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Abstract

Finite Bivariate and Multivariate Beta Mixture Models

Learning and Applications

Narges Manouchehri

Finite mixture models have been revealed to provide flexibility for data clustering.

They have demonstrated high competence and potential to capture hidden structure

in data. Modern technological progresses, growing volumes and varieties of generated

data, revolutionized computers and other related factors are contributing to produce

large scale data. This fact enhances the significance of finding reliable and adaptable

models which can analyze bigger, more complex data to identify latent patterns,

deliver faster and more accurate results and make decisions with minimal human

interaction. Adopting the finest and most accurate distribution that appropriately

represents the mixture components is critical. The most widely adopted generative

model has been the Gaussian mixture. In numerous real-world applications, however,

when the nature and structure of data are non-Gaussian, this modeling fails. One of

the other crucial issues when using mixtures is determination of the model complexity

or number of mixture components. Minimum message length (MML) is one of the

main techniques in frequentist frameworks to tackle this challenging issue.

In this work, we have designed and implemented a finite mixture model, using the

bivariate and multivariate Beta distributions for cluster analysis and demonstated its

flexibility in describing the intrinsic characteristics of the observed data. In addition,

we have applied our estimation and model selection algorithms to synthetic and real

datasets. Most importantly, we considered interesting applications such as in image

segmentation, software modules defect prediction, spam detection and occupancy

estimation in smart buildings.
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Chapter 1

Introduction

1.1 Background

Over the past couple of decades, machine learning experienced tremendous growth and

advancement. Accurate data analysis, extraction and retrieval of information have

been largely studied in the various fields of technology [1]. Technological improvement

led to the generation of huge amount of complex data of different types [2]. Various

statistical approaches have been suggested in data mining, however data clustering

received considerable attention and still is a challenging and open problem [3]. Finite

mixture models have been proven to be one of the most strong and flexible tools

in data clustering and have seen a real boost in popularity. Multimodal and mixed

generated data consist of different components and categories and mixture models

proved to be an enhanced statistical approach to discover the latent pattern of data

[4, 5]. One of the crucial challenges of modeling and clustering is applying the most

appropriate distribution. Most of the literature on finite mixtures concern Gaussian

mixture model (GMM) [6]. However, GMM is not a proper tool to express the latent

structure of non-Gaussian data. Recently, other distributions which are more flexible

have been considered as a powerful alternative [7-33].
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1.2 Objectives

The main objective of this thesis is to introduce a novel finite mixture modelling

approach by focusing on a capable distribution. We developed a learning frame-

work based on maximum likelihood estimation to infer the optimal parameters of our

proposed mixture model and applied it to address following challenging issues:

1. Selecting a flexible mixture density which has demonstrated more efficiency in

modeling asymmetric and non-Gaussian data

2. Parameter estimation as one of the crucial and critical challenges when deploy-

ing mixture models.

3. Assessment and validation of the feasibility and effectiveness of the proposed

model by experimental results involving real datasets and real world applications.

4. Determination of the proper number of clusters by Minimum Message Length

(MML).

5. Comparison of he performance of our framework with the widely used Gaussian

Mixture Model (GMM).

In this work, we introduce unsupervised learning algorithms for finite mixture

models based on bivariate and multivariate Beta distributions which could be applied

in various real-world challenging problems. As explained above, our proposed learn-

ing framework will deploy deterministic and efficient techniques such as Maximum

likelihood (ML), Expectation maximization (EM) and Newton Raphson methods.

Furthermore, for model selection, minimum message length (MML) criterion is val-

idated to find the optimal number of clusters inherent within real data sets. We

evaluated our clustering approach on different problems.

1.3 Contributions

Our major contributions in this thesis are as follows:

1. Proposing a novel finite mixture model for non Gaussian data. Our proposed

framework based on bivariate Beta distribution with three shape parameters and

multivariate Beta distribution which to the extend of our knowledge haven’t been

used before in clustering. We developed all the equations related to its parameters

estimation. We have proven that the these two mixtures can be good candidates to

cluster data. This contribution has been published in the International Symposium

2



on Signal, Image, Video and Communications (ISIVC2018) [83].

2. Comparison of our models performance with finite Gaussian mixture model in

terms of clustering.

3. Investigating the performance of our framework by testing it on synthetic and

real data sets as well as as real-life applications such as spam detection, software

modules defect prediction, image segmentation and estimation of occupancy in smart

buildings.

1.4 Thesis Overview

In our thesis, we propose bivariate and multivariate Beta mixture models in following

chapters:

1. In chapter 2, we present the bivariate Beta mixture model, develop a parameter

estimation technique and demonstrate the results of our experiments based on syn-

thetic data, real datasets, image segmentation and estimation of occupancy in smart

buildings.

2. Chapter 3 is devoted to the multivariate Beta mixture model and its parameters

estimation. MML is validated to find the proper number of clusters. The experimen-

tal results of the application of our approach on real data sets and two challenging

applications, software defect detection and spam filtering, are compared with those

of finite Gaussian mixture.

