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 Macro-/mesoporous TiO2 photocatalysts were synthesized via a hydrothermal route. 

 Impacts of hydrothermal time, temperature, and pressure on titania was examined.  

 •OH generation on illuminated titania was measured by photoluminescence method.  

 Correlation between crystalinity and surface area and •OH generation was found.  

 Toluene/MEK photocatalytic oxidation was conducted to evaluate activity of catalysts.  

 

 

Abstract 

A series of porous TiO2 photocatalysts are prepared, by systematically varying the preparation 

conditions (time, temperature, or pressure (i.e. filling ratio)), characterized, and evaluated in 

photocatalytic oxidation of toluene and methyl ethyl ketone (MEK) to explore preparation-

property-performance relationships. A detailed characterization has been conducted via X-ray 

diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), Fourier transform infrared (FTIR), and UV-vis spectroscopy. 

Furthermore, hydroxyl radical (•OH) generation on the surface of TiO2 is measured by a 

photoluminescence (PL) method using terephthalic acid (TA) as probe molecule. All the 

hydrothermally-prepared samples possessed good crystallinity (79.5-89 %), large surface area 

(134.9-237.2 m2/g), small crystal size (5.9-10 nm), and mesoporous structure. SEM images 

revealed presence of macropores and marcochannels, and N2 adsorption-desorption and TEM 

analyses indicated a significant amount of mesopores. PL and XRD results demonstrated a good 

proportionality between surface area normalized •OH generation and crystallinity. The complex 

interplay among various properties (especially crystallinity and surface area) led to appearance of 

activity optimums. Photocatalyst prepared at 12 h, 200 ˚C, and 80% filling ratio exhibited the 
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best toluene and MEK removal efficiencies, which surpass those of P25 by factors of 2.08 and 

1.85 times, respectively. The superior photocatalytic activity of developed TiO2 catalysts might 

be attributed to high surface area and existence of meso-/macropores that provide a large number 

of active sites, and facilitate light penetration and pollutants diffusion. The presented property-

activity relationships can be utilized as potential design criteria for the development of new TiO2 

photocatalysts for air purification. 

Keywords: Photocatalytic oxidation (PCO); Titanium dioxide (TiO2); Hydrothermal; Hydroxyl 

radical; Photoluminescence; Air purification. 

1. Introduction  

Since the discovery of photocatalytic splitting of water on a titanium dioxide electrode under UV 

light by Fujishima and Honda in 1972 [1], enormous efforts have been devoted to photocatalytic 

decomposition of pollutants in air and water on semiconductor photocatalysts (e.g. TiO2, ZnO, 

ZrO2, WO3, etc) [2, 3]. Photocatalytic oxidation is a viable environmental remediation 

technology which has been widely investigated in recent years for indoor air purification 

purposes [4]. Excitation of electrons from the valence band to the conduction band by light 

having energy greater than semiconductor’s band gap is the fundamental process in PCO. This 

process leads to generation of charge carriers (electron-hole pair (e--h+)) which react with 

adsorbed water, surface hydroxyl (OH) groups, and oxygen and produce reactive species such as 

hydroxyl radical (•OH) and superoxide radical anion (O2
•-). Chemical reactions between pollutant 

molecules adsorbed on the surface and active radicals decompose the challenge compound to 

CO2, H2O and light by-products [5]. 
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Titanium dioxide is the most investigated semiconductor for both air and wastewater treatment 

largely owed to its strong oxidizing power, chemical stability, suitable positions of valence and 

conduction bands, and relatively low cost [6, 7]. TiO2  photocatalysts could be prepared by 

numerous methods including sol-gel, hydrothermal, solvothermal, sonochemical, direct 

oxidation, microwave, microemulsion, chemical vapor deposition, and electrodeposition [8]. In 

the majority of synthetic methods, in the first stage high surface area and porous amorphous TiO2 

is obtained; however, the porosity and surface area are drastically diminished during the 

calcination at elevated temperatures because of phase transformation from amorphous to 

crystalline titania [9, 10]. Consequently, conventional preparation procedures that involve the 

calcination of amorphous titania rarely achieve large surface area, which is a critical factor in 

heterogeneous catalysis [11]. Accordingly, hydrothermal synthesis has been put forward as an 

effective route to produce titanium dioxides with high surface area and good crystallinity [12, 

13]. Hydrothermal synthesis is generally defined as crystallization above the room temperature 

and at high pressure (> 1 atm) [14]. This method involves chemical reactions between ions or 

molecular species in aqueous solution and one or more solid phases [13]. Hydrothermal method 

offers a number of advantages: formation of anatase at relatively low temperature (< 200 ˚C), 

low energy consumption, defect-free nano-crystals with high specific surface area, low 

agglomeration between particles, and narrow particle size distribution [15, 16]. Additionally, key 

features of titania (e.g. crystallinity, crystal size, porosity, surface hydroxyl content, and exposed 

facet) can be tailored by controlling the experimental parameters including temperature, time, 

pressure, type of solvent, pH of solution, type of acid/base, calcination temperature, etc. 

A variety of strategies have been applied to enhance the photocatalytic activity of titania: 

coupling TiO2 with adsorbent materials, doping with metal/non-metal dopants, surface 
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modification, and constructing optimal morphological designs [15, 17, 18]. In this context, 

ordered macro-/mesoporous materials have attracted great attention owed to their large surface 

area and interconnected pore systems that allow efficient mass transfer of pollutant molecules 

and light penetration [19]. The most conventional technique for synthesis of these materials is 

templating strategy in which removable or sacrificial templates are employed to reach desired 

spatial arrangements [20]. However, need of expensive templates and unwanted structural 

changes during template removal (via calcination or dissolution) have driven scientists to 

develop template-free methods for production of porous nanostructures [21, 22]. Yu et al. [23] 

were one of the firsts who worked on the hydrothermal preparation of hierarchical titania using 

aqueous medium and titanium alkoxide precursor. In this study, they investigated the impact of 

hydrothermal time on properties and photocatalytic activity of sponge-like macro-/mesoporous 

titania photocatalysts towards acetone. 

To date, only a few works have been done on the impact of hydrothermal synthesis parameters 

on titania properties and its activity for indoor air purification. Therefore, there is a lack in 

understanding of how catalyst features influence the pollutant removal efficiency and by-

products generation. The aim of the present study is to systematically investigate the effect of 

preparation parameters on catalyst features and photocatalytic performance. This objective was 

addressed in three steps: (1) the preparation of a number of photocatalysts by varying 

hydrothermal time, temperature, and pressure; (2) comprehensive characterization to obtain 

information on key properties of titania; and (3) photoactivity assessment and highlighting the 

preparation-property and property-performance relationships. The variations in crystallinity, 

crystal size, surface area, porosity, and surface chemistry with preparation parameters were 

explained considering TiO2 formation mechanism during hydrothermal synthesis. Toluene and 
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MEK photocatalytic degradation were selected as representatives of indoor air pollutants to 

evaluate the photocatalytic activity. The activity of commercial P25 (used as reference) was also 

assessed and compared to those of synthesized titania powders.  

2. Experimental 

2.1. Photocatalyst preparation 

All chemicals used in this study were used as received without further purification. Distilled 

water was employed in the preparation of all titania samples. In a typical synthesis procedure, a 

calculated amount of TBOT (Ti(OC4H9)4 from Aldrich) was added dropwise at a rate of 2 

ml/min to distilled water in the absence of stirring at room temperature. The volume ratio of the 

reaction medium to TBOT in all experiments was fixed at 10. The solution aged for 24 h at 

ambient temperature (21 ˚C) and afterwards the white-yellow precipitates were filtered. The 

filtered solids were washed several times with distilled water until the washing solution reached 

pH of ca. 7, and subsequently dried at 80 ˚C for 12 h. In order to investigate the impact of 

reaction time, temperature, and pressure, hydrothermal reactions were conducted at different 

temperatures (100-220 ˚C), durations (1-48 h), and reactor filling ratios (FR, 20-90%). A specific 

amount of amorphous titania sample was placed in a 100 ml stainless steel autoclave with a 

Teflon liner and the liner was filled with distilled water until it reached the desired filling ratio. 

The mass ratio between the amorphous TiO2 and water within the autoclave was kept at 0.025. 

