600  94  88  93  91  

Mixed  2,338  Real  300  94  100  96  97  

Mixed  2,338  Mixed  600  97  100  98  98  

Real  300  Real  1,169  54  66  100 73  

Real  300  Mixed  2,338  78  69  97  81  

Mixed  600  Real  1,169  83  90  99  90  

Mixed  600  Mixed  2,338  91  95  99  95  

AlexNet 

 

Synthetic  6,000  Real  1,169  74  48  99  74  

Synthetic  6,000  Real  300  95  51  97  81  

Real  1,169  Real  300  88  100  95  94  

Real  1,169  Mixed  600  99  94  97  97  

Mixed  2,338  Real  300  100  100  100  100  

Mixed  2,338  Mixed  600  100  100  100  100  

Mixed  600  Real  1,169  77  88  99  88  

Mixed  600  Mixed  2,338  88  94  100  94  

Real  300  Real  1,169  81  67  100  83  

Real  300  Mixed  2,338  100  71  96  89  

 

3.4.4 Sensitivity Analysis 

The purpose of this test is to find out how the accuracy of the AlexNet classifier can be affected by 

using a dataset containing different poses of an excavator with different background images. 

Therefore, seven generated excavator poses as shown in Section 3.3.1 with different background 

images such as snowy, dry, summer, night and day as mentioned in Section 3.3.2.1 were used to create 

the datasets shown in Table 3-7.  

As shown in Table 3-7, there are two datasets with 4,000 and 2,000 synthetic images and one with 555 

real images. Two different datasets of 2,500 and 1,110 mixed images are also prepared by adding 

synthetic images with the same number of real images in each. Seven scenarios are created and tested, 

as shown in Table 3-7. The result of AlexNet trained by 4,000 synthetic images of an excavator with 

different poses and backgrounds and tested on 555 real images shows the accuracy of 92.79%. The 
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accuracy achieved by training 2,000 synthetic images of the excavator on 555 and 300 real images of 

the excavator shows 94% and 100% respectively. However, we expect to achieve better accuracy by 

adding more synthetic images to the training dataset, but the result shows less accuracy on the large 

dataset of 4,000 synthetic images compared to the 2,000 synthetic images dataset. This can be due to 

overfitting and too much understanding of the training dataset. In the next scenarios, the dataset of 555 

real images was used for training, and the datasets of 200 mixed images were used for testing and 

show 98% accuracy. By using the large dataset of 2500 mixed images for training and 555 real images 

for testing, the accuracy reached 99,82%. A mixed dataset of 1,110 training images, tested on 200 and 

100 real images, shows 100 %accuracy for both. Comparing the results of the AlexNet classifier for 

the excavator from Table 3-6 and Table 3-7, we can conclude that adding synthetic images of the 

excavator from various poses with different backgrounds to the dataset can improve the performance 

of the AlexNet classifier. 

 

Table 3-7 The results of sensitivity analysis on AlexNet classifier for the excavator 

 

 

 

 

 

 

3.5 Summary, Conclusions and Future Work 

This section examined a new method of creating and annotating synthetic images using 3D equipment 

models to identify images of construction sites.  

By reviewing the results of this case study, it can be concluded that the automatic annotation method 

using synthetic images can produce the same results of real images of construction sites as a dataset 

for training and testing purposes. By using this method, any construction equipment can be created 

and applied for training of vision-based detection of construction equipment on construction sites. This 

method is also not expensive and can save a lot of time, as there is no need for physical photography 

Method 

Training Images Testing Images Accuracy (%) 

Type  Number  Type  Number  Excavator 

AlexNet 

Synthetic 4,000 Real 555 92.79 

Synthetic  2,000  Real  555  94 

Synthetic  2,000  Real  300  100 

Real  555  Mixed  200  98 

Mixed  2500 Real  555  99.82 

Mixed  1,110  Mixed  200  100 

Mixed  1,110 Real  100  100 
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of equipment on sites. The synthetic images created on the 3D model of construction equipment can 

be used to train the model, which helps to find the object. 

This study examined the applicability of CNN-based methods while comparing them with 

conventional descriptors. In the first analysis, BoW, LBP, HOG, AlexNet were investigated 

independently and integrated with SVM and VGG - f networks.  In the second test, AlexNet and 

AlexNet - SVM were compared using different image datasets, including real, synthetic and mixture 

of real and synthetic images with different numbers of images in the training and testing datasets The 

results show that it is better to add synthetic images to the real images for the training of classifiers, 

especially when there is a limited number of real images available. Including synthetic images in the 

real images, the classifier takes into account various views of the target objects that are not available 

in the real image dataset. In addition, by applying sensitivity analysis, we can conclude that adding 

different equipment poses with different background images can significantly improve the model's 

accuracy. However, training and applying of CNN methods requires a very powerful computer 

configuration, especially when developing a very deep network. 

As a limitation and future work for this study, we can point to the mismatching of generated synthetic 

images with their background, and calculation costs. In this study, for adding a background to the 

annotated images, some mismatching between the background and annotated image happened. The 

reason is that some background images are taken from street level and synthetic images are generated 

with different viewing angles. Sometimes, attaching these two together can look far from reality and 

cause the synthetic images to be mismatched. However, Furht (2011) proposed the Augmented Reality 

technique to match the viewing angle of the synthetic images and the background. Moreover, due to 

computation cost, only a small sample of generated synthetic images (6,000) used for training and 

testing. 
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CHAPTER 4     Comparison of the performance of TensorFlow object detection 

models for the detection of personal protective equipment on construction sites  

4.1 Introduction 

In the previous chapter, we discussed the performance of conventional versus CNN-based methods as 

means for the classification of equipment on construction sites using synthetic images. In this chapter, 

we will use the state-of-the-art CNNs techniques for object detection of Personal Protective 

Equipments (PPEs). The goal is to find the best CNN architecture available for the detection of PPEs 

on construction sites. The open source TensorFlow Object Detection API is used to facilitate the 

building, training, and deployment of object detection models. There are generally four ways to 

improve deep learning performance, such as (1) improve performance with data, (2) improve 

performance with algorithms, (3) improve performance with algorithm tuning, and (4) enhance the 

performance with ensemble method.  

This chapter aims to achieve the following objectives: (1) improving the performance by customizing 

the dataset; and (2) Improve detection performance through fine tuning and compare different object 

detection algorithms from TensorFlow. 

4.2 Proposed Method   

The main goal of this section is to evaluate and compare existing object detection methods in 

construction site scenarios. Three classes of objects are considered as the target of this study for 

detection on construction sites, namely safety vests, workers with hardhats, and workers without 

hardhats. The methods selected here for the said evaluation and comparison have already shown 

promising detection performance within the computer vision community. Results and findings from 

this research are expected to help improving construction safety. The overall steps employed for the 

evaluation and comparison are illustrated in Figure 4-1. 

Data collection 

using recorded 

videos from 

construction sites

Data annotation 

using labeling tools

Detector selection 

from TensorFlow 

models 

Data preprocessing 

and creating on 

TFrecord file

Training with 

TensorFlow models

Evaluating the 

models

 

Figure 4-1 The overall steps for object detection 
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4.2.1 Data Collection 

The first stage of data collection was the recording of videos from construction sites, such as civil 

infrastructures, residential buildings, and municipal facilities. The frames that showed objects of 

interest were extracted from the series of recorded videos. Table 4-1 shows the number of collected 

frames and their corresponding classes.  This datasets were used in various training steps.  