3. Finally in chapter 4, we conclude our work, highlight some challenges and

suggest future works.

3



Chapter 2

Bivariate Beta Mixture Model

2.1 Bivariate Beta Distribution

Olkin and Liu [34, 35] have proposed a bivariate Beta distribution with two correlated

random variables X and Y, both positive real values and less than one. These variables

themselves are derived from three independent random variables U, V and W arised

from standard Gamma distribution and parametrized by their shape parameters a, b

and c, respectively as follows:

X =
U

(U +W )
(1)

Y =
V

(V +W )
(2)

The moments of X and Y are defined by following equations :

E(X) =
a

(a+ c)
(3)

V ar(X) =
ac

(a+ c)2(a+ c+ 1)
(4)

E(Y ) =
b

(b+ c)
(5)

V ar(Y ) =
bc

(b+ c)2(b+ c+ 1)
(6)
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The joint density function of this bivariate distribution is expressed as follow:

f(X, Y ) =
Xa−1Y b−1(1−X)b+c−1(1− Y )a+c−1

B(a, b, c)(1−XY )(a+b+c)
(7)

B(a, b, c) =
Γ(a)Γ(b)Γ(c)

Γ(a+ b+ c)

2.2 Mixture model

We assume X = { ~X1, ~X2, ..., ~XN} is a set of N 2-dimensional vectors and each vector

~Xn = (Xn1, Xn2) is generated from a finite but unknown bivariate Beta mixture model

p( ~X|Θ). Considering X as a composition of M different clusters, we can approximate

it by a finite mixture model [36] as described in Eq.8 where ~αj = (aj, bj, cj). The

weight of component j is denoted by pj. The mixing proportions are positive and sum

to one. Θ = (pj, ~αj) represents the set of weight and shape parameters of component

j. In our model, Θ includes pj, aj, bj and cj.

p
(
~X|Θ

)
=

M∑
j=1

pjp( ~X|~αj) (8)

2.3 Model learning

To learn our model, we first apply k-means to initially cluster our data and with the

help of means and variances of clusters, Eq.3 to Eq.6, the initial shape parameters can

be approximated. This procedure is called method of moments. Afterward, we apply

deterministic and efficient techniques such as maximum likelihood (ML), expectation

maximization (EM) and Newton Raphson to update the parameters.

2.3.1 Method of moments

Method of moments (MM) is a statistical technique to estimate model’s parameters.

By the help of the mean and variance of components obtained from k-means phase

and Eq.3 to Eq.6, the initial parameters are calculated as follow:

a = E(X)
( E(X)

V ar(X)
(1− E(X))− 1

)
(9)

5



b = E(Y )
( E(Y )

V ar(Y )
(1− E(Y ))− 1

)
(10)

c =
(
1− E(Y )

)( E(Y )

V ar(Y )
(1− E(Y ))− 1

)
(11)

2.3.2 Maximum likelihood and EM algorithm

To tackle the model estimation problem, the parameters which maximize the proba-

bility density function of data are determined using ML [37] and EM framework [38].

ML is an estimation procedure to find the mixture model parameters that maximize

log-likelihood function [39] which is defined by:

L(Θ,X ) = log p(X|Θ) =
N∑
n=1

log
( M∑
j=1

pjp( ~Xn|~αj)
)

(12)

Each ~Xn is supposed to be arisen from one of the components. Hence, a set of

membership vectors is introduced as ~Zn = (Zn1, . . . , ZnM) where:

znj =

 1 if ~Xn belongs to a component j,

0 otherwise,
(13)

M∑
j=1

znj = 1 (14)

The complete log-likelihood is given as following:

L(Θ, Z,X ) =
M∑
j=1

N∑
n=1

Znj
(

log pj + log p( ~Xn|~αj)
)

(15)

In Expectation phase, we assign each vector ~Xn to one of the clusters by its

posterior probability given by:

Ẑnj = p(j| ~Xn, ~αj) =
pjp( ~Xn|~αj)∑M
j=1 pjp( ~Xn|~αj)

(16)

The complete log-likelihood is computed as:

6



L(Θ, Z,X ) =
M∑
j=1

N∑
n=1

Ẑnj( log pj + log p( ~Xn|~αj)) =
M∑
j=1

N∑
n=1

Ẑnj( log pj +

(aj − 1) logXn + (bj − 1) log Yn + (bj + cj − 1) log(1−Xn) +

(aj + cj − 1) log(1− Yn)− (aj + bj + cj) log(1−XnYn) +

log Γ(aj + bj + cj)− log Γ(aj)− log Γ(bj)− log Γ(cj))(17)

In maximization step, the gradient of the log-likelihood with respect to parameters

is calculated. To solve this optimization problem, we need to find a solution for the

following equation:

∂ logL(Θ, Z,X )

∂Θ
= 0 (18)

However, it doesn’t have a closed-form solution and Newton-Raphson as an iter-

ative approach assists to compute the updated parameters by:

α̂j
new = α̂j

old −Hj
−1Gj (19)

where Gj is the first derivatives vector described in Eq.20.