The autoclave was heated at a rate of 3 ˚C/min to the target temperature, maintained at that 

temperature for the desired hydrothermal time, and finally cooled down (-3 ˚C/min) to room 

temperature. The resulting precipitate was filtered, washed with distilled water, and finally dried 

at 80 ˚C for 12 h as the post-synthesis thermal treatment. The hydrothermal preparation 

parameters as well as the assigned name to each photocatalyst are listed in Table 1. 
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Table 1. Hydrothermal preparation conditions of different TiO2 photocatalysts. 

2.2. Photocatalyst coating 

In order to evaluate the photocatalytic performance of titania samples, titania powder was 

deposited on a nickel foam substrate (Shanghai Tankii Alloy Material Co). The width, height, 

and thickness of the filter were 10, 10, and 0.1 cm, respectively. In the first step, titania particles 

obtained from hydrothermal synthesis (after the final thermal treatment) were pressed to form 

thin pellets, which then were crushed and sieved to the size of 35-60 meshes (250-500 µm). A 

specific quantity of photocatalyst was added to distilled water and the mixture was stirred for 6 h 

at room temperature at 600 rpm to reach a homogeneous TiO2 suspension (0.5 wt%). TiO2 

colloidal solution was coated on the Ni filter via a pipetting technique in which TiO2 solution 

was placed drop by drop on the filter until the entire surface of the filter is covered with TiO2 

solution. The filter was dried at 80 ˚C for 1 h and the same coating procedure was repeated for 

the other side of the filter. Finally, the titania coated filter was dried overnight at 80 ˚C to remove 

water from the filter. The TiO2 coated filter weight is measured and compared to that of the 

uncoated filter to calculate the coating density. In all experiments, the TiO2 coating density on 

the substrate was kept at 1 ± 0.07 mg/cm2. Prior to each PCO test, the TiO2 coated filter was 

preheated in air oven at 80 ˚C for about 2 h to remove the physically adsorbed water vapor 

during storage.  

2.3. Photocatalyst characterization 

The crystalline structure and crystallite size were identified by X-ray diffraction (Bruker, D8 

advance) with a monochromatized source of Cu-Kα radiation. The average crystal sizes of 

anatase, brookite, and rutile were estimated based on Scherrer formulae:  

𝑑ℎ𝑘𝑙 =
𝑘𝜆

𝛽𝑐𝑜𝑠2𝜃
          (1) 

ACCEPTED M
ANUSCRIP

T



where λ is the wavelength of the Cu-Kα radiation (λ=0.15405 nm), θ the Bragg’s diffraction 

angle, β the full width at half maximum intensity of the peak, and k a constant (0.89). For 

anatase, brookite, and rutile, (101), (121), and (110) peaks were respectively applied in Scherrer 

equation to determine the crystal size. Accordingly, the phase composition can be estimated from 

the integrated intensities of anatase (101), brookite (121), and rutile (110) peaks. For samples 

with more than one crystalline phase, the mass fractions of brookite (WB) and rutile (WR) were 

calculated according to the following equations [24]: 

𝑊𝐵 =
2.721𝐴𝐵

0.886𝐴𝐴+2.721𝐴𝐵
         (2) 

𝑊𝑅 =
𝐴𝑅

0.884𝐴𝐴+𝐴𝑅
          (3) 

where AA, AB, and AR are, respectively, the integrated intensities of the anatase (101) and 

brookite (121), and rutile (110) peaks.  

To investigate the surface morphology of TiO2 samples scanning electron microscope (Hitachi S-

4700 Model) at the acceleration voltage of 15 kV was used. Transmission electron microscopy 

and high-resolution transmission electron microscopy images were taken on a FEI Tecnai TF-20 

S/TEM instrument. Nitrogen adsorption-desorption isotherms at liquid nitrogen temperature 

(77K) were measured with an AUTOSORB-1 (Quantrochrome Instruments Co.) nitrogen 

adsorption apparatus. The Brunauer-Emmett-Teller surface areas (SBET) of the samples were 

evaluated by multipoint BET method using the adsorption data in the relative pressure (p/p0) 

range 0.05-0.3. The pore size distributions were calculated from desorption branches of 

isotherms by the Density Functional Theory (DFT), assuming slit-like pores. Prior to N2 

adsorption analysis, samples were completely degassed at 120 °C for several hours (except the 
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sample that synthesized at 100 °C, which was degassed at 80 °C). FTIR analyses were performed 

using a Nicolet 6700 FT-IR spectrometer (Thermo Fisher Scientific). Spectra were collected in a 

range of 4000–600 cm−1 at a resolution of 4 cm−1 and an absorbance detection limit of 0.001 a.u. 

Air spectrum, as background, was always subtracted from the obtained FTIR spectra in all 

experiments. The titania samples were degassed at 80 ˚C for 12 h before performing the FTIR 

analysis. Photoluminescence (PL) spectra were recorded with a fluorescence spectrophotometer 

(Varian Cary Eclipse, Agilent). Diffuse reflectance UV-visible spectra of samples were obtained 

over a range of 200-800 nm by a Perkin-Elmer Lambda 750 spectrophotometer, in which BaSO4 

was used as the background.  

2.4. Determination of hydroxyl radicals (•OH) 

In order to measure the amount of •OH formed on the surface of UV-illuminated TiO2, 

photoluminescence method with terephthalic acid as a probe molecule was employed. It is 

known that hydroxyl radicals rapidly react with TA and produce highly fluorescent 2-

hydroxyterephthalic acid (2-HTA) (shown in Scheme 1). Therefore, the intensity of the PL peak 

of 2-HTA is in proportion to the concentration of •OH generated on photocatalyst.  

Scheme 1. Generation of 2-hydroxyterephthalic acid as a result of the reaction between 

terephthalic acid and hydroxyl radical. 

Experimental procedures were as follows: 100 mg of TiO2 ground powder was dispersed in 30 

ml of an aqueous solution containing 2 mmol/L NaOH and 0.5 mmol/L TA in a glass dish with 9 

cm diameter and 2 cm depth. The concentration of TA was chosen based on the work of 

Ishibashi et al. which indicated that in a solution with 10-3-10-4 mol/L TA, the hydroxylation 

reactions of TA proceed mainly by ●OH [25]. It has been shown that at this TA concentration, 2-

HTA absorption or fluorescence quenching is not significant and the correlation between 2-HTA 
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concentration and PL intensity is linear [26]. The solution was stirred for 20 min in darkness at 

ambient temperature to obtain a homogenous suspension prior to irradiation. For illumination, a 

254-nm UV lamp (Philips, TUV PL-S 5W/4P) was horizontally placed 5 cm above the center of 

the dish. After 15 min of illumination, 4 ml aliquot was drawn, and immediately filtered using a 

0.22 µm syringe filter to remove TiO2 particles and acquire a clear solution. The fluorescence 

emission intensity of 2-HTA was measured at 426 nm after excitation at 315 nm on the 

fluorescence spectrophotometer. The PMT voltage and width of excitation (and emission) slit 

were 600 V and 5 nm, respectively. 

2.5. Photocatalytic activity measurement 

The performances of the prepared TiO2 samples and P25 were assessed in photocatalytic 

degradation of toluene and MEK in air in a single-pass continuous flow photoreactor. Fig. 1 

illustrates the experimental set-up scheme used for conducting the PCO tests. The reactor is 

made of aluminum and has an inner cross section area of 10 cm × 10 cm and length of 130 cm. 