Table 4-1 Dataset Specification 

Total 

number 

of frames 

Number of frames per classes 

Hard Hat Safety Vest Without Hard Hat 

30,500 13,000 9,500 8,000 

 

The deep learning implementation requires much more training data than the basic machine learning 

algorithms. Throughout the collection of our object detection dataset, various challenges arose. One 

of the major challenges was the collection of common objects suitable for the dataset considering the 

quality and clarity of images. Yet another challenge encountered during data acquisition was the 

collection of wide-ranging sets of images of the same object.  

In the videos used to build the input datasets, there were one or many objects of the three classes. 

Figure 4-2 presents some representative images from our dataset showing: (a) workers with hardhats 

and safety vests, and (b) workers without hardhat. The models need to be trained to identify the PPEs 

of the construction workers within various construction sites. 

    

                             (a) Workers with hardhat and safety vests        (b) Worker without hardhat 

Figure 4-2 Sample images of different objects of interest for detection purposes 
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4.2.2 Data Annotation 

Data annotation is the process of defining the bounding box and labeling the data for supervised 

machine learning technique. The Labelme image annotation tool was used to annotate the images by 

the third party company. However, manually annotating all objects and their instances with the 

corresponding class labels could be considered as a drawback image annotation. The information of 

the images and corresponding boxes were stored in a file and saved in the Extensible Markup Language 

(XML) format. The XML file created using the Labelme tool contains the image file with the 

information of the rectangular boxes surrounding the objects and the corresponding class label of each 

object. Finally, all annotations were stored in a Comma-Separated Values (CSV) file. Figure 4-3 shows 

an image with the bounding boxes around objects of interest in the image. Different classes of objects 

of interest are shown in differentially colored bounding box. 

 

 

 

 

 

 

 

                                    

Figure 4-3 Sample image of multi-class object annotation with Labelme (Screenshot) 

4.2.3 Data Preprocessing 

After all the frames captured from the video and then were annotated, the new annotated dataset can 

be used for further processing. The dataset has to be divided into the training and testing subsets. In 

this study, the dataset was split randomly into 80-20. The next step is to change the annotated CSV 

file format into a format which can be supported by the TensorFlow library.  
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The TensorFlow library uses its native file format TFrecord (.record) to perform the batch operation. 

While some platforms do most of the batch processing directly from the images, TensorFlow uses a 

single file for the batch operation. Images in TFrecord files are transformed into Numpy (Numerical 

Python library) arrays. The TFrecord files facilitate the processing of large datasets to match the 

network architecture. This file format is the record-oriented binary format which is used in many 

TensorFlow applications that handle training and testing datasets. 

As shown in Figure 4 - 4, the first step in the process of creating TFrecord file is to convert images 

and related labels to the appropriate data type (labeled images). Next, this data type is converted into 

feature sets. Then, the feature sets are transformed into serialized data, and ultimately written 

into .TFRecord file format using the TFRecordWriter function. 

 

Figure 4-4 The process of creating TFRecord file 

4.2.4 Detector Selection 

In this study, three different models from the TensorFlow object detection model zoo were selected, 

namely SSD-MobileNet-V1-coco, Faster-RCNN-ResNet101-coco, and RFCN-ResNet101-coco.  

These models were analyzed on our collected dataset of PPEs. Table 4-2 shows the list of models 

amongst the existing ones that we used in our research. The structure of each model and their feature 

extractors are discussed in Sections 2.11 and 2.12.  Other useful properties, such as speed of execution, 

mean average precisions (mAP), and output type are provided in Table 4-2. The speed of execution 

was measured in milliseconds (ms), showing runtime in ms per 600x600 image, as shown in Table 4 

- 2. The mean average precision was used to calculate the detector performance as reviewed in Section 

2.13.1 and shown in Table 4-2. In addition, the default fine - tuned and configuration file for each 

model provided by the TensorFlow model zoo was used for training different models in this case study. 

Here, higher values of mAP are better, and we only report bounding box mAP rounded to the nearest 

integer. Boxes output were used to show the final results. 

 

 

http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_2018_01_28.tar.gz


 

54 

 

Table 4-2 List of models used in this research (Lin et al. 2014) 

Model Name Speed (ms) mAP Output 

SSD-MobileNet-V1-coco 30 21 Boxes 

Faster-RCNN-ResNet101-coco 106 32 Boxes 

RFCN-ResNet101-coco 92 30 Boxes 

4.2.5 Environment Requirements and Specifications     

The system requirements necessary to work with object detection models may vary depending on the 

model, operating system, and list of libraries one may be using. The main requirements to train and 

implement the TensorFlow object detection API are explained in this section. The following list shows 

the libraries and devices that are required for the object detection using TensorFlow object detection 

API. 

 Python, version 3.6  

 Open Computer Vision (OpenCV) libraries 

 Lebelme annotation tools 

 CUDA library 

 CUDA Deep Neural Network (cuDNN) libraries 

 TensorFlow Object Detection API libraries 

 Pre-trained Model Zoo Object Detection Models 

 Computing Source to Train Deep Learning  

All of our experiments were done on a local computer using 1 GPU model GeForec GTX 1070, 12 

CPUs, and 32 GB Memory. Moreover, TensorFlow GPU version 1.10.0 was installed on the local 

machine and the object detection API library was configured on top of it.  

4.3 Tensorflow Object Detection API 

Pre-trained models have been fine-tuned for our dataset using manually labeled images for the PPEs 

of the workers on construction sites. Three pre-trained models for object detection namely, SSD- 

MobileNet-V1, Faster RCNN-ResNet101, and RFCN-ResNet101 were selected as shown in Table 4-

2. A provided configuration file was used as a basis for the model configuration. 

http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_2018_01_28.tar.gz


 

55 

 

4.3.1 Object Detection with SSD-MobileNet-V1 

The pre-trained SSD-MobileNet-V1 model is fine-tuned with the training and testing datasets as 

discussed in Section 4.2.2 and 4.2.3. The provided checkpoint from configuration file for SSD-

MobileNet-V1 was used as a starting point for the fine-tuning process. The configuration file also 

needs training record and test record file locations. Training record is a TFRecord file created for the 

training dataset, and a test record is a file created for testing dataset. In addition to the configuration 

file, a label map object file is required. The structure of an object label map file is shown in the Figure 

4-5. The first item refers to the workers without hardhat (NOHH), the second one shows workers with 

hardhat (HardHat) and the last one shows the workers with High Visibility Vest (HIVIS). 

 

Figure 4-5 the structure of label map file 

The training record and testing record file locations are added along with the object label map file in 

the configuration file. The configuration file is also updated with the number of classes which is three 

in our case.  

The SSD model is fine-tuned for 65,000 steps as shown in Figures 4-6. Figure 4-6 shows the decline 

in total loss throughout the process of fine-tuning. The total loss values are added to the training log 

files after a particular interval of time. The log files are then passed as input to Tensorboard, a 

visualization tool to plot the computational graphs. All the plots presented below are captured from 

Tensorboard visualizations. As shown in Figure 4-6, the total loss decreases rapidly and indicates 

different values. The values reported in faded orange are the actual total loss values, while the darker 

orange is obtained by 0.9 smoothing. 
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Figure 4-6 Total loss decrease with fine-tuned SSD-MobileNet-V1 (TensorBoard Screenshot) 

4.3.2 Object Detection with Faster-RCNN-ResNet101 

In this section, the Faster-RCNN- ResNet101 is fine-tuned to the previously created datasets of training 

and testing. We have selected the provided configuration file as a basis similar to fine-tuning of SSD-

MobileNet-V1. We have also updated the number of classes, added training and testing record places 

as well as the location of the object label map. 