Gj = (G1j, G2j, G3j)
T (20)

G1j =
∂L(X ,Θ)

∂aj
=

M∑
j=1

N∑
n=1

Ẑnj( log(Xn) + log(1− Yn)− log(1−XnYn) +

Ψ(aj + bj + cj)−Ψ(aj))(21)

G2j =
∂L(X ,Θ)

∂bj
=

M∑
j=1

N∑
n=1

Ẑnj( log(Yn) + log(1−Xn)− log(1−XnYn) +

Ψ(aj + bj + cj)−Ψ(bj))(22)

7



G3j =
∂L(X ,Θ)

∂cj
=

M∑
j=1

N∑
n=1

Ẑnj( log(1−Xn) + log(1− Yn)− log(1−XnYn) +

Ψ(aj + bj + cj)−Ψ(cj))(23)

Ψ(.) and Ψ′(.) are digamma and trigamma functions, respectively defined by:

Ψ(X) =
Γ′(X)

Γ(X)
,Ψ′(X) =

Γ′′(X)

Γ(X)
− Γ′(X)2

Γ(X)2
(24)

Hj is Hessian matrix expressed by following equations where |~αj| = aj + bj + cj.

H =


∂G1j

∂a

∂G1j

∂b

∂G1j

∂c
∂G2j

∂a

∂G2j

∂b

∂G2j

∂c
∂G3j

∂a

∂G3j

∂b

∂G3j

∂c

 =

=
∑N
i=1 Ẑnj


Ψ′(| ~αj|)−Ψ′(aj) Ψ′(| ~αj|) Ψ′(| ~αj|)

Ψ′(| ~αj|) Ψ′(| ~αj|)−Ψ′(bj) Ψ′(| ~αj|)
Ψ′(| ~αj|) Ψ′(| ~αj|) Ψ′(| ~αj|)−Ψ′(cj)

 (25)

The estimated values of mixing proportion has a closed-form solution expressed

by:

pj =

∑N
n=1 p(j| ~Xn, ~αj)

N
(26)

2.4 Estimation Algorithm

The initialization and estimation framework is described as follows:

1. INPUT: X and M .

2. Apply the k-means to obtain initial M clusters.

3. Apply the moments method for each component j to obtain ~αj.

4. Expectation step: Compute Ẑnj using Eq.16.

5. Maximization step: Update ~αj and pj using Eq.19 and Eq.26, respectively.

6. If pj < ε, discard component j and go to 4.

7. If the convergence criterion passes terminate, else go to 4.

8



2.5 Experimental Results

In this section to validate the performance of our proposed algorithm, we first test it on

four synthetic data sets. Then, this model is evaluated by four real data sets. More-

over, we consider two real-life applications namely occupancy estimation in smart

buildings and image segmentation.

2.5.1 Synthetic Data

To investigate the validity of our proposed approach, our framework is applied on

four synthetic datasets arised from bivariate Beta mixtures with different parameters.

Fig.1 to Fig.4 display four examples of finite bivariate Beta mixtures including two,

three, four and five components.

Figure 1: Two-component mix-

ture

Figure 2: Three-component mix-

ture

Figure 3: Four-component mix-

ture

Figure 4: Five-component mix-

ture

Tables 1 to 4 demonstrate the true and estimated parameters of four artificial

datasets. According to the results shown in these tables, the model approximate

parameters successfully in all four cases.

9



Table 1: Real and estimated parameters of the two-component mixture model.

Parameter Real parameter Estimated Parameter

a1 1.555 1.5323

b1 4.15 4.0936

c1 7 6.9434

p1 0.8 0.7884

a2 5 4.3147

b2 4 3.6988

c2 2.5 2.3971

p2 0.2 0.2116

Table 2: Real and estimated parameters of the three-component mixture.

Parameter Real parameter Estimated Parameter

a1 1.41 1.1577

b1 4.14 3.5623

c1 7 6.3676

p1 0.5 0.4642

a2 5.154 5.0637

b2 3.923 4.2792

c2 2.511 2.5030

p2 0.1572 0.1622

a3 5.33 5.1638

b3 1.42 1.3287

c3 8.631 7.9498

p3 0.3428 0.3736

10



Table 3: Real and estimated parameters of the four-component mixture model.

Parameter Real parameter Estimated Parameter

a1 1.515 1.4866

b1 4.177 3.4077

c1 7.6491 6.3461

p1 0.48 0.46

a2 5.1149 5.7564

b2 3.1595 3.5689

c2 2.599 2.7757

p2 0.15 0.14

a3 5.2137 6.0211

b3 1.5444 1.2297

c3 5.1469 4.8582

p3 0.16 0.18

a4 1.112 1.7

b4 9.192 8.2906

c4 11.2 11.2

p4 0.21 0.22

11



Table 4: Real and estimated parameters of the five-component mixture model.