The reactor configuration allows even distributions of airflow and light irradiance on the TiO2-

coated nickel substrate. The inlet air is split into two streams: one part enters a mass flow 

controller (OMEGA, FMA5542-A) and the other passes through a water cylinder (i.e. 

humidifier) in order to keep the relative humidity level at 20 ± 3 %. The VOC pollutant (toluene 

or MEK) is automatically injected into the air stream by a syringe pump (KD scientific, Model 

KDS-210) and a 25 µL gas-tight glass-syringe (Hamilton Company). The contaminated air enters 

the reactor and its humidity and temperature are continuously recorded by a sensor (DATAQ 

instruments, Model EL-USB-2) at the reactor inlet. Two low pressure mercury UV lamps 

(Philips, TUV PL-S 5W/4P) with dominant wavelength of 254 nm are placed at each side of the 

filter, as depicted in Fig. 1. The photocatalyst is allowed to come to adsorption equilibrium with 

ACCEPTED M
ANUSCRIP

T



the challenge compound before starting the PCO experiments. To do so, a dark adsorption step 

(i.e. lamps are off) at high concentration of the target VOC (10 ppm for toluene and 20 ppm for 

MEK) precedes the PCO tests. The concentration of the pollutant at downstream is monitored 

constantly by a PID detector (ppb3000 RAE) to detect the complete saturation of the filter by 

VOC. Once 100% breakthrough of the TiO2 coated filter is seen, the injection of VOC with 1 

ppm concentration is initiated and the UV lamps are switched on. In order to provide the system 

with sufficient time to reach steady state condition in terms of concentration, irradiance, 

humidity, and temperature, the reactor operates for 4 h before starting the samplings. All 

experiments were carried out at total light intensity (on the surface of the filter) of 5 mW/cm2 

(measured with ILT77CE Germicidal Radiometer, International light technologies). The 

experimental conditions at which PCO tests are performed are given in Table 2. The 

concentrations of toluene at the upstream and downstream are determined by gas 

chromatography–mass spectrometry (GC-MS). For GC-MS, air samples are taken from the 

reactor for 20 min using an air pump (GilAir®) with 50 ml/min airflow rate connected to an 

AirToxic® multi-sorbent tube (SUPELCO). Subsequently, the samples are analyzed with 

PerkinElmer Automated Thermal Desorber (ATD, TurboMatrixTM 650) and GC-MS 

(PerkinElmer Clarus® 500). For determining MEK and generated by-products concentrations, 

high-performance liquid chromatography (HPLC) is used. For the HPLC analysis, pollutants are 

absorbed on a high purity silica adsorbent coated with 2, 4-dinitrophenylhydrazine (2, 4-DNPH) 

cartridge (SUPLECO LpDNPH S10L, Sigma Aldrich). The sampling is performed at a rate of 1 

L/min for 20 min for MEK and 1 h for by-products. The absorbed compounds are extracted from 

the LpDNPH cartridge with acetonitrile and elutes are analyzed by PerkinElmer Flexar HPLC 
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equipped with a C18 Brownlee validated micro-bore column (250 mm × 4.6 mm ID, 5 µm film 

thickness). 

Fig. 1. Schematic presentation of the experimental set-up for PCO experiments. 

Table 2. PCO tests experimental conditions (mean value ± standard deviation) 

The performance of PCO system is evaluated based on the removal efficiency of VOC, PCO 

reaction rate, and the amount of generated by-products in the gas phase. The single-pass removal 

efficiency is calculated based on the amount of pollutant removed by the air filter as follows:  

𝑆𝑖𝑛𝑔𝑙𝑒 − 𝑝𝑎𝑠𝑠 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, 𝜂 (%) =
𝐶𝑖𝑛

(𝑡)
−𝐶𝑜𝑢𝑡

(𝑡)

𝐶
𝑖𝑛
(𝑡) × 100    (4) 

where 𝐶𝑖𝑛
(𝑡)

and 𝐶𝑜𝑢𝑡
(𝑡)

 are the upstream and downstream concentrations in ppb at time t (min), 

respectively.  

The photocatalytic reaction rate over TiO2-coated filter is determined as follows:  

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, 𝑟𝑃𝐶𝑂 =
𝑄𝑎𝑖𝑟×(𝐶𝑢𝑝−𝐶𝑑𝑜𝑤𝑛)

𝑚×𝑀𝑡𝑜𝑙𝑢𝑒𝑛𝑒/𝑀𝐸𝐾
× 100      (5) 

 where m is the photocatalyst mass on nickel foam (g), M is toluene/MEK molecular weight 

(g/mol), C is the VOC concentration (g/m3), and Qair is air volumetric flow rate (m3/min).   

By-products generations during PCO reactions are found by subtracting the concentration of 

each compound in the upstream from that of the downstream.  

𝐵𝑦 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐺𝑖 (𝑝𝑝𝑏) = 𝐶𝑖,𝑜𝑢𝑡
(𝑡)

− 𝐶𝑖,𝑖𝑛
(𝑡)

     (6) 

where 𝐶𝑖,𝑖𝑛
(𝑡)

 and 𝐶𝑖,𝑜𝑢𝑡
(𝑡)

are the upstream and downstream concentrations of by-product i in ppb at 

time t (min), respectively.  
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3. Results and discussion 

3.1. Photocatalyst characterization 

3.1.1. Crystal structure 

It is well-established that the crystallinity, crystal phase, and crystallite size of titanium dioxide 

play critical roles in photocatalytic oxidation [27, 28]. TiO2 has three crystal phases: anatase, 

rutile, and brookite. Rutile is a thermodynamic stable state, while anatase and brookite are 

metastable state. The building block of all three crystal forms of TiO2 is TiO6 octahedra but with 

a different spatial arrangement in each phase [29]. Among these three phases, anatase is believed 

to be the most active polymorph of titania mainly due to its low electron-hole recombination rate 

[5]. XRD technique was employed to study the changes in crystallographic phases and crystal 

size of titania samples with hydrothermal time, temperature, and filling ratio.  

Fig. 2a illustrates XRD patterns of TiO2 samples treated for various durations at 180 ˚C and 80% 

filling ratio. Expectedly, the as-prepared sample (i.e. without undergoing hydrothermal 

treatment) is amorphous since the rate of hydrolysis reaction of titanium precursor in pure water 

at room temperature is low and, thus, the hydrolysis cannot proceed completely. Therefore, the 

TiO2 sample before hydrothermal reactions contains a considerable amount of unhydrolyzed 

alkyls, which hinder crystallization by adsorbing on the surface of titania particles [30]. 

Contrarily, samples underwent hydrothermal treatment show presence of both anatase, as the 

dominant crystal phase, and brookite. After hydrothermal treatment for only 1 h, a significant 

phase transformation from amorphous to crystalline titania is witnessed. The diffraction peaks of 

Ht-1 can be indexed to anatase (JCPDS No. 21-1272) and brookite TiO2 (JCPDS No. 29-1360). 

By prolonging the hydrothermal synthesis duration to 3 h, anatase and brookite peaks intensities 

increase, implying an improvement in crystallization. Additionally, the widths of the diffraction 
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peaks at 2θ=25.28 ˚ (anatase (101) plane) and 2θ=30.80 ˚ (brookite (121) plane) decrease as the 

hydrothermal time increases from 1 to 3 h. The sharpening of diffraction peaks stems from the 

increment in anatase and brookite crystal sizes from 6.1 and 7.4 nm for Ht-1 to 6.9 and 7.7 nm 

for Ht-2. As a consistent behavior, extending the hydrothermal synthesis time results in gradual 

crystal size enlargement, higher degree of crystallinity, and lower amorphous TiO2 content (see 

Table 3). After 6 h of hydrothermal treatment, the TiO2 sample contains 81.5% anatase and 

18.5% brookite phase. Notably, the brookite content (mass fraction) increased with hydrothermal 

time up to 6 h (18.5%) and from that point on experiences a downward trend. The sample 

undertaken 48 h of hydrothermal treatment possesses the highest relative anatase crystallinity 

and largest crystal sizes due to the advancement of crystallization process with time.   

The impact of hydrothermal temperature on the phase structures of titania samples is presented in 

Fig. 2b. With raising the hydrothermal temperature, the XRD peaks intensities significantly grow 

and coherently the widths of diffraction peaks of anatase and brookite become smaller. These 

observations support the fact that higher temperature within autoclave leads to better crystallinity 

(i.e. smaller amorphous content) and crystal growth. This is due to the fact that Ostwald ripening 

process is improved at a higher hydrothermal temperature or a longer hydrothermal time . It is 

known that the primary driving force for simple crystal growth is the reduction in surface energy. 

According to Ostwald ripening phenomenon, growth of large particles at the expense of smaller 

particles (and concurrent morphology evolution) is driven by the tendency to minimize the area 

of high surface energy faces [31]. Even at temperatures as low as 100 ˚C, crystalline titania could 

be synthesized, which is beneficial in terms of energy requirement and obtaining large surface 

areas [32]. In order to compare the crystallinity of different samples, the intensity of the (101) 

diffraction peak of the anatase phase was regarded as a measure. The relative crystallinity was 
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calculated by dividing the intensity of the (101) peak of each sample to that of H-Base. As shown 

in Table 3, the relative anatase crystallinity and crystal size steadily increase with hydrothermal 

temperature. For instance, at 100 ˚C the anatase and brookite crystal sizes are 5.9 and 7.3 nm 

respectively, while at 220 ˚C these values reach 9.5 and 10 nm and the relative crystallinity 

almost doubles. Regarding the impact of hydrothermal temperature on phase composition, there 

are insignificant variations in anatase content among samples prepared at temperature lower than 

220 °C. The anatase content reaches its maximum at 220 °C, 89.7%, which indicates that high 

temperature favors anatase phase formation.  