As shown in Figures 4-7, the Faster RCNN model is fine-tuned for 65,000 steps. Figure 4-7 shows the 

declining trend of total loss during the training process. The total loss values show a fluctuating trend 

as the batch size is 1, and a loss for each iteration can be slightly different from the previous iteration. 

However, the main point is that the losses decreased overall during training.   

 

Figure 4-7 Total loss decrease with fine-tuned Faster-RCNN-ResNet101 (TensorBoard Screenshot)  
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4.3.3 Object Detection with RFCN-ResNet101 

This section discusses the fine-tuning of the RFCN-ResNet101 model. Like the fine tuning of the SSD 

and Faster RCNN model, we also update RFCN training and testing locations, object label map, and 

class number. Similar to Faster RCNN and SSD, the RFCN model is also trained for 65,000 steps as 

shown in Figures 4-8. Figure 4-8 shows the total loss decline over the whole tuning process. The total 

loss shows a general reduction trend. 

  

Figure 4-8 Total loss decrease with fine-tuned RFCN-ResNet101 (TensorBoard Screenshot) 

4.4 Results 

In this section, we compare the performance of fine-tuned model based on AP and mAP. Each model 

has been tested on 1000 images containing the PPEs. Tables 4-3 presents the performance of each 

category and mean Average Precision values for the fine-tuned model at 65,000 steps of training for 

three classes of PPEs.  

Table 4-3 The results of comparative analysis on TensorFlow object detection models 

 

Model 

AP  

mAP Hardhat Vest No Hardhat 

SSD-MobileNet-V1 0.9225 0.9195 0.9020 0.9147 

Faster-RCNN-ResNet-101 0.9612 0.9021 0.9471 0.9368 

RFCN-ResNet-101 0.9618 0.8749 0.9514 0.9294 

 

For SSD-MobileNet-V1, trained up to 65,000 steps, the AP are 0.9225, 0.9195, and 0.9020 

respectively for hardhat, vest, and no hardhat. Like SSD model, we also compared the AP values of 

the Faster-RCNN-ResNet-101 fine-tuned model for three classes of PPEs. The fine-tuned model is 

trained in 65,000 steps as well. The AP are 0.9612, 0.9021, and 0.9471 respectively for hardhat, vest, 
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and no hardhat for Faster-RCNN model. The last model is RFCN-ResNet-101 which we have AP of 

0.9618, 0.8749, and 0.9514 respectively for hardhat, vest, and no hardhat. The value in mAP is also 

0.9147 for SSD-Mobilenet-V1, 0.9368 for Faster-RCNN-ResNet-101, and 0.9294 for RFCN-ResNet-101. 

Moreover, Figure 4-9 shows detected object with the above mentioned models. 

     

        (a) SSD-MobileNet-V1               (b) Faster-RCNN-ResNet-101              (c) RFCN-ResNet-101 

Figure 4-9 The results of detected objects with mentioned models 

4.5 Discussion 

In this section the results of the object detection models in the previous section are discussed. By 

evaluating different criteria of detectors, it is not easy to choose the best detection model from the list 

of models. Moreover, other criteria such as speed have significant impacts on the object detection 

operation. Table 4-4 shows the speed of each object detector in seconds per frame (SPF). From the 

Table 4-4 we can conclude that the time of inference for the SSD model is the least, i.e., the SSD 

model is the fastest among all the models. Moreover, as expected, the mAP value is the highest for 

Faster RCNN which makes it the most accurate of all. Additionally, Faster RCNN is approximately 

2% more accurate than the SSD model. We can conclude that the Faster RCNN is superior in terms of 

mAP of object detection, although this model is computationally heavy compared to the SSD model. 

The RFCN architecture has a quite good accuracy only about 1% less than Faster RCNN. However, 

the speed of testing for RFCN is less than Faster RCNN and more than SSD. The detection speed for 

Faster RCNN is about six times higher than SSD and four times higher than RCNN, which leads to a 

very heavy model to detect objects in real time. Straightforward deployment capability on a mobile 

and embedded device is a huge advantage of the SSD model.  
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Table 4-4 Results of the testing speed and accuracy for three fine-tuned models 

 

Models 

Testing time in second Testing Speed vs. Accuracy  

Frame per Second mAP 

SSD-MobileNet-v2 540 540S/1000 0.54 0.9147 

FRCNN-ResNet-101 6,480 6,480S/1000 6.48 0.9368 

RFCN-ResNet-101 2,880 2,880S/1000 2.88 0.9294 

 

4.6 Summary and Conclusion 

In this study, we investigated the performance of the common object detection models obtained from 

the TensorFlow object detection model zoo when used to detect PPEs. Different object detection 

models were trained and tested on the custom dataset. A diverse range of the object datasets from the 

construction sites were gathered and labelled. The models were trained, and their performance was 

evaluated using accuracy metrics by reviewing the above-mentioned model systems in object 

detection.  

We conduct tests on Faster RCNN, RFCN and SSD architectures combined with MobileNet and 

ResNet101 feature extractors to find the best model for object detection. The annotation and 

preprocessing part is another crucial part of the object detection process and must be done carefully.  

To wrap up this study, we can say that the Faster RCNN architecture with the ResNet101 feature 

extractor has better results with regards to AP, mAP, and considering its high computation cost. The 

SSD MobileNet compared to the Faster RCNN ResNet101 is faster, but less accurate. The RFCN 

model has good mAP but less accurate than Faster RCNN. The SSD MobileNet model could be a 

suitable model to be used on mobile devices but the performance may not satisfying in terms of 

accuracy of detection.  
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CHAPTER 5     CONCLUSION AND FUTURE WORKS 

5.1 Summary of Research 

Object detection technologies are becoming increasingly important at modern construction sites and 

could be used in productivity analysis, material detection and safety monitoring. However, few efforts 

have been made to evaluate the accuracy and robustness of these object detection methods in 

construction scenarios. This study proposed a new method for generating synthetic images of 

construction equipment under various conditions. Several equipment poses, colors and equipment 

types were generated. Different weather conditions attached to the synthetic images as a background. 

These methods helped to reduce the time and cost of preparing large datasets. Generating synthetic 

images of construction equipment also enhanced the performance and accuracy of object detectors 

trained by synthetic images. In addition, this study proposed a comparative research of the 2D visual 

object detection technique in the construction environment. For comparison purposes, various object 

detection methods from the computer vision community were selected. These methods have been 

tested on images that include various building resources of interest, such as excavators, loaders, trucks, 

hard hats, safety jackets and hard hat workers. All images were annotated and labeled manually to 

build the ground truths and characterized by quantitative and detailed methods of object detection.  

5.2 Research Contributions 

The contribution of this research are as follows: 

(1) Providing a new method for generating and annotating construction equipment using their 3D 

models and real images of construction sites. This method helped in providing image datasets in a 

short time and inexpensively. With regard to this contribution, the following conclusions can be drawn:  

 Various equipment, size, color, poses, and types of construction equipment considered for 

the synthetic image generation. 