Parameter Real parameter Estimated Parameter

a1 3.8 3.7447

b1 4.1 3.6345

c1 11.58 11.6733

p1 0.2 0.1982

a2 8.3 8.84

b2 1 1.6988

c2 8.3 7.3868

p2 0.15 0.1412

a3 7.111 6.2232

b3 7 7.1184

c3 1.1 1.3868

p3 0.25 0.2568

a4 1.26 1.1543

b4 11.1330 9.9503

c4 8.8233 7.6636

p4 0.25 0.2296

a5 11.133 11.1

b5 3.133 3.6988

c5 2.483 2.3868

p5 0.15 0.1742

12



2.5.2 Real Data

In this section, we estimate the accuracy of our algorithm by four real bivariate data

sets. As the first step, we normalize our datasets using the following equation as

one of the assumptions of our distribution is that the values of all observations are

positive and less than one.

X
′
=

X −Xmin

Xmax −Xmin

(27)

To assess the accuracy of the algorithm, the observations are assigned to different

clusters based on Bayesian decision rule. Afterward, the accuracy is inferred by

confusion matrix. Moreover, we compare bivariate Beta mixture model (BBMM)

with Gaussian mixture model (GMM). We hereby introduce the datasets by describing

their bivariate attributes and classes.

2.7.2.1 Haberman dataset

The first real dataset is a well-known one called Haberman based on a survival research

at the University of Chicago’s Billings Hospital between the years 1958 and 1970. It

includes 306 instances of patients who had breast cancer and were monitored after

having surgery. The dataset has three attributes age of patient at time of operation,

patient’s year of operation and number of positive axillary nodes detected. The

database is labeled based on survival status. The patients who survived 5 years or

longer were classified in first class and the ones died within 5 year were assigned to

second class [44]. The patient’s year of operation and number of positive axillary

nodes detected are the two variables used for our assessment. Bivariate Beta mixture

model performs with 92% accuracy but this value is 81% for the Gaussian mixture

model.

2.7.2.2 Recombinant Bovine Growth Hormone on weight gain in rats dataset

The second data set, called Recombinant Bovine Growth Hormone on Weight Gain in

Rats is the result of a research conducted by J.C. Juskevich and C.G. Guyer in 1990

[45]. It contains 60 instances of analyzing weight gains in rats over 85 days period in

6 treatment conditions of recombinant bovine growth hormone (rbGH). The variables

are type of treatment and weight gain. The gender of rats is the label of dataset.

13



Male is 1 and female, 0. Bivariate Beta mixture has a performance of 82.19% while

the accuracy is 61.49% for Gaussian mixture model.

2.7.2.3 Theophylline interactions with Heartburn Medication

In the third case of real data, T.J. Sullivan, J.H. Reese, et al studied randomized

block design in patients with chronic obstructive pulmonary disease [46]. Each sub-

ject received Theophylline along with famotidine (Pepcid), cimetidine (Tagamet) and

Placebo and Theophylline clearance (liters/hour) was measured. The variables are

subject number and Theophylline clearance. The labels are 1=Placebo, 2=Pepcid and

3=Tagamet. The performance of our mixture model is 88% while Gaussian mixture

model has an accuracy of 69%.

2.7.2.4 Occurrence of Nouns in Shakespeare’s Plays

We also assess our model by a data set including 68 observations as a result of study

about frequency of occurrence of nouns in two of Shakespeare’s Plays, ”Julius Caesar”

and ”As You Like It”. Two attributes were number of occurrences and number of

nouns with this many occurrences. The first class is assigned to ”Julius Caesar” and

the second one to ”As You Like It” [47]. The results of our tests shows that our

method outperforms Gaussian mixture model as their accuracies are is 91.1% and

82.3%, respectively.

2.5.3 Smart Building

Due to the increase of energy demands, rising global emissions of greenhouse gases

and climate changes, resource consumption management has become one of the most

complex and sophisticated technical topics. In response to such growing demands,

smart buildings are new research trend and receiving increasing attention by academia

and industry as building sector has an essential role in energy consumption. It has

been acknowledged in published literatures that analysis of occupant’s numbers and

behaviors is one of the proposed portfolios that should largely be overlooked in build-

ing energy utilization patterns and managent of supplies. However, it is a critical

and problematic process. Amayri et al. [48] conducted a research and carried out

detailed energy audits to tackle this problem. In their method of research, performed
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in Grenoble Institute of Technology, they controlled and measured specified factors

by an ambiance sensing network. They found out that motions, CO2 concentration,

power consumption, door and window positions, acoustic pressure from microphone

were the most important features which could describe occupancy. The real number

of occupants and their activities were recorded by two video cameras and considered

as data classes. Afterwards, they calculated information gain values of each feature to

find the most relevant ones for estimation of the occupancy. In our work, we consider

the two most important features motion counter and acoustic pressure (microphone)

as our variables. The data contains 717 instances and the value of class labels are 0,

1, 2, 3 and 4 which indicate the number of occupants. We evaluated our unsupervised

model on this dataset and compared it with GMM to analyze its performance. The

accuracy of our framework is based on confusion matrices illustrated in Tables 5 and

6. As it can be inferred, the accuracy of BBMM is 91.63% which outperformes the

GMM with 75.17%.