Filling ratio is defined as the volume of reaction medium to the volume of autoclave. During the 

hydrothermal synthesis, the pressure inside the system is the sum of the pressure generated by 

saturated water vapor and the pressure resulted from CO2 evolution via decomposition of 

titanium precursor [33]. Accordingly, the filling ratio determines the pressure during TiO2 

crystallization. Despite its potential impact on the properties of yielded titania, this aspect of 

hydrothermal synthesis has rarely been discussed in previous works. Hsiao et al. [33] stated that 

the pressurized environment in the autoclave can improve the crystallization process. Fig. 2c 

depicts the XRD patterns of TiO2 samples prepared at different autoclave filling ratios. As can be 

noted in Fig. 2c and Table 3, the impact of autoclave filling ratio on crystallinity and crystal size 

is much less in comparison to that of hydrothermal temperature or hydrothermal time. The 

relative crystallinity, phase composition and crystal size vary in narrow ranges by increasing the 

autoclave filling ratio and no consistent correlation between filling ratio and crystalline structure 

could be found. For example, the relative crystallinity increases by increasing the filling ratio 

from 20% to 40%, decreases at 60% and then increases when 80% filling ratio is applied. 

Evidently, simultaneous effects of pressure, temperature, and water allowed crystallization to 
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occur at relatively lower temperature compared to “sol-gel route + calcination” [34]. It is 

believed that water molecules catalyze the rearrangement of the TiO6 octahedra in the 

amorphous titania by adsorption to the titania surface reaction, accelerating crystallization [35] 

and along with high temperature and pressure in autoclave facilitate structural changes [36]. 

Fig. 2. XRD patterns of photocatalysts prepared at different (a) hydrothermal durations, (b) 

hydrothermal temperatures, and (c) autoclave filling ratios. 

Table 3. Crystalline and textural properties of titania photocatalysts prepared at various 

hydrothermal conditions and P25. 

Scheme 2 illustrates a graphical presentation of the crystalline structure of TiO2 before and after 

hydrothermal synthesis at maximum time (Ht-5), temperature (HT-4), and pressure (HP-4). The 

crystalline and textural properties of as-prepared titania sample (100% amorphous and 346.5 

m2/g surface area) dramatically change after the hydrothermal treatment. As can be seen, a major 

portion of the amorphous titania (70.7-80.7 %) transforms to crystalline anatase upon 

hydrothermal treatment. Compared to high hydrothermal time (48 h) or temperature (220 °C), 

high reactor filling ratio (i.e. pressure) leads to the formation of more brookite phase, 14.9%. The 

activation energy for anatase-to-brookite transformation is small (11.9 kJ/mol); while for 

brookite-to-rutile transformation much higher energy is required (163.8 kJ/mol) [24]. Therefore, 

the A→B transition can proceed at such low temperatures (100-220 °C) and results in the 

appearance of brookite phase after hydrothermal synthesis. Yu et al. [37] reported that the 

formation of brookite phase can be promoted in acidic environment. Considering that in our 

preparation method the reaction medium was non-acidic, it is reasonable to assume that the 

hydrothermal environment led to the formation of brookite phase.  

Scheme 2. Graphical presentation of the impact of hydrothermal treatment on titania 

structure. 
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3.1.2. Surface area and porosity 

The influence of hydrothermal preparation factors on surface area and pore structure were 

investigated by nitrogen adsorption-desorption technique. The BET surface area of titania 

samples prepared at different preparation conditions are provided in Table 3. All yielded titania 

samples possess high surface area, a fact which underlines the advantage of hydrothermal 

preparation route. The BET surface area monotonically decreases with reaction time and 

hydrothermal temperature which is in good agreement with the XRD results. As could also be 

predicted from the significant crystal growth, the surface area of the as-prepared sample 

decreases by 37% after 1 h of hydrothermal treatment. After this initial sharp drop, increasing the 

reaction time gradually diminishes the surface area until it reaches its minimum for Ht-5. 

Analogous to the influence of reaction time, rising the hydrothermal temperature leads to an 

almost linear reduction in the surface area of titania samples. As an instance, as the hydrothermal 

temperature is raised from 100 to 220 °C the surface area decreases from 237.2 to 139.1 m2/g. 

Fig. 3 and 4 present the adsorption-desorption isotherms and the corresponding pore size 

distributions of as-prepared titania, Ht-1, H-Base and HT-4. Before hydrothermal treatment, the 

TiO2 sample has a large surface area, 346.5 m2/g, due to its amorphous structure. As shown in 

Fig. 3a, the as-prepared TiO2 exhibits isotherm of types I and IV (BDDT classification): at low 

relative pressures (p0/p < 0.1), the isotherm shows a high adsorption due to the presence of 

micropores (type I) and the narrow and continuous hysteresis loop at higher relative pressures 

indicates the existence of mesopores (type IV). This is also in good agreement with the pore size 

distribution (Fig. 4a) which confirms a huge amount of micropores (pore width < 2 nm) and 

smaller amount of mesopores (2 < pore width < 50 nm) in the as-prepared sample structure. All 

the other samples show isotherms of type IV with hysteresis loops appearing at high relative 
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pressures, indicating the presence of mesopores. The shapes of hysteresis loop are of type H2, 

associated with narrow necks and wider bodies (ink-bottle pores) . By increasing the 

hydrothermal time from 1 h to 12 h (Ht-1 and H-Base respectively), the hysteresis loop shifts 

slightly to a region with higher relative pressure, implying an increment in the average pore size. 

Regarding the impact of hydrothermal temperature, by rising the temperature from 180 to 220 °C 

(H-Base and HT-4 respectively), the hysteresis loop moves rightward and downward to a region 

with higher relative pressure and lower adsorbed volume, showing increment in pore size and 

decrement in specific surface area. All hydrothermally-prepared samples appear to possess a 

considerable amount of mesopores within their porous structures which could explain the high 

surface areas. The increment in pore sizes and the reduction in surface area at more severe 

hydrothermal conditions (i.e. longer time, higher temperature, and higher filling ratio) can be 

explained as follows. Considering the fact that smaller pores bear greater stress than the bigger 

ones, during hydrothermal synthesis smaller pores collapse sooner. Secondly, as evidenced by 

XRD analyses, at harsher hydrothermal conditions, larger crystals are formed due to the crystal 

growth and, thus, pores result from the aggregation of these crystals would be bigger .  

Fig. 3. Nitrogen adsorption–desorption isotherms of hydrothermally-prepared titania 

photocatalysts; Impact of hydrothermal preparation time (a) and temperature (b). 

Fig. 4. Pore-size distribution of hydrothermally-prepared titania photocatalysts; Impact of 

hydrothermal preparation time (a) and temperature (b). 

3.1.3. SEM and TEM 

The macroporous structure of the yielded titania powder was directly examined by scanning 

electron microscopy. The SEM images of H-Base (treated at 180 °C for 12 h and 80% filling 

ratio) are presented in Fig.  5. In Fig. 5a, it can be clearly seen that the yielded titania sample 

possesses macroporous structure with pore size ranging from 0.5-3 µm. Judging from Fig. 5b 
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(side view of H-Base sample), H-Base exhibits a disordered macroporous frameworks with 

continuous walls with thickness of about 4-8 µm extend through the whole particle. The type of 

reaction medium can greatly influence the pore size and shape of macroporous structure. It was 

proposed that when the dominant solvent in the reactor is water meso-macroporous structure 

with macrochannels and mesoporous walls can be expected [38]. The well-oriented macroporous 

channels are arranged parallel to each other and perpendicular to the outer surface of the particle. 

The macroporous channels formed during the hydrothermal synthesis not only can facilitate the 

mass transfer of pollutants molecules to the active sites of titania, but also serve as paths for 

emitted photons to reach the particle’s interior regions. As it is shown in the inset of Fig. 5b, a 

portion of titania particles fused together in the form of dimers or trimmers instead of 

incorporating in the main structure of macro/micro porous titania. This could result from the 

attachment of titania particles via the condensation reaction, considering the abundance of 

surface OH groups on TiO2 particles. Upon the contact between TBOT droplet and water in the 

first step of preparation procedure, a semipermeable TiO2 layer forms on the droplet surface. 