 Different background conditions, such as weather, lighting, day or night time considered as 

the background of synthetic images. 

 The synthetic images were annotated automatically using the proposed method. 

(2) Comparison of the applicability of CNN-based methods with conventional descriptors.  

 CNN- based method clearly outperformed the conventional methods. 
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 AlexNet and AlexNet-SVM were compared using different images datasets including real, 

synthetic, and mixture of real and synthetic images with different numbers of images in the 

training and testing dataset.  

 Mixture of real and synthetic images for training of the classifier, especially when there is a 

limited number of real images available, significantly improved classifier accuracy. 

 Including synthetic images in the real images, the classifier takes into account various views 

of the target objects that are not available in the real image dataset. 

(3) Sets of pre-trained detection models of COCO dataset were used to detect PPE’s on construction 

sites. The following conclusions were reached: 

 Customize the algorithms of TensorFlow object detection model zoo for custom object 

detection  

 Detecting PPE’s of workers on 2D images of construction sites.  

5.3 Limitation and Future Work 

This research experiment is a step towards the real-time object detection of different class objects using 

surveillance cameras on construction sites. The performance of the detectors on datasets, videos and 

the mobile implementation motivates further research. Future studies can consider pixel-wise 

segmentation as a replacement for the bounding box annotation method of objects in the dataset. This 

could provide greater accuracy than the existing bounding box annotation technique.  

The amount of data in our dataset is not adequate and is imbalanced to simplify all collected object 

classes. To achieve a better generalization result, additional images are required. Automatic annotation 

could be an appropriate attempt to decrease the time limit in the collection of the labeled dataset for 

data annotation. More images can be collected and trained to increase the total accuracy of detectors. 

Different object detection architectures can be studied for training and evaluation of the functionality 

of detectors. Tracking real-time objects, counting objects of interest and locating objects using other 

deep learning algorithms could be other opportunities to work on in the future. Two main concerns in 

real-time object detection are the accuracy of detection and computational complexity. Therefore, we 

can conduct more research on the detection model architecture.  

While this research has successfully achieved its objectives, the following limitations remain to be 

addressed in the future: 
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 Although the PPE’s detectors have achieved mean average precision of 0.9368, the final 

results of the test on real ongoing construction projects show that the detectors can perform 

less than their best performances. This can happen because of occlusion between objects or 

poor camera quality on the construction site.  

 Some background images are taken from street level and synthetic images are generated with 

different viewing angles. Sometimes, attaching these two together may look far from reality 

and cause the synthetic images to be mismatched. However, Furht (2011) proposed the 

Augmented Reality technique to match the viewing angle of the synthetic images and the 

background.  
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APPENDICES 

Appendix A. Matlab Code of Auto Annotation (Soltani, 2017) 

clc  

clear  

% Margine  

m = 20;  

% Number of Conditions  

CD = 3;  

tic  

MainBackImg = 'C:\Users\umroot\Documents\MATLAB\My PhD Codes\Papers\Conference\Excavator3DModel\BackGround\';  

JPG = '*.jpg';  

BackImList = dir(fullfile(MainBackImg,JPG));  

% Number of Backgrounds  

NoG = length(BackImList);  

 

MainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD Codes\Papers\Conference\SensivityAnalysis\8of16\+45\';  

JPG = '*.jpg';  

ImList = dir(fullfile(MainImg,JPG));  

% Number of Images  

NoI = length(ImList); 

  

NewImgBG = 'C:\Users\umroot\Documents\MATLAB\My PhD Codes\Papers\Conference\SensivityAnalysis\8of16\+45\NewGenImg\';  

 

parfor i=1:NoI  

imgfile = fullfile(MainImg,ImList(i).name);  

I1 = imread(imgfile);  

I = rgb2gray(I1);  

DipperMat(i).imageFilename = strrep (imgfile, '/', '\');  

figure, imshow(I1), title('original image');  

I = rgb2gray(imread('Dipper.jpg'));  

figure, imshow(I), title('gray image');  

 

se90 = strel('line', 3, 90);  

se0 = strel('line', 3, 0); 

  

[~, threshold] = edge(I, 'sobel');  

fudgeFactor = 0.1;  

BWs = edge(I,'sobel', threshold * fudgeFactor);  

figure, imshow(BWs), title('binary gradient mask'); 

  

BWsdil = imdilate(BWs, [se90 se0]);  

figure, imshow(BWsdil), title('dilated gradient mask'); 

  

BWdfill = imfill(BWsdil, 'holes');  

figure, imshow(BWdfill);title('binary image with filled holes'); 

   

BWnobord = imclearborder(BWdfill, 4); 

figure, imshow(BWnobord), title('cleared border image'); 

  

seD = strel('diamond',1);  

BWfinal = imerode(BWnobord,seD);  

BWfinal = imerode(BWfinal,seD);  

figure, imshow(BWfinal), title('segmented image'); 

  

BWoutline = bwperim(BWfinal,8);  

Segout = I;  

Segout(BWoutline) = 100;  

 

figure, imshow(BWoutline), title( ); 
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regdata = regionprops(BWfinal,'BoundingBox','Area');  

Area = cat(1, regdata.Area);  

BoundingBox = cat(1, regdata.BoundingBox);  

Best = find(Area(:) == max(Area(:)));  

bbox = BoundingBox(Best,:);  

DipperMat(i).objectBoundingBoxes = [bbox(1,1)-m bbox(1,2)-m bbox(1,3)+2*m  

bbox(1,4)+2*m];  

x = bbox(1, 1); y = bbox(1, 2); w = bbox(1, 3); h = bbox(1, 4);  

bboxPolygon = [x-m, y-m, x+w+m, y-m, x+w+m, y+h+m, x-m, y+h+m];  

videoFrame = insertShape(I1, 'Polygon', bboxPolygon,'Color','black');  

figure, imshow(videoFrame), title(' Bounding Box');  

end   

 

 

parfor i=1:NoG  

BG = [];  

BG = imread(fullfile(MainBackImg,BackImList(i).name));  

figure, imshow(LogZero)  

for j=1:NoI  

LogOne = [];  

LogOne = imread(fullfile(MainImg,ImList(j).name));  

figure, imshow(LogOne)  

I = rgb2gray(LogOne);  

figure, imshow(I)  

I2 = [];  

I2 = ~im2bw(I,0.95);  

I2 = repmat(I2,[1 1 3]);  

LogOne(I2==0)=0;  

figure, imshow(LogOne)  

I3 = [];  

I3 = ~I2;  

LogZero = BG;  

LogZero(I3==0)=0;  

figure, imshow(LogZero)  

for k=1:CD  

LogOne = imadjust(LogOne,[0; 1],[(k-1)*0.1; (1.1-(k*0.1))],(1.1-(k*0.1)));  

figure, imshow(LogOne)  

LogOne(I2==0)=0;  

figure, imshow(LogOne)  

K=imadd(LogZero,LogOne);  

figure, imshow(K)  

New_k = k + (CD*(j-1)) + (NoI*CD*(i-1));  

imwrite(K,fullfile(NewImgBG,sprintf('IMAGE%04d.jpg',New_k))); 

 

NewTemp(i,j,k).imageFilename =  

fullfile(NewImgBG,sprintf('IMAGE%04d.jpg',New_k));  