Table 5: Confusion matrix of BBMM

497 35 8 4 2

5 83 0 0 0

0 0 47 0 0

0 0 5 23 0

0 0 0 0 7

Table 6: Confusion matrix of GMM

490 9 0 1 0

10 33 16 11 2

0 0 5 0 0

0 36 16 4 0

3 40 23 11 7
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2.5.4 Color image segmentation

Image segmentation is one of the core research topics and high-level tasks in the field

of computer vision. The significance of this application is highlighted by the fact

that it nourishes numerous applications progressively. We validated our proposed

framework by the well-known publicly available Berkeley segmentation data set [49],

[50]. This database is composed of a variety of natural color images generally used as

a reliable way to compare image segmentation algorithms. It is noteworthy that the

choice of color space is an important problem when dealing with color images and it is

highly desirable that the chosen space be robust against varying illumination, concise,

discriminatory and noise. We applied l1l2l3 color space which is a photometric color

invariant for matte and shiny spaces [52] described as below:

l1(R,G,B) =
(R−G)2

(R−G)2 + (R−B)2 + (G−B)2
(28)

l2(R,G,B) =
(R−B)2

(R−G)2 + (R−B)2 + (G−B)2
(29)

l3(R,G,B) =
(G−B)2

(R−G)2 + (R−B)2 + (G−B)2
(30)

Moreover, considering a segmentation approach proposed by Yang and Krishnan [52],

we assumed that each pixel ~Xn ∈ X has an immediate neighbor
~̂
Xn ∈ X , so-called

peer of former one, both arisen from the same cluster. Moreover, the boundary pixels

are ignored as they have a minor share in the whole image. Since for each pixel (r, c)

there are 4 main neighbors that are likely to be in the same region, we can use one of

them as the corresponding peer. According to [52], (r + 1, c) is ideal to be neighbour

pixel [53]. Figure 5 shows a comparison between results obtained by our approach

and GMM.
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Figure 5: Original image (29030), 6 labeled images, GMM and BBMM outputs

As we need some quantitative measures to compare the segmentation results of

BBMM with GMM, we applied six image segmentation evaluation metrics, Adjusted

Rand Index (ARI), Adjusted Mutual Information Score (AMIS), Homogeneity Score

(HS), Completeness Score (CS), Calinski-Harabaz Index (CHI), Jaccard similarity

score (JSS) which their results are presented in Table 7. As it is shown, our model

outperforms the GMM according to all metrics.
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Table 7: The results of estimating model performance in image segmentation based

on six metrics

Metrics (K=4)

Alg. ARI NMIS MIS HS VM JSS

BBMM 0.69 0.62 0.73 0.5 0.61 0.61

0.69 0.61 0.74 0.48 0.6 0.6

0.72 0.64 0.72 0.53 0.63 0.63

0.69 0.63 0.73 0.5 0.61 0.61

0.57 0.58 0.77 0.42 0.55 0.55

0.56 0.57 0.74 0.42 0.54 0.54

Mean 0.65 0.6 0.74 0.47 0.59 0.59

GMM 0.58 0.46 0.59 0.41 0.45 0.45

0.59 0.47 0.61 0.4 0.46 0.46

0.56 0.44 0.55 0.4 0.44 0.44

0.58 0.46 0.59 0.41 0.46 0.46

0.61 0.49 0.72 0.39 0.48 0.48

0.59 0.48 0.69 0.39 0.47 0.47

Mean 0.59 0.47 0.62 0.4 0.46 0.46
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Chapter 3

Multivariate Beta Mixture Model

3.1 Multivariate Beta Distribution

This chapter is devoted to our proposed mixture model based on multivariate Beta

distribution. In previous chapter, we introduced the bivariate distribution with three

shape parameters and here will describe the multivariate case in detail. The multi-

variate Beta distribution is constructed by generalization of the bivariate distribution

to k variate distribution. Let U1, ...., Uk and W be independent random variables each

having a Gamma distribution and variable X is defined by Eq.31 where i = 1, ...k.

Xi =
Ui

(Ui +W )
(31)

The joint density function of X1, ...., Xk after integration over W is expressed by:

f(x1, ..., xk) = c

∏k
i=1 x

ai−1
i∏k

i=1(1− xi)(ai+1)

[
1 +

k∑
i=1

xi
(1− xi)

]−a
(32)

where 0≤ xi≤1 and:

c = B−1(a1, ..., ak) =
Γ(a1 + ...+ ak)

Γ(a1)......Γ(ak)
=

Γ(a)∏k
i=1 Γ(ai)

(33)

ai is the shape parameter of each variable Xi and:

a =
k∑
i=1

ai (34)
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3.2 Mixture model

Let us consider X = { ~X1, ~X2, ..., ~XN} be a set of N k-dimensional vectors such that

each vector ~Xn = (Xn1, ..., Xnk) is generated from a finite but unknown multivariate

Beta mixture model p
(
~X|Θ

)
. We assume that X is composed of M different finite

clusters and can be approximated by a finite mixture model as described before by:

p
(
~X|Θ

)
=

M∑
j=1

pjp( ~X|~αj) (35)

where ~αj = (a1, ...., ak). Θ = (pj, ~αj) represents the set of weights and shape

parameters of component j and the complete model parameters are denoted by

{p1, ..., pM , ~α1, ..., ~αM}.