This layer divides the subsequent hydrolysis and condensation reactions. These reactions proceed 

inwardly, and approximately perpendicular to the external surface of the particles, as the distilled 

water diffuses through the outer membrane [39]. This produces microphase-separated regions of 

TiO2 nanoparticles and water/alcohol channels within the TBOT droplets that undergo 

spontaneous radial patterning caused by the hydrodynamic flow of the solvent [40]. We suggest 

that the mesoporosity is partly due to the intraparticle porosity and partly due to interparticle 

porosity. The SEM results along with the information extracted from N2 adsorption-desorption 

indicate that H-Base has a trimodal pore structure of a micro-meso-macro porous system. 

Moreover, the microstructure of the nickel foam filter coated with H-Base photocatalyst is 
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presented in Fig. 5c and d. The nickel foam filter shows a 3-D porous network with pore sizes 

ranging from 100 to 800 μm. As can be seen, titania nanoparticles are mostly deposited on the 

filter framework and in some regions particles filled the oval-shape void spaces. 

Fig. 5. (a and b) SEM images of porous TiO2 hydrothermally prepared at 180 °C and 80% 

filling ratio for 12 h (H-Base). (c and d) SEM images of H-Base photocatalyst coated on 

nickel form filter.    

 

In order to directly study the microstructure and crystal shape, size, and phase, TEM imaging 

was performed. Fig. 6 illustrates TEM and HRTEM images of the sample hydrothermally treated 

at 180 °C and 80% filling ratio for 12 h. As can be seen in Fig 6b, the anatase and brookite 

crystal sizes are approximately 7.33 and 8.81 nm, respectively. The particle size distribution of 

the H-Base sample measured from TEM analysis is depicted in Fig. 6d. Most crystals are 

between 6 and 10 nm in diameter and the mean size of the counted particles is roughly 7.5 nm. 

These values are consistent with the crystal sizes calculated by Scherrer equation based on the 

XRD results for H-Base (7.6 nm for anatase and 8.3 nm for brookite). Absence of long-range 

ordered mesostructure in TEM images led us to believe that a part of mesoporousity was caused 

by the aggregation of the primary titania particles (i.e. interparticle porosity), as shown in Fig. 

6b. In Fig. 6c the lattice fringes of the titania can be easily recognized which confirms high 

crystallinity of the sample. The lattice plane of anatase  (101) with interlayer spacing of ca. 0.35 

nm [16] can be observed in the HRTEM images.  

Fig. 6. TEM (a) and HRTEM (b and c) images of H-Base. (d) Particle size distribution 

histogram of H-Base sample measured from the TEM imaging in Fig. 6a (the graph is based 

on the measurement of the size of 100 nanoparticles.) 
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3.1.4. Hydroxyl radical analysis 

Photocatalyst ability to produce hydroxyl radicals has an enormous influence on the efficacy of 

PCO system in removal and mineralization of air contaminants. The yield of •OH radicals 

depends on the competition between oxidation of surface OH groups/water by holes and e--h+ 

recombination. Thus, the measurement of the formation rate of hydroxyl radicals can provide 

useful information to better understand the connections between catalyst features and its 

photocatalytic activity. Hydroxyl radical has a very short lifetime (~10-9 s) and high reactivity, 

which make it difficult to be directly measured. Consequently, a variety of indirect techniques 

including electron spin resonance (ESR), UV/vis absorption spectroscopy, luminescence and 

fluorescence have been employed [41]. In this study, the fluorescence spectrometry was applied 

to determine the formation rate of hydroxyl radicals on different hydrothermally-prepared 

samples. Fig. 7a illustrates the PL spectra of TiO2 samples synthesized under different 

hydrothermal durations at 180 °C and 80% filling ratio. No PL was seen for the base solution 

(mixture of TA and NaOH) or the TiO2 solution in the absence of illumination which indicates 

that the source of PL is 2-HTA [25]. The as-prepared amorphous titania (i.e. only underwent a 

drying step) shows a minimal PL intensity at 426 nm, arising from the lack of crystallinity which 

induces more e--h+ recombination and smaller number of available holes for •OH production. A 

steady increment in PL intensity is witnessed with prolonging the hydrothermal reaction time 

from 1 to 48 h which can mainly be ascribed to the enhancement in crystallinity. Regarding the 

impact of hydrothermal temperature, in the range of 100 to 200 °C, PL intensity exhibits an 

upward trend and reaches its optimum value at 200 °C. The PL intensity of HT-4 was much 

lower than that of HT-3 despite its superior crystallinity (see Table 3) which could probably stem 

from the reduction in surface area and surface hydroxyl groups population at a higher 
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hydrothermal reaction temperature (see FTIR spectra in section 3.1.6). In the case of autoclave 

filling ratio, the PL intensity does not correspond with the pressure inside the reactor, but it 

agrees to some extent with samples crystallinity.  

Fig. 7. Variations in Photoluminescence spectra of titania photocatalysts with (a) 

hydrothermal duration, (b) hydrothermal temperature, and (c) autoclave filling ratio. 

The relationship between the surface area normalized PL intensity (calculated based on data in 

Fig. 7 and Table 3) and relative anatase crystallinity is depicted in Fig. 8. Even though there are 

some biases in the linear correlation, a good proportionality between the two parameters can be 

noticed in Fig. 8. The normalized PL intensity almost linearly grows with improvement in 

anatase relative crystallinity. Since the PL intensity is proportional to 2-HTA concentration, 

which is generated by the reaction between •OH and TA, once the contribution of surface area is 

removed, the quality of crystallinity mainly controls the formation rate of •OH. It is important to 

point out that given the high pH of solution (around 11.5) and low concentration of TA, the 

direct oxidation of TA by photogenerated holes is very unlikely and can be ruled out [42]. 

Fig. 8. Dependence of surface area normalized fluorescence intensity (a.u./(m2/g)) on the 

relative anatase crystallinity of various titania photocatalysts (see Table 2). 

3.1.5. UV-vis  

The UV-vis absorbance spectra of titania samples with different hydrothermal synthesis 

conditions are illustrated in Fig. 9. As can be seen in this figure, TiO2 only effectively absorb the 

UV light with wavelength shorter than 410-420 nm, which is consistent with previous studies 

[43]. The significant absorption around 350-400 nm can be ascribed to the excitation of electrons 

from the valence band to the conduction band (O2p → Ti3d) . It is evident that all the titania 

samples have very similar absorption profiles (and absorption edges) in the range of 250-800 nm, 

indicating that their band gaps should fall within a narrow range. The band gap energies are 
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determined by plotting (αhν)2 versus energy of light (hν) (Tauc plot) where α is the absorption 

coefficient, h is the plank constant and v is the frequency. The extrapolation of the straight line 

from the Tauc region intercepts the x axis (hν) to give the direct band gap of the TiO2 powder. 

The band gap energies of pure anatase and brookite phases are 3.23 and 3.14 eV respectively. As 

reported in Table 3, the band gap energies of the mixed-phase TiO2 samples, estimated from the 

Tauc plot, are very close and between 3.14 and 3.23 eV depending on the phase composition.  

Fig. 9. Variations in UV-vis absorbance spectra of titania photocatalysts with (a) 

hydrothermal duration, (b) hydrothermal temperature, and (c) autoclave filling ratio. 

 

3.1.6. FTIR 

Hydroxyl groups on TiO2 surface can serve as active adsorption sites for pollutant molecules and, 

therefore their population and type can have a great impact on the photocatalytic performance. 