NewTemp(i,j,k).objectBoundingBoxes = DipperMat(j).objectBoundingBoxes  

end  

end  

end  

New_k=0;  

for i=1:NoG  

for j=1:NoI  

for k=1:CD  

New_k = New_k+1;  

Temp(New_k).imageFilename = NewTemp(i,j,k).imageFilename;  

Temp(New_k).objectBoundingBoxes =  

NewTemp(i,j,k).objectBoundingBoxes;  

end  

end  

end  

toc  

DipperMat = [DipperMat, Temp];  

save(fullfile(MainImg,sprintf('ROI.mat')),'DipperMat');  

% 0 on background 1 on foreground  

% I gray original image  

% I2 Background with logical One on foreground  

% I3 Background with logical Zero on foreground 
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Appendix B. Matlab Code of Auto Cropping (Soltani, 2017) 

clc  

clear 

  

tic  

load('C:\Users\umroot\Documents\MATLAB\My PhD Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\E\OnlyDipper\E-5-

55D45-135\ROI.mat');  

 

MainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\E\OnlyDipper\E-

5-55D45-135\NewGenImg\';  

JPG = '*.jpg';  

ImList = dir(fullfile(MainImg,JPG));  

% Number of Images  

NoI = length(ImList); 

  

PreImg = 'C:\Users\umroot\Documents\MATLAB\My PhD Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\E\OnlyDipper\E-5-

55D45-135\';  

JPG = '*.jpg';  

ImPreList = dir(fullfile(PreImg,JPG));  

% Number of Images  

NoPI = length(ImPreList); 

  

NewImgBG = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\E\OnlyDipper\E-5-55D45-135\Cropped\';  

 

 

parfor i=1:NoI+NoPI  

imgfile = DipperMat(i).imageFilename;  

I1 = imread(imgfile);  

bbox = DipperMat(i).objectBoundingBoxes;  

Icrop = imcrop(I1, bbox);  

imwrite(Icrop,fullfile(NewImgBG,sprintf('Cropped%04d.jpg',i)));  

end  

toc 
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Appendix C. Matlab Code of AlexNet (Soltani et al. 2017) 

digitDatasetPath = 'E:\Forough\Excavator-7poses\Training_set\Synthetic-6000-excavator7poses'; 
digitData = imageDatastore(digitDatasetPath,'IncludeSubfolders',true,'LabelSource','foldernames'); 
testDataPath = 'E:\Forough\Excavator-7poses\Testing-set\testing20%'; 
testData = imageDatastore(testDataPath,'IncludeSubfolders',true,'LabelSource','foldernames'); 
digitData.countEachLabel 
minSetCount = min(digitData.countEachLabel{:,2}) 
 %trainingNumFiles = round(minSetCount/20); 
trainingNumFiles = 267; 
rng(1) 
[trainDigitData,testDataPath] = splitEachLabel (digitData,trainingNumFiles,'randomize'); 
NewNet = alexnet; 
layers = [imageInputLayer([128 128 3]); 
     
          NewNet.Layers(2);NewNet.Layers(3);NewNet.Layers(4); 
          NewNet.Layers(5);NewNet.Layers(6);NewNet.Layers(7); 
          NewNet.Layers(8);NewNet.Layers(9);NewNet.Layers(10); 
          NewNet.Layers(11);NewNet.Layers(12);NewNet.Layers(13); 
          NewNet.Layers(14);NewNet.Layers(15);NewNet.Layers(16); 
           

           
          fullyConnectedLayer(512);NewNet.Layers(18);NewNet.Layers(19); 
          fullyConnectedLayer(512);NewNet.Layers(21);NewNet.Layers(22); 
          fullyConnectedLayer(3);softmaxLayer();classificationLayer()]; 
options = trainingOptions('sgdm','MaxEpochs',10,'InitialLearnRate',0.001); 
tic 
convnet = trainNetwork(trainDigitData,layers,options); 
toc 
YTest = classify(convnet,testData); 
TTest = testData.Labels; 
accuracy = sum(YTest == TTest)/numel(TTest) 
Excavator = sum(YTest(1:555) == TTest(1:555))/numel(TTest(1:555)) 
Loader = sum(YTest(556:822) == TTest(556:822))/numel(TTest(556:822)) 
Truck = sum(YTest(823:1169) == TTest(823:1169))/numel(TTest(823:1169)) 
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Appendix D. Python Code of TensorFlow Object Detection Model SSD-MobileNet-V1 (Huang et al, 2017) 

 
# SSD with Mobilenet v1 configuration for MSCOCO Dataset. 

# Users should configure the fine_tune_checkpoint field in the train config as 

# well as the label_map_path and input_path fields in the train_input_reader and 

# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that 

# should be configured. 

 

model { 

  ssd { 

    num_classes: 3 

    box_coder { 

      faster_rcnn_box_coder { 

        y_scale: 10.0 

        x_scale: 10.0 

        height_scale: 5.0 

        width_scale: 5.0 

      } 

    } 

    matcher { 

      argmax_matcher { 

        matched_threshold: 0.5 

        unmatched_threshold: 0.5 

        ignore_thresholds: false 

        negatives_lower_than_unmatched: true 

        force_match_for_each_row: true 

      } 

    } 

    similarity_calculator { 

      iou_similarity { 

      } 

    } 

    anchor_generator { 

      ssd_anchor_generator { 

        num_layers: 6 

        min_scale: 0.2 

        max_scale: 0.95 

        aspect_ratios: 1.0 

        aspect_ratios: 2.0 

        aspect_ratios: 0.5 

        aspect_ratios: 3.0 

        aspect_ratios: 0.3333 

      } 

    } 

    image_resizer { 

      fixed_shape_resizer { 

        height: 300 

        width: 300 

      } 

    } 

    box_predictor { 

      convolutional_box_predictor { 

        min_depth: 0 

        max_depth: 0 

        num_layers_before_predictor: 0 

        use_dropout: false 

        dropout_keep_probability: 0.8 

        kernel_size: 1 

        box_code_size: 4 

        apply_sigmoid_to_scores: false 

        conv_hyperparams { 

          activation: RELU_6, 

          regularizer { 

            l2_regularizer { 

              weight: 0.00004 

            } 

          } 
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          initializer { 

            truncated_normal_initializer { 

              stddev: 0.03 

              mean: 0.0 

            } 

          } 

          batch_norm { 

            train: true, 

            scale: true, 

            center: true, 

            decay: 0.9997, 

            epsilon: 0.001, 

          } 

        } 

      } 

    } 

    feature_extractor { 

      type: 'ssd_mobilenet_v1' 

      min_depth: 16 

      depth_multiplier: 1.0 

      conv_hyperparams { 

        activation: RELU_6, 

        regularizer { 

          l2_regularizer { 

            weight: 0.00004 

          } 

        } 

        initializer { 

          truncated_normal_initializer { 

            stddev: 0.03 

            mean: 0.0 

          } 

        } 

        batch_norm { 

          train: true, 

          scale: true, 

          center: true, 

          decay: 0.9997, 

          epsilon: 0.001, 

        } 

      } 

    } 

    loss { 

      classification_loss { 

        weighted_sigmoid { 

        } 

      } 

      localization_loss { 

        weighted_smooth_l1 { 

        } 

      } 

      hard_example_miner { 

        num_hard_examples: 3000 

        iou_threshold: 0.99 

        loss_type: CLASSIFICATION 

        max_negatives_per_positive: 3 

        min_negatives_per_image: 0 

      } 

      classification_weight: 1.0 

      localization_weight: 1.0 

    } 

    normalize_loss_by_num_matches: true 

    post_processing { 

      batch_non_max_suppression { 

        score_threshold: 1e-8 

        iou_threshold: 0.6 

        max_detections_per_class: 100 
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        max_total_detections: 100 