3.3 Model learning

3.3.1 Method of moments

The first two moments, sample mean and variance are defined by:

E(X) = x̄ =
1

N

N∑
i=1

Xi (36)

V ar(X) = v̄ =
1

N − 1

N∑
i=1

(Xi − x̄)2 (37)

The shape and scale parameters of multivariate Beta distribution can be estimated

using the method of moments by Equation 13 and Equation 14 as follow:

α̂ = E(X)
( E(X)

V ar(X)
(1− E(X))− 1

)
(38)

β̂ =
(
1− E(X)

)( E(X)

V ar(X)
(1− E(X))− 1

)
(39)

By the help of the mean and variance of components obtained from k-means phase,

the initial parameters are approximated.

3.3.2 Maximum Likelihood and EM algorithm

As described in previous chapter, to tackle the problem of finding the parameters of

our model, we apply ML approach and EM framework on the compelete likelihood
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defined by Eq.40 and the value of aj is computed by Eq.38 for each component of

mixture model. The development of Eq.40 is provided in Appendix 1.

L(Θ, Z,X ) =
M∑
j=1

N∑
n=1

znj
(

log pj + log p( ~Xn|~αj)
)

(40)

The first derivatives of Eq. 40 with respect to aji where i = 1, ..., k are given by:

∂L(Θ, Z,X )

∂aji
=

M∑
j=1

N∑
n=1

Ẑnj

(
log(Xni)− log(1−Xni) + Ψ(aj)−Ψ(aji)

-log
[
1 +

∑k
i=1

Xni

(1−Xni)

])
(41)

As this equation doesn’t have a closed form solution, we use Newton-Raphson

method and Gj as the first and the Hessian matrix as the second and mixed derivatives

of L(Θ, Z,X ) as follow:

Gj = (G1j, ..., Gkj)
T (42)

H =


∂Gj1

∂aj1
. . . ∂G1j

∂ajk
...

. . .
...

∂Gjk

∂aj1
. . .

∂Gjk

∂ajk

 =

=
∑N
i=1 Ẑnj


Ψ′(|~aj|)−Ψ′(aj1) . . . Ψ′(|~aj|)

...
. . .

...

Ψ′(|~aj|) . . . Ψ′(|~aj|)−Ψ′(ajk)

 (43)

where

|~aj| = a1 + ...+ ak (44)

The estimated values of mixing proportions are expressed by Equation 30 as it

has a closed-form solution:

pj =

∑N
n=1 p(j| ~Xn, ~αj)

N
(45)
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3.4 Estimation of model complexity with MML

The MML approach is based on evaluating statistical models according to their abil-

ity to compress a message containing the data. This technique has been proved to

outperform many other model selection methods. The optimal number of clusters of

the mixture is that which minimizes the amount of information needed to transmit

data X efficiently from a sender to a receiver.

The formula for the message length for a mixture of distributions is given by Eq.46

where h(Θ) is the prior probability, p(X|Θ) is the likelihood, F (Θ) is the expected

Fisher information matrix, and |F (Θ)| is its determinant. Np is the number of free

parameters to be estimated and is equal to (M(d + 1)) − 1. κNp is the optimal

quantization lattice constant for IRNp [18] and we have κ1 ' 1
12
' 0.083 for Np = 1

[54-62].

MessLen ' − log(h(Θ))− log (p(X|Θ)) + 1
2

log(|F (Θ)|) + Np

2
(1 + log(κNp))(46)

The Fisher information matrix is the expected value of the Hessian minus the

logarithm of the likelihood. We use the complete data Fisher information matrix as

proposed in [58]. The determinant of the complete data Fisher information matrix is

[57]:

|F (Θ)| ' |F (~P )|
M∏
j=1

|F ( ~αj)| (47)

where |F (~P )| is the Fisher information with regards to the mixing parameters vector,

and |F (~αj)| is the Fisher information with regards to the vector ~αj of a single bivariate

Beta distribution. For |F (~P )|, mixing parameters satisfy the requirement
∑M
j=1 pj = 1.