FTIR is a cheap and fast method to acquire some insights into the nature and population of 

surface OH groups. Fig. 10 shows the FTIR characterization of the titania samples in the OH 

spectral region, 3800-2600 cm-1. Considering that the FTIR spectra of some of the samples are 

almost similar, for the sake of brevity, in Fig. 10 only some of the spectra are represented. As can 

be noted, the surfaces of all titania powders are abundant with OH groups, judging from the 

appearance of a broad and strong IR absorption in the 3600-2800 cm-1 range. Nonetheless, it is 

worth highlighting that besides surface hydroxyl groups, the absorption in this region can also 

result from water molecules coordinatively adsorbed on surface Ti4+ cation and un-dissociated 

water molecules attached to the surface by hydrogen bonds [44, 45]. Regarding the as-prepared 

sample and HT-1, several bands are observed in the 2975-2850 cm-1 range, which could be 

assigned to the C-H stretching vibration. This indicates that even after 12 h of hydrothermal 

treatment at 100 ˚C, still there are some unhydrolyzed butoxy groups (or other residual organic 
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moieties originating from the starting alkoxides) in titania structure. By comparing the broad 

band in the 3600-2800 cm-1 region in samples underwent hydrothermal reactions, it can be seen 

that the IR absorption gradually diminishes as the reaction time or autoclave temperature is 

increased. This is partly due to the fact that as the hydrothermal reactions proceed, many surface 

hydroxyl groups are consumed in condensation reactions to form Ti-O-Ti networks. Except the 

as-prepared sample, in all FTIR spectra of samples prepared at different temperatures and 

durations, three sharp peaks at 3693, 3670, and ~3630 cm-1 are detected. Generally, bands at 

frequencies greater than 3600 cm-1 are ascribed to the stretching mode of –OH species free from 

hydrogen bonding interactions [44, 46]. Some studies suggested that the bands at frequencies 

higher than 3680 cm-1 might belong to terminal hydroxyl groups (Ti−OH) and bands at lower 

frequencies can be sign of bridged −OH (Ti−OH−Ti) [45]. More specifically, the band at 3693 

cm-1 is suggested to be a signature of isolated hydroxyl groups on titania [47]. It is interesting to 

note that the band at 3693 cm-1 has its highest intensity in the case of H-Base and HT-3. In all 

spectra a sharp band located at 3670 cm-1 can be noticed which is due to the presence of bridging 

−OH group [44]. Only on HT-3, a small and sharp peak appears at 3650 cm-1 which could be 

attributed to a type of isolated hydroxyl group [45]. In our previous study [48], we showed that 

the isolated hydroxyl groups, located at 3722-3693 cm-1, have strong interaction with toluene and 

MEK molecules.  

Fig. 10. FTIR spectra of the TiO2 samples in the hydroxyl group region: (a) impact of 

hydrothermal time and (b) impact of hydrothermal temperature. 

 

3.2. Photocatalytic activity 

The photoactivity has a complex relationship with each hydrothermal synthesis parameter owed 

to the dependence of photocatalyst key characteristics including surface area, degree of 
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crystallinity, crystal size, crystal phase composition, •OH production ability, porosity, and 

population/type of hydroxyl groups on the preparation conditions [49]. The photocatalytic 

activity of yielded photocatalysts was assessed through photocatalytic oxidation of toluene and 

MEK in air at room temperature. For comparison, the activity of P25, which is widely 

recognized as a highly efficient photocatalyst under UV light, is also evaluated. 

As could be easily inferred from the characterization data presented in section 3.1, hydrothermal 

time should have a great influence on the removal efficiency (and reaction rate) of toluene and 

MEK. Considering Fig. 11, the as-prepared titania sample exhibits minor toluene and MEK 

removal efficiencies in comparison to samples underwent hydrothermal treatment mainly due to 

its amorphous structure, which triggers fast e--h+ recombination. The sample prepared at 180 ˚C 

for 1 h (Ht-1) shows high toluene and MEK removal efficiencies, 41% and 34% respectively, 

which are higher than (for toluene) and equal to (for MEK) those of P25. The good photoactivity 

of Ht-1 could be mainly attributed to the formation of anatase crystals, large surface area, and 

mesoporous structure. After this point, VOC removal efficiency variation with hydrothermal 

time displays different trends depending on the challenge compound. In the case of toluene 

which has much weaker interaction with titania surface with respect to MEK, the significant 

surface area (and porosity) decrement from Ht-1 to Ht-2 overpowers the marginal enhancement 

in crystallinity and causes ~20% drop in the removal efficiency. This clearly indicates that the 

adsorption process affects the photocatalytic oxidation of toluene to a greater extent than that of 

MEK. By prolonging the reaction time from 3 to 12 h (i.e. Ht-2 to H-Base), toluene removal 

efficiency and reaction rate progressively increase and reach their optimum values, 48.7 % and 

11.95×10-5 mol/(min.g), showing improvement over P25 with 34% removal efficiency and 

8.35×10-5 mol/(min.g) reaction rate. Further increment in the reaction time (from 12 to 48 h) 
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results in a sharp decline in toluene removal efficiency, most probably due to the reduction in 

surface area, porosity, and surface OH density. On the other hand, MEK removal efficiency 

monotonically enhances with hydrothermal time, reaches its maximum value on Ht-4, and 

experiences a minor drop for the sample that underwent 48 h hydrothermal treatment. Besides 

the improvement in crystallinity which surely contributes to the upward trend of MEK removal 

efficiency with hydrothermal time, one should bear in mind that anatase is the most active 

polymorph of titania in gaseous PCO and in our experiments anatase phase content increases 

with the hydrothermal time (see Table 3). Notably, MEK removal efficiency and reaction rate on 

Ht-4 is almost two times higher than that on P25. This superiority can be attributed to Ht-4 large 

surface area (thrice P25), good crystallinity, proper crystal size, and high mesoporousity.      

Fig. 11. Toluene and MEK removal efficiency and reaction rate for the as-prepared titania, 

hydrothermally-prepared TiO2 samples synthesized at different durations (1-48 h), and P25. 

As noted in Fig. 12, the trends of MEK and toluene removal efficiency (and reaction rate) with 

hydrothermal temperature are fairly similar. With employing a higher hydrothermal temperature, 

the obtained photocatalyst performs better mainly owed to the substantial enhancement in 

crystallinity and crystal growth (see Table 3). The observed trends indicate that the greater 

crystallinity at higher hydrothermal temperatures counteracted the reduction in the surface area 

and the net effect was positive. Many researchers proposed that the co-presence of two TiO2 

crystal phases can extend the e--h+ pairs lifetime and, therefore, boost the quantum efficiency. 

Based on the obtained results, it appears that the biphasic titania photocatalyst with 82.3% 

anatase and 17.7% brookite (HT-3) offers the optimum photocatalytic activity towards the 

selected VOCs under the employed experimental conditions. It is noteworthy that higher 

hydrothermal temperature can also bring about a better contact between the two crystalline 

phases which is crucial for a successful charge carrier transfer from one phase to another. 
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Another possible explanation for achieving the highest photocatalytic activity over HT-3 could 

be its crystal size, considering that the charge carrier recombination can take place both in the 

bulk and on the surface of TiO2. It is known that with crystal growth the bulk recombination 

becomes more significant; consequently, one can envisage a crystal size at which the best trade-

off between surface and bulk recombinations exists. The fluorescence spectrometry data can be 

useful to better justify this point since photocatalyst capability to produce •OH is closely 

connected to the population of available holes, which in turn is a measure of the effectiveness of 

charge carrier separation. As can be seen in Fig. 7b, HT-3 possesses the largest PL intensity 

amongst samples treated at different hydrothermal temperatures which might be partly ascribed 

to its ideal crystal size that enhances the e--h+ separation and subsequently the removal of 

challenge compounds. Additionally, although the removal efficiency does not always match the 

population of hydroxyl groups on titania surface in our study, as showed in Fig. 10b, the IR 

absorbance for HT-3 in the OH spectral region is stronger than that for HT-4. As mentioned 

before, surface OH groups are extremely important adsorption centers for VOC molecules. MEK 

can be adsorbed on the surface via H-bonding between its carbonyl group and surface OH 

groups, and toluene adsorption mainly occurs through weak П-bonding to surface hydroxyls 

[48]. Therefore, the lower concentration of OH groups along with the smaller surface area and 

porosity can explain the inferior photocatalytic performance of HT-4 with respect to HT-3.  

Fig. 12. Toluene and MEK removal efficiency and reaction rate for hydrothermally-prepared 

TiO2 samples synthesized at different hydrothermal temperatures (100-220 °C). 

Fig. 13 illustrates toluene and MEK removal efficiencies (and reaction rate) for titania powders 

synthesized at 180 °C for 12h with different reactor filling ratios. Evidently, the removal 

efficiencies cannot be correlated with the applied filling ratio which is reasonable taking into 

account that the variations in photocatalysts characteristics with this preparation parameter were 
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unpredictable as well (see Table 3). Nonetheless, it is worth highlighting that the impact of 

autoclave filling ratio on toluene and MEK photocatalytic oxidation is much less with respect to 

that of the other preparation parameters, namely hydrothermal temperature and time. 