      } 

      score_converter: SIGMOID 

    } 

  } 

} 

 

train_config: { 

  batch_size: 24 

  optimizer { 

    rms_prop_optimizer: { 

      learning_rate: { 

        exponential_decay_learning_rate { 

          initial_learning_rate: 0.004 

          decay_steps: 800720 

          decay_factor: 0.95 

        } 

      } 

      momentum_optimizer_value: 0.9 

      decay: 0.9 

      epsilon: 1.0 

    } 

  } 

  fine_tune_checkpoint: "ssd_mobilenet_v1_coco_2018_01_28/model.ckpt" 

  from_detection_checkpoint: true 

  # Note: The below line limits the training process to 200K steps, which we 

  # empirically found to be sufficient enough to train the pets dataset. This 

  # effectively bypasses the learning rate schedule (the learning rate will 

  # never decay). Remove the below line to train indefinitely. 

  num_steps: 65000 

  data_augmentation_options { 

    random_horizontal_flip { 

    } 

  } 

  data_augmentation_options { 

    ssd_random_crop { 

    } 

  } 

} 

 

train_input_reader: { 

  tf_record_input_reader { 

    input_path: "data/train.record" 

  } 

  label_map_path: "training/label_map.pbtxt" 

} 

 

eval_config: { 

  num_examples: 1000 

  # Note: The below line limits the evaluation process to 10 evaluations. 

  # Remove the below line to evaluate indefinitely. 

  max_evals: 10 

} 

 

eval_input_reader: { 

  tf_record_input_reader { 

    input_path: "data/test.record" 

  } 

  label_map_path: "training/label_map.pbtxt" 

  shuffle: false 

  num_readers: 1 

} 
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Appendix E. Python Code of TensorFlow Object Detection Model R-FCN-Resnet101 (Huang et al, 2017) 

# R-FCN with Resnet-101 (v1),  configuration for MSCOCO Dataset. 

# Users should configure the fine_tune_checkpoint field in the train config as 

# well as the label_map_path and input_path fields in the train_input_reader and 

# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that 

# should be configured. 

 

model { 

  faster_rcnn { 

    num_classes: 3 

    image_resizer { 

      keep_aspect_ratio_resizer { 

        min_dimension: 600 

        max_dimension: 1024 

      } 

    } 

    feature_extractor { 

      type: 'faster_rcnn_resnet101' 

      first_stage_features_stride: 16 

    } 

    first_stage_anchor_generator { 

      grid_anchor_generator { 

        scales: [0.25, 0.5, 1.0, 2.0] 

        aspect_ratios: [0.5, 1.0, 2.0] 

        height_stride: 16 

        width_stride: 16 

      } 

    } 

    first_stage_box_predictor_conv_hyperparams { 

      op: CONV 

      regularizer { 

        l2_regularizer { 

          weight: 0.0 

        } 

      } 

      initializer { 

        truncated_normal_initializer { 

          stddev: 0.01 

        } 

      } 

    } 

    first_stage_nms_score_threshold: 0.0 

    first_stage_nms_iou_threshold: 0.7 

    first_stage_max_proposals: 300 
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    first_stage_localization_loss_weight: 2.0 

    first_stage_objectness_loss_weight: 1.0 

    second_stage_box_predictor { 

      rfcn_box_predictor { 

        conv_hyperparams { 

          op: CONV 

          regularizer { 

            l2_regularizer { 

              weight: 0.0 

            } 

          } 

          initializer { 

            truncated_normal_initializer { 

              stddev: 0.01 

            } 

          } 

        } 

        crop_height: 18 

        crop_width: 18 

        num_spatial_bins_height: 3 

        num_spatial_bins_width: 3 

      } 

    } 

    second_stage_post_processing { 

      batch_non_max_suppression { 

        score_threshold: 0.0 

        iou_threshold: 0.6 

        max_detections_per_class: 100 

        max_total_detections: 300 

      } 

      score_converter: SOFTMAX 

    } 

    second_stage_localization_loss_weight: 2.0 

    second_stage_classification_loss_weight: 1.0 

  } 

} 

train_config: { 

  batch_size: 1 

  optimizer { 

    momentum_optimizer: { 

      learning_rate: { 

        manual_step_learning_rate { 

          initial_learning_rate: 0.0003 

          schedule { 

            step: 900000 
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            learning_rate: .00003 

          } 

          schedule { 

            step: 1200000 

            learning_rate: .000003 

          } 

        } 

      } 

      momentum_optimizer_value: 0.9 

    } 

    use_moving_average: false 

  } 

  gradient_clipping_by_norm: 10.0 

  fine_tune_checkpoint: "rfcn_resnet101_coco_2018_01_28/model.ckpt" 

  from_detection_checkpoint: true 

  # Note: The below line limits the training process to 200K steps, which we 

  # empirically found to be sufficient enough to train the pets dataset. This 

  # effectively bypasses the learning rate schedule (the learning rate will 

  # never decay). Remove the below line to train indefinitely. 

  num_steps: 65000 

  data_augmentation_options { 

    random_horizontal_flip { 

    } 

  } 

} 

train_input_reader: { 

  tf_record_input_reader { 

    input_path: "data/train.record" 

  } 

  label_map_path: "training/label_map.pbtxt" 

} 

eval_config: { 

  num_examples: 1000 

  # Note: The below line limits the evaluation process to 10 evaluations. 

  # Remove the below line to evaluate indefinitely. 

  max_evals: 10 

} 

eval_input_reader: { 

  tf_record_input_reader { 

    input_path: "data/test.record" 

  } 

  label_map_path: "training/label_map.pbtxt" 

  shuffle: false 

  num_readers: 1 

} 
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Appendix F. Python Code of TensorFlow Object Detection Model Faster-RCNN-Resnet101 (Huang et al, 

2017) 

# Faster R-CNN with Resnet-101 (v1), configuration for MSCOCO Dataset. 

# Users should configure the fine_tune_checkpoint field in the train config as 

# well as the label_map_path and input_path fields in the train_input_reader and 

# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that 

# should be configured. 

model { 

  faster_rcnn { 

    num_classes: 3 

    image_resizer { 

      keep_aspect_ratio_resizer { 

        min_dimension: 600 

        max_dimension: 1024 

      } 

    } 

    feature_extractor { 

      type: 'faster_rcnn_resnet101' 

      first_stage_features_stride: 16 

    } 

    first_stage_anchor_generator { 

      grid_anchor_generator { 

        scales: [0.25, 0.5, 1.0, 2.0] 

        aspect_ratios: [0.5, 1.0, 2.0] 

        height_stride: 16 

        width_stride: 16 

      } 

    } 

    first_stage_box_predictor_conv_hyperparams { 

      op: CONV 

      regularizer { 

        l2_regularizer { 

          weight: 0.0 

        } 

      } 

      initializer { 

        truncated_normal_initializer { 

          stddev: 0.01 

        } 

      } 

    } 

    first_stage_nms_score_threshold: 0.0 

    first_stage_nms_iou_threshold: 0.7 

    first_stage_max_proposals: 300 

    first_stage_localization_loss_weight: 2.0 

    first_stage_objectness_loss_weight: 1.0 

    initial_crop_size: 14 

    maxpool_kernel_size: 2 

    maxpool_stride: 2 

    second_stage_box_predictor { 

      mask_rcnn_box_predictor { 

        use_dropout: false 

        dropout_keep_probability: 1.0 

        fc_hyperparams { 

          op: FC 

          regularizer { 

            l2_regularizer { 

              weight: 0.0 

            } 

          } 

          initializer { 

            variance_scaling_initializer { 

              factor: 1.0 

              uniform: true 

              mode: FAN_AVG 
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            } 