Consequently, it is possible to consider the generalized Bernoulli process with a series

of trials, each of which has M possible outcomes for M clusters. The determinant

of the Fisher information matrix is given by Eq.48 where N is the number of data

elements [63].

|F (~P )| = N∏M
j=1 pj

(48)

The Fisher information for our mixture is given as following:

log |F (Θ)| = log(N)−
M∑
j=1

log pj +
M∑
j=1

log |F (~αj)| (49)
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To calculate MML, we need to find h(Θ) which can be represented as follow [62]:

h(Θ) = h(~p)h(α) (50)

Considering the nature of the mixing parameters, it can be expressed by a symmetric

Dirichlet distribution with parameter as defined in Eq.51 where ~η = (η1, ..., ηM) is the

parameter vector of the Dirichlet distribution:

h(~p) =
Γ(
∑M
j=1 ηj)∏M

j=1 Γ(ηj)

M∏
j=1

pj
ηj−1 (51)

The choice of η1 = 1, . . . , ηM = 1 gives a uniform prior over the space p1+...+pM =

1 [62]. Therefor, the prior is given by:

h(~p) = (M − 1)! (52)

For ~α, we assume that components of αj are independent:

h(~α) =
M∏
j=1

h(αj) =
M∏
j=1

D∏
d=1

h(αjd) (53)

We choose to use following simple uniform prior which we experimentally found

good results with it [64, 65].

h(αjd) = e−6 αjd
‖αj‖

(54)

The log of prior is given by:

log(h(Θ)) =
M−1∑
j=1

log(j)− 6MD −D
M∑
j=1

log(‖αj‖) +
M∑
j=1

D∑
d=1

log(αjd) (55)
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3.5 Estimation Algorithm

The initialization and estimation framework is described as follows:

1. INPUT: X and M .

2. Apply the k-means to obtain initial M clusters.

3. Apply the moments method for each component j to obtain ~αj.

4. Expectation step: Compute Ẑnj using Eq.16.

5. Maximization step: Update ~αj and pj Using Eq.19 and Eq.45, respectively.

6. If pj < ε, discard component j and go to 4.

7. If the convergence criterion passes terminate, else go to 4.

8. Calculate the associated criterion of MML and select the optimal

number of components.

3.6 Experimental Results

In this section, we estimate the accuracy of our algorithm by testing it on two real

world applications.

3.6.1 Software defect prediction

Software quality assurance and detection of a fault or a defect in a software pro-

gram have become one of the topics that have received lots of attention in research

and technology. Any failure in software may result in high costs for the system [66].

The evaluation of the quality of complex software systems is costly and complicated.

Consequently, prediction of software failures and improving reliability is one of the

attractive applications for scientists [67-71]. To tackle this problem, it is critical

to define the appropriate metrics to express the attributes of the software modules.

There are some metrics [72] for assessing software complexity such as the code size,

McCabes cyclomatic and Halsteads complexity. The McCabes metric includes essen-

tial, cyclomatic and design complexity and the number of lines of code. While the

Halsteads metric consists of base and derived measures and line of code (LOC) [73].

24



Prediction models [74-75] are applied to improve and optimize the quality which

is translated to customer satisfaction as a significant achievement for the companies.

Finite mixture models as flexible statistical solutions and clustering techniques are

considered as powerful tools in this area [75-76].

Our experiment is performed on three datasets from the PROMISE data repos-

itory obtained from NASA software projects and its public MDP (Modular toolkit

for Data Processing) which are currently used as benchmark datasets in this area of

research [77]. The metrics or features of each dataset are five different lines of code

measure, three McCabe metrics, four base Halstead measures, eight derived Halstead

measures and a branch-count. The datasets are classified by a binary variable to indi-

cate if the module is defective or not. CM1 as the first dataset is a NASA spacecraft

instrument software written in ”C”. KC1 as the second one, is a ”C++” dataset raised

from system implementing storage management for receiving and processing ground

data. The last case, PC1 is developed using ”C” considering functions flight software

for earth orbiting satellite. To highlight the basic properties of the datasets, Table 8

is created. As it is shown in Table 9 and Table 10, multivariate Beta mixture model

(MBMM) has better performance in all three datasets in comparison with Gaussian

mixture model (GMM). For CM1, the accuracy of our model is 98.79% while this

value for GMM is 85.94% . KC1 has a more accurate result (94.12%) with MBMM

than GMM (88.66%). The performance of the models for PC1 are similar: 94.13%

and 91.79% of accuracy for MBMM and GMM, respectively. The precision and recall

follow the same behavior as accuracy. The multivariate Beta mixture model is ca-

pable to reach 97.44% precision and 99.55% of recall for PC1 and KC1, respectively.

While GMM has the best precision and recall in PC1 with 96.06% and 95.23%. Fur-

thermore, MML results validate our approach for model selection as shown in Figure

6.
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Table 8: Software modules defect properties

Dataset Language Instances Defects

CM1 C 498 49

KC1 C++ 2109 326

PC1 C 1109 77

Table 9: Software modules defect results inferred from the confusion matrix of mul-
tivariate Beta mixture model

Dataset Accuracy Precision Recall

CM1 98.79 99.15 99.55

KC1 94.12 94.69 98.31

PC1 94.13 97.44 95.97

Table 10: Software modules defect results according to the confusion matrix of Gaus-
sian mixture model

Dataset Accuracy Precision Recall

CM1 85.94 92.21 90.88

KC1 88.66 93.99 92.69

PC1 91.79 96.06 95.23
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Figure 6: MML results for NASA dataset

3.6.2 Spam detection

Spam filtering as our second real application is one of the major research fields in

information systems security. Spams or unsolicited bulk emails pose serious threats.