Considering Fig. 13, H-Base (180 °C, 12h, and 80%) indicates the highest removal efficiency for 

both toluene and MEK which is in good agreement with the results reported in Fig. 7c on the PL 

intensity of these samples. On the other hand, although HP-3 has comparable surface area and 

crystallinity to those of other HP samples, it has the lowest toluene removal efficiency (31.4%) 

and the third lowest MEK removal efficiency (29%), which could result from its poor ability to 

produce hydroxyl radicals as can be evidenced in Fig. 7c.  

Fig. 13. Toluene and MEK removal efficiency and reaction rate for hydrothermally-prepared 

TiO2 samples synthesized at different autoclave filling ratios (20-90%).  

Table 4 summarizes the amounts of detected by-products in the gas phase during the PCO of 

toluene and MEK on various titania samples. By comparing the data in Table 4 and Figs. 11-13, 

it can be noted that though many of the samples outperformed P25 in MEK/toluene degradation, 

the amounts of by-products in the outlet stream are considerably larger for P25. This observation 

can be described from two perspectives: (i) the complete conversion of challenge compounds to 

CO2 and H2O is greater on the hydrothermally prepared samples or (ii) generated by-products 

during PCO reactions are more efficiently adsorbed on the prepared samples compared to P25. 

Both views can be explained by considering the larger surface area of hydrothermally prepared 

samples, which provide a larger number of accessible active sites for chemical reactions (i.e. 

more complete mineralization) and more adsorption sites for by-products (i.e. less adsorption 

competition). Additionally, the porous structure of fabricated titania photocatalysts can retard the 

desorption of by-products (or intermediates) from the surface to the gas phase and, thus, boost 

the possibility of participation in further oxidation reactions [50]. In some of the PCO 
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experiments, propionaldehyde is found in the outlet air, while in other cases formaldehyde, 

acetaldehyde and acetone are the only by-products. One reason might be the low concentration 

of propionaldehyde which was lower than the detection limit of the HPLC. Regardless of the 

photocatalyst and the achieved efficiency, as a consistent trend, more by-products are generated 

during MEK degradation compared to that of toluene which agrees with previous works on 

toluene and MEK photocatalytic oxidation studies [51]. This might be attributed to the severe 

adsorption competition between MEK and generated by-products during its oxidation and/or the 

strong adsorption of toluene by-products (e.g. benzoic acid and benzaldehyde) on titania.  

Table 4. Generated by-products in the gas phase during photocatalytic degradation of toluene 

and MEK on various titania photocatalysts (all values in ppb). 

In this study, crystallinity, crystal size, phase composition, surface area, porosity, surface OH 

density, and •OH generation ability are the main factors. On the one hand, these parameters are 

interconnected and can negatively/positively (and to different magnitudes) affect photocatalytic 

processes. On the other hand, similar to many examples in the field of catalysis, there are 

thresholds for photocatalyst properties, at which sharp changes in the activity are seen due to a 

small variation in a property. For instance, in terms of relative crystallinity, surface area, band 

gap, •OH generation and crystal size, there are very small differences between Ht-3 and HP-1 

(see Table 3 and Fig. 7). These samples mainly differ from each other in the anatase content, 

81.5 vs 83.7%. Evidently, this slight difference in phase composition could lead to 12% 

difference in MEK removal efficiency (see Figs. 11 and 13). The above-mentioned issues along 

with the non-linear correlation between each photocatalyst feature and its activity could account 

for the absence of any mechanistic property-performance relationships. Nevertheless, as can be 

noted in Fig. 14 in the majority of cases, there is an acceptable level of proportionality between 

MEK/toluene removal efficiency and PL intensity. Especially for MEK photocatalytic 
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degradation, removal efficiencies over Ht-series and HT-series photocatalysts correspond very 

well with their PL intensities (coefficient of determination (R2)=0.82). The positive correlations 

in Fig. 14 point out that generally higher PL intensity (or •OH generation efficiency) brings about 

better VOC removal efficiencies.  

Fig. 14. Dependence of toluene (A) and MEK (B) removal efficiency on PL intensity. 

Conclusion 

In the present work, biphasic macro-/mesoporous TiO2 photocatalysts with high specific surface 

area and good crystallinity were fabricated by a facile and straightforward hydrothermal route. 

The characterization results indicated that the hydrothermal time and temperature have 

significant impacts on the physical properties of prepared samples, while autoclave filling ratio is 

comparatively less influential. With prolonging the hydrothermal reactions or raising the 

hydrothermal temperature, crystallinity, crystal size, anatase phase content, and pore size 

increased while specific surface area, porosity, and hydroxyl groups population declined. Based 

on the N2 adsorption-desorption isotherms, and SEM and TEM images, hydrothermally-prepared 

sample at 180 °C, 12 h, and 80% filling percentage possessed a trimodal porous structure: 

macroporous channels, inter- and intraparticle mesoporousity, and small amount of 

microporousity. The •OH generation on TiO2 samples was assessed by photoluminescence 

method using terephthalic acid as probe compound. The fluorescence intensity normalized by the 

sample surface area could be satisfactorily correlated with the relative anatase crystallinity, 

indicating that the level of crystallinity mainly governs the formation rate of •OH. Generally, 

VOC removal efficiency improved with increasing the hydrothermal time/temperature, reached 

an optimum value, and then experienced a decrement due to substantial surface area and porosity 

loss. Toluene removal efficiency over H-Base (48.7%) and HT-3 (63%), and MEK removal 
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efficiency over Ht-4 (68%) and HT-3 (73%) exceeded those of P25 (34 and 35%, respectively), 

which could be mainly attributed to the large surface area, good crystallinity, proper crystal size, 

high mesoporousity, and abundance of surface hydroxyl groups of these photocatalysts. A 

relatively good correlation (R2=0.66-0.82) between VOC removal efficiency and PL intensity 

was noticed for the majority of photocatalysts. This shows that the photoluminescence 

spectroscopy can be applied as a reliable and fast strategy to have a preliminary evaluation of 

photocatalyst performance for air purification.  
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Fig. 1. Schematic presentation of the experimental set-up for PCO experiments. 
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Fig. 2. XRD patterns of photocatalysts prepared at different (a) hydrothermal durations, (b) hydrothermal temperatures, and (c) 

autoclave filling ratios. 
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Fig. 3. Nitrogen adsorption–desorption isotherms of hydrothermally-prepared titania photocatalysts; Impact of hydrothermal 

preparation time (a) and temperature (b). 
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Fig. 4. Pore-size distribution of hydrothermally-prepared titania photocatalysts; Impact of hydrothermal preparation time (a) and 

temperature (b). 
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Fig. 5. (a and b) SEM images of porous TiO2 hydrothermally prepared at 180 °C and 80% filling ratio for 12 h (H-Base). (c and d) 

SEM images of H-Base photocatalyst coated on nickel form filter. 
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Fig. 6. TEM (a) and HRTEM (b and c) images of H-Base. (d) Particle size distribution histogram of H-Base sample measured from 

the TEM imaging in Fig. 6a (the graph is based on the measurement of the size of 100 nanoparticles.) 
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Fig. 7. Variations in Photoluminescence spectra of titania photocatalysts with (a) hydrothermal duration, (b) hydrothermal 

temperature, and (c) autoclave filling ratio. 
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Fig. 8. Dependence of surface area normalized fluorescence intensity (a.u./(m2/g)) on the relative anatase crystallinity of various 

titania photocatalysts (see Table 2). 
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Fig. 9. Variations in UV-vis absorbance spectra of titania photocatalysts with (a) hydrothermal duration, (b) hydrothermal 

temperature, and (c) autoclave filling ratio. 
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Fig. 10. FTIR spectra of the TiO2 samples in the hydroxyl group region: (a) impact of hydrothermal time and (b) impact of 

hydrothermal temperature. 
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Fig. 11. Toluene and MEK removal efficiency and reaction rate for the as-prepared titania, hydrothermally-prepared TiO2 samples 

synthesized at different durations (1-48 h), and P25. 
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Fig. 12. Toluene and MEK removal efficiency and reaction rate for hydrothermally-prepared TiO2 samples synthesized at different 

hydrothermal temperatures (100-220 °C). 
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Fig. 13. Toluene and MEK removal efficiency and reaction rate for hydrothermally-prepared TiO2 samples synthesized at different 

autoclave filling ratios (20-90%). 
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Fig. 14. Dependence of toluene (A) and MEK (B) removal efficiency on PL intensity. 
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Scheme 1. Generation of 2-hydroxyterephthalic acid as a result of the reaction between terephthalic acid and hydroxyl radical. 
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Scheme 2. Graphical presentation of the impact of hydrothermal treatment on titania structure. 
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Table 1. Hydrothermal preparation conditions of different TiO2 photocatalysts. 