          } 

        } 

      } 

    } 

    second_stage_post_processing { 

      batch_non_max_suppression { 

        score_threshold: 0.0 

        iou_threshold: 0.6 

        max_detections_per_class: 100 

        max_total_detections: 300 

      } 

      score_converter: SOFTMAX 

    } 

    second_stage_localization_loss_weight: 2.0 

    second_stage_classification_loss_weight: 1.0 

  } 

} 

train_config: { 

  batch_size: 1 

  optimizer { 

    momentum_optimizer: { 

      learning_rate: { 

        manual_step_learning_rate { 

          initial_learning_rate: 0.0003 

          schedule { 

            step: 900000 

            learning_rate: .00003 

          } 

          schedule { 

            step: 1200000 

            learning_rate: .000003 

          } 

        } 

      } 

      momentum_optimizer_value: 0.9 

    } 

    use_moving_average: false 

  } 

  gradient_clipping_by_norm: 10.0 

  fine_tune_checkpoint: "faster_rcnn_resnet101_coco_2018_01_28/model.ckpt" 

  from_detection_checkpoint: true 

  data_augmentation_options { 

    random_horizontal_flip { 

    } 

  } 

} 

train_input_reader: { 

  tf_record_input_reader { 

    input_path: "data/train.record" 

  } 

  label_map_path: "training/label_map.pbtxt" 

} 

eval_config: { 

  num_examples: 1000 

  # Note: The below line limits the evaluation process to 10 evaluations. 

  # Remove the below line to evaluate indefinitely. 

  max_evals: 10 

} 

eval_input_reader: { 

  tf_record_input_reader { 

    input_path: "data/test.record" 

  } 

  label_map_path: "training/label_map.pbtxt" 

  shuffle: false 

  num_readers: 1 

} 
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Appendix G. Python code of TensorFlow Object Detection for Training (Huang et al, 2017) 

# Copyright 2017 The TensorFlow Authors. All Rights Reserved. 

# Licensed under the Apache License, Version 2.0 (the "License"); 

# you may not use this file except in compliance with the License. 

# You may obtain a copy of the License at 

#     http://www.apache.org/licenses/LICENSE-2.0 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# ============================================================================== 

r"""Training executable for detection models. 

This executable is used to train DetectionModels. There are two ways of 

configuring the training job: 

1) A single pipeline_pb2.TrainEvalPipelineConfig configuration file 

can be specified by --pipeline_config_path. 

Example usage: 

    ./train \ 

        --logtostderr \ 

        --train_dir=path/to/train_dir \ 

        --pipeline_config_path=pipeline_config.pbtxt 

 

2) Three configuration files can be provided: a model_pb2.DetectionModel 

configuration file to define what type of DetectionModel is being trained, an 

input_reader_pb2.InputReader file to specify what training data will be used and 

a train_pb2.TrainConfig file to configure training parameters. 

Example usage: 

    ./train \ 

        --logtostderr \ 

        --train_dir=path/to/train_dir \ 

        --model_config_path=model_config.pbtxt \ 

        --train_config_path=train_config.pbtxt \ 

        --input_config_path=train_input_config.pbtxt 

""" 

 

import functools 

import json 

import os 

import tensorflow as tf 

 

from object_detection.builders import dataset_builder 

from object_detection.builders import graph_rewriter_builder 

from object_detection.builders import model_builder 

from object_detection.legacy import trainer 

from object_detection.utils import config_util 

 

tf.logging.set_verbosity(tf.logging.INFO) 

 

flags = tf.app.flags 

flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.') 

flags.DEFINE_integer('task', 0, 'task id') 

flags.DEFINE_integer('num_clones', 1, 'Number of clones to deploy per worker.')  

flags.DEFINE_boolean('clone_on_cpu', False, 

                     'Force clones to be deployed on CPU.  Note that even if ' 

                     'set to False (allowing ops to run on gpu), some ops may ' 

                     'still be run on the CPU if they have no GPU kernel.') 

flags.DEFINE_integer('worker_replicas', 1, 'Number of worker+trainer ' 

                     'replicas.') 

flags.DEFINE_integer('ps_tasks', 0, 

                     'Number of parameter server tasks. If None, does not use ' 

                     'a parameter server.') 

flags.DEFINE_string('train_dir', '', 
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                    'Directory to save the checkpoints and training summaries.') 

 

flags.DEFINE_string('pipeline_config_path', '', 

                    'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 

                    'file. If provided, other configs are ignored') 

 

flags.DEFINE_string('train_config_path', '', 

                    'Path to a train_pb2.TrainConfig config file.') 

flags.DEFINE_string('input_config_path', '', 

                    'Path to an input_reader_pb2.InputReader config file.') 

flags.DEFINE_string('model_config_path', '', 

                    'Path to a model_pb2.DetectionModel config file.') 

 

FLAGS = flags.FLAGS 

 

 

@tf.contrib.framework.deprecated(None, 'Use object_detection/model_main.py.') 

def main(_): 

  assert FLAGS.train_dir, '`train_dir` is missing.' 

  if FLAGS.task == 0: tf.gfile.MakeDirs(FLAGS.train_dir) 

  if FLAGS.pipeline_config_path: 

    configs = config_util.get_configs_from_pipeline_file( 

        FLAGS.pipeline_config_path) 

    if FLAGS.task == 0: 

      tf.gfile.Copy(FLAGS.pipeline_config_path, 

                    os.path.join(FLAGS.train_dir, 'pipeline.config'), 

                    overwrite=True) 

  else: 

    configs = config_util.get_configs_from_multiple_files( 

        model_config_path=FLAGS.model_config_path, 

        train_config_path=FLAGS.train_config_path, 

        train_input_config_path=FLAGS.input_config_path) 

    if FLAGS.task == 0: 

      for name, config in [('model.config', FLAGS.model_config_path), 

                           ('train.config', FLAGS.train_config_path), 

                           ('input.config', FLAGS.input_config_path)]: 

        tf.gfile.Copy(config, os.path.join(FLAGS.train_dir, name), 

                      overwrite=True) 

 

  model_config = configs['model'] 

  train_config = configs['train_config'] 

  input_config = configs['train_input_config'] 

 

  model_fn = functools.partial( 

      model_builder.build, 

      model_config=model_config, 

      is_training=True) 

 

  def get_next(config): 

    return dataset_builder.make_initializable_iterator( 

        dataset_builder.build(config)).get_next() 

 

  create_input_dict_fn = functools.partial(get_next, input_config) 

 

  env = json.loads(os.environ.get('TF_CONFIG', '{}')) 

  cluster_data = env.get('cluster', None) 

  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None 

  task_data = env.get('task', None) or {'type': 'master', 'index': 0} 

  task_info = type('TaskSpec', (object,), task_data) 

 

  # Parameters for a single worker. 

  ps_tasks = 0 

  worker_replicas = 1 

  worker_job_name = 'lonely_worker' 

  task = 0 

  is_chief = True 

  master = '' 
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  if cluster_data and 'worker' in cluster_data: 

    # Number of total worker replicas include "worker"s and the "master". 

    worker_replicas = len(cluster_data['worker']) + 1 

  if cluster_data and 'ps' in cluster_data: 

    ps_tasks = len(cluster_data['ps']) 

 

  if worker_replicas > 1 and ps_tasks < 1: 

    raise ValueError('At least 1 ps task is needed for distributed training.') 

 

  if worker_replicas >= 1 and ps_tasks > 0: 

    # Set up distributed training. 

    server = tf.train.Server(tf.train.ClusterSpec(cluster), protocol='grpc', 

                             job_name=task_info.type, 

                             task_index=task_info.index) 

    if task_info.type == 'ps': 

      server.join() 

      return 

 

    worker_job_name = '%s/task:%d' % (task_info.type, task_info.index) 

    task = task_info.index 

    is_chief = (task_info.type == 'master') 

    master = server.target 

 

  graph_rewriter_fn = None 

  if 'graph_rewriter_config' in configs: 

    graph_rewriter_fn = graph_rewriter_builder.build( 

        configs['graph_rewriter_config'], is_training=True) 

 

  trainer.train( 

      create_input_dict_fn, 

      model_fn, 

      train_config, 

      master, 

      task, 

      FLAGS.num_clones, 

      worker_replicas, 

      FLAGS.clone_on_cpu, 

      ps_tasks, 

      worker_job_name, 

      is_chief, 

      FLAGS.train_dir, 

      graph_hook_fn=graph_rewriter_fn) 

 

 

if __name__ == '__main__': 

  tf.app.run() 
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Appendix H. Python Code of TensorFlow Object Detection for Evaluating (Huang et al, 2017) 

# Copyright 2017 The TensorFlow Authors. All Rights Reserved. 

# Licensed under the Apache License, Version 2.0 (the "License"); 

# you may not use this file except in compliance with the License. 

# You may obtain a copy of the License at 

#     http://www.apache.org/licenses/LICENSE-2.0 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

# ============================================================================== 

r"""Evaluation executable for detection models. 

This executable is used to evaluate DetectionModels. There are two ways of 

configuring the eval job. 

1) A single pipeline_pb2.TrainEvalPipelineConfig file maybe specified instead. 

In this mode, the --eval_training_data flag may be given to force the pipeline 

to evaluate on training data instead. 

Example usage: 

    ./eval \ 

        --logtostderr \ 

        --checkpoint_dir=path/to/checkpoint_dir \ 

        --eval_dir=path/to/eval_dir \ 

        --pipeline_config_path=pipeline_config.pbtxt 

 

2) Three configuration files may be provided: a model_pb2.DetectionModel 

configuration file to define what type of DetectionModel is being evaluated, an 

input_reader_pb2.InputReader file to specify what data the model is evaluating 

and an eval_pb2.EvalConfig file to configure evaluation parameters. 

Example usage: 

    ./eval \ 

        --logtostderr \ 

        --checkpoint_dir=path/to/checkpoint_dir \ 

        --eval_dir=path/to/eval_dir \ 

        --eval_config_path=eval_config.pbtxt \ 

        --model_config_path=model_config.pbtxt \ 

        --input_config_path=eval_input_config.pbtxt 

""" 

import functools 

import os 

import tensorflow as tf 

 

from object_detection.builders import dataset_builder 

from object_detection.builders import graph_rewriter_builder 
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from object_detection.builders import model_builder 

from object_detection.legacy import evaluator 

from object_detection.utils import config_util 

from object_detection.utils import label_map_util 

 

tf.logging.set_verbosity(tf.logging.INFO) 

 

flags = tf.app.flags 

flags.DEFINE_boolean('eval_training_data', False, 

                     'If training data should be evaluated for this job.') 

flags.DEFINE_string( 

    'checkpoint_dir', '', 

    'Directory containing checkpoints to evaluate, typically ' 

    'set to `train_dir` used in the training job.') 

flags.DEFINE_string('eval_dir', '', 'Directory to write eval summaries to.') 

flags.DEFINE_string( 

    'pipeline_config_path', '', 

    'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 

    'file. If provided, other configs are ignored') 

flags.DEFINE_string('eval_config_path', '', 

                    'Path to an eval_pb2.EvalConfig config file.') 

flags.DEFINE_string('input_config_path', '', 

                    'Path to an input_reader_pb2.InputReader config file.') 

flags.DEFINE_string('model_config_path', '', 

                    'Path to a model_pb2.DetectionModel config file.') 

flags.DEFINE_boolean( 

    'run_once', False, 'Option to only run a single pass of ' 

    'evaluation. Overrides the `max_evals` parameter in the ' 

    'provided config.') 

FLAGS = flags.FLAGS 

 

 

@tf.contrib.framework.deprecated(None, 'Use object_detection/model_main.py.') 

def main(unused_argv): 

  assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' 

  assert FLAGS.eval_dir, '`eval_dir` is missing.' 

  tf.gfile.MakeDirs(FLAGS.eval_dir) 

  if FLAGS.pipeline_config_path: 

    configs = config_util.get_configs_from_pipeline_file( 

        FLAGS.pipeline_config_path) 

    tf.gfile.Copy( 

        FLAGS.pipeline_config_path, 

        os.path.join(FLAGS.eval_dir, 'pipeline.config'), 

        overwrite=True) 

  else: 



 

86 

 

 

    configs = config_util.get_configs_from_multiple_files( 

        model_config_path=FLAGS.model_config_path, 

        eval_config_path=FLAGS.eval_config_path, 

        eval_input_config_path=FLAGS.input_config_path) 

    for name, config in [('model.config', FLAGS.model_config_path), 

                         ('eval.config', FLAGS.eval_config_path), 

                         ('input.config', FLAGS.input_config_path)]: 

      tf.gfile.Copy(config, os.path.join(FLAGS.eval_dir, name), overwrite=True) 

 

  model_config = configs['model'] 

  eval_config = configs['eval_config'] 

  input_config = configs['eval_input_config'] 

  if FLAGS.eval_training_data: 

    input_config = configs['train_input_config'] 

 

  model_fn = functools.partial( 

      model_builder.build, model_config=model_config, is_training=False) 

 

  def get_next(config): 

    return dataset_builder.make_initializable_iterator( 

        dataset_builder.build(config)).get_next() 

 

  create_input_dict_fn = functools.partial(get_next, input_config) 

 

  categories = label_map_util.create_categories_from_labelmap( 

      input_config.label_map_path) 

 

  if FLAGS.run_once: 

    eval_config.max_evals = 1 

  graph_rewriter_fn = None 

  if 'graph_rewriter_config' in configs: 

    graph_rewriter_fn = graph_rewriter_builder.build( 

        configs['graph_rewriter_config'], is_training=False) 

  evaluator.evaluate( 

      create_input_dict_fn, 

      model_fn, 

      eval_config, 

      categories, 

      FLAGS.checkpoint_dir, 

      FLAGS.eval_dir, 

      graph_hook_fn=graph_rewriter_fn) 

if __name__ == '__main__': 

  tf.app.run() 