As it was mentioned is some literature up to 75–80% of email messages are spam which

resulted in heavy financial losses of 50 and 130 billion dollars in 2005 [78] and 2009

[79], respectively. Considering serious risks and costly consequences, classification

and categorization of email [80] have received a lot of attention. Applying machine

learning and pattern recognition techniques capability was enhanced compared to

hand-made rules [80, 81].

Our experiment was carried out on a challenging spam data set obtained from UCI

machine learning repository, created by Hewlett-Packard Labs [82]. This dataset con-

tains 4601 instances and 58 attributes (57 continuous input attributes and 1 nominal

class label target attribute). 39.4% of email (1813 instances) are spam and 60.6%

(2788) are legitimate. The attributes are extracted from a commonly used technique

called Bag of Words (BoW) as one of the main information representation methods

in natural language processing. In this method, each email is presented by its words

disregarding grammar. Most of the attributes in spambase dataset indicate whether

a particular word or character was frequently occurring in the e-mail. 48 features

include the percentage of words in the e-mail that match the word. 6 attributes
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are extracted from the percentage of characters in the e-mail that match characters.

The rest of the features are the average length of uninterrupted sequences of capital

letters, the length of the longest uninterrupted sequence of capital letters and the

total number of capital letters in the e-mail. The dataset class denotes whether the

e-mail was considered spam or not. To evaluate our framework, first the dataset has

been reduced to 3626 instances to have a balanced case. Then, it was normalized

by Equation 31 as our assumption is that all observation values are between zero

and one. Table 11 shows the results of our model performance in comparison with

Gaussian mixture model considering their confusion matrices. As we can realize from

table 4, multivariate Beta mixture model is more accurate (79.92%) and has higher

value in terms of precision and recall, 80.6% and 82.74%, respectively. MML results

are presented in Figure 7 as well.

Table 11: Spam filtering results to compare the performance of MBMM and GMM

Mixture model Accuracy Precision Recall

MBMM 79.92 80.6 82.74

GMM 67.81 78.99 68.29

Figure 7: MML results for spam dataset
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Chapter 4

Conclusion

In this thesis, we have presented two algorithms based on finite bivariate and mul-

tivariate Beta mixture models as novel methods of unsupervised learning, named

clustering which is one of the critical challenges in machine learning. The choice of

these distributions was motivated by their flexibility for data modelling as compared

with the Gaussian distribution. In our work as a model based clustering, we explored

deterministic approaches such as maximum likelihood using the expectation maxi-

mization algorithm framework to determine the parameters of our mixture models.

A model selection technique namely the minimum message length was implemented

to determine the number of clusters which describes the model complexity. Indeed,

determining the number of components inherent in our dataset is critical in the task

of parameter estimation in mixture models. In addition, we evaluated the model-

ing strengths of our mixture models on various datasets including synthetic and real

data. The real and pre-labeled datasets helped to carry tests and validate our model.

Moreover, we went further and considered very popular real-world applications. In

chapter two we focused first on image segmentation a one of the main image process-

ing techniques which has been receiving considerable attention because of its critical

role in numerous applications. The second application in this chapter was estima-

tion of the occupancy in smart buildings. We evaluated our unsupervised model on

a real datasets and compared it with GMM to analyze its performance. In third

chapter, our model was evaluated on two real world applications. The first one was

software defect detection in the context of three NASA datasets. Spam filtering was

our second topic of interest using the spam base dataset from the UCI repository.

29



From the outcomes, we can infer that the bivariate and multivariate Beta mixture

models could be competitive modeling approaches. In other words, we can say that

our model produces enhanced clustering results largely due to its flexibility [85,86].

Future works will explore more applications especially those dealing with time

series data. Moreover, we will explore more efficient optimization techniques for

estimating parameter vectors such as variational and Bayesian approaches.
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Chapter 5

Appendix 1

Proof of Eq. 40:

L(Θ, Z,X ) =
∑M
j=1

∑N
n=1 znj

(
log pj + log p( ~Xn|~αj)

)
=

∑M
j=1

∑N
n=1 Ẑnj

(
log pj+log

( ∏k

i=1
X

(aji−1)

ni∏k

i=1
(1−Xni)

(aji+1)×
[
1+
∑k
i=1

Xni

(1−Xni)

]−aj×Γ(
∑k

i=1
aji)∏k

i=1
Γ(aji)

))
=

∑M
j=1

∑N
n=1 Ẑnj

(
log pj+log

(∏k
i=1X

(aji−1)
ni )− log (

∏k
i=1(1−Xni)

(aji+1))+log (Γ(aj))

-log
∏k
i=1 Γ(aji) + log

[
1 +

∑k
i=1

Xni

(1−Xni)

]−aj)
=

∑M
j=1

∑N
n=1 Ẑnj

(
log pj +

∑k
i=1(aji − 1)( log(Xni))−

∑k
i=1(aji + 1)( log(1−Xni))

+log (Γ(aj))−
∑k
i=1 log (Γ(aji))− aj log

([
1 +

∑k
i=1

Xni

(1−Xni)

]))
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