 
Preparation parameters 

Name* 
Temperature 

(˚C) 

Time 

(h) 

Filling 

percentage (%) 

H-Base  180 12 80 

Ht-1 180 1 80 

Ht-2 180 3 80 

Ht-3 180 6 80 

Ht-4 180 24 80 

Ht-5 180 48 80 

HT-1 100 12 80 

HT-2 140 12 80 

HT-3 200 12 80 

HT-4 220 12 80 

HP-1 180 12 20 

HP-2 180 12 40 

HP-3 180 12 60 

HP-4 180 12 90 

 

*In naming, t, T, and P respectively stand for time, temperature and pressure of hydrothermal reactions. 
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Table 2. PCO tests experimental conditions (mean value ± standard deviation) 

Parameter Value  Unit 

Inlet concentration 1010 ± 51.3 ppb 

Relative humidity 19.9 ± 2.0  % 

Volumetric flow rate  12 ± 0.1 L/min 

Residence time 0.05 ± 0.0004 Sec 

Light intensity  5 
mW/cm
2 

Temperature  23.3 ± 1.4 °C 

TiO2 concentration 1± 0.07 mg/cm2 
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Table 3. Crystalline and textural properties of titania photocatalysts prepared at various 

hydrothermal conditions and P25. 

Name Amorphous 

content (%) 

Crystalline 

phase (%) 

Crystal size 

(nm) 

Relative 

anatase 

crystallinity 

Surface 

area 

(m2/g) 

Band 

gap 

(eV) 

A B A B  
  

P25 9.0 81.3 
 18.7 

(R) 
25.3 

27.4 

(R) 
- 53.23 3.01 

As-

prepared 
100 

- 
- - - - 346.5 - 

H-Base 14.6 83.4 16.6 7.6 8.3 1 155.5 3.20 

Ht-1 17.4 84.6 15.4 6.1 7.4 0.80 219.1 3.19 

Ht-2 16.0 82.8 17.2 6.9 7.7 0.93 181.0 3.21 

Ht-3 14.6 81.5 18.5 7.3 8.0 0.96 168.4 3.19 

Ht-4 14.7 89.0 11.0 7.9 8.5 1.14 148.3 3.21 

Ht-5 12.6 92.3 7.7 8.8 9.2 1.34 134.9 3.21 

HT-1 20.5 82.3 17.7 5.9 7.3 0.74 237.2 3.20 

HT-2 15.9 83.1 16.9 6.9 7.9 0.90 183.5 3.19 
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HT-3 12.3 82.3 17.7 8.4 8.7 1.16 146.7 3.21 

HT-4 11.0 89.7 10.3 9.5 10.0 1.47 139.1 3.22 

HP-1 15.1 83.7 16.3 7.2 8.3 0.95 163.2 3.18 

HP-2 14.5 83.2 16.8 8.4 8.9 1.04 151.4 3.22 

HP-3 14.4 82.8 17.2 7.8 8.4 0.98 162.7 3.19 

HP-4 14.4 81.5 18.5 7.7 8.7 0.97 165.3 3.21 

 

* Relative anatase crystalinity is calculated by divinding the intensity of the anatase (101) diffraction peak to that of 

H-Base. A: anatase, B: brookite, R: rutile 
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Table 4. Generated by-products in the gas phase during photocatalytic degradation of toluene and 

MEK on various titania photocatalysts (all values in ppb). 

 

 

 

 

 

 

Photocatal

yst 
  Toluene   MEK 

  
 

Formaldeh

yde 

Acetaldeh

yde 

Aceto

ne  

Formaldeh

yde 

Acetaldeh

yde 

Aceto

ne 

Propionaldeh

yde 

P25  14.7 3.4 3.4  46.3 60.4 8.5 - 

As-

prepared 

 
20.8 6.0 5.9 

 
17.5 9.4 - 6.0 

H-Base  13.0 4.6 -  43.9 45.6 - - 

Ht-1  13.2 4.6 6.5 
 

33.3 31.7 - - 

Ht-2  11.3 3.9 5.7 
 

35.8 34.4 - 6.1 

Ht-3  13.7 5.3 6.4 
 

36.6 34.4 6.7 4.6 

Ht-4  12.5 4.4 5.1 
 

38.2 37.2 - - 

Ht-5  12.6 5.0 6.2 
 

40.0 36.5 10.8 5.3 

HT-1   8.4 3.3 -   32.7 30.6 7.6 - 

HT-2  10.7 4.5 6.1 
 

38.2 35.6 7.8 - 

HT-3  17.5 7.3 6.6 
 

35.8 34.4 7.4 - 

HT-4  16.2 5.8 5.8 
 

34.6 33.0 7.1 - 

HP-1   10.4 4.5 7.0   42.5 35.8 6.2 - 

HP-2  10.8 4.5 10.5 
 

40.0 33.0 - - 

HP-3  9.5 3.1 5.6 
 

43.1 40.6 - - 

HP-4   9.9 5.3 8.4   37.4 36.7 - - 
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Figure caption 

Scheme 1. Generation of 2-hydroxyterephthalic acid as a result of the reaction between 

terephthalic acid and hydroxyl radical. 

Scheme 2. Graphical presentation of the impact of hydrothermal treatment on titania structure. 

Fig. 1. Schematic presentation of the experimental set-up for PCO experiments. 

Fig. 2. XRD patterns of photocatalysts prepared at different (a) hydrothermal durations, (b) 

hydrothermal temperatures, and (c) autoclave filling ratios. 

Fig. 3. Nitrogen adsorption–desorption isotherms of hydrothermally-prepared titania 

photocatalysts; Impact of hydrothermal preparation time (a) and temperature (b). 

Fig. 4. Pore-size distribution of hydrothermally-prepared titania photocatalysts; Impact of 

hydrothermal preparation time (a) and temperature (b). 

Fig. 5. (a and b) SEM images of porous TiO2 hydrothermally prepared at 180 °C and 80% filling 

ratio for 12 h (H-Base). (c and d) SEM images of H-Base photocatalyst coated on nickel form 

filter.    

Fig. 6. TEM (a) and HRTEM (b and c) images of H-Base. (d) Particle size distribution histogram 

of H-Base sample measured from the TEM imaging in Fig. 6a (the graph is based on the 

measurement of the size of 100 nanoparticles.) 

Fig. 7. Variations in Photoluminescence spectra of titania photocatalysts with (a) hydrothermal 

duration, (b) hydrothermal temperature, and (c) autoclave filling ratio. 

Fig. 8. Dependence of surface area normalized fluorescence intensity (a.u./(m2/g)) on the relative 

anatase crystallinity of various titania photocatalysts (see Table 2). 

Fig. 9. Variations in UV-vis absorbance spectra of titania photocatalysts with (a) hydrothermal 

duration, (b) hydrothermal temperature, and (c) autoclave filling ratio. 

Fig. 10. FTIR spectra of the TiO2 samples in the hydroxyl group region: (a) impact of 

hydrothermal time and (b) impact of hydrothermal temperature. 

Fig. 11. Toluene and MEK removal efficiency and reaction rate for the as-prepared titania, 

hydrothermally-prepared TiO2 samples synthesized at different durations (1-48 h), and P25. 

Fig. 12. Toluene and MEK removal efficiency and reaction rate for hydrothermally-prepared 

TiO2 samples synthesized at different hydrothermal temperatures (100-220 °C). 
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Fig. 13. Toluene and MEK removal efficiency and reaction rate for hydrothermally-prepared 

TiO2 samples synthesized at different autoclave filling ratios (20-90%).  

Fig. 14. Dependence of toluene (A) and MEK (B) removal efficiency on PL intensity. 
